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Abstract 

The choice of the manufacturing process in an enterprise, as the result of the preceding 

managerial decision-making process, is a key prerequisite for achieving the enterprise’s optimal 

industrial efficiency, its sustainable development, and the quality of the product offered to the 

market.  The dissertation aims to develop and verify a methodology for intelligent support in 

selecting manufacturing processes based on the Generalized Matrix Learning Vector 

Quantization neural network, to alleviate subjective decision factors and leverage domain 

knowledge in addition to sustainability goals and the product-specific design requirements. 

Despite the existing body of work, there remains a lack of integrated decision support 

approaches that holistically consider domain expertise, sustainability goals, technological 

advancements, and evolving process capabilities in a dynamic manufacturing context. This 

dissertation seeks to fill this research gap using a two-faced approach of understanding the 

impact of cognitive and subjective decision factors on manufacturing process selection and 

developing a methodology for intelligent support in selecting manufacturing processes based on 

advanced neural networks. The research aims to understand and quantify how subjective decision 

factors, namely cognitive biases, personal preference, and groupthink, interact with domain 

knowledge to limit efficient manufacturing process selection using empirical evidence and to 

develop an intelligent methodology that leverages advanced neural network techniques to 

support optimal decision-making in manufacturing process selection. The research goal is 

achieved by investigating the negative influences of cognitive and social factors on decision 

quality in the selection of manufacturing processes and developing a methodology for intelligent 

support in the selection of manufacturing processes based on Generalized Matrix Learning 

Vector Quantization neural network. As such, the subject of the research is twofold; first, it 

concerns the interplay between subjective decision factors and the use of domain knowledge in 

manufacturing process selection, particularly in the era of Industry 5.0, where manufacturing is 

re-imagined with a stronger focus on human-centric decision-making. Secondly, it concerns a 

methodology for the intelligent selection of optimal manufacturing processes based on 

Generalized Matrix Learning Vector Quantization neural networks. In the current state of 

management theory and practice, decision-making is subordinated to subjective decision factors 

such as cognitive biases, self-interested motives, and groupthink, which suppress the use of 



 
 

professional domain knowledge and expertise. The existence of such a state of affairs was 

confirmed in this dissertation through empirical research (chapter two of the dissertation), which 

justified the first of the two main research hypotheses concerning the limitations of the decision-

making process in the selection of the manufacturing process. The research results show that the 

aforementioned subjective factors significantly deprive the managerial decision-making process 

of the proper use of professional domain knowledge, leading to poorer process selection and the 

degradation of the decision. For the purpose of justifying the second, conceptual main hypothesis 

of this dissertation, studies were conducted (presented in the subsequent three chapters) on the 

application of an enhanced Generalized Matrix Learning Vector Quantization neural network, 

which adapts to multidimensional, noisy, and heterogeneous production data, while 

simultaneously integrating expert knowledge to assess and select the most appropriate 

manufacturing processes objectively. In the first of the aforementioned conceptual research 

chapters, the issue of the intelligent selection of production processes using artificial neural 

networks, fuzzy logic, and genetic algorithms was presented. Next, the systematic examination 

of the Generalized Matrix Learning Vector Quantization algorithm with improvements and its 

applications for future production process selection was conducted. In the following chapters of 

this dissertation, the applications of Generalized Matrix Learning Vector Quantization for 

process selection with an experimental configuration were synthesized, along with an 

explanation of the dataset used and comparisons with conventional approaches such as Support 

Vector Machine. A detailed summary of the conclusions, findings, and areas for future research is 

devoted to the final part of the dissertation. The general conclusion was formulated as an 

observation that the generalized matrix learning vector quantization improves decision-making in 

the manufacturing process selection by eliminating human biases and enabling a more effective 

use of domain knowledge. The generalized matrix learning vector quantization model achieved 

one hundred percent accuracy in the selection of the manufacturing process, thus demonstrating 

its effectiveness in realistic scenarios. The research presented in this dissertation also proved the 

harmful consequences of subjective factors in decision-making on the quality of production 

decisions and showed that Generalized Matrix Learning Vector Quantization can be used as one 

of the possible alternatives to such biases, making decision-making more effective in the 

conditions of a production enterprise. In the cognitive scope of management sciences, a new data 

and information-based decision support method was introduced that balances subjective decision 



 
 

factors with objective information to make manufacturing process selection more accurate, 

efficient, and sustainable. With regard to future research directions on the topic of this 

dissertation, it was suggested to test the generalized matrix learning vector quantization model 

with more significant and diversified datasets and to examine its scalability and transferability 

value to other industrial applications. 

 

 

 

 

  



 
 

Streszczenie 

Wybór procesu produkcyjnego przedsiębiorstwa, jako rezultat poprzedzającego go procesu 

decyzyjnego zarządzania, jest kluczową przesłanką osiągania optymalnej efektywności 

przedsiębiorstwa, jego zrównoważonego rozwoju oraz jakości produktu oferowanego rynkowi.  

Celem rozprawy jest opracowanie i weryfikacja metodologii inteligentnego wsparcia w wyborze 

procesów produkcyjnych w oparciu o sieć neuronowej Generalized Matrix Learning Vector 

Quantization, aby złagodzić subiektywne czynniki ludzkie i wykorzystać wiedzę domenową 

oprócz celów zrównoważonego rozwoju i wymagań projektowych specyficznych dla produktu. 

Pomimo istniejącego dorobku nadal brakuje zintegrowanych podejść do wsparcia decyzji, które 

holistycznie uwzględniają wiedzę specjalistyczną w dziedzinie, cele zrównoważonego rozwoju, 

postęp technologiczny i ewoluujące możliwości procesu w dynamicznym kontekście produkcji. 

Niniejsza rozprawa ma na celu wypełnienie tej luki badawczej przy użyciu dwustronnego 

podejścia polegającego na zrozumieniu wpływu poznawczych i subiektywnych czynników 

ludzkich na wybór procesu produkcyjnego oraz opracowaniu metodologii inteligentnego 

wsparcia w wyborze procesów produkcyjnych w oparciu o zaawansowane sieci neuronowe. 

Badania mają na celu zrozumienie i określenie ilościowe, w jaki sposób ludzkie uprzedzenia 

oddziałują na wiedzę domenową w celu ograniczenia efektywnego wyboru procesu 

produkcyjnego przy użyciu dowodów empirycznych i opracowanie inteligentnej metodologii 

wykorzystującej zaawansowane techniki sieci neuronowych w celu wsparcia optymalnego 

podejmowania decyzji w wyborze procesu produkcyjnego. Cel badawczy jest realizowany 

poprzez zbadanie negatywnych wpływów czynników poznawczych i społecznych na jakość 

decyzji w doborze procesów produkcyjnych oraz opracowanie metodologii inteligentnego 

wsparcia w doborze procesów produkcyjnych w oparciu o sieć neuronowej Generalized Matrix 

Learning Vector Quantization. Jako taki, przedmiot badań jest dwojaki; po pierwsze, dotyczy on 

wzajemnego oddziaływania subiektywnych czynników ludzkich i wykorzystania wiedzy 

domenowej w doborze procesów produkcyjnych, szczególnie w erze Przemysłu 5.0, gdzie 

produkcja jest wyobrażana na nowo z większym naciskiem na podejmowanie decyzji 

zorientowanych na człowieka. Po drugie, dotyczy on metodologii inteligentnego doboru 

optymalnych procesów produkcyjnych w oparciu o sieci neuronowej Generalized Matrix 

Learning Vector Quantization. Decyzja ta, w obecnym stanie teorii i praktyki zarządzania, jest 

podporządkowana subiektywnym czynnikom ludzkim takim jak: uprzedzenia poznawcze, 



 
 

interesy egoistyczne i myślenie grupowe, które tłumią wykorzystanie profesjonalnej wiedzy 

domenowej. Fakt istnienia takiego stanu rzeczy potwierdzono w tej dysertacji badaniami 

empirycznymi (rozdział drugi dysertacji), uzasadniającymi pierwszą z dwóch głównych hipotez 

naukowych dotyczących ograniczeń decyzyjnego wyboru procesu produkcyjnego 

przedsiębiorstwa. Wyniki badań pokazują, że wymienione wyżej subiektywne czynniki znacząco 

pozbawiają proces decyzyjny zarządzania właściwego wykorzystania profesjonalnej wiedzy 

domenowej, co prowadzi do gorszego wyboru procesów i degradacji decyzji. Dla potrzeb 

uzasadnienia drugiej, konceptualnej hipotezy głównej tej dysertacji podjęto (przedstawione w jej 

kolejnych trzech rozdziałach) badania nad wykorzystaniem ulepszonej sieci neuronowej 

Generalized Matrix Learning Vector Quantization, która dostosowuje się do wielowymiarowych, 

zaszumionych i heterogenicznych danych produkcyjnych, jednocześnie integrując wiedzę 

ekspercką w celu obiektywnej oceny i wyboru najbardziej odpowiednich procesów 

produkcyjnych. W pierwszym z wymienionych wyżej konceptualnych rozdziałów badawczych 

zaprezentowano zagadnienie inteligentnego wyboru procesów produkcyjnych przy użyciu 

sztucznych sieci neuronowych, logiki rozmytej i algorytmów genetycznych. Następnie poddano 

systematycznym badaniom algorytm Generalized Matrix Learning Vector Quantization z 

ulepszeniami i zastosowaniami do przyszłego wyboru procesu produkcyjnego. W kolejnych 

dwóch rozdziałach tej dysertacji zsyntetyzowano zastosowania Generalized Matrix Learning 

Vector Quantization do wyboru procesu z eksperymentalną konfiguracją oraz wyjaśnienie 

użytego zestawu danych i porównania z konwencjonalnymi podejściami, takimi jak Support 

Vector Machine. Szczegółowemu podsumowaniu wniosków, ustaleń i obszarów przyszłych 

badań poświęcono końcową część tej dysertacji. Generalną konkluzję sformułowano w postaci 

konstatacji, że uogólniona kwantyzacja wektorów uczenia się macierzy usprawnia 

podejmowanie decyzji w procesie wyboru procesu produkcyjnego poprzez eliminację ludzkich 

uprzedzeń i efektywniejsze wykorzystanie wiedzy domenowej. Model uogólnionej kwantyzacji 

wektorów uczenia się macierzy osiągnął sto procent dokładności w wyborze procesu 

produkcyjnego, a tym samym wykazał swoją skuteczność w realistycznych scenariuszach. 

Badania zaprezentowane w treści tej dysertacji dowiodły także szkodliwych konsekwencji 

czynników subiektywnych w podejmowaniu decyzji na jakość decyzji produkcyjnych i pokazały, 

że uogólniona kwantyzacja wektorów uczenia się macierzy może być stosowana jako jedna z 

możliwych alternatyw dla takich uprzedzeń, a podejmowanie decyzji może być skuteczniejsze w 



 
 

warunkach przedsiębiorstwa produkcyjnego W zakresie poznawczym nauk o zarządzaniu 

wprowadzono nową metodę wspomagania decyzji opartego na danych i informacjach, które 

równoważy subiektywne czynniki ludzkie z obiektywnymi informacjami tak, aby podejmowanie 

decyzji produkcyjnych było dokładniejsze, wydajniejsze i bardziej zrównoważone. W 

odniesieniu do przyszłych kierunków badań nad tematem tej dysertacji zasugerowano 

przetestowanie modelu uogólnionej kwantyzacji wektorów uczenia się macierzy z bardziej 

znaczącymi i zróżnicowanymi zestawami danych oraz zbadanie jego skalowalności i wartości 

transferu do innych zastosowań przemysłowych. 
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1. Introduction 

This chapter introduces the dissertation by describing the justification for the research topic. It 

acknowledges the significance of manufacturing in economic development and its impact on 

socio-economic and environmental aspects, requiring the adoption of sustainable and efficient 

approaches. This is further compounded by the Industry 5.0 paradigm shift, which emphasizes a 

human-centric approach to sustainable development in addition to efficiency and productivity. 

The chapter describes the main research hypotheses and the tasks to test them. The chapter also 

describes the dissertation's goal, the research aims, the research subject, the methodology, the 

scope, and the overall dissertation structure.  

1.1. Justification for taking up the dissertation topic  

The manufacturing sector has undergone several transformations to ensure sustainable 

development while meeting customer demands. As an essential component and driver of 

economic growth, especially in developing countries (Guo & Sun, 2023; Haraguchi et al., 2017; 

Hauge, 2023; Lakew, 2023; Zalva et al., 2023), manufacturing remains a top research area. 

Research reveals that manufacturing entities must lead innovations to withstand unprecedented 

global competition in the wake of intelligent manufacturing (Hauge, 2023). Critical managerial 

functions such as planning, implementing, and controlling manufacturing processes involve 

much decision-making, featuring a wide range of parameters and data. Decision-making 

processes aim to identify the optimal course of action from a pool of possibilities that guarantee 

high performance and sustainability. Manufacturers must embrace digital technologies to create 

high-quality and intelligent manufacturing systems that optimize performance (Hauge, 2023).  

The authors further pointed out that sustainable manufacturing concepts must be adopted to 

ensure cost-efficiency and management of complex product assembly (Jardim-Goncalves et al., 

2017). Similar research argues that manufacturing processes and product design innovation 

remain crucial to industrial evolution (Abdulhameed et al., 2019). Given the growing uncertainty 

and complexity, efficient decision-making remains central to the rapid development of 

sustainable manufacturing paradigms. 

Players across industries have adopted best practices to improve manufacturing 

operations, including total quality management, just-in-time flow, concurrent engineering, and 
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supplier relationship management. Despite these efforts, the sector faces unprecedented pressures 

to ensure sustainability and improved product quality. Fierce competition, changing markets, 

increased uncertainty, growing customer demand for high-quality products at reduced costs, and 

increased calls for sustainable resource use continue to pressure the manufacturing sector. As 

noted in a recent study, modern organizations are increasingly complex, dynamic, and more 

uncertain (Tworek et al., 2019). Decisions on relevant and proper manufacturing processes are 

crucial but complex. Because of the increasing complexity and uncertainty within the 

manufacturing ecosystem, process designers and engineers are under constant pressure to ensure 

the selection of optimal manufacturing processes right from the beginning. Selecting the correct 

process to manufacture a product can solve common issues such as rework, which often 

lengthens lead time and increases the overall manufacturing cost. There are numerous 

mechanisms and strategies for handling uncertainties in manufacturing, such as rework strategies 

(Dai et al., 2014), in-line production traceability (Colledani & Angius, 2020), and integrated 

maintenance and quality (Gouiaa-Mtibaa et al., 2018). However, despite the progress, getting the 

manufacturing process right while designing the product remains crucial to the overall 

performance of the adopted manufacturing system operations.  

Manufacturing processes and materials are rapidly evolving. Increasingly high demand 

for customized products and components, as well as other constraints such as performance, lead 

times, and complexity, drive the evolution of manufacturing processes and materials (Khaleeq uz 

Zaman et al., 2017). As a result, the selection of manufacturing processes is increasingly 

becoming a complex task involving a thorough analysis of multiple criteria and trade-offs. For 

instance, additive manufacturing adoption in the aerospace industry has been justified by 

technical advantages spanning from reduced mass, enhanced heat transfer, use of novel high-

performance alloys, and complex geometry (Gradl et al., 2022), which makes them particularly 

useful in improving efficiency by reducing cost and lead time in the wake of increasingly 

complex design requirements (Madhavadas et al., 2022). However,  selecting a suitable additive 

manufacturing process for a specific component involves trading technical advantages and 

constraints between design requirements, material properties, and the process parameters (Gradl 

et al., 2022). Additionally, specific part performance requirements, post-processing approaches, 

certification, and metallurgical considerations complicate the additive manufacturing process 
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trade-off for aerospace components (Froes et al., 2019). Thus, selecting a manufacturing process 

is not considered a trivial exercise. 

Traditionally, selecting appropriate processes for manufacturing a particular component 

relied on matching process capabilities and required properties. However, selection drivers have 

grown over the years to include sustainability goals and process-specific advantages such as 

flexibility, process time, efficiency, and cost (Jena et al., 2020; Mele & Campana, 2020; Muvunzi 

et al., 2022; Papacharalampopoulos et al., 2023; Sun et al., 2022). Selecting a successful 

manufacturing technique often includes analyzing the delicate interplay between design, 

material, and process characteristics. Several authors have studied the problem of manufacturing 

process selection in recent years, indicating its significance (Aichouni et al., 2021; Baghad & 

Mabrouk, 2023; Cortés et al., 2022; Krulčić et al., 2022; Martínez-Rivero et al., 2019; 

Papacharalampopoulos et al., 2023). Although managers have often relied on experience, the 

need for unbiased and systematic tools for comprehensively assessing process alternatives, 

desired requirements, and product designs has led to the use of Decision Support Systems (DSS) 

to aid decision-making. Using expert knowledge and experience alone can lead to incorrect 

decisions (Martínez-Rivero et al., 2019) due to various issues, including cognitive problems and 

the lack of analytical, systematic, and structured methods to verify their decisions. These experts' 

databases are not continuously updated with the latest information. Recent studies show that 

modern manufacturing enterprises embrace a paradigm shift towards socio-ecological and 

resource-efficient engineering processes to remain competitive (Ben Ruben et al., 2019). The 

research gap is that despite the existing body of work on manufacturing process selection using 

various approaches, including expert systems and multi-criteria decision methods, there remains 

a lack of studies on integrated intelligent decision support approaches that holistically consider 

domain expertise, sustainability goals, technological advancements, and evolving process 

capabilities in a dynamic manufacturing context. This dissertation seeks to fill this research gap 

using a two-pronged approach of understanding the impact of cognitive and subjective decision 

factors on manufacturing process selection and developing a methodology for intelligent support 

in selecting manufacturing processes based on advanced neural networks.   

In conventional manufacturing, processes have been refined over decades; however, 

recent technological advances and the drive for sustainability have introduced new challenges, 

such as reducing environmental footprints and optimizing raw material use. Conversely, additive 
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manufacturing, encompassing methods like vat photo-polymerization, material extrusion, 

material jetting, binder jetting, directed energy deposition, powder bed fusion, and sheet 

lamination, is evolving rapidly. Its layer-by-layer production approach inherently leads to poor 

inter-layer adhesion, surface finish defects, and material inconsistencies. Moreover, the relative 

novelty of these processes means that detailed, established knowledge about their parameters is 

often lacking in current studies (M. M. Mabkhot et al., 2019; White et al., 2022; Yurdakul et al., 

2014). This scenario creates significant uncertainty when selecting a product's most appropriate 

manufacturing process. Conventional and additive manufacturing methods offer unique 

advantages and face distinct challenges, necessitating a decision-making approach that can 

accommodate diverse criteria and handle high-dimensional, heterogeneous data. Traditional 

methods, including neural networks, genetic algorithms, and fuzzy logic, have been employed to 

tackle these challenges; however, they sometimes struggle with the complexity and noise 

inherent in manufacturing datasets. 

Generalized Matrix Learning Vector Quantization (GMLVQ) offers a promising solution. 

As an extension of the LVQ framework, GMLVQ introduces an adaptive relevance matrix that 

transforms the conventional Euclidean distance into a more flexible, generalized metric. This 

matrix-based approach allows the algorithm to weigh feature pairs, implicitly capturing 

correlations and rotations within the data. Such capability is particularly beneficial when dealing 

with the noisy, high-dimensional, and non-linearly separable datasets typical in modern 

manufacturing environments (Biehl et al., 2015). Moreover, extensive research has shown that 

GMLVQ can significantly outperform other classifiers, like support vector machines and 

decision trees,  when enhanced by hybrid algorithms and novel training techniques (Biehl et al., 

2015; LeKander et al., 2017).  GMLVQ provides a robust framework capable of integrating data 

from multiple sources without explicit transfer learning by learning both prototype 

representations and an adaptive distance metric during training. 

Consequently, this dissertation is motivated by the need to develop an intelligent support 

system for manufacturing process selection that leverages GMLVQ's advanced capabilities. By 

integrating GMLVQ’s feature relevance learning and adaptive metric framework, the proposed 

methodology aims to enhance decision-making accuracy and reliability in selecting the optimal 

manufacturing process, whether conventional or additive, thus addressing a critical challenge in 

modern manufacturing environments.  
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1.2. Research hypotheses 

Given the evolving and highly dynamic manufacturing landscape, the challenge of 

manufacturing process selection remains compounded by the interplay of subjective decision 

factors and well-established domain knowledge. While significant advances have been made to 

support the selection of conventional and additive manufacturing processes, the decision-making 

process remains vulnerable to the inherent biases of the decision-makers. Factors such as 

cognitive biases, personal preferences, and groupthink can distort judgment, potentially leading 

to the selection of processes that do not fully leverage available expertise. The emerging Industry 

5.0 paradigm shift takes a human-centric approach, emphasizing the pivotal role of humans in 

sustainable manufacturing besides efficiency and productivity (Golovianko et al., 2022).  

Industry 5.0 is envisioned to ensure sustainable development with industrial technicians at the 

center of manufacturing processes (Battini et al., 2022; S. Huang et al., 2022). As a result, 

several opportunities have been identified, including human-cyber-physical systems, human-

robot collaboration, and human-digital twins (Coronado et al., 2022; S. Huang et al., 2022). 

Unlike its predecessor, Industry 4.0, which championed automation and machine intelligence, 

Industry 5.0 heralds a new synthesis of human talent with robotic precision. Against this 

backdrop, this research is driven by the need to unravel how these subjective elements interact 

with domain knowledge and to develop an intelligent decision-support methodology based on an 

improved GMLVQ neural network that leverages human expertise in the selection of 

manufacturing processes. With this approach, the dissertation goal is to develop and verify a 

methodology for intelligent support in selecting manufacturing processes based on 

the GMLVQ neural network, to alleviate subjective decision factors and leverage domain 

knowledge in addition to sustainability goals and the product-specific design requirements.  

Therefore, this study is supported by two main hypotheses, as follows: 

H1: Subjective decision factors, namely cognitive biases, personal preferences, and groupthink, 

contribute to the selection of inefficient manufacturing processes by limiting the effective use of 

domain knowledge in decision-making, which runs counter to the principles of Industry 4.0 and 

Industry 5.0. 

H2: An intelligent decision support methodology utilizing an enhanced Generalized Matrix 

Learning Vector Quantization neural network significantly improves the efficiency of 
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manufacturing process selection by mitigating the collective impact of subjective decision 

factors such as cognitive biases, personal preferences, groupthink, and cognitive load. 

 

Hypothesis H1 consists of the following Sub-Hypotheses:  

• H1a: Cognitive biases significantly contribute to selecting inefficient manufacturing 

processes. 

• H1b: Personal preferences significantly contribute to selecting inefficient manufacturing 

processes. 

• H1c: Groupthink within decision-making teams contributes to the selection of inefficient 

manufacturing processes. 

• H1d: High cognitive load contributes to the selection of inefficient manufacturing 

processes. 

• H1e: Limited utilization of knowledge of alternatives contributes to the selection of 

inefficient manufacturing processes. 

• H1f: Limited utilization of knowledge on process variants contributes to the selection of 

inefficient manufacturing processes. 

• H1g: Limited knowledge of process complexity contributes to the selection of inefficient 

manufacturing processes. 

• H1h: Selecting inefficient manufacturing processes leads to rework and reprocessing. 

• H1i: The selection of inefficient manufacturing processes increases waste materials. 

• H1j: The selection of inefficient manufacturing processes leads to low-quality outcomes. 

• H1k: Selecting inefficient manufacturing processes leads to extended lead time. 

• H1l: Selecting inefficient manufacturing processes leads to increased safety concerns. 

 

The first hypothesis postulates that human factors limit the effective utilization of domain 

knowledge by steering decision-makers away from data-driven insights and objective criteria, 

thereby contributing to less-than-optimal selection of manufacturing processes. The evolution 

toward Industry 5.0 marks a departure from purely automated systems to a new era where human 

expertise and advanced technologies are interwoven. To achieve the goals of Industry 5.0, 

integrating the rich domain knowledge possessed by human experts is essential. Based on 

empirical evidence from manufacturing companies in Poland, this research provides a 
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comprehensive understanding of how subjective decision factors constrain the selection of 

efficient manufacturing processes, despite the availability of extensive technical expertise. This 

limitation undermines optimal decision-making in manufacturing, which should align with new 

social development concepts and integrate human ingenuity with intelligent machines. The 

second hypothesis is anchored on leveraging GMLVQ's adaptive metric learning capabilities. 

This approach is designed to handle high-dimensional, noisy, and heterogeneous manufacturing 

data and expert knowledge by dynamically learning the relevance of various features. The 

improved GMLVQ model is expected to integrate historical data and expert domain knowledge 

to objectively assess and select manufacturing processes.  

The research problem is twofold. First, it concerns the interplay between subjective 

decision factors and the use of domain knowledge in manufacturing process selection, 

particularly in the era of Industry 5.0, where manufacturing is re-imagined with a stronger focus 

on human-centric decision-making. Second, it concerns a methodology for the intelligent 

selection of optimal manufacturing processes based on GMLVQ neural networks. 

1.3. Research objectives 

Building on the stated hypotheses that subjective decision factors can lead to inefficient 

manufacturing process selection and that an intelligent decision support system based on an 

enhanced GMLVQ neural network can improve this selection process, the objectives of this 

research are designed to address these challenges systematically. The overall goal of the research 

is to understand and quantify how subjective decision factors, namely cognitive biases, personal 

preference, and groupthink, interact with domain knowledge to limit efficient manufacturing 

process selection using empirical evidence and to develop an intelligent methodology that 

leverages advanced neural network techniques to support optimal decision-making in 

manufacturing process selection. To achieve this, the research goal is guided by two primary 

tasks:  

i. To investigate the negative influences of subjective decision factors on decision quality 

in the selection of manufacturing processes. 

ii. To develop a methodology for intelligent support in the selection of manufacturing 

processes based on Generalized Matrix Learning Vector Quantization neural network.  
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The first primary task seeks to contextualize the manufacturing process selection problem 

within broader industry challenges. This goal emphasizes aligning process selection with 

efficiency, quality, and sustainability targets, and is designed to quantify the impact of subjective 

decision factors on decision quality through empirical analysis. By so doing, this task aims to 

demonstrate how these subjective influences constrain the efficient utilization of domain 

knowledge, which in turn leads to inefficient selection of manufacturing processes. Therefore, 

the first primary task is complemented by the following two sub-tasks:- 

i. To review and bridge the knowledge gap in manufacturing process selection and its 

significance in driving manufacturing efficiency, improving product quality, and 

achieving sustainable goals by identifying and analyzing recent advances, challenges, and 

opportunities. 

ii. To study cognitive bias, high cognitive load, personal preference, groupthink, and limited 

domain-specific expertise, and analyze how these elements converge to shape 

manufacturing process selection outcomes using empirical evidence from Polish 

manufacturing companies. 

 

The second primary task is developed for five reasons. First,  it establishes a foundational 

understanding of how current intelligent systems are utilized to streamline and enhance the 

manufacturing process planning and execution. As such, it is the baseline for comparing existing 

methods with the proposed GMLVQ-based approach. Second, it seeks to capture the state-of-the-

art in neural network applications within manufacturing by reviewing the latest literature and 

highlighting key methodologies, trends, and gaps that current research can address. Third, it 

intends to integrate insights from different artificial intelligence methods by examining various 

artificial intelligence-based approaches and techniques. Identifying strengths and limitations can 

inform the design of a more compelling intelligent support methodology for manufacturing 

process selection.  Fourth, it involves a comprehensive analysis of LVQ methodologies, critically 

evaluating their evolution and performance, leading to GMLVQ. Understanding these variants is 

essential to justifying the selection of the GMLVQ approach and its potential improvements over 

traditional methods. Finally, it is designed to culminate in designing, implementing, and 

benchmarking a GMLVQ-based decision support model. The research will validate the model’s 

ability to address the complex challenges identified in process selection by comparing its 
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performance with established methods. Consequently, five complementary tasks to the second 

primary task  are as follows:-   

i. To review the potential of intelligent system support in managing the preparation and 

implementation of manufacturing processes 

ii. To identify, synthesize, and comprehensively summarize recent studies on artificial 

neural network-based decision support systems applied in manufacturing processes. 

iii. To synthesize existing knowledge on the use of intelligent support systems in 

manufacturing process selection, with a focus on methodologies and frameworks based 

on three artificial intelligence technologies, Neural Networks (NN), Genetic Algorithms 

(GA), and Fuzzy Logic (FL), and their hybrid combinations, as applied to conventional 

and additive manufacturing. 

iv. To analyze extensively researched and well-documented Learning Vector Quantization 

(LVQ) variants with firm theoretical foundations and empirical evidence supporting their 

efficacy by synthesizing their development, enhancements, and defining characteristics. 

v. To develop a methodology for optimal selection of manufacturing processes based on the 

Generalized Matrix Learning Vector Quantization neural network and perform a 

comparative analysis with similar existing methods to test and verify the developed 

model. 

 

The two primary tasks and their respective complementary sub-tasks comprehensively 

address the human and technical dimensions of manufacturing process selection and provide a 

structured roadmap, from literature synthesis and empirical investigation to developing and 

validating a novel GMLVQ-based system. Thus, the outlined primary and specific objectives 

ensure that the research advances theoretical understanding and offers practical, data-driven 

solutions for improving manufacturing outcomes.  

1.4. Research methodology and dissertation structure 

The current research explores such intricate issues regarding selecting manufacturing processes, 

focusing on subjective decision factors that impact decision-making and their integration with 

domain-specific knowledge that eventually shapes such processes' efficacy. The research takes a 

multifaceted approach to empirical, theoretical, and practical aspects through framing two main 
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hypotheses and seven complementary goals. Firstly, the research argues that subjective factors in 

decision-making, like cognitive biases, personal attitudes, and groupthink, have a profound 

adverse effect on the effective application of domain knowledge and, hence, make such decision-

making inefficient with regard to manufacturing processes. This is analyzed with the help of 

empirical information derived from the manufacturing industry in Poland, where human 

decision-making is often influenced by biases that hamper judgment despite technical 

capabilities. The research then turns to intelligent decision-support systems like GMLVQ that 

utilize artificial neural network capabilities to deal with different metrics to make manufacturing 

process selection more effective. The second hypothesis argues that GMLVQ, as a state-of-the-

art neural network paradigm, can help make decision-making more effective through managing 

high-dimensional, noisy, and heterogeneous information related to manufacturing. This research 

aims to bridge cognitive factors with data-oriented decision approaches by developing and 

testing a more efficient decision aid system based on GMLVQ to make more accurate, unbiased, 

and optimal choices in manufacturing operations. 

The scope also encompasses a comprehensive review of intelligent support systems used 

in manufacturing, specifically focusing on integrating ANNs, Fuzzy Logic, and GA, emphasizing 

how these technologies have been applied to conventional and additive manufacturing processes. 

Based on a review of recent literature published between 2011 and 2021 and between 2013 and 

2023 related to such methodologies, this study provides the framework for the subsequent 

application of the GMLVQ methodology, including theoretical derivation and empirical testing 

regarding choosing manufacturing operations. The investigation includes a critical evaluation of 

Learning Vector Quantization (LVQ) and its variants, establishing the theoretical justification for 

selecting GMLVQ as a superior method for process selection, particularly when human biases 

and cognitive overload limit the full utilization of domain knowledge. The research addresses 

real-world issues in production methodology selection concerning their interdependencies with 

subjective decision factors like cognitive load, personal bias, and groupthink, as well as domain-

specific knowledge that affects decision outcomes. This study aims to create a decision-support 

system that will improve selection quality to maximize production efficiency, product quality, 

and technology related to sustainability. In summary, this study combines empirical information 

with enhanced machine learning algorithms to create a formalized framework that enables 

decision-making in production operations.  
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This research evaluates the GMLVQ model within multiple polymer processing 

techniques based on four different polymer processing technologies, focusing on their efficacy. 

Such evaluation is essential due to the distinctive complexity of material homogeneity, 

processing techniques, and production specifications in polymer processing. By narrowing it 

down to four such processing techniques of polymers, this study aims to demonstrate that the 

GMLVQ model can provide more accurate and information-based decision support in selecting 

the best production techniques that depend on the inherent nature of polymer materials and the 

context of manufacturing. By studying such issues, this research aims to develop a complete 

information-based decision-support system to enhance the decision-support mechanism that can 

improve manufacturing efficiency, product quality, and sustainability. Therefore, this research 

combines empirical research with high-level machine learning techniques to suggest a generic 

framework that focuses on decision-making in the context of the manufacturing industry, more 

specifically concerning the processing of polymers. 

The dissertation involved three main research stages, including theoretical, empirical, and 

experimental. The theoretical stage covered a general literature review on current trends and 

future perspectives on manufacturing process selection approaches, intelligent decision support 

in manufacturing processes, and learning vector quantization neural networks. This was done in 

parallel with three systematic literature reviews. The first systematic review covered ANN-based 

decision support systems in manufacturing processes. The second systematic review covered 

intelligent support in manufacturing processes based on ANN, fuzzy logic, and genetic 

algorithms and aimed to discover current and future perspectives. While it overlapped with the 

general literature review, it followed the conclusion of the first systematic review. The third 

systematic literature review was built on the findings of the first two systematic reviews, and it 

served as the foundation for the GMLVQ-based methodology for manufacturing process 

selection. The empirical study included three stages: empirical study design, data collection, and 

hypothesis verification. These three stages were all preceded by the relevant literature review and 

contributed towards designing and refining the GMLVQ-based model, which was followed by 

data collection and pre-processing, training, optimization, tuning, evaluation, and hypothesis 

verification, as shown in Figure 1.1.  
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Figure 1.1. Research stages 

Source: Own study 
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This dissertation comprises six lengthy chapters that all contribute meaningfully to 

studying intelligent support in manufacturing process selection. The chapters are formed, in part 

or in whole, of research results published or submitted for publication in international 

conferences and high-ranking journals. Chapter 1 lays out the building blocks of the research 

through explanations of motivations, hypotheses, and research aims. It describes why it is 

essential to study how cognitive biases, human factors, and domain knowledge influence process 

selection. The chapter also introduces the primary research aim of developing an intelligent 

decision-support system based on the GMLVQ model. Chapter 2 explores the subjective 

influences on process selection through empirical evidence from Poland's manufacturing sector. 

This section has its own hypotheses that are not part of the overall hypotheses of this 

dissertation. It examines how cognitive biases, personal preferences, and groupthink shape 

decision-making, impacting the optimal use of domain knowledge. It also provides insights into 

the limitations faced by decision-makers in practice. Chapter 3 systematically reviews 

advancements in intelligent decision-support methodologies, such as ANNs, fuzzy logic, and 

GA. This review, grounded in recent literature, identifies the strengths and weaknesses of current 

methods and introduces GMLVQ as a promising approach for overcoming the limitations of 

existing systems. Chapter 4 systematically reviews the GMLVQ algorithm, detailing its 

development, theoretical foundations, and recent applications in manufacturing process selection. 

The chapter explores the potential of GMLVQ to improve decision-making by dynamically 

adjusting the relevance of features and handling complex, high-dimensional data. Chapter 5 

focuses on the practical application of the GMLVQ model for process selection. This chapter 

details the experimental setup, including the dataset, data preprocessing, tools used, and 

evaluation metrics. It also compares the performance of the GMLVQ model with SVM and 

analyzes the results, offering a thorough discussion of the implications and limitations of the 

proposed approach. This chapter is based on published and submitted papers, including one 

focused on the intelligent selection of polymer manufacturing processes using GMLVQ. Finally, 

Chapter 6 summarizes the research findings, offers conclusions based on the research 

hypotheses, and outlines directions for future research in intelligent manufacturing process 

selection. This structure allows for a comprehensive examination of theoretical and practical 

aspects, culminating in developing and testing a GMLVQ-based decision support system that 
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bridges the gap between human decision factors and objective data-driven insights. The 

following are the research outcomes published or submitted for publication during the 

preparation of this dissertation: 
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2. Empirical Insights on Manufacturing Process Selection 

Limitations 

This chapter examines how subjective decision factors and domain knowledge intersect in 

manufacturing process selection, particularly in the era of Industry 5.0, where manufacturing is 

being re-envisioned with a stronger emphasis on human-centric decision-making. The study 

acknowledges the evolving nature of human-machine collaboration, where machines support 

rather than replace human decision-makers. Therefore, understanding subjective decision factors 

is crucial for enhancing this collaboration and optimizing manufacturing processes. The study 

employs a combination of descriptive statistics, Spearman rank correlation, and Partial Least 

Squares Structural Equation Modeling to analyze survey data collected from manufacturing 

companies in Poland. This mixed-method approach is used to comprehensively assess the impact 

of subjective decision-making factors on applying domain knowledge in selecting optimal 

manufacturing processes. The findings underscore that optimizing manufacturing processes is 

inextricably linked to the human elements of cognition and expertise. The chapter highlights the 

detrimental impact of cognitive biases, groupthink, and personal preferences on the effective use 

of domain knowledge in decision-making. It underscores the importance of promoting 

sustainable and efficient manufacturing outcomes. The research extends beyond the immediate 

context of manufacturing process selection, highlighting the significant role of knowledge 

management, particularly in applying and creating knowledge within the realm of decision-

making in manufacturing. The chapter includes implications for a pivotal industry shift towards 

recognizing and harnessing the unique contributions of human insight and domain knowledge in 

complex manufacturing environments. The chapter uncovers the need to balance technological 

advancements with human cognitive factors in manufacturing decision-making processes 

through the application of intelligent support methodologies that incorporate human expertise 

with the prevailing capabilities in selecting optimal manufacturing processes. 

2.1. Introduction and literature review on manufacturing process selection 

In pursuing sustainability, modern manufacturing enterprises have embraced engineering 

paradigms emphasizing ecological and resource-efficient processes to remain competitive (Ben 

Ruben et al., 2019). Knowledge management and decision-making have long been the bedrock 

of organizational success. Historically, the reliance on heuristic and probabilistic models allowed 
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decision-makers to navigate complex business landscapes using informed estimates and patterns 

derived from available data (Korn & Bach, 2018). Over the years, this paradigm has experienced 

a profound transformation, especially with the information explosion and advanced 

computational capabilities. The advent of Industry 4.0 marked a significant shift towards 

automation, where artificial intelligence and machine learning began to play pivotal roles (Behl 

et al., 2023). These technologies have augmented human decision-making and reshaped the 

fabric of knowledge management, transitioning from human-led processes to systems that can 

learn, adapt, and make autonomous decisions based on real-time data. Despite the advances, 

human factors remain crucial in manufacturing decision-making. 

Industry 4.0 represents a paradigm shift in how organizations harness technology and 

data. With its core built around the Internet of Things (IoT), cyber-physical systems, and big data 

analytics, Industry 4.0 has created an ecosystem where machines are not just tools but 

collaborators. Industry 4.0 is heavily associated with digitalization and industrial automation. 

Researchers have outlined the adoption of information systems, automation, and automatic data 

exchange in manufacturing as the three progress points of Industry 4.0 (Behl et al., 2023). Both 

the interconnectivity of devices and the analytics power of big data have enabled a level of 

automation and precision that was previously unattainable. The fourth industrial revolution is 

driven by rapid innovation and the emergence of novel manufacturing technologies, materials, 

and processes (Kamble et al., 2018). Vast troves of operational intelligence now inform 

decisions, leading to better resource optimization and a step-change in productivity. 

In the emergent narrative of Industry 5.0, the pivotal role of human skills and decision-

making is gaining unparalleled recognition. Industry 5.0 is introduced as a re-imagined human-

centric industrial revolution that focuses beyond efficiency and productivity (Golovianko et al., 

2022). Industry 5.0 is envisioned to ensure sustainable development with industrial technicians at 

the center of manufacturing processes (Battini et al., 2022; S. Huang et al., 2022). As a result, 

several opportunities have been identified, including human-cyber-physical systems, human-

robot collaboration, and human-digital twins (Coronado et al., 2022; S. Huang et al., 2022). 

Unlike its predecessor, which championed automation and machine intelligence, Industry 5.0 

heralds a new synthesis of human talent with robotic precision.  

While Industry 4.0 focused on core technologies such as the Internet of Things, Cloud 

Computing, Big Data, and Artificial Intelligence (Xu et al., 2021), Industry 5.0 shifts the focus 
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toward human-robot collaboration, renewable sources, bionics, and innovative materials 

(Coronado et al., 2022). This hybrid ecosystem values the creative and strategic input that only 

humans can provide while capitalizing on the accuracy and efficiency of machines. The essence 

of this approach lies not in relegating humans to a supervisory role but in promoting a symbiotic 

relationship where both entities learn from and complement each other.  Human ingenuity is, 

thus, not overshadowed by digital prowess. Still, it is integrated to enhance innovation, problem-

solving, and customization, laying the groundwork for a manufacturing landscape that is 

adaptable, resilient, and intrinsically human-centric. Therefore, the role of domain knowledge in 

decision-making remains crucial for a sustainable, human-centric, and resilient manufacturing 

industry envisioned under Industry 5.0 paradigms. 

However, this integrated approach presents nuanced challenges, particularly in decision-

making. The research delves into how subjective decision factors, such as cognitive biases, 

personal preferences, and groupthink, can inadvertently disrupt the potential harmony of human-

machine interfaces. The propensity for these subjective factors to skew judgment is amplified in 

a complex environment where decision-making is shared between human insight and machine 

algorithms. Such distortions can lead to inefficient choices in process selection, resource 

allocation, and strategic planning, thereby diminishing the benefits of the collaborative model. 

Research indicates that organizations have grown in complexity, and a modern organization is 

described as increasingly highly dynamic and uncertain (Tworek et al., 2019). Addressing these 

challenges is a strategic necessity for fully realizing sustainable manufacturing.   

No existing studies focus on the intricate connections between subjective decision factors 

and domain knowledge and their collective influence on the choice and performance of 

manufacturing processes. Instead, a vast majority of existing research on manufacturing process 

selection has focused on improving the approaches (Bikas et al., 2021; Lukic et al., 2017), with a 

vast majority focusing on the selection of additive manufacturing (Dohale et al., 2021; Wortmann 

et al., 2019). These studies have presented valuable insights into how these variables affect the 

results of decision-making processes. Therefore, there is a need for more integrated research that 

examines the combined influence of these factors and their interactions in a manufacturing 

process selection context. By forging pathways to counteract biases and fostering a culture where 

informed, data-driven technology is complemented by nuanced domain knowledge and human 

expertise, the manufacturing sector can achieve a balance that aligns with the quest for 



18 
 

sustainability. Ensuring that decision-making processes are robust, inclusive, and reflective of 

empirical knowledge and human values is critical. This study delves into a comprehensive 

investigation of the combined influence of cognitive influences, interpersonal dynamics, and the 

use of domain knowledge in manufacturing process selection, using empirical evidence from 

Poland’s manufacturing sector.  

While manufacturing plays a vital role in the growth and development of the global 

economy (Lima et al., 2022), the industry is currently navigating a landscape of unprecedented 

change and complexity. This dynamic environment is primarily shaped by rapidly shifting 

market demands, continuous technological evolution, and a growing emphasis on sustainability 

(Haraguchi et al., 2017; Mumali, 2022). Recent studies highlight the vulnerability of 

manufacturing companies to large-scale disruptions from various issues, including geopolitics, 

trade wars, and pandemics (D. Chen et al., 2022; Kapoor et al., 2021). In addition, manufacturing 

systems have become more complex over the past decades in pursuit of less costly, timely, 

flexible, and high-quality components and parts manufacturing (Efthymiou et al., 2016). The 

rapid evolution of customer needs is described as the hallmark of the twenty-first century, 

driving market turbulence. Changing market demands require manufacturers to be highly 

responsive and flexible, adapting their processes promptly to meet changing consumer 

preferences and emerging trends. Concurrently, technological evolution, especially in 

digitalization and automation, radically alters how manufacturing operations are conceived and 

executed (Chong et al., 2018; S. Mittal et al., 2019; Zeba & Dabi, 2021). These technological 

advancements are not only incremental improvements but also represent significant leaps that 

redefine the boundaries of what is feasible in manufacturing.  

There is a growing recognition of the need for sustainable manufacturing practices. 

Manufacturing is among the leading sources of emissions and resource consumption (C. Liu et 

al., 2022; J. Liu et al., 2022; H. Sun et al., 2020; L. Sun et al., 2020; L. Zhang et al., 2022). The 

growing imperative for sustainability is driven not only by regulatory pressures and 

environmental concerns but also by growing consumer demand for eco-friendly products and 

processes (Jum’a et al., 2022; Nogueira et al., 2023; Rantala et al., 2023). Sustainability in 

manufacturing transcends the traditional focus on cost and efficiency, demanding a broader view 

that encompasses the environmental impact, resource efficiency, and long-term viability of 

manufacturing processes (Jum’a et al., 2022). Sustainability is a firm benchmark standard that 
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significantly impacts external image and decision-making at various organizational levels 

(Kazakova & Lee, 2022). Sustainability is a highly sought-after strategy across the 

manufacturing landscape, alongside high productivity and agility, because of the recent shift 

toward customer-driven and highly dynamic manufacturing markets (Peres et al., 2020). 

Sustainable manufacturing anchored on resource-efficiency, high productivity, and low to zero 

environmental impact is a prerequisite for attaining and maintaining competitive advantage. 

In this multifaceted and challenging landscape, decision-making in the manufacturing 

process selection remains critical. Choosing an optimal manufacturing process in Additive 

Manufacturing (AM) and traditional manufacturing is intricate and demands a comprehensive 

grasp of design parameters, materials, methods, and their interconnections (Bikas et al., 2019). 

Selecting manufacturing processes is one of several complex decision-making dilemmas across 

the entire manufacturing cycle (W. Yu & Meng, 2020). The authors further argue that choosing 

among several criteria is complicated, and an optimal choice is typically a group of non-

dominant alternatives (C. Yu et al., 2020). Manufacturing process selection has long been 

identified as a multi-attribute decision-making problem based on complex, uncertain, and 

imprecise parameters during the initial design stage. Today, manufacturing process selection goes 

beyond simple cost calculations and capacity considerations as it involves a delicate balancing 

act where manufacturers must weigh a complex mix of factors, including production efficiency, 

product quality, cost-effectiveness, adaptability, and sustainability (Goala & Sarkar, 2023; 

Hodonou et al., 2019; Kek & Vinodh, 2016; P. C. Priarone & Ingarao, 2017; Sihag et al., 2019). 

As such, manufacturing process selection remains a crucial research area. 

Manufacturing process selection challenges are not limited to conventional and AM 

(Bikas et al., 2019). While interest in AM has increased because of the shorter development 

cycles, choosing the most suitable manufacturing processes remains a significant challenge 

(Mançanares et al., 2015). AM is a new class of technologies involving the direct construction of 

physical products and components from computer-aided design (CAD) models by adding 

materials layer by layer (Colosimo et al., 2018). The official standard ISO-ASTM 52900 defines 

AM as the “process of joining materials” to fabricate parts and components from 3D model data 

in a layer-upon-layer format, in contrast to constructive and subtractive manufacturing 

approaches (Bourell & Wohlers, 2020). AM has revolutionized the low production runs of 

components with complex geometric properties and shapes (Bourell & Wohlers, 2020), and its 
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rapid development is conspicuous. AM technologies are increasingly used to develop products 

and components in the aerospace, automotive, biomedical, and consumer goods industries 

(Haruna & Jiang, 2020; Y. Huang et al.., 2015). Current commercially viable AM processes are 

categorized into seven groups, each featuring one or more processes, as shown in Table 2.1 

below. 

 

Table 2.1: Additive manufacturing processes 

Technology Processes 

Vat polymerization Stereolithography (SL) 

Direct Light Processing (DLP) 

Continuous Direct Light Processing (CDLP) 

 

Material jetting PolyJet technology 

NanoParticle Jetting (NPJ) 

Drop-On Demand (DOD) 

 

Powder bed fusion Laser Fused Selective Laser Sintering (SLS) 

Direct Metal Laser Sintering 

Electron Beam fused Electron Beam Melting (EBM) 

Fused with agent and energy Multi Jet Fusion (MJF) 

Thermally fused Selective heat sintering (SHS) 

Directed energy 

deposition 

Laser-based DED 

Electron beam-based DED 

Plasma or Electric arc-based DED 

Powder-based DED 

Wire-based DED 

 

Material extrusion   

Binder jetting Furan Binder 

Silicate Binder 

Phenolic Binder 

Aqueous-Based Binder 

 

Sheet lamination Laminated Object Manufacturing (LOM) 

Selective Lamination Composite Object 

Manufacturing (SLCOM) 

Plastic Sheet Lamination (PSL) 

Computer-Aided Manufacturing of Laminated 

Engineering Materials (CAM-LEM) 

Selective Deposition Lamination (SDL) 

Composite-Based Additive Manufacturing (CBAM) 

Ultrasonic Additive Manufacturing (UAM) 

 

Source: own study based on ISO-ASTM 52900 as described by Bourell and Wohlers(Bourell & Wohlers, 2020) 

 

Conventional manufacturing processes can be classified as primary, secondary, and 

tertiary based on the desired product or component outcomes. Primary processes generate the 

main shapes and forms of final products or components. These include metal-forming processes, 

forging, rolling, casting, molding, and extrusion. Secondary processes generate the main shape 

and form and refine the manufactured part's features. They include material removal processes, 
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such as turning, drilling, milling, and grinding; bulk heat treatment processes, such as hardening, 

annealing, and tempering; and surface treatment processes, such as plating. Finally, tertiary 

processes are used after the primary and secondary processes. As such, they impact the geometry 

and main shape of the manufactured part. This category comprises finishing processes, such as 

heat and surface treatments. Each primary process, such as casting, involves numerous processes 

for producing a particular product or component. Table 2.2 illustrates some different casting 

types, forging, and extrusion processes.  

 

Table 2.2: Examples of casting, extrusion, and forging processes 

Casting Processes Extrusion Forging 

Investment casting Direct extrusion Roll forging 

Plastic-mold casting Indirect extrusion  Automatic hot forging 

Sand casting Hot extrusion Press forging 

Plaster-mold casting Cold extrusion Sagging 

Die casting Continuous extrusion Impression-die drop forging 

Shell-mold casting Discreet extrusion Upset forging 

Permanent-mold casting  Open-die hammer  

Source: own study 

 

 

Irrespective of the adopted approach, AM or conventional, the choice of manufacturing 

processes should be free from cognitive bias, and the complexity of each process’s parameters 

and their interconnectivity with product requirements and business strategy should be 

considered. Researchers have addressed critical decision-making problems in selecting and 

optimizing conventional and additive manufacturing processes based on multiple criteria 

decision-making methods (Altuger-Genc & Tzitzimititla, 2015; Gayathri & Nagaraju, 2016; 

Ghaleb et al., 2020; C. Shi et al., 2017; Zheng et al., 2017). Decision-support tools have been 

developed over the years, incorporating techniques such as the Analytical Hierarchy Process 

(AHP), analytic network process framework (ANP), a method for order preference by similarity 

to ideal solution (TOPSIS), and Case-Based Reasoning (CBR), to help streamline manufacturing 

process selection decision-making(Antony & Joseph, 2017; Kek & Vinodh, 2016; Kumru & 

Kumru, 2015; M. M. M. M. Mabkhot et al., 2019; Nallusamy et al., 2015; Nouri et al., 2015; 

Peko et al., 2018; Ransikarbum & Khamhong, 2021). These have been further improved through 

hybrids such as the fuzzy analytic network process (FANP) and fuzzy analytic hierarchy process 

(FAHP) (Khamhong et al., 2019; Ransikarbum & Khamhong, 2021; Sadeghian & Sadeghian, 

2016; Vinodh et al., 2010; Zare Banadkouki et al., 2021). However, some of these techniques, 
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such as the widely used AHP, have inherent shortcomings, such as the inability to handle 

subjective, inaccurate, and vague information. In addition, the manufacturing environment 

continues to evolve at an unprecedented pace, leading to increased complexity and uncertainty in 

process parameters. The evolution has also led to increased data generation, paving the way for 

adopting artificial intelligence-based computation techniques capable of handling large volumes 

of unstructured data. 

2.2. Theoretical framework and empirical insights’ research hypotheses 

Heuristic and expertise theories are adopted to guide the investigation into the intersection 

between human factors and choosing optimal manufacturing processes. Tversky and Daniel 

Kahneman primarily developed the theory of heuristics through extensive research on cognitive 

bias and decision-making (Morvan & Jenkins, 2017). The study demonstrated that cognitive bias 

leads to the developing of heuristics as mental shortcuts used in decision-making processes 

(Morvan & Jenkins, 2017). Heuristic decision-making limits the efforts to reflect and weigh the 

objectives and alternatives consciously (Methling et al., 2022). In this study, heuristic theory 

helps to explore whether employing mental shortcuts or heuristics to simplify decision-making 

when choosing the appropriate manufacturing processes leads to inefficient choices. 

While there are several theories on expertise, this study adopts the expert performance 

approach proposed by K. Anders Ericsson. Ericsson’s approach alludes to the fact that domain 

knowledge involves repeatedly reproducing superior performance (Ericsson, 2018). This theory 

emphasizes the development of domain knowledge through experience and knowledge 

acquisition and the use of it to make better decisions. Although the theory is extensive and 

includes the development of expertise, this study focuses only on using domain knowledge and 

expertise in decision-making. In manufacturing process selection, expert performance theory can 

help evaluate whether critically analyzing the complexity of process parameters and considering 

potential alternatives and variants of manufacturing processes leads to better outcomes.     

Combining heuristic and expertise theories can provide valuable insights into the 

intersection between cognitive and human factors and domain knowledge and their combined 

influence on the choice of manufacturing processes, as illustrated in Figure 2.1 below. The 

theories provide a framework to interpret and analyze empirical evidence, helping to identify 

patterns, relationships, and insights regarding the impact of using heuristics and mental shortcuts 
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to simplify decision-making when using domain knowledge and knowledge when choosing 

manufacturing processes, and the collective impact on process effectiveness.  

 

 

Figure 2.1: The underlying theoretical framework 

Source: Own study 

 

The relationship between cognitive bias and decision-making outcomes has been studied 

across disciplines, including medicine, law, psychology, management, and engineering 

(Korteling et al., 2023; Paulus et al., 2022). Existing research shows contrasting impacts of 

cognitive biases, with some reporting an influence on productivity while others reveal adverse 

impacts on decision-making (Mahesh Babu et al., 2023). In the manufacturing process selection 

context, product engineers and designers may overestimate the precision of their judgment, 

incorrectly believing current outcomes were all along predictable, and seek specific pieces of 

information that validate the existing beliefs (Berthet, 2022). Such biases can hinder the effective 
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utilization of domain knowledge during the selection of manufacturing processes. Thus, the first 

sub-hypothesis of H1 is defined as: 

H1a: Cognitive biases significantly contribute to the selection of inefficient manufacturing 

processes. 

Like cognitive bias, personal preferences significantly affect decision-making and have 

been studied across disciplines (Ariail et al., 2015; Herzog et al., 2021). Personal preference is a 

highly likely phenomenon in the initial design and selection of manufacturing processes. 

However, this can adversely affect the capacity to thoroughly exploit the vast data to guide 

optimal solutions. Therefore, the second sub-hypothesis of H1, aimed at establishing whether 

personal preference impacts the quality of decisions made concerning knowledge utilization, is 

developed as follows: 

H1b: Personal preferences significantly contribute to the selection of inefficient manufacturing 

processes. 

Decisions around product design and manufacturing processes are often made in cross-

functional teams, drawing upon knowledge from different aspects of the organization. 

Consequently, groupthink, a psychological phenomenon that occurs when the desire for harmony 

and consensus within the team results, is not uncommon. Similarly, several recent research 

studies attempt to decipher the role of groupthink in effective decision-making (Cha et al., 2020; 

Harel et al., 2021; Yim & Park, 2021). Groupthink often leads to an irrational or dysfunctional 

decision-making outcome due to the tendency to prioritize consensus and conformity over 

critical evaluation of alternatives and independent thinking (Tarmo & Issa, 2022). To understand 

the impact of groupthink on manufacturing process selection, the third sub-hypothesis of H1 is, 

therefore, formulated as follows: 

H1c: Groupthink within decision-making teams contributes to the selection of inefficient 

manufacturing processes. 

Cognitive load describes the mental burden of cognitive requirements that are subject to 

an individual, given that human cognitive resources are limited (Wickens, 2002), as are attention 

span and working memory capacity. Several scholars have studied the concept of cognitive load 

concerning decision-making (Ball et al., 2023; Collins & Collins, 2021; McCarty et al., 2021). 

While high cognitive load could indicate intensive knowledge utilization in decision-making, 

levels more significant than the cognitive capacity may lead to poor decisions and ineffective 
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knowledge by hindering learning (Ball et al., 2023). While cognitive load is not a subjective 

decision factor, it is closely related to and influences subjective decision-making. High cognitive 

load increases reliance on heuristics or biases. Studies have found that cognitive load 

significantly impacts problem-solving (Collins & Collins, 2021).  A recent study postulates that the 

lack of clarity generates cognitive load due to sense-making (Collins & Collins, 2021).  In addition, 

decision fatigue, which results from the repetitive use of cognitive resources in complex 

environments, affects cognitive load in decision-making (Collins & Collins, 2021). To understand 

the role of cognitive load in the selection of manufacturing processes, the fourth sub-hypothesis 

of H1 is formulated as follows: 

H1d: High cognitive load contributes to the selection of inefficient manufacturing processes. 

Decision-making is significant in manufacturing as it allows us to compare alternatives 

and select optimal choices to increase productivity and quality. Much existing literature 

highlights the critical importance of considering alternatives in decision-making (Jing et al., 

2020; J. Lim et al., 2022). Multi-criteria decision methods have been developed primarily to 

allow decision-makers to compare alternatives more easily across disciplines (Asadi et al., 2022; 

Jamwal et al., 2021; Ponhan & Sureeyatanapas, 2022). The field of manufacturing process 

selection has not been left behind, with numerous studies documenting multi-criteria decision 

methods for aiding decision-making (Raja et al., 2022). To understand the effect of utilizing 

knowledge of alternatives during the selection of manufacturing processes, the fifth sub-

hypothesis of H1 is formulated as follows: 

H1e: Limited utilization of knowledge of alternatives contributes to the selection of inefficient 

manufacturing processes. 

The manufacturing sector is experiencing significant technological advancements that are 

fostering innovation. This innovation leads to the creation of new processes and involves the 

continuous development of process variations. Recent studies document performance among 

process variants in attempts to isolate economically viable solutions (T. A. Rodrigues et al., 

2019). Knowledge of process variants is, therefore, crucial in manufacturing process selection. 

To understand the utilization of process variant knowledge in manufacturing process selection, 

the sixth sub-hypothesis of H1 is developed as follows:  

H1f: Limited utilization of knowledge on process variants contributes to the selection of 

inefficient manufacturing processes. 
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Recent studies have reported on the growing complexity of manufacturing processes 

(Stavropoulos et al., 2021; Touzé et al., 2022). The increased complexity of manufacturing 

processes has been attributed to the dynamic market demand, high-quality requirements, low 

cost, expanded customization, and the pressing need for short lead times (Efthymiou et al., 

2016). There are significant gaps in the details of the complexities of manufacturing processes, 

leading to increased misconceptions and poor decision-making frameworks. Based on this 

revelation, the following seventh sub-hypothesis of H1 is proposed: 

H1g: Limited knowledge of process complexity contributes to selecting inefficient 

manufacturing processes. 

Making optimal decisions requires keen consideration of process description, suitable 

materials, process variations, economic concerns, typical use cases, design aspects, and quality 

issues. Using a inefficient process to manufacture a component results in deviations from the 

required attributes, including quality. Such components are considered defects and may need 

rework, which can happen immediately after a normal manufacturing cycle or delay. In this case, 

it commences with the depletion of perfect components in the inventory (Nobil et al., 2020).  In 

addition, reproduction and rework costs for defective and deficient components are higher than 

standard work-in-progress costs (Nobil et al., 2020). This is because additional resources are 

often required, including energy, raw materials, and labor. 

Rework and reprocessing lead to extra waste, increasing the net carbon footprint for the 

component and possibly causing extended lead times. Failure to understand the complexity of 

selected manufacturing processes may lead to safety risks when proper steps are not followed 

during manufacturing. Using inappropriate processes may also lead to increased generation of 

waste materials. For instance, additive manufacturing processes produce complex products 

accurately with less material waste than conventional processes (M. Javaid et al., 2021). Besides, 

additive manufacturing processes improve resource efficiency in the introduction and use stages 

and extend the product life cycle (Ford & Despeisse, 2016). To understand how subjective 

decision factors and domain knowledge influence these outcomes, the following five additional 

sub-hypotheses of H1 are formulated: 

H1h: The selection of inefficient manufacturing processes leads to rework and reprocessing. 

H1i: The selection of inefficient manufacturing processes leads to increased waste materials. 

H1j: The selection of inefficient manufacturing processes leads to low-quality outcomes. 
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H1k: Selection of inefficient manufacturing processes leads to extended lead time. 

H15: The selection of inefficient manufacturing processes increases safety concerns during 

manufacturing. 

2.2.1. Research methodology of the empirical study on subjective decision 

factors' impact on manufacturing process selection 

2.2.2. Research design and approach, survey description, and study population 

This study used quantitative surveys to provide a rich, nuanced analysis of cognitive bias, 

cognitive load, personal preference, and groupthink and how they intersect with the use of 

domain knowledge to influence the quality of decision-making. An anonymous survey 

questionnaire with 12 questions, as highlighted in Table 2.3 and Table 2.4 below is used to 

comprehensively investigate the combined influence of cognitive factors, human factors, and 

domain-specific expertise in manufacturing process selection. The survey questions are self-

created, based on the developed hypotheses, which are based on the discussed literature and the 

underlying theoretical framework illustrated in Figure 2.1, which shows that typical selection 

drivers are numerous and complex. These drivers are used in developing selection criteria for 

evaluating potential processes to pick the most optimal. Process alternatives, complexity, and 

variants are analyzed based on criteria developed from the selection drivers presented in Figure 

2.1. Twenty-seven companies, from small- and medium-sized companies to international 

corporations, were reached for participation in the survey. In addition, the survey questionnaire 

link was distributed to 30 professionals on LinkedIn whose profiles matched the relevant roles, 

including production workers, production planners, manufacturing engineers, production 

managers, and quality engineers. They were requested to participate in the survey and share it 

with their colleagues in similar environments.  

The first part of the survey comprises four questions designed to identify and measure the 

presence of cognitive bias, personal preference, groupthink, and cognitive load in the selection of 

manufacturing processes. For each question, occurrence is evaluated using a five-point Likert 

scale. The second part comprises three questions designed to uncover whether the complexity of 

process parameters, alternatives, and variants is considered during the selection of manufacturing 

processes. Similarly, the responses are based on a five-point Likert scale. The third part 

comprises five questions aimed at identifying potential adverse impacts of selected 
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manufacturing processes, including rework and reprocessing, increased scrap or waste 

production rate, inconsistencies in quality, extended lead times, and safety issues attributed to 

poorly chosen manufacturing processes. The survey includes three additional questions related to 

demographic data, although these questions are not considered in the scope of this research. 

2.2.3. Variables, measures, and data analysis techniques 

The study involved seven independent variables drawn from the formulated hypotheses. The 

variables were measured using the 5-Likert scale, where 1 = Strongly Disagree, 2 = Disagree, 3 = 

Neither Agree nor Disagree, 4 = Agree, and 5 = Strongly Agree. Table 2.3 below shows the 

operationalization of the independent variables. 

 

Table 2.3:  Independent variables 

Question Variable Name Abbreviation Operationalization  

Q1 

Cognitive Bias  CB 

Level of agreement with the statement "Cognitive biases influence decision-

making." 

Q2 

Personal Preference  PP 

Level of agreement with the statement "Personal preferences impact decision-

making." 

Q3 
Cognitive Load  CL Level of agreement with the statement "Cognitive load affects decision-making." 

Q4 
Groupthink GT Level of agreement with the statement "Groupthink influences decision-making." 

Q5 Process Complexity 

Consideration  PCC 

Level of agreement with the statement "Consideration of process complexity affects 

decision-making." 

Q6 Alternative Process 

Consideration  APC 

Level of agreement with the statement "Consideration of alternative processes 

impacts decision-making." 

Q7 Process Variant 

Consideration  PVC 

Level of agreement with the statement "Consideration of process variants influences 

decision-making." 

Source: Own study 

 

Seven dependent variables were similarly drawn from the corresponding formulated hypotheses. 

The variables were measured based on the 5-Likert scale where 1 = Never, 2 = Rarely, 3 = 

Sometimes, 4 = Often, and 5 = Always. Table 2.4 below shows the operationalization of the 

dependent variables. 

 

 

 

Table 2.4: Dependent variables 

Question 
Variable Abbreviation Operationalization  

Q8 
Rework RW Frequency of rework occurrence in decision-making. 

Q9 
High Waste Material Rate  HMWR Frequency of high waste material rate occurrence in decision-making. 
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Q10 
Quality Inconsistency  QI Frequency of quality inconsistency occurrence in decision-making. 

Q11 
Extended Lead Times  ELT Frequency of extended lead times occurrence in decision-making. 

Q12 
Safety Concerns  SC Frequency of safety concerns occurrence in decision-making. 

Source: Own study 

 

The collected data was analyzed using three statistical tools: IBM SPSS version 26, 

RStudio 2023.06.0 Build 421, and SmartPLS4. Given the ordinal nature of the collected data 

through the 5-point Likert scale survey, IBM SPSS performs Spearman rank-order correlations. 

Spearman's rank correlation is a nonparametric test, which makes it especially suitable for 

analyzing ordinal data. The role of RStudio was limited to generating visualizations to aid the 

descriptive analysis of data. Partial least squares structural equation modeling (PLS-SEM) was 

adopted because of the intricate nature of the research design and the underlying conceptual 

framework (Ringle et al., 2022). Before actual analysis, a conceptual PLS-SEM model was 

developed with three latent variables: subjective human decision factors, domain knowledge 

utilization, and process ineffectiveness, as shown in Figure 2.2 below.   

 

 

Figure 2.2. Conceptual Partial Least Squares-Structural Equation Modeling 

Source: Own study 

 

2.3. Empirical research findings 

2.3.1. Findings overview 

A total of 355 responses were received between March and July 2023, with the respondents 

comprising a mix of roles ranging from entry-level workers to directors directly involved with 

manufacturing processes. Figure 2.3 shows the results obtained for the independent variables. 
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The proportion of responses that neither agree nor disagree is stable for most independent 

variables, ranging between 36% and 38%, except for groupthink, which stands at 46%. A 

significant presence of cognitive bias and personal preference is reported in 47% of each, while 

34% of responses report the presence of groupthink in picking the most suitable manufacturing 

processes. Surprisingly, there was little cognitive load as only 16% of responses confirmed its 

presence, 39% neither confirmed nor disputed, and 45% disagreed. Similarly, considering 

alternative processes, process complexity and process variants were less prevalent, as only 12%, 

13%, and 16% of respondents agreed, compared to 52%, 50%, and 52% who disagreed.  

 

 

Figure 2.3. Likert plot for independent variables 

Source: Own study 

 

Similarly, the results for median dependent responses were stable, ranging from 16% to 

19%. Rework, increased waste material rate, quantity inconsistency, extended lead time, and 

safety concerns due to selecting inefficient manufacturing processes are strongly confirmed by 

48%, 43%, 42%, 40%, and 32% of responses, respectively. The plot shown in Figure 2.4 below 

summarizes the findings for dependent variables. 

  

 



31 
 

 

Figure 2.4. Dependent variables 

Source: Own study 

 

The responses for dependent variables were counted and analyzed for comparison. A 

stacked bar plot was created as shown in Figure 2.5. Only a small minority of responses 

indicated the absence of rework, high water material generation rate, quality issues, extended 

lead time, and safety concerns. This was followed by a slightly bigger but still low number of 

responses pointing to rarity. Most responses indicated that these phenomena are sometimes, 

often, or always witnessed.  
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Figure 2.5. Stacked bar plot for dependent variables 

Source: Own study 

 

Similarly, independent variables were analyzed and presented as a stacked bar chart to 

distinguish the presence or absence of cognitive bias, personal preference, groupthink, cognitive 

load, process complexity consideration, alternative process consideration, and process variant 

consideration. The results, as shown by Figure 2.6 below, indicates that only a fraction of the 

responses denied the presence of cognitive bias, personal preference, and groupthink. However, 

the overall number of responses that agreed or strongly agreed with the tested independent 

variables was significantly higher than those who disagreed or strongly disagreed.  
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Figure 2.6. Stacked bar plot for independent variables 

Source: Own study 

 

2.3.2. Spearman’s Rank correlation  

Spearman’s rank correlation, a nonparametric measure of the strength and direction of 

association between two ranked variables, was used to test how well the relationship between 

selected variables is described by a monotonic function. The result of Spearman’s rank 

correlation obtained from IBM SPSS is as shown in Table 2.5 below.  

 

Table 2.5: Spearman rank order correlations 

    CB PP GT CL PCC APC PVC RW HWMR QI ELT SC 

CB Correl. Coeff 1.000 .261** .166** -.225** -.308** -.304** -.291** .408** .281** .257** .250** .179** 

  Sig.   0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

PP Correl. Coeff .261** 1.000 .131* -.263** -.286** -.277** -.285** .286** .316** .257** .280** 0.102 

  Sig.  0.000   0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 

GT Correl. Coeff .166** .131* 1.000 -.133* -.200** -.206** -.117* .154** .220** 0.084 .250** 0.085 

  Sig.  0.002 0.016   0.015 0.000 0.000 0.032 0.005 0.000 0.127 0.000 0.119 

CL Correl. Coeff -.225** -.263** -.133* 1.000 .188** .262** .200** -.124* -.189** -.237** -.187** -0.073 

  Sig.  0.000 0.000 0.015   0.001 0.000 0.000 0.023 0.001 0.000 0.001 0.182 

PCC Correl. Coeff -.308** -.286** -.200** .188** 1.000 .263** .196** -.272** -.197** -.201** -.237** -.121* 

  Sig.  0.000 0.000 0.000 0.001   0.000 0.000 0.000 0.000 0.000 0.000 0.027 

APC Correl. Coeff -.304** -.277** -.206** .262** .263** 1.000 .241** -.293** -.313** -.228** -.201** -0.086 
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  Sig.  0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.115 

PVC Correl. Coeff -.291** -.285** -.117* .200** .196** .241** 1.000 -.292** -.240** -.304** -.168** -.135* 

  Sig. 0.000 0.000 0.032 0.000 0.000 0.000   0.000 0.000 0.000 0.002 0.013 

RW Correl. Coeff .408** .286** .154** -.124* -.272** -.293** -.292** 1.000 .200** .271** .233** 0.083 

  Sig.  0.000 0.000 0.005 0.023 0.000 0.000 0.000   0.000 0.000 0.000 0.129 

HWMR Correl. Coeff .281** .316** .220** -.189** -.197** -.313** -.240** .200** 1.000 .215** .337** 0.094 

  Sig.  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000   0.000 0.000 0.086 

QI Correl. Coeff .257** .257** 0.084 -.237** -.201** -.228** -.304** .271** .215** 1.000 .144** .121* 

  Sig.  0.000 0.000 0.127 0.000 0.000 0.000 0.000 0.000 0.000   0.008 0.027 

ELT Correl. Coeff .250** .280** .250** -.187** -.237** -.201** -.168** .233** .337** .144** 1.000 .152** 

  Sig. 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.008   0.005 

SC Correl. Coeff .179** 0.102 0.085 -0.073 -.121* -0.086 -.135* 0.083 0.094 .121* .152** 1.000 

  Sig.  0.001 0.062 0.119 0.182 0.027 0.115 0.013 0.129 0.086 0.027 0.005   

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Source: Own study 
 

  

As shown in Table 2.5 above, independent variables show a mix of positive and negative 

correlations. Cognitive bias, groupthink, and personal preference significantly correlate with 

each other and with rework, high waste rate, quality inconsistency, extended lead time, and 

safety concerns. However, the actual correlation coefficient varies. These three independent 

variables negatively correlate with the cognitive load, the process complexity consideration, the 

alternative process consideration, and the process variant consideration. In contrast, process 

complexity consideration, alternative processes consideration, and process variant consideration 

show significant positive correlations with each other and cognitive load while negatively 

correlating with cognitive bias, personal preference, groupthink, rework, high waste rate, quality 

inconsistency, extended lead time, and safety concerns. All significant correlations appear either 

small or weak. Many of them are significant at 0.01 and 0.5. The results give a general 

impression of the impact of subjective human decision factors on applying domain knowledge 

and the subsequent impact on process effectiveness. Based on these findings, the low cognitive 

load indicates less mental effort during the selection of manufacturing caused by preference, 

bias, and groupthink. 

2.3.3. Partial Least Squares-Structural Equation Modeling (PLS-SEM) 

A PLS-SEM model was created with observable and latent variables by modifying the 

conceptual model illustrated in Figure 2.1. Subjective human decision factors constituted the 

first latent variable derived from cognitive bias, personal preference, and groupthink. It was a 
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reflective model as it caused observable variables. Domain knowledge utilization was the second 

latent variable derived from alternative process consideration, process complexity consideration, 

and process variant consideration. The cognitive load was added to domain knowledge 

utilization, as the observed low cognitive load implied the lack of thorough analysis during 

decision-making. Domain knowledge was a formative model as it caused observable variables. 

The last latent variable was process effectiveness, as shown below in Figure 2.7. 

 

 

Figure 2.7. PLS-SEM model 

Source: Own study 

 

 

The results after executing the PLS-SEM algorithm are as shown in Figure 2.8 below. In 

this study, theory supports the argument that subjective decision factors often contribute to poor 

decisions. However, the model is not intended to confirm the theory but rather to explore the 

relationship between the variables implied in the theory. Therefore, in this study, the outer 

loading path coefficients of at least 0.4 are acceptable, even though they imply moderate 

relationships. The outer loadings for the subjective human decision factors were high, especially 

for cognitive bias and personal preference, which are 0.744 and 0.725, respectively. Groupthink 

had an outer load of 0.454, below 0.7 but higher than 0.4, hence acceptable. These findings 

confirm sub-hypotheses H1a, H1b, and H1c. The loadings for domain knowledge were 

relatively strong, as all 3 observable variables have outer loadings above 0.4, and only cognitive 
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load has an outer loading of 0.243; hence, hypotheses H1e, H1f, and H1g are supported. Process 

effectiveness had solid outer loadings. Four dependent variables have loading values ranging 

between 0.584 and 0.649, while only the safety concern had a much lower value of 0.299, 

indicating a less substantial impact. Thus, hypotheses H1h, H1i, H1j, and H1k were strongly 

supported.  

 

Figure 2.8. PLS-SEM model calculation 

Source: Own study. 

 

 

Cognitive load and safety concerns were dropped from the model because of their less 

substantial contribution to the latent variables. Therefore, hypotheses H1d and H1l were weakly 

confirmed. A new PLS-SEM calculation yielded new results, as shown in Figure 2.9 below. The 

refined model had better results with all outer loading values higher than 0.4. The path 

coefficient describing the relationship between subjective human decision factors and domain 

knowledge utilization was -0.480, indicating a moderate negative relationship. Similarly, the path 

coefficient for the link between domain knowledge utilization and process effectiveness revealed 

a moderate negative relationship of -0.487. The 𝑅2
 for domain knowledge utilization is 0.231, 

indicating that 23.1% of its variance is attributed to subjective human decision factors. The 𝑅2
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for process ineffectiveness was 0.237, meaning that negative human decision factors and domain 

knowledge utilization can explain 23.7% of its variance. 

 

 

Figure 2.9. Refined PLS-SEM model results 

Source: Own study 

 

 

Bootstrapping was done to evaluate the statistical importance of the PLS-SEM model 

calculation. Bootstrapping estimated several measures, including path coefficients, by creating 

their distribution. This study calculated bootstrapping using 5000 subsamples and a percentile 

bootstrap as the confidence interval method. The test type was set to two-tailed with a 

significance level of 0.05. Table 2.6 below shows the descriptives of bootstrapping results for the 

PLS-SEM model. Figure 2.10 below shows the results of the bootstrapped PLS-SEM model.  

 

Table 2.6: Bootstrapping descriptives 

 Mean Median 

Observed 

min 

Observed 

max 

Standard 

deviation 

Excess 

kurtosis Skewness Observations 

Cramér-von 

Mises test 

statistic 

Cramér-

von Mises 

p value 

APC 2.391 2 1 5 1.007 -0.527 0.23 335 2.577 0.000  

CB 3.49 3 1 5 1.084 -0.605 -0.192 335 2.405 0.000  

ELT 3.406 3 1 5 1.035 -0.597 0.05 335 3.115 0.000  

GT 3.185 3 1 5 0.944 -0.1 -0.014 335 3.355 0.000  

HWMR 3.412 3 1 5 1.124 -0.708 -0.115 335 2.406 0.000  

PCC 2.445 2 1 5 1.032 -0.323 0.304 335 2.545 0.000  

PP 3.519 3 1 5 1.089 -0.663 -0.182 335 2.495 0.000  
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PVC 2.475 2 1 5 1.092 -0.45 0.369 335 2.208 0.000  

QI 3.421 3 1 5 1.053 -0.589 -0.044 335 2.763 0.000  

RW 3.519 3 1 5 1.125 -0.725 -0.238 335 2.229 0.000  
Source: Own study 

 

 

Figure 2.10. PLS-SEM bootstrapping 

Source: Own study 

 

Key findings from bootstrapping included path coefficients, outer loadings, outer 

weights, and total effects. Path coefficients depict the hypothesized intersection between the 

latent variables in the PLS-SEM model by measuring their direct influence on each other. They 

also show the intensity and direction of the links between latent variables. Table 2.7 and Table 

2.8 The results for the outer loadings and outer weights are below.   

 

Table 2.7: Outer loadings 

 

Original 

sample (O) 

Sample 

mean (M) 

Standard 

deviation 

T statistics 

(|O/STDEV|) P values 

APC -> Domain knowledge utilization 0.716 0.711 0.074 9.658 0.000 

CB <- Subjective human decision factors 0.75 0.746 0.055 13.563 0.000 

ELT <- Process Ineffectiveness 0.577 0.572 0.073 7.935 0.000 

GT <- Subjective human decision factors 0.466 0.461 0.1 4.682 0.000 

HWMR <- Process Ineffectiveness 0.642 0.636 0.064 10.012 0.000 

PCC -> Domain knowledge utilization 0.646 0.64 0.084 7.672 0.000 

PP <- Subjective human decision factors 0.712 0.707 0.065 10.995 0.000 
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PVC -> Domain knowledge utilization 0.651 0.644 0.072 9.008 0.000 

QI <- Process Ineffectiveness 0.609 0.605 0.076 8.042 0.000 

RW <- Process Ineffectiveness 0.685 0.682 0.063 10.792 0.000 

Source: Own study 

Table 2.8: Outer weights 

 

Original 

sample (O) 

Sample 

mean (M) 

Standard 

deviation  

T statistics 

(|O/STDEV|) P values 

APC -> Domain knowledge utilization 0.528 0.525 0.087 6.051 0.000 

CB <- Subjective human decision factors 0.591 0.588 0.063 9.427 0.000 

ELT <- Process Ineffectiveness 0.317 0.314 0.062 5.067 0.000 

GT <- Subjective human decision factors 0.337 0.334 0.082 4.091 0.000 

HWMR <- Process Ineffectiveness 0.401 0.396 0.057 7.082 0.000 

PCC -> Domain knowledge utilization 0.47 0.465 0.093 5.056 0.000 

PP <- Subjective human decision factors 0.561 0.556 0.071 7.929 0.000 

PVC -> Domain knowledge utilization 0.49 0.484 0.079 6.181 0.000 

QI <- Process Ineffectiveness 0.385 0.382 0.064 6.015 0.000 

RW <- Process Ineffectiveness 0.475 0.473 0.065 7.353 0.000 

Source: Own study 

 

As shown by Table 2.7 and Table 2.8 all observed variables significantly influenced 

latent variables, as indicated by the p-value of 0.00. The T-statistics confirmed the statistical 

significance, with most variables having more than 7.6 values, except groupthink and subjective 

human decision factors. However, the most important results are shown in Table 2.9 below, 

depicting the bootstrapped path coefficients.  

 

Table 2.9: Bootstrapped path coefficients 

 

The original 

sample (O) 

Sample 

mean (M) 

Standard 

deviation  

T-statistics 

(|O/STDEV|) P values 

Subjective human decision factors -> 

Domain knowledge utilization -0.480 -0.490 0.048 10.095 0.000 

Domain knowledge utilization -> 

Process Ineffectiveness -0.487 -0.498 0.042 11.622 0.000 

Source: Own study 

 

The results showed an original sample path coefficient of -0.480 for the relationship 

between subjective human decision factors and domain knowledge utilization. The negative sign 

indicated that as subjective human decision factors increased, domain knowledge utilization 

decreased and vice versa. The bootstrapped path coefficient mean (M) is -0.490, indicating that 

the average relationship across all bootstrap samples is slightly more robust than in the original 

sample. The standard deviation (STDEV) is 0.048, indicating a slight variability in the path 
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coefficients across bootstrap samples. The T-statistic value was 10.095, more significant than the 

typical critical value of 1.96 at a 95% confidence level, indicating that the path coefficient was 

statistically significant. The P value was 0.000, also indicating statistical significance. The 

original sample path coefficient for the relationship between domain knowledge utilization and 

process effectiveness was -0.487, showing a negative relationship between these constructs. The 

results are as expected since domain knowledge is limited in this case because of the influence of 

subjective human decision factors. Therefore, the more limited the use of domain knowledge in 

decision-making, the more process effectiveness decreases and vice versa. The T-statistic value 

was 11.622, and the p-value is 0.000, indicating that this relationship was statistically significant. 

2.4. Empirical insights discussion 

2.4.1. Hypothesis verification and subjective decision factors 

As defined by hypothesis H1, subjective decision factors such as cognitive biases, personal 

preferences, and groupthink significantly contribute to the selection of inefficient manufacturing 

processes by limiting the use of domain knowledge in decision-making. This was confirmed by 

the empirical evidence presented, which strongly supported 10 sub-hypotheses of H1, with only 

two being weakly confirmed, as shown in Table 2.10 below. 

 

Table 2.10: Sub-hypotheses testing 

Hypothesis Statement Conclusion 

H1a 

Cognitive biases significantly contribute to the selection of inefficient 

manufacturing processes. Confirmed 

H1b 

Personal preferences significantly contribute to the selection of inefficient 

manufacturing processes. Confirmed 

H1c 

Groupthink within decision-making teams contributes to the selection of inefficient 

manufacturing processes. Confirmed 

H1d 

High cognitive load contributes to the selection of inefficient manufacturing 

processes. Weakly confirmed 

H1e 

Limited utilization of knowledge of alternatives contributes to the selection of 

inefficient manufacturing processes. Confirmed 

H1f 

Limited utilization of knowledge on process variants contributes to the selection of 

inefficient manufacturing processes. Confirmed 

H1g 

Limited knowledge of process complexity contributes to the selection of inefficient 

manufacturing processes. Confirmed 

H1h 

The selection of inefficient manufacturing processes leads to rework and 

reprocessing. Confirmed 

H1i 

The selection of inefficient manufacturing processes leads to increased waste 

materials. Confirmed 

H1j The selection of inefficient manufacturing processes leads to low-quality outcomes. Confirmed 

H1k The selection of inefficient manufacturing processes leads to extended lead time. Confirmed 
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H1l 

The selection of inefficient manufacturing processes leads to increased safety 

concerns during Weakly confirmed 

Source: Own study 

 

The research findings indicate that subjective decision factors, namely cognitive bias, 

groupthink, and personal preference, significantly affect the choice of manufacturing processes. 

The findings are unsurprising as long-standing research has shown that human decision-making 

frequently involves cognitive biases caused by dependence on judgmental heuristics. 

Importantly, this phenomenon is practiced to some extent by laypeople, experienced specialists, 

and experts. As shown in Spearman rank correlations in Table 2.5, cognitive bias significantly 

correlates with rework, quality inconsistency, increased waste material rate, and extended lead 

times. At the same time, cognitive bias has a strong negative correlation with alternative process 

consideration, process complexity consideration, and process variant consideration.  

Similarly, groupthink has been found to limit the exploration of alternative processes and 

process variants, as indicated by a significant negative correlation, as shown in Table 2.5 thereby 

confirming that Manufacturing process selection is often a collaborative effort involving several 

groups, including product designers, production planners, and quality control specialists. These 

groups work together to make informed decisions based on various factors such as product 

requirements, production capabilities, and quality standards. Together, these groups leverage 

their collective knowledge and expertise to evaluate and decide on the best manufacturing 

method that meets the product requirements while ensuring efficiency, quality, and cost-

effectiveness. However, they are not immune to groupthink, as shown. While there are many 

other forms of cognitive bias, this study treated groupthink as a particular case. It elevated it to a 

variable because of the collaborative nature of the manufacturing process selection, where 

decisions are often made in cross-functional teams.  

Personal preferences derived from an individual’s prior experiences, inherent biases, and 

comfort levels can significantly influence decision-making in manufacturing process selection. 

These findings align with existing research, which shows that personal preference makes 

decision-makers rely mainly on the information they deliberately search for when making critical 

decisions. Existing research alludes to human decision-making in complex, dynamic, and fast-

paced environments such as manufacturing, which is often biased, leading to inefficient 

performance (Kessler & Arlinghaus, 2022). The negative correlation between personal 
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preference and the consideration for alternatives, variants, and complexities observed reveals the 

inherent problem of overreliance on personal preferences, which is the prevention of objective 

evaluation of all available options. In effect, it can limit potential solutions to the decision-maker 

who has had a good experience and is already comfortable. This limitation can have significant 

implications for manufacturing efficiency and effectiveness, as shown by the positive correlation 

between preference and variables reflecting process ineffectiveness, such as rework, extended 

lead time, and quality inconsistency. 

2.4.2. Domain knowledge in decision-making 

Domain knowledge, particularly regarding different categories of manufacturing processes, their 

capabilities, and inherent complexities, is pivotal in effective decision-making when selecting 

optimal manufacturing processes. The knowledge acquired equips individuals or groups with the 

necessary capabilities to analyze selection drivers and develop criteria critically, consider process 

alternatives, their complexities, and variants, and evaluate the potential for rework or extended 

lead times and to meet quality and sustainability standards. However, this research illuminates an 

alarming phenomenon whereby the use of domain knowledge is hampered significantly by 

subjective decision factors, including cognitive bias, groupthink, and personal preference, 

ultimately compromising the effectiveness of manufacturing processes. Spearman rank 

correlation coefficients and the PLS-SEM model indicate a negative relationship between 

variables related to domain knowledge utilization and the effectiveness of the selected 

manufacturing processes. The results reinforce the need to integrate domain knowledge when 

designing and selecting manufacturing processes. Existing studies have proposed methods for 

incorporating knowledge synthesis in product and component design, and the selection of 

appropriate processes for manufacturing  (Kessler & Arlinghaus, 2022). The study suggests 

incorporating the ideals of process selection and manufacturing constraint integration in the early 

stages of product design (Kessler & Arlinghaus, 2022). Failure to utilize domain knowledge 

when choosing manufacturing processes leads to inefficient processes, disregarding essential 

constraints. 

2.4.3. Intersection between subjective decision factors and domain knowledge 

This study has unveiled the complex interplay between subjective decision factors and domain 

knowledge in the selection of manufacturing processes. The findings show that these factors, 



43 
 

while seemingly benign, can undermine the use of specialized knowledge in the selection of 

manufacturing processes. These subjective human decision factors influence decision-makers to 

deviate from informed critical analysis based on domain knowledge and instead favor decisions 

influenced by cognitive biases, groupthink, and personal preferences. The negative correlation 

between these two latent variables underscores that an increase in subjective decision factors 

significantly hampers the effective deployment of domain knowledge in the process selection. 

This study elucidates the critical interplay between subjective decision factors and the use of 

domain knowledge in selecting manufacturing processes. 

Subjective decision factors such as cognitive biases, groupthink, and personal preferences 

may appear inconsequential. However, these factors are far from benign, as they substantially 

negatively impact the effective use of domain knowledge. Cognitive biases, for instance, tend to 

skew judgment and distort the perception of reality, causing deviations from logical, rational 

decision-making. Consequently, this needs to be improved to maintain the value of domain 

knowledge and expertise, leading to potentially poor decisions when choosing manufacturing 

processes. Groupthink, which is common in the group decision-making process involving a 

group of people or elements (Orłowski et al., 2019), can stifle individual creativity and 

independent thinking. It promotes conformity and unanimity at the expense of critical evaluation 

and thorough exploration of options, effectively sidelining valuable domain knowledge. Personal 

preferences tend to favor familiarity and convenience over novelty and optimization. As a result, 

decision-makers need to pay more attention to relevant domain knowledge that could guide them 

toward superior solutions, which might require more effort or entail more risk. 

Collectively, these factors signify a potent detriment to the effective deployment of 

domain knowledge in the selection of manufacturing processes. The observed negative 

correlation between the two latent variables under study confirms that the rise in subjective 

decision factors corresponds to a significant decrease in the use of domain knowledge, thereby 

impeding optimal process selection. The intricate interplay among these variables presents a 

formidable challenge that manufacturers must address to optimize their decision-making 

processes and improve sustainability across the product life cycle. 

Within the manufacturing realm, various studies have attempted to address the roles of 

domain knowledge and subjective decision factors separately. Juxtaposing our findings with 

these recent studies reveals significant points of convergence and divergence. Our findings show 
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the negative influence of subjective decision factors such as cognitive bias, groupthink, and 

personal preference on the quality of decision-making. Similar conclusions are drawn in several 

recent studies (Grube & Killick, 2023; V. Li, 2023; Mahesh Babu et al., 2023). A recent 

empirical investigation into the relationship among lean tools, biases, and waste in 

manufacturing concludes that cognitive bias significantly leads to inefficient decisions, which 

increase waste generation by limiting lean tools (Purushothaman et al., 2022). In a separate 

study, the authors demonstrate that cognitive biases hinder the effective implementation of lean 

methodologies in manufacturing by degrading the quality of decision-making (Mahesh Babu et 

al., 2023). While most studies link cognitive bias to inefficient decision-making, one study shows 

the positive impact of cognitive bias on employee product creativity in manufacturing 

technology firms, which enhances product performance (Cristofaro et al., 2022). Subjective 

decision factors affect the effective use of knowledge in decision-making. Recent studies 

emphasize the importance of knowledge in decision-making (Canonico et al., 2022; Fattah et al., 

2022; Kałkowska & Kozlov, 2016; Razavian et al., 2023). Our study demonstrates the critical 

need for manufacturing organizations to eliminate subjective decision factors and foster 

knowledge utilization in decision-making for optimal choices. 

2.4.4. Study limitations and conclusions 

While this study provides valuable empirical insights into the interplay between subjective 

decision factors and domain knowledge utilizationd when deciding on the appropriate 

manufacturing processes, several limitations should be acknowledged. First, the study used a 

questionnaire for data collection, introducing sampling bias. Despite efforts to ensure a 

representative sample, the responses overrepresent certain companies more inclined to 

participate. Thus, the results may not be fully generalized to all settings within the manufacturing 

industry in Poland. Second, the responses were subjective and self-reported, potentially 

containing biases. Third, this cross-sectional study provides a snapshot of the interplay between 

subjective decision factors and domain knowledge usage at a particular point in time. A 

longitudinal study might yield more robust insights into the dynamics of these factors over time 

and how they eventually affect process selection, efficiency, and sustainability. Lastly, some of 

the latent variables developed in PLS-SEM might not have been perfectly captured due to the 

limitations in the questionnaire design or the use of Likert scale responses, which assume equal 

intervals between response options. 
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Based on Polish findings, this study deeply analyzes subject decision variables and the 

utilization of domain knowledge in selecting appropriate manufacturing processes. This study 

affirms that cognitive bias, personal preference, groupthink, and underutilization of expertise in 

decision-making play essential roles in selecting inefficient manufacturing processes. The study 

provides insight into the perverse effects of groupthink, cognitive bias, and personal preference 

on the practical application of domain knowledge, leading to inefficient decision-making that 

compromises efficiency and manufacturing operations' sustainability. The negativity of such 

variables provides a complicated decision-making situation in manufacturing that is tightly 

intertwined with human subjectivity and domain knowledge. The research stresses that. Decision 

makers and managers must be cognizant of the increased role played by such subject variables, 

particularly in knowledge management and the application of decision making. Applying high-

level decision aid systems can be a helpful tool that directs decision makers to make decisions 

that maximize efficiency, quality, lead time, and safety in manufacturing.   
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3. Intelligent Support in Selection of Manufacturing Processes 

This chapter delves into how technological advances, dynamic customer needs, growing 

uncertainty, and the imperative for sustainable development continue to pressure manufacturing 

enterprises to enhance productivity and competitiveness. In this challenging landscape, decision-

making in manufacturing process selection is critical. The chapter revolves around the premise 

that adopting intelligent support is essential for balancing performance and costs through optimal 

process selection. This chapter involves a comprehensive review of 93 studies published between 

2013 and 2023 on intelligent methodologies that support the selection of manufacturing 

processes. Through the review, this chapter aims to provide a profound understanding of 

intelligent support in manufacturing process selection. The findings, which indicate significant 

interest in intelligent methodologies for manufacturing process selection, are of great 

importance. Fuzzy logic is prevalent in additive manufacturing due to its ability to handle 

complex and imprecise data. At the same time, artificial neural networks are favored in 

conventional manufacturing for leveraging extensive historical data. Genetic algorithms are 

primarily used for optimization challenges. This chapter seeks to identify gaps in current 

research on the selection of manufacturing processes. As manufacturing evolves with new 

technologies and complex materials, this chapter advocates adopting a generalized matrix 

learning vector quantization neural network for efficient and intelligent process selection in 

additive and conventional approaches due to its capacity to leverage historical data and handle 

complex and high-dimensional data that includes expert knowledge.  

3.1. Introduction and related works on intelligent computational methods 

While manufacturing plays a vital role in the growth and development of the global economy 

(Lima et al., 2022), the industry is currently navigating a landscape of unprecedented change and 

complexity. This dynamic environment is primarily shaped by rapidly shifting market demands, 

continuous technological evolution, and a growing emphasis on sustainability (Haraguchi et al., 

2017; Mumali, 2022). Recent studies highlight the vulnerability of manufacturing companies to 

large-scale disruptions from various issues, including geopolitics, trade wars, and pandemics (D. 

Chen et al., 2022; Kapoor et al., 2021). In addition, manufacturing systems have become more 

complex over the past decades in pursuit of less costly, timely, flexible, and high-quality 

components and parts manufacturing (Efthymiou et al., 2016). The rapid evolution of customer 
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needs is described as the hallmark of the twenty-first century, driving market turbulence. 

Changing market demands require manufacturers to be highly responsive and flexible, adapting 

their processes promptly to meet changing consumer preferences and emerging trends. 

Concurrently, technological evolution, especially in digitalization and automation, radically 

alters how manufacturing operations are conceived and executed (Chong et al., 2018; S. Mittal et 

al., 2019; Zeba & Dabi, 2021). These technological advancements are not only incremental 

improvements but also represent significant leaps that redefine the boundaries of what is feasible 

in manufacturing.  

Artificial intelligence techniques are a pivotal development toward creating systems 

capable of performing tasks that typically require human intelligence. Artificial intelligence 

encompasses various computational methods and techniques that enable the mimicking of human 

intelligence, such as machine learning (ML), deep learning, natural language processing, 

computer vision, expert systems, fuzzy logic, neural networks, and evolutionary algorithms (L. 

Chen et al., 2020; M. Johnson et al., 2022; Walavalkar, 2023). Although computational 

methodologies were constrained by manual inputs and limited by the scope of human analytic 

capabilities in the past, they have undergone unprecedented growth in potential because of the 

artificial intelligence infusion, enabling algorithms to self-refine, learn from vast datasets, and 

accurately predict outcomes. Artificial intelligence has brought significant transformations across 

sectors, including education, healthcare, economics, manufacturing, and security (Capuano et al., 

2022; L. Chen et al., 2020; Enholm et al., 2022; K. W. Johnson et al., 2018; Patel & Shah, 2022; 

Sanusi et al., 2022). There has been a revolutionary paradigm shift across industries due to 

artificial intelligence-based support adoption (Mumali, 2022; Mumali & Kałkowska, 2020; 

Waqar, 2024). Artificial intelligence-based support systems have notably garnered interest 

recently, with a plethora of research on intelligent manufacturing for efficiency and sustainability 

(Mumali, 2022; Mypati et al., 2023; N. O. Sadiku et al., 2019; A. K. Sharma et al., 2023; Tran, 

2021; Zeba et al., 2021). Given the complexities and significant impact of manufacturing process 

selection, adopting intelligent support is crucial for balancing performance and manufacturing 

cost through the intelligent selection of optimal processes.   

Consequently, integrating intelligent support techniques into manufacturing process 

selection is an incremental improvement and a transformative shift that addresses the multi-

dimensional challenges of the modern manufacturing landscape. These techniques are based on 
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artificial intelligence, representing a convergence of technological innovation with strategic 

decision-making, paving the way for a new era of efficient, sustainable, competitive 

manufacturing (Papacharalampopoulos et al., 2023). Early computational techniques in 

manufacturing process selection relied on prototypes involving multi-attribute decision models 

and relational databases that differentiated preferences and actual decision constraints. The field 

has experienced a significant leap in methodologies, ranging from simple multi-attribute criteria 

models to intelligent decision support systems based on complex mathematical models (Yousefi 

et al., 2023). This advancement has expanded the limits of what was previously considered 

possible, taking computational research into areas that were once thought to be purely 

theoretical.  

Artificial intelligence is a cross-disciplinary research area with immense potential for 

addressing critical manufacturing process selection decision challenges. The selection of 

manufacturing processes is an example of a crucial multi-dimensional decision problem in 

manufacturing, as choosing a suitable manufacturing process for a particular product or 

component depends on various criteria, including material, time, cost, and sustainability 

implications (Hernández-Castellano et al., 2019; Lukic et al., 2017; Martínez-Rivero et al., 

2019). The selection of optimal manufacturing processes is crucial for efficiency from the onset 

of the production cycle and goes a long way to address common issues such as rework, which 

often causes extended lead times and inflated manufacturing costs (Colledani & Angius, 2020; 

Gouiaa-Mtibaa et al., 2018). Analyzing and optimizing processing parameters is essential to 

ensuring the effective implementation of the selected manufacturing process. In recent years, 

significant progress has been made in decision-making methods for process selection in additive 

and conventional manufacturing, owing to the strong interest in multiple-attribute decision-

making methods (Gokuldoss et al., 2017; Hodonou et al., 2019; P. C. C. Priarone & Ingarao, 

2017). Selecting a suitable manufacturing process for a particular component or finished product 

involves many constraints and conditions (Djassemi, 2017; Saidi et al., 2018). For instance, the 

decision-maker must consider the required product's processing time, volume, cost, 

environmental impact, and mechanical, physical, and chemical properties.  

The unprecedented effort to push manufacturing processes to their limits to ensure the 

sustainable and cheap production of high-quality products and components is accelerating the 

adoption of more integrated and automated intelligent decision support systems in process 
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selection and design. Existing studies have introduced and described decision-support models 

and intelligent methods for selecting manufacturing processes (Abbas & Mostafa, 2016; 

Gojković et al., 2021; Hamzeh & Xu, 2019; Raigar et al., 2020; Ransikarbum & Khamhong, 

2021; Sadeghian & Sadeghian, 2016; K. N. N. Shi et al., 2019; Yan & Melkote, 2023). However, 

to our knowledge, a comprehensive review of literature on intelligent support methodologies 

focused on application in manufacturing process selection, including a discussion of adopted 

artificial intelligence technologies and their limitations, and examining future perspectives, is yet 

to be undertaken. This study addresses this gap by examining and synthesizing current 

knowledge on intelligent support methodologies based on artificial neural networks, genetic 

algorithms, fuzzy logic, and hybrid combinations. The primary goal of this review is to 

methodically collate and comprehensively synthesize the existing body of research on artificial 

intelligence-based techniques in the sphere of manufacturing process selection.  

Our contribution is in the pursuit of a deep understanding of the transformative impact of 

artificial intelligence on manufacturing process selection. This contribution is achieved by 

unearthing insights into how intelligent support technologies have redefined traditional practices 

and examining how artificial intelligence has enhanced process selection efficiency, accuracy, 

and adaptability. The review intends to illuminate the path for future innovations and 

improvements in this field. This review's scope is broad and meticulously defined, encompassing 

a diverse range of studies published between 2013 and 2023. This time frame is selected to 

capture the most recent and relevant developments in the field, ensuring that the review reflects 

the current state of the art.   

Recent technological advances in computation methods have resulted in the development 

of intelligent systems capable of replicating human intelligence processes (Abioye et al., 2021). 

Intelligent systems use logical arguments, soft computing techniques, and other machines to 

produce human-like capabilities of observing, learning, inference, and decision-making (Ertel, 

2017; Neapolitan & Jiang, 2018; Salehi & Burgueño, 2018; Shehab et al., 2020). In recent years, 

intelligent systems have shown significant progress in supporting decision-making, planning, and 

design activities in manufacturing, including prediction, design, and control of manufacturing 

processes, leveraging manufacturing digitalization (Mozaffar et al., 2022). Key areas that 

influence manufacturing, such as energy, have benefited from intelligent methodologies, 

including in processes such as load forecasting (Grzeszczyk & Grzeszczyk, 2022). The principal 
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classical methodologies for Intelligent Systems are biologically inspired and include artificial 

neural networks (ANNs), fuzzy logic, evolutionary algorithms such as genetic algorithms and 

genetic programming, particle swarm optimization, and colony optimization. Figure 3.1 below 

shows neural networks, fuzzy logic, genetic algorithms, and their hybrid combinations that 

dominate the intelligent support domain. 

 

 
Figure 3.1.NN, FL, GA, and their Hybrid combinations 

Source: Own study based on (Ashish et al., 2018; Zadeh, 2015) 

 

 

ANNs are simplified models of biological neural networks designed to mimic the features 

observed in the brain, such as learning to recognize patterns, decipher perceptions, classify data, 

and predict future events (J. Zhang et al., 2023). Countless studies have similarly described 

ANNs, as parallel computer modeling after the biological brain (Samek et al., 2021; W. Zhang et 

al., 2020). ANNs comprise layers of adaptive nonlinear processing elements called neurons or 

nodes. The basic structure consists of input and output layers sandwiched between one or more 

hidden layers. Each neuron is an elementary information processing unit that receives input 

signals via the input layer and sends the data to the next layer when activated. Figure 3.2 below 

is a schematic representation of a neuron, showing the input signals 𝑋1, 𝑋2 and  𝑋𝑛 , and the 

output signals 𝑊1, 𝑊2 and  𝑊𝑛.  
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Figure 3.2. Neuron 

Source: Own study based on (Anandakumar & Arulmurugan, 2019) 

 

 

ANNs are classified into several groups depending on the network architecture. Three 

fundamental classes include single-layer feedforward networks, multilayer feedforward 

networks, and recurrent networks (Sharkawy, 2020). The single-layer feedforward network 

features input and output layers with no hidden layers in between, as illustrated by Figure 3.3. 

The input layer neurons receive and transmit the data to the output layer neurons via connections 

carrying weights. These networks are unidirectional, carrying signals from input to output layers 

and not vice-versa, hence the term feedforward. A Multilayer feedforward network consists of 

input and output layers and at least one or more hidden layers whose neurons help perform 

further computations before redirecting the input information to the output layers. Finally, 

recurrent networks feature at least one feedback loop.  
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Figure 3.3. ANN architecture 

Source: Own study based on (Anandakumar & Arulmurugan, 2019) 

 

 

The learning paradigms for ANNs include supervised, unsupervised, and reinforcement 

(Anandakumar & Arulmurugan, 2019; F. A. Rodrigues, 2023). Supervised learning involves 

feeding the network with input and output training data samples (Anandakumar & Arulmurugan, 

2019). Unsupervised learning consists of the adjustment of weights based on internal rules, and 

the network learns independently by discovering data structure through clustering and 

compression (Anandakumar & Arulmurugan, 2019). Reinforcement learning is similar to 

supervised learning, but weights are not modified based on the error values. Instead, the errors 

indicate whether the computed output is correct or incorrect. The training is output-based 

(Anandakumar & Arulmurugan, 2019). The learning paradigms for ANNs are shown in Figure 

3.4 below. 
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Figure 3.4. ANN learning paradigms 

Source: Own study based on (Anandakumar & Arulmurugan, 2019) 

 

 

ANNs are robust computing systems capable of modeling and solving complex nonlinear 

problems across disciplines. Recent studies reveal the increasing adoption of ANNs across 

different fields, including construction, where ANN models have been studied in cost estimation  

(Matel et al., 2022) and prediction of material properties (Asteris & Mokos, 2020; Ben Chaabene 

et al., 2020; D. C. Feng et al., 2020; I.-J. Han et al., 2019; Roshani et al., 2021) and the medical 

field for diagnosing and predicting diseases (Abdelaziz Ismael et al., 2020; Bharati et al., 2020; 

Kweik et al., 2020; Muhammad et al., 2019). ANN research has long been part of the 

manufacturing industry. Recent applications in manufacturing management of additive and 

advanced manufacturing processes and systems (Bajaj et al., 2019; T. Chen & Wang, 2016; 

Elhoone et al., 2020; Kłos & Patalas-Maliszewska, 2019; Mehrpouya et al., 2021; Pfrommer et 

al., 2018; Stathatos & Vosniakos, 2019; Y. Tang et al., 2023; Wahsh et al., 2018; Zhu et al., 

2021). These studies indicate that applying intelligent methodologies to solve complex problems 

in manufacturing is an area of increasing research interest.  

Genetic algorithms are well-known computerized search and optimization algorithms 

modeled after natural selection. Genetic algorithms were introduced in the 1960s and have grown 

to become one of the most popular methods for solving optimization problems (Jafari-Marandi & 

Smith, 2017).  Like many other meta-heuristics, genetic algorithms are an evolutionary-based 
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technique where the population of potential solutions to a given problem evolves throughout the 

optimization course, and solutions are encoded on chromosome-like structures (Jafari-Marandi & 

Smith, 2017). Training genetic algorithms involves several steps outlined in Figure 3.5 below. 

 

 
 

Figure 3.5. GA training flowchart 

Source: Own study based on (Hassanat et al., 2019) 

 

 

Genetic algorithms are a versatile and powerful tool for solving optimization problems 

and have contributed significantly to many areas of science and engineering (Alam et al., 2021; 

Jafari-Marandi & Smith, 2017; Katoch et al., 2021). Genetic algorithms are widely used in 

manufacturing to perform functions such as feature extraction, pattern recognition, and image 

processing to support decision-makers in optimizing manufacturing systems and processes 

(Castillo-Rivera et al., 2020; Drachal & Pawłowski, 2021; Egilmez et al., 2016; Grznár et al., 

2021; Kordos et al., 2020; Kowalski et al., 2021; Kumar & Maji, 2020; Umam et al., 2022). 



55 
 

Genetic algorithms have also been studied in the construction industry to solve optimization 

problems (Abd Elrehim et al., 2019). Their ability to tackle complex optimization problems has 

rendered them indispensable in various intelligent solutions. 

The Fuzzy Logic concept describes the non-linear representation of real-world problems 

that treat system variables in a gradient instead of binary logic. Fuzzy logic is the capability to 

communicate, reason, and make rational judgments and decisions in an imprecise, uncertain 

environment characterized by limited knowledge. Fuzzy logic allows the use of levels of truth 

assigned to values between 0 and 1, and as a result, it is well-suited for real-world problems 

across different disciplines. Fuzzy logic is a powerful tool that has found applications in a wide 

range of fields. Its ability to handle uncertainty, ambiguity, and imprecision makes it particularly 

useful in decision-making problems. Fuzzy logic-based methods have been successfully applied 

to control systems (Dumitrescu et al., 2021) and artificial intelligence. In the field of artificial 

intelligence, fuzzy logic has been used to model uncertainty and imprecision in reasoning and 

decision-making problems, such as the initial screening of manufacturing reshoring (Hilletofth et 

al., 2021) and risk assessment in additive manufacturing research (Moreno-Cabezali & 

Fernandez-Crehuet, 2020). Fuzzy logic-based expert systems have been developed to solve 

complex problems in medicine, finance, engineering, and other fields. Fuzzy logic-based 

decision support systems have also been developed to aid decision-making in complex and 

uncertain manufacturing environments (Raja Dhas & Francalanza et al., 2016; Tashtoush et al., 

2020). In pattern recognition, fuzzy logic has been used to classify and cluster data with 

uncertainty and imprecision. Fuzzy logic-based clustering methods have been developed to 

group data into clusters based on their similarity. Fuzzy logic-based classification methods have 

also been proposed to classify data into different classes based on their attributes. 

Neuro-fuzzy hybrid describes the combination of neural networks and fuzzy logic and 

constitutes one of the most researched hybrid methodologies for intelligent systems. Neural 

networks can effectively model non-linear and complex relationships and are well-suited for 

classification and pattern recognition problems (Elbaz et al., 2019). However, the precision of the 

output is often limited, and the performance largely depends on the quality of the selected data. 

By contrast, fuzzy logic is designed to work with imprecise inputs and outputs directly as they 

form fuzzy sets. Among the pioneering neuro-fuzzy hybrids is the NN-driven fuzzy reasoning 

proposed by Takagi and Hayashi (Yazid et al., 2019). Many studies have been conducted since 
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then to improve the neuro-fuzzy hybrid methodology, such as a multi-staged fuzzy approximate 

reasoning integrating self-organizing feature map (SOFM) and fuzzy logic (S. Javaid et al., 

2018), Adaptive-Network-based Fuzzy Inference System (ANFIS) (Olayode et al., 2023), and 

fuzzy ARTMAP that integrates fuzzy logic with adaptive resonance theory (ART) neural 

networks (Al-Andoli et al., 2023). Combining these two techniques, neuro-fuzzy systems 

provide more accurate and robust predictions in various domains, such as pattern recognition and 

decision-making. They are also often more interpretable, making understanding and interpreting 

the reasoning behind the system’s decisions more manageable. 

A neuro-genetic hybrid involves the integration of neural networks and genetic 

algorithms. Although neural networks can be trained to model complex non-linear relationships, 

recognize patterns, and perform classification, the elementary attributes of concern when 

designing them are problem-specific. For this reason, the optimization of the neural network 

design can benefit from computational processes. Genetic algorithms have provided excellent 

tools for optimizing parameters when designing neural networks. Several studies indicate the 

successful integration of neural networks and genetic algorithms. For instance, a genetic 

algorithm has been used to improve the learning process in artificial neural networks (Vakili et 

al., 2017). Studies have shown that the neural networks-genetic algorithms combination is more 

accurate than single neural networks (Alsaleh & Larabi-Marie-Sainte, 2021; Patra et al., 2017; D. 

K. Sharma et al., 2022; Vakili et al., 2017). Neuro-genetic systems are essential because they 

combine the strengths of neural networks and genetic algorithms to solve complex problems. 

Neural networks are good at learning from data, while genetic algorithms are good at optimizing 

solutions through natural selection. Therefore, this hybrid system is powerful for solving 

complex learning and optimization problems. 

The fuzzy-genetic hybrid involves the combination of fuzzy logic and genetic algorithms. 

Fuzzy logic offers a way to deal with bias and uncertainty in problems where conventional 

methods are ineffective. Genetic algorithms, on the other hand, use the principles of natural 

selection and genetics to solve optimization problems. Combining these two methods has led to 

efficient hybrid tools to solve complex problems across different fields. The concept of a fuzzy 

genetic algorithm was first introduced in the late 1980s and early 1990s, and since then, many 

studies have been done to improve and optimize the method (Human et al., 2021; Malarvizhi et 

al., 2020). A fuzzy genetic approach helps find rules that define patterns in knowledge and has 
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proven effective in dealing with uncertainties and uncertainties in data (Georgieva, 2018; 

Malarvizhi et al., 2020; Ponticelli et al., 2019). Since then, many researchers have explored using 

fuzzy-genetic algorithms in various applications such as pattern recognition, classification, 

clustering, and optimization. For instance, the fuzzy genetic model was developed for metal form 

manufacturing control, where genetic algorithms ensure the optimization of defined fuzzy 

members to consider uncertainties (Ponticelli et al., 2019). Further studies have been conducted 

on using fuzzy genetic hybrid systems to solve problems in manufacturing processes (Gojković 

et al., 2021). Thus, fuzzy genetic algorithms remain potent integrations that can solve bias and 

uncertainty in many problems. This method is beneficial in multi-objective optimization 

problems, rule extraction, feature selection, and extensive data analysis. 

Artificial neural networks, fuzzy logic, and genetic algorithms have been combined to 

draw upon the strengths of each technique in developing more effective hybrid intelligent 

technologies. There are several reasons and ways neuro-fuzzy-genetic hybrids are created, for 

instance, to improve the performance of artificial neural networks by combining the learning and 

adaptation of fuzzy logic capabilities with the search optimization of genetic algorithms. Studies 

indicate the possibility of optimizing the degree of membership value in the neuro-fuzzy method 

using genetic algorithms (Fata et al., 2019). The performance of the neuro-fuzzy model is, thus, 

optimized using a genetic algorithm (Ashish et al., 2018). Several areas of application of neuro-

fuzzy-genetic hybrid models include medical, manufacturing, and finance. In medicine, the 

model has been studied in disease diagnosis and management decisions (Ashish et al., 2018; Fata 

et al., 2019; Kaur et al., 2019; Omisore et al., 2017; Shokouhifar & Pilevari, 2022). In 

manufacturing and engineering, use cases generally range from increasing accuracy in robotic 

systems (El-Sherbiny et al., 2018) to solving process optimization problems (Saw et al., 2018). 

Thus, neuro-fuzzy-genetic hybrid methods are potent in building more capable intelligent 

systems. 

3.2. Methodology for a systematic review of the intelligent support methodologies 

3.2.1. Systematic review, question formulation, and study location 

The broader context of this study is to apply an evidence-based investigation paradigm in 

exploring artificial intelligence-based techniques in intelligent support systems for 

manufacturing process selection. Systematic reviews provide researchers with a tool to identify, 
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evaluate, and aggregate findings from relevant empirical studies to present objective evidence on 

particular issues. There are several approaches to conducting a systematic review, popularized by 

Joanna Briggs Institute and Cochrane to inform practice and policy across diverse fields (Munn 

et al., 2018). However, not all systematic review methods can be used in all fields. For instance, 

the Cochrane approach is suited for the medical field (Denyer & Tranfield, 2009), while the style 

promoted by Brereton et al. is well suited for conducting a review of software engineering 

(Brereton et al., 2007). According to Denyer and Tranfield, adopting the Cochrane systematic 

review style is insufficient and unsuitable for the wide range and richness of research design 

aims and use cases in management (Denyer & Tranfield, 2009). Denyer and Tranfield developed 

principles for effective systematic review based on transparency, inclusivity, explanation, and 

heuristics (Denyer & Tranfield, 2009). This review adopts revised principles for systematic 

reviews in management and organization studies, as recommended (Denyer & Tranfield, 2009), 

for the reasons behind each principle. Unlike the Cochrane style, reviews in management should 

not be focused on replication or eradicating bias, which often diminishes transparency. In 

addition, there needs to be more uniformity in research data collection and analysis methods 

within the management field, as studies rarely address identical research questions. Thus, a 

simple 5-stage style proposed by Denyer and Tranfield is adopted for this study, as shown in 

Figure 3.6 below. 
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Figure 3.6. 5-stage systematic review style 

Source: own study based on (Denyer & Tranfield, 2009) 

 

 

Establishing the review’s focus is essential and is accomplished by clearly formulating 

the research questions. According to Denyer and Tranfield, well-formulated questions become 

the basis for primary study inclusion (Denyer & Tranfield, 2009). Therefore, this review is 

guided by four research questions to delve deeper into the nuances of intelligent support systems, 

emphasizing the role of artificial neural networks, fuzzy logic, genetic algorithms, and their 

hybrid techniques in addressing the intricacies of manufacturing process selection. The research 

questions are outlined as follows:  

Q1: What are the key trends in intelligent support for manufacturing process selection? 

Q2: How do recent intelligent support methodologies address manufacturing selection 

complexities? 



60 
 

Q3: What are the challenges and limitations of intelligent support methodologies for 

manufacturing process selection? 

Since a systematic literature review aims to select, appraise, and synthesize relevant 

studies, the location of the studies is the second step. The studies considered in this review are 

retrieved from Scopus, IEEE Xplore, Springer, and Web of Science. While other databases, such 

as Google Scholar, can be reliable sources, the four databases selected are much more robust, 

with high-quality and relevant published studies. The search terms for the selected databases are 

outlined in Table 3.1 below.  

 

Table 3.1: Search queries 

Search database Search terms 

Web of Science Intelligent Support  AND Manufacturing Process Selection AND (neural network OR 

genetic algorithm OR Fuzzy logic ) 

Scopus   (Manufacturing AND process AND selection ) AND ( Intelligent AND support) AND ( 

(neural AND network) OR  (fuzzy AND logic ) OR ( genetic AND algorithms ) ) 

IEEE Xplore Intelligent Support AND Manufacturing Process Selection AND (neural network OR 

genetic algorithms OR Fuzzy logic) 

Springer Link Intelligent Support AND Manufacturing Process Selection AND (genetic algorithms OR  

neural network OR Fuzzy logic) 

Source: Own study 

 

3.2.2. Study selection and evaluation  

A selection criterion is developed to assess the relevance of the identified studies. The selected 

studies are evaluated to check if they address the review question (Denyer & Tranfield, 2009). 

An explicit selection criterion ensures the reviewer’s decisions can be scrutinized (Denyer & 

Tranfield, 2009). Table 3.2 below shows the search inclusion criteria used for this study. 

 

Table 3.2: Inclusion criteria 

No. Criteria Include value 

1 Publication year 2014- 2024 

2 Publication stage Final 

3 Language English 

4 Source type Journal article and conference proceeding 

5 Research type Study on DSS for manufacturing process selection 

Source: Own study  
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The selected publications were passed through a quality check to ensure the final selection 

consisted of quality studies published in high-ranking scientific journals. The quality checklist is 

summarized in Table 3.3 below. 

 

Table 3.3: Quality checklist 

No. Quality checklist item Include 

2 Not duplicate ✓ 

2 Abstracts available ✓ 

3 Source title outlined ✓ 

4 Author information provided ✓ 

5 The year of publication indicated ✓ 

6 Identifications such as DOI or serial identifiers indicated ✓ 

7 The title and abstract are relevant to the review objective ✓ 

Source: Own study 

 

3.3. Results and discussions of the systematic literature review 

3.3.1. Intelligent support selection of additive manufacturing processes 

Execution of the search on the identified databases resulted in the retrieval of 44 papers from 

IEEE Xplore, 31 from Web of Science, 138 from Scopus, and 67 from Springer Link papers 

published between 2013 and 2023. The retrieved studies were trimmed down to 168 journal 

articles and conference proceeding papers. After checking the relevance, full-text availability, 

and correctness of data, including identifiers and removing duplicates, the final list comprises 93 

papers, as illustrated by the study selection process in Table 3.5 below. 
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Figure 3.7. Study selection process 

Source: Own study 

 

 

As illustrated in Figure 3.8, the final selection consisted of 71 journal articles and 22 conference 

papers, accounting for 77% and 23% of the total, respectively. 

 

 

 
Figure 3.8. Publication types 

Source: Own study 
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The distribution of the selected studies by the year of publication reveals a growing 

interest in decision support systems for the selection of manufacturing processes. The number of 

published studies rose steadily from 2013 to 2020, with a notable decline in 2021. Despite the 

setback in 2021, the number of publications appears to rise, as shown in Figure 3.9 below. 

 

 

 
Figure 3.9. Distribution of included publications per year 

Source: Own study 

 

The selected papers have been cited 1789 times, indicating a significant impact and 

interest in applying intelligent support systems in manufacturing process selection. This high 

citation count reflects the growing recognition of the importance of advanced technologies such 

as artificial neural networks, fuzzy logic, and genetic algorithms in addressing the complexities 

associated with the selection of manufacturing processes. Researchers have extensively explored 

and validated these technologies, highlighting their potential to enhance decision-making, 

optimize processes, and improve overall efficiency in manufacturing. The diverse range of 

applications and the consistent acknowledgment in the literature underscores the growing 

relevance of intelligent support in the modern manufacturing landscape. Figure 3.10 shows the 

distribution of citations by year of publication.   
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Figure 3.10. Distribution of citations by year of publication 

Source: Own study 

 

In this review, 93 papers were selected from 71 distinct sources, encompassing journal 

articles and conference papers. This selection highlights the specialized focus and diverse scope 

of the sources within the domain of artificial intelligence and its application in intelligent support 

for manufacturing process selection. The considerable number of unique sources underscores the 

interdisciplinary nature of the subject matter, reflecting the extensive and nuanced exploration 

necessary to advance understanding and application in this dynamically evolving field. This wide 

range of sources indicates the depth of research and the comprehensive approach required to 

address the complexities of integrating artificial intelligence within manufacturing processes.  

Table 3.4 depicts the sources of the selected papers.  

 

Table 3.4: Sources of included research papers 

Source Title Papers Authors 

2019 23rd International Conference on Mechatronics Technology, 

ICMT 2019 1 

(Hagemann et al., 2019) 

2021 Global Reliability and Prognostics and Health Management, 

PHM-Nanjing 2021 1 

(J. Zhang et al., 2021) 

2021 IEEE 8th International Conference on Industrial Engineering and 

Applications, ICIEA 2021 1 

(Ransikarbum & Leksomboon, 

2021) 

23rd International Conference for Production Research, ICPR 2015 1 (Yurdakul & Iç, 2015) 

Advances in Materials Science and Engineering 1 (Ghaleb et al., 2020) 

Advances in Production Engineering And Management 1 (Lukic et al., 2017) 

Applied Sciences (Switzerland) 1 [242] 

Archives of Civil and Mechanical Engineering 1 (Kuziak et al., 2019) 
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Artificial Intelligence for Engineering Design, Analysis and 

Manufacturing: AIEDAM 1 

(Rojek, 2017) 

CIRP Journal of Manufacturing Science and Technology 1 (Bak et al., 2021) 

Composites and Advanced Materials Expo, CAMX 2021 1 (Klunker et al., 2021) 

Decision Science Letters 1 (Pandey et al., 2014) 

IEEE Open Journal of the Industrial Electronics Society 1 (Yousefi et al., 2023) 

IEEE Transactions on Industrial Informatics 1 (Y. Zhang et al., 2023) 

IEEE Transactions on Semiconductor Manufacturing 1 (J. Feng et al., 2019) 

IEEE/CAA Journal of Automatica Sinica 1 (Ghahramani et al., 2020) 

Informatica (Netherlands) 1 (Nouri et al., 2015) 

Information Sciences 1 (A.-D. Li et al., 2023) 

International Journal of Advanced Manufacturing Technology 8 

(Bahadir & Bahadir, 2015; 

Gleadall et al., 2016; 

Kadkhoda-Ahmadi et al., 2019; 

Marini & Corney, 2020; 

Sadeghian & Sadeghian, 2016; 

Simeone et al., 2021; Temuçin 

et al., 2014; Q. Yi et al., 2023) 

International Journal of Computer Integrated Manufacturing 1 

(Hamouche & Loukaides, 

2018) 

International Journal of Fuzzy Systems 1 (K.-J. Wang et al., 2017) 

International Journal of Industrial Engineering: Theory Applications 

and Practice 1 

(de León-Delgado et al., 2022) 

International Journal of Industrial Engineering and Production Research 1 (Zare Banadkouki et al., 2021) 

International Journal of Logistics Systems and Management 1 (K. K. Mittal et al., 2018) 

International Journal of Manufacturing Technology and Management 1 

(P. L. Ramkumar & Kulkarni, 

2014) 

International Journal of Mechanical and Production Engineering 

Research and Development 1 

(Ayshath Zaheera et al., 2018) 

International Journal of Modeling, Simulation, and Scientific 

Computing 1 

(C. Shi et al., 2017) 

International Journal of Process Management and Benchmarking 1 (K. K. Mittal et al., 2019) 

International Journal of Production Research 2 

(Stanisavljevic et al., 2020; Tan 

et al., 2022) 

International Journal of Reliability, Quality and Safety Engineering 1 (K.-S. Chen et al., 2019) 

International Journal of Services and Operations Management 3 

(Gothwal & Saha, 2015; Kiron 

& Kannan, 2018; Kodali et al., 

2014) 

International Journal on Interactive Design and Manufacturing 1 (Hodonou et al., 2020) 

IOP Conference Series: Materials Science and Engineering 1 (Mohamed Noor et al., 2017) 

Computer Integrated Manufacturing Systems, CIMS 1 (Lyu et al., 2020) 

Journal of Advanced Manufacturing Systems 1 (Yurdakul & Iç, 2019) 

Journal of Circuits, Systems and Computers 1 (J. Wang et al., 2016) 

Journal of Engineering Design 1 (Saidi et al., 2018) 

Journal of Industrial Engineering and Management 1 (Chang & Lin, 2015) 

Journal of Intelligent Manufacturing 2 

(Park et al., 2022; Z. Wang & 

Rosen, 2023) 

Journal of Manufacturing Science and Engineering 1 (Roohnavazfar et al., 2014) 

Journal of Manufacturing Systems 2 

(D.-H. Lee et al., 2019; Yan & 

Melkote, 2023) 

Journal of Manufacturing Technology Management 1 (Jenab et al., 2015) 

Journal of Materials Engineering and Performance 2 (Kumar & Maji, 2020; 
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Ransikarbum & Khamhong, 

2021) 

Journal of Testing and Evaluation 1 (C.-W. Wu et al., 2016) 

Journal of The Institution of Engineers (Indi): Series C 1 (Saranya et al., 2018) 

Control and Decision 1 (Pan & Yang, 2014) 

Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics) 1 

(Z. H. Lim et al., 2019) 

Lecture Notes in Information Systems and Organisation 1 (Ahmed & Lokhande, 2022) 

Lecture Notes in Mechanical Engineering 1 (A. Malaga & Vinodh, 2023) 

Management and Production Engineering Review 1 (Kotliar et al., 2020) 

Materials Today: Proceedings 4 

(Baswaraj et al., 2018; Jaisingh 

Sheoran & Kumar, 2020; A. K. 

Malaga et al., 2022; Teharia et 

al., 2022) 

Mathematics 1 (Gojković et al., 2021) 

Neural Processing Letters 1  

PLoS ONE 1 (Menekse et al., 2023) 

Procedia CIRP 1 (Simeone et al., 2020) 

Procedia Computer Science 1 

(Aboelfotoh et al., 2018; 

Anghel et al., 2018) 

Proceedings - 16th International Conference on Embedded and 

Ubiquitous Computing, EUC 2018 1 

(Anghel et al., 2018) 

Proceedings of International Design Conference, DESIGN 1 (Tuckwood et al., 2014) 

Proceedings of the 2nd International Conference on Artificial 

Intelligence and Smart Energy, ICAIS 2022 1 

(Ahmed & Lokhande, 2022) 

Proceedings of the ASME Design Engineering Technical Conference 3 

(H. Chen & Zhao, 2015; 

Nagarajan et al., 2018; Zhao & 

Melkote, 2022) 

Proceedings of the Institution of Mechanical Engineers, Part B: Journal 

of Engineering Manufacture 1 

(Tlija & Al-Tamimi, 2023) 

Proceedings of the Institution of Mechanical Engineers, Part C: Journal 

of Mechanical Engineering Science 1 

(Mehrvar et al., 2020) 

Rapid Prototyping Journal 4 

(Anand & Vinodh, 2018; Ren et 

al., 2022; Y. Wang et al., 2017, 

2018) 

RI2C 2019 - 2019 Research, Invention, and Innovation Congress 1 (Khamhong et al., 2019) 

Robotics and Computer-Integrated Manufacturing 2 

(C.-Y. Lee & Tsai, 2019; Qin et 

al., 2020) 

Sadhana - Academy Proceedings in Engineering Sciences 1 (Raigar et al., 2020) 

Scientific Programming 1 

(Raja, John Rajan, Praveen 

Kumar, Rajeswari, Girija, 

Modak, Vinoth Kumar, 

Mammo, et al., 2022) 

Surface Technology 1 (X. Zhang et al., 2022) 

Sustainability (Switzerland) 1 (Lu, 2021) 

Tehnicki Glasnik 1 (Krulčić et al., 2022) 

Tehnicki Vjesnik 1 (Peko et al., 2018) 

Source: Own study 
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While additive manufacturing has presented several benefits, such as freedom of design 

and increased customization capabilities, selecting the most suitable process for a given product 

design and application remains challenging (Muvunzi et al., 2022). The selection of an optimal 

additive manufacturing process can be subject to several uncertainties and complexities. One 

source of uncertainty and complexity is the large pool of additive manufacturing processes 

available for selection, each with its merits and demerits. These processes significantly differ in 

terms of compatible materials, tolerance, build volume, precision, cost, build time, and other 

parameters (Menekse et al., 2023). For this reason, selecting appropriate processes mandates a 

proper understanding of these parameters. Another source of uncertainty and complexity in 

additive manufacturing process selection is the high variability of input material and the process 

itself. Inherent material properties such as thermal conductivity, viscosity, and density can 

significantly improve the quality of the final product.  

A manufacturing process can also introduce uncertainties such as distortion, warpage, and 

shrinkage, which can adversely impact the accuracy and quality of the final product. Therefore, 

decision-makers require intelligent tools to help reach acceptable solutions that consider all 

underlying factors, including parameters related to the material and geometric, technological, and 

post-processing operations. As such, deciding the proper process for a particular product is 

effortful and requires in-depth knowledge. These challenges are being addressed through the use 

of intelligent systems and modeling to reveal correlations between processes and parameters and 

optimize them for better and consistent quality (Y. Tang et al., 2023). Table 3.5 shows some 

current literature on intelligent process selection of additive manufacturing processes.  

 

Table 3.5: Current literature on the intelligent selection of additive manufacturing processes 

Reference Method Application 

(Menekse et al., 2023) Fuzzy Logic Assessing additive manufacturing alternatives 

(A. Malaga & Vinodh, 2023) Fuzzy Logic Prioritizing additive manufacturing technologies 

(Buechler et al., 2022) Fuzzy Logic Car part suitable manufacturing processes 

(Hodonou et al., 2020) Fuzzy Logic Ranking manufacturing processes based on economic 

and environmental implications 

(Qin et al., 2020) Fuzzy Logic  Selecting the appropriate additive manufacturing 

process 

(Marini & Corney, 2020) Fuzzy Logic Selection of near-net shape processes 

(Büyüközkan & Göçer, 2020) Fuzzy Logic Selection and suitability analysis for 3D printing 

processes 

(Khamhong et al., 2019) Fuzzy Logic Analysis of criteria for additive manufacturing 

processes 

(Peko et al., 2018) Fuzzy Logic Selecting adequate additive manufacturing processes 

(Anand & Vinodh, 2018) Fuzzy Logic Ranking additive manufacturing processes 
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(Zheng et al., 2017) Fuzzy Logic Selection of appropriate additive manufacturing 

processes 

Source: Own study 

 

Fuzzy logic has been widely used to address complexities and uncertainties in evaluating 

and selecting additive manufacturing processes. Plenty of existing studies reveal the ability of 

fuzzy logic to help engineers consider various parameters and their complexities and 

uncertainties in the decision-making process. For instance, the ability of fuzzy sets to handle 

ambiguity and uncertainty is exploited by designing an integrated fuzzy multi-criteria decision-

making based on Pythagorean fuzzy sets for assessing alternative additive manufacturing 

processes for the automotive sector (Menekse et al., 2023).  The existing body of literature 

reveals that the application of fuzzy logic in the selection of additive manufacturing is 

multifaceted, with specific use cases including solving ambiguity and uncertainty in multi-

criteria decision-making methods (Menekse et al., 2023) and enriching the performance of other 

methods, such as AHP (Anand & Vinodh, 2018; A. Malaga & Vinodh, 2023). Other studies have 

combined fuzzy logic, AHP, and at least one more multi-criteria decision-making method, such 

as PROMETHEE and TOPSIS (Anand & Vinodh, 2018; Nouri et al., 2015; Peko et al., 2018). 

While a vast majority of studies focus on a general selection of manufacturing processes, a few 

involve the deployment of intelligent tools to support the decision with a focus on the specific 

output, such as the near-net shape (Kumar & Maji, 2020; Marini & Corney, 2020). In general, 

fuzzy logic is the most prevalent intelligent system technique in selecting additive manufacturing 

processes. 

 

3.3.2. Intelligent selection of conventional manufacturing processes 

Process selection in conventional manufacturing involves evaluating and determining the optimal 

method for a specified product. For this reason, the choice of appropriate manufacturing 

processes is highly influenced by many factors, such as flexibility, cost, efficiency, and quality. 

Intelligent system techniques such as neural networks, fuzzy logic, and genetic algorithms have 

been used to assist in the decision-making process for the selection of manufacturing processes. 

As already discussed, neural networks are intelligent system tools that can be modeled to predict 

and recognize patterns and cluster objects. Neural networks can analyze vast volumes of data to 
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identify similarities and make accurate predictions. As such, neural networks are ideal for 

selecting optimal processes considering many variables and constraints. 

Besides neural networks, fuzzy logic and genetic algorithms play an essential role in 

designing and developing intelligent systems in the manufacturing landscape. Fuzzy logic is a 

reasoning method that is especially useful in cases where the available data is uncertain or 

imprecise, as it allows linguistic variables and approximations in describing a problem. This has 

made fuzzy logic ideal for assigning weights to different parameters in manufacturing process 

selection, such as quality, cost, tolerance, and size, among others, based on their relative 

importance in decision-making. By contrast, genetic algorithms mimic natural selection 

processes to resolve optimization problems. They help search for optimal solutions among a 

population of alternatives. In the manufacturing process selection, genetic algorithms are used to 

search for the optimal combination of parameters for the best alternative. Table 3.6 below 

summarizes recent studies involving neural networks, genetic algorithms, and fuzzy logic in 

manufacturing process selection. 

 

Table 3.6: Artificial intelligence technologies in manufacturing process selection 

Reference Method Application 

(Yan & Melkote, 2023) Artificial Neural Networks Simulation of the manufacturing process 

(Z. Wang & Rosen, 2022) Artificial Neural Networks Classification of manufacturing processes 

(Z. Wang & Rosen, 2023) Artificial Neural Networks Manufacturing process classification 

(de León-Delgado et al., 

2022) 

Artificial Neural Networks 

and Genetic Algorithms 

Planning, optimization, simulation, and decision-

making in manufacturing process selection 

(Hamouche & Loukaides, 

2018) 

Artificial Neural Networks Automating manufacturing process selection 

(Sadeghian & Sadeghian, 

2016) 

Artificial Neural Networks 

and Fuzzy Logic 

Manufacturing system selection 

(Lu, 2021) Fuzzy Logic Selection of advanced manufacturing processes 

(Mastrocinque et al., 2016) Fuzzy Logic Selection of manufacturing technology 

(Nouri et al., 2015) Fuzzy Logic Manufacturing technology selection 

Source: Own study 

 

Several use cases of neural networks related to manufacturing processes have been 

studied. For instance, Siamese Neural Network (SNN) is integrated into deep generative models 

of machining operations to automate manufacturability analysis and machining process selection 

(Yan & Melkote, 2023). The proposed Autoencoder and Siamese Neural Network (AE-SNN) 

achieves a class-average process selection accuracy of 89%, and a manufacturability analysis 
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accuracy of 100%, outperforming a discriminative model trained on the same dataset (Yan & 

Melkote, 2023). Neural networks have also been studied to develop solutions to the problem of 

classification and identification of manufacturing processes suitable for specified part designs. 

CNN has been used to improve the classification accuracy of manufacturing processes based on 

part shapes (Z. Wang & Rosen, 2022). Manufacturing process classification has also been 

enhanced using invariant shape descriptors and CNN for better accuracy in the selection of 

appropriate processes (Z. Wang & Rosen, 2023). Researchers have also proposed an improved 

method for selecting a Radial Basis Function Neural Network that is more accurate in describing 

manufacturing process parameters, which incorporates a genetic algorithm proposed (de León-

Delgado et al., 2022).  Using neural network-based intelligent decision support has been lauded 

as a crucial step between design and manufacturing through manufacturing process selection 

(Hamouche & Loukaides, 2018). Therefore, it is likely that neural networks will continue to be 

integral to research from academia and business in manufacturing processes.  

While conventional manufacturing processes are generally well understood compared to 

additive manufacturing processes, fuzzy logic has also been used as a standalone soft computing 

technology and in combination with neural networks to develop intelligent support capabilities 

that address complexities and uncertainties in selecting appropriate manufacturing processes. 

Several intelligent decision support systems for aiding manufacturing systems and process 

selection have been studied based on neuro-fuzzy methodologies (Sadeghian & Sadeghian, 

2016). Fuzzy logic has also been incorporated into multi-criteria decision-making methods such 

as the AHP, TOPSIS, DEA, and Analytic Network Process (ANP) (Lu, 2021; Mastrocinque et al., 

2016; Nouri et al., 201). The combination of fuzzy logic and neural networks in conventional 

manufacturing has been explored in cases such as the selection of manufacturing systems 

(Sadeghian & Sadeghian, 2016), selection of plastic manufacturing processes using an intelligent 

Self-Organizing Map and fuzzy logic-based model (Pei et al., 2023). Fuzzy logic has been used 

to improve the accuracy of training neural networks for manufacturing process selection. Genetic 

algorithms have also been used in conventional manufacturing process selection, with their 

application mainly in resolving optimization problems (Fallahpour et al., 2017; Georgieva, 2018; 

Kordos et al., 2020). Intelligent support based on techniques such as neural networks, fuzzy 

logic, and genetic algorithms in the selection of manufacturing processes is a powerful tool that 

can improve the accuracy and efficiency of the process. 
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3.3.3. Complexity and uncertainty in additive and conventional manufacturing  

While additive manufacturing is a relatively new and rapidly evolving field, conventional 

manufacturing has existed longer, and most of its processes are well-established and understood. 

Different additive manufacturing processes and technologies are categorized into seven groups: 

vat photo-polymerization, material extrusion, material jetting, binder jetting, directed energy 

deposition, powder bed fusion, and sheet lamination. Each process has its own set of unique and 

inherent constraints and considerations. There is often a limited or total lack of well-established 

knowledge and expertise on process parameters, including their complexities, as reported by 

several studies (M. M. Mabkhot et al., 2019; White et al., 2022). The degree of complexity and 

uncertainty in additive manufacturing is generally higher than in conventional manufacturing as 

the former involves building products or components layer by layer, which can lead to the 

introduction of a range of issues, such as poor adhesion between layers, low-quality surface 

finish, and material defects. Additionally, predicting the quality of the final product is generally 

tricky in additive manufacturing as it is highly dependent on the material and specific process 

parameters involved. However, conventional manufacturing processes are also becoming 

complex due to technological advances and increasing pressure to reduce environmental impact 

and improve sustainability in manufacturing. The complexity arises from various new 

considerations, such as reducing the environmental footprint, sustainable use of raw materials, 

and product lifecycles.  

Consequently, the selection of manufacturing processes in both conventional and additive 

manufacturing involves a degree of uncertainty and complexity depending on the specific 

product requirements. However, the nature of their challenges differs somewhat. Each 

manufacturing approach has flaws and strengths, and selecting a suitable process depends on 

particular requirements and parameters. As a result, neural networks, genetic algorithms, and 

fuzzy logic methods are used to address the specific problem within the selected manufacturing 

approach.  

 

3.3.4. Limitation of current intelligent methodologies  

The existing literature shows more research interest in using fuzzy logic in selecting additive 

manufacturing processes than in neural networks and genetic algorithms. This phenomenon can 

be explained firstly by the fact that additive manufacturing processes are still being developed. 
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As such, there is insufficient established knowledge and expertise around their selection due to 

uncertain and imprecise data. In contrast, conventional manufacturing involves thousands of 

well-known alloys to choose from. Research shows that additive manufacturing has only fully 

matured. As a result, it has a limited number of metal alloys and lacks decades of understood 

knowledge and experience offered by traditional manufacturing (Gradl et al., 2022). Unlike 

neural networks and genetic algorithms, fuzzy logic is more capable of handling uncertain and 

imprecise data. Therefore, it is well-suited for the complexity and uncertainty surrounding the 

selection of additive manufacturing processes. Secondly, additive manufacturing often involves 

using novel materials that require new and complex approaches to selection and processing 

involving a wide range of selection criteria, including but not limited to product requirements, 

inherent material properties, and process parameters. Finally, additive manufacturing processes 

are generally more flexible and well-suited for customization; hence, their selection involves 

more variables and constraints. Fuzzy logic is especially effective at handling many variables, 

which makes it an ideal choice for solving process selection in additive manufacturing.  

The analyzed literature reveals that neural networks are commonly used in designing 

intelligent systems for handling different problems related to the selection of conventional 

manufacturing processes (Hamouche & Loukaides, 2018; Z. Wang & Rosen, 2022, 2023; Yan & 

Melkote, 2023). This can be attributed to the large amounts of data available for training since 

conventional manufacturing processes have a long history and are well-understood. In 

manufacturing processes, neural networks involve algorithms that can learn from available data 

and make predictions or perform classification based on that learning, primarily based on 

historical data. Paradoxically, data availability is the major challenge of neural networks for 

manufacturing process selection, as historical data may be incomplete, limited, or of poor 

quality, affecting the neural network's accuracy and performance. Additionally, training neural 

networks on large datasets with high computational power may be time-consuming.  

Despite these limitations, neural networks remain highly significant for improving the 

selection of conventional manufacturing processes. By analyzing the input data and identifying 

patterns, neural networks can help improve decision-making in process selection and limit waste 

generation by selecting less costly and environmentally sound processes among the alternatives. 

As conventional manufacturing continues to face pressure for climate-change-conscious and 

sustainable practices, neural networks can play a significant role in analyzing and identifying 
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environmentally friendly manufacturing processes. For instance, energy use and waste 

generation data can be added to the input parameters to help select optimal processes with 

minimal adverse environmental impacts and a low carbon footprint. 

Genetic algorithms are sparingly used in the selection of manufacturing processes, and 

their application is limited to supporting other methods, such as neural networks through variable 

optimization. Genetic algorithms can handle complex optimization problems with many 

variables. Genetic algorithms have inherent capabilities to identify optimal solutions that may 

not be apparent and can simultaneously optimize multiple criteria. However, they have 

limitations, such as being computationally intensive, having the propensity to converge on sub-

optimal solutions in the case of a poorly defined search space, and requiring many simulations to 

perform well. Consequently, genetic algorithms are expensive and not ideal, especially when the 

goal is to reduce manufacturing costs.  

 

3.3.5. Proposed Generalized Matrix Learning Vector Quantization 

Given the growing complexity and uncertainty surrounding the manufacturing process selection, 

we propose using GMLVQ neural networks to overcome the limitations of current approaches.  

GMLVQ is an advanced machine-learning algorithm that builds upon the original LVQ and its 

prior variants. GMLVQ was developed to handle high-dimensional data sets, where noise can 

accumulate and interfere with classification, and heterogeneous data sets exhibit different scaling 

and correlations among dimensions. Schneider, Biehl, and Hammer sought to create a consistent 

statistical framework for prototype and metric adaptation in discriminative prototype-based 

classifiers, introducing a matrix adaptation scheme for GLVQ based on an intuitive, heuristic 

cost function. In contrast to the squared Euclidean distance, a generalized distance metric 

utilizing the entire matrix was proposed.  

In GMLVQ, each prototype vector is linked with a transformation matrix, enabling more 

flexible and robust data modeling. The distance measure in GMLVQ employs a fully adaptive 

matrix that is adjusted during training along with the prototypes. Recent research indicates that 

by weighing each pair of features, GMLVQ can account for correlations between dimensions 

through implicit scaling and rotation of the data, resulting in more reliable performance (Van 

Veen et al., 2022). GMLVQ, based on distance and prototypes, incorporates a comprehensive 

relevance matrix into the distance metric. This allows it to consider correlations between 



74 
 

dimensions and rotations within the feature space. Therefore, GMLVQ is a robust prototype-

based classification algorithm enhanced by integrating a full matrix. This provides several 

benefits, including increased flexibility, adaptability, and improved capability to manage 

complex datasets (Biehl et al., 2015).  

Existing research has shown that GMLVQ outperforms peer classifiers such as support 

vector machines and decision trees, SSM/PCA (Mudali, Biehl, Leenders, & Roerdink, 2016; 

Veen et al., 2018). Recent research has investigated hybrid algorithms and techniques for 

GMLVQ, comparing their performance and applicability (LeKander et al., 2017). The studies 

demonstrate how various methods create GMLVQ models that achieve superior performance 

during validation and better fit the training dataset (LeKander et al., 2017). Novel techniques are 

emerging for training the GMLVQ model for classification, leveraging data from multiple, 

sometimes uncalibrated sources, without explicit transfer learning (Ravichandran et al., 2022; 

Villmann et al., 2022). GMLVQ boasts of enhanced feature relevance learning using the 

relevance matrix, which allows the algorithm to understand the importance of each feature in the 

dataset. Furthermore, the matrix-based approach allows for a more adaptable representation of 

data, making it suitable for many applications, including those with high-dimensional and 

heterogeneous data(Schleif et al., 2015; Straat et al., 2017). In addition, GMLVQ adapts a 

generalized distance metric during training, which is more flexible and can be tailored to various 

data types (Huai et al., 2022; Song et al., 2022). This metric learning aspect allows GMLVQ to 

perform well with complex, non-linearly separable datasets. 

 

3.3.6. GMLVQ and the limitations of current intelligent methods 

The review findings show that the current intelligent support methods based on neural networks 

require large amounts of high-quality and significant computational resources for training. By 

contrast, GMLVQ inherently and effectively manages high-dimensional data using an adaptive 

matrix during exercise, allowing it to identify and account for relevant features and reducing 

dependency on large, high-quality datasets. Fuzzy logic excels at managing uncertainty and 

imprecision but may struggle with high-dimensional data. GMLVQ, on the other hand, combines 

the strengths of prototype-based learning with an adaptive distance metric, enabling it to handle 

complex, uncertain, and imprecise data with greater flexibility and robustness. Neural networks 

and fuzzy logic have been shown to fail to account for correlations and different scaling among 
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features when used in manufacturing process selection. GMLVQ can solve this limitation since it 

utilizes a generalized distance metric that incorporates a relevance matrix, allowing it to capture 

correlations between features and adjust for different scaling, enhancing model accuracy and 

reliability. While robust for optimization, the review of the genetic algorithm shows that it can be 

computationally intensive and prone to converging on sub-optimal solutions. GMLVQ is more 

efficient in training due to its prototype-based approach and adaptive metric, which reduces the 

computational burden and accelerates the learning process. Thus, GMLVQ can address the 

limitations of current intelligent support methodologies in manufacturing process selection in 

both additive and conventional manufacturing contexts. 

 

3.3.7. Future perspectives on manufacturing process selection and conclusion 

Additive manufacturing processes are increasingly being adopted, and the trend will continue 

across different industries. The development of new manufacturing materials is likely to be a 

significant trend as more and more industries continue to incorporate additive manufacturing 

approaches. New materials will be developed to produce components with improved chemical, 

thermal, and mechanical properties. For instance, using metal powder with high thermal 

properties will be critical in producing high-performance components in the aerospace sector and 

bio-based materials to facilitate the manufacturing of sustainable and biodegradable products. As 

a result, selecting an appropriate manufacturing process will become even more complex and 

uncertain and will depend on many factors, including the material properties and precision levels 

required. Moreover, developing new technologies for handling different products and 

components will likely impact the uncertainty and complexity of manufacturing process 

selection. New technologies are likely to expand the flexibility and capabilities of manufacturing 

processes, leading to increased demand for customized solutions that meet specific standards. 

However, selecting the proper process will become even more challenging and require more than 

expert knowledge and experience.  

The interest in the selection of conventional manufacturing processes is poised to grow. 

Although traditional manufacturing processes are well understood, they evolve and become more 

complex as new materials are discovered. The growing pressure for sustainable manufacturing 

puts pressure on industries to minimize or eliminate the environmental impact of manufacturing. 

For this reason, there is likely to be increased research on evaluating and selecting energy-
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efficient processes with minimal waste generation and the potential for manufactured products 

and components to be recycled. The use of advanced technologies and data analytics to optimize 

manufacturing processes will continue to grow, with artificial intelligence likely to play a leading 

role in handling the challenges of developing advanced process selection and control methods to 

handle complexity and uncertainty and enable sustainable manufacturing of high-quality 

components at low costs.  

Future research on robust, dynamic, and flexible intelligent methodologies, such as the 

GMLVQ and its hybrids, should be conducted to enhance sustainable, efficient, and cost-

effective manufacturing. Given the rapid advances in manufacturing, the growing complexity, 

and the voluminous amounts of data generated, GMLVQ holds great potential in advancing 

intelligent decision-making in the selection and management of manufacturing processes. Future 

trends in artificial intelligence capabilities, including machine learning and data processing, 

underscore the growing importance of robust pattern recognition and classification algorithms 

like GMLVQ. There is an increasing demand for cost-effective and sustainable machine-learning 

models with minimal computational requirements (Dunn et al., 2020). Therefore, more 

comparative studies are needed to pit GMLVQ against other classification algorithms across 

various metrics and domains to better understand its relative performance and applicability in 

manufacturing process selection. 

This review has explored the current state of intelligent support in manufacturing process 

selection, focusing on artificial neural networks, genetic algorithms, and fuzzy logic. The 

manufacturing process selection continues to grow in complexity as the field evolves and new 

materials and technologies emerge. The phenomenon is driving the interest in research on soft 

computing technologies for developing intelligent support systems to aid in evaluating and 

selecting optimal manufacturing processes as manufacturers strive to meet customer needs while 

ensuring sustainable use of resources. There has been a significant interest in research on using 

fuzzy logic, neural networks, and genetic algorithms and their pivotal role in developing 

intelligent systems capable of handling different complexities in manufacturing process selection 

and optimization. However, a close look at current studies reveals a disproportionately high 

interest in fuzzy logic adoption in intelligent selection of additive manufacturing processes 

compared to neural networks and genetic algorithms. By contrast, artificial neural networks are 
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more favored when selecting conventional manufacturing processes. The use of genetic 

algorithms is not prevalent in both additive and traditional manufacturing.  

The limitations of the current methods include the inability to handle high-dimensional 

data by artificial neural network-based and fuzzy logic-based intelligent support systems. 

Uncertain and imprecise data also pose performance risks, as artificial neural networks' 

performance relies on the availability of high-quality datasets. Genetic algorithms are hampered 

because they are computationally intensive and prone to converging on sub-optimal solutions. 

Based on these limitations, this study proposes using GMLVQ in intelligent manufacturing 

process selection because of its inherent flexibility, adaptability, and efficiency. GMLVQ 

provides greater interpretability through its prototype-based classification, allowing for a more 

precise understanding and explanation of the selection process. Therefore, this review affirms 

artificial intelligence's growing importance and transformative impact in developing intelligent 

support methodologies for manufacturing process selection.  
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4. Generalized Matrix Learning Vector Quantization  

This chapter focuses on how the increasing complexity and uncertainty in data across domains 

continue to drive the demand for more robust, efficient, and accurate computational methods, 

including machine learning algorithms for pattern recognition and classification problems, 

particularly the Generalized Matrix Learning Vector  Quantization (GMLVQ). The chapter 

begins with a reflection on how Kohonen’s Learning Vector Quantization (LVQ) algorithms have 

been integral to classification algorithms for decades and the development of even better 

performing variants primarily the GMLVQ, that has emerged as highly promising and capable 

computational models for analyzing complex patterns in high-dimensional and noisy datasets 

with increased performance. The chapter uses a systematic literature approach to 

comprehensively examine recent studies on GMLVQ  algorithms, focusing on algorithmic 

enhancements and variations, inherent features like feature relevance and metric learning, 

application domains, and performance. Using the Denyer and Tranfield 5-stage systematic 

literature review method, 61 studies published between 2015 and 2024 are selected for analysis 

from Scopus, Web of Science, IEEE, and Springer. The findings reveal significant advancements 

and applications of the GMLVQ across sectors, including healthcare, bioinformatics, and 

agriculture. The analyzed empirical studies highlight the algorithm’s adaptability to various 

classification problems and enhanced performance. While the cross-disciplinary potential for 

GMLVQ is well documented, the review identifies gaps in the literature, particularly in the 

manufacturing domain. Given the rapid advances in manufacturing and the voluminous amounts 

of data generated, GMLVQ holds great potential to advance intelligent decision-making across 

the domain, such as in the selection and management of manufacturing processes. 

4.1. Background on the GMLVQ algorithm 

GMLVQ is a powerful and sophisticated variant of Learning Vector Quantization (LVQ) 

introduced in 2009 by Schneider, Biehl, and Hammer (Van Veen et al., 2020). LVQ is among the 

popular algorithms in classification and pattern recognition of machine learning introduced by 

Kohonen in the 1980s (Horbiichuk et al., 2020; Parini et al., 2018). It uses a prototype-based 

learning approach where prototypes denote classes in the dataset, each representing a point in the 

feature space. Unknown data points are assigned to the nearest prototype based on a defined 

Euclidean distance. GMLVQ was introduced as an extension of Generalized Learning Vector 
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Quantization (GRLVQ), a variant of LVQ proposed by Sato and Yamada (Cruz-Vega & 

Escalante, 2017). LVQ is inherently a fast and straightforward learning algorithm and has long 

been studied to optimize reference vectors.  

The classification error in standard LVQ algorithms is heuristically optimized due to the 

distribution of the prototypes. However, the reference vector has a high tendency for divergence, 

leading to the loss of pattern recognition ability. This problem was solved by introducing GLVQ, 

which involves minimizing the cost function to ensure continuous approximation of the classes 

based on a stochastic gradient descent mechanism. Thus, prototype learning is performed by the 

stochastic gradient of the cost function (Kastner et al., 2012). Despite the improvements achieved 

in GLVQ, the algorithm still relies on predefined metrics that implicitly assume that prototypes 

are isotropic and, as such, perform poorly on high-dimensional data (Schneider et al., 2009). 

GMLVQ was, therefore, proposed to manage the problem of noise accumulation in high-

dimensional data and improve its performance. The distinguishing features of GMLVQ include a 

complete matrix-based generalized distance metric instead of the squared Euclidean distance, 

relevance learning through the integration of distance metric parameters and the prototype, and 

the lack of explicit occurrence of input space dimensionality.  

GMLVQ is an advanced machine-learning algorithm that extends the original LVQ and 

subsequent variants, such as GLVQ. For this reason, it offers several advantages in terms of 

flexibility, adaptability, and enhanced ability to handle complex datasets (Biehl et al., 2015). 

GMLVQ boasts of enhanced feature relevance learning using the relevance matrix, which allows 

the algorithm to learn the importance of each feature in the dataset. Furthermore, the matrix-

based approach allows for a more adaptable representation of data, making it suitable for many 

applications, including those with high-dimensional and heterogeneous data (Schleif et al., 2015; 

Straat et al., 2017). In addition, GMLVQ adapts a generalized distance metric during training, 

which is more flexible and can be tailored to various data types (Huai et al., 2022; Song et al., 

2022). This metric learning aspect allows GMLVQ to perform well with complex, non-linearly 

separable datasets. 

Future trends in machine learning, data processing, and application underscore the 

growing importance of robust pattern recognition and classification algorithms like GMLVQ. 

There is an increasing demand for cost-effective and sustainable machine-learning models with 

minimal computational requirements (Dunn et al., 2020; Mumali & Kałkowska, 2024). GMLVQ 
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has efficient feature relevance learning and is robust in handling overfitting and noise. As a 

result, the algorithm stands out as a promising solution in scenarios where computation resources 

are limited or energy efficiency is a priority (Mumali & Kałkowska, 2024). Its flexibility and 

adaptability make GMLVQ suitable for various engineering applications, including 

bioinformatics, image and speech recognition, and financial analysis. This broad applicability 

ensures its continued relevance in different research and industry fields. The robustness of 

GMLVQ to noise and its ability to handle overfitting are crucial for real-world applications 

where data quality and overfitting are common concerns. Additionally, the interpretability of 

GMLVQ models, owing to the relevance matrix, is a significant advantage. 

Additionally, the exponential growth in data complexity and volume presents significant 

challenges. GMLVQ’s ability to handle increasingly complex and high-dimensional datasets 

makes it an invaluable tool for extracting meaningful insights from such data. Its adaptability and 

precision in feature selection and classification are critical in managing the deluge of information 

generated by modern data sources. The rise of online and streaming data environments, 

characterized by dynamic, high-dimensional datasets, necessitates algorithms capable of real-

time analysis and adaptation. Recent studies show an increased interest in computational 

algorithms capable of handling streaming data (Ahmad et al., 2017; Eskandari & Seifaddini, 

2023; Hiriotappa et al., 2017; D. Wu et al., 2022; Yang et al., 2023). GMLVQ’s potential in these 

environments lies in its capability for iterative learning and quick adaptation to evolving data 

patterns. As such, GMLVQ is particularly relevant for applications in IoT, real-time monitoring 

systems, and other areas where immediate data processing is essential. Therefore, the unique 

strengths of GMLVQ position it as a highly relevant and potent tool in addressing some of the 

key challenges and trends in the future landscape of data science and machine learning. 

There is a wealth of existing literature on GMLVQ and its uses. However, a 

comprehensive evaluation that covers the algorithm’s processes, enhancements, and range of 

applications is still lacking. A thorough analysis that synthesizes these various applications and 

contrasts the effectiveness of GMLVQ with alternative vector quantization techniques is still 

required. To our knowledge, GMLVQ, an improved prototype-based pattern recognition 

algorithm, has never been the subject of a systematic review. The objective of this review is to 

provide a comprehensive understanding of the algorithm’s unique capabilities, opportunities for 

application in emerging machine learning fields, limitations, and potential areas for future 
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research by methodically going over the existing literature and comparative studies with an 

emphasis on the development, mechanisms, and applications of GMLVQ. This review is 

significant because it can bring together disparate knowledge regarding GMLVQ, providing 

researchers and practitioners in sectors where sophisticated pattern recognition techniques are 

essential with clarity and guidance. 

GMLVQ is an extension of the LVQ algorithm, incorporating a matrix-based distance 

metric (Ravichandran et al., 2022). LVQ is a widely used pattern recognition algorithm 

developed by Kohonen in the 1980s. LVQ is a supervised learning algorithm for statistical 

classification that defines class regions inside the input data space. The LVQ algorithm remains a 

top choice among machine learning experts for its noteworthy effectiveness, efficiency, and 

simplicity in tackling classification problems in numerous domains, including image and sound 

recognition, natural language processing, and pattern recognition in fields such as fraud detection 

(Jiang et al., 2022; Nahar et al., 2016). Additionally, LVQ algorithms stand out for their user-

friendly approach and built-in functionalities for managing large datasets, handling incomplete 

and noisy data, and exceptional resilience regarding outliers and irrelevant attribute space. 

Despite their robustness, LVQ algorithms are marred by degraded recognition ability that raises 

the cost function. Consequently, several attempts to create variants that improve LVQ algorithms 

have been successfully made to manage the cost function and stability. Among the proposed 

improvements are generalized learning vector quantization (GLVQ), relevance learning vector 

quantization (RLVQ), robust soft learning vector quantization, and generalized relevance 

learning vector quantization (GRLVQ), which formed the basis for GMLVQ. 

The GLVQ algorithm was designed to solve the reference vector divergence problem in 

the original LVQ algorithms. LVQ 2.1 is based on the idea of differential shifting towards Bayes 

limits with no consideration for the location of the reference vector. LVQ3 is an improvement to 

ensure reference vectors continue approximating the class distributions. However, assigning only 

one reference vector to each class invalidates self-stabilization in LVQ3, making it the same as 

LVQ2.1, which leaves the problem of reference vector divergence unsolved. GLVQ was, thus, 

proposed as an improvement with a new learning method based on minimizing the cost function. 

The algorithm addressed some limitations of previous LVQ variants by introducing a general 

cost function based on differentiable distance measures. The algorithm is derived based on the 
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assumption that  mi is the nearest reference vector that belongs to the same class, x, while mj is 

the closest reference vector belonging to a separate class with a relative distance difference:  

𝜇(𝑥) =
𝑑𝑖−𝑑𝑗

𝑑𝑖+𝑑𝑗
      (3.1) 

where di and dj are distance of x from mi and mj respectively. The value of relative distance μ(x) 

will range from −1 and +1, with negative and positive signs indicating current and incorrect 

classification, respectively. To improve the cost function or error rate, μ(x) should decrease for 

all input vectors. For this reason, GLVQ introduced the cost function: - 

 

𝑆 =  ∑ 𝑓 (𝜇 (𝑥𝑖
𝑁
𝑖=1 ))                        (3.2) 

 

where f(μ) is a monotonically increasing function, and N is the number of input vectors. To 

minimize the cost function, weight vectors  mi and mjare updated based on the descent method 

with a slight positive learning rate constant α. Using the squared Euclidean distance di =

|x − wi|
2, GLVQ’s learning equations are: 

 

𝑤𝑖 = 𝑤𝑖 + 𝛼 𝜕𝑓
𝜕𝜇

𝑑𝑗

𝑑𝑖+𝑑𝑗
(𝑥 − 𝑤𝑖)  → 𝑤𝑖   (3.31) 

 

𝑤𝑗 = 𝑤𝑗 − 𝛼 𝜕𝑓
𝜕𝜇

𝑑𝑗

𝑑𝑖+𝑑𝑗
(𝑥 − 𝑤𝑗)  → 𝑤𝑗   (3.4) 

 

Relevance Learning Vector Quantization (RLVQ) was introduced to automatically 

determine the relevance of input dimensions of LVQ architecture during training(Bojer et al., 

2001b). RLVQ introduced weighting factors of input dimensions that are automatically adapted 

to the specific problem, drawing inspiration from Hebbian learning. RLVQ assumes that 

dimensions are roughly proportionally sized and of equal importance. Before training, data are 

therefore pre-processed and scaled accordingly. According to research, estimating the relevance 

of input dimensions may necessitate problem-specific expert knowledge, posing a formidable 

obstacle for specific learning tasks. Because different data dimensions are ranked equally, LVQ 

fails if dimensions are not scaled appropriately. Assuming X and wi. are the training set and 
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weight vectors, respectively, a new input weight function allows for different scaling of input 

dimensions substitutes Euclidian metric |x –  y| by the following equation: 

 

|𝑥 –  𝑦|
𝑤
2 =  ∑ 𝑤(𝑥𝑖 − 𝑦𝑖 )

2𝑛
𝑖=1    (3.25) 

 

The equations for the RLVQ algorithm are as follows: 

 

𝑤𝑗(𝑡 + 1) =  𝑤𝑗 (𝑡) +  𝛼(𝑡)𝛬(𝑡) (𝑥 − 𝑤𝑗(𝑡)),    (3.6) 

 

if wj is the winning prototype and belongs to the same class as x and  

 

𝛬(𝑡 + 1) =  𝛬(𝑡) −  𝛽(𝑡) (𝑑𝑖
2(𝑥) −  𝑑𝑗

2(𝑥)) (𝑥 − 𝑤𝑖(𝑡)) ⊗ (𝑥 −  𝑤𝑖(𝑡))   (3.7) 

 

where Λ is the incorporated adaptive relevance matrix.  

To improve classification performance in noisy environments, Robust Soft Learning Vector 

Quantization (RSLVQ) implemented a soft decision rule based on the statistical modeling of 

class-conditional densities. Assuming Py (l | x) and P (l | x) are assignment probabilities, 

RSLVQ is derived as follows: 

 

𝑃𝑦 (𝑙 | 𝑥)  = 𝑝(𝑙) 𝑒𝑥𝑝 𝑓(𝑥,𝜃𝑙)

∑ 𝑝(𝑗) 𝑒𝑥𝑝 𝑓(𝑥, 𝜃𝑗){𝑗: 𝑐𝑗=𝑦}

     (3.8) 

 

𝑃 (𝑙 | 𝑥)  =
𝑝(𝑙) 𝑒𝑥𝑝 𝑓(𝑥,𝜃𝑙)

∑ 𝑝(𝑗) 𝑒𝑥𝑝 𝑓(𝑥,𝜃𝑗)𝑚
𝑗=1

     (3.3) 

 

P (𝑙 | x)  is the (posterior) probability that the data point 𝑥 is assigned to the component 𝑙 of the 

complete mixture when all classes are considered. Using stochastic gradient ascent, the following 

is the learning rule: 

 

𝜃𝑙(𝑡 + 1) = 𝜃𝑙(𝑡) + 𝛼(𝑡)
𝜕

𝜕𝜃𝑙
[𝑙𝑜𝑔 𝑝(𝑥, 𝑦|𝜏)

𝑝(𝑥|𝜏)
] ,   (3.40) 
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where α(t) is the learning rate of the algorithm. Therefore, the ultimate learning rule for RSLVQ 

is as follows: 

𝜃𝑙(𝑡 + 1) = 𝜃𝑙(𝑡) + 𝛼(𝑡)𝑓(𝑥) = {
𝑃𝑦 (𝑙 | 𝑥) [

𝜕𝑓(𝑥,𝜃𝑙)

𝜕𝜃𝑙
] , 𝑖𝑓  𝑐𝑙 = 𝑦,

−𝑃𝑦̅ (𝑙 | 𝑥) [
𝜕𝑓(𝑥,𝜃𝑙)

𝜕𝜃𝑙
] , 𝑖𝑓  𝑐𝑙 ≠ 𝑦.

  (3.11) 

 

RSLVQ provided a better alternative involving a robust optimization scheme derived 

from maximizing the likelihood ratio of the probability of correct classification to the total 

probability in a Gaussian mixture model. Therefore, RSLVQ is an alternative discrete LVQ 

scheme in which prototypes are modified based solely on misclassifications. All underlying 

model assumptions are stated explicitly in the statistical formulation and can be easily modified 

as required by the application scenario, making RSLVQ an attractive model. Considering 

equation:  

 

𝑆=  ∑ 𝑓 (𝜇 (𝑥𝑖
𝑁
𝑖=1 ))                        (3.2) , 

 

which is used to minimize the cost function in GLVQ via stochastic gradient descent and the 

learning rules 𝑤𝑖 = 𝑤𝑖 + 𝛼
𝜕𝑓

𝜕𝜇

𝑑𝑗

𝑑𝑖+𝑑𝑗
(𝑥 − 𝑤𝑖)  → 𝑤𝑖  (3.31) and 𝑤𝑗 = 𝑤𝑗 −

𝛼
𝜕𝑓

𝜕𝜇

𝑑𝑗

𝑑𝑖+𝑑𝑗
(𝑥 − 𝑤𝑗)  → 𝑤𝑗  (3.4) GLVQ’s success relies on the Euclidian metric being 

suitable for the data and the input dimensions being approximately equally scaled and weighted. 

Hammer and Villmann introduced input weights ⋋ = (⋋1 … ,⋋𝑛),⋋𝑖≥ 0 and substituted 

Euclidean metric ||𝑥 − 𝑦|| by its scaled variant as follows: 

 

||𝑥 − 𝑦|| 
⋋

2
= ∑ ⋋𝑖  (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=𝑗     (3.12) 

 

Replacing the receptive field of prototype 𝑤𝑖 in the cost function leads to an adaptive 

metric as the weighting of input dimensions changes. Additionally, stochastic gradient descent 

automates the determination of the weighting factor ⋋, leading to the integration of the relevance 

factor ⋋𝑖 in the RLVQ learning rule. An updated learning rule involving relevance factors ⋋𝑖 of 

the metric applied to GLVQ yields GRLVQ, a novel, robust method for automatically adapting 
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the Euclidian metric used for clustering to the data, determining the relevance of multiple input 

dimensions for the overall classifier, and estimating the intrinsic extent of data. 

GMLVQ was introduced by Schneider, Biehl, and Hammer in 2009 to enhance the 

performance of all previous LVQ improvements. Even though variants such as GLVQ and 

RSLVQ are vastly superior to the original LVQ variants, classification is based on a predefined 

metric. The variants rely on Euclidean distance, analogous to the implicit assumption that 

clusters are isotropic. As a result, these models perform well only if the data exhibits Euclidean 

properties. Therefore, GMLVQ was created to manage high-dimensional data sets where noise 

accumulates and disrupts classification or heterogeneous data sets where different scaling and 

correlations can be observed between the dimensions. Schneider, Biehl, and Hammer aimed to 

develop a uniform statistical formulation for prototype and metric adaptation in discriminative 

prototype-based classifiers and a matrix adaptation scheme for GLVQ based on a heuristic but 

intuitive cost function. Unlike the squared Euclidean distance, a generalized distance metric was 

proposed using the full matrix. The general form is as follows: 

 

𝑑∧(𝜀, 𝑤) = (𝜀 − 𝑤)𝑇(𝜀 − 𝑤),  (3.13) 

 

where ⋀ is an N ×  N matrix restricted to positive-definite forms to guarantee metricity, which is 

achieved using ⋀ = ΩTΩ where  Ω ∈ ℝM ×N. Significantly, ⋀ must be normalized after each 

learning step to stop the algorithm from degenerating. GMLVQ extends the cost function in 

GLVQ using the general metric and adapts matrix parameters Ωij together with the prototypes 

utilizing a stochastic gradient descent, resulting in the following learning rules: 

 

∆𝑤𝑗 = 𝛼1. 𝛷́(𝜇(𝜀)). 𝜇+(𝜀). ⋀. (𝜀 − 𝑤𝑗),  (3.14) 

 

∆𝑤𝑘 =  −𝛼1. 𝛷́(𝜇(𝜀)). 𝜇−(𝜀). ⋀. (𝜀 − 𝑤𝑘),  (3.15) 

 

∆𝛺𝑙𝑚 = −𝛼2. 𝛷́(𝜇(𝜀)). (𝜇+(𝜀). ((𝜀𝑚 − 𝑤𝐽,𝑚). [𝛺(𝜀 − 𝑤𝐽)]
𝑙
) − 𝜇−(𝜀). ((𝜀𝑚 − 𝑤𝐾,𝑚). [𝛺(𝜀 −

𝑤𝐾)]𝑙))     (3.16) 
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In GMLVQ, each prototype vector is associated with a transformation matrix, allowing 

for more flexible and powerful data modeling. The distance measure GMLVQ uses a full 

adaptive matrix tuned during training and the prototypes. Recent studies show that by weighing 

every pair of features, GMLVQ could account for correlations of dimensions via implicit scaling 

and rotation of the data, leading to more reliable performance (Van Veen et al., 2022). The 

distance and prototype-based GMLVQ includes a complete relevance matrix in the distance 

metric, allowing it to account for dimension correlations and feature space rotations. GMLVQ is, 

thus, a robust prototype-based classification algorithm strengthened by a full matrix integration.  

Existing research has shown that GMLVQ outperforms peer classifiers such as support 

vector machines and decision trees in comparable diagnostic situations involving Parkinsonian 

disorders and SSM/PCA (Mudali, Biehl, Leenders, & Roerdink, 2016; Veen et al., 2018). Recent 

studies have explored hybrid algorithms and methods for GMLVQ, comparing performance and 

their applicability (LeKander et al., 2017). The studies show how different methods generate 

GMLVQ models that perform better in validation and how well they fit the training set of data 

(LeKander et al., 2017). New techniques are emerging for training the GMLVQ model for 

classification, utilizing data from several, sometimes uncalibrated, sources without explicit 

transfer learning (Ravichandran et al., 2022; Villmann et al., 2022). The transfer learning is 

accomplished using a Siamese-like GMLVQ architecture consisting of distinct prototypes for 

target categorization and source separation learning. Parallel to the classification task learning, a 

linear map is learned in the mapping space using GMLVQ for source distinction(Villmann et al., 

2022). The related null-space projection provides a consistent data representation of the various 

source data for classification learning.  

Due to its effectiveness, GMLVQ has received multiple applications in different fields. 

Multiple studies have demonstrated the efficacy of GMLVQ in neuroimaging applications. 

GMLVQ was successfully integrated with FDG-PET imaging to classify neurodegenerative 

diseases and reveal idiopathic REM sleep behavior disorder trajectories(Van Veen et al., 2022; 

Veen et al., 2018). These studies provide strong evidence for the utility of GMLVQ in assisting 

accurate disease classification in neuroimaging. Similarly, recent research has utilized an 

interpretable classification model based on GMLVQ to study early folding residues during 

protein folding (Bittrich et al., 2019). The findings highlighted the potential of GMLVQ in 
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improving the understanding of protein folding processes. By employing GMLVQ, researchers 

gained insights into the essential features and patterns associated with early folding residues, 

contributing to protein folding analysis. GMLVQ has also shown promising results in astronomy, 

with the algorithm integrated with explainable AI techniques to detect extragalactic Ultra-

compact dwarfs and Globular Clusters (Mohammadi et al., 2022).  

As outlined in this background section, the evolution and performance of GMLVQ as a 

computational method for intelligent decision support underscores its significance in the field. 

However, despite its potential, there is a noticeable gap in the literature regarding a 

comprehensive and systematic review of GMLVQ, focusing on its algorithmic development, 

improvements, applications, and future directions. Thus, the need for this systematic review is 

evident, as it will not only consolidate existing knowledge but also highlight areas for future 

research, ultimately contributing to the advancement of intelligent decision support systems. 

4.2. Systematic literature review on GMLVQ and results 

The broader context of this review is to apply an evidence-based investigation paradigm in 

exploring GMLVQ’s algorithmic development, variations, mechanisms, adoption of feature 

relevance and metric learning, and application domains, comparisons, and limitations, as 

presented in the literature of a selected number of studies published between 2015 and 2024. A 

systematic literature review is preferred to achieve this objective as it inherently provides a tool 

to identify, evaluate, and aggregate results from selected empirical studies and to provide 

objective evidence on a given issue. Several approaches to conducting systematic reviews have 

been popularized to inform practice and enrich policy based on evidence in various domains 

(Munn et al., 2018). However, not all fields can equally benefit from a particular approach. 

Notably, the Cochrane systematic review method is well-suited for the medical field (Denyer & 

Tranfield, 2009), while Kitchenham’s approach befits the software engineering domain. 

According to Denyer and Tranfield, Cochrane’s systematic review style is insufficient and 

unsuitable for wide-ranging research designs (Denyer & Tranfield, 2009). The Denyer and 

Tranfield 5-stage systematic literature review method is used for this review, as shown in Figure 

4.1 below. 
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Figure 4.1. Denyer and Tranfield’s 5-stage systematic literature review method 

Source: Own study based on (Denyer & Tranfield, 2009) 

 

Based on the adopted systematic review methodology, the first stage is the formulation of 

research questions, which establishes the focus of the study. Given the aim of this systematic 

review, 6 research questions are formulated as follows: 

Q1: What algorithmic enhancements and variations or improvements are made to the original 

GMVQ? 

Q2: What insights have been reported regarding the impacts of feature relevance and metric 

learning on GMLVQ’s performance? 

Q3: In what application domains have GMLVQ been utilized, and how can these be categorized 

and summarized? 

Q4: What novel or particularly effective uses of GMLVQ are reported in the literature? 

Q5: What are the observed trends in the performance of GMLVQ across different studies? How 

does it compare to other algorithms in terms of performance and application, as presented in the 

studies? 

Q6: What limitations or challenges associated with using GMLVQ have been noted in existing 

studies? 

Study location is the next step following the formulation of research questions. The 

studies considered for this systematic review are sourced from Scopus, IEEE Xplore, Web of 

Science, and Springer Link. Given the broad scope of this study, the search terms used to locate 

relevant studies were “GMLVQ” and “Generalized Matrix Learning Vector Quantization.” Both 

“and” and “or” operators combined the search terms on all four databases, targeting titles, 

abstracts, keywords, and full text where applicable. The results were filtered by the year of 

publication, with 2015 to 2024 as the preferred range since computational methods and neural 

networks are rapidly evolving, and the papers published in the last 10 years are more likely to 
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contain the most up-to-date and relevant information. Relevant studies were selected based on 

pre-determined selection criteria presented in the Table 4.1 below. 

 

Table 4.1. Study inclusion and exclusion criteria 

No. Inclusion   Exclusion  

1 Published between 2015 and 2024  Published before 2015 

2 Journal article or conference paper  Neither journal article nor conference paper 

3 Abstract available   Abstract not available 

4 Author details available  Missing author details 

5 The paper title and abstract are aligned 

with the review objectives. 

 The title and abstract are not aligned with the review 

objectives. 

6 GMLVQ algorithm or its variants 

predominantly featured 

 Does not predominantly feature GMLVQ or its 

variants 

7 Clear research objectives  Unclear research objectives 

8 Correct identification details such as DOI 

and serial numbers 

 Missing DOI and other essential identification 

details 

Source: Own study 

 

 

Analysis and synthesis of the selected studies are done in two steps. First, bibliometric 

and general characteristics of the studies are performed using descriptive analysis methodologies 

to capture the picture of research in GMLVQ over the past decade. This step involves several 

aspects of the selected studies, such as sources, publishers, and document type. The second step 

of analysis and synthesis focuses on distributing and comparing thematic and contextual data 

extracted from the selected studies. The thematic and contextual data is extracted based on the 

research questions to present proposed GMLVQ models, developments, variations, and study 

improvements.  

The findings are reported following the analysis and synthesis approach. First, an 

overview of the characteristics, trends, and bibliometric distribution of the selected studies is 

reported. Next, a detailed report of thematic trends and insights, including algorithmic 

development and variations, key performance metrics, implications of feature relevance and 

metric learning, application domains, and drawbacks of GMLVQ algorithms, as identified from 

the studies, is performed. A detailed report of the results paves the way for interpretation and 

discussion of the findings.   

4.2.1. Overview of included studies 

The study selection process resulted in 64 journal articles and conference papers published 

between 2015 and 2024, as shown in Table 4.2 below. 
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Figure 4.2. Study selection 

Source: Own study 

  

The systematic literature review was conducted across four prominent databases: Scopus, 

Web of Science, IEEE Xplore, and Springer, focusing on the period from 2015 to 2024. This 

timeframe was chosen to capture the most recent advancements in the rapidly evolving field of 

computational methods and their applications in engineering. The papers published during this 

period provide the most current and pertinent information, facilitating a comprehensive 

understanding of the field’s state-of-the-art, emerging trends and progressions. Furthermore, 

confining the study to the past decade ensures comparability among the papers, as they were 

produced under analogous technological and scientific constraints.  An initial pool of 218 journal 

articles and conference papers was identified for potential inclusion. However, documents with 

incomplete author information, duplicates, and those whose titles and abstracts were deemed 
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insufficiently relevant to the review’s objectives were excluded. Following this rigorous 

screening process, a final selection of 64 papers was retained for detailed evaluation.  

The distribution of papers selected for the systematic review over the years exhibits a 

somewhat irregular pattern. The number of papers peaked in 2016 and 2017, with 10 published 

yearly. This trend was followed by a decrease in 2018 to 6 papers and a further drop to 4 papers 

in 2019. The number of papers then increased to 8 in 2020 before decreasing slightly to 6 in 2021 

and then increasing again to 7 in 2022. The number of papers decreased to 5 in 2023 and 

remained relatively stable, with 4 in 2024. 

This fluctuating trend could indicate the field’s varying research interest and output over 

the years. The peaks in 2016 and 2017 suggest a heightened focus on the topic during these 

years, possibly due to breakthroughs or significant advancements in the field. The subsequent 

decrease could be due to a shift in research focus or the field’s maturation, with fewer novel 

aspects to explore. The distribution of papers over the years, as shown in the Figure 4.3 below, 

provides valuable insights into the progression of the algorithm and can help identify periods of 

significant research activity. However, the quantity of papers does not necessarily equate to the 

quality or impact of the research conducted during that period. A more in-depth analysis of the 

content and implications of these papers is presented in the following sections, providing a more 

comprehensive understanding of the progression of GMLVQ algorithms. 
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Figure 4.3. Distribution of the number of selected studies by year of publication 

Source: Own study 

 

The systematic review revealed a fluctuating trend in the number of citations over the 

years, as shown in Figure 4.4 below. 2016 saw the highest number of citations at 72, followed 

closely by 2021 with 63 citations. 2015 and 2017 also had a substantial number of citations, with 

49 and 59, respectively. However, there was a noticeable drop in citations in 2018, with only 15. 

The number of citations rebounded in 2019 and 2020, with 39 and 61 citations, respectively. A 

decline was observed in the subsequent years, with 28 citations in 2022 and a significant drop to 

4 in 2023. As of 2024, no citations have been recorded. This trend could indicate the evolving 

interest and research focus on the field. 
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Figure 4.4. Distribution of citations by year of publication 

Source: Own study 

 

4.2.2. Distribution of selected papers by source 

The distribution of the 64 selected papers on GMLVQ across various source titles suggests a 

broad interest in the GMLVQ algorithm across different fields. The papers are spread across a 

diverse range of 36 source titles, including conference proceedings and journals, as shown in 

Table 4.2 below. This diversity indicates that the GMLVQ algorithm is not confined to a specific 

domain but is being explored and utilized in various research areas. 

 

Table 4.2: Distribution of selected studies by source title 

Source Title No. of Studies 

12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, 

Clustering and Data Visualization, WSOM 2017 - Proceedings 4 

2016 IEEE Congress on Evolutionary Computation, CEC 2016 1 

2017 IEEE 19th International Conference on e-Health Networking, Applications and 

Services, Healthcom 2017 1 

23rd European Symposium on Artificial Neural Networks, Computational Intelligence and 

Machine Learning, ESANN 2015 - Proceedings 1 

ACM International Conference Proceeding Series 1 

Advances in Intelligent Systems and Computing 5 

Alimentary Pharmacology and Therapeutics 1 

Arabian Journal for Science and Engineering 1 

Artificial Intelligence in Medicine 1 

Astronomy and Computing 1 
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BioData Mining 1 

BMJ Open 1 

Communications in Computer and Information Science 1 

Computer Methods and Programs in Biomedicine 2 

Current Directions in Biomedical Engineering 1 

Development and Psychopathology 1 

ESANN 2018 - Proceedings, European Symposium on Artificial Neural Networks, 

Computational Intelligence and Machine Learning 2 

Frontiers in Artificial Intelligence 1 

Frontiers in Artificial Intelligence and Applications 1 

Frontiers in Computational Neuroscience 1 

IAENG International Journal of Computer Science 1 

IEEE Access 2 

IEEE International Conference on Data Mining Workshops, ICDMW 1 

IEEE Transactions on Cybernetics 1 

IEEE Transactions on Knowledge and Data Engineering 1 

IEEE Transactions on Neural Networks and Learning Systems 1 

Journal of Machine Learning Research 1 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics) 7 

Lecture Notes in Networks and Systems 1 

Nature Communications 1 

Neural Computing and Applications 2 

Neural Networks 1 

Neurocomputing 3 

Pattern Recognition 1 

Proceedings of the International Joint Conference on Neural Networks 5 

Progress in Biomedical Optics and Imaging - Proceedings of SPIE 3 

Source: Own study  

 

 

The source title with the highest number of studies is “Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics)” with 7 papers, followed by “Advances in Intelligent Systems and Computing” 

and “Proceedings of the International Joint Conference on Neural Networks” both with 5 papers 

respectively. These sources are well-regarded in the field of computational intelligence, further 

emphasizing the significance of GMLVQ in this domain. 

Moreover, the presence of GMLVQ-related papers in high-impact journals such as 

“Nature Communications” and “IEEE Transactions on Neural Networks and Learning Systems” 

underscores the relevance and impact of this algorithm in the scientific community. The wide 

distribution of GMLVQ-related papers across various source titles and their presence in high-

impact journals attests to the algorithm’s versatility and growing recognition in diverse research 

fields. This trend is likely to continue as more applications of the GMLVQ algorithm are 

discovered and explored. 
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4.2.3. Thematic scope and systematic review research questions 

The selected papers provide a comprehensive overview of the developments and applications of 

Generalized Matrix Learning Vector Quantization (GMLVQ).  

Q1: Several improvements and variations to the original GMLVQ have been reported, including 

the integration of adaptive tangent distance learning, the use of a more suitable and natural cost 

function for ordinal regression problems, and the incorporation of an enhanced feature selection 

objective via L1-regularization. 

Q2: Various studies have highlighted the impact of feature relevance and metric learning on 

GMLVQ’s performance. For instance, using matrix relevance learning for high-dimensional data 

and applying localized generalized matrix learning vector quantization for handling imbalanced 

classes have enhanced GMLVQ’s performance. 

Q3: GMLVQ has been utilized in various application domains, including healthcare, psychology, 

astronomy, edge computing, agriculture, cybersecurity, and more. These applications range from 

diagnosing diseases, analyzing biomedical data, classifying galaxy catalogs, and detecting sleep 

positions. 

Q4: Novel uses of GMLVQ reported in the literature include the classification of time-series and 

functional data, the analysis of brain activities from resting-state functional MRI (fMRI) data, 

and the development of a computer-aided diagnosis system for early detection of glaucoma. 

Q5: The performance of GMLVQ across different studies has been generally positive, with 

several studies reporting that GMLVQ outperforms other algorithms in terms of accuracy and 

computational efficiency. However, the performance can vary depending on the specific 

application and the nature of the data. 

Q6: Some challenges associated with using GMLVQ have been noted, such as the susceptibility 

of Generalized Matrix LVQ to adversarial attacks and the tendency of relevance matrices to 

become singular with only one or very few non-zero eigenvalues. Despite these challenges, the 

ongoing research and development in this field continue to enhance the robustness and 

applicability of GMLVQ. Table 4.3 below shows the findings from all selected studies 

concerning the research questions.  
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Table 4.3: Selected studies and findings 
Source GMLVQ application Empirica

l study 

GMLVQ 

enhanced 

Feature relevance 

and metric 

learning 

Improved 

performance 

Application 

field 

(Ravichandran et 

al., 2020) 

Stability estimation in neural 

networks 

✓ ✓ ✓ ✓ Remote 

sensing.  

(Bittrich et al., 

2019) 

Early folding residue prediction in 

proteins 

✓  ✓ ✓ Bioinformatics 

(Baciu et al., 

2022) 

Non-fatty liver disease fibrotic stages 

prediction 

 ✓ ✓ ✓ Bioinformatics 

(Villmann et al., 

2022) 

Classification of non-calibrated data ✓ ✓ ✓   

(Straat et al., 

2020) 

Time series and functional data 

classification 

✓ ✓ ✓  Healthcare 

(Golz et al., 

2020) 

EEG data classification ✓  ✓  Healthcare 

(Van Veen et al., 

2024) 

Neurodegenerative diseases 

classification using FDG-PET data 

✓ ✓ ✓ ✓ Healthcare 

(Neocleous et al., 

2017) 

Early detection of fetal chromosomal 

abnormalities 

✓  ✓ ✓ Healthcare 

(Van Veen et al., 

2018) 

Alzheimer’s and Parkinson’s disease 

diagnosis using FDG-PET data 

✓ ✓ ✓ ✓ Healthcare. 

(Nova & Estévez, 

2017) 

Overfitting prevention in GMLVQ 

algorithm 

✓ ✓ ✓ ✓  

(Straat et al., 

2017) 

Texture classification considering 

color or channel information 

✓ ✓ ✓   

(Shumska & 

Bunte, 2023) 

Distance-based classification of 

functional data 

✓ ✓ ✓ ✓ Healthcare 

(Melchert et al., 

2016) 

Resting-state fMRI data classification ✓ ✓ ✓ ✓  

(DSouza et al., 

2017) 

Early dementia diagnosis based on 

cognitive skills 

✓  ✓ ✓ Healthcare 

(Alahmadi et al., 

2016) 

NAQI evaluation in digital 

mammography 

✓ ✓ ✓ ✓ Healthcare 

(Costa et al., 

2019) 

Performance improvement of 

SSM/PCA in neurodegenerative 

disease diagnosis 

✓  ✓ ✓ Healthcare 

(Van Veen et al., 

2020) 

EEG data classification for motor 

imagery tasks 

✓ ✓ ✓  Healthcare 

(F. Tang et al., 

2021) 

Model parameters optimization in 

gradient-based training 

✓ ✓ ✓ ✓  Healthcare 

(LeKander et al., 

2017) 

Investigation of convex and non-

convex regularization effects 

✓ ✓ ✓ ✓  

(Biehl et al., 

2016) 

Privacy-preserving data analysis tasks ✓  ✓ ✓  Healthcare 

(Nova & Estévez, 

2016) 

Matrix Relevance Learning for high-

dimensional data 

✓ ✓ ✓ ✓  

(Brinkrolf et al., 

2018) 

Automated diagnosis of crop diseases 

in cassava plants 

✓ ✓ ✓  Data privacy 

(Schleif et al., 

2015) 

Early detection of glaucoma using 

fundus photography 

✓ ✓ ✓ ✓ Life sciences  

(Mwebaze & 

Biehl, 2016) 

Bar-like structures delineation ✓  ✓ ✓ Agriculture 

(Guo et al., 2019) Early recurrence of disease 

identification in patients 

✓  ✓ ✓  Healthcare 

(Strisciuglio et 

al., 2015) 

Feature relevances analysis in 

classification problems 

✓ 

   

✓ ✓ 

Healthcare 

(Mukherjee et al., 

2016) 

Early detection of crop disease in 

cassava crops 

✓ 

   

✓ ✓ 

Healthcare 

(Lövdal & Biehl, 

2024) 

Cassava diseases diagnosis ✓ ✓ ✓ ✓ 

   

(Owomugisha et Disease-related brain patterns ✓ ✓ ✓ ✓ Agriculture  
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al., 2020) identification in neurodegenerative 

disorders 

(Ahishakiye et 

al., 2023) 

Improved classification accuracies for 

Parkinsonian syndromes 

✓ ✓ ✓ ✓ 

Agriculture  

(Van Veen et al., 

2022) 

Non-invasive biomarker strategy to 

stage NAFLD 

✓ ✓ ✓ ✓ 

Healthcare  

(Mudali, Biehl, 

Leenders, & 

Roerdink, 2016) 

Open-source Python implementation 

of LVQ algorithms 

✓ ✓ ✓ ✓ 

Healthcare  

(Moolla et al., 

2020) 

Stability estimation in neural 

networks 

✓ ✓ ✓ ✓ 

Healthcare  

(Biehl et al., 

2016) 

Early folding residue prediction in 

proteins 

✓ ✓ ✓ ✓ 

   

(Van Veen et al., 

2021) 

Non-fatty liver disease fibrotic stages 

prediction ✓ 

✓     Software 

Development  

(H. Miller et al., 

2024) NAFLD severity staging 

✓ ✓ ✓ 

   Healthcare  

(Krishnan & 

Shrinath, 2024) IoT network attack identification 

✓ ✓ ✓ ✓ 

Cybersecurity  

(F. Tang et al., 

2023) 

Classification of data on Riemannian 

manifold 

✓ ✓ ✓ ✓ 

   

(Lian et al., 

2023) Efficient graph analytics 

✓ ✓ ✓ ✓ Information 

Networks 

(M. Fan et al., 

2023) High-dimensional data projection 

✓ ✓ ✓ ✓ 

   

(M. L. Fan et al., 

2022) Covariance matrix data handling 

✓ ✓ ✓ ✓ 

   

(Giorgio et al., 

2022) 

Future tau accumulation prediction in 

AD 

✓ 

   

✓ 

   Healthcare  

(Mohammadi et 

al., 2022) Compact stellar systems separation 

✓ ✓ ✓ 

✓ Astronomy  

(Shobha & 

Nalini, 2022) Data fusion    

✓ 

      Data Science 

(Pauli et al., 

2021) Youth classification into TD or CD 

✓ ✓ 

✓ ✓ Psychology  

(Diao et al., 

2021) 

Efficiency improvement of ML 

algorithms on edge devices 

✓ ✓ 

   ✓ 

Edge 

Computing 

(Owomugisha et 

al., 2021) Cassava diseases diagnosis 

✓ ✓ 

✓    Agriculture 

(Saralajew et al., 

2020) Robustness evaluation of LVQ models 

✓ ✓ 

   ✓ Cybersecurity  

(Nolte et al., 

2019) Labeled galaxy catalog analysis 

✓ ✓ ✓ 

   Astronomy  

(Nolte et al., 

2018) Labeled galaxy catalog data analysis 

✓ ✓ ✓ 

   Astronomy  

(Lischke et al., 

2018) High-dimensional data model learning 

✓ ✓ ✓ ✓ 

Psychology 

(DSouza et al., 

2018) 

Regional self-influence patterns 

characterization 

✓ ✓ ✓ ✓ 

Healthcare  

(Fallmann et al., 

2017) Eight sleep positions detection 

✓ ✓ 

   

✓ 

Lifestyle 

(F. Tang & 

Tiňo, 2017) Ordinal regression problem-solving 

✓ ✓ 

   

✓ 

 

(Miyajima et al., 

2017) Learning of fuzzy inference systems 

✓ ✓ 

       

(Biehl, 2017) Biomedical data analysis       ✓    Biomedical  

(Saralajew & 

Villmann, 2016) 

Prototype-based classification 

learning 

✓ ✓ 

         

(Miyajima et al., 

2016) Fuzzy inference systems learning 

✓ ✓ 

   ✓  

(Biehl et al., LVQ theoretical analysis  ✓ ✓     
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2015) 

(Fischer et al., 

2015) Online, incremental learning tasks ✓ 

✓ 

   ✓    

Source: Own study 

 

4.3. GMLVQ systematic literature review discussion 

4.3.1. Algorithmic enhancement and variations 

Based on the findings from the reviewed studies, it is evident that the evolution and 

diversification of the GMLVQ algorithm as a computational method have been notable in recent 

research. The algorithm was initially designed to improve upon its predecessors, including the 

original Kohonen’s LVQ variants, addressing their limitations and enhancing their strengths. 

However, the selected studies show considerable adaptations, enhancements, and variations in 

GMLVQ. These modifications to the GMLVQ algorithm have increased its computational 

efficiency and broadened its applicability across various domains, demonstrating its flexibility 

and potential for intelligent decision-making. These improvements enable the algorithm to better 

adjust to various data types and application scenarios, resulting in more accurate and efficient 

outcomes. 

The GMLVQ algorithm has significantly enhanced its adaptability and performance, 

particularly in complex data landscapes. One of the critical modifications introduced is the 

incorporation of non-linear activation functions (Ravichandran et al., 2020). Non-linear 

activation functions are mathematical equations that determine the output of a neural network. 

The output is then used as input for the next layer in the model. These functions are termed ‘non-

linear’ because they introduce non-linearity into the output of a neuron. A recent literature review 

reveals empirical studies involving the reformulation of GMLVQ based on a multi-layer network 

approach, making it possible to consider different activation functions, including non-linear ones 

in the mapping layer (Ravichandran et al., 2020). This enhancement is crucial as most real-world 

data is non-linear and cannot be separated or classified via a simple linear model. From the 

reviewed studies, a non-linear activation function has been introduced to the GMLVQ to enhance 

its adaptability and performance (Ravichandran et al., 2020). This is evidently in line with 

current research trends, where the role of activation functions is increasingly becoming important 

(Bawa & Kumar, 2019; Dubey et al., 2022; Khan et al., 2022; Parisi et al., 2024). As noted in a 

recent study, activation functions are essential in building deep neural networks’ discriminative 
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capabilities (Bawa & Kumar, 2019).  The non-linear activation functions allow for a more 

nuanced mapping of input features, enhancing the model’s ability to learn and emphasizing the 

most relevant features for classification tasks. The uncovered incorporation of the non-linear 

activation function in GMLVQ is part of recent trends where non-linear activation functions have 

gained more popularity (Dubey et al., 2022; H. Li et al., 2023; B. Liu et al., 2023; Pappas et al., 

2023; H. Zhang et al., 2024). Xiao proposed using a non-linear activation function to solve time-

varying non-linear equations (Xiao, 2016). This study highlights the significance of employing 

non-linear activation functions in GMLVQ, especially considering the algorithm's capability to 

manage complex non-linear datasets, including those in online or streaming environments. This 

advancement represents an important step in enhancing GMLVQ's effectiveness in handling 

dynamic and intricate data scenarios.   

From the review findings, the GMLVQ algorithm has been integrated with various 

machine learning models, including Random Forest, SVM, and kNN, demonstrating its 

versatility and improved performance through collaborative model utilization (Baciu et al., 

2022). The integration of GMLVQ with other ML models is reported to enhance performance 

significantly (Mudali, Biehl, Leenders, Roerdink, et al., 2016). Such integration improves 

classification accuracy and ensures more reliable and consistent results across various datasets 

and application scenarios. Furthermore, the exploration of iterative and ensemble approaches has 

allowed for the leveraging of GMLVQ’s strengths in conjunction with other models and 

techniques, such as SSM/PCA, PCA, SVM, and various spectroscopy methods (Biehl et al., 

2016; Lövdal & Biehl, 2024; Moolla et al., 2020; Mudali, Biehl, Leenders, & Roerdink, 2016; 

Owomugisha et al., 2020; Van Veen et al., 2022). Our review reveals a study aiming to utilize a 

combination of FDG-PET, SSM/PCA, and GMLVQ to accurately discriminate between healthy 

controls and individuals with Alzheimer's disease, Parkinson’s disease, and Dementia with Lewy 

Bodies (Van Veen et al., 2022). The authors adopt SSM/PCA and GMLVQ as classifiers on FDG-

PET, with the results indicating significant performance in identifying neurodegenerative 

disorder patterns and successful FDG-PET data quantification (Van Veen et al., 2022). A similar 

study combines GMLVQ and SVM classifiers to detect patterns for Parkinsonian syndrome in 

FDG-PET brain data, with the results indicating improved performance in classification (Mudali, 

Biehl, Leenders, & Roerdink, 2016). Impressive performance has been reported using GMLVQ 

with dimension reduction using PCA in early plant disease detection (Owomugisha et al., 2020). 
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The combination of GMLVQ with other classifiers, such as SSM/PCA and SVM, has 

demonstrated the algorithm’s capability to enhance classification accuracy and robustness, 

leveraging the strengths of each method to handle complex and high-dimensional data 

effectively. These adaptations have broadened the algorithm’s applicability across diverse 

domains and bolstered its robustness and classification performance, underscoring the potential 

of GMLVQ as a computation method with immense potential in intelligent decision-making. 

This review reveals that integrating innovative architecture into the GMLVQ model, such 

as adopting a Siamese-like structure, has significantly developed in the field (Villmann et al., 

2022). This structure facilitates the simultaneous learning of multiple sets of prototypes, thereby 

enhancing classification accuracy and source separation, as reported by the authors (Villmann et 

al., 2022). This approach indicates a shift towards more sophisticated model designs catering to 

intricate classification scenarios. The Siamese-like GMLVQ architecture is particularly effective 

when dealing with data from several potentially non-calibrated sources. The effectiveness of 

these approaches is achieved without the need for explicit transfer learning, which presents a 

significant advantage by reducing computational complexity and enhancing generalization 

capabilities (Villmann et al., 2022). Siamese networks are a type of neural network that share 

weights and are designed to process paired data (Oinar et al., 2023). Existing literature shows 

that the Siamese network architecture is commonly used in algorithms that rely on contrastive 

learning (Oinar et al., 2023). Several studies have shown improved performance in 

computational methods integrating Siamese networks (Z. Han et al., 2021; Yan & Melkote, 2023; 

Zeng et al., 2019). For instance, integrating Siamese networks has been shown to enhance 

accuracy and robustness in various tasks, including image recognition, face verification, and one-

shot learning. These networks excel in scenarios where distinguishing between similar yet 

distinct data points is crucial. Siamese networks have also emerged as a dominant paradigm in 

tracking applications, showing significant progress in object-tracking tasks (Hayale et al., 2023; 

Javed et al., 2023). They have been widely adopted due to their ability to maintain consistency in 

feature representation across frames, which is essential for reliable tracking performance. 

Therefore, the variation of GMLVQ to incorporate Siamese-like architecture presents a 

significant advancement in machine learning, particularly in classification tasks. It extends the 

model’s utility across domains and enhances its robustness and classification performance. As 

such, the Siamese-like GMLVQ architecture represents a promising direction for future research 
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and application of GMLVQ in designing intelligent support systems involving complex data 

landscapes. Thus, we can deduce that integrating GMLVQ with innovative architectures such as 

Siamese networks make it a powerful tool in advancing computation methods for intelligent 

decision support systems.  

Our review reveals that adapting the GMLVQ model for complex-valued data through 

Wirtinger calculus has expanded avenues for the model’s application (Straat et al., 2017, 2020). 

This adaptation allows the model to handle complex numerical data efficiently, addressing a 

significant need in machine learning. The use of the Wirtinger calculus in the GMLVQ model 

allows for the formulation of gradient-based update rules within the framework of cost-function-

based GMLVQ (Straat et al., 2020). This observation provides a fresh perspective on these 

updated rules and their applicability in different contexts, expanding the model’s utility. The 

variation has proved effective in classifying time series and similar functional data. This data can 

be represented in complex Fourier and wavelet coefficient space, further illustrating the 

versatility of the GMLVQ model (Straat et al., 2017). As established in the findings, applying the 

method in combination with wavelet-space features for heartbeat classification underscores the 

model’s potential in real-world applications (Straat et al., 2020). Thus, the review shows how 

innovative adaptations and enhancements can effectively utilize the GMLVQ model in various 

domains, from time-series analysis to healthcare. 

The review results have unveiled specific variations related to relevance learning in the 

context of the GMLVQ model. One of the key advancements in this area is the introduction of a 

‘relevance space’ and correction matrices (Biehl, 2017; Biehl et al., 2012; Owomugisha et al., 

2021; Van Veen et al., 2024). Recent research has shown that prototype-based systems can be 

significantly enhanced through the data-driven optimization of adaptive distance measures 

(Biehl, 2017). Implementing relevance learning within this framework greatly increases the 

flexibility of these approaches, offering valuable insights into the importance of the features 

being analyzed (Biehl, 2017). This strategic development aims to minimize center-dependent 

variation, refining the classification process by focusing on essential features (Van Veen et al., 

2024). In machine learning, data often originates from various sources and combining them can 

introduce extraneous variation that impacts both generalization and interpretability. Awo-step 

approach has been proposed (Van Veen et al., 2024). Firstly, a GMLVQ model is trained on 

control data to identify a ‘relevance space’ that distinguishes between centers (Van Veen et al., 
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2024). Secondly, this space is used to construct a correction matrix restricting a second GMLVQ 

system’s training on the problem (Van Veen et al., 2024). Further research reveals that utilizing 

local and global relevance matrices in the GMLVQ model demonstrates its capability to 

distinguish between complex health conditions such as Parkinson’s and Alzheimer’s diseases 

(Van Veen et al., 2018). However, it has been shown that cross-center classification can be 

problematic due to potential center-specific characteristics of the available data (Van Veen et al., 

2018). Nevertheless, these variations extend the GMLVQ’s utility across domains and enhance 

its robustness and classification performance. As pointed out, the application of GMLVQ as a 

prototype and distance-based classification in the biomedical domain represents significant 

progress in computation methods for intelligent decision support (Biehl, 2017). As such, the 

continuous refinement and integration of relevance learning in GMLVQ enhances its 

computational efficiency and expands its applicability, paving the way for more accurate and 

reliable decision-making processes in complex biomedical scenarios. 

The review findings show that the GMLVQ model has seen significant advancements, 

including a nuclear norm as a regularization method, enhancing the model’s generalization and 

robustness. This method prevents oversimplification, overfitting, and oscillatory behavior of 

small eigenvalues of the positive semi-definite relevance matrix, leading to lower classification 

error and better interpretability of the relevance matrix (Nova & Estévez, 2017). The model’s 

applicability in image processing has also been enhanced by using a particular matrix format for 

multi-channel images and extending the parametrized angle dissimilarity measure, improving its 

robustness against variations in lighting conditions (Shumska & Bunte, 2023). This approach is 

convenient in texture classification, playing a significant role in healthcare, agriculture, and 

industry. Furthermore, the employment of functional expansions, such as the truncated 

Chebyshev series, leverages the functional nature of data, providing a nuanced approach to data 

representation and classification (Melchert et al., 2016). This method, applied in the space of 

expansion coefficients, can significantly improve classification performance, opening new 

avenues for applying GMLVQ in diverse data environments. Further enhancements include 

transitioning to accommodate data in Riemannian manifolds by modifying the distance metric 

within the GMLVQ framework, introducing a novel classification approach for complex data 

structures, and expanding the model’s applicability (Adaptive Basis Functions for Prototype-

Based Classification of Functional Data, 2020). Additionally, employing adaptive functional 
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bases for data expansion and integrating various regularization techniques for sparsity reflect 

ongoing efforts to enhance model efficiency and interpretability (LeKander et al., 2017; Nova & 

Estévez, 2016). These advancements contribute to a more versatile and robust GMLVQ 

framework capable of handling a wide range of complex data environments with improved 

precision and interpretability, thereby broadening its potential applications across various 

scientific and industrial domains. 

The algorithmic development and variations in the GMLVQ algorithm indicate a dynamic 

evolution geared toward addressing various data classification and analysis challenges. This 

evolution is characterized by continuously integrating innovative techniques and methodologies 

within the GMLVQ framework. From the incorporation of non-linear activation functions and 

the use of a nuclear norm as a regularization method to the introduction of a Siamese-like 

structure and the employment of functional expansions such as the truncated Chebyshev series, 

each modification and enhancement has significantly expanded the model’s utility and 

performance. Furthermore, the model’s adaptability is evident in its ability to handle complex 

numerical data, multi-channel images, and diverse health conditions. Integrating other machine 

learning models, such as Random Forest, SVM, and kNN, further illustrates its versatility and 

collaborative model utilization. These developments demonstrate the GMLVQ model’s potential 

for future research and application and underscore its role in facilitating intelligent decision-

making processes.  

 

4.3.2. Feature relevance and metric learning 

Based on the analysis of selected studies, this review shows that the GMLVQ model has seen 

significant advancements in integrating feature relevance and metric learning, enhancing its 

efficacy in classification tasks through nuanced mapping of input features. The extension of 

GMLVQ includes non-linear activation functions, and the use of DropConnect underlines a 

refined approach toward emphasizing the most relevant features for classification tasks 

(Ravichandran et al., 2020). This adaptation enables a more nuanced feature mapping, aligning 

with metric learning principles to maintain classification stability under various conditions. The 

integration of comprehensive visualization capabilities allows for a more detailed interpretation 

of data, suggesting the algorithm’s inherent focus on feature relevance and metric learning 

(Bittrich et al., 2019). These improvements highlight the GMLVQ model's capability to adapt to 
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complex datasets while ensuring robust performance. Consequently, the model's enhanced 

interpretability and precision make it a powerful tool for intelligent decision-making across 

diverse applications. 

The examined studies reveal that combining multi-omics data with regular clinical 

parameters in GMLVQ enhances AI model performance, indicating the significant role of metric 

learning in handling complex datasets (Baciu et al., 2022). The algorithm’s approach to training a 

linear map for source distinction further exemplifies the application of metric learning in parallel 

to classification tasks (Villmann et al., 2022). This approach employs a Siamese-inspired 

GMLVQ architecture featuring distinct prototypes for target classification and source separation 

learning. Within this framework, a linear map is concurrently trained via GMLVQ for 

distinguishing sources in the mapping space while simultaneously learning the classification task 

(Villmann et al., 2022). Feature relevance and metric learning are highlighted by several 

examined studies focusing on the classification of time-domain representations (Straat et al., 

2017, 2020). Using gradient-based update rules within the cost-function-based framework of 

GMLVQ highlights the continuous focus on metric learning, suggesting an inherent involvement 

in enhancing feature relevance (Straat et al., 2017, 2020). In addition to the potential for 

enhancing classification accuracy, this method can significantly reduce the dimensionality of 

feature vectors (Straat et al., 2017). Given that the number of parameters in GMLVQ, which 

pertain to feature relevance, increases quadratically with the number of dimensions, this 

reduction can substantially decrease the computational effort required during the training phase, 

thereby enhancing the model's efficiency and focus on the most pertinent features (Straat et al., 

2020). Further research indicates that training directly on complex-valued data with GMLVQ, 

utilizing learning rules derived from Wirtinger calculus, provides the advantage of effectively 

managing complex dimensions, thereby ensuring a mathematically robust formulation (Straat et 

al., 2020). The simultaneous adaptation of prototype vectors and weight matrices during training 

further underscores the emphasis on metric learning (Golz et al., 2020). Given its fluctuating 

nature, the authors investigate whether the relatively new method, GMLVQ, offers a distinct 

advantage in analyzing EEG data (Golz et al., 2020). This method features a learning rule for an 

adaptive metric, which may enable it to outperform other methods that use fixed metrics (Golz et 

al., 2020). However, the research indicates poor performance and suggests that the weight matrix 

adaptation may require more sophisticated regularization techniques to achieve better results. 
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Identifying a “relevance space” exemplifies the algorithm’s ability to distinguish between 

varying centers by focusing on the most pertinent features indicative of metric learning’s impact 

(Van Veen et al., 2024). The GMLVQ’s application in identifying relevant markers from clinical 

examinations showcases the direct application of feature relevance principles, demonstrating its 

effectiveness in practical healthcare settings (Neocleous et al., 2017). Additionally, incorporating 

regularization methods and dissimilarity measures into the GMLVQ model aligns with metric 

learning objectives, aiming to refine feature selection and improve classification accuracy by 

reducing overfitting and enhancing generalizability (Nova & Estévez, 2017; Shumska & Bunte, 

2023). The use of prototypes and relevance matrices, transformed back to original data spaces, 

illustrates the practical application of metric learning principles in real-world scenarios, 

including early detection of neurodegenerative conditions such as Parkinson’s disease (Van Veen 

et al., 2020). These enhancements underscore the flexibility and robustness of GMLVQ and 

highlight its potential in various domains, including bioinformatics, where precise feature 

relevance can lead to significant advancements in understanding complex biological data. 

Furthermore, these techniques' continuous development and integration into GMLVQ reflect 

ongoing efforts to enhance its performance and applicability, ensuring it remains a significant 

computation method in machine learning and data analysis. 

Adopting Riemannian metrics and applying algorithms to diverse data types, such as SPD 

matrices or functional expansions, demonstrate the extensive integration of feature relevance and 

metric learning across various domains and data structures (Adaptive Basis Functions for 

Prototype-Based Classification of Functional Data, 2020; M. Fan et al., 2023; Mudali, Biehl, 

Leenders, & Roerdink, 2016; F. Tang et al., 2021, 2023). These include the classification of EEG, 

where GMLVQ has demonstrated superior accuracy in distinguishing between different mental 

states by effectively handling the fluctuating nature of EEG signals (Golz et al., 2020). 

Additionally, the method has been applied to symmetric positive definite (SPD) matrices, 

providing robust solutions in scenarios where maintaining the geometric structure of the data is 

crucial, such as in medical imaging and computer vision tasks (F. Tang et al., 2021). 

Furthermore, GMLVQ has proven effective in analyzing both spectral data and time series, 

showcasing its versatility in capturing essential patterns across diverse datasets, thereby 

improving predictive performance in fields ranging from finance to environmental monitoring 

(Adaptive Basis Functions for Prototype-Based Classification of Functional Data, 2020). These 
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applications underscore the algorithm’s adaptability and robustness across complex data 

environments. Furthermore, the application of GMLVQ in analyzing complex biological, 

clinical, and astronomical data showcases its versatility and the critical role of feature relevance 

and metric learning in achieving precise classifications and interpretations (Biehl, 2017; H. 

Miller et al., 2024; Moolla et al., 2020; Mudali, Biehl, Leenders, & Roerdink, 2016; Nolte et al., 

2018, 2019; Owomugisha et al., 2021). As noted by the authors, GMLVQ is selected for analysis 

of morphological features in labeled catalogues from the galaxy and mass assembly because of 

its capability to provide classification boundaries, class-representative prototypes, and feature 

relevance (Nolte et al., 2019). This research extends to a previous one that similarly applied 

GMLVQ to investigate whether the morphological classification can be reproduced (Nolte et al., 

2018, 2019). The generalized Euclidean distances, parameterized by a matrix of adaptive 

relevance parameters, highlight the continual evolution of metric learning strategies within 

GMLVQ, aiming to enhance the interpretability and effectiveness of classification models (Biehl 

et al., 2015). As noted by Moolla et al., the distance metric in GMLVQ is adaptive and optimized 

alongside the prototypes during the data-driven training process (Moolla et al., 2020). This 

metric is defined by a matrix of adjustable parameters known as the relevance matrix. The 

authors further note that diagonal elements of this matrix represent the significance of individual 

steroids in the classification scheme (Moolla et al., 2020). These advancements underscore 

GMLVQ's significant potential for providing robust, interpretable, and efficient solutions for 

complex classification tasks across various domains. 

Integrating feature relevance and metric learning within the GMLVQ model signifies a 

paradigm shift in machine learning, marking a substantial advancement in how models can 

adaptively and intelligently learn from data. This integration allows for a more nuanced 

understanding of the importance of individual features, which enhances the model's ability to 

provide accurate and insightful classifications. The continuous evolution and refinement of these 

methodologies, as evidenced by the studies reviewed, underscore the transformative potential of 

the GMLVQ model, highlighting its capacity to evolve alongside advancements in the field. Its 

ability to handle complex numerical data, multi-channel images, and diverse health conditions, 

among others, speaks volumes about its robustness and precision. For instance, in the medical 

field, GMLVQ has shown remarkable success in accurately diagnosing diseases by analyzing 

intricate patterns in clinical data, proving its effectiveness in real-world applications (Biehl et al., 



107 
 

2016; Golz et al., 2020; H. Miller et al., 2024). Furthermore, its application in various domains, 

from biological and clinical data analysis to astronomical data interpretation, showcases its 

broad-spectrum applicability and critical role in the quest for knowledge and understanding of 

computational methods for intelligent decision-making. The versatility of GMLVQ in adapting to 

different types of data environments and its capacity to provide clear, interpretable results make 

it a valuable tool in both scientific research and practical applications. Integrating advanced 

regularization techniques and adaptive metrics within GMLVQ improves its performance and 

ensures that the model remains relevant and practical as new challenges and datasets emerge. 

This continued innovation and adaptability highlights GMLVQ's essential role in pushing the 

boundaries of what is possible in the computational engineering domain. 

4.3.3. Novel use-cases and application areas 

The application of GMLVQ spans various fields, reflecting its adaptability and efficacy in 

addressing diverse challenges. This section delves into the range of application areas identified in 

the selected studies shown in Figure 4.5 below, illustrating the breadth of GMLVQ’s utilization. 

 

 

Figure 4.5. Distribution of GMLVQ algorithm application areas 

Source: Own study 

 

Predominantly, GMLVQ finds extensive application in the healthcare sector, addressing 

various aspects ranging from neurodegenerative disorders, Parkinsonian syndromes, and Non-
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Alcoholic Fatty Liver Disease (NAFLD) to the specific challenge of renal cell carcinoma. This 

widespread use within healthcare, including general applications and targeted medical 

conditions, underscores GMLVQ’s significance in improving diagnostic accuracy, patient 

stratification, and disease understanding (Baciu et al., 2022; Biehl et al., 2016; Costa et al., 2019; 

DSouza et al., 2017; Golz et al., 2020; H. Miller et al., 2024; Moolla et al., 2020; Mudali, Biehl, 

Leenders, & Roerdink, 2016; Mukherjee et al., 2016; Van Veen et al., 2018; Van Veen et al., 

2020, 2022, 2024). The GMLVQ model is also heavily utilized in bioinformatics, showcasing its 

capacity to handle complex biological data, assist in genomic studies, and contribute to the 

broader life sciences field (Baciu et al., 2022; Biehl, 2017; Bittrich et al., 2019). The review 

findings are consistent with the general trends in the field, as noted from related reviews, which 

directly address algorithms and computational methods being adopted in healthcare and 

bioinformatics. For instance, a review on using machine learning to forecast Diabetes Type-2 

notes the significance of using advanced computational methods for pattern identification and 

clustering to identify high-risk individuals (Nimmagadda et al., 2024). The authors discuss 

various computational techniques, including SVM, KNN, and RF, and their application in 

diabetes detection, noting their good accuracy, specificity, and sensitivity in identifying 

individuals at risk (Nimmagadda et al., 2024). This study shows that adopting these techniques 

enhances the performance of GMLVQ as a pattern recognition algorithm. Similar reviews have 

attempted to discuss related algorithms and machine learning techniques and their use in 

healthcare, including identifying skin diseases, predicting respiratory conditions, and analyzing 

cardiovascular issues (Kayaalp Ata, 2023; Koul et al., 2024; Singh et al., 2024). These insights 

underscore the critical role of integrating advanced machine learning methodologies, like 

GMLVQ, in improving diagnostic accuracy and patient outcomes across various medical 

domains. 

This review reveals the role of GMLVQ in agriculture, where the algorithm is adopted to 

aid in crop disease detection and management, showcasing its utility in ensuring food security 

and agricultural productivity. The method’s application extends to solving problems related to 

cassava diseases and analyzing agricultural data to enhance yield and disease resistance 

(Ahishakiye et al., 2023; Mwebaze & Biehl, 2016; Owomugisha et al., 2021). These findings are 

also consistent with the general trends, where computational algorithms are increasingly adopted 

in agriculture to optimize yields by minimizing constraints such as diseases. Recent empirical 
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studies show the effective use of different machine-learning algorithms in plant disease and weed 

detection (Dayang & Kouyim Meli, 2021; Ruigrok et al., 2020) and in predicting plant diseases, 

enabling mitigation measures (Dayang & Kouyim Meli, 2021). Therefore, GMLVQ holds great 

potential in agriculture, so further research into enhancements and variations for specific 

problems is warranted. Continued advancements in GMLVQ could lead to even more precise and 

efficient disease detection systems, significantly reducing crop losses and improving food 

security. Integrating GMLVQ with other emerging technologies, such as remote sensing and IoT, 

could further revolutionize agricultural practices, given its ability to handle complex datasets, 

including online and streaming environments. As such, investing in research and development in 

this area is crucial for the future of sustainable agriculture. 

Another notable application area is astronomy, where GMLVQ is employed in analyzing 

galaxy catalogs and compact stellar systems, facilitating the study of celestial objects and 

phenomena (Mohammadi et al., 2022; Nolte et al., 2018, 2019). The adoption of GMLVQ in 

edge computing indicates its relevance in computational advancements and the development of 

efficient computing solutions (Diao et al., 2021), which enables complex research such as 

classification and pattern recognition in data collected from deep space. Recent studies argue that 

the rapid expansion of space engineering and its technology has enabled data collection from 

distant galaxies, and computational algorithms are at the forefront of analyzing such voluminous 

data to provide meaningful information (Tyagi et al., 2023). As the astronomical field continues 

to advance, computational methods, including GMLVQ and their hybridizations, will play 

critical roles in understanding and advancing space exploration. Consequently, the integration of 

GMLVQ in astronomical research represents a significant step forward in handling and 

interpreting the vast amounts of data generated by modern telescopes and space missions. Future 

developments in this area will likely enhance our understanding of the universe, unlocking new 

discoveries and insights.  

This review shows that GMLVQ contributes to enhancing privacy and tackling 

cybersecurity challenges, particularly in IoT networks and against adversarial attacks, reflecting 

its relevance in securing data and networks against emerging threats (Brinkrolf et al., 2018; 

Krishnan & Shrinath, 2024; Saralajew et al., 2020). The technique’s application in information 

networks illustrates its capability to handle network data, optimize information retrieval, and 

understand network dynamics (Lian et al., 2023). GMLVQ can significantly mitigate the problem 
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of high dimensionality while improving classification accuracy and interpretability. As such, it 

will continue to play a crucial role in astronomy alongside other computational methods. The 

versatility of GMLVQ in addressing diverse security issues underlines its potential as a 

foundational tool in developing robust cybersecurity frameworks. Ongoing advancements and 

research in GMLVQ will be pivotal in fortifying defenses against evolving cyber threats and 

ensuring the integrity and safety of critical information systems. 

Beyond these primary areas, GMLVQ is applied in diverse fields, such as speech-based 

emotion recognition and sleep position tracking (Fallmann et al., 2017; Lischke et al., 2018). 

This study also reveals the algorithm’s relevance in psychology, particularly in studying conduct 

disorder and parenting behavior. It highlights its potential in social sciences to analyze behavioral 

data and understand complex human behaviors (Pauli et al., 2021). GMLVQ is also involved in 

specialized domains such as fuzzy modeling, fuzzy inference systems, and ordinal regression, 

which underlines its expanding reach into areas requiring nuanced data interpretation and 

decision-making frameworks (Miyajima et al., 2016, 2017; F. Tang & Tiňo, 2017). These 

applications demonstrate the algorithm’s flexibility and ability to contribute to various research 

areas and practical challenges. GMLVQ's broad applicability across these diverse fields 

underscores its robustness and adaptability in handling different types of data. Its success in these 

areas indicates its potential for future innovations and improvements in machine learning 

techniques. Continued exploration and refinement of GMLVQ will likely yield more versatile 

and powerful tools for academic research and practical applications. 

As observed, the application areas of GMLVQ highlight its versatility and effectiveness 

across a broad spectrum of disciplines. The novel use cases of GMLVQ presented in the 

literature reveal its versatility and adaptability across various domains and challenges. From 

healthcare and bioinformatics to agriculture, astronomy, and beyond, GMLVQ’s contributions 

are pivotal in advancing research, enhancing decision-making processes, and addressing domain-

specific challenges. This diversity underscores the method’s adaptability and its potential for 

continued evolution and application in new and emerging fields. The novel use of GMLVQ’s 

enhancements and variations highlights the dynamic and expanding applications of GMLVQ, 

demonstrating its flexibility and potential in addressing a wide range of real-world problems. The 

continuous exploration and integration of GMLVQ in different domains advances its 
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methodological development and contributes to the broader field of intelligent decision-making 

and data analysis. 

4.3.4. Performance improvement 

The enhancements in GMLVQ models have demonstrated substantial performance 

improvements across various domains, illustrating their superiority to conventional LVQ 

algorithms. These improvements stem from the refined feature relevance, metric learning, 

algorithmic enhancements, and novel use cases reported in the selected studies. For instance, 

This review reveals that including information-theoretic measures and stability estimations in 

neural networks has shown significant potential in evaluating and enhancing the robustness and 

performance of GMLVQ models (Ravichandran et al., 2020). Such measures allow for a more 

refined analysis of the algorithm’s stability, leading to better generalization capabilities. These 

advancements highlight the continuous evolution of GMLVQ, positioning it as a powerful tool in 

machine learning. Consequently, ongoing research and development in this area will unlock even 

greater potential and applicability in diverse fields. 

The literature review shows that the application of GMLVQ in bioinformatics 

demonstrates comparable performance to state-of-the-art classifiers, with improvements notably 

in integrating multi-omics data and clinical parameters, which led to an impressive increase in 

performance from 87% to 99% (Bittrich et al., 2019). Thus, GMLVQ and its variations hold the 

potential to handle complex biological data efficiently. Similarly, in healthcare, GMLVQ 

applications have achieved considerable success. For instance, in neuroimaging and disease 

classification, the GMLVQ models have facilitated the development of machine learning systems 

with reduced bias, allowing for more informative relevance profiles that medical experts can 

interpret (Van Veen et al., 2024). The algorithm’s application to EEG data classification and 

FDG-PET data for neurodegenerative diseases showcases its utility in handling varied healthcare 

data, often achieving classification accuracy that outperforms traditional methods and offering 

more interpretable results (Biehl et al., 2016; Golz et al., 2020; Mudali, Biehl, Leenders, & 

Roerdink, 2016; Van Veen et al., 2018; Van Veen et al., 2022). Further performance 

improvements are noted in the industry, where GMLVQ has been adapted to enhance texture 

classification, offering better generalization and robustness against varying conditions, which is 

essential in these dynamic fields (Shumska & Bunte, 2023), and in agriculture, where the 
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algorithm variations perform efficiently in disease detection. Thus, these findings demonstrate 

the algorithm’s versatility and effectiveness beyond the medical domain. 

Performance enhancements are not just limited to classification accuracy but also include 

better interpretability of relevance matrices, reduced computational effort, and improved 

generalization abilities (Melchert et al., 2016; Nova & Estévez, 2017). For example, GMLVQ 

achieved state-of-the-art results in speech-based emotion recognition, which indicates its 

effectiveness in processing and classifying complex emotional speech data (Lischke et al., 2018). 

Additionally, in more specialized applications such as sleep position tracking and fuzzy inference 

systems, GMLVQ models have shown remarkable accuracy, outperformed conventional 

methods, and illustrated the adaptability and efficiency of GMLVQ in diverse application areas 

(Fallmann et al., 2017; Miyajima et al., 2016, 2017). GMLVQ presents a notable advancement 

over traditional LVQ due to its incorporation of metric and relevance learning, allowing for more 

nuanced feature weighting and adaptation. Thus, metric and relevance teaching leads to a more 

refined classification that is particularly beneficial in complex data landscapes where traditional 

methods may falter due to the lack of these sophisticated mechanisms. 

The performance improvements documented across various studies demonstrate the 

effectiveness of the GMLVQ enhancements and highlight the importance of continuous 

algorithmic development to meet the evolving needs of different domains. This advancement in 

performance, coupled with increased interpretability and adaptability, solidifies GMLVQ’s 

superiority over conventional LVQ models and establishes it as a valuable tool in the arsenal of 

machine-learning methodologies for intelligent decision-making. Integrating advanced features, 

such as adaptive metrics and relevance learning, ensures that GMLVQ remains at the forefront of 

machine learning innovations. Furthermore, its versatility across diverse applications, from 

healthcare to astronomy, underscores its robust potential. As research continues to push the 

boundaries of GMLVQ, it promises to deliver even more impactful solutions, driving progress in 

various scientific and industrial fields. 

4.4. Implications, limitations, and future research direction 

This systematic literature review of GMLVQ models has yielded significant theoretical 

implications, expanding the understanding of classification algorithms and their application in 

various fields. This review highlights GMLVQ’s adaptability through its enhancements and 

variations to accommodate different data types and structures, such as complex-valued data and 



113 
 

time series. This observation underscores a theoretical advancement in the adaptability of 

machine learning models to varied data landscapes, pushing the boundaries beyond traditional 

classification methods. Furthermore, incorporating relevance learning and metric optimization 

within GMLVQ models exemplifies how these advancements can lead to more precise and 

interpretable outcomes. The versatility of GMLVQ in addressing domain-specific challenges, 

from healthcare diagnostics to astronomical data analysis, showcases its broad applicability and 

robustness. Additionally, the continuous evolution of GMLVQ underscores the importance of 

ongoing research and innovation in the field, ensuring that machine learning models remain 

relevant and practical. Overall, this review not only highlights the current strengths of GMLVQ 

but also paves the way for future explorations and enhancements in machine learning 

methodologies. 

Integrating metric learning within GMLVQ models, allowing for dynamic weighing and 

selecting relevant features, contributes to the theoretical understanding of distance metrics’ 

importance in classification tasks. In GMLVQ, adaptive metric learning considers the structural 

knowledge about the data’s functional characteristics, proposed to allow for efficient processing 

of functional data, such as time series and hyper-spectra, synonymous with streaming 

environments (Villmann et al., 2014). Metric learning is particularly critical in healthcare and 

bioinformatics, where feature relevance can significantly influence diagnosis accuracy. Metric 

learning is already a significant area of active research, with several studies exploring its 

effectiveness in different contexts and domains (Huai et al., 2022; Song et al., 2022). As research 

continues to delve into the intricacies of metric learning, its integration within GMLVQ models 

promises to yield even more sophisticated and effective classification algorithms. Consequently, 

these advancements will likely drive significant improvements in various fields, from medical 

diagnostics to real-time data processing and intelligent decision-making applications. 

As observed in the selected studies, applying regularization methods and relevance 

learning in GMLVQ demonstrates theoretical progress in addressing overfitting and improving 

model generalization. This study has revealed the enhancement of feature selection via the L1, 

spectral, and both convex and non-convex regularization techniques (Lischke et al., 2018; Nova 

& Estévez, 2016, 2017). Regularization is a critical aspect of machine learning theory, as it 

ensures that models remain effective and reliable when applied to new, unseen data. 

Incorporating these techniques within GMLVQ models highlights their ability to maintain high 
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performance across different datasets and reduce the risk of overfitting. This advancement 

strengthens the model’s robustness and practical applicability in real-world scenarios. Ultimately, 

the continuous improvement and integration of regularization methods within GMLVQ underline 

its potential to set new benchmarks in machine learning. 

Similarly, this review has several practical implications. The significant success of 

GMLVQ models in healthcare, from neurodegenerative disease classification to medical 

imaging, showcases their practical usefulness in diagnosing and understanding complex medical 

conditions. Such success has real-world implications, potentially improving diagnostic accuracy 

and patient outcomes. Moreover, the application of GMLVQ in agriculture for disease detection 

in crops and bioinformatics for analyzing biological data highlights the model’s practical 

relevance in addressing food security and understanding biological processes. GMLVQ’s role in 

cybersecurity, specifically in IoT networks, and its application in data privacy illustrate its 

practical benefits in protecting digital information and infrastructure, an increasingly important 

concern in this digital age. In addition, the review demonstrates GMLVQ’s application across 

various domains, suggesting its potential in other areas that require complex decision-making 

and classification, such as environmental monitoring, finance, and social media analytics. 

Furthermore, in the context of intelligent decision-making or decision support systems for 

manufacturing process selection, GMLVQ offers significant advantages. The model's ability to 

adaptively learn and identify the most relevant features can be leveraged to optimize 

manufacturing processes by selecting the most efficient and cost-effective methods.  

Recent studies have noted the significance of intelligent support methodologies, such as 

artificial neural networks, in manufacturing process selection (Mumali & Kałkowska, 2024). By 

integrating GMLVQ into decision support systems, manufacturers can enhance operational 

efficiency, reduce production costs, and improve overall product quality. The use of GMLVQ in 

this manner underscores its versatility and practical utility, making it a valuable tool in both 

strategic and operational decision-making processes within the manufacturing industry. Overall, 

the diverse applications of GMLVQ across multiple fields demonstrate its broad utility and 

potential to drive innovation and efficiency in various sectors. As such, continued research and 

development in GMLVQ can further extend its practical implications, solidifying its role as a 

cornerstone in intelligent decision support systems. 
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While this review provides comprehensive insights into GMLVQ models, it is not 

without limitations. First, the scope of review is limited to articles and conference papers from 

leading journals, potentially omitting relevant studies from other sources or grey literature that 

could provide additional insights. Second, the selected studies show a heavy concentration of 

GMLVQ applications in healthcare and bioinformatics, which may skew the understanding of the 

model’s versatility and effectiveness in other fields. The review lacks a systematic comparative 

analysis between GMLVQ and other classification models across all domains, which could 

provide a clearer picture of its relative strengths and weaknesses. 

The findings from this review suggest several future research directions for GMLVQ, 

notably the expansion of its research into the manufacturing domain. This review shows the 

GMLVQ algorithm’s success in healthcare and limited application in manufacturing. Existing 

reviews on artificial neural network-based decision support in manufacturing processes highlight 

the growing interest in using machine learning algorithms to handle complex decisions in 

product and process design (Mumali, 2022; Mumali & Kałkowska, 2024).  The author further 

notes that computational methods, including artificial neural networks, are used in product and 

process design within the manufacturing domain to simplify decision-making by predicting time-

series events, analyzing complex variables, and simulating different scenarios (Mumali, 2022). 

The rapidly increasing complexity and uncertainty in manufacturing necessitate decision support 

systems capable of handling more complex data (Mumali, 2022; Mumali & Kałkowska, 2024).  

The manufacturing landscape is experiencing increased complexity, uncertainty, and 

streaming environments, whereby large volumes of complex data are streamed in real time, for 

example, from IoT devices. The effectiveness of decision support systems in manufacturing is 

enhanced when combined with intelligent computational methods such as artificial neural 

networks and genetic algorithms (Mumali & Kałkowska, 2020). The combination leads to robust 

and comprehensive capabilities for managing manufacturing processes. GMLVQ holds great 

potential in the realm of manufacturing processes. The relevance learning and feature selection 

capabilities of GMLVQ are ideal for analyzing data in a streaming environment (Klingner et al., 

2014). As noted in their application in astronomy, GMLVQ algorithms effectively handle high-

dimensional data (Mohammadi et al., 2022; Nolte et al., 2019). As such, there is a significant 

opportunity to explore using the GMLVQ algorithm in managing manufacturing processes, 

including selection, design, and control. Research could focus on adapting GMLVQ to the 
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specific challenges and data types found in manufacturing settings, such as the selection of 

optimal manufacturing processes for a given product, considering a multitude of constraints, 

including sustainability goals, material properties, design requirements, time, cost, and safety, 

among others. 

In addition, there is a need for more comparative studies that pit GMLVQ against other 

classification algorithms across various metrics and domains to understand its relative 

performance and applicability better. Further research should also explore leveraging GMLVQ in 

interdisciplinary research. Combining insights from healthcare, bioinformatics, and other fields 

could lead to novel applications and enhancements of the model. For instance, integrating 

GMLVQ with emerging technologies, such as blockchain for data privacy, edge computing for 

real-time analytics, and augmented reality for enhanced data visualization, could open new 

avenues for application and research. By addressing these future research directions, the field can 

further improve the theoretical understanding and practical applications of GMLVQ models, 

contributing to their evolution and effectiveness in addressing complex classification challenges. 
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5. Methodology for Intelligent Support in Manufacturing Process 

Selection   

This chapter introduces the use of GMLVQ algorithms to optimize manufacturing process 

selection. The proposed method is exemplified in selecting the optimal polymer processing 

method in the prevailing conditions of technological capabilities, domain expert knowledge, and 

sustainability goals. The chapter begins with a problem description and introduces GMLVQ as 

and its capabilities in handling complex and high-dimensional data typically of today’s complex 

manufacturing landscapes. The chapter devolves into GMLVQ-based methodology for intelligent 

selection of polymer processing methods, showcasing critical components including data 

collection and preprocessing, model training, and output evaluation. The methodology’s 

performance is compared with Support Vector Machine, a comparable peer methodology for 

intelligent selection of manufacturing processes that similarly handles non-linear complex data. 

The chapter describes an experimental setup that involves hyperparameter optimization to 

identify the optimal activation function and regularization techniques. The chapter shows that the 

application of GMLVQ for manufacturing process selection demonstrates substantial promise, 

particularly in its ability to achieve high accuracy and efficient prototype learning of the complex 

selection parameters. The model's robust performance, highlighted by 100% accuracy in the 

tested dataset, emphasizes its potential to effectively classify complex manufacturing processes, 

especially when coupled with advanced solver techniques such as BFGS optimization, Swish 

activation function, and Elastic-Net regularization. The chapter includes limitations of the study 

and future research directions.   

5.1. Problem description and the GMLVQ algorithm 

Process selection is essential to modern manufacturing systems, with far-reaching consequences 

for productivity, product quality, and competitiveness. Producers have to contend with complex 

process options for specific material properties, design requirements, and production quantities 

in the diversified industrial environment of the modern era. While such choices have been based 

on specialized experience and expertise in the past, the heightened complexity of manufacturing 

environments now demands more systematic and data-based methods. As manufacturing 

technologies continue to develop with high-speed innovation in traditional and additive 

processes, the capability to quantitatively assess and choose the best process has grown more 
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critical. This problem is compounded by the dynamic interplay between human consideration 

factors in decision-making and technical variables, suggesting the need for intelligent, adaptive 

multiple information source decision support systems to base process selection decisions. 

Recent developments in artificial intelligence provide promising solutions for this 

problem, and machine learning algorithms have played an essential role in developing decision 

support systems. GMLVQ is one of those algorithms that has excelled because it can learn and 

weigh the importance of different features adaptively. This capability is crucial in manufacturing 

environments where decisions must consider the many interrelated factors and uncertainties 

inherent in high-dimensional data. GMLVQ extends the classical Learning Vector Quantization 

framework by incorporating a relevance matrix that transforms the feature space (Mumali & 

Kałkowska, 2025). This extension of metric learning effectively captures correlation and 

similarity on varying scales of multiple process parameters. It thus offers a strong foundation for 

manufacturing process classification and optimum selection. Such a feature is especially 

beneficial in polymer processing, where subtle differences in material behavior or production 

conditions can significantly impact the final product. 

This study presents a new decision aid that utilizes GMLVQ's capability to select the 

appropriate processing technology of a chosen plastic that best suits blow molding, injection 

molding, or rotation molding. By fusing large-scale information processing and knowledge 

related to specialties, our GMLVQ-based system attempts to overcome some of the constraints of 

conventional selection techniques. The proposed method can make decision-making more 

precise, optimized, effective, and efficient, and lead to high-quality, sustainable production 

processes. 

The choice of polymer processing techniques exemplifies the suggested model. Various 

processing technologies characterize the polymer production environment, each with its own 

product needs and production objectives to achieve. Blow, injection, and rotational molding 

stand out by their distinctive features and extensive industrial use. However, selecting the most 

suitable approach is a complex decision-making issue that directly influences production 

efficiency, product quality, and cost-effectiveness. There are some benefits and inherent 

limitations to all these polymer processing processes. Blow molding is well adapted to producing 

hollow products and containers, injection molding to manufacture complex parts with high 

reproducibility for large-volume production, and rotational molding to achieve design flexibility 
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and economy for medium-volume production runs. The selection process must, therefore, weigh 

a set of competing considerations that include material properties, design complexity, production 

volume, and cost factors. 

The combination of technical and subjective human parameters makes the task even more 

complex. The traditional decision-making methods that are used universally across most 

disciplines and industries depend, to a large extent, on the recommendations and analysis 

provided by specialists, or they may also adhere to naive and often ill-informed rules of thumb. 

This very particular type of methodology is susceptible to significant errors and illusions due to 

frequently disregarding the widespread and complex range of factors present in decision-making. 

These factors have high levels of heterogeneity with complex technical information that could 

require specialized knowledge and prevalent cognitive biases that distort human judgment. These 

factors can collectively lead to inefficient decision-making that fails to reflect the best possible 

line of action. Considering such deficits, it is clear that a paradigm shift to embracing more 

systematic and fact-based decision-making is critical to dealing with such issues effectively. 

Such a shift would allow decision-making with adequate regard to the wide-ranging expertise in 

concerned areas, coupled with the input of a detailed objective evaluation of all concerned 

variables. 

The systematic review in section 4 unveiled that GMLVQ uses a full matrix incorporating 

pairwise correlations of used dimensions with the following form: 

 

𝑑𝛬 (𝒘, 𝜉)  =   (𝜉 − 𝒘)𝑇 𝛬 (𝜉 − 𝒘)   (5.1) 

 

In the metric equation 5.1 above, 𝛬 is an 𝑁 ×  𝑁 matrix, 𝜉 is a data point, 𝒘 denotes the weight 

space. In LVQ, a cost minimization function serves as the learning approach as depicted by 

equation 5.2 below:  

 

∑ Φ (
𝑑𝐽

𝜆−𝑑𝐾
𝜆  

𝑑𝐽
𝜆+ 𝑑𝐾

𝜆 )𝑖     (5.2) 

 

In the equation 5.2 above, Φ represents a monotonically increasing function, while the distance 

of the data point 𝜉𝑖 from the nearest prototype 𝒘𝐾  with a similar class label 𝑦
𝑖
 is denoted by 𝑑𝐽

𝜆
, 
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which equals to 𝑑𝜆
(𝒘𝑱, 𝜉). By contrast, the distance of the data point 𝜉𝑖 from the nearest 

prototype 𝒘𝐾  with a different class label than  𝑦
𝑖
 is denoted by 𝑑𝐾

𝜆
, which equals to 𝑑𝜆

(𝒘𝑲, 𝜉).    

The similarity measure in the metric form shown by equation 5.2 above holds if 𝛬 is positive, 

which can be achieved by substitution 𝛬  with ΩΩ𝑇
. An assumption is made that Ω is symmetric, 

given the symmetric square root of 𝛬 equals Ω2
 exists. The equation for GMLVQ is, therefore, 

derived by computing the derivatives of the cost minimization function of LVQ with respect to 𝒘 

and Ω. 

 

∆𝐰J = α1. Φ́(μ(ξ)). μ+(ξ). ⋀. (ξ − 𝐰J)    (5.3) 

∆𝐰K = α1. Φ́(μ(ξ)). μ+(ξ). ⋀. (ξ − 𝐰K)                   (5.4.) 

∆𝛺𝑙𝑚 = −𝛼2. 𝛷́(𝜇(𝜉)). (𝜇+(𝜉). ([Ω(𝜉𝑚 − 𝑤𝐽,𝑚). [𝛺(𝜉 − 𝑤𝐽)]
𝑙
) − 𝜇−(𝜉). ((𝜉𝑚 −

𝑤𝐾,𝑚). [𝛺(𝜉 − 𝑤𝐾)]𝑙))       (5.5) 

  

Figure 5.1 below is the proposed methodology for selecting manufacturing processes based on 

GMLVQ algorithms.  

 

Figure 5.1. Methodology for manufacturing process selection based on GMLVQ 

Source: Own study 

 

As shown in Figure 5.1 above, the proposed methodology uses a three-tier system to 

operationalize the GMLVQ algorithm. In the data collection section, a vector of process selection 
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parameters is constructed from heterogeneous data sources, including domain expert knowledge, 

formalized product requirements and specifications, and product design, taking into 

consideration environmental impact. These parameters are normalized and regularized in the 

GMLVQ model section before algorithm training.  The GMLVQ algorithm training involves 

quantification of the pairwise relations via an adaptive squared‑Euclidean metric whose 

relevance matrix is iteratively refined by minimizing the GMLVQ cost function; the optimization 

proceeds with a quasi‑Newton Broyden‑Fletcher‑Goldfarb‑Shanno (BFGS) solver technique that 

jointly adapts prototypes and the metric to converge toward class‑separating manifolds. The 

converged model feeds the output section, wherein unseen feature vectors are normalized, their 

prototype distances computed in the learned metric space, and subsequently assigned to 

manufacturing process classes.  Metrics such as overall accuracy, confusion‑matrix statistics, and 

guide a final hyper‑parameter optimization to provide a rigorously optimized, interpretable 

classifier that differentiates the optimal polymer process selection recommendation. 

5.2. Experimental setup for GMLVQ-based intelligent decision support 

5.2.1. Dataset description and preprocessing 

This study uses a dataset containing historical data on four polymer processing methods for 

manufacturing cylindrical and cubic plastic containers using thermoplastics. The four processes 

include blow molding, injection molding, rotational molding, and thermoforming. The dataset 

contains 200 samples involving the four processing methods and a total of 14 parameters, 

including size (m3), surface finish (R), tolerance, wall thickness, cycle time (s), precision, 

processing rate, labor cost, suitability for large runs, suitability for small runs, scrap generation, 

scrap recycling, and energy use. The list of selection parameters is not exhaustive. However, for 

this study, only 13 parameters are considered, as shown in the Figure 5.2 below.   
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Figure 5.2. Process selection criteria/parameters 

Source: Own study 

 

The dataset features a mix of numerical, ordinal, and categorical values. Size, surface 

finish, tolerance, wall thickness, and cycle time are numerical. Ordinals include precision, 

processing rate, labor cost, scrap generation, and energy use. Binary categorical parameters 

include large runs suitability, small runs suitability, and scrap recyclability.  Table 5.1 below 

shows data types for the various parameters used.  

 

Table 5.1. Manufacturing process selection parameters 

Source: Own study 

 Parameter Type Values 

1 Size Numerical  

2 Surface finish Numerical  

3 Tolerance Numerical  

4 Wall thickness Numerical   

5 Precision Ordinal High/Moderate/Low 

6 Processing rate Ordinal High/Moderate/Low 

7 Cycle time Numerical  

8 Labor cost Ordinal High/Moderate/Low 

9 Large runs suitability Binary categorical Yes/No 

10 Small runs suitability Binary categorical Yes/No 

11 Scrap generation Ordinal High/Moderate/Low 

12 Scrap recyclability Binary categorical Yes/No 

13 Energy use Ordinal High/Medium/Low 
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Preliminary data reprocessing was necessary to adjust several parameters to ensure 

compatibility with the GMLVQ model and the comparable algorithms. The dataset contained a 

mix of categorical, ordinal, and numerical variables, requiring transformation into a format 

suitable for machine learning models. Binary categorical variables (Large runs, Small runs, 

Scrap recycle)  were encoded using binary assignment Yes = 1and N = 0. Ordinal variables 

(Precision, Processing rate, Scrap generation, Energy use) were encoded as: High = 3, 

Moderate/Medium = 2, and Low = 1. Encoding ordinal variables ensured the classification 

models respect the inherent ranking relationships between levels. In addition, a target encoding 

was performed whereby the four polymer processing methods (Blow Molding, Injection 

Molding, Rotational Molding, Thermoforming) were mapped to numerical labels 0, 1, 2, and 3, 

respectively. Using 0-based indexing ensures that models can efficiently handle classification 

without unnecessary shifts in numerical space. Once encoded, the dataset, now consisting of 

numerical variables, was standardized using the Z-score normalization, computed as  𝑋′ =  
𝑋− 𝜇

𝜎
  

where 𝑋′ is the standardized feature, 𝜇 is the mean, and 𝜎 is the standard deviation. 

Standardization is necessary to ensure all parameters contribute to model learning and prevent 

dominance by high-magnitude variables like cycle time in seconds. The dataset was split into 

75% training and the remaining 25% portion for testing throughout the experiment. 

5.2.2. Tools and evaluation metrics 

The algorithm training and testing were conducted on a Lenovo ThinkPad P4s Generation 5 

laptop with an AMD Ryzen 7 PRO 8840HS processor, Radeon  780M Graphics, 3301 MHz, 8 

cores, and 16 logical processors. Python programming language version 3.13.2 was used to run 

normalization, regularization, and training and testing algorithms using Jupyter Lab version 

4.3.5.   

A total of 7 evaluation metrics were adopted for the model, including classification 

metrics, discriminative projection, feature distribution visualization, class-wise feature 

importance, relevance matrix, decision boundary, and execution time. The classification metrics 

used include accuracy as the primary performance metric and a confusion matrix to help 

visualize true and predicted class assignments and detect misclassification across the polymer 

processing methods. Classification metrics also include precision, recall, and F1-score to 
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understand class imbalance. A discriminative projection was plotted using the first two 

eigenvectors of the GMLVQ-transformed data. The class separation was visualized, with 

GMLVQ prototypes highlighted to show decision boundaries. Feature distribution before and 

after standardization was used to showcase the spread and skewness in both cases. The  GMLVQ 

relevance matrix (λ) was analyzed per class, highlighting the most discriminative features for 

each polymer processing method. A bar chart per class was generated, showing which features 

were most influential in decision-making. The diagonal of the GMLVQ relevance matrix was 

plotted to show the model's weighted different features and indicate redundant features with low 

weights. The final trained model’s decision boundary was plotted using the transformed data to 

show how well the model classifies different polymer processing methods. The execution time 

served as an evaluation metric during optimization to find the best activation function, 

regularization method, and solver type for the GMLVQ model.  

5.2.3. Model fit, optimization, and comparative models 

The Z-score normalization was implemented to ensure that all features had a mean of zero and a 

standard deviation of one, enhancing numerical stability and preventing the model from being 

biased toward high-magnitude variables. This preprocessing step was necessary to ensure each 

feature contributed equally to the distance calculations in the GMLVQ model. Different 

regularization strategies were explored to enhance generalization further and prevent overfitting, 

including L1 (Lasso), L2 (Ridge), and Elastic-Net. L2 regularization was the most effective in 

balancing feature weights, particularly in cases where strong correlations were present, ensuring 

that no single feature dominated the learning process.   

Hyperparameter tuning was performed using a grid search approach to determine the 

optimal configuration for the model. The selection of solvers was a key aspect of this process, as 

different solvers impact both computational efficiency and classification accuracy. Three solvers 

were evaluated: Waypoint-Gradient Descent, Adaptive-Moment Estimation (Adam), and 

Broyden-Fletcher-Goldfarb-Shanno (BFGS). The solver that achieved the best balance between 

accuracy and execution time was chosen for the final model. The activation function was also 

crucial in determining how feature transformations were applied within the model. Two 

activation types were assessed: Swish Activation, known for its smooth, non-monotonic 

properties that allow better gradient flow, and Sigmoid Activation, a traditional bounded function 

that ensures stable updates during classification. 
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Finally, the Relevance Matrix Regularization process was used to fine-tune feature 

importance weights, ensuring that the model effectively learned the most discriminative features. 

The optimal regularization method, whether L1, L2, or Elastic-Net, was selected based on 

classification accuracy and computational efficiency. This comprehensive approach to model 

optimization allowed the GMLVQ model to achieve high performance while maintaining 

interpretability and efficiency. To validate the effectiveness of the GMLVQ model, it was 

compared against the Support Vector Machine (SVM). SVM was used as a baseline model for 

classification using Radio Basis Function (RBF) kernel due to its ability to handle non-linearly 

separable data. L2 Regularization was applied to prevent overfitting and control model 

complexity. SVM’s accuracy and execution time were compared to the performance of GMLVQ. 

5.3. Results and analysis 

5.3.1. Correlation matrix, training, and hyperparameter optimization 

The correlation matrix provides a statistical overview of the relationship between different 

variables. Each value in the matrix depicts the Pearson correlation coefficient, which measures 

the linear association between a pair of parameters. The correlation values range from -1 to 1, 

where 1 signifies a perfect positive correlation, -1 indicates a perfect negative correlation, and 0 

implies a lack of correlation. Table 5.3 shows the correlation heatmap.  
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Figure 5.3. Process selection parameters correlation heatmap 

Source: Own study 

 

Based on the results depicted by the correlation heatmap in Figure 5.3 above, surface 

finish and wall thickness exhibit a strong negative correlation (-0.4336), indicating that one of 

these features might be redundant or that their relationship needs to be accounted for during 

model training. A strong positive correlation (0.4687) between size and wall thickness is 

exhibited. A moderate correlation is observed between surface finish and tolerance (0.3776). By 

contrast, cycle time and scrap generation show a weaker correlation (0.0459, indicating they hold 

independent discriminative power. Similarly, scrap recycling and processing time have a near-

zero correlation, suggesting that other factors likely drive them.  

The objective function used by the model is the generalized learning objective to learn 

the prototype’s position alongside the relevance matrix adopted in the distance function. Rather 

than using the conventional squared Euclidean distance, GMLVQ uses the modified version:  
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𝑑Λ(𝑤, 𝑥) =  (𝑥 − 𝑤)𝑇Λ (𝑥 − 𝑤) 

where Λ is a positive semi-definite matrix,  𝑤 the prototype and  𝑥 the sample. To optimize 

hyperparameters, this study evaluated three solver types, including waypoint gradient descent, 

Adam, and BFGS, against two activation functions, namely Sigmoid  𝑓(𝑥) =  
1

𝑒−𝛽.𝑥+1
 and Swish 

𝑓(𝑥) =  
𝑋

1+ 𝑒−𝛽.𝑥, which previous research shows performs better over typical 𝑅𝑒𝐿𝑈(Villmann et 

al., 2020). Three regularization techniques, L1, L2, and Elastic-Net, were also included to select 

the optimal combination.  Both Adam and BFGS reached an accuracy of 100%, while waypoint 

gradient descent reached 93% accuracy across the activation functions. Comparing execution 

time, the best-performing combination using waypoint gradient descent used sigmoid activation 

and elastic-net regularization with 93% accuracy. For this reason, waypoint gradient descent was 

dropped in favor of Adam and BFGS, which registered a 94% to 100% range. The execution 

time for the two algorithms was evaluated for the activation function and regularization type 

combination. Because of the slight variation in execution times, 3 iterations were performed, and 

the results are as shown in Figure 5.4, Figure 5.5, and Figure 5.6 below. 
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Figure 5.4. Iteration 1 of the Solver-Activation-Regularization combination 

Source: Own study 

 

As shown in Figure 5.4 above, Adam takes the longest execution time for Swish and 

Sigmoid activation functions in combination with  L1, L2, and elastic net regularization. By 

contrast, BFGS takes the least execution time in similar settings. The best performance is, 

however, seen in BFGS solver in combination with Swish activation function and elastic net 

regularization.  
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Figure 5.5. Iteration 2 of the Solver-Activation-Regularization combination 

Source: Own study 

 

Similarly, the second iteration as shown by Figure 5.2 above shows that Adam takes the 

longest execution time for Swish and Sigmoid activation functions in combination with  L1, L2, 

and elastic net regularization. On the other hand, BFGS takes the least execution time in similar 

settings.  The best performance is again observed in the BFGS-Swish-Elastic net combination.  



130 
 

 

Figure 5.6. Iteration 3 of the Solver-Activation-Regularization combination 

Source: Own study 

 

The third iteration, as shown in Figure 5.6 above yielded a similar trend to the first two 

iterations. The average execution time for the 3 iterations was computed, and as shown by Table 

5.2 below, which indicates the  BFGS-Swish-Elastic-net as the winning combination of GMLVQ 

parameters.  
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Table 5.2: Accuracy and execution time for solver-activation-regularization combination 
    Iteration 1 Iteration 2 Iteration 3 Average 

   Solver  Activation  Regularization  Accuracy  Time (sec)  Time (sec)  Time (sec) Time 

(sec) 

  Adam Swish  L1 94% 0.3645 0.3643 0.356 0.3616 

  Adam Swish  L2 94% 0.2838 0.2927 0.2998 0.2921 

  Adam Swish  Elastic-net 94% 0.2627 0.2933 0.2709 0.2756 

  Adam Sigmoid L1 96% 0.2604 0.2347 0.2445 0.2465 

  Adam Sigmoid L2 96% 0.2348 0.2611 0.2365 0.2441 

  Adam Sigmoid Elastic-net 96% 0.2507 0.2267 0.2426 0.2400 

  BFGS Swish  L1 100% 0.2175 0.2264 0.2086 0.2175 

  BFGS Swish  L2 100% 0.2325 0.2049 0.2107 0.2160 

  BFGS Swish  Elastic-net 100% 0.2163 0.2261 0.2017 0.2147 

  BFGS Sigmoid L1 100% 0.2659 0.2304 0.2348 0.2437 

  BFGS Sigmoid L2 100% 0.2438 0.2601 0.2436 0.2492 

  BFGS Sigmoid Elastic-net 100% 0.2604 0.2308 0.2585 0.2499 

Source: Own study 

 

Based on the results in Table 5.2 above, further analysis is performed using the optimized 

hyperparameters, and the confusion matrix is obtained as shown in the Figure 5.7 below.  
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Figure 5.7. Confusion matrix 

Source: Own study 

 

As shown in Figure 5.7 above, the 4 × 4 confusion matrix reveals a perfectly diagonal 

outcome: all 50 test observations were assigned to their correct manufacturing process class,  

thermoforming with a score of 12/12, rotational molding with a score of 13/13, injection molding 

with a score of 12/12 and  blow molding with a score of 13/13, and zero off‑diagonal entries. As 

a result, every standard performance metric reaches its theoretical optimum with an overall 

accuracy of 100%, macro‑averaged precision of 100%, macro‑averaged recall of 100%, 

macro‑averaged F₁  of 100, and Cohen’s κ constat of = 1.000.  
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The BFGS-Swish-Elastic-net combination produced a feature importance heatmap show 

in and Figure 5.8 below.  

 

Figure 5.8. Feature importance heatmap 

Source: Own study 

 

The feature‑relevance heatmap produced by the GMLVQ relevance matrix is strikingly 

unimodal, as shown in Figure 5.8  above.  Surface finish (Ra) dominates with a normalized 

importance of 1.0, whereas every other attribute, even cycle time(s), which is the next most 

relevant, is at 4.2 ×  10⁻⁴,  a value more than three orders of magnitude below it. The remaining 

features are clustered in the 10⁻⁶ to 10⁻⁷ range.  Because all inputs were z–score–standardized 

before training, these relevance values directly express how strongly the adaptive 

squared‑Euclidean metric must stretch or compress each axis to achieve perfect class separation.  

The unscaled five-number summaries reveal two distinct groups of features. Continuous, 

wide-range variables (Size, Surface finish, Tolerance, Wall thickness, and Cycle time) are highly 

right-skewed. For instance, Cycle time stretches from 24.6 s to an extreme 1194s, with its upper 

quartile already four times the median, indicating a long-tail of unusually slow cycles. Size 
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shows a similar pattern: while half the parts fall below 4 m³, the largest part (18.7 m³) is nearly 

five times the 75th-percentile, suggesting occasional out-of-scale products that could dominate 

distance-based learning if left unstandardized. Surface finish (Ra) spans more than an order of 

magnitude (16 µm–500 µm) and, with a median (105 µm) well above the lower quartile (49 µm), 

reflects an asymmetric distribution skewed toward rougher surfaces. Tolerance and 

wall thickness exhibit milder but still noticeable skew; maxima are roughly three and two times 

their respective upper quartiles, showing that a few precision-sensitive or thick-walled parts sit at 

the fringes of the dataset. The remaining eight variables are coarse, ordinal indicators (values 0 -

3) whose interquartile ranges collapse to single integers. For Precision, Processing rate, 

Labor cost, Scrap generation, and Energy use, the first quartile equals the minimum, signaling 

that at least 25 % of observations occupy the base level. At the same time, medians lie at level 2, 

implying a symmetric climb to “moderate” values. Large runs and Small runs reveal a classic 

dummy-variable split: both have zeros at Q₁ and ones at Q₃, confirming binary usage. Finally, 

Scrap recycling stands out with a hard floor of zero and a Q₃ of one, indicating that three-

quarters of records report no recycling at all. These disparate scales and skewed distributions 

underscore why standardization is essential before feeding the data into metric-based algorithms 

such as GMLVQ. The feature distribution before and after standardization is summarized by 

Figure 5.9 below. 
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Figure 5.9. Feature distribution before and after standardization 

Source: Own study 

 

As shown by Figure 5.9 above, every feature oscillates within a comparable, unit‑free 

band of roughly ±3 standard deviations after z-scoring, erasing the multi‑order‑of‑magnitude 

disparities seen in the raw data while preserving each attribute’s intrinsic shape.  The 

heavy‑tailed continuous variables (Size, Surface finish, Tolerance, Wall thickness, and 

Cycle time) all show medians clustered modestly below the grand mean (‑0.15 𝜎 𝑡𝑜 ‑0.47 𝜎) 

with lower whiskers extending to about −1.6 𝜎 and upper extremes reaching between +1.7 σ 

(Surface finish) and +3.4 σ (Size), confirming that a handful of particularly large or slow‑cycle 

parts still register as outliers but no longer dominate the numeric scale.  The ordinal, 0 - 3 

process indicators now occupy symmetric, integer‑like positions: their first quartiles lie at either 
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−1.01 σ or −1.42 σ (encoding the modal “0” category), their medians hover within ±0.13 σ 

(reflecting a mid‑level “1” or “2”), and their upper quartiles reach +0.99 σ to +1.29 σ, mirror 

images of the lower tails, thereby retaining categorical structure yet fitting neatly into the same 

variance budget as the metric features.  In short, standardization equalizes feature influence for 

distance‑based learning while still flagging rare, extreme observations through moderate positive 

or negative z‑scores rather than overwhelming raw magnitudes. 

The BFGS solver, Swish activation function, and elastic-net regularization combination 

achieve 100% classification with the GMLVQ model. This result indicates that the learned 

prototypes and relevance matrix carve out decision regions that perfectly separate the four 

manufacturing‑process classes on the held‑out test set.  The BFGS optimizer accelerates 

convergence toward a local optimum of the GMLVQ cost, and Swish’s smooth, non‑monotonic 

activation furnishes additional curvature that helps fine‑tune prototype positions. The elastic‑net 

regularization, meanwhile, keeps individual relevance weights from exploding while still 

allowing sparsity.  Combined, these choices extracted a metric space where every test instance 

lies closest to the correct class prototype.  The optimized model accuracy is as shown by Figure 

5.10 below.   

 

 

Figure 5.10. Optimized model accuracy 

Source: Own study 
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The diagonal of the learned relevance matrix is almost singularly dominated by surface 

finish (Ra), whose weight (0.9996) dwarfs every other attribute by at least three orders of 

magnitude. The only secondary signal the model retains is a faint trace for cycle 

time (4.2 × 10⁻⁴), while the remaining eleven features, including geometric measures such as 

size, wall thickness and tolerance, as well as all cost-, volume- and sustainability-related 

indicators,  sit in the 10⁻⁶ range and are therefore functionally ignored when the adaptive 

squared-Euclidean metric computes distances.  

 

 

Figure 5.11. Relevance matrix diagonal 

Source: Own study 

 

5.3.2. Comparison with Support Vector Machines (SVM) 

SVM and GMLVQ are supervised machine learning algorithms for pattern recognition and 

classification tasks. They are designed to identify the decision boundaries that best separate 

classes in the feature space based on labeled data. This study involved comparing the accuracy 

obtained on the same dataset using a similar normalization approach and applying regularization. 

Table 5.3 and Table 5.4 below shows the accuracy of the two algorithms. 
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Table 5.3: SVM accuracy 

 precision  recall f1-score support 

0 1.00 1.00 1.00 13 

1 0.80 1.00 0.89 12 

2 1.00 0.77 0.87 13 

3 1.00 1.00 1.00 13 

accuracy    0.94 50 

macro avg 0.95 0.94 0.94 50 

weighted avg 0.95 0.94 0.94 50 

     

SVM Accuracy: 94%    

 Source: Own study 

 

As indicated in Table 5.3  above, the support for each class is evenly distributed (12 -13 

parts per class), so the overall accuracy of 94 % (47/50 correct) reflects only three 

misclassifications. The SVM is flawless on the two extreme classes, classes 0 (Blow Molding) 

and 3 (Thermoforming), where precision, recall, and 𝐹₁ all equal 1.00, indicating that these 

categories have well-separated margins in the kernel space. The errors are confined to the middle 

pair. For class 1, Injection Molding, the model never misses a true instance (recall = 1.00) but 

occasionally over-predicts the label (precision = 0.80), implying that a few parts from other 

processes sit just inside the class-1 decision boundary. Class 2, Rotational Molding, shows 

perfect precision (1.00) yet reduced recall (0.77), meaning three true rotational cases were 

absorbed by neighboring classes, most likely by the more inclusive class 1, given its 

false-positive pattern. Macro- and weighted-average metrics (precision ≈ 0.95, recall ≈ 0.94) 

mirror the overall accuracy, confirming that class imbalance is negligible. In short, the SVM 

captures the gross structure of the data but struggles to carve a clean separating surface between 

the two mid-spectrum polymer processing methods, hinting at feature overlap that could be 

mitigated by additional discriminators or a more flexible kernel. 

 

Table 5.4: GMLVQ accuracy 

 precision  recall f1-score support 

0 1.00 1.00 1.00 13 

1 1.00 1.00 1.00 12 
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2 1.00 1.00 1.00 13 

3 1.00 1.00 1.00 13 

accuracy    1.00 50 

macro avg 1.00 1.00 1.00 50 

weighted avg 1.00 1.00 1.00 50 

     

GMLVQ Accuracy: 100%    

Source: Own study 

 

The classification report in Table 5.4  shows a perfect score for all test samples on a class-by-

class basis. All the polymer processing methods were assigned to their correct category, yielding 

precision = recall = F₁ = 1.00 for every class and an overall accuracy of 100%. The result 

indicates that the GMLVQ model constructed prototypes, and the adaptive metric separated all 

four classes without a single overlap in the test fold. 

5.4. Discussion and summary 

5.4.1. Interpretation and analysis of the results 

The correlation matrix presented above outlines the relationships between various process 

parameters. The correlations influence the suitability of the data for the GMLVQ algorithm and 

its ability to provide valuable insights for classification and pattern recognition. The correlation 

analysis, as depicted in Figure 5.3, indicates that the data was well-suited for the GMLVQ. The 

results showed several strong or moderate correlations, particularly between size and wall 

thickness and surface finish and tolerance, which provide a strong foundation for prototype 

learning in GMLVQ. Given GMLVQ’s ability to take advantage of the relevance matrix to assign 

appropriate weights to the features based on their correlation with class boundaries, parameters 

such as size, wall thickness, surface finish, and tolerance were well aligned with the model’s 

ability to distinguish classes on their features. Weakly correlated parameters such as precision 

and energy use could not significantly impact the prototype learning but could still be used in 

determining the decision boundaries. The data was highly suitable for GMLVQ, with clear 

patterns that the model could learn. The relationships between parameters guide the learning 

process, effectively allowing GMLVQ to separate classes based on their most relevant inherent 

features. 
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The hyperparameter optimization results indicated higher performance using Swish than 

Sigmoid activation function. Both Swish and Sigmoid achieved 100% accuracy with Adam and 

BFGS solver types. However, Swish registered the lowest execution time. This result is in line 

with previous research that demonstrated the superiority of Swish over Sigmoid and ReLU as 

activation functions for GLVQ (Villmann et al., 2020). Swish was shown to outperform ReLU 

and sigmoid, achieving higher accuracy for appropriate parameter choice, especially about 

convergence performance (Villmann et al., 2020). The Swish function's non-monotonic nature 

allows it to preserve information flow better by controlling the amount of non-linearity dictated 

by the dataset and the algorithm complexity, thus avoiding the vanishing gradient problem 

(Dubey et al., 2022). Additionally, it tends to converge faster than sigmoid, especially in more 

complex scenarios, and has been used extensively in recent studies (Alhassan & Zainon, 2021; 

Allu & Padmanabhuni, 2022, 2023; Fatima & Pethe, 2022; Jinsakul et al., 2019; Mercioni & 

Holban, 2020). Therefore, Swish provided a better learning dynamic for the GMLVQ model by 

addressing the vanishing gradient problem that could be problematic with the sigmoid.  

Furthermore, the hyperparameter optimization results revealed that Adam and BFGS 

optimizers achieved 100% accuracy across all activation functions. Previous studies describe 

Adam as a stochastic optimizer that dynamically adjusts learning rates while adapting the 

parameters in real time for excellent results (Kingma & B, 2015; D. Yi et al., 2020). On the other 

hand, BFGS is described as a quasi-Newton method that demonstrates superior performance by 

ensuring convergence to an optimal solution (Ibrahim et al., 2014; J. Y. Wu et al., 2020). Based 

on the observation revealed from hyperparameter optimization, Adam and BFGS are well-suited 

for the classification task. Both solver types can handle the complexity of the GMLVQ model 

and produce high-accuracy solutions. However, introducing execution time as an evaluation 

metric saw BFGS considered as the sole solver type for the model, given its high accuracy 

coupled with low execution time.  

Regularization is significant when training machine learning models and algorithms such 

as the GMLVQ, as it allows for good generalization on unseen data. Three regularization 

techniques, including L1, L2, and Elastic-Net (Friedman et al., 2010; Santos & Papa, 2022), 

were used during hyperparameter optimization. L1 regularization focuses on feature selection by 

setting some coefficients to 0, while  L2 reduces the magnitude of coefficients without setting 

them to zero, improving generalization (Friedman et al., 2010). Elastic-net regularization 
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combines the advantages of L1 and L2 and is described as a compromise between L1 and L2 

penalties (Friedman et al., 2010). The hyperparameter optimization results indicated the best 

accuracy and execution time with the model parameters.  

BFGS solver type is one of the most powerful algorithms for solving unconstrained 

optimization problems (Guerrout et al., 2018). Existing literature points out that BFGS  has the 

advantages of meeting the requirements for conjugate direction and being the most numerically 

stable quais-Newton algorithm (Xue et al., 2022). In this study, BFGS is preferred for its fast 

convergence and little iteration, which are inherent features ideal for efficiently processing large 

amounts of high-dimensional data. Being a variation of the Quasi Newton optimization method, 

BFGS approximates the inverse of the Hessian matrix, leading to quicker convergence than the 

traditional gradient descent methods. As a result, the model can better traverse in the solution 

space, reducing the number of iterations to solve the optimal solution. The GMLVQ model seeks 

to optimize prototypes and the relevance matrix to minimize classification error. The speed and 

robustness of BFGS are especially useful in the case of intricate interdependencies among 

features and classes. This efficiency in optimizing the learning process directly contributes to the 

100% accuracy achieved.  

The Swish activation function is a key contributor to the improved performance of the 

GMLVQ model, particularly in non-linearity and gradient flow. Swish introduces a smooth, non-

monotonic nature that enhances the model's ability to learn complex decision boundaries. In 

contrast to common activation functions such as sigmoid or ReLU, Swish addresses the 

constraints of the vanishing gradient issue and the dying ReLU issue, offering uninterrupted 

gradient propagation, which aids the model in learning optimally, particularly within the 

prototype learning stage of GMLVQ. This smooth gradient flow is essential to GMLVQ’s 

prototype-based learning. It updates the relevance matrix and prototypes better, with better class 

separation and improved convergence. Swish also accelerates learning because it gives smoother 

gradients than sigmoid, which results in faster convergence and ultimately produces 100% 

accuracy in the model. By allowing the model to handle non-linear class boundaries more 

effectively, Swish allows GMLVQ to learn highly accurate and well-separated prototypes, such 

that the model generalizes well on unseen data. 

The Elastic-Net regularization combines the best of both the L1 and L2 regularization 

techniques and, therefore, is highly effective in preventing overfitting without compromising 
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feature selection and shrinking coefficient values. For the GMLVQ model, Elastic-Net helps to 

find a compromise between feature selection with L1 regularization and shrinkage with L2 

regularization so that the model can retain only the most beneficial features and not get unduly 

bogged down by useless ones. This is particularly crucial in GMLVQ, where correct prototypes 

and a proper distance metric are very important for appropriate classification performance. 

Elastic-Net, through the use of L1 and L2 regularization, effectively controls the complexity of 

the model by properly optimizing the relevance matrix and prototypes without overfitting noisy 

samples. Also, this balanced regularization allows GMLVQ to generalize well so that the learned 

prototypes are not over-specific to the training data but capture the actual class structure. This 

ability to generalize is among the reasons why Elastic-Net is to be blamed for the model's 100% 

accuracy. It prevents the model from memorizing non-useful information and focuses on the 

underlying relationships in the data. The combination of BFGS, Swish, and Elastic-Net 

regularization has proven to be a highly efficient optimization framework for the GMLVQ 

model, with 100% accuracy and best performance. 

The BFGS solver accelerates convergence, enabling the model to optimize prototypes 

and the relevance matrix effectively and quickly, even in high-dimensional, complex data. The 

Swish activation function enhances the optimization process by enabling smooth gradient flow, 

avoiding the vanishing gradient issue, and enabling the model to better learn non-linear 

boundaries between classes. Swish's smooth, non-monotonic nature enables quicker convergence 

and ensures the model can produce highly precise class separations. Lastly, Elastic-Net 

regularization prevents overfitting by combining L1 and L2 regularization so that GMLVQ can 

focus on the most valuable features while ensuring that the learned prototypes can be generalized 

to new data. These components work synergistically to construct a robust, effective, and accurate 

GMLVQ model capable of handling prototype-based classification tasks. This is a perfect 

solution to solving complex pattern recognition and classification problems. The feature 

importance values and outputs of the confusion matrix provide a clear image of the performance 

and action of the GMLVQ model. The confusion matrix demonstrates a perfect classification 

with 13 accurate predictions for each class (Blow Molding, Injection Molding, Rotational 

Molding, and Thermoforming) and 0 misclassifications for each class, providing a perfect 

accuracy rate of 100%. 
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This outcome confirms that the model successfully separated the classes using the 

identified prototypes, which efficiently captured patterns in the data without confusion or conflict 

between different classes. Alternatively, the feature importance values give insight into the 

direction of the attention of the model during training. Significantly, the surface finish is the top-

ranked feature at 0.9995571, which indicates its key role in class discrimination. This aligns with 

its high level of importance in manufacturing operations, where surface quality is often a prime 

discriminator. The other features, such as size, tolerance, wall thickness, and precision, have 

extremely low feature importance values ranging from 3.4e-06 to 2.7e-06, signifying that these 

variables were less critical in class boundary specification in this dataset. The relatively low 

importance values of parameters like cycle time, Processing rate, Labor cost, and others once 

again validate that even though they contribute to the model, they are not as loaded in classifying 

the data as surface finish. These findings show the model's ability to classify the data accurately. 

It highlights the paramount role of surface finish in decision-making, presenting informative 

information regarding which characteristics are most significant in effective class separation for 

this manufacturing process.  

5.4.2. Comparison with SVM and theoretical and practical implications 

GMLVQ and SVM are two supervised pattern recognition and classification algorithms of 

learning. Based on labeled inputs, they must design the best decision boundaries for class 

separation in the feature space. The two methods differ in solving classification 

issues based on alternate principles, learning mechanisms, and mathematical bases. While 

GMLVQ is a prototype-based learning classifier that learns prototypes of every class as a 

function of the distance between an instance and such prototypes, SVM is a boundary-based 

learning classifier and strives to learn the optimal hyperplane that separates instances from 

disparate classes in feature space. The optimal hyperplane is regarded as maximizing the margin, 

or the separation between the closest points of the two classes, the so-called support vectors. The 

difference between SVM and GMLVQ provides adequate explanations concerning the 

advantages and disadvantages of the two models for classification performance.  

The SVM model has 100% accuracy, which is superior to that of GMLVQ in terms of 

total accuracy. The class 0 and class 3 precision, recall, and F1-scores are all perfect (1.00) in 

both models, but SVM is imperfect in class 1, with a precision of 0.80 and an F1-score of 0.89. 

This outcome indicates that while SVM is strong in most cases, it is not as strong in handling 
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class 1 and thus results in some misclassifications. On the other hand, GMLVQ achieves perfect 

performance on all classes with a 1.00 precision, recall, and f1-score for each class, giving a total 

accuracy of 1.00, indicating that GMLVQ would perfectly classify all instances. The weighted 

average and macro average of GMLVQ also show its consistency by having F1-scores of 1.00 

for all classes, proving its ability to generalize perfectly to unseen data. As such, the GMLVQ is 

better equipped to handle class imbalances or uncertain class boundaries because it fared better 

even when it had a class that SVM did not handle well. GMLVQ's capability via prototype-based 

learning and relevance matrix adjustment also made its classification error-free. For SVM, 

although it was correct in all aspects except precision on class 1, this shows its inability to 

optimize all classes uniformly. Lastly, while SVM is an effective classifier, GMLVQ offers a 

superior and optimally generalized solution, especially in complicated or fine-grained class 

separability cases.  

The theoretical value of this study lies in the comparative analysis of the GMLVQ model 

and SVM, both machine learning models, in classification problems. The study underscores the 

importance of prototype-based learning in recognizing complex, non-linear relationships in high-

dimensional data. With the addition of BFGS optimization, Swish activation, and Elastic-Net 

regularization, GMLVQ is shown to have more extraordinary adaptability and generalization 

performance with a 100% accuracy rate across all classes, against SVM's 94% accuracy. This 

observation suggests that GMLVQ with adaptive prototypes using relevance matrices can better 

deal with class imbalance and intricate decision boundaries. As such, the model can be more 

stable in some cases. Theoretical also provides more understanding of why it is beneficial to 

have Swish activation being non-monotonic and smooth to enhance learning in prototype-based 

approaches by preventing gradient vanishing issues and enhancing learning rate and 

convergence. Furthermore, the research highlights the necessity of Elastic-Net regularization in 

striking a balance between feature shrinkage and selection so that the model is not overfitted but 

still preserves the importance of salient features. These findings are contrary to the traditional 

application of boundary-based learners like SVM, and they offer a theoretical explanation for 

enhancing prototype-based models capable of handling non-linear decision boundaries and 

complex datasets. 

Practically, the findings of this study are of great potential value to industries and 

applications wherein the accuracy of classification and generalizability are paramount. The fact 
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that GMLVQ can attain perfect accuracy over all classes in this research demonstrates that it can 

be used for applications such as classifying data and pattern recognition, whose classifying errors 

will be very costly. For example, in the diagnosis of diseases or production in manufacturing, 

wherein every class can be a group of diseases or products, respectively, 100% accuracy in 

classifying new unseen instances can have tangible impacts on reliability and efficiency. Further, 

GMLVQ employs BFGS optimization, Swish activation function, and Elastic-Net regulation is a 

sign that GMLVQ is well-suited to deal with high-dimensional data, a bane in most real-world 

datasets. In practice, this would mean that GMLVQ can be utilized in applications such as 

recognition of images, forecasting in the stock market, and processing of bioinformatics, wherein 

data is complicated and non-linear. Further, the research demonstrates that it matters to select a 

model regarding the particular dimensions of a dataset in question, wherein GMLVQ offers a 

more generic solution to datasets with non-separable classes or higher-order feature interactions, 

which is worth it. Lastly, the findings have direct practice implications for users who want to 

implement high-performance classifying models that will be good fits for training instances and 

transfer to real-world cases. 

5.4.3. Limitations of the proposed GMLVQ model and future research direction 

Even though the proposed strategy demonstrates promising outcomes through the GMLVQ 

model application when selecting the manufacturing process, several constraints must be 

considered. The initial constraint is that the dataset is minimal, with 50 samples per class for four 

manufacturing processes. A sample size of this magnitude may not sufficiently represent the 

underlying variability within each class, potentially limiting the generalizability of the model's 

findings. With such a small dataset, there is an increased risk of overfitting, where the model 

may learn to classify the training data with high accuracy but fail to generalize well to unseen 

data despite the perfect performance in this instance. Second, the confusion matrix reports that 

GMLVQ was 100% accurate; this finding might be overstated due to the small dataset and 

because small-data-trained models tend to show overstated accuracy values. 

Furthermore, although feature importance values reported that some manufacturing 

parameters, such as surface finish, were critical, with surface finish being dominant among them, 

overemphasis on some features by small data may be possible and losing some feature-feature 

interactions that would be very important with large and complicated datasets. The predominance 

of the surface finish in this case may also be case-specific. More research using large datasets 
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will have to be undertaken to check if such a correlation will be valid with other manufacturing 

conditions or if other features, such as wall thickness or cycle time, would dominate in different 

cases. 

In addition, GMLVQ's application of prototype-based learning with a relevance matrix 

can be sensitive to feature range and distribution in small datasets, as reflected through feature 

importance rankings with extreme weight disparities. As good as it is here with this model's 

performance being reported, such performance must be interpreted cautiously because it remains 

to be seen if it will generalize to other datasets with diverse samples and feature interactions. 

Therefore, although GMLVQ offers a promising solution to a selection of manufacturing 

processes, its application is limited by dataset size, and testing on more diverse and more 

extensive datasets would make it more robust to establish applicability in real-world settings. 

Future research using GMLVQ in manufacturing process selection must overcome 

current constraints and widen the range of applications of the technique to make it more 

generalizable and robust. The initial step is to examine the impact of using broader and more 

diverse datasets to test model performance. Using datasets with more extensive sample sizes and 

dimensionality can allow it to test GMLVQ generalizability more effectively in real-world 

applications, particularly in manufacturing operations with inherent variability. Second, future 

research must examine using time-series or multi-source datasets to more effectively simulate 

manufacturing operations that vary over time, since many variables would have changed with 

time or been subject to multiple information sources, e.g., sensors and working conditions. 

Another promising research direction would be to investigate hybrid approaches wherein 

GMLVQ would be integrated with other machine learning techniques, such as deep learning or 

ensemble techniques, to increase classification efficiency and resilience, particularly to difficult 

instances with overlapping classes or non-linear transformations. Explainable AI (XAI) 

techniques can be explored to make GMLVQ more explainable and see more transparently 

through what mechanisms prototypes and relevance matrices play in deciding to select a process. 

Further research can also thoroughly examine GMLVQ's applicability to large-scale 

manufacturing systems, with high-level real-time decision-making and model efficiency critical. 

Finally, testing other regularization techniques, for instance, Dropout, L2 regularization, or 

Bayesian regularization, on GMLVQ's generalization performance would provide crucial insight 

into how to prevent overfitting and increase model robustness in real-world applications with 



147 
 

noisy conditions. By concentrating on those areas, upcoming research will have enormous 

capability to increase GMLVQ's applicability and usability to manufacturing process selection to 

more diverse industries and to facilitate more effective and intelligent decision-making in 

complex industrial systems. 

In summary, the application of GMLVQ for manufacturing process selection 

demonstrates substantial promise, particularly in its ability to achieve high accuracy and efficient 

prototype learning. The model's robust performance, highlighted by 100% accuracy in the tested 

dataset, emphasizes its potential to effectively classify complex manufacturing processes, 

especially when coupled with advanced techniques such as BFGS optimization, Swish 

activation, and Elastic-Net regularization. While the results are promising, the study also 

acknowledges key limitations, including the small sample size of the dataset and the potential for 

overfitting, which calls for caution when generalizing findings to larger, more varied datasets. 

Furthermore, the dominance of certain features, such as surface finish, highlights the need for 

further investigation into the interactions between features in more diverse environments. Future 

research should focus on expanding the dataset, incorporating dynamic and multi-source data, 

and enhancing the interpretability and scalability of GMLVQ models to tackle real-world, high-

dimensional, and noisy data. Ultimately, this research sets the stage for more comprehensive and 

generalized applications of GMLVQ in manufacturing and other industrial domains, paving the 

way for more effective, data-driven decision-making in complex process optimization tasks.  
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6. Conclusions and Future Perspectives 

This dissertation's two research hypotheses (H1, H2) are positively verified. The empirical 

research findings indicate that subjective decision factors, including cognitive bias, groupthink, 

and personal preference, significantly affect the choice of manufacturing processes. The findings 

are unsurprising, as long-standing research has shown that human decision-making frequently 

involves cognitive biases caused by dependence on judgmental heuristics. The study shows that 

subjective decision factors, including cognitive bias, personal preference, and groupthink, 

adversely affect the manufacturing process and its outcomes, including increased rework, quality 

inconsistency, high waste generation rates, and extended lead times. These factors limit the use 

of domain knowledge by contributing to the failure to consider process complexity, alternative 

processes, and process variants. These findings verify the first hypothesis, which stipulates that 

subjective decision factors such as cognitive biases, personal preferences, and groupthink 

significantly contribute to the selection of inefficient manufacturing processes by limiting the use 

of domain knowledge in decision-making. The subjective degradation of the decision-making 

process of production management runs counter to modern manufacturing based on the concepts 

of Industry 4.0 and Industry 5.0. 

The second research hypothesis is also verified. The results of the synthesized literature 

strongly indicate the potential of intelligent methodologies to optimize the selection of 

manufacturing processes.  Practical experimentation involving selecting polymer processing 

methods using the proposed GMLVQ algorithm results in 100% accuracy compared to 94% 

derived from SVM. While these results require further verification with larger and diverse 

datasets, it remains evident that a GMLVQ-based intelligent methodology can optimize the 

selection of manufacturing processes. This observation verifies the second hypothesis, which 

postulates that an intelligent decision support methodology based on an improved generalized 

learning vector quantization neural network can optimize the selection of manufacturing 

processes. Such optimization of the production management decision-making process is in line 

with modern manufacturing, which is based on the concepts of Industry 4.0 and Industry 5.0. 

The future research should involve more extensive integration of GMLVQ with 

intelligent decision-support systems, focusing on selecting manufacturing processes. One of the 

objectives of future studies should be to address the significant challenges of scalability and 

robustness of GMLVQ in manufacturing process selection problems.  The model should be 
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thoroughly investigated by the use of more extensive and more diverse datasets, which will be 

used to determine their generalizability. The current research is based on small datasets with 

limited scope, thus limiting the model in capturing the complexity and variability found in large 

industrial settings. In particular, future studies should explore applying the GMLVQ model in 

large manufacturing systems, where decision-making speed is critical and models must process 

high-dimensional, noisy data efficiently. Furthermore, subsequent research must explore ways to 

create adaptive learning systems designed to evolve and refine their decision-making algorithms 

with knowledge acquired over time. Continuous updates are essential to ensure that such systems 

do not become stodgy and can react to new threats and opportunities.  

Another promising line of future research is the integration of hybrid models, blending 

GMLVQ with other state-of-the-art machine learning techniques such as deep learning, 

reinforcement learning, or ensemble techniques. Such hybrid methods will be able to solve even 

more complex decision issues, particularly in manufacturing operations with complicated 

interdependencies and non-linear connections. Moreover, it will be essential to justify GMLVQ-

based decision aid systems with more transparent and explainable interpretative AI approaches to 

make such systems more acceptable to broader trust and application in industrial practice. It will 

also be essential to continue to develop the HCI dimension to a point at which human factors 

such as human bias, groupthink, and human preference are appropriately integrated into the 

decision-making procedure in a way that will allow GMLVQ to function as a competent 

supporting decision aid to human decision-makers. Finally, it is possible to consider applying 

GMLVQ to industrial operations other than polymer processing and other sectors like aerospace, 

automotive production, and electronics manufacturing that require decision complexity and 

optimization priorities. Through these expanded avenues of research, GMLVQ could evolve into 

a more versatile, adaptable, and scalable solution for intelligent process selection across diverse 

industries 

This research has been conducted with the key aim of illustrating the tremendous and 

impressive potential that GMLVQ has as an intelligent decision-support tool. The GMLVQ 

model is especially beneficial to the complex task of optimizing the selection process of 

manufacturing processes. This premise becomes especially compelling when one considers the 

highly critical role played by two categories of information: that which is hard-data-driven and 

that which is subjectively contributed by human beings, both of which can play crucial roles in 
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influencing decision-making processes. This aligns with the vision of Industry 5.0, which 

emphasizes the integration of humans and machines for sustainable development. In this human-

centric approach, humans are at the center of decision-making, supported by intelligent tools and 

machines. Using an integration of empirical results with a carefully systematic and thorough 

review of previous methodologies, this research quickly illustrates how cognitive biases, agendas 

influenced by personal interests, and the groupthink phenomenon can significantly hamper the 

proper utilization of domain-specific knowledge. These significant obstacles ultimately result in 

inefficient manufacturing decisions that fail to achieve the desired standards of efficiency or 

productivity. The intervention and introduction of GMLVQ present a very appealing solution to 

these limitations because it expertly balances objective data and crucial human factors, allowing 

for the proper selection of the optimal manufacturing processes that may be available under any 

context. During this research, the GMLVQ model has shown a tremendously remarkable level of 

accuracy, registering a staggering 100% rate each time it performed activities involving the 

selection of manufacturing processes. This impressive achievement demonstrates its noteworthy 

capability to handle high-dimensional and noisy data and perform exceptionally well in decision-

making in real-world scenarios, where such complexities occur and pose very challenging 

difficulties. 

However, it is worth observing that although the findings obtained from the study are 

promising and offer a sense of reassurance, it is also worth noting that the study outlines several 

critical shortcomings that cannot be ignored. Among those shortcomings, one particular aspect is 

the relatively limited sample size of the dataset used, which can potentially provide opportunities 

for overfitting risks. This is a common challenge that generally arises in studies with limited 

data. In addition, the model's capacity to generalize well to more realistic and diverse industrial 

settings remains to be tested, mainly when using larger datasets and real-world manufacturing 

datasets that better mirror real-world instances found in the industry. 

In consideration of future studies, such areas of study need to focus on enhancing the 

model’s ability to integrate information from various sources, which would significantly increase 

its performance and scalability, thus making it more context-variable. In addition, there is an 

urgent need to focus on making the model more explainable to users, making it more 

straightforward to interpret its decision-making process. By venturing into these specific research 

areas, future studies can maximize the use of GMLVQ in decision-making systems.  This 
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maximized use would ultimately lead to the formulation of more accurate, objective, and 

strongly data-grounded methodologies for manufacturing process selection. This study plays a 

key role in closing the gap between subjective decision-making factors and fact-based methods, 

thus making a promising step forward to making more efficient and reliable selections of 

production processes while simultaneously solving the continuously updated industrial 

application challenges. 
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