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Abstract

The choice of the manufacturing process in an enterprise, as the result of the preceding
managerial decision-making process, is a key prerequisite for achieving the enterprise’s optimal
industrial efficiency, its sustainable development, and the quality of the product offered to the
market. The dissertation aims to develop and verify a methodology for intelligent support in
selecting manufacturing processes based on the Generalized Matrix Learning Vector
Quantization neural network, to alleviate subjective decision factors and leverage domain
knowledge in addition to sustainability goals and the product-specific design requirements.
Despite the existing body of work, there remains a lack of integrated decision support
approaches that holistically consider domain expertise, sustainability goals, technological
advancements, and evolving process capabilities in a dynamic manufacturing context. This
dissertation seeks to fill this research gap using a two-faced approach of understanding the
impact of cognitive and subjective decision factors on manufacturing process selection and
developing a methodology for intelligent support in selecting manufacturing processes based on
advanced neural networks. The research aims to understand and quantify how subjective decision
factors, namely cognitive biases, personal preference, and groupthink, interact with domain
knowledge to limit efficient manufacturing process selection using empirical evidence and to
develop an intelligent methodology that leverages advanced neural network techniques to
support optimal decision-making in manufacturing process selection. The research goal is
achieved by investigating the negative influences of cognitive and social factors on decision
quality in the selection of manufacturing processes and developing a methodology for intelligent
support in the selection of manufacturing processes based on Generalized Matrix Learning
Vector Quantization neural network. As such, the subject of the research is twofold; first, it
concerns the interplay between subjective decision factors and the use of domain knowledge in
manufacturing process selection, particularly in the era of Industry 5.0, where manufacturing is
re-imagined with a stronger focus on human-centric decision-making. Secondly, it concerns a
methodology for the intelligent selection of optimal manufacturing processes based on
Generalized Matrix Learning Vector Quantization neural networks. In the current state of
management theory and practice, decision-making is subordinated to subjective decision factors

such as cognitive biases, self-interested motives, and groupthink, which suppress the use of



professional domain knowledge and expertise. The existence of such a state of affairs was
confirmed in this dissertation through empirical research (chapter two of the dissertation), which
justified the first of the two main research hypotheses concerning the limitations of the decision-
making process in the selection of the manufacturing process. The research results show that the
aforementioned subjective factors significantly deprive the managerial decision-making process
of the proper use of professional domain knowledge, leading to poorer process selection and the
degradation of the decision. For the purpose of justifying the second, conceptual main hypothesis
of this dissertation, studies were conducted (presented in the subsequent three chapters) on the
application of an enhanced Generalized Matrix Learning Vector Quantization neural network,
which adapts to multidimensional, noisy, and heterogeneous production data, while
simultaneously integrating expert knowledge to assess and select the most appropriate
manufacturing processes objectively. In the first of the aforementioned conceptual research
chapters, the issue of the intelligent selection of production processes using artificial neural
networks, fuzzy logic, and genetic algorithms was presented. Next, the systematic examination
of the Generalized Matrix Learning Vector Quantization algorithm with improvements and its
applications for future production process selection was conducted. In the following chapters of
this dissertation, the applications of Generalized Matrix Learning Vector Quantization for
process selection with an experimental configuration were synthesized, along with an
explanation of the dataset used and comparisons with conventional approaches such as Support
Vector Machine. A detailed summary of the conclusions, findings, and areas for future research is
devoted to the final part of the dissertation. The general conclusion was formulated as an
observation that the generalized matrix learning vector quantization improves decision-making in
the manufacturing process selection by eliminating human biases and enabling a more effective
use of domain knowledge. The generalized matrix learning vector quantization model achieved
one hundred percent accuracy in the selection of the manufacturing process, thus demonstrating
its effectiveness in realistic scenarios. The research presented in this dissertation also proved the
harmful consequences of subjective factors in decision-making on the quality of production
decisions and showed that Generalized Matrix Learning Vector Quantization can be used as one
of the possible alternatives to such biases, making decision-making more effective in the
conditions of a production enterprise. In the cognitive scope of management sciences, a new data

and information-based decision support method was introduced that balances subjective decision



factors with objective information to make manufacturing process selection more accurate,
efficient, and sustainable. With regard to future research directions on the topic of this
dissertation, it was suggested to test the generalized matrix learning vector quantization model
with more significant and diversified datasets and to examine its scalability and transferability

value to other industrial applications.



Streszczenie

Wybor procesu produkcyjnego przedsigbiorstwa, jako rezultat poprzedzajgcego go procesu
decyzyjnego =zarzadzania, jest kluczowa przestankg osiggania optymalnej efektywnosci
przedsigbiorstwa, jego zrbwnowazonego rozwoju oraz jakosci produktu oferowanego rynkowi.

Celem rozprawy jest opracowanie i weryfikacja metodologii inteligentnego wsparcia w wyborze
procesow produkcyjnych w oparciu o sie¢ neuronowej Generalized Matrix Learning Vector
Quantization, aby ztagodzi¢ subiektywne czynniki ludzkie i wykorzysta¢é wiedze domenowsg
oprocz celéw zrownowazonego rozwoju 1 wymagan projektowych specyficznych dla produktu.
Pomimo istniejacego dorobku nadal brakuje zintegrowanych podejs¢ do wsparcia decyzji, ktore
holistycznie uwzgledniajg wiedze specjalistyczng w dziedzinie, cele zrownowazonego rozwoju,
postep technologiczny i ewoluujace mozliwosci procesu w dynamicznym kontekscie produkcji.
Niniejsza rozprawa ma na celu wypelienie tej luki badawczej przy uzyciu dwustronnego
podejscia polegajacego na zrozumieniu wpltywu poznawczych i subiektywnych czynnikoéw
ludzkich na wybdr procesu produkcyjnego oraz opracowaniu metodologii inteligentnego
wsparcia w wyborze procesow produkcyjnych w oparciu 0 zaawansowane Sieci neuronowe.
Badania majg na celu zrozumienie i okreslenie iloSciowe, w jaki sposob ludzkie uprzedzenia
oddzialuja na wiedz¢ domenowa w celu ograniczenia efektywnego wyboru procesu
produkcyjnego przy uzyciu dowodow empirycznych 1 opracowanie inteligentnej metodologii
wykorzystujacej zaawansowane techniki sieci neuronowych w celu wsparcia optymalnego
podejmowania decyzji w wyborze procesu produkcyjnego. Cel badawczy jest realizowany
poprzez zbadanie negatywnych wplywow czynnikéw poznawczych i1 spotecznych na jako$¢
decyzji w doborze proceséw produkcyjnych oraz opracowanie metodologii inteligentnego
wsparcia w doborze procesow produkcyjnych w oparciu o sie¢ neuronowej Generalized Matrix
Learning Vector Quantization. Jako taki, przedmiot badan jest dwojaki; po pierwsze, dotyczy on
wzajemnego oddzialywania subiektywnych czynnikéw ludzkich 1 wykorzystania wiedzy
domenowej w doborze procesoOw produkcyjnych, szczegélnie w erze Przemystu 5.0, gdzie
produkcja jest wyobrazana na nowo z wigkszym naciskiem na podejmowanie decyzji
zorientowanych na cztowieka. Po drugie, dotyczy on metodologii inteligentnego doboru
optymalnych proceséw produkcyjnych w oparciu o sieci neuronowej Generalized Matrix
Learning Vector Quantization. Decyzja ta, w obecnym stanie teorii i praktyki zarzadzania, jest

podporzadkowana subiektywnym czynnikom ludzkim takim jak: uprzedzenia poznawcze,



interesy egoistyczne i myslenie grupowe, ktore thumig wykorzystanie profesjonalnej wiedzy
domenowej. Fakt istnienia takiego stanu rzeczy potwierdzono w tej dysertacji badaniami
empirycznymi (rozdziat drugi dysertacji), uzasadniajacymi pierwsza z dwoch gldwnych hipotez
naukowych  dotyczacych ograniczen decyzyjnego wyboru procesu produkcyjnego
przedsigbiorstwa. Wyniki badan pokazuja, ze wymienione wyzej subiektywne czynniki znaczaco
pozbawiajg proces decyzyjny zarzadzania wlasciwego wykorzystania profesjonalnej wiedzy
domenowej, co prowadzi do gorszego wyboru procesow i degradacji decyzji. Dla potrzeb
uzasadnienia drugiej, konceptualnej hipotezy glownej tej dysertacji podjgto (przedstawione w jej
kolejnych trzech rozdzialach) badania nad wykorzystaniem ulepszonej sieci neuronowej
Generalized Matrix Learning Vector Quantization, ktora dostosowuje si¢ do wielowymiarowych,
zaszumionych 1 heterogenicznych danych produkcyjnych, jednoczes$nie integrujac wiedze
ekspercka w celu obiektywne] oceny 1 wyboru najbardziej odpowiednich procesow
produkcyjnych. W pierwszym z wymienionych wyzej konceptualnych rozdziatéw badawczych
zaprezentowano zagadnienie inteligentnego wyboru procesow produkcyjnych przy uzyciu
sztucznych sieci neuronowych, logiki rozmytej i algorytmow genetycznych. Nastgpnie poddano
systematycznym badaniom algorytm Generalized Matrix Learning Vector Quantization z
ulepszeniami i zastosowaniami do przyszlego wyboru procesu produkcyjnego. W kolejnych
dwoch rozdziatach tej dysertacji zsyntetyzowano zastosowania Generalized Matrix Learning
Vector Quantization do wyboru procesu z eksperymentalng konfiguracja oraz wyjasnienie
uzytego zestawu danych i poréwnania z konwencjonalnymi podejsciami, takimi jak Support
Vector Machine. Szczegdétowemu podsumowaniu wnioskow, ustalen i obszaréw przysztych
badan poswiecono koncowa czes$¢ tej dysertacji. Generalng konkluzje sformutowano w postaci
konstatacji, ze wuogoélniona kwantyzacja wektor6w uczenia si¢ macierzy usprawnia
podejmowanie decyzji w procesie wyboru procesu produkcyjnego poprzez eliminacje ludzkich
uprzedzen i efektywniejsze wykorzystanie wiedzy domenowej. Model uogodlnionej kwantyzacji
wektorOw uczenia si¢ macierzy osiaggnat sto procent dokladnosci w wyborze procesu
produkcyjnego, a tym samym wykazal swoja skuteczno$¢ w realistycznych scenariuszach.
Badania zaprezentowane w tresci tej dysertacji dowiodly takze szkodliwych konsekwencji
czynnikow subiektywnych w podejmowaniu decyzji na jakos¢ decyzji produkcyjnych i pokazaty,
ze uogolniona kwantyzacja wektorow uczenia si¢ macierzy moze by¢ stosowana jako jedna z

mozliwych alternatyw dla takich uprzedzen, a podejmowanie decyzji moze by¢ skuteczniejsze w



warunkach przedsi¢biorstwa produkcyjnego W zakresie poznawczym nauk o zarzadzaniu
wprowadzono nowa metode wspomagania decyzji opartego na danych i1 informacjach, ktore
roéwnowazy subiektywne czynniki ludzkie z obiektywnymi informacjami tak, aby podejmowanie
decyzji produkcyjnych byto doktadniejsze, wydajniejsze i bardziej zréwnowazone. W
odniesieniu do przysztych kierunkow badan nad tematem tej dysertacji zasugerowano
przetestowanie modelu uogdlnionej kwantyzacji wektorOw uczenia si¢ macierzy z bardziej
znaczacymi 1 zréznicowanymi zestawami danych oraz zbadanie jego skalowalnosci i warto$ci

transferu do innych zastosowan przemystowych.



Acknowledgments

| want to take this opportunity to express my deepest gratitude to my supervisor, Prof. Joanna
Katkowska, for her unwavering support, mentorship, and invaluable guidance throughout my
journey toward completing this Ph.D. dissertation. Her insightful advice and encouragement
have been instrumental in shaping my research and my growth as a scholar. Under Prof.
Katkowska’s mentorship, I experienced a remarkable balance between directed guidance and the
freedom to pursue my ideas. This balance nurtured my scholarly independence and instilled the

confidence to explore uncharted territories in the field and push the boundaries of my research.

| sincerely thank my family, friends, and colleagues for their support, patience, understanding,
and many words of encouragement and motivation shared throughout my studies. To my wife,
Dagmara Mumali, your love has been the light guiding me through the darkest hours of this
academic pursuit. This achievement is as much yours as it is mine. Thank you for your endless
support, understanding, patience, and encouragement, which have been my anchor throughout

this journey.



Acronyms

CBR
Adam
AHP
AM
ANFIS
ANN
ANP
APC
ART
ASTM
BFGS
CAD
CNN
DEA
DED
DSS
EEG
FAHP
FANP
FDG-PET
FL

GA
GLVQ
GMLVQ

GRLVQ

IDSS
loT

1SO

KNN

LVQ

MCDA

NN

PCA
PLS-SEM
PROMETHEE
RBF

RLVQ
RSLVQ

SNN

SOFM

SPSS

SSM

Case-based Reasoning

Adaptive-Moment Estimation

Analytical Hierarchy Process

Additive Manufacturing
Adaptive-Network-based Fuzzy Inference System
Artificial Neural Network

Analytic Network Process Framework
Alternative Process Consideration

Adaptive Resonance Theory

American Society for Testing and Materials
Broyden-Fletcher-Goldfarb-Shan
Computer-aided design

Convolutional Neural Network

Data Envelopment Analysis

Directed Energy Deposit

Decision Support System

Electroencephalogram

Fuzzy Analytical Hierarchy Process

Fuzzy Analytic Network Process Framework
Fluorodeoxyglucose Positron Emission Tomography
Fuzzy Logic

Genetic algorithms

Generalized Learning Vector Quantization
Generalized Matrix Learning Vector Quantization
Generalized Relevance Learning Vector Quantization

Intelligent Decision Support System

Internet of Things

International Organization for Standardization
k-Nearest Neighbors

Learning Vector Quantization

Multi-criteria decision analysis

Neural Network

Principal Component Analysis

Partial Least Squares Structural Equation Modeling
Preference Ranking Organization Method for Enrichment Evaluation
Radial Basis Function

Relevance Learning Vector Quantization

Robust Soft Learning Vector Quantization

Siamese Neural Network

Self-organizing feature map

Statistical Package for Social Sciences

Scaled Sub-profile Model



STDEV Standard Deviation
SVM Support Vector Machines
TOPSIS Technique for Order Preference by Similarity to lIdeal Solution



Table of Contents

N 0] 1 1o TSR SPTRPRR I
Y L yA074=] o[- PR RTRR v
ACKNOWIEAGMENTS ... et e st e re et e s b e e be e e e s seesreennesreenneens VIl
o] (0] 017/ 0 0 KPP P R TPPPTPP VI
ISR o oo [T £ o] o PSRRI 1
1.1.  Justification for taking up the dissertation tOPIC.........ccooerereriririiiinieeee e 1
1.2, ReSearch NYPOThESES .......ccviiiiiiiecce e 5
1.3, RESEArCH ODJECHIVES.....ccuiiiiicie ettt ettt re e re e 7
1.4.  Research methodology and diSSertation StrUCLUIe............cccocerererininieienee e 9
2. Empirical Insights on Manufacturing Process Selection Limitations .............c.cc.ccvvnene 15
2.1.  Introduction and literature review on manufacturing process selection ...................... 15
2.2.  Theoretical framework and empirical insights’ research hypotheses ...........c.cccevueenne. 22

2.2.1. Research methodology of the empirical study on subjective decision factors' impact on

Manufacturing ProCess SEIECTION ..........ooiiiiiiii e 27
2.2.2. Research design and approach, survey description, and study population................ 27
2.2.3. \Variables, measures, and data analysis teChNIQUES ...........ccccvvevevieieciie e 28

2.3.  Empirical research fINdiNGS .........coooiiiiiiiiii e 29
2.3. 1. FINAINGS OVEIVIEW. ..ottt bbb 29
2.3.2. Spearman’s Rank cOrrelation ...........ccccvviiiiiiiiiniiiiic e 33
2.3.3. Partial Least Squares-Structural Equation Modeling (PLS-SEM)..........cccccocovviveenee. 34

2.4, Empirical iNSIGNtS AISCUSSION. .......oiviitiitiiiiiiiiieieieie ettt 40
2.4.1. Hypothesis verification and subjective decision factors............ccccceveveneieninennnn. 40
2.4.2. Domain knowledge in deciSion-making ..........cccccovveieeiieiieie e 42
2.4.3. Intersection between subjective decision factors and domain knowledge................ 42
2.4.4. Study limitations and CONCIUSIONS ...........ccoiiiiiiiiiee s 44

3. Intelligent Support in Selection of Manufacturing ProCesses...........ccocevveverieeneereesennen 46

3.1. Introduction and related works on intelligent computational methods......................... 46

3.2.  Methodology for a systematic review of the intelligent support methodologies.......... 57

3.2.1. Systematic review, question formulation, and study location...........c.cccceecerverrrnnene. 57



3.2.2.  Study selection and evaluation............ccccocueiieiiiieeiieese e 60

3.3.  Results and discussions of the systematic literature reView ............cccocvevveviveneerieseenne. 61
3.3.1. Intelligent support selection of additive manufacturing processes..........ccccccevuveveene. 61
3.3.2. Intelligent selection of conventional manufacturing processes ..........ccccoceeererennnnn 68
3.3.3. Complexity and uncertainty in additive and conventional manufacturing ............... 71
3.3.4. Limitation of current intelligent methodolOgies ..........cccevveieeiiiiciicce e 71
3.3.5. Proposed Generalized Matrix Learning Vector Quantization...........ccccceeevverirnnnnne 73
3.3.6. GMLVQ and the limitations of current intelligent methods.............cccccoeoeiiennnnnnne 74
3.3.7. Future perspectives on manufacturing process selection and conclusion................. 75

4. Generalized Matrix Learning Vector QUantization ...........ccccccoeeiveveiiieseese e 78

4.1.  Background on the GMLVQ algorithm ..........ccccoiiiiiiniiiiiee s 78

4.2.  Systematic literature review on GMLVQ and resultS .........c.coovvivieieicnenciencseee 87
4.2.1. Overview Of INCIUAed STUdIES........cciveiiriiriiiiiisie e 89
4.2.2. Distribution of selected papers DY SOUICE ........c.coeiieieeie i 93
4.2.3. Thematic scope and systematic review research qUESLIONS ...........ccccevererereriennnnn 95

4.3. GMLVQ systematic literature revView diSCUSSION .......cccccvervrierirerirsiesieesieseesreeseeaneenns 98
4.3.1. Algorithmic enhancement and variations .............cccceevveveieeieeie s 98
4.3.2. Feature relevance and metric 1€arning ..........cocoeveiiiiiii e 103
4.3.3. Novel use-cases and appliCation areas...........ccooerereririiinisieeieese e 107
4.3.4. Performance IMProVEMENT........coiiiiiirieieieiee ettt 111

4.4.  Implications, limitations, and future research direction..............cccoecveveiieieeie s, 112

5.  Methodology for Intelligent Support in Manufacturing Process Selection................... 117

5.1.  Problem description and the GMLVQ algorithm...........c.ccooiviiininninee 117

5.2.  Experimental setup for GMLVQ-based intelligent decision support.............c.cccce...... 121
5.2.1. Dataset description and preproCeSSING.......cueiveieiieeiiereeieseeseerie s e se e seesreeaens 121
5.2.2. Tools and evaluation MELIICS .......c.cooeiiiriiiieieee e 123
5.2.3. Model fit, optimization, and comparative Models ............ccccoovvrieiiieniniiiniiens 124

5.3, ReSUIS aNd @NAIYSIS ...c.ueiviiiieiiiieiee e 125
5.3.1. Correlation matrix, training, and hyperparameter optimization ..............cccccceevenne 125
5.3.2. Comparison with Support Vector Machines (SVM) ........ccccvveiiiiiiciie e 137

5.4, DiSCUSSION @NG SUMIMAIY ....couviriiiiiiiesiesiesiesieeeeee ettt sbe st sse e e e sbe bt sbesbesne e 139



5.4.1. Interpretation and analysis of the reSUlts ...........cccccevieiii i 139

5.4.2. Comparison with SVM and theoretical and practical implications ........................ 143
5.4.3. Limitations of the proposed GMLVQ model and future research direction........... 145
6. Conclusions and FUtUre PErsPeCtiVES ...........cooiiiiiiiiiiieiesie e 148
TS 0 0 0 SRS 207

(I 1 o) il =1 o] [T ETRRRTPRRRRPRRTRR 209



1. Introduction

This chapter introduces the dissertation by describing the justification for the research topic. It
acknowledges the significance of manufacturing in economic development and its impact on
socio-economic and environmental aspects, requiring the adoption of sustainable and efficient
approaches. This is further compounded by the Industry 5.0 paradigm shift, which emphasizes a
human-centric approach to sustainable development in addition to efficiency and productivity.
The chapter describes the main research hypotheses and the tasks to test them. The chapter also
describes the dissertation's goal, the research aims, the research subject, the methodology, the

scope, and the overall dissertation structure.

1.1. Justification for taking up the dissertation topic

The manufacturing sector has undergone several transformations to ensure sustainable
development while meeting customer demands. As an essential component and driver of
economic growth, especially in developing countries (Guo & Sun, 2023; Haraguchi et al., 2017;
Hauge, 2023; Lakew, 2023; Zalva et al., 2023), manufacturing remains a top research area.
Research reveals that manufacturing entities must lead innovations to withstand unprecedented
global competition in the wake of intelligent manufacturing (Hauge, 2023). Critical managerial
functions such as planning, implementing, and controlling manufacturing processes involve
much decision-making, featuring a wide range of parameters and data. Decision-making
processes aim to identify the optimal course of action from a pool of possibilities that guarantee
high performance and sustainability. Manufacturers must embrace digital technologies to create
high-quality and intelligent manufacturing systems that optimize performance (Hauge, 2023).
The authors further pointed out that sustainable manufacturing concepts must be adopted to
ensure cost-efficiency and management of complex product assembly (Jardim-Goncalves et al.,
2017). Similar research argues that manufacturing processes and product design innovation
remain crucial to industrial evolution (Abdulhameed et al., 2019). Given the growing uncertainty
and complexity, efficient decision-making remains central to the rapid development of
sustainable manufacturing paradigms.

Players across industries have adopted best practices to improve manufacturing

operations, including total quality management, just-in-time flow, concurrent engineering, and



supplier relationship management. Despite these efforts, the sector faces unprecedented pressures
to ensure sustainability and improved product quality. Fierce competition, changing markets,
increased uncertainty, growing customer demand for high-quality products at reduced costs, and
increased calls for sustainable resource use continue to pressure the manufacturing sector. As
noted in a recent study, modern organizations are increasingly complex, dynamic, and more
uncertain (Tworek et al., 2019). Decisions on relevant and proper manufacturing processes are
crucial but complex. Because of the increasing complexity and uncertainty within the
manufacturing ecosystem, process designers and engineers are under constant pressure to ensure
the selection of optimal manufacturing processes right from the beginning. Selecting the correct
process to manufacture a product can solve common issues such as rework, which often
lengthens lead time and increases the overall manufacturing cost. There are numerous
mechanisms and strategies for handling uncertainties in manufacturing, such as rework strategies
(Dai et al., 2014), in-line production traceability (Colledani & Angius, 2020), and integrated
maintenance and quality (Gouiaa-Mtibaa et al., 2018). However, despite the progress, getting the
manufacturing process right while designing the product remains crucial to the overall
performance of the adopted manufacturing system operations.

Manufacturing processes and materials are rapidly evolving. Increasingly high demand
for customized products and components, as well as other constraints such as performance, lead
times, and complexity, drive the evolution of manufacturing processes and materials (Khaleeq uz
Zaman et al., 2017). As a result, the selection of manufacturing processes is increasingly
becoming a complex task involving a thorough analysis of multiple criteria and trade-offs. For
instance, additive manufacturing adoption in the aerospace industry has been justified by
technical advantages spanning from reduced mass, enhanced heat transfer, use of novel high-
performance alloys, and complex geometry (Gradl et al., 2022), which makes them particularly
useful in improving efficiency by reducing cost and lead time in the wake of increasingly
complex design requirements (Madhavadas et al., 2022). However, selecting a suitable additive
manufacturing process for a specific component involves trading technical advantages and
constraints between design requirements, material properties, and the process parameters (Gradl
et al., 2022). Additionally, specific part performance requirements, post-processing approaches,

certification, and metallurgical considerations complicate the additive manufacturing process



trade-off for aerospace components (Froes et al., 2019). Thus, selecting a manufacturing process
is not considered a trivial exercise.

Traditionally, selecting appropriate processes for manufacturing a particular component
relied on matching process capabilities and required properties. However, selection drivers have
grown over the years to include sustainability goals and process-specific advantages such as
flexibility, process time, efficiency, and cost (Jena et al., 2020; Mele & Campana, 2020; Muvunzi
et al., 2022; Papacharalampopoulos et al., 2023; Sun et al., 2022). Selecting a successful
manufacturing technique often includes analyzing the delicate interplay between design,
material, and process characteristics. Several authors have studied the problem of manufacturing
process selection in recent years, indicating its significance (Aichouni et al., 2021; Baghad &
Mabrouk, 2023; Cortés et al., 2022; Krul¢i¢ et al., 2022; Martinez-Rivero et al., 2019;
Papacharalampopoulos et al., 2023). Although managers have often relied on experience, the
need for unbiased and systematic tools for comprehensively assessing process alternatives,
desired requirements, and product designs has led to the use of Decision Support Systems (DSS)
to aid decision-making. Using expert knowledge and experience alone can lead to incorrect
decisions (Martinez-Rivero et al., 2019) due to various issues, including cognitive problems and
the lack of analytical, systematic, and structured methods to verify their decisions. These experts'
databases are not continuously updated with the latest information. Recent studies show that
modern manufacturing enterprises embrace a paradigm shift towards socio-ecological and
resource-efficient engineering processes to remain competitive (Ben Ruben et al., 2019). The
research gap is that despite the existing body of work on manufacturing process selection using
various approaches, including expert systems and multi-criteria decision methods, there remains
a lack of studies on integrated intelligent decision support approaches that holistically consider
domain expertise, sustainability goals, technological advancements, and evolving process
capabilities in a dynamic manufacturing context. This dissertation seeks to fill this research gap
using a two-pronged approach of understanding the impact of cognitive and subjective decision
factors on manufacturing process selection and developing a methodology for intelligent support
in selecting manufacturing processes based on advanced neural networks.

In conventional manufacturing, processes have been refined over decades; however,
recent technological advances and the drive for sustainability have introduced new challenges,

such as reducing environmental footprints and optimizing raw material use. Conversely, additive



manufacturing, encompassing methods like vat photo-polymerization, material extrusion,
material jetting, binder jetting, directed energy deposition, powder bed fusion, and sheet
lamination, is evolving rapidly. Its layer-by-layer production approach inherently leads to poor
inter-layer adhesion, surface finish defects, and material inconsistencies. Moreover, the relative
novelty of these processes means that detailed, established knowledge about their parameters is
often lacking in current studies (M. M. Mabkhot et al., 2019; White et al., 2022; Yurdakul et al.,
2014). This scenario creates significant uncertainty when selecting a product's most appropriate
manufacturing process. Conventional and additive manufacturing methods offer unique
advantages and face distinct challenges, necessitating a decision-making approach that can
accommodate diverse criteria and handle high-dimensional, heterogeneous data. Traditional
methods, including neural networks, genetic algorithms, and fuzzy logic, have been employed to
tackle these challenges; however, they sometimes struggle with the complexity and noise
inherent in manufacturing datasets.

Generalized Matrix Learning Vector Quantization (GMLVQ) offers a promising solution.
As an extension of the LVQ framework, GMLVQ introduces an adaptive relevance matrix that
transforms the conventional Euclidean distance into a more flexible, generalized metric. This
matrix-based approach allows the algorithm to weigh feature pairs, implicitly capturing
correlations and rotations within the data. Such capability is particularly beneficial when dealing
with the noisy, high-dimensional, and non-linearly separable datasets typical in modern
manufacturing environments (Biehl et al., 2015). Moreover, extensive research has shown that
GMLVQ can significantly outperform other classifiers, like support vector machines and
decision trees, when enhanced by hybrid algorithms and novel training techniques (Biehl et al.,
2015; LeKander et al., 2017). GMLVQ provides a robust framework capable of integrating data
from multiple sources without explicit transfer learning by learning both prototype
representations and an adaptive distance metric during training.

Consequently, this dissertation is motivated by the need to develop an intelligent support
system for manufacturing process selection that leverages GMLVQ's advanced capabilities. By
integrating GMLVQ’s feature relevance learning and adaptive metric framework, the proposed
methodology aims to enhance decision-making accuracy and reliability in selecting the optimal
manufacturing process, whether conventional or additive, thus addressing a critical challenge in

modern manufacturing environments.



1.2. Research hypotheses

Given the evolving and highly dynamic manufacturing landscape, the challenge of
manufacturing process selection remains compounded by the interplay of subjective decision
factors and well-established domain knowledge. While significant advances have been made to
support the selection of conventional and additive manufacturing processes, the decision-making
process remains vulnerable to the inherent biases of the decision-makers. Factors such as
cognitive biases, personal preferences, and groupthink can distort judgment, potentially leading
to the selection of processes that do not fully leverage available expertise. The emerging Industry
5.0 paradigm shift takes a human-centric approach, emphasizing the pivotal role of humans in
sustainable manufacturing besides efficiency and productivity (Golovianko et al., 2022).
Industry 5.0 is envisioned to ensure sustainable development with industrial technicians at the
center of manufacturing processes (Battini et al., 2022; S. Huang et al., 2022). As a result,
several opportunities have been identified, including human-cyber-physical systems, human-
robot collaboration, and human-digital twins (Coronado et al., 2022; S. Huang et al., 2022).
Unlike its predecessor, Industry 4.0, which championed automation and machine intelligence,
Industry 5.0 heralds a new synthesis of human talent with robotic precision. Against this
backdrop, this research is driven by the need to unravel how these subjective elements interact
with domain knowledge and to develop an intelligent decision-support methodology based on an
improved GMLVQ neural network that leverages human expertise in the selection of
manufacturing processes. With this approach, the dissertation goal is to develop and verify a
methodology for intelligent support in selecting manufacturing processes based on
the GMLVQ neural network, to alleviate subjective decision factors and leverage domain
knowledge in addition to sustainability goals and the product-specific design requirements.
Therefore, this study is supported by two main hypotheses, as follows:

H1: Subjective decision factors, namely cognitive biases, personal preferences, and groupthink,
contribute to the selection of inefficient manufacturing processes by limiting the effective use of
domain knowledge in decision-making, which runs counter to the principles of Industry 4.0 and
Industry 5.0.

H2: An intelligent decision support methodology utilizing an enhanced Generalized Matrix

Learning Vector Quantization neural network significantly improves the efficiency of



manufacturing process selection by mitigating the collective impact of subjective decision

factors such as cognitive biases, personal preferences, groupthink, and cognitive load.

Hypothesis H1 consists of the following Sub-Hypotheses:

Hla: Cognitive biases significantly contribute to selecting inefficient manufacturing
processes.

H1b: Personal preferences significantly contribute to selecting inefficient manufacturing
processes.

H1c: Groupthink within decision-making teams contributes to the selection of inefficient
manufacturing processes.

H1d: High cognitive load contributes to the selection of inefficient manufacturing
processes.

Hle: Limited utilization of knowledge of alternatives contributes to the selection of
inefficient manufacturing processes.

H1f: Limited utilization of knowledge on process variants contributes to the selection of
inefficient manufacturing processes.

H1g: Limited knowledge of process complexity contributes to the selection of inefficient
manufacturing processes.

H1h: Selecting inefficient manufacturing processes leads to rework and reprocessing.
H1i: The selection of inefficient manufacturing processes increases waste materials.

H1j: The selection of inefficient manufacturing processes leads to low-quality outcomes.
H1k: Selecting inefficient manufacturing processes leads to extended lead time.

H1l: Selecting inefficient manufacturing processes leads to increased safety concerns.

The first hypothesis postulates that human factors limit the effective utilization of domain

knowledge by steering decision-makers away from data-driven insights and objective criteria,

thereby contributing to less-than-optimal selection of manufacturing processes. The evolution

toward Industry 5.0 marks a departure from purely automated systems to a new era where human

expertise and advanced technologies are interwoven. To achieve the goals of Industry 5.0,

integrating the rich domain knowledge possessed by human experts is essential. Based on

empirical evidence from manufacturing companies in Poland, this research provides a
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comprehensive understanding of how subjective decision factors constrain the selection of
efficient manufacturing processes, despite the availability of extensive technical expertise. This
limitation undermines optimal decision-making in manufacturing, which should align with new
social development concepts and integrate human ingenuity with intelligent machines. The
second hypothesis is anchored on leveraging GMLVQ's adaptive metric learning capabilities.
This approach is designed to handle high-dimensional, noisy, and heterogeneous manufacturing
data and expert knowledge by dynamically learning the relevance of various features. The
improved GMLVQ model is expected to integrate historical data and expert domain knowledge
to objectively assess and select manufacturing processes.

The research problem is twofold. First, it concerns the interplay between subjective
decision factors and the use of domain knowledge in manufacturing process selection,
particularly in the era of Industry 5.0, where manufacturing is re-imagined with a stronger focus
on human-centric decision-making. Second, it concerns a methodology for the intelligent

selection of optimal manufacturing processes based on GMLVQ neural networks.

1.3. Research objectives

Building on the stated hypotheses that subjective decision factors can lead to inefficient
manufacturing process selection and that an intelligent decision support system based on an
enhanced GMLVQ neural network can improve this selection process, the objectives of this
research are designed to address these challenges systematically. The overall goal of the research
is to understand and quantify how subjective decision factors, namely cognitive biases, personal
preference, and groupthink, interact with domain knowledge to limit efficient manufacturing
process selection using empirical evidence and to develop an intelligent methodology that
leverages advanced neural network techniques to support optimal decision-making in
manufacturing process selection. To achieve this, the research goal is guided by two primary
tasks:

i.  To investigate the negative influences of subjective decision factors on decision quality

in the selection of manufacturing processes.
ii.  To develop a methodology for intelligent support in the selection of manufacturing

processes based on Generalized Matrix Learning Vector Quantization neural network.



The first primary task seeks to contextualize the manufacturing process selection problem
within broader industry challenges. This goal emphasizes aligning process selection with
efficiency, quality, and sustainability targets, and is designed to quantify the impact of subjective
decision factors on decision quality through empirical analysis. By so doing, this task aims to
demonstrate how these subjective influences constrain the efficient utilization of domain
knowledge, which in turn leads to inefficient selection of manufacturing processes. Therefore,
the first primary task is complemented by the following two sub-tasks:-

I. To review and bridge the knowledge gap in manufacturing process selection and its
significance in driving manufacturing efficiency, improving product quality, and
achieving sustainable goals by identifying and analyzing recent advances, challenges, and
opportunities.

Ii.  To study cognitive bias, high cognitive load, personal preference, groupthink, and limited
domain-specific expertise, and analyze how these elements converge to shape
manufacturing process selection outcomes using empirical evidence from Polish

manufacturing companies.

The second primary task is developed for five reasons. First, it establishes a foundational
understanding of how current intelligent systems are utilized to streamline and enhance the
manufacturing process planning and execution. As such, it is the baseline for comparing existing
methods with the proposed GMLVQ-based approach. Second, it seeks to capture the state-of-the-
art in neural network applications within manufacturing by reviewing the latest literature and
highlighting key methodologies, trends, and gaps that current research can address. Third, it
intends to integrate insights from different artificial intelligence methods by examining various
artificial intelligence-based approaches and techniques. Identifying strengths and limitations can
inform the design of a more compelling intelligent support methodology for manufacturing
process selection. Fourth, it involves a comprehensive analysis of L\VQ methodologies, critically
evaluating their evolution and performance, leading to GMLVQ. Understanding these variants is
essential to justifying the selection of the GMLVQ approach and its potential improvements over
traditional methods. Finally, it is designed to culminate in designing, implementing, and
benchmarking a GMLVQ-based decision support model. The research will validate the model’s

ability to address the complex challenges identified in process selection by comparing its



performance with established methods. Consequently, five complementary tasks to the second
primary task are as follows:-
I.  To review the potential of intelligent system support in managing the preparation and
implementation of manufacturing processes

ii.  To identify, synthesize, and comprehensively summarize recent studies on artificial
neural network-based decision support systems applied in manufacturing processes.

iii.  To synthesize existing knowledge on the use of intelligent support systems in
manufacturing process selection, with a focus on methodologies and frameworks based
on three artificial intelligence technologies, Neural Networks (NN), Genetic Algorithms
(GA), and Fuzzy Logic (FL), and their hybrid combinations, as applied to conventional
and additive manufacturing.

iv.  To analyze extensively researched and well-documented Learning Vector Quantization
(LVQ) variants with firm theoretical foundations and empirical evidence supporting their
efficacy by synthesizing their development, enhancements, and defining characteristics.

v.  To develop a methodology for optimal selection of manufacturing processes based on the
Generalized Matrix Learning Vector Quantization neural network and perform a
comparative analysis with similar existing methods to test and verify the developed

model.

The two primary tasks and their respective complementary sub-tasks comprehensively
address the human and technical dimensions of manufacturing process selection and provide a
structured roadmap, from literature synthesis and empirical investigation to developing and
validating a novel GMLVQ-based system. Thus, the outlined primary and specific objectives
ensure that the research advances theoretical understanding and offers practical, data-driven

solutions for improving manufacturing outcomes.

1.4. Research methodology and dissertation structure

The current research explores such intricate issues regarding selecting manufacturing processes,
focusing on subjective decision factors that impact decision-making and their integration with
domain-specific knowledge that eventually shapes such processes' efficacy. The research takes a

multifaceted approach to empirical, theoretical, and practical aspects through framing two main



hypotheses and seven complementary goals. Firstly, the research argues that subjective factors in
decision-making, like cognitive biases, personal attitudes, and groupthink, have a profound
adverse effect on the effective application of domain knowledge and, hence, make such decision-
making inefficient with regard to manufacturing processes. This is analyzed with the help of
empirical information derived from the manufacturing industry in Poland, where human
decision-making is often influenced by biases that hamper judgment despite technical
capabilities. The research then turns to intelligent decision-support systems like GMLVQ that
utilize artificial neural network capabilities to deal with different metrics to make manufacturing
process selection more effective. The second hypothesis argues that GMLVQ, as a state-of-the-
art neural network paradigm, can help make decision-making more effective through managing
high-dimensional, noisy, and heterogeneous information related to manufacturing. This research
aims to bridge cognitive factors with data-oriented decision approaches by developing and
testing a more efficient decision aid system based on GMLVQ to make more accurate, unbiased,
and optimal choices in manufacturing operations.

The scope also encompasses a comprehensive review of intelligent support systems used
in manufacturing, specifically focusing on integrating ANNSs, Fuzzy Logic, and GA, emphasizing
how these technologies have been applied to conventional and additive manufacturing processes.
Based on a review of recent literature published between 2011 and 2021 and between 2013 and
2023 related to such methodologies, this study provides the framework for the subsequent
application of the GMLVQ methodology, including theoretical derivation and empirical testing
regarding choosing manufacturing operations. The investigation includes a critical evaluation of
Learning Vector Quantization (LVQ) and its variants, establishing the theoretical justification for
selecting GMLVQ as a superior method for process selection, particularly when human biases
and cognitive overload limit the full utilization of domain knowledge. The research addresses
real-world issues in production methodology selection concerning their interdependencies with
subjective decision factors like cognitive load, personal bias, and groupthink, as well as domain-
specific knowledge that affects decision outcomes. This study aims to create a decision-support
system that will improve selection quality to maximize production efficiency, product quality,
and technology related to sustainability. In summary, this study combines empirical information
with enhanced machine learning algorithms to create a formalized framework that enables

decision-making in production operations.
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This research evaluates the GMLVQ model within multiple polymer processing
techniques based on four different polymer processing technologies, focusing on their efficacy.
Such evaluation is essential due to the distinctive complexity of material homogeneity,
processing techniques, and production specifications in polymer processing. By narrowing it
down to four such processing techniques of polymers, this study aims to demonstrate that the
GMLVQ model can provide more accurate and information-based decision support in selecting
the best production techniques that depend on the inherent nature of polymer materials and the
context of manufacturing. By studying such issues, this research aims to develop a complete
information-based decision-support system to enhance the decision-support mechanism that can
improve manufacturing efficiency, product quality, and sustainability. Therefore, this research
combines empirical research with high-level machine learning techniques to suggest a generic
framework that focuses on decision-making in the context of the manufacturing industry, more
specifically concerning the processing of polymers.

The dissertation involved three main research stages, including theoretical, empirical, and
experimental. The theoretical stage covered a general literature review on current trends and
future perspectives on manufacturing process selection approaches, intelligent decision support
in manufacturing processes, and learning vector quantization neural networks. This was done in
parallel with three systematic literature reviews. The first systematic review covered ANN-based
decision support systems in manufacturing processes. The second systematic review covered
intelligent support in manufacturing processes based on ANN, fuzzy logic, and genetic
algorithms and aimed to discover current and future perspectives. While it overlapped with the
general literature review, it followed the conclusion of the first systematic review. The third
systematic literature review was built on the findings of the first two systematic reviews, and it
served as the foundation for the GMLVQ-based methodology for manufacturing process
selection. The empirical study included three stages: empirical study design, data collection, and
hypothesis verification. These three stages were all preceded by the relevant literature review and
contributed towards designing and refining the GMLVQ-based model, which was followed by
data collection and pre-processing, training, optimization, tuning, evaluation, and hypothesis

verification, as shown in Figure 1.1.
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This dissertation comprises six lengthy chapters that all contribute meaningfully to
studying intelligent support in manufacturing process selection. The chapters are formed, in part
or in whole, of research results published or submitted for publication in international
conferences and high-ranking journals. Chapter 1 lays out the building blocks of the research
through explanations of motivations, hypotheses, and research aims. It describes why it is
essential to study how cognitive biases, human factors, and domain knowledge influence process
selection. The chapter also introduces the primary research aim of developing an intelligent
decision-support system based on the GMLVQ model. Chapter 2 explores the subjective
influences on process selection through empirical evidence from Poland's manufacturing sector.
This section has its own hypotheses that are not part of the overall hypotheses of this
dissertation. It examines how cognitive biases, personal preferences, and groupthink shape
decision-making, impacting the optimal use of domain knowledge. It also provides insights into
the limitations faced by decision-makers in practice. Chapter 3 systematically reviews
advancements in intelligent decision-support methodologies, such as ANNs, fuzzy logic, and
GA. This review, grounded in recent literature, identifies the strengths and weaknesses of current
methods and introduces GMLVQ as a promising approach for overcoming the limitations of
existing systems. Chapter 4 systematically reviews the GMLVQ algorithm, detailing its
development, theoretical foundations, and recent applications in manufacturing process selection.
The chapter explores the potential of GMLVQ to improve decision-making by dynamically
adjusting the relevance of features and handling complex, high-dimensional data. Chapter 5
focuses on the practical application of the GMLVQ model for process selection. This chapter
details the experimental setup, including the dataset, data preprocessing, tools used, and
evaluation metrics. It also compares the performance of the GMLVQ model with SVM and
analyzes the results, offering a thorough discussion of the implications and limitations of the
proposed approach. This chapter is based on published and submitted papers, including one
focused on the intelligent selection of polymer manufacturing processes using GMLVQ. Finally,
Chapter 6 summarizes the research findings, offers conclusions based on the research
hypotheses, and outlines directions for future research in intelligent manufacturing process
selection. This structure allows for a comprehensive examination of theoretical and practical

aspects, culminating in developing and testing a GMLVQ-based decision support system that
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bridges the gap between human decision factors and objective data-driven insights. The
following are the research outcomes published or submitted for publication during the

preparation of this dissertation:
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2. Empirical Insights on Manufacturing Process Selection
Limitations

This chapter examines how subjective decision factors and domain knowledge intersect in
manufacturing process selection, particularly in the era of Industry 5.0, where manufacturing is
being re-envisioned with a stronger emphasis on human-centric decision-making. The study
acknowledges the evolving nature of human-machine collaboration, where machines support
rather than replace human decision-makers. Therefore, understanding subjective decision factors
is crucial for enhancing this collaboration and optimizing manufacturing processes. The study
employs a combination of descriptive statistics, Spearman rank correlation, and Partial Least
Squares Structural Equation Modeling to analyze survey data collected from manufacturing
companies in Poland. This mixed-method approach is used to comprehensively assess the impact
of subjective decision-making factors on applying domain knowledge in selecting optimal
manufacturing processes. The findings underscore that optimizing manufacturing processes is
inextricably linked to the human elements of cognition and expertise. The chapter highlights the
detrimental impact of cognitive biases, groupthink, and personal preferences on the effective use
of domain knowledge in decision-making. It underscores the importance of promoting
sustainable and efficient manufacturing outcomes. The research extends beyond the immediate
context of manufacturing process selection, highlighting the significant role of knowledge
management, particularly in applying and creating knowledge within the realm of decision-
making in manufacturing. The chapter includes implications for a pivotal industry shift towards
recognizing and harnessing the unique contributions of human insight and domain knowledge in
complex manufacturing environments. The chapter uncovers the need to balance technological
advancements with human cognitive factors in manufacturing decision-making processes
through the application of intelligent support methodologies that incorporate human expertise

with the prevailing capabilities in selecting optimal manufacturing processes.

2.1. Introduction and literature review on manufacturing process selection

In pursuing sustainability, modern manufacturing enterprises have embraced engineering
paradigms emphasizing ecological and resource-efficient processes to remain competitive (Ben
Ruben et al., 2019). Knowledge management and decision-making have long been the bedrock
of organizational success. Historically, the reliance on heuristic and probabilistic models allowed
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decision-makers to navigate complex business landscapes using informed estimates and patterns
derived from available data (Korn & Bach, 2018). Over the years, this paradigm has experienced
a profound transformation, especially with the information explosion and advanced
computational capabilities. The advent of Industry 4.0 marked a significant shift towards
automation, where artificial intelligence and machine learning began to play pivotal roles (Behl
et al., 2023). These technologies have augmented human decision-making and reshaped the
fabric of knowledge management, transitioning from human-led processes to systems that can
learn, adapt, and make autonomous decisions based on real-time data. Despite the advances,
human factors remain crucial in manufacturing decision-making.

Industry 4.0 represents a paradigm shift in how organizations harness technology and
data. With its core built around the Internet of Things (IoT), cyber-physical systems, and big data
analytics, Industry 4.0 has created an ecosystem where machines are not just tools but
collaborators. Industry 4.0 is heavily associated with digitalization and industrial automation.
Researchers have outlined the adoption of information systems, automation, and automatic data
exchange in manufacturing as the three progress points of Industry 4.0 (Behl et al., 2023). Both
the interconnectivity of devices and the analytics power of big data have enabled a level of
automation and precision that was previously unattainable. The fourth industrial revolution is
driven by rapid innovation and the emergence of novel manufacturing technologies, materials,
and processes (Kamble et al., 2018). Vast troves of operational intelligence now inform
decisions, leading to better resource optimization and a step-change in productivity.

In the emergent narrative of Industry 5.0, the pivotal role of human skills and decision-
making is gaining unparalleled recognition. Industry 5.0 is introduced as a re-imagined human-
centric industrial revolution that focuses beyond efficiency and productivity (Golovianko et al.,
2022). Industry 5.0 is envisioned to ensure sustainable development with industrial technicians at
the center of manufacturing processes (Battini et al., 2022; S. Huang et al., 2022). As a result,
several opportunities have been identified, including human-cyber-physical systems, human-
robot collaboration, and human-digital twins (Coronado et al., 2022; S. Huang et al., 2022).
Unlike its predecessor, which championed automation and machine intelligence, Industry 5.0
heralds a new synthesis of human talent with robotic precision.

While Industry 4.0 focused on core technologies such as the Internet of Things, Cloud

Computing, Big Data, and Artificial Intelligence (Xu et al., 2021), Industry 5.0 shifts the focus
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toward human-robot collaboration, renewable sources, bionics, and innovative materials
(Coronado et al., 2022). This hybrid ecosystem values the creative and strategic input that only
humans can provide while capitalizing on the accuracy and efficiency of machines. The essence
of this approach lies not in relegating humans to a supervisory role but in promoting a symbiotic
relationship where both entities learn from and complement each other. Human ingenuity is,
thus, not overshadowed by digital prowess. Still, it is integrated to enhance innovation, problem-
solving, and customization, laying the groundwork for a manufacturing landscape that is
adaptable, resilient, and intrinsically human-centric. Therefore, the role of domain knowledge in
decision-making remains crucial for a sustainable, human-centric, and resilient manufacturing
industry envisioned under Industry 5.0 paradigms.

However, this integrated approach presents nuanced challenges, particularly in decision-
making. The research delves into how subjective decision factors, such as cognitive biases,
personal preferences, and groupthink, can inadvertently disrupt the potential harmony of human-
machine interfaces. The propensity for these subjective factors to skew judgment is amplified in
a complex environment where decision-making is shared between human insight and machine
algorithms. Such distortions can lead to inefficient choices in process selection, resource
allocation, and strategic planning, thereby diminishing the benefits of the collaborative model.
Research indicates that organizations have grown in complexity, and a modern organization is
described as increasingly highly dynamic and uncertain (Tworek et al., 2019). Addressing these
challenges is a strategic necessity for fully realizing sustainable manufacturing.

No existing studies focus on the intricate connections between subjective decision factors
and domain knowledge and their collective influence on the choice and performance of
manufacturing processes. Instead, a vast majority of existing research on manufacturing process
selection has focused on improving the approaches (Bikas et al., 2021; Lukic et al., 2017), with a
vast majority focusing on the selection of additive manufacturing (Dohale et al., 2021; Wortmann
et al., 2019). These studies have presented valuable insights into how these variables affect the
results of decision-making processes. Therefore, there is a need for more integrated research that
examines the combined influence of these factors and their interactions in a manufacturing
process selection context. By forging pathways to counteract biases and fostering a culture where
informed, data-driven technology is complemented by nuanced domain knowledge and human

expertise, the manufacturing sector can achieve a balance that aligns with the quest for
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sustainability. Ensuring that decision-making processes are robust, inclusive, and reflective of
empirical knowledge and human values is critical. This study delves into a comprehensive
investigation of the combined influence of cognitive influences, interpersonal dynamics, and the
use of domain knowledge in manufacturing process selection, using empirical evidence from
Poland’s manufacturing sector.

While manufacturing plays a vital role in the growth and development of the global
economy (Lima et al., 2022), the industry is currently navigating a landscape of unprecedented
change and complexity. This dynamic environment is primarily shaped by rapidly shifting
market demands, continuous technological evolution, and a growing emphasis on sustainability
(Haraguchi et al., 2017; Mumali, 2022). Recent studies highlight the wvulnerability of
manufacturing companies to large-scale disruptions from various issues, including geopolitics,
trade wars, and pandemics (D. Chen et al., 2022; Kapoor et al., 2021). In addition, manufacturing
systems have become more complex over the past decades in pursuit of less costly, timely,
flexible, and high-quality components and parts manufacturing (Efthymiou et al., 2016). The
rapid evolution of customer needs is described as the hallmark of the twenty-first century,
driving market turbulence. Changing market demands require manufacturers to be highly
responsive and flexible, adapting their processes promptly to meet changing consumer
preferences and emerging trends. Concurrently, technological evolution, especially in
digitalization and automation, radically alters how manufacturing operations are conceived and
executed (Chong et al., 2018; S. Mittal et al., 2019; Zeba & Dabi, 2021). These technological
advancements are not only incremental improvements but also represent significant leaps that
redefine the boundaries of what is feasible in manufacturing.

There is a growing recognition of the need for sustainable manufacturing practices.
Manufacturing is among the leading sources of emissions and resource consumption (C. Liu et
al., 2022; J. Liu et al., 2022; H. Sun et al., 2020; L. Sun et al., 2020; L. Zhang et al., 2022). The
growing imperative for sustainability is driven not only by regulatory pressures and
environmental concerns but also by growing consumer demand for eco-friendly products and
processes (Jum’a et al., 2022; Nogueira et al., 2023; Rantala et al., 2023). Sustainability in
manufacturing transcends the traditional focus on cost and efficiency, demanding a broader view
that encompasses the environmental impact, resource efficiency, and long-term viability of

manufacturing processes (Jum’a et al., 2022). Sustainability is a firm benchmark standard that
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significantly impacts external image and decision-making at various organizational levels
(Kazakova & Lee, 2022). Sustainability is a highly sought-after strategy across the
manufacturing landscape, alongside high productivity and agility, because of the recent shift
toward customer-driven and highly dynamic manufacturing markets (Peres et al., 2020).
Sustainable manufacturing anchored on resource-efficiency, high productivity, and low to zero
environmental impact is a prerequisite for attaining and maintaining competitive advantage.

In this multifaceted and challenging landscape, decision-making in the manufacturing
process selection remains critical. Choosing an optimal manufacturing process in Additive
Manufacturing (AM) and traditional manufacturing is intricate and demands a comprehensive
grasp of design parameters, materials, methods, and their interconnections (Bikas et al., 2019).
Selecting manufacturing processes is one of several complex decision-making dilemmas across
the entire manufacturing cycle (W. Yu & Meng, 2020). The authors further argue that choosing
among several criteria is complicated, and an optimal choice is typically a group of non-
dominant alternatives (C. Yu et al., 2020). Manufacturing process selection has long been
identified as a multi-attribute decision-making problem based on complex, uncertain, and
imprecise parameters during the initial design stage. Today, manufacturing process selection goes
beyond simple cost calculations and capacity considerations as it involves a delicate balancing
act where manufacturers must weigh a complex mix of factors, including production efficiency,
product quality, cost-effectiveness, adaptability, and sustainability (Goala & Sarkar, 2023;
Hodonou et al., 2019; Kek & Vinodh, 2016; P. C. Priarone & Ingarao, 2017; Sihag et al., 2019).
As such, manufacturing process selection remains a crucial research area.

Manufacturing process selection challenges are not limited to conventional and AM
(Bikas et al., 2019). While interest in AM has increased because of the shorter development
cycles, choosing the most suitable manufacturing processes remains a significant challenge
(Mancanares et al., 2015). AM is a new class of technologies involving the direct construction of
physical products and components from computer-aided design (CAD) models by adding
materials layer by layer (Colosimo et al., 2018). The official standard ISO-ASTM 52900 defines
AM as the “process of joining materials” to fabricate parts and components from 3D model data
in a layer-upon-layer format, in contrast to constructive and subtractive manufacturing
approaches (Bourell & Wohlers, 2020). AM has revolutionized the low production runs of

components with complex geometric properties and shapes (Bourell & Wohlers, 2020), and its
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rapid development is conspicuous. AM technologies are increasingly used to develop products
and components in the aerospace, automotive, biomedical, and consumer goods industries
(Haruna & Jiang, 2020; Y. Huang et al.., 2015). Current commercially viable AM processes are
categorized into seven groups, each featuring one or more processes, as shown in Table 2.1

below.

Table 2.1: Additive manufacturing processes

Technology Processes

Vat polymerization  Stereolithography (SL)
Direct Light Processing (DLP)
Continuous Direct Light Processing (CDLP)

Material jetting PolyJet technology
NanoParticle Jetting (NPJ)
Drop-On Demand (DOD)

Powder bed fusion  Laser Fused Selective Laser Sintering (SLS)
Direct Metal Laser Sintering
Electron Beam fused Electron Beam Melting (EBM)
Fused with agent and energy Multi Jet Fusion (MJF)
Thermally fused Selective heat sintering (SHS)
Directed energy Laser-based DED
deposition Electron beam-based DED

Plasma or Electric arc-based DED
Powder-based DED
Wire-based DED

Material extrusion

Binder jetting Furan Binder
Silicate Binder
Phenolic Binder
Agueous-Based Binder

Sheet lamination Laminated Object Manufacturing (LOM)
Selective Lamination Composite Object
Manufacturing (SLCOM)
Plastic Sheet Lamination (PSL)
Computer-Aided Manufacturing of Laminated
Engineering Materials (CAM-LEM)
Selective Deposition Lamination (SDL)
Composite-Based Additive Manufacturing (CBAM)
Ultrasonic Additive Manufacturing (UAM)

Source: own study based on ISO-ASTM 52900 as described by Bourell and Wohlers(Bourell & Wohlers, 2020)

Conventional manufacturing processes can be classified as primary, secondary, and
tertiary based on the desired product or component outcomes. Primary processes generate the
main shapes and forms of final products or components. These include metal-forming processes,
forging, rolling, casting, molding, and extrusion. Secondary processes generate the main shape

and form and refine the manufactured part's features. They include material removal processes,
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such as turning, drilling, milling, and grinding; bulk heat treatment processes, such as hardening,
annealing, and tempering; and surface treatment processes, such as plating. Finally, tertiary
processes are used after the primary and secondary processes. As such, they impact the geometry
and main shape of the manufactured part. This category comprises finishing processes, such as
heat and surface treatments. Each primary process, such as casting, involves numerous processes
for producing a particular product or component. Table 2.2 illustrates some different casting

types, forging, and extrusion processes.

Table 2.2: Examples of casting, extrusion, and forging processes

Casting Processes Extrusion Forging

Investment casting Direct extrusion Roll forging

Plastic-mold casting Indirect extrusion Automatic hot forging

Sand casting Hot extrusion Press forging

Plaster-mold casting Cold extrusion Sagging

Die casting Continuous extrusion Impression-die drop forging
Shell-mold casting Discreet extrusion Upset forging
Permanent-mold casting Open-die hammer

Source: own study

Irrespective of the adopted approach, AM or conventional, the choice of manufacturing
processes should be free from cognitive bias, and the complexity of each process’s parameters
and their interconnectivity with product requirements and business strategy should be
considered. Researchers have addressed critical decision-making problems in selecting and
optimizing conventional and additive manufacturing processes based on multiple criteria
decision-making methods (Altuger-Genc & Tzitzimititla, 2015; Gayathri & Nagaraju, 2016;
Ghaleb et al., 2020; C. Shi et al., 2017; Zheng et al., 2017). Decision-support tools have been
developed over the years, incorporating techniques such as the Analytical Hierarchy Process
(AHP), analytic network process framework (ANP), a method for order preference by similarity
to ideal solution (TOPSIS), and Case-Based Reasoning (CBR), to help streamline manufacturing
process selection decision-making(Antony & Joseph, 2017; Kek & Vinodh, 2016; Kumru &
Kumru, 2015; M. M. M. M. Mabkhot et al., 2019; Nallusamy et al., 2015; Nouri et al., 2015;
Peko et al., 2018; Ransikarbum & Khamhong, 2021). These have been further improved through
hybrids such as the fuzzy analytic network process (FANP) and fuzzy analytic hierarchy process
(FAHP) (Khamhong et al., 2019; Ransikarbum & Khamhong, 2021; Sadeghian & Sadeghian,
2016; Vinodh et al., 2010; Zare Banadkouki et al., 2021). However, some of these techniques,
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such as the widely used AHP, have inherent shortcomings, such as the inability to handle
subjective, inaccurate, and vague information. In addition, the manufacturing environment
continues to evolve at an unprecedented pace, leading to increased complexity and uncertainty in
process parameters. The evolution has also led to increased data generation, paving the way for
adopting artificial intelligence-based computation techniques capable of handling large volumes

of unstructured data.

2.2. Theoretical framework and empirical insights’ research hypotheses

Heuristic and expertise theories are adopted to guide the investigation into the intersection
between human factors and choosing optimal manufacturing processes. Tversky and Daniel
Kahneman primarily developed the theory of heuristics through extensive research on cognitive
bias and decision-making (Morvan & Jenkins, 2017). The study demonstrated that cognitive bias
leads to the developing of heuristics as mental shortcuts used in decision-making processes
(Morvan & Jenkins, 2017). Heuristic decision-making limits the efforts to reflect and weigh the
objectives and alternatives consciously (Methling et al., 2022). In this study, heuristic theory
helps to explore whether employing mental shortcuts or heuristics to simplify decision-making
when choosing the appropriate manufacturing processes leads to inefficient choices.

While there are several theories on expertise, this study adopts the expert performance
approach proposed by K. Anders Ericsson. Ericsson’s approach alludes to the fact that domain
knowledge involves repeatedly reproducing superior performance (Ericsson, 2018). This theory
emphasizes the development of domain knowledge through experience and knowledge
acquisition and the use of it to make better decisions. Although the theory is extensive and
includes the development of expertise, this study focuses only on using domain knowledge and
expertise in decision-making. In manufacturing process selection, expert performance theory can
help evaluate whether critically analyzing the complexity of process parameters and considering
potential alternatives and variants of manufacturing processes leads to better outcomes.

Combining heuristic and expertise theories can provide valuable insights into the
intersection between cognitive and human factors and domain knowledge and their combined
influence on the choice of manufacturing processes, as illustrated in Figure 2.1 below. The
theories provide a framework to interpret and analyze empirical evidence, helping to identify

patterns, relationships, and insights regarding the impact of using heuristics and mental shortcuts
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to simplify decision-making when using domain knowledge and knowledge when choosing

manufacturing processes, and the collective impact on process effectiveness.

Process selection drivers

® Design requirements including tolerance, surface properties, size,
weight,volume, geometry, material, and secondary processing
requirements

® Process supervision and level of labour skill required

® Processing time, energy consumption, and labour costs

® Process waste and material recycling

m Cost of tooling, equipment, machinery and maintenance

\
Process selection

Domain knowledge and expertise Heuristics and mental shortcuts -
é in decision-making in decision-making E
- - N s N 2
52 Idenitification and Subjective decision = =3
S 32 evaluation constraints E=
WU = @
£ 3
o= ® Alternative processes = Cognitive bias B q
§_ ® Process complexity ® Personal preference = E
i ® Process variants ® Groupthink =
. J - J -

Efficient selection Inefficient selection

Figure 2.1: The underlying theoretical framework
Source: Own study

The relationship between cognitive bias and decision-making outcomes has been studied
across disciplines, including medicine, law, psychology, management, and engineering
(Korteling et al., 2023; Paulus et al., 2022). Existing research shows contrasting impacts of
cognitive biases, with some reporting an influence on productivity while others reveal adverse
impacts on decision-making (Mahesh Babu et al., 2023). In the manufacturing process selection
context, product engineers and designers may overestimate the precision of their judgment,
incorrectly believing current outcomes were all along predictable, and seek specific pieces of

information that validate the existing beliefs (Berthet, 2022). Such biases can hinder the effective
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utilization of domain knowledge during the selection of manufacturing processes. Thus, the first
sub-hypothesis of H1 is defined as:

H1la: Cognitive biases significantly contribute to the selection of inefficient manufacturing
processes.

Like cognitive bias, personal preferences significantly affect decision-making and have
been studied across disciplines (Ariail et al., 2015; Herzog et al., 2021). Personal preference is a
highly likely phenomenon in the initial design and selection of manufacturing processes.
However, this can adversely affect the capacity to thoroughly exploit the vast data to guide
optimal solutions. Therefore, the second sub-hypothesis of H1, aimed at establishing whether
personal preference impacts the quality of decisions made concerning knowledge utilization, is
developed as follows:

H1b: Personal preferences significantly contribute to the selection of inefficient manufacturing
processes.

Decisions around product design and manufacturing processes are often made in cross-
functional teams, drawing upon knowledge from different aspects of the organization.
Consequently, groupthink, a psychological phenomenon that occurs when the desire for harmony
and consensus within the team results, is not uncommon. Similarly, several recent research
studies attempt to decipher the role of groupthink in effective decision-making (Cha et al., 2020;
Harel et al., 2021; Yim & Park, 2021). Groupthink often leads to an irrational or dysfunctional
decision-making outcome due to the tendency to prioritize consensus and conformity over
critical evaluation of alternatives and independent thinking (Tarmo & Issa, 2022). To understand
the impact of groupthink on manufacturing process selection, the third sub-hypothesis of H1 is,
therefore, formulated as follows:

H1lc: Groupthink within decision-making teams contributes to the selection of inefficient
manufacturing processes.

Cognitive load describes the mental burden of cognitive requirements that are subject to
an individual, given that human cognitive resources are limited (Wickens, 2002), as are attention
span and working memory capacity. Several scholars have studied the concept of cognitive load
concerning decision-making (Ball et al., 2023; Collins & Collins, 2021; McCarty et al., 2021).
While high cognitive load could indicate intensive knowledge utilization in decision-making,

levels more significant than the cognitive capacity may lead to poor decisions and ineffective
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knowledge by hindering learning (Ball et al., 2023). While cognitive load is not a subjective
decision factor, it is closely related to and influences subjective decision-making. High cognitive
load increases reliance on heuristics or biases. Studies have found that cognitive load
significantly impacts problem-solving (Collins & Collins, 2021). A recent study postulates that the
lack of clarity generates cognitive load due to sense-making (Collins & Collins, 2021). In addition,
decision fatigue, which results from the repetitive use of cognitive resources in complex
environments, affects cognitive load in decision-making (Collins & Collins, 2021). To understand
the role of cognitive load in the selection of manufacturing processes, the fourth sub-hypothesis
of H1 is formulated as follows:

H1d: High cognitive load contributes to the selection of inefficient manufacturing processes.

Decision-making is significant in manufacturing as it allows us to compare alternatives
and select optimal choices to increase productivity and quality. Much existing literature
highlights the critical importance of considering alternatives in decision-making (Jing et al.,
2020; J. Lim et al., 2022). Multi-criteria decision methods have been developed primarily to
allow decision-makers to compare alternatives more easily across disciplines (Asadi et al., 2022;
Jamwal et al., 2021; Ponhan & Sureeyatanapas, 2022). The field of manufacturing process
selection has not been left behind, with numerous studies documenting multi-criteria decision
methods for aiding decision-making (Raja et al., 2022). To understand the effect of utilizing
knowledge of alternatives during the selection of manufacturing processes, the fifth sub-
hypothesis of H1 is formulated as follows:

H1le: Limited utilization of knowledge of alternatives contributes to the selection of inefficient
manufacturing processes.

The manufacturing sector is experiencing significant technological advancements that are
fostering innovation. This innovation leads to the creation of new processes and involves the
continuous development of process variations. Recent studies document performance among
process variants in attempts to isolate economically viable solutions (T. A. Rodrigues et al.,
2019). Knowledge of process variants is, therefore, crucial in manufacturing process selection.
To understand the utilization of process variant knowledge in manufacturing process selection,
the sixth sub-hypothesis of H1 is developed as follows:

H1f: Limited utilization of knowledge on process variants contributes to the selection of

inefficient manufacturing processes.
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Recent studies have reported on the growing complexity of manufacturing processes
(Stavropoulos et al., 2021; Touzé et al., 2022). The increased complexity of manufacturing
processes has been attributed to the dynamic market demand, high-quality requirements, low
cost, expanded customization, and the pressing need for short lead times (Efthymiou et al.,
2016). There are significant gaps in the details of the complexities of manufacturing processes,
leading to increased misconceptions and poor decision-making frameworks. Based on this
revelation, the following seventh sub-hypothesis of H1 is proposed:

H1g: Limited knowledge of process complexity contributes to selecting inefficient
manufacturing processes.

Making optimal decisions requires keen consideration of process description, suitable
materials, process variations, economic concerns, typical use cases, design aspects, and quality
issues. Using a inefficient process to manufacture a component results in deviations from the
required attributes, including quality. Such components are considered defects and may need
rework, which can happen immediately after a normal manufacturing cycle or delay. In this case,
it commences with the depletion of perfect components in the inventory (Nobil et al., 2020). In
addition, reproduction and rework costs for defective and deficient components are higher than
standard work-in-progress costs (Nobil et al., 2020). This is because additional resources are
often required, including energy, raw materials, and labor.

Rework and reprocessing lead to extra waste, increasing the net carbon footprint for the
component and possibly causing extended lead times. Failure to understand the complexity of
selected manufacturing processes may lead to safety risks when proper steps are not followed
during manufacturing. Using inappropriate processes may also lead to increased generation of
waste materials. For instance, additive manufacturing processes produce complex products
accurately with less material waste than conventional processes (M. Javaid et al., 2021). Besides,
additive manufacturing processes improve resource efficiency in the introduction and use stages
and extend the product life cycle (Ford & Despeisse, 2016). To understand how subjective
decision factors and domain knowledge influence these outcomes, the following five additional
sub-hypotheses of H1 are formulated:

HZ1h: The selection of inefficient manufacturing processes leads to rework and reprocessing.
H1i: The selection of inefficient manufacturing processes leads to increased waste materials.

H1j: The selection of inefficient manufacturing processes leads to low-quality outcomes.
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H1k: Selection of inefficient manufacturing processes leads to extended lead time.
H15: The selection of inefficient manufacturing processes increases safety concerns during

manufacturing.

2.2.1. Research methodology of the empirical study on subjective decision

factors' impact on manufacturing process selection

2.2.2. Research design and approach, survey description, and study population

This study used quantitative surveys to provide a rich, nuanced analysis of cognitive bias,
cognitive load, personal preference, and groupthink and how they intersect with the use of
domain knowledge to influence the quality of decision-making. An anonymous survey
questionnaire with 12 questions, as highlighted in Table 2.3 and Table 2.4 below is used to
comprehensively investigate the combined influence of cognitive factors, human factors, and
domain-specific expertise in manufacturing process selection. The survey questions are self-
created, based on the developed hypotheses, which are based on the discussed literature and the
underlying theoretical framework illustrated in Figure 2.1, which shows that typical selection
drivers are numerous and complex. These drivers are used in developing selection criteria for
evaluating potential processes to pick the most optimal. Process alternatives, complexity, and
variants are analyzed based on criteria developed from the selection drivers presented in Figure
2.1. Twenty-seven companies, from small- and medium-sized companies to international
corporations, were reached for participation in the survey. In addition, the survey questionnaire
link was distributed to 30 professionals on LinkedIn whose profiles matched the relevant roles,
including production workers, production planners, manufacturing engineers, production
managers, and quality engineers. They were requested to participate in the survey and share it
with their colleagues in similar environments.

The first part of the survey comprises four questions designed to identify and measure the
presence of cognitive bias, personal preference, groupthink, and cognitive load in the selection of
manufacturing processes. For each question, occurrence is evaluated using a five-point Likert
scale. The second part comprises three questions designed to uncover whether the complexity of
process parameters, alternatives, and variants is considered during the selection of manufacturing
processes. Similarly, the responses are based on a five-point Likert scale. The third part

comprises five questions aimed at identifying potential adverse impacts of selected
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manufacturing processes, including rework and reprocessing, increased scrap or waste

production rate, inconsistencies in quality, extended lead times, and safety issues attributed to

poorly chosen manufacturing processes. The survey includes three additional questions related to

demographic data, although these questions are not considered in the scope of this research.

2.2.3. Variables, measures, and data analysis techniques

The study involved seven independent variables drawn from the formulated hypotheses. The

variables were measured using the 5-Likert scale, where 1 = Strongly Disagree, 2 = Disagree, 3 =

Neither Agree nor Disagree, 4 = Agree, and 5 = Strongly Agree. Table 2.3 below shows the

operationalization of the independent variables.

Table 2.3: Independent variables

Question  Variable Name Abbreviation  Operationalization

Q1 Level of agreement with the statement "Cognitive biases influence decision-
Cognitive Bias CB making."

Q2 Level of agreement with the statement "Personal preferences impact decision-
Personal Preference PP making."

Q3
Cognitive Load CL Level of agreement with the statement "Cognitive load affects decision-making."

Q4
Groupthink GT Level of agreement with the statement "Groupthink influences decision-making."

Q5 Process Complexity Level of agreement with the statement "Consideration of process complexity affects
Consideration pPCC decision-making."

Q6 Alternative Process Level of agreement with the statement "Consideration of alternative processes
Consideration APC impacts decision-making."

Q7 Process Variant Level of agreement with the statement "Consideration of process variants influences
Consideration PVC decision-making."

Source: Own study

Seven dependent variables were similarly drawn from the corresponding formulated hypotheses.

The variables were measured based on the 5-Likert scale where 1 = Never, 2 = Rarely, 3 =

Sometimes, 4 = Often, and 5 = Always. Table 2.4 below shows the operationalization of the

dependent variables.

Table 2.4: Dependent variables

Question

Variable Abbreviation  Operationalization
Q8 Rework RW Frequency of rework occurrence in decision-making.
Q9 High Waste Material Rate HMWR Frequency of high waste material rate occurrence in decision-making.
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Q10

Quality Inconsistency Ql Frequency of quality inconsistency occurrence in decision-making.
Q11 Extended Lead Times ELT Frequency of extended lead times occurrence in decision-making.
Q12 Safety Concerns SC Frequency of safety concerns occurrence in decision-making.

Source: Own study

The collected data was analyzed using three statistical tools: IBM SPSS version 26,
RStudio 2023.06.0 Build 421, and SmartPLS4. Given the ordinal nature of the collected data
through the 5-point Likert scale survey, IBM SPSS performs Spearman rank-order correlations.
Spearman’s rank correlation is a nonparametric test, which makes it especially suitable for
analyzing ordinal data. The role of RStudio was limited to generating visualizations to aid the
descriptive analysis of data. Partial least squares structural equation modeling (PLS-SEM) was
adopted because of the intricate nature of the research design and the underlying conceptual
framework (Ringle et al., 2022). Before actual analysis, a conceptual PLS-SEM model was
developed with three latent variables: subjective human decision factors, domain knowledge

utilization, and process ineffectiveness, as shown in Figure 2.2 below.

Domain Knowledge
Utilization

Process
Ineffcetiveness

Subjective Human
Decision Factors

Figure 2.2. Conceptual Partial Least Squares-Structural Equation Modeling
Source: Own study

2.3.  Empirical research findings

2.3.1. Findings overview

A total of 355 responses were received between March and July 2023, with the respondents
comprising a mix of roles ranging from entry-level workers to directors directly involved with

manufacturing processes. Figure 2.3 shows the results obtained for the independent variables.

29



The proportion of responses that neither agree nor disagree is stable for most independent
variables, ranging between 36% and 38%, except for groupthink, which stands at 46%. A
significant presence of cognitive bias and personal preference is reported in 47% of each, while
34% of responses report the presence of groupthink in picking the most suitable manufacturing
processes. Surprisingly, there was little cognitive load as only 16% of responses confirmed its
presence, 39% neither confirmed nor disputed, and 45% disagreed. Similarly, considering
alternative processes, process complexity and process variants were less prevalent, as only 12%,
13%, and 16% of respondents agreed, compared to 52%, 50%, and 52% who disagreed.

Personal preference{ 16% 38% 47%
1
Cognitive bias{ 16% 37% 47%
1
Groupthink{ 20% 46% 34%
1
Process variants o 9 o
consideration] °1% St 16%
Cognitive load{ 45% 39% 16%
Process complexity 50% 37% 139,
consideration
Alternative processes 0 o 9
consideration| 527 S 12%
. . | . .
& & Q § RS
Percentage
Response Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Figure 2.3. Likert plot for independent variables
Source: Own study

Similarly, the results for median dependent responses were stable, ranging from 16% to
19%. Rework, increased waste material rate, quantity inconsistency, extended lead time, and
safety concerns due to selecting inefficient manufacturing processes are strongly confirmed by
48%, 43%, 42%, 40%, and 32% of responses, respectively. The plot shown in Figure 2.4 below

summarizes the findings for dependent variables.
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Figure 2.4. Dependent variables
Source: Own study

The responses for dependent variables were counted and analyzed for comparison. A
stacked bar plot was created as shown in Figure 2.5. Only a small minority of responses
indicated the absence of rework, high water material generation rate, quality issues, extended
lead time, and safety concerns. This was followed by a slightly bigger but still low number of
responses pointing to rarity. Most responses indicated that these phenomena are sometimes,

often, or always witnessed.
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Figure 2.5. Stacked bar plot for dependent variables
Source: Own study

Similarly, independent variables were analyzed and presented as a stacked bar chart to
distinguish the presence or absence of cognitive bias, personal preference, groupthink, cognitive
load, process complexity consideration, alternative process consideration, and process variant
consideration. The results, as shown by Figure 2.6 below, indicates that only a fraction of the
responses denied the presence of cognitive bias, personal preference, and groupthink. However,
the overall number of responses that agreed or strongly agreed with the tested independent

variables was significantly higher than those who disagreed or strongly disagreed.
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Figure 2.6. Stacked bar plot for independent variables

Source: Own study

2.3.2. Spearman’s Rank correlation

] Likert Scale
Strongly Disagree
Disagree
] Neither Agree nor Disagree
B Agree
W strongly Agree
0-

Spearman’s rank correlation, a nonparametric measure of the strength and direction of

association between two ranked variables, was used to test how well the relationship between

selected variables is described by a monotonic function. The result of Spearman’s rank

correlation obtained from IBM SPSS is as shown in Table 2.5 below.

Table 2.5: Spearman rank order correlations

CB PP GT CL PCC APC PVC RW HWMR Ql ELT sC
CB Correl. Coeff 1.000 2617 166" -2257  -308™ -3047 -2917 .408™ .281" 2577 .250™ 1797
Sig. 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
PP Correl. Coeff 261" 1.000 131" -263™  -286™  -277"  -.285" .286™ .316™ 257 .280™ 0.102
Sig. 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062
GT Correl. Coeff .166™ 1317 1.000  -133° -200" -206" @ -117" .154™ .220™ 0.084 .250™ 0.085
Sig. 0.002 0.016 0.015 0.000 0.000 0.032 0.005 0.000 0.127 0.000 0.119
CL Correl. Coeff -225™  -263"  -133" 1.000 .188™ .262" 200" 124" -189™  -237"  -187"  -0.073
Sig. 0.000 0.000 0.015 0.001 0.000 0.000 0.023 0.001 0.000 0.001 0.182
pPCC Correl. Coeff -308™  -286™ -.200" .188™ 1.000 2637 1967 -2727 -197"  -201"  -2377 1217
Sig. 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.027
APC Correl. Coeff -304™  -2777 -.206™ 262" 263" 1.000 241" -293" -313™  -228™ -201"  -0.086
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Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

wox

PVvC Correl. Coeff -291"  -.285" -117" .200™ .196™ 241" 1.000 -.292" -240"  -304™ -168
Sig. 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.002

RW Correl. Coeff .408™ .286™ A547 -1247 =272 -2937 -2927 1.000 .200™ 2717 2337
Sig. 0.000 0.000 0.005 0.023 0.000 0.000 0.000 0.000 0.000 0.000

HWMR  Correl. Coeff 2817 .316™ 2207 -189™  -1977  -313™  -2407 .200™ 1.000 .215™ 3377
Sig. 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Ql Correl. Coeff 257 2577 0.084 -2377 -201" -228" -304™ 2717 215" 1.000 1447
Sig. 0.000 0.000 0.127 0.000 0.000 0.000 0.000 0.000 0.000 0.008

ELT Correl. Coeff .250™ .280™ 2507 -1877 -2377 -2017  -.168" 233" 337" 1447 1.000
Sig. 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.008

SC Correl. Coeff 179™ 0.102 0.085 -0.073 -121°  -0.086 -.135" 0.083 0.094 1217 1527
Sig. 0.001 0.062 0.119 0.182 0.027 0.115 0.013 0.129 0.086 0.027 0.005

0.115
-.135"
0.013
0.083
0.129
0.094
0.086

1217
0.027
152"
0.005
1.000

**_Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Source: Own study

As shown in Table 2.5 above, independent variables show a mix of positive and negative
correlations. Cognitive bias, groupthink, and personal preference significantly correlate with
each other and with rework, high waste rate, quality inconsistency, extended lead time, and
safety concerns. However, the actual correlation coefficient varies. These three independent
variables negatively correlate with the cognitive load, the process complexity consideration, the
alternative process consideration, and the process variant consideration. In contrast, process
complexity consideration, alternative processes consideration, and process variant consideration
show significant positive correlations with each other and cognitive load while negatively
correlating with cognitive bias, personal preference, groupthink, rework, high waste rate, quality
inconsistency, extended lead time, and safety concerns. All significant correlations appear either
small or weak. Many of them are significant at 0.01 and 0.5. The results give a general
impression of the impact of subjective human decision factors on applying domain knowledge
and the subsequent impact on process effectiveness. Based on these findings, the low cognitive
load indicates less mental effort during the selection of manufacturing caused by preference,

bias, and groupthink.

2.3.3. Partial Least Squares-Structural Equation Modeling (PLS-SEM)

A PLS-SEM model was created with observable and latent variables by modifying the
conceptual model illustrated in Figure 2.1. Subjective human decision factors constituted the

first latent variable derived from cognitive bias, personal preference, and groupthink. It was a
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reflective model as it caused observable variables. Domain knowledge utilization was the second
latent variable derived from alternative process consideration, process complexity consideration,
and process variant consideration. The cognitive load was added to domain knowledge
utilization, as the observed low cognitive load implied the lack of thorough analysis during
decision-making. Domain knowledge was a formative model as it caused observable variables.

The last latent variable was process effectiveness, as shown below in Figure 2.7.

APC
Domain Knowledge Utilization /' g
a
> —* @
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o
Ve
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Process Ineffectiveness
c8 Cognitive Blas
CB m Gr Grouplhink
‘\ cL Cognitive Load
GT ¢ - PR Personal Preference
‘/ @ APC Alternative Process Consideration
PCC Process Complecity Consideration
PP PVC | Process Varlants Consideration
Subjective Human Decision Factors ELT Edended Lead Time

HWMR | High Waste Material Rate
al Quaniity inconsistency
RW Rework

SC | Safety Concerns

Figure 2.7. PLS-SEM model
Source: Own study

The results after executing the PLS-SEM algorithm are as shown in Figure 2.8 below. In
this study, theory supports the argument that subjective decision factors often contribute to poor
decisions. However, the model is not intended to confirm the theory but rather to explore the
relationship between the variables implied in the theory. Therefore, in this study, the outer
loading path coefficients of at least 0.4 are acceptable, even though they imply moderate
relationships. The outer loadings for the subjective human decision factors were high, especially
for cognitive bias and personal preference, which are 0.744 and 0.725, respectively. Groupthink
had an outer load of 0.454, below 0.7 but higher than 0.4, hence acceptable. These findings
confirm sub-hypotheses Hla, H1b, and H1c. The loadings for domain knowledge were

relatively strong, as all 3 observable variables have outer loadings above 0.4, and only cognitive
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load has an outer loading of 0.243; hence, hypotheses Hle, H1f, and H1g are supported. Process
effectiveness had solid outer loadings. Four dependent variables have loading values ranging
between 0.584 and 0.649, while only the safety concern had a much lower value of 0.299,
indicating a less substantial impact. Thus, hypotheses H1h, H1i, H1j, and H1k were strongly

supported.
ELT
APC . e e Pl
~ Domain knowledge Utilization 0584  HWMR
a 0630”7
02435 BN 0.501 > 06195  Q
pCC —0437%, ! 0:649
0454 SN
~ 0.299 RW
PVC
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Process Ineffectiveness
-0.498
CB Cogpnitive Bias
GT Groupthink
CB CL Cognitive Load
“04744.___ PP Personal Preference
GT 4‘0-454: APC Alternative Process Consideration
‘,0-725 PCC Process Complecity Consideration
PP PVC Process Variants Consideration
ELT Extended Lead Time

Subjective Human Decision Factors HWMR | High Waste Material Rate

Ql Quanlity Inconsistency
RW Rework
sC Safety Concerns

Figure 2.8. PLS-SEM model calculation
Source: Own study.

Cognitive load and safety concerns were dropped from the model because of their less
substantial contribution to the latent variables. Therefore, hypotheses H1d and H1l were weakly
confirmed. A new PLS-SEM calculation yielded new results, as shown in Figure 2.9 below. The
refined model had better results with all outer loading values higher than 0.4. The path
coefficient describing the relationship between subjective human decision factors and domain
knowledge utilization was -0.480, indicating a moderate negative relationship. Similarly, the path
coefficient for the link between domain knowledge utilization and process effectiveness revealed

a moderate negative relationship of -0.487. The R? for domain knowledge utilization is 0.231,

indicating that 23.1% of its variance is attributed to subjective human decision factors. The R*
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for process ineffectiveness was 0.237, meaning that negative human decision factors and domain

knowledge utilization can explain 23.7% of its variance.
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Figure 2.9. Refined PLS-SEM model results
Source: Own study

Bootstrapping was done to evaluate the statistical importance of the PLS-SEM model

calculation. Bootstrapping estimated several measures, including path coefficients, by creating

their distribution. This study calculated bootstrapping using 5000 subsamples and a percentile

bootstrap as the confidence interval method. The test type was set to two-tailed with a

significance level of 0.05. Table 2.6 below shows the descriptives of bootstrapping results for the
PLS-SEM model. Figure 2.10 below shows the results of the bootstrapped PLS-SEM model.

Table 2.6: Bootstrapping descriptives

Cramér-von  Cramér-
Observed Observed Standard  Excess Mises test von Mises
Mean Median min max deviation kurtosis Skewness Observations statistic p value

APC 2.391 2 1 5 1.007  -0.527 0.23 335 2.577 0.000
CB 3.49 3 1 5 1.084 -0.605 -0.192 335 2.405 0.000
ELT 3.406 3 1 5 1.035  -0.597 0.05 335 3.115 0.000
GT 3.185 3 1 5 0.944 -0.1 -0.014 335 3.355 0.000
HWMR 3.412 3 1 5 1.124 -0.708 -0.115 335 2.406 0.000
PCC 2.445 2 1 5 1.032  -0.323 0.304 335 2.545 0.000
PP 3.519 3 1 5 1.089 -0.663 -0.182 335 2.495 0.000
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PVC 2.475 2 1 5 1.092 -0.45 0.369 335 2.208
Ql 3.421 3 1 5 1.053  -0.589 -0.044 335 2.763
RW 3.519 3 1 5 1125  -0.725 -0.238 335 2.229

0.000
0.000
0.000

Source: Own study
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Figure 2.10. PLS-SEM bootstrapping
Source: Own study

Key findings from bootstrapping included path coefficients, outer loadings, outer

weights, and total effects. Path coefficients depict the hypothesized intersection between the

latent variables in the PLS-SEM model by measuring their direct influence on each other. They

also show the intensity and direction of the links between latent variables. Table 2.7 and Table

2.8 The results for the outer loadings and outer weights are below.

Table 2.7: Outer loadings

Original Sample Standard T statistics

sample (O) mean (M) deviation (|JO/STDEV)) P values
APC -> Domain knowledge utilization 0.716 0.711 0.074 9.658 0.000
CB <- Subjective human decision factors 0.75 0.746 0.055 13.563 0.000
ELT <- Process Ineffectiveness 0.577 0.572 0.073 7.935 0.000
GT <- Subjective human decision factors 0.466 0.461 0.1 4.682 0.000
HWMR <- Process Ineffectiveness 0.642 0.636 0.064 10.012 0.000
PCC -> Domain knowledge utilization 0.646 0.64 0.084 7.672 0.000
PP <- Subjective human decision factors 0.712 0.707 0.065 10.995 0.000
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PVC -> Domain knowledge utilization 0.651 0.644 0.072 9.008 0.000
QI <- Process Ineffectiveness 0.609 0.605 0.076 8.042 0.000
RW <- Process Ineffectiveness 0.685 0.682 0.063 10.792 0.000

Source: Own study

Table 2.8: Outer weights

Original Sample Standard T statistics

sample (O) mean (M) deviation (JO/STDEV)) P values
APC -> Domain knowledge utilization 0.528 0.525 0.087 6.051 0.000
CB <- Subjective human decision factors 0.591 0.588 0.063 9.427 0.000
ELT <- Process Ineffectiveness 0.317 0.314 0.062 5.067 0.000
GT <- Subjective human decision factors 0.337 0.334 0.082 4.091 0.000
HWMR <- Process Ineffectiveness 0.401 0.396 0.057 7.082 0.000
PCC -> Domain knowledge utilization 0.47 0.465 0.093 5.056 0.000
PP <- Subjective human decision factors 0.561 0.556 0.071 7.929 0.000
PVC -> Domain knowledge utilization 0.49 0.484 0.079 6.181 0.000
QI <- Process Ineffectiveness 0.385 0.382 0.064 6.015 0.000
RW <- Process Ineffectiveness 0.475 0.473 0.065 7.353 0.000

Source: Own study

As shown by Table 2.7 and Table 2.8 all observed variables significantly influenced
latent variables, as indicated by the p-value of 0.00. The T-statistics confirmed the statistical
significance, with most variables having more than 7.6 values, except groupthink and subjective
human decision factors. However, the most important results are shown in Table 2.9 below,

depicting the bootstrapped path coefficients.

Table 2.9: Bootstrapped path coefficients

The original Sample Standard T-statistics

sample (O) mean (M) deviation (|O/STDEV|) P values
Subjective human decision factors ->
Domain knowledge utilization -0.480 -0.490 0.048 10.095 0.000
Domain knowledge utilization ->
Process Ineffectiveness -0.487 -0.498 0.042 11.622 0.000

Source: Own study

The results showed an original sample path coefficient of -0.480 for the relationship
between subjective human decision factors and domain knowledge utilization. The negative sign
indicated that as subjective human decision factors increased, domain knowledge utilization
decreased and vice versa. The bootstrapped path coefficient mean (M) is -0.490, indicating that
the average relationship across all bootstrap samples is slightly more robust than in the original
sample. The standard deviation (STDEV) is 0.048, indicating a slight variability in the path
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coefficients across bootstrap samples. The T-statistic value was 10.095, more significant than the
typical critical value of 1.96 at a 95% confidence level, indicating that the path coefficient was
statistically significant. The P value was 0.000, also indicating statistical significance. The
original sample path coefficient for the relationship between domain knowledge utilization and
process effectiveness was -0.487, showing a negative relationship between these constructs. The
results are as expected since domain knowledge is limited in this case because of the influence of
subjective human decision factors. Therefore, the more limited the use of domain knowledge in
decision-making, the more process effectiveness decreases and vice versa. The T-statistic value

was 11.622, and the p-value is 0.000, indicating that this relationship was statistically significant.
2.4. Empirical insights discussion

2.4.1. Hypothesis verification and subjective decision factors

As defined by hypothesis H1, subjective decision factors such as cognitive biases, personal
preferences, and groupthink significantly contribute to the selection of inefficient manufacturing
processes by limiting the use of domain knowledge in decision-making. This was confirmed by
the empirical evidence presented, which strongly supported 10 sub-hypotheses of H1, with only
two being weakly confirmed, as shown in Table 2.10 below.

Table 2.10: Sub-hypotheses testing

Hypothesis  Statement Conclusion
Cogpnitive biases significantly contribute to the selection of inefficient

Hla manufacturing processes. Confirmed
Personal preferences significantly contribute to the selection of inefficient

H1b manufacturing processes. Confirmed
Groupthink within decision-making teams contributes to the selection of inefficient

Hlc manufacturing processes. Confirmed
High cognitive load contributes to the selection of inefficient manufacturing

Hid processes. Weakly confirmed
Limited utilization of knowledge of alternatives contributes to the selection of

Hle inefficient manufacturing processes. Confirmed
Limited utilization of knowledge on process variants contributes to the selection of

H1f inefficient manufacturing processes. Confirmed
Limited knowledge of process complexity contributes to the selection of inefficient

Hlg manufacturing processes. Confirmed
The selection of inefficient manufacturing processes leads to rework and

H1h reprocessing. Confirmed
The selection of inefficient manufacturing processes leads to increased waste

H1i materials. Confirmed

Hij The selection of inefficient manufacturing processes leads to low-quality outcomes.  Confirmed

H1k The selection of inefficient manufacturing processes leads to extended lead time. Confirmed
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The selection of inefficient manufacturing processes leads to increased safety
H1l concerns during Weakly confirmed

Source: Own study

The research findings indicate that subjective decision factors, namely cognitive bias,
groupthink, and personal preference, significantly affect the choice of manufacturing processes.
The findings are unsurprising as long-standing research has shown that human decision-making
frequently involves cognitive biases caused by dependence on judgmental heuristics.
Importantly, this phenomenon is practiced to some extent by laypeople, experienced specialists,
and experts. As shown in Spearman rank correlations in Table 2.5, cognitive bias significantly
correlates with rework, quality inconsistency, increased waste material rate, and extended lead
times. At the same time, cognitive bias has a strong negative correlation with alternative process
consideration, process complexity consideration, and process variant consideration.

Similarly, groupthink has been found to limit the exploration of alternative processes and
process variants, as indicated by a significant negative correlation, as shown in Table 2.5 thereby
confirming that Manufacturing process selection is often a collaborative effort involving several
groups, including product designers, production planners, and quality control specialists. These
groups work together to make informed decisions based on various factors such as product
requirements, production capabilities, and quality standards. Together, these groups leverage
their collective knowledge and expertise to evaluate and decide on the best manufacturing
method that meets the product requirements while ensuring efficiency, quality, and cost-
effectiveness. However, they are not immune to groupthink, as shown. While there are many
other forms of cognitive bias, this study treated groupthink as a particular case. It elevated it to a
variable because of the collaborative nature of the manufacturing process selection, where
decisions are often made in cross-functional teams.

Personal preferences derived from an individual’s prior experiences, inherent biases, and
comfort levels can significantly influence decision-making in manufacturing process selection.
These findings align with existing research, which shows that personal preference makes
decision-makers rely mainly on the information they deliberately search for when making critical
decisions. Existing research alludes to human decision-making in complex, dynamic, and fast-
paced environments such as manufacturing, which is often biased, leading to inefficient

performance (Kessler & Arlinghaus, 2022). The negative correlation between personal
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preference and the consideration for alternatives, variants, and complexities observed reveals the
inherent problem of overreliance on personal preferences, which is the prevention of objective
evaluation of all available options. In effect, it can limit potential solutions to the decision-maker
who has had a good experience and is already comfortable. This limitation can have significant
implications for manufacturing efficiency and effectiveness, as shown by the positive correlation
between preference and variables reflecting process ineffectiveness, such as rework, extended

lead time, and quality inconsistency.

2.4.2. Domain knowledge in decision-making

Domain knowledge, particularly regarding different categories of manufacturing processes, their
capabilities, and inherent complexities, is pivotal in effective decision-making when selecting
optimal manufacturing processes. The knowledge acquired equips individuals or groups with the
necessary capabilities to analyze selection drivers and develop criteria critically, consider process
alternatives, their complexities, and variants, and evaluate the potential for rework or extended
lead times and to meet quality and sustainability standards. However, this research illuminates an
alarming phenomenon whereby the use of domain knowledge is hampered significantly by
subjective decision factors, including cognitive bias, groupthink, and personal preference,
ultimately compromising the effectiveness of manufacturing processes. Spearman rank
correlation coefficients and the PLS-SEM model indicate a negative relationship between
variables related to domain knowledge utilization and the effectiveness of the selected
manufacturing processes. The results reinforce the need to integrate domain knowledge when
designing and selecting manufacturing processes. Existing studies have proposed methods for
incorporating knowledge synthesis in product and component design, and the selection of
appropriate processes for manufacturing (Kessler & Arlinghaus, 2022). The study suggests
incorporating the ideals of process selection and manufacturing constraint integration in the early
stages of product design (Kessler & Arlinghaus, 2022). Failure to utilize domain knowledge
when choosing manufacturing processes leads to inefficient processes, disregarding essential

constraints.

2.4.3. Intersection between subjective decision factors and domain knowledge

This study has unveiled the complex interplay between subjective decision factors and domain

knowledge in the selection of manufacturing processes. The findings show that these factors,
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while seemingly benign, can undermine the use of specialized knowledge in the selection of
manufacturing processes. These subjective human decision factors influence decision-makers to
deviate from informed critical analysis based on domain knowledge and instead favor decisions
influenced by cognitive biases, groupthink, and personal preferences. The negative correlation
between these two latent variables underscores that an increase in subjective decision factors
significantly hampers the effective deployment of domain knowledge in the process selection.
This study elucidates the critical interplay between subjective decision factors and the use of
domain knowledge in selecting manufacturing processes.

Subjective decision factors such as cognitive biases, groupthink, and personal preferences
may appear inconsequential. However, these factors are far from benign, as they substantially
negatively impact the effective use of domain knowledge. Cognitive biases, for instance, tend to
skew judgment and distort the perception of reality, causing deviations from logical, rational
decision-making. Consequently, this needs to be improved to maintain the value of domain
knowledge and expertise, leading to potentially poor decisions when choosing manufacturing
processes. Groupthink, which is common in the group decision-making process involving a
group of people or elements (Ortowski et al., 2019), can stifle individual creativity and
independent thinking. It promotes conformity and unanimity at the expense of critical evaluation
and thorough exploration of options, effectively sidelining valuable domain knowledge. Personal
preferences tend to favor familiarity and convenience over novelty and optimization. As a result,
decision-makers need to pay more attention to relevant domain knowledge that could guide them
toward superior solutions, which might require more effort or entail more risk.

Collectively, these factors signify a potent detriment to the effective deployment of
domain knowledge in the selection of manufacturing processes. The observed negative
correlation between the two latent variables under study confirms that the rise in subjective
decision factors corresponds to a significant decrease in the use of domain knowledge, thereby
impeding optimal process selection. The intricate interplay among these variables presents a
formidable challenge that manufacturers must address to optimize their decision-making
processes and improve sustainability across the product life cycle.

Within the manufacturing realm, various studies have attempted to address the roles of
domain knowledge and subjective decision factors separately. Juxtaposing our findings with

these recent studies reveals significant points of convergence and divergence. Our findings show
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the negative influence of subjective decision factors such as cognitive bias, groupthink, and
personal preference on the quality of decision-making. Similar conclusions are drawn in several
recent studies (Grube & Killick, 2023; V. Li, 2023; Mahesh Babu et al., 2023). A recent
empirical investigation into the relationship among lean tools, biases, and waste in
manufacturing concludes that cognitive bias significantly leads to inefficient decisions, which
increase waste generation by limiting lean tools (Purushothaman et al., 2022). In a separate
study, the authors demonstrate that cognitive biases hinder the effective implementation of lean
methodologies in manufacturing by degrading the quality of decision-making (Mahesh Babu et
al., 2023). While most studies link cognitive bias to inefficient decision-making, one study shows
the positive impact of cognitive bias on employee product creativity in manufacturing
technology firms, which enhances product performance (Cristofaro et al., 2022). Subjective
decision factors affect the effective use of knowledge in decision-making. Recent studies
emphasize the importance of knowledge in decision-making (Canonico et al., 2022; Fattah et al.,
2022; Katkowska & Kozlov, 2016; Razavian et al., 2023). Our study demonstrates the critical
need for manufacturing organizations to eliminate subjective decision factors and foster

knowledge utilization in decision-making for optimal choices.

2.4.4. Study limitations and conclusions

While this study provides valuable empirical insights into the interplay between subjective
decision factors and domain knowledge utilizationd when deciding on the appropriate
manufacturing processes, several limitations should be acknowledged. First, the study used a
questionnaire for data collection, introducing sampling bias. Despite efforts to ensure a
representative sample, the responses overrepresent certain companies more inclined to
participate. Thus, the results may not be fully generalized to all settings within the manufacturing
industry in Poland. Second, the responses were subjective and self-reported, potentially
containing biases. Third, this cross-sectional study provides a snapshot of the interplay between
subjective decision factors and domain knowledge usage at a particular point in time. A
longitudinal study might yield more robust insights into the dynamics of these factors over time
and how they eventually affect process selection, efficiency, and sustainability. Lastly, some of
the latent variables developed in PLS-SEM might not have been perfectly captured due to the
limitations in the questionnaire design or the use of Likert scale responses, which assume equal

intervals between response options.
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Based on Polish findings, this study deeply analyzes subject decision variables and the
utilization of domain knowledge in selecting appropriate manufacturing processes. This study
affirms that cognitive bias, personal preference, groupthink, and underutilization of expertise in
decision-making play essential roles in selecting inefficient manufacturing processes. The study
provides insight into the perverse effects of groupthink, cognitive bias, and personal preference
on the practical application of domain knowledge, leading to inefficient decision-making that
compromises efficiency and manufacturing operations' sustainability. The negativity of such
variables provides a complicated decision-making situation in manufacturing that is tightly
intertwined with human subjectivity and domain knowledge. The research stresses that. Decision
makers and managers must be cognizant of the increased role played by such subject variables,
particularly in knowledge management and the application of decision making. Applying high-
level decision aid systems can be a helpful tool that directs decision makers to make decisions

that maximize efficiency, quality, lead time, and safety in manufacturing.
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3. Intelligent Support in Selection of Manufacturing Processes

This chapter delves into how technological advances, dynamic customer needs, growing
uncertainty, and the imperative for sustainable development continue to pressure manufacturing
enterprises to enhance productivity and competitiveness. In this challenging landscape, decision-
making in manufacturing process selection is critical. The chapter revolves around the premise
that adopting intelligent support is essential for balancing performance and costs through optimal
process selection. This chapter involves a comprehensive review of 93 studies published between
2013 and 2023 on intelligent methodologies that support the selection of manufacturing
processes. Through the review, this chapter aims to provide a profound understanding of
intelligent support in manufacturing process selection. The findings, which indicate significant
interest in intelligent methodologies for manufacturing process selection, are of great
importance. Fuzzy logic is prevalent in additive manufacturing due to its ability to handle
complex and imprecise data. At the same time, artificial neural networks are favored in
conventional manufacturing for leveraging extensive historical data. Genetic algorithms are
primarily used for optimization challenges. This chapter seeks to identify gaps in current
research on the selection of manufacturing processes. As manufacturing evolves with new
technologies and complex materials, this chapter advocates adopting a generalized matrix
learning vector quantization neural network for efficient and intelligent process selection in
additive and conventional approaches due to its capacity to leverage historical data and handle

complex and high-dimensional data that includes expert knowledge.

3.1. Introduction and related works on intelligent computational methods

While manufacturing plays a vital role in the growth and development of the global economy
(Lima et al., 2022), the industry is currently navigating a landscape of unprecedented change and
complexity. This dynamic environment is primarily shaped by rapidly shifting market demands,
continuous technological evolution, and a growing emphasis on sustainability (Haraguchi et al.,
2017; Mumali, 2022). Recent studies highlight the vulnerability of manufacturing companies to
large-scale disruptions from various issues, including geopolitics, trade wars, and pandemics (D.
Chen et al., 2022; Kapoor et al., 2021). In addition, manufacturing systems have become more
complex over the past decades in pursuit of less costly, timely, flexible, and high-quality

components and parts manufacturing (Efthymiou et al., 2016). The rapid evolution of customer
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needs is described as the hallmark of the twenty-first century, driving market turbulence.
Changing market demands require manufacturers to be highly responsive and flexible, adapting
their processes promptly to meet changing consumer preferences and emerging trends.
Concurrently, technological evolution, especially in digitalization and automation, radically
alters how manufacturing operations are conceived and executed (Chong et al., 2018; S. Mittal et
al., 2019; Zeba & Dabi, 2021). These technological advancements are not only incremental
improvements but also represent significant leaps that redefine the boundaries of what is feasible
in manufacturing.

Artificial intelligence techniques are a pivotal development toward creating systems
capable of performing tasks that typically require human intelligence. Artificial intelligence
encompasses various computational methods and techniques that enable the mimicking of human
intelligence, such as machine learning (ML), deep learning, natural language processing,
computer vision, expert systems, fuzzy logic, neural networks, and evolutionary algorithms (L.
Chen et al.,, 2020; M. Johnson et al., 2022; Walavalkar, 2023). Although computational
methodologies were constrained by manual inputs and limited by the scope of human analytic
capabilities in the past, they have undergone unprecedented growth in potential because of the
artificial intelligence infusion, enabling algorithms to self-refine, learn from vast datasets, and
accurately predict outcomes. Artificial intelligence has brought significant transformations across
sectors, including education, healthcare, economics, manufacturing, and security (Capuano et al.,
2022; L. Chen et al., 2020; Enholm et al., 2022; K. W. Johnson et al., 2018; Patel & Shah, 2022;
Sanusi et al., 2022). There has been a revolutionary paradigm shift across industries due to
artificial intelligence-based support adoption (Mumali, 2022; Mumali & Katkowska, 2020;
Wagar, 2024). Artificial intelligence-based support systems have notably garnered interest
recently, with a plethora of research on intelligent manufacturing for efficiency and sustainability
(Mumali, 2022; Mypati et al., 2023; N. O. Sadiku et al., 2019; A. K. Sharma et al., 2023; Tran,
2021; Zeba et al., 2021). Given the complexities and significant impact of manufacturing process
selection, adopting intelligent support is crucial for balancing performance and manufacturing
cost through the intelligent selection of optimal processes.

Consequently, integrating intelligent support techniques into manufacturing process
selection is an incremental improvement and a transformative shift that addresses the multi-

dimensional challenges of the modern manufacturing landscape. These techniques are based on
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artificial intelligence, representing a convergence of technological innovation with strategic
decision-making, paving the way for a new era of efficient, sustainable, competitive
manufacturing (Papacharalampopoulos et al., 2023). Early computational techniques in
manufacturing process selection relied on prototypes involving multi-attribute decision models
and relational databases that differentiated preferences and actual decision constraints. The field
has experienced a significant leap in methodologies, ranging from simple multi-attribute criteria
models to intelligent decision support systems based on complex mathematical models (Yousefi
et al., 2023). This advancement has expanded the limits of what was previously considered
possible, taking computational research into areas that were once thought to be purely
theoretical.

Artificial intelligence is a cross-disciplinary research area with immense potential for
addressing critical manufacturing process selection decision challenges. The selection of
manufacturing processes is an example of a crucial multi-dimensional decision problem in
manufacturing, as choosing a suitable manufacturing process for a particular product or
component depends on various criteria, including material, time, cost, and sustainability
implications (Hernandez-Castellano et al., 2019; Lukic et al., 2017; Martinez-Rivero et al.,
2019). The selection of optimal manufacturing processes is crucial for efficiency from the onset
of the production cycle and goes a long way to address common issues such as rework, which
often causes extended lead times and inflated manufacturing costs (Colledani & Angius, 2020;
Gouiaa-Mtibaa et al., 2018). Analyzing and optimizing processing parameters is essential to
ensuring the effective implementation of the selected manufacturing process. In recent years,
significant progress has been made in decision-making methods for process selection in additive
and conventional manufacturing, owing to the strong interest in multiple-attribute decision-
making methods (Gokuldoss et al., 2017; Hodonou et al., 2019; P. C. C. Priarone & Ingarao,
2017). Selecting a suitable manufacturing process for a particular component or finished product
involves many constraints and conditions (Djassemi, 2017; Saidi et al., 2018). For instance, the
decision-maker must consider the required product's processing time, volume, cost,
environmental impact, and mechanical, physical, and chemical properties.

The unprecedented effort to push manufacturing processes to their limits to ensure the
sustainable and cheap production of high-quality products and components is accelerating the

adoption of more integrated and automated intelligent decision support systems in process

48



selection and design. EXxisting studies have introduced and described decision-support models
and intelligent methods for selecting manufacturing processes (Abbas & Mostafa, 2016;
Gojkovi¢ et al., 2021; Hamzeh & Xu, 2019; Raigar et al., 2020; Ransikarbum & Khamhong,
2021; Sadeghian & Sadeghian, 2016; K. N. N. Shi et al., 2019; Yan & Melkote, 2023). However,
to our knowledge, a comprehensive review of literature on intelligent support methodologies
focused on application in manufacturing process selection, including a discussion of adopted
artificial intelligence technologies and their limitations, and examining future perspectives, is yet
to be undertaken. This study addresses this gap by examining and synthesizing current
knowledge on intelligent support methodologies based on artificial neural networks, genetic
algorithms, fuzzy logic, and hybrid combinations. The primary goal of this review is to
methodically collate and comprehensively synthesize the existing body of research on artificial
intelligence-based techniques in the sphere of manufacturing process selection.

Our contribution is in the pursuit of a deep understanding of the transformative impact of
artificial intelligence on manufacturing process selection. This contribution is achieved by
unearthing insights into how intelligent support technologies have redefined traditional practices
and examining how artificial intelligence has enhanced process selection efficiency, accuracy,
and adaptability. The review intends to illuminate the path for future innovations and
improvements in this field. This review's scope is broad and meticulously defined, encompassing
a diverse range of studies published between 2013 and 2023. This time frame is selected to
capture the most recent and relevant developments in the field, ensuring that the review reflects
the current state of the art.

Recent technological advances in computation methods have resulted in the development
of intelligent systems capable of replicating human intelligence processes (Abioye et al., 2021).
Intelligent systems use logical arguments, soft computing techniques, and other machines to
produce human-like capabilities of observing, learning, inference, and decision-making (Ertel,
2017; Neapolitan & Jiang, 2018; Salehi & Burguefio, 2018; Shehab et al., 2020). In recent years,
intelligent systems have shown significant progress in supporting decision-making, planning, and
design activities in manufacturing, including prediction, design, and control of manufacturing
processes, leveraging manufacturing digitalization (Mozaffar et al.,, 2022). Key areas that
influence manufacturing, such as energy, have benefited from intelligent methodologies,

including in processes such as load forecasting (Grzeszczyk & Grzeszczyk, 2022). The principal
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classical methodologies for Intelligent Systems are biologically inspired and include artificial
neural networks (ANNSs), fuzzy logic, evolutionary algorithms such as genetic algorithms and
genetic programming, particle swarm optimization, and colony optimization. Figure 3.1 below
shows neural networks, fuzzy logic, genetic algorithms, and their hybrid combinations that

dominate the intelligent support domain.

Figure 3.1.NN, FL, GA, and their Hybrid combinations
Source: Own study based on (Ashish et al., 2018; Zadeh, 2015)

ANNSs are simplified models of biological neural networks designed to mimic the features
observed in the brain, such as learning to recognize patterns, decipher perceptions, classify data,
and predict future events (J. Zhang et al., 2023). Countless studies have similarly described
ANNSs, as parallel computer modeling after the biological brain (Samek et al., 2021; W. Zhang et
al., 2020). ANNs comprise layers of adaptive nonlinear processing elements called neurons or
nodes. The basic structure consists of input and output layers sandwiched between one or more
hidden layers. Each neuron is an elementary information processing unit that receives input
signals via the input layer and sends the data to the next layer when activated. Figure 3.2 below
is a schematic representation of a neuron, showing the input signals X4, X, and X, , and the
output signals W4, W, and W,,.
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Figure 3.2. Neuron
Source: Own study based on (Anandakumar & Arulmurugan, 2019)

ANNs are classified into several groups depending on the network architecture. Three
fundamental classes include single-layer feedforward networks, multilayer feedforward
networks, and recurrent networks (Sharkawy, 2020). The single-layer feedforward network
features input and output layers with no hidden layers in between, as illustrated by Figure 3.3.
The input layer neurons receive and transmit the data to the output layer neurons via connections
carrying weights. These networks are unidirectional, carrying signals from input to output layers
and not vice-versa, hence the term feedforward. A Multilayer feedforward network consists of
input and output layers and at least one or more hidden layers whose neurons help perform
further computations before redirecting the input information to the output layers. Finally,
recurrent networks feature at least one feedback loop.
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Figure 3.3. ANN architecture
Source: Own study based on (Anandakumar & Arulmurugan, 2019)

The learning paradigms for ANNSs include supervised, unsupervised, and reinforcement
(Anandakumar & Arulmurugan, 2019; F. A. Rodrigues, 2023). Supervised learning involves
feeding the network with input and output training data samples (Anandakumar & Arulmurugan,
2019). Unsupervised learning consists of the adjustment of weights based on internal rules, and
the network learns independently by discovering data structure through clustering and
compression (Anandakumar & Arulmurugan, 2019). Reinforcement learning is similar to
supervised learning, but weights are not modified based on the error values. Instead, the errors
indicate whether the computed output is correct or incorrect. The training is output-based
(Anandakumar & Arulmurugan, 2019). The learning paradigms for ANNSs are shown in Figure
3.4 below.
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Figure 3.4. ANN learning paradigms
Source: Own study based on (Anandakumar & Arulmurugan, 2019)

ANNSs are robust computing systems capable of modeling and solving complex nonlinear
problems across disciplines. Recent studies reveal the increasing adoption of ANNs across
different fields, including construction, where ANN models have been studied in cost estimation
(Matel et al., 2022) and prediction of material properties (Asteris & Mokos, 2020; Ben Chaabene
et al., 2020; D. C. Feng et al., 2020; I.-J. Han et al., 2019; Roshani et al., 2021) and the medical
field for diagnosing and predicting diseases (Abdelaziz Ismael et al., 2020; Bharati et al., 2020;
Kweik et al., 2020; Muhammad et al., 2019). ANN research has long been part of the
manufacturing industry. Recent applications in manufacturing management of additive and
advanced manufacturing processes and systems (Bajaj et al., 2019; T. Chen & Wang, 2016;
Elhoone et al., 2020; Klos & Patalas-Maliszewska, 2019; Mehrpouya et al., 2021; Pfrommer et
al., 2018; Stathatos & Vosniakos, 2019; Y. Tang et al., 2023; Wahsh et al., 2018; Zhu et al.,
2021). These studies indicate that applying intelligent methodologies to solve complex problems
in manufacturing is an area of increasing research interest.

Genetic algorithms are well-known computerized search and optimization algorithms
modeled after natural selection. Genetic algorithms were introduced in the 1960s and have grown
to become one of the most popular methods for solving optimization problems (Jafari-Marandi &
Smith, 2017). Like many other meta-heuristics, genetic algorithms are an evolutionary-based
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technique where the population of potential solutions to a given problem evolves throughout the
optimization course, and solutions are encoded on chromosome-like structures (Jafari-Marandi &

Smith, 2017). Training genetic algorithms involves several steps outlined in Figure 3.5 below.
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Figure 3.5. GA training flowchart
Source: Own study based on (Hassanat et al., 2019)

Genetic algorithms are a versatile and powerful tool for solving optimization problems
and have contributed significantly to many areas of science and engineering (Alam et al., 2021,
Jafari-Marandi & Smith, 2017; Katoch et al., 2021). Genetic algorithms are widely used in
manufacturing to perform functions such as feature extraction, pattern recognition, and image
processing to support decision-makers in optimizing manufacturing systems and processes
(Castillo-Rivera et al., 2020; Drachal & Pawtowski, 2021; Egilmez et al., 2016; Grznar et al.,
2021; Kordos et al., 2020; Kowalski et al., 2021; Kumar & Maji, 2020; Umam et al., 2022).
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Genetic algorithms have also been studied in the construction industry to solve optimization
problems (Abd Elrehim et al., 2019). Their ability to tackle complex optimization problems has
rendered them indispensable in various intelligent solutions.

The Fuzzy Logic concept describes the non-linear representation of real-world problems
that treat system variables in a gradient instead of binary logic. Fuzzy logic is the capability to
communicate, reason, and make rational judgments and decisions in an imprecise, uncertain
environment characterized by limited knowledge. Fuzzy logic allows the use of levels of truth
assigned to values between O and 1, and as a result, it is well-suited for real-world problems
across different disciplines. Fuzzy logic is a powerful tool that has found applications in a wide
range of fields. Its ability to handle uncertainty, ambiguity, and imprecision makes it particularly
useful in decision-making problems. Fuzzy logic-based methods have been successfully applied
to control systems (Dumitrescu et al., 2021) and artificial intelligence. In the field of artificial
intelligence, fuzzy logic has been used to model uncertainty and imprecision in reasoning and
decision-making problems, such as the initial screening of manufacturing reshoring (Hilletofth et
al.,, 2021) and risk assessment in additive manufacturing research (Moreno-Cabezali &
Fernandez-Crehuet, 2020). Fuzzy logic-based expert systems have been developed to solve
complex problems in medicine, finance, engineering, and other fields. Fuzzy logic-based
decision support systems have also been developed to aid decision-making in complex and
uncertain manufacturing environments (Raja Dhas & Francalanza et al., 2016; Tashtoush et al.,
2020). In pattern recognition, fuzzy logic has been used to classify and cluster data with
uncertainty and imprecision. Fuzzy logic-based clustering methods have been developed to
group data into clusters based on their similarity. Fuzzy logic-based classification methods have
also been proposed to classify data into different classes based on their attributes.

Neuro-fuzzy hybrid describes the combination of neural networks and fuzzy logic and
constitutes one of the most researched hybrid methodologies for intelligent systems. Neural
networks can effectively model non-linear and complex relationships and are well-suited for
classification and pattern recognition problems (Elbaz et al., 2019). However, the precision of the
output is often limited, and the performance largely depends on the quality of the selected data.
By contrast, fuzzy logic is designed to work with imprecise inputs and outputs directly as they
form fuzzy sets. Among the pioneering neuro-fuzzy hybrids is the NN-driven fuzzy reasoning

proposed by Takagi and Hayashi (Yazid et al., 2019). Many studies have been conducted since
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then to improve the neuro-fuzzy hybrid methodology, such as a multi-staged fuzzy approximate
reasoning integrating self-organizing feature map (SOFM) and fuzzy logic (S. Javaid et al.,
2018), Adaptive-Network-based Fuzzy Inference System (ANFIS) (Olayode et al., 2023), and
fuzzy ARTMAP that integrates fuzzy logic with adaptive resonance theory (ART) neural
networks (Al-Andoli et al.,, 2023). Combining these two techniques, neuro-fuzzy systems
provide more accurate and robust predictions in various domains, such as pattern recognition and
decision-making. They are also often more interpretable, making understanding and interpreting
the reasoning behind the system’s decisions more manageable.

A neuro-genetic hybrid involves the integration of neural networks and genetic
algorithms. Although neural networks can be trained to model complex non-linear relationships,
recognize patterns, and perform classification, the elementary attributes of concern when
designing them are problem-specific. For this reason, the optimization of the neural network
design can benefit from computational processes. Genetic algorithms have provided excellent
tools for optimizing parameters when designing neural networks. Several studies indicate the
successful integration of neural networks and genetic algorithms. For instance, a genetic
algorithm has been used to improve the learning process in artificial neural networks (Vakili et
al., 2017). Studies have shown that the neural networks-genetic algorithms combination is more
accurate than single neural networks (Alsaleh & Larabi-Marie-Sainte, 2021; Patra et al., 2017; D.
K. Sharma et al., 2022; Vakili et al., 2017). Neuro-genetic systems are essential because they
combine the strengths of neural networks and genetic algorithms to solve complex problems.
Neural networks are good at learning from data, while genetic algorithms are good at optimizing
solutions through natural selection. Therefore, this hybrid system is powerful for solving
complex learning and optimization problems.

The fuzzy-genetic hybrid involves the combination of fuzzy logic and genetic algorithms.
Fuzzy logic offers a way to deal with bias and uncertainty in problems where conventional
methods are ineffective. Genetic algorithms, on the other hand, use the principles of natural
selection and genetics to solve optimization problems. Combining these two methods has led to
efficient hybrid tools to solve complex problems across different fields. The concept of a fuzzy
genetic algorithm was first introduced in the late 1980s and early 1990s, and since then, many
studies have been done to improve and optimize the method (Human et al., 2021; Malarvizhi et

al., 2020). A fuzzy genetic approach helps find rules that define patterns in knowledge and has
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proven effective in dealing with uncertainties and uncertainties in data (Georgieva, 2018;
Malarvizhi et al., 2020; Ponticelli et al., 2019). Since then, many researchers have explored using
fuzzy-genetic algorithms in various applications such as pattern recognition, classification,
clustering, and optimization. For instance, the fuzzy genetic model was developed for metal form
manufacturing control, where genetic algorithms ensure the optimization of defined fuzzy
members to consider uncertainties (Ponticelli et al., 2019). Further studies have been conducted
on using fuzzy genetic hybrid systems to solve problems in manufacturing processes (Gojkovi¢
et al., 2021). Thus, fuzzy genetic algorithms remain potent integrations that can solve bias and
uncertainty in many problems. This method is beneficial in multi-objective optimization
problems, rule extraction, feature selection, and extensive data analysis.

Artificial neural networks, fuzzy logic, and genetic algorithms have been combined to
draw upon the strengths of each technique in developing more effective hybrid intelligent
technologies. There are several reasons and ways neuro-fuzzy-genetic hybrids are created, for
instance, to improve the performance of artificial neural networks by combining the learning and
adaptation of fuzzy logic capabilities with the search optimization of genetic algorithms. Studies
indicate the possibility of optimizing the degree of membership value in the neuro-fuzzy method
using genetic algorithms (Fata et al., 2019). The performance of the neuro-fuzzy model is, thus,
optimized using a genetic algorithm (Ashish et al., 2018). Several areas of application of neuro-
fuzzy-genetic hybrid models include medical, manufacturing, and finance. In medicine, the
model has been studied in disease diagnosis and management decisions (Ashish et al., 2018; Fata
et al., 2019; Kaur et al., 2019; Omisore et al., 2017; Shokouhifar & Pilevari, 2022). In
manufacturing and engineering, use cases generally range from increasing accuracy in robotic
systems (EI-Sherbiny et al., 2018) to solving process optimization problems (Saw et al., 2018).
Thus, neuro-fuzzy-genetic hybrid methods are potent in building more capable intelligent

systems.
3.2.  Methodology for a systematic review of the intelligent support methodologies

3.2.1. Systematic review, question formulation, and study location

The broader context of this study is to apply an evidence-based investigation paradigm in
exploring artificial intelligence-based techniques in intelligent support systems for

manufacturing process selection. Systematic reviews provide researchers with a tool to identify,
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evaluate, and aggregate findings from relevant empirical studies to present objective evidence on
particular issues. There are several approaches to conducting a systematic review, popularized by
Joanna Briggs Institute and Cochrane to inform practice and policy across diverse fields (Munn
et al., 2018). However, not all systematic review methods can be used in all fields. For instance,
the Cochrane approach is suited for the medical field (Denyer & Tranfield, 2009), while the style
promoted by Brereton et al. is well suited for conducting a review of software engineering
(Brereton et al., 2007). According to Denyer and Tranfield, adopting the Cochrane systematic
review style is insufficient and unsuitable for the wide range and richness of research design
aims and use cases in management (Denyer & Tranfield, 2009). Denyer and Tranfield developed
principles for effective systematic review based on transparency, inclusivity, explanation, and
heuristics (Denyer & Tranfield, 2009). This review adopts revised principles for systematic
reviews in management and organization studies, as recommended (Denyer & Tranfield, 2009),
for the reasons behind each principle. Unlike the Cochrane style, reviews in management should
not be focused on replication or eradicating bias, which often diminishes transparency. In
addition, there needs to be more uniformity in research data collection and analysis methods
within the management field, as studies rarely address identical research questions. Thus, a
simple 5-stage style proposed by Denyer and Tranfield is adopted for this study, as shown in

Figure 3.6 below.
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Figure 3.6. 5-stage systematic review style
Source: own study based on (Denyer & Tranfield, 2009)

questions are outlined as follows:

Establishing the review’s focus is essential and is accomplished by clearly formulating
the research questions. According to Denyer and Tranfield, well-formulated questions become
the basis for primary study inclusion (Denyer & Tranfield, 2009). Therefore, this review is
guided by four research questions to delve deeper into the nuances of intelligent support systems,
emphasizing the role of artificial neural networks, fuzzy logic, genetic algorithms, and their
hybrid techniques in addressing the intricacies of manufacturing process selection. The research

Q1: What are the key trends in intelligent support for manufacturing process selection?

Q2: How do recent intelligent support methodologies address manufacturing selection
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Q3: What are the challenges and limitations of intelligent support methodologies for
manufacturing process selection?

Since a systematic literature review aims to select, appraise, and synthesize relevant
studies, the location of the studies is the second step. The studies considered in this review are
retrieved from Scopus, IEEE Xplore, Springer, and Web of Science. While other databases, such
as Google Scholar, can be reliable sources, the four databases selected are much more robust,
with high-quality and relevant published studies. The search terms for the selected databases are
outlined in Table 3.1 below.

Table 3.1: Search queries

Search database Search terms

Web of Science Intelligent Support AND Manufacturing Process Selection AND (neural network OR
genetic algorithm OR Fuzzy logic )

Scopus (Manufacturing AND process AND selection ) AND ( Intelligent AND support) AND (
(neural AND network) OR (fuzzy AND logic ) OR ( genetic AND algorithms ) )

IEEE Xplore Intelligent Support AND Manufacturing Process Selection AND (neural network OR
genetic algorithms OR Fuzzy logic)

Springer Link Intelligent Support AND Manufacturing Process Selection AND (genetic algorithms OR

neural network OR Fuzzy logic)

Source: Own study

3.2.2. Study selection and evaluation

A selection criterion is developed to assess the relevance of the identified studies. The selected
studies are evaluated to check if they address the review question (Denyer & Tranfield, 2009).
An explicit selection criterion ensures the reviewer’s decisions can be scrutinized (Denyer &

Tranfield, 2009). Table 3.2 below shows the search inclusion criteria used for this study.

Table 3.2: Inclusion criteria

No. Criteria Include value

1 Publication year 2014- 2024

2 Publication stage Final

3 Language English

4 Source type Journal article and conference proceeding

5 Research type Study on DSS for manufacturing process selection

Source: Own study
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The selected publications were passed through a quality check to ensure the final selection
consisted of quality studies published in high-ranking scientific journals. The quality checklist is

summarized in Table 3.3 below.

Table 3.3: Quality checklist

No. Quality checklist item Include

Not duplicate
Abstracts available
Source title outlined

Author information provided
The year of publication indicated

Identifications such as DOI or serial identifiers indicated
The title and abstract are relevant to the review objective

~N O o W NN
AN N NN S

Source: Own study

3.3.  Results and discussions of the systematic literature review

3.3.1. Intelligent support selection of additive manufacturing processes

Execution of the search on the identified databases resulted in the retrieval of 44 papers from
IEEE Xplore, 31 from Web of Science, 138 from Scopus, and 67 from Springer Link papers
published between 2013 and 2023. The retrieved studies were trimmed down to 168 journal
articles and conference proceeding papers. After checking the relevance, full-text availability,
and correctness of data, including identifiers and removing duplicates, the final list comprises 93

papers, as illustrated by the study selection process in Table 3.5 below.

61



IEEE Xplore ;g?et:]gé Scopus Springer
N = 44 - N =138 N =67

Study location

h 4 Y r

Joumal article or conference paper published between 2013 and 2024
Abstract available
N =168

b

Author data completeness
Valid DOl
N =147

Study selection and evaluation

b

Title and abstract thematic relevance
Duplicates
N =293

Included studies

Figure 3.7. Study selection process
Source: Own study

As illustrated in Figure 3.8, the final selection consisted of 71 journal articles and 22 conference

papers, accounting for 77% and 23% of the total, respectively.

Conference
papers, 22, 24%

Article, 71, 76%

Figure 3.8. Publication types
Source: Own study
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The distribution of the selected studies by the year of publication reveals a growing
interest in decision support systems for the selection of manufacturing processes. The number of
published studies rose steadily from 2013 to 2020, with a notable decline in 2021. Despite the

setback in 2021, the number of publications appears to rise, as shown in Figure 3.9 below.

Number of publications

Number of publications

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 3.9. Distribution of included publications per year
Source: Own study

The selected papers have been cited 1789 times, indicating a significant impact and
interest in applying intelligent support systems in manufacturing process selection. This high
citation count reflects the growing recognition of the importance of advanced technologies such
as artificial neural networks, fuzzy logic, and genetic algorithms in addressing the complexities
associated with the selection of manufacturing processes. Researchers have extensively explored
and validated these technologies, highlighting their potential to enhance decision-making,
optimize processes, and improve overall efficiency in manufacturing. The diverse range of
applications and the consistent acknowledgment in the literature underscores the growing
relevance of intelligent support in the modern manufacturing landscape. Figure 3.10 shows the

distribution of citations by year of publication.
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Figure 3.10. Distribution of citations by year of publication
Source: Own study

In this review, 93 papers were selected from 71 distinct sources, encompassing journal
articles and conference papers. This selection highlights the specialized focus and diverse scope
of the sources within the domain of artificial intelligence and its application in intelligent support
for manufacturing process selection. The considerable number of unique sources underscores the
interdisciplinary nature of the subject matter, reflecting the extensive and nuanced exploration
necessary to advance understanding and application in this dynamically evolving field. This wide
range of sources indicates the depth of research and the comprehensive approach required to
address the complexities of integrating artificial intelligence within manufacturing processes.

Table 3.4 depicts the sources of the selected papers.

Table 3.4: Sources of included research papers

Source Title Papers  Authors

2019 23rd International Conference on Mechatronics Technology, (Hagemann et al., 2019)
ICMT 2019 1

2021 Global Reliability and Prognostics and Health Management, (J. Zhang et al., 2021)
PHM-Nanjing 2021 1

2021 IEEE 8th International Conference on Industrial Engineering and (Ransikarbum & Leksomboon,

2021)
(Yurdakul & Ig, 2015)

(Ghaleb et al., 2020)
(Lukic et al., 2017)
[242]

(Kuziak et al., 2019)

Applications, ICIEA 2021

23rd International Conference for Production Research, ICPR 2015
Advances in Materials Science and Engineering

Advances in Production Engineering And Management

Applied Sciences (Switzerland)

Archives of Civil and Mechanical Engineering

e
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Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM

CIRP Journal of Manufacturing Science and Technology
Composites and Advanced Materials Expo, CAMX 2021
Decision Science Letters

IEEE Open Journal of the Industrial Electronics Society
IEEE Transactions on Industrial Informatics

IEEE Transactions on Semiconductor Manufacturing
IEEE/CAA Journal of Automatica Sinica

Informatica (Netherlands)

Information Sciences

International Journal of Advanced Manufacturing Technology

International Journal of Computer Integrated Manufacturing

International Journal of Fuzzy Systems
International Journal of Industrial Engineering: Theory Applications
and Practice

International Journal of Industrial Engineering and Production Research
International Journal of Logistics Systems and Management

International Journal of Manufacturing Technology and Management
International Journal of Mechanical and Production Engineering
Research and Development

International Journal of Modeling, Simulation, and Scientific
Computing

International Journal of Process Management and Benchmarking

International Journal of Production Research
International Journal of Reliability, Quality and Safety Engineering

International Journal of Services and Operations Management
International Journal on Interactive Design and Manufacturing
IOP Conference Series: Materials Science and Engineering
Computer Integrated Manufacturing Systems, CIMS

Journal of Advanced Manufacturing Systems

Journal of Circuits, Systems and Computers

Journal of Engineering Design

Journal of Industrial Engineering and Management

Journal of Intelligent Manufacturing
Journal of Manufacturing Science and Engineering

Journal of Manufacturing Systems
Journal of Manufacturing Technology Management
Journal of Materials Engineering and Performance
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(Rojek, 2017)

(Bak et al., 2021)
(Klunker et al., 2021)
(Pandey et al., 2014)
(YYousefi et al., 2023)

(Y. Zhang et al., 2023)
(J. Feng et al., 2019)
(Ghahramani et al., 2020)
(Nouri et al., 2015)
(A.-D. Lietal., 2023)

(Bahadir & Bahadir, 2015;
Gleadall et al., 2016;
Kadkhoda-Ahmadi et al., 2019;
Marini & Corney, 2020;
Sadeghian & Sadeghian, 2016;
Simeone et al., 2021; Temugin
etal., 2014; Q. Yietal., 2023)
(Hamouche & Loukaides,
2018)

(K.-J. Wang et al., 2017)

(de Ledn-Delgado et al., 2022)

(Zare Banadkouki et al., 2021)
(K. K. Mittal et al., 2018)

(P. L. Ramkumar & Kulkarni,
2014)
(Ayshath Zaheera et al., 2018)

(C. Shi etal., 2017)

(K. K. Mittal et al., 2019)

(Stanisavljevic et al., 2020; Tan
et al., 2022)
(K.-S. Chen et al., 2019)

(Gothwal & Saha, 2015; Kiron
& Kannan, 2018; Kodali et al.,
2014)

(Hodonou et al., 2020)

(Mohamed Noor et al., 2017)
(Lyu et al., 2020)

(Yurdakul & I¢, 2019)

(J. Wang et al., 2016)

(Saidi et al., 2018)

(Chang & Lin, 2015)

(Park et al., 2022; Z. Wang &
Rosen, 2023)
(Roohnavazfar et al., 2014)

(D.-H. Lee et al., 2019; Yan &
Melkote, 2023)
(Jenab et al., 2015)

(Kumar & Maji, 2020;



Journal of Testing and Evaluation
Journal of The Institution of Engineers (Indi): Series C

Control and Decision
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics)

Lecture Notes in Information Systems and Organisation
Lecture Notes in Mechanical Engineering
Management and Production Engineering Review

Materials Today: Proceedings
Mathematics

Neural Processing Letters
PLoS ONE

Procedia CIRP

Procedia Computer Science
Proceedings - 16th International Conference on Embedded and
Ubiquitous Computing, EUC 2018

Proceedings of International Design Conference, DESIGN
Proceedings of the 2nd International Conference on Artificial
Intelligence and Smart Energy, ICAIS 2022

Proceedings of the ASME Design Engineering Technical Conference
Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture

Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science

Rapid Prototyping Journal
RI2C 2019 - 2019 Research, Invention, and Innovation Congress

Robotics and Computer-Integrated Manufacturing
Sadhana - Academy Proceedings in Engineering Sciences

Scientific Programming
Surface Technology
Sustainability (Switzerland)
Tehnicki Glasnik

Tehnicki Vjesnik
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e
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Ransikarbum & Khamhong,
2021)
(C.-W. Wu et al., 2016)

(Saranya et al., 2018)
(Pan & Yang, 2014)
(Z. H. Limetal., 2019)

(Ahmed & Lokhande, 2022)
(A. Malaga & Vinodh, 2023)
(Kotliar et al., 2020)

(Baswaraj et al., 2018; Jaisingh
Sheoran & Kumar, 2020; A. K.
Malaga et al., 2022; Teharia et
al., 2022)

(Gojkovi¢ et al., 2021)

(Menekse et al., 2023)
(Simeone et al., 2020)
(Aboelfotoh et al., 2018;

Anghel et al., 2018)
(Anghel et al., 2018)

(Tuckwood et al., 2014)
(Ahmed & Lokhande, 2022)

(H. Chen & Zhao, 2015;
Nagarajan et al., 2018; Zhao &
Melkote, 2022)

(Tlija & Al-Tamimi, 2023)

(Mehrvar et al., 2020)

(Anand & Vinodh, 2018; Ren et
al., 2022; Y. Wang et al., 2017,
2018)

(Khamhong et al., 2019)

(C.-Y. Lee & Tsai, 2019; Qin et
al., 2020)

(Raigar et al., 2020)

(Raja, John Rajan, Praveen
Kumar, Rajeswari, Girija,
Modak, Vinoth Kumar,
Mammo, et al., 2022)

(X. Zhang et al., 2022)
(Lu, 2021)

(Krul¢i¢ et al., 2022)
(Peko et al., 2018)

Source: Own study
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While additive manufacturing has presented several benefits, such as freedom of design
and increased customization capabilities, selecting the most suitable process for a given product
design and application remains challenging (Muvunzi et al., 2022). The selection of an optimal
additive manufacturing process can be subject to several uncertainties and complexities. One
source of uncertainty and complexity is the large pool of additive manufacturing processes
available for selection, each with its merits and demerits. These processes significantly differ in
terms of compatible materials, tolerance, build volume, precision, cost, build time, and other
parameters (Menekse et al., 2023). For this reason, selecting appropriate processes mandates a
proper understanding of these parameters. Another source of uncertainty and complexity in
additive manufacturing process selection is the high variability of input material and the process
itself. Inherent material properties such as thermal conductivity, viscosity, and density can
significantly improve the quality of the final product.

A manufacturing process can also introduce uncertainties such as distortion, warpage, and
shrinkage, which can adversely impact the accuracy and quality of the final product. Therefore,
decision-makers require intelligent tools to help reach acceptable solutions that consider all
underlying factors, including parameters related to the material and geometric, technological, and
post-processing operations. As such, deciding the proper process for a particular product is
effortful and requires in-depth knowledge. These challenges are being addressed through the use
of intelligent systems and modeling to reveal correlations between processes and parameters and
optimize them for better and consistent quality (Y. Tang et al., 2023). Table 3.5 shows some

current literature on intelligent process selection of additive manufacturing processes.

Table 3.5: Current literature on the intelligent selection of additive manufacturing processes

Reference Method Application

(Menekse et al., 2023) Fuzzy Logic Assessing additive manufacturing alternatives

(A. Malaga & Vinodh, 2023) Fuzzy Logic Prioritizing additive manufacturing technologies

(Buechler et al., 2022) Fuzzy Logic Car part suitable manufacturing processes

(Hodonou et al., 2020) Fuzzy Logic Ranking manufacturing processes based on economic
and environmental implications

(Qin et al., 2020) Fuzzy Logic Selecting the appropriate additive manufacturing
process

(Marini & Corney, 2020) Fuzzy Logic Selection of near-net shape processes

(Blyukdzkan & Goger, 2020) Fuzzy Logic Selection and suitability analysis for 3D printing
processes

(Khamhong et al., 2019) Fuzzy Logic Analysis of criteria for additive manufacturing
processes

(Peko et al., 2018) Fuzzy Logic Selecting adequate additive manufacturing processes

(Anand & Vinodh, 2018) Fuzzy Logic Ranking additive manufacturing processes
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(Zheng et al., 2017) Fuzzy Logic Selection of appropriate additive manufacturing
processes

Source: Own study

Fuzzy logic has been widely used to address complexities and uncertainties in evaluating
and selecting additive manufacturing processes. Plenty of existing studies reveal the ability of
fuzzy logic to help engineers consider various parameters and their complexities and
uncertainties in the decision-making process. For instance, the ability of fuzzy sets to handle
ambiguity and uncertainty is exploited by designing an integrated fuzzy multi-criteria decision-
making based on Pythagorean fuzzy sets for assessing alternative additive manufacturing
processes for the automotive sector (Menekse et al., 2023). The existing body of literature
reveals that the application of fuzzy logic in the selection of additive manufacturing is
multifaceted, with specific use cases including solving ambiguity and uncertainty in multi-
criteria decision-making methods (Menekse et al., 2023) and enriching the performance of other
methods, such as AHP (Anand & Vinodh, 2018; A. Malaga & Vinodh, 2023). Other studies have
combined fuzzy logic, AHP, and at least one more multi-criteria decision-making method, such
as PROMETHEE and TOPSIS (Anand & Vinodh, 2018; Nouri et al., 2015; Peko et al., 2018).
While a vast majority of studies focus on a general selection of manufacturing processes, a few
involve the deployment of intelligent tools to support the decision with a focus on the specific
output, such as the near-net shape (Kumar & Maji, 2020; Marini & Corney, 2020). In general,
fuzzy logic is the most prevalent intelligent system technique in selecting additive manufacturing

processes.

3.3.2. Intelligent selection of conventional manufacturing processes

Process selection in conventional manufacturing involves evaluating and determining the optimal
method for a specified product. For this reason, the choice of appropriate manufacturing
processes is highly influenced by many factors, such as flexibility, cost, efficiency, and quality.
Intelligent system techniques such as neural networks, fuzzy logic, and genetic algorithms have
been used to assist in the decision-making process for the selection of manufacturing processes.
As already discussed, neural networks are intelligent system tools that can be modeled to predict

and recognize patterns and cluster objects. Neural networks can analyze vast volumes of data to
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identify similarities and make accurate predictions. As such, neural networks are ideal for
selecting optimal processes considering many variables and constraints.

Besides neural networks, fuzzy logic and genetic algorithms play an essential role in
designing and developing intelligent systems in the manufacturing landscape. Fuzzy logic is a
reasoning method that is especially useful in cases where the available data is uncertain or
imprecise, as it allows linguistic variables and approximations in describing a problem. This has
made fuzzy logic ideal for assigning weights to different parameters in manufacturing process
selection, such as quality, cost, tolerance, and size, among others, based on their relative
importance in decision-making. By contrast, genetic algorithms mimic natural selection
processes to resolve optimization problems. They help search for optimal solutions among a
population of alternatives. In the manufacturing process selection, genetic algorithms are used to
search for the optimal combination of parameters for the best alternative. Table 3.6 below
summarizes recent studies involving neural networks, genetic algorithms, and fuzzy logic in

manufacturing process selection.

Table 3.6: Artificial intelligence technologies in manufacturing process selection

Reference Method Application

(Yan & Melkote, 2023) Artificial Neural Networks  Simulation of the manufacturing process

(Z. Wang & Rosen, 2022) Artificial Neural Networks  Classification of manufacturing processes

(Z. Wang & Rosen, 2023) Artificial Neural Networks ~ Manufacturing process classification

(de Ledn-Delgado et al., Artificial Neural Networks  Planning, optimization, simulation, and decision-
2022) and Genetic Algorithms making in manufacturing process selection
(Hamouche & Loukaides, Artificial Neural Networks  Automating manufacturing process selection
2018)

(Sadeghian & Sadeghian, Artificial Neural Networks ~ Manufacturing system selection

2016) and Fuzzy Logic

(Lu, 2021) Fuzzy Logic Selection of advanced manufacturing processes
(Mastrocingue et al., 2016) Fuzzy Logic Selection of manufacturing technology

(Nouri et al., 2015) Fuzzy Logic Manufacturing technology selection

Source: Own study

Several use cases of neural networks related to manufacturing processes have been
studied. For instance, Siamese Neural Network (SNN) is integrated into deep generative models
of machining operations to automate manufacturability analysis and machining process selection
(Yan & Melkote, 2023). The proposed Autoencoder and Siamese Neural Network (AE-SNN)

achieves a class-average process selection accuracy of 89%, and a manufacturability analysis
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accuracy of 100%, outperforming a discriminative model trained on the same dataset (Yan &
Melkote, 2023). Neural networks have also been studied to develop solutions to the problem of
classification and identification of manufacturing processes suitable for specified part designs.
CNN has been used to improve the classification accuracy of manufacturing processes based on
part shapes (Z. Wang & Rosen, 2022). Manufacturing process classification has also been
enhanced using invariant shape descriptors and CNN for better accuracy in the selection of
appropriate processes (Z. Wang & Rosen, 2023). Researchers have also proposed an improved
method for selecting a Radial Basis Function Neural Network that is more accurate in describing
manufacturing process parameters, which incorporates a genetic algorithm proposed (de Ledn-
Delgado et al., 2022). Using neural network-based intelligent decision support has been lauded
as a crucial step between design and manufacturing through manufacturing process selection
(Hamouche & Loukaides, 2018). Therefore, it is likely that neural networks will continue to be
integral to research from academia and business in manufacturing processes.

While conventional manufacturing processes are generally well understood compared to
additive manufacturing processes, fuzzy logic has also been used as a standalone soft computing
technology and in combination with neural networks to develop intelligent support capabilities
that address complexities and uncertainties in selecting appropriate manufacturing processes.
Several intelligent decision support systems for aiding manufacturing systems and process
selection have been studied based on neuro-fuzzy methodologies (Sadeghian & Sadeghian,
2016). Fuzzy logic has also been incorporated into multi-criteria decision-making methods such
as the AHP, TOPSIS, DEA, and Analytic Network Process (ANP) (Lu, 2021; Mastrocinque et al.,
2016; Nouri et al., 201). The combination of fuzzy logic and neural networks in conventional
manufacturing has been explored in cases such as the selection of manufacturing systems
(Sadeghian & Sadeghian, 2016), selection of plastic manufacturing processes using an intelligent
Self-Organizing Map and fuzzy logic-based model (Pei et al., 2023). Fuzzy logic has been used
to improve the accuracy of training neural networks for manufacturing process selection. Genetic
algorithms have also been used in conventional manufacturing process selection, with their
application mainly in resolving optimization problems (Fallahpour et al., 2017; Georgieva, 2018;
Kordos et al., 2020). Intelligent support based on techniques such as neural networks, fuzzy
logic, and genetic algorithms in the selection of manufacturing processes is a powerful tool that

can improve the accuracy and efficiency of the process.
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3.3.3. Complexity and uncertainty in additive and conventional manufacturing

While additive manufacturing is a relatively new and rapidly evolving field, conventional
manufacturing has existed longer, and most of its processes are well-established and understood.
Different additive manufacturing processes and technologies are categorized into seven groups:
vat photo-polymerization, material extrusion, material jetting, binder jetting, directed energy
deposition, powder bed fusion, and sheet lamination. Each process has its own set of unique and
inherent constraints and considerations. There is often a limited or total lack of well-established
knowledge and expertise on process parameters, including their complexities, as reported by
several studies (M. M. Mabkhot et al., 2019; White et al., 2022). The degree of complexity and
uncertainty in additive manufacturing is generally higher than in conventional manufacturing as
the former involves building products or components layer by layer, which can lead to the
introduction of a range of issues, such as poor adhesion between layers, low-quality surface
finish, and material defects. Additionally, predicting the quality of the final product is generally
tricky in additive manufacturing as it is highly dependent on the material and specific process
parameters involved. However, conventional manufacturing processes are also becoming
complex due to technological advances and increasing pressure to reduce environmental impact
and improve sustainability in manufacturing. The complexity arises from various new
considerations, such as reducing the environmental footprint, sustainable use of raw materials,
and product lifecycles.

Consequently, the selection of manufacturing processes in both conventional and additive
manufacturing involves a degree of uncertainty and complexity depending on the specific
product requirements. However, the nature of their challenges differs somewhat. Each
manufacturing approach has flaws and strengths, and selecting a suitable process depends on
particular requirements and parameters. As a result, neural networks, genetic algorithms, and
fuzzy logic methods are used to address the specific problem within the selected manufacturing

approach.

3.3.4. Limitation of current intelligent methodologies
The existing literature shows more research interest in using fuzzy logic in selecting additive
manufacturing processes than in neural networks and genetic algorithms. This phenomenon can

be explained firstly by the fact that additive manufacturing processes are still being developed.
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As such, there is insufficient established knowledge and expertise around their selection due to
uncertain and imprecise data. In contrast, conventional manufacturing involves thousands of
well-known alloys to choose from. Research shows that additive manufacturing has only fully
matured. As a result, it has a limited number of metal alloys and lacks decades of understood
knowledge and experience offered by traditional manufacturing (Gradl et al., 2022). Unlike
neural networks and genetic algorithms, fuzzy logic is more capable of handling uncertain and
imprecise data. Therefore, it is well-suited for the complexity and uncertainty surrounding the
selection of additive manufacturing processes. Secondly, additive manufacturing often involves
using novel materials that require new and complex approaches to selection and processing
involving a wide range of selection criteria, including but not limited to product requirements,
inherent material properties, and process parameters. Finally, additive manufacturing processes
are generally more flexible and well-suited for customization; hence, their selection involves
more variables and constraints. Fuzzy logic is especially effective at handling many variables,
which makes it an ideal choice for solving process selection in additive manufacturing.

The analyzed literature reveals that neural networks are commonly used in designing
intelligent systems for handling different problems related to the selection of conventional
manufacturing processes (Hamouche & Loukaides, 2018; Z. Wang & Rosen, 2022, 2023; Yan &
Melkote, 2023). This can be attributed to the large amounts of data available for training since
conventional manufacturing processes have a long history and are well-understood. In
manufacturing processes, neural networks involve algorithms that can learn from available data
and make predictions or perform classification based on that learning, primarily based on
historical data. Paradoxically, data availability is the major challenge of neural networks for
manufacturing process selection, as historical data may be incomplete, limited, or of poor
quality, affecting the neural network's accuracy and performance. Additionally, training neural
networks on large datasets with high computational power may be time-consuming.

Despite these limitations, neural networks remain highly significant for improving the
selection of conventional manufacturing processes. By analyzing the input data and identifying
patterns, neural networks can help improve decision-making in process selection and limit waste
generation by selecting less costly and environmentally sound processes among the alternatives.
As conventional manufacturing continues to face pressure for climate-change-conscious and

sustainable practices, neural networks can play a significant role in analyzing and identifying
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environmentally friendly manufacturing processes. For instance, energy use and waste
generation data can be added to the input parameters to help select optimal processes with
minimal adverse environmental impacts and a low carbon footprint.

Genetic algorithms are sparingly used in the selection of manufacturing processes, and
their application is limited to supporting other methods, such as neural networks through variable
optimization. Genetic algorithms can handle complex optimization problems with many
variables. Genetic algorithms have inherent capabilities to identify optimal solutions that may
not be apparent and can simultaneously optimize multiple criteria. However, they have
limitations, such as being computationally intensive, having the propensity to converge on sub-
optimal solutions in the case of a poorly defined search space, and requiring many simulations to
perform well. Consequently, genetic algorithms are expensive and not ideal, especially when the

goal is to reduce manufacturing costs.

3.3.5. Proposed Generalized Matrix Learning Vector Quantization

Given the growing complexity and uncertainty surrounding the manufacturing process selection,
we propose using GMLVQ neural networks to overcome the limitations of current approaches.
GMLVQ is an advanced machine-learning algorithm that builds upon the original LVQ and its
prior variants. GMLVQ was developed to handle high-dimensional data sets, where noise can
accumulate and interfere with classification, and heterogeneous data sets exhibit different scaling
and correlations among dimensions. Schneider, Biehl, and Hammer sought to create a consistent
statistical framework for prototype and metric adaptation in discriminative prototype-based
classifiers, introducing a matrix adaptation scheme for GLVQ based on an intuitive, heuristic
cost function. In contrast to the squared Euclidean distance, a generalized distance metric
utilizing the entire matrix was proposed.

In GMLVQ, each prototype vector is linked with a transformation matrix, enabling more
flexible and robust data modeling. The distance measure in GMLVQ employs a fully adaptive
matrix that is adjusted during training along with the prototypes. Recent research indicates that
by weighing each pair of features, GMLVQ can account for correlations between dimensions
through implicit scaling and rotation of the data, resulting in more reliable performance (Van
Veen et al., 2022). GMLVQ, based on distance and prototypes, incorporates a comprehensive

relevance matrix into the distance metric. This allows it to consider correlations between
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dimensions and rotations within the feature space. Therefore, GMLVQ is a robust prototype-
based classification algorithm enhanced by integrating a full matrix. This provides several
benefits, including increased flexibility, adaptability, and improved capability to manage
complex datasets (Biehl et al., 2015).

Existing research has shown that GMLVQ outperforms peer classifiers such as support
vector machines and decision trees, SSM/PCA (Mudali, Biehl, Leenders, & Roerdink, 2016;
Veen et al., 2018). Recent research has investigated hybrid algorithms and techniques for
GMLVQ, comparing their performance and applicability (LeKander et al., 2017). The studies
demonstrate how various methods create GMLVQ models that achieve superior performance
during validation and better fit the training dataset (LeKander et al., 2017). Novel techniques are
emerging for training the GMLVQ model for classification, leveraging data from multiple,
sometimes uncalibrated sources, without explicit transfer learning (Ravichandran et al., 2022;
Villmann et al., 2022). GMLVQ boasts of enhanced feature relevance learning using the
relevance matrix, which allows the algorithm to understand the importance of each feature in the
dataset. Furthermore, the matrix-based approach allows for a more adaptable representation of
data, making it suitable for many applications, including those with high-dimensional and
heterogeneous data(Schleif et al., 2015; Straat et al., 2017). In addition, GMLVQ adapts a
generalized distance metric during training, which is more flexible and can be tailored to various
data types (Huai et al., 2022; Song et al., 2022). This metric learning aspect allows GMLVQ to
perform well with complex, non-linearly separable datasets.

3.3.6. GMLVQ and the limitations of current intelligent methods

The review findings show that the current intelligent support methods based on neural networks
require large amounts of high-quality and significant computational resources for training. By
contrast, GMLVQ inherently and effectively manages high-dimensional data using an adaptive
matrix during exercise, allowing it to identify and account for relevant features and reducing
dependency on large, high-quality datasets. Fuzzy logic excels at managing uncertainty and
imprecision but may struggle with high-dimensional data. GMLVQ, on the other hand, combines
the strengths of prototype-based learning with an adaptive distance metric, enabling it to handle
complex, uncertain, and imprecise data with greater flexibility and robustness. Neural networks

and fuzzy logic have been shown to fail to account for correlations and different scaling among
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features when used in manufacturing process selection. GMLVQ can solve this limitation since it
utilizes a generalized distance metric that incorporates a relevance matrix, allowing it to capture
correlations between features and adjust for different scaling, enhancing model accuracy and
reliability. While robust for optimization, the review of the genetic algorithm shows that it can be
computationally intensive and prone to converging on sub-optimal solutions. GMLVQ is more
efficient in training due to its prototype-based approach and adaptive metric, which reduces the
computational burden and accelerates the learning process. Thus, GMLVQ can address the
limitations of current intelligent support methodologies in manufacturing process selection in

both additive and conventional manufacturing contexts.

3.3.7. Future perspectives on manufacturing process selection and conclusion

Additive manufacturing processes are increasingly being adopted, and the trend will continue
across different industries. The development of new manufacturing materials is likely to be a
significant trend as more and more industries continue to incorporate additive manufacturing
approaches. New materials will be developed to produce components with improved chemical,
thermal, and mechanical properties. For instance, using metal powder with high thermal
properties will be critical in producing high-performance components in the aerospace sector and
bio-based materials to facilitate the manufacturing of sustainable and biodegradable products. As
a result, selecting an appropriate manufacturing process will become even more complex and
uncertain and will depend on many factors, including the material properties and precision levels
required. Moreover, developing new technologies for handling different products and
components will likely impact the uncertainty and complexity of manufacturing process
selection. New technologies are likely to expand the flexibility and capabilities of manufacturing
processes, leading to increased demand for customized solutions that meet specific standards.
However, selecting the proper process will become even more challenging and require more than
expert knowledge and experience.

The interest in the selection of conventional manufacturing processes is poised to grow.
Although traditional manufacturing processes are well understood, they evolve and become more
complex as new materials are discovered. The growing pressure for sustainable manufacturing
puts pressure on industries to minimize or eliminate the environmental impact of manufacturing.

For this reason, there is likely to be increased research on evaluating and selecting energy-
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efficient processes with minimal waste generation and the potential for manufactured products
and components to be recycled. The use of advanced technologies and data analytics to optimize
manufacturing processes will continue to grow, with artificial intelligence likely to play a leading
role in handling the challenges of developing advanced process selection and control methods to
handle complexity and uncertainty and enable sustainable manufacturing of high-quality
components at low costs.

Future research on robust, dynamic, and flexible intelligent methodologies, such as the
GMLVQ and its hybrids, should be conducted to enhance sustainable, efficient, and cost-
effective manufacturing. Given the rapid advances in manufacturing, the growing complexity,
and the voluminous amounts of data generated, GMLVQ holds great potential in advancing
intelligent decision-making in the selection and management of manufacturing processes. Future
trends in artificial intelligence capabilities, including machine learning and data processing,
underscore the growing importance of robust pattern recognition and classification algorithms
like GMLVQ. There is an increasing demand for cost-effective and sustainable machine-learning
models with minimal computational requirements (Dunn et al., 2020). Therefore, more
comparative studies are needed to pit GMLVQ against other classification algorithms across
various metrics and domains to better understand its relative performance and applicability in
manufacturing process selection.

This review has explored the current state of intelligent support in manufacturing process
selection, focusing on artificial neural networks, genetic algorithms, and fuzzy logic. The
manufacturing process selection continues to grow in complexity as the field evolves and new
materials and technologies emerge. The phenomenon is driving the interest in research on soft
computing technologies for developing intelligent support systems to aid in evaluating and
selecting optimal manufacturing processes as manufacturers strive to meet customer needs while
ensuring sustainable use of resources. There has been a significant interest in research on using
fuzzy logic, neural networks, and genetic algorithms and their pivotal role in developing
intelligent systems capable of handling different complexities in manufacturing process selection
and optimization. However, a close look at current studies reveals a disproportionately high
interest in fuzzy logic adoption in intelligent selection of additive manufacturing processes

compared to neural networks and genetic algorithms. By contrast, artificial neural networks are
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more favored when selecting conventional manufacturing processes. The use of genetic
algorithms is not prevalent in both additive and traditional manufacturing.

The limitations of the current methods include the inability to handle high-dimensional
data by artificial neural network-based and fuzzy logic-based intelligent support systems.
Uncertain and imprecise data also pose performance risks, as artificial neural networks'
performance relies on the availability of high-quality datasets. Genetic algorithms are hampered
because they are computationally intensive and prone to converging on sub-optimal solutions.
Based on these limitations, this study proposes using GMLVQ in intelligent manufacturing
process selection because of its inherent flexibility, adaptability, and efficiency. GMLVQ
provides greater interpretability through its prototype-based classification, allowing for a more
precise understanding and explanation of the selection process. Therefore, this review affirms
artificial intelligence's growing importance and transformative impact in developing intelligent

support methodologies for manufacturing process selection.
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4.  Generalized Matrix Learning Vector Quantization

This chapter focuses on how the increasing complexity and uncertainty in data across domains
continue to drive the demand for more robust, efficient, and accurate computational methods,
including machine learning algorithms for pattern recognition and classification problems,
particularly the Generalized Matrix Learning Vector Quantization (GMLVQ). The chapter
begins with a reflection on how Kohonen’s Learning Vector Quantization (LVQ) algorithms have
been integral to classification algorithms for decades and the development of even better
performing variants primarily the GMLVQ, that has emerged as highly promising and capable
computational models for analyzing complex patterns in high-dimensional and noisy datasets
with increased performance. The chapter uses a systematic literature approach to
comprehensively examine recent studies on GMLVQ algorithms, focusing on algorithmic
enhancements and variations, inherent features like feature relevance and metric learning,
application domains, and performance. Using the Denyer and Tranfield 5-stage systematic
literature review method, 61 studies published between 2015 and 2024 are selected for analysis
from Scopus, Web of Science, IEEE, and Springer. The findings reveal significant advancements
and applications of the GMLVQ across sectors, including healthcare, bioinformatics, and
agriculture. The analyzed empirical studies highlight the algorithm’s adaptability to various
classification problems and enhanced performance. While the cross-disciplinary potential for
GMLVQ is well documented, the review identifies gaps in the literature, particularly in the
manufacturing domain. Given the rapid advances in manufacturing and the voluminous amounts
of data generated, GMLVQ holds great potential to advance intelligent decision-making across

the domain, such as in the selection and management of manufacturing processes.

4.1. Background on the GMLVQ algorithm

GMLVQ is a powerful and sophisticated variant of Learning Vector Quantization (LVQ)
introduced in 2009 by Schneider, Biehl, and Hammer (Van Veen et al., 2020). LVQ is among the
popular algorithms in classification and pattern recognition of machine learning introduced by
Kohonen in the 1980s (Horbiichuk et al., 2020; Parini et al., 2018). It uses a prototype-based
learning approach where prototypes denote classes in the dataset, each representing a point in the
feature space. Unknown data points are assigned to the nearest prototype based on a defined

Euclidean distance. GMLVQ was introduced as an extension of Generalized Learning Vector
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Quantization (GRLVQ), a variant of LVQ proposed by Sato and Yamada (Cruz-Vega &
Escalante, 2017). LVQ is inherently a fast and straightforward learning algorithm and has long
been studied to optimize reference vectors.

The classification error in standard LVQ algorithms is heuristically optimized due to the
distribution of the prototypes. However, the reference vector has a high tendency for divergence,
leading to the loss of pattern recognition ability. This problem was solved by introducing GLVQ,
which involves minimizing the cost function to ensure continuous approximation of the classes
based on a stochastic gradient descent mechanism. Thus, prototype learning is performed by the
stochastic gradient of the cost function (Kastner et al., 2012). Despite the improvements achieved
in GLVQ, the algorithm still relies on predefined metrics that implicitly assume that prototypes
are isotropic and, as such, perform poorly on high-dimensional data (Schneider et al., 2009).
GMLVQ was, therefore, proposed to manage the problem of noise accumulation in high-
dimensional data and improve its performance. The distinguishing features of GMLVQ include a
complete matrix-based generalized distance metric instead of the squared Euclidean distance,
relevance learning through the integration of distance metric parameters and the prototype, and
the lack of explicit occurrence of input space dimensionality.

GMLVQ is an advanced machine-learning algorithm that extends the original LVQ and
subsequent variants, such as GLVQ. For this reason, it offers several advantages in terms of
flexibility, adaptability, and enhanced ability to handle complex datasets (Biehl et al., 2015).
GMLVQ boasts of enhanced feature relevance learning using the relevance matrix, which allows
the algorithm to learn the importance of each feature in the dataset. Furthermore, the matrix-
based approach allows for a more adaptable representation of data, making it suitable for many
applications, including those with high-dimensional and heterogeneous data (Schleif et al., 2015;
Straat et al., 2017). In addition, GMLVQ adapts a generalized distance metric during training,
which is more flexible and can be tailored to various data types (Huai et al., 2022; Song et al.,
2022). This metric learning aspect allows GMLVQ to perform well with complex, non-linearly
separable datasets.

Future trends in machine learning, data processing, and application underscore the
growing importance of robust pattern recognition and classification algorithms like GMLVQ.
There is an increasing demand for cost-effective and sustainable machine-learning models with

minimal computational requirements (Dunn et al., 2020; Mumali & Katkowska, 2024). GMLVQ
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has efficient feature relevance learning and is robust in handling overfitting and noise. As a
result, the algorithm stands out as a promising solution in scenarios where computation resources
are limited or energy efficiency is a priority (Mumali & Katkowska, 2024). Its flexibility and
adaptability make GMLVQ suitable for various engineering applications, including
bioinformatics, image and speech recognition, and financial analysis. This broad applicability
ensures its continued relevance in different research and industry fields. The robustness of
GMLVQ to noise and its ability to handle overfitting are crucial for real-world applications
where data quality and overfitting are common concerns. Additionally, the interpretability of
GMLVQ models, owing to the relevance matrix, is a significant advantage.

Additionally, the exponential growth in data complexity and volume presents significant
challenges. GMLVQ’s ability to handle increasingly complex and high-dimensional datasets
makes it an invaluable tool for extracting meaningful insights from such data. Its adaptability and
precision in feature selection and classification are critical in managing the deluge of information
generated by modern data sources. The rise of online and streaming data environments,
characterized by dynamic, high-dimensional datasets, necessitates algorithms capable of real-
time analysis and adaptation. Recent studies show an increased interest in computational
algorithms capable of handling streaming data (Ahmad et al., 2017; Eskandari & Seifaddini,
2023; Hiriotappa et al., 2017; D. Wu et al., 2022; Yang et al., 2023). GMLVQ’s potential in these
environments lies in its capability for iterative learning and quick adaptation to evolving data
patterns. As such, GMLVQ is particularly relevant for applications in 10T, real-time monitoring
systems, and other areas where immediate data processing is essential. Therefore, the unique
strengths of GMLVQ position it as a highly relevant and potent tool in addressing some of the
key challenges and trends in the future landscape of data science and machine learning.

There is a wealth of existing literature on GMLVQ and its uses. However, a
comprehensive evaluation that covers the algorithm’s processes, enhancements, and range of
applications is still lacking. A thorough analysis that synthesizes these various applications and
contrasts the effectiveness of GMLVQ with alternative vector quantization techniques is still
required. To our knowledge, GMLVQ, an improved prototype-based pattern recognition
algorithm, has never been the subject of a systematic review. The objective of this review is to
provide a comprehensive understanding of the algorithm’s unique capabilities, opportunities for

application in emerging machine learning fields, limitations, and potential areas for future
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research by methodically going over the existing literature and comparative studies with an
emphasis on the development, mechanisms, and applications of GMLVQ. This review is
significant because it can bring together disparate knowledge regarding GMLVQ, providing
researchers and practitioners in sectors where sophisticated pattern recognition techniques are
essential with clarity and guidance.

GMLVQ is an extension of the LVQ algorithm, incorporating a matrix-based distance
metric (Ravichandran et al., 2022). LVQ is a widely used pattern recognition algorithm
developed by Kohonen in the 1980s. LVQ is a supervised learning algorithm for statistical
classification that defines class regions inside the input data space. The LVQ algorithm remains a
top choice among machine learning experts for its noteworthy effectiveness, efficiency, and
simplicity in tackling classification problems in numerous domains, including image and sound
recognition, natural language processing, and pattern recognition in fields such as fraud detection
(Jiang et al., 2022; Nahar et al., 2016). Additionally, LVQ algorithms stand out for their user-
friendly approach and built-in functionalities for managing large datasets, handling incomplete
and noisy data, and exceptional resilience regarding outliers and irrelevant attribute space.
Despite their robustness, LVQ algorithms are marred by degraded recognition ability that raises
the cost function. Consequently, several attempts to create variants that improve LVQ algorithms
have been successfully made to manage the cost function and stability. Among the proposed
improvements are generalized learning vector quantization (GLVQ), relevance learning vector
quantization (RLVQ), robust soft learning vector quantization, and generalized relevance
learning vector quantization (GRLVQ), which formed the basis for GMLVQ.

The GLVQ algorithm was designed to solve the reference vector divergence problem in
the original LVQ algorithms. LVQ 2.1 is based on the idea of differential shifting towards Bayes
limits with no consideration for the location of the reference vector. LVQ3 is an improvement to
ensure reference vectors continue approximating the class distributions. However, assigning only
one reference vector to each class invalidates self-stabilization in LVQ3, making it the same as
LVQ2.1, which leaves the problem of reference vector divergence unsolved. GLVQ was, thus,
proposed as an improvement with a new learning method based on minimizing the cost function.
The algorithm addressed some limitations of previous LVQ variants by introducing a general

cost function based on differentiable distance measures. The algorithm is derived based on the
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assumption that m; is the nearest reference vector that belongs to the same class, x, while m; is

the closest reference vector belonging to a separate class with a relative distance difference:
di—dj
di+dj

ulx) = 3.1)

where d; and d; are distance of x from m; and m respectively. The value of relative distance p(x)

will range from —1 and +1, with negative and positive signs indicating current and incorrect
classification, respectively. To improve the cost function or error rate, u(x) should decrease for

all input vectors. For this reason, GLVQ introduced the cost function: -

S = ZiLif (u(x)) (3.2)

where f(p) is a monotonically increasing function, and N is the number of input vectors. To

minimize the cost function, weight vectors m; and m;are updated based on the descent method
with a slight positive learning rate constant a. Using the squared Euclidean distance d; =

Ix — w;|?, GLVQ’s learning equations are:

d;
w; =w; +a%di+’dj x—w) = w; (3.31)

(3.4)

=wi—aZ Y (x— w, .
Wi =W; “audi+dj(x wj) = w;

Relevance Learning Vector Quantization (RLVQ) was introduced to automatically
determine the relevance of input dimensions of LVQ architecture during training(Bojer et al.,
2001b). RLVQ introduced weighting factors of input dimensions that are automatically adapted
to the specific problem, drawing inspiration from Hebbian learning. RLVQ assumes that
dimensions are roughly proportionally sized and of equal importance. Before training, data are
therefore pre-processed and scaled accordingly. According to research, estimating the relevance
of input dimensions may necessitate problem-specific expert knowledge, posing a formidable
obstacle for specific learning tasks. Because different data dimensions are ranked equally, LVQ

fails if dimensions are not scaled appropriately. Assuming X and w;. are the training set and
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weight vectors, respectively, a new input weight function allows for different scaling of input

dimensions substitutes Euclidian metric |x - y| by the following equation:
=yl = Sywix = y,)° (3.25)
The equations for the RLVQ algorithm are as follows:
wit+1)= w; )+ a®Ad) (x — w;m), (3.6)

if w; is the winning prototype and belongs to the same class as x and

At +1) = A©) - B0 (470 - d2@) (x - wi®) ® (x - w(®)  (B7)

where A is the incorporated adaptive relevance matrix.

To improve classification performance in noisy environments, Robust Soft Learning Vector
Quantization (RSLVQ) implemented a soft decision rule based on the statistical modeling of
class-conditional densities. Assuming P, (1|x)and P (1]|x) are assignment probabilities,

RSLVQ is derived as follows:

_ _ phexpf(x6)
Py (11 3 oj—yyPU) exp f(%, 6)) e

_ p®expf(x0y)
P (1% ST () exp f(x,65) (33)

P (1| x) is the (posterior) probability that the data point x is assigned to the component [ of the
complete mixture when all classes are considered. Using stochastic gradient ascent, the following

is the learning rule:

0,(t+1)= 0,t) + a(t)a%l[log p;’fx%;'f) . (3.40)
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where a(t) is the learning rate of the algorithm. Therefore, the ultimate learning rule for RSLVQ
is as follows:
Py U052, if a=v,

3.11
~Py (L0 [Z55)], lfc ey O

0,(t+1)= 6t +at)fx) = {

RSLVQ provided a better alternative involving a robust optimization scheme derived
from maximizing the likelihood ratio of the probability of correct classification to the total
probability in a Gaussian mixture model. Therefore, RSLVQ is an alternative discrete LVQ
scheme in which prototypes are modified based solely on misclassifications. All underlying
model assumptions are stated explicitly in the statistical formulation and can be easily modified
as required by the application scenario, making RSLVQ an attractive model. Considering

equation:

= X1 f () 3.2),

which is used to minimize the cost function in GLVQ via stochastic gradient descent and the
6f d;

learning rules w; =w; Wad w)) - w; (331) and w;=w;—
g;fzd(j—d (3.4) GLVQ’s success relies on the Euclidian metric being

suitable for the data and the input dimensions being approximately equally scaled and weighted.
Hammer and Villmann introduced input weights X = (:; ...,x,),2;= 0 and substituted

Euclidean metric ||x — y|| by its scaled variant as follows:

=yl 5 =S (=)’ (3.12)

Replacing the receptive field of prototype w' in the cost function leads to an adaptive
metric as the weighting of input dimensions changes. Additionally, stochastic gradient descent
automates the determination of the weighting factor x, leading to the integration of the relevance
factor x; in the RLVQ learning rule. An updated learning rule involving relevance factors x; of

the metric applied to GLVQ yields GRLVQ, a novel, robust method for automatically adapting
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the Euclidian metric used for clustering to the data, determining the relevance of multiple input
dimensions for the overall classifier, and estimating the intrinsic extent of data.

GMLVQ was introduced by Schneider, Biehl, and Hammer in 2009 to enhance the
performance of all previous LVQ improvements. Even though variants such as GLVQ and
RSLVQ are vastly superior to the original LVQ variants, classification is based on a predefined
metric. The variants rely on Euclidean distance, analogous to the implicit assumption that
clusters are isotropic. As a result, these models perform well only if the data exhibits Euclidean
properties. Therefore, GMLVQ was created to manage high-dimensional data sets where noise
accumulates and disrupts classification or heterogeneous data sets where different scaling and
correlations can be observed between the dimensions. Schneider, Biehl, and Hammer aimed to
develop a uniform statistical formulation for prototype and metric adaptation in discriminative
prototype-based classifiers and a matrix adaptation scheme for GLVQ based on a heuristic but
intuitive cost function. Unlike the squared Euclidean distance, a generalized distance metric was

proposed using the full matrix. The general form is as follows:

dae,w) =E—wTleEe—w), (3.13)
where Aisan N X N matrix restricted to positive-definite forms to guarantee metricity, which is
achieved using A = QTQ where Q € RM*N. Significantly, A must be normalized after each
learning step to stop the algorithm from degenerating. GMLVQ extends the cost function in

GLVQ using the general metric and adapts matrix parameters ;; together with the prototypes

utilizing a stochastic gradient descent, resulting in the following learning rules:
Aw; = a;. d(u(e)).ut(e). A (e — wj), (3.14)
Awy = —ay. &(u(e).u=(e).A.(e —wy), (3.15)
Ay, = —ay. D(u()). (w(g). (e = wm)-[2(e = w))],) = 17 ®. ((em = wicm)- [26e -

w,a]l)) (3.16)
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In GMLVQ, each prototype vector is associated with a transformation matrix, allowing
for more flexible and powerful data modeling. The distance measure GMLVQ uses a full
adaptive matrix tuned during training and the prototypes. Recent studies show that by weighing
every pair of features, GMLVQ could account for correlations of dimensions via implicit scaling
and rotation of the data, leading to more reliable performance (Van Veen et al., 2022). The
distance and prototype-based GMLVQ includes a complete relevance matrix in the distance
metric, allowing it to account for dimension correlations and feature space rotations. GMLVQ is,
thus, a robust prototype-based classification algorithm strengthened by a full matrix integration.

Existing research has shown that GMLVQ outperforms peer classifiers such as support
vector machines and decision trees in comparable diagnostic situations involving Parkinsonian
disorders and SSM/PCA (Mudali, Biehl, Leenders, & Roerdink, 2016; Veen et al., 2018). Recent
studies have explored hybrid algorithms and methods for GMLVQ, comparing performance and
their applicability (LeKander et al., 2017). The studies show how different methods generate
GMLVQ models that perform better in validation and how well they fit the training set of data
(LeKander et al., 2017). New techniques are emerging for training the GMLVQ model for
classification, utilizing data from several, sometimes uncalibrated, sources without explicit
transfer learning (Ravichandran et al., 2022; Villmann et al., 2022). The transfer learning is
accomplished using a Siamese-like GMLVQ architecture consisting of distinct prototypes for
target categorization and source separation learning. Parallel to the classification task learning, a
linear map is learned in the mapping space using GMLVQ for source distinction(Villmann et al.,
2022). The related null-space projection provides a consistent data representation of the various
source data for classification learning.

Due to its effectiveness, GMLVQ has received multiple applications in different fields.
Multiple studies have demonstrated the efficacy of GMLVQ in neuroimaging applications.
GMLVQ was successfully integrated with FDG-PET imaging to classify neurodegenerative
diseases and reveal idiopathic REM sleep behavior disorder trajectories(Van Veen et al., 2022;
Veen et al., 2018). These studies provide strong evidence for the utility of GMLVQ in assisting
accurate disease classification in neuroimaging. Similarly, recent research has utilized an
interpretable classification model based on GMLVQ to study early folding residues during
protein folding (Bittrich et al., 2019). The findings highlighted the potential of GMLVQ in
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improving the understanding of protein folding processes. By employing GMLVQ, researchers
gained insights into the essential features and patterns associated with early folding residues,
contributing to protein folding analysis. GMLVQ has also shown promising results in astronomy,
with the algorithm integrated with explainable Al techniques to detect extragalactic Ultra-
compact dwarfs and Globular Clusters (Mohammadi et al., 2022).

As outlined in this background section, the evolution and performance of GMLVQ as a
computational method for intelligent decision support underscores its significance in the field.
However, despite its potential, there is a noticeable gap in the literature regarding a
comprehensive and systematic review of GMLVQ, focusing on its algorithmic development,
improvements, applications, and future directions. Thus, the need for this systematic review is
evident, as it will not only consolidate existing knowledge but also highlight areas for future

research, ultimately contributing to the advancement of intelligent decision support systems.

4.2.  Systematic literature review on GMLVQ and results

The broader context of this review is to apply an evidence-based investigation paradigm in
exploring GMLVQ’s algorithmic development, variations, mechanisms, adoption of feature
relevance and metric learning, and application domains, comparisons, and limitations, as
presented in the literature of a selected number of studies published between 2015 and 2024. A
systematic literature review is preferred to achieve this objective as it inherently provides a tool
to identify, evaluate, and aggregate results from selected empirical studies and to provide
objective evidence on a given issue. Several approaches to conducting systematic reviews have
been popularized to inform practice and enrich policy based on evidence in various domains
(Munn et al., 2018). However, not all fields can equally benefit from a particular approach.
Notably, the Cochrane systematic review method is well-suited for the medical field (Denyer &
Tranfield, 2009), while Kitchenham’s approach befits the software engineering domain.
According to Denyer and Tranfield, Cochrane’s systematic review style is insufficient and
unsuitable for wide-ranging research designs (Denyer & Tranfield, 2009). The Denyer and
Tranfield 5-stage systematic literature review method is used for this review, as shown in Figure
4.1 below.
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Figure 4.1. Denyer and Tranfleld s 5-stage systematic Ilterature review method
Source: Own study based on (Denyer & Tranfield, 2009)

Based on the adopted systematic review methodology, the first stage is the formulation of
research questions, which establishes the focus of the study. Given the aim of this systematic
review, 6 research questions are formulated as follows:

Q1: What algorithmic enhancements and variations or improvements are made to the original
GMVQ?

Q2: What insights have been reported regarding the impacts of feature relevance and metric
learning on GMLVQ’s performance?

Q3: In what application domains have GMLVQ been utilized, and how can these be categorized
and summarized?

Q4: What novel or particularly effective uses of GMLVQ are reported in the literature?

Q5: What are the observed trends in the performance of GMLVQ across different studies? How
does it compare to other algorithms in terms of performance and application, as presented in the
studies?

Q6: What limitations or challenges associated with using GMLVQ have been noted in existing
studies?

Study location is the next step following the formulation of research questions. The
studies considered for this systematic review are sourced from Scopus, IEEE Xplore, Web of
Science, and Springer Link. Given the broad scope of this study, the search terms used to locate
relevant studies were “GMLVQ” and “Generalized Matrix Learning Vector Quantization.” Both
“and” and “or” operators combined the search terms on all four databases, targeting titles,
abstracts, keywords, and full text where applicable. The results were filtered by the year of
publication, with 2015 to 2024 as the preferred range since computational methods and neural

networks are rapidly evolving, and the papers published in the last 10 years are more likely to
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contain the most up-to-date and relevant information. Relevant studies were selected based on

pre-determined selection criteria presented in the Table 4.1 below.

Table 4.1. Study inclusion and exclusion criteria

No. Inclusion Exclusion

1 Published between 2015 and 2024 Published before 2015

2 Journal article or conference paper Neither journal article nor conference paper

3 Abstract available Abstract not available

4 Author details available Missing author details

5 The paper title and abstract are aligned The title and abstract are not aligned with the review
with the review objectives. objectives.

6 GMLVQ algorithm or its variants Does not predominantly feature GMLVQ or its
predominantly featured variants

7 Clear research objectives Unclear research objectives

8 Correct identification details such as DOI Missing DOI and other essential identification
and serial numbers details

Source: Own study

Analysis and synthesis of the selected studies are done in two steps. First, bibliometric
and general characteristics of the studies are performed using descriptive analysis methodologies
to capture the picture of research in GMLVQ over the past decade. This step involves several
aspects of the selected studies, such as sources, publishers, and document type. The second step
of analysis and synthesis focuses on distributing and comparing thematic and contextual data
extracted from the selected studies. The thematic and contextual data is extracted based on the
research questions to present proposed GMLVQ models, developments, variations, and study
improvements.

The findings are reported following the analysis and synthesis approach. First, an
overview of the characteristics, trends, and bibliometric distribution of the selected studies is
reported. Next, a detailed report of thematic trends and insights, including algorithmic
development and variations, key performance metrics, implications of feature relevance and
metric learning, application domains, and drawbacks of GMLVQ algorithms, as identified from
the studies, is performed. A detailed report of the results paves the way for interpretation and

discussion of the findings.

4.2.1. Overview of included studies

The study selection process resulted in 64 journal articles and conference papers published
between 2015 and 2024, as shown in Table 4.2 below.
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less relevant to current study objectives.
Y
N =61 Final selected papers

Figure 4.2. Study selection
Source: Own study

The systematic literature review was conducted across four prominent databases: Scopus,
Web of Science, IEEE Xplore, and Springer, focusing on the period from 2015 to 2024. This
timeframe was chosen to capture the most recent advancements in the rapidly evolving field of
computational methods and their applications in engineering. The papers published during this
period provide the most current and pertinent information, facilitating a comprehensive
understanding of the field’s state-of-the-art, emerging trends and progressions. Furthermore,
confining the study to the past decade ensures comparability among the papers, as they were
produced under analogous technological and scientific constraints. An initial pool of 218 journal
articles and conference papers was identified for potential inclusion. However, documents with

incomplete author information, duplicates, and those whose titles and abstracts were deemed
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insufficiently relevant to the review’s objectives were excluded. Following this rigorous
screening process, a final selection of 64 papers was retained for detailed evaluation.

The distribution of papers selected for the systematic review over the years exhibits a
somewhat irregular pattern. The number of papers peaked in 2016 and 2017, with 10 published
yearly. This trend was followed by a decrease in 2018 to 6 papers and a further drop to 4 papers
in 2019. The number of papers then increased to 8 in 2020 before decreasing slightly to 6 in 2021
and then increasing again to 7 in 2022. The number of papers decreased to 5 in 2023 and
remained relatively stable, with 4 in 2024.

This fluctuating trend could indicate the field’s varying research interest and output over
the years. The peaks in 2016 and 2017 suggest a heightened focus on the topic during these
years, possibly due to breakthroughs or significant advancements in the field. The subsequent
decrease could be due to a shift in research focus or the field’s maturation, with fewer novel
aspects to explore. The distribution of papers over the years, as shown in the Figure 4.3 below,
provides valuable insights into the progression of the algorithm and can help identify periods of
significant research activity. However, the quantity of papers does not necessarily equate to the
quality or impact of the research conducted during that period. A more in-depth analysis of the
content and implications of these papers is presented in the following sections, providing a more

comprehensive understanding of the progression of GMLVQ algorithms.
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Figure 4.3. Distribution of the number of selected studies by year of publication
Source: Own study

The systematic review revealed a fluctuating trend in the number of citations over the
years, as shown in Figure 4.4 below. 2016 saw the highest number of citations at 72, followed
closely by 2021 with 63 citations. 2015 and 2017 also had a substantial number of citations, with
49 and 59, respectively. However, there was a noticeable drop in citations in 2018, with only 15.
The number of citations rebounded in 2019 and 2020, with 39 and 61 citations, respectively. A
decline was observed in the subsequent years, with 28 citations in 2022 and a significant drop to
4 in 2023. As of 2024, no citations have been recorded. This trend could indicate the evolving

interest and research focus on the field.

92



Number of citations by year of publication

Ln =) - =]
=] = = (=]

%]
o

Number of citations
I
=)

]
=]

10

2014 2016 2018 2020 2022 2024 2026
Year

Figure 4.4. Distribution of citations by year of publication
Source: Own study

4.2.2. Distribution of selected papers by source

The distribution of the 64 selected papers on GMLVQ across various source titles suggests a
broad interest in the GMLVQ algorithm across different fields. The papers are spread across a
diverse range of 36 source titles, including conference proceedings and journals, as shown in
Table 4.2 below. This diversity indicates that the GMLVQ algorithm is not confined to a specific
domain but is being explored and utilized in various research areas.

Table 4.2: Distribution of selected studies by source title

Source Title No. of Studies
12th International Workshop on Self-Organizing Maps and Learning Vector Quantization,

Clustering and Data Visualization, WSOM 2017 - Proceedings 4

2016 IEEE Congress on Evolutionary Computation, CEC 2016 1

2017 IEEE 19th International Conference on e-Health Networking, Applications and

Services, Healthcom 2017 1

23rd European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, ESANN 2015 - Proceedings

ACM International Conference Proceeding Series

Advances in Intelligent Systems and Computing

Alimentary Pharmacology and Therapeutics

Arabian Journal for Science and Engineering

Artificial Intelligence in Medicine

Astronomy and Computing

PR R RO
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BioData Mining

BMJ Open

Communications in Computer and Information Science

Computer Methods and Programs in Biomedicine

Current Directions in Biomedical Engineering

Development and Psychopathology

ESANN 2018 - Proceedings, European Symposium on Acrtificial Neural Networks,
Computational Intelligence and Machine Learning

Frontiers in Artificial Intelligence

Frontiers in Artificial Intelligence and Applications

Frontiers in Computational Neuroscience

IAENG International Journal of Computer Science

IEEE Access

IEEE International Conference on Data Mining Workshops, ICDMW
IEEE Transactions on Cybernetics

IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Neural Networks and Learning Systems

Journal of Machine Learning Research

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics)

Lecture Notes in Networks and Systems

Nature Communications

Neural Computing and Applications

Neural Networks

Neurocomputing

Pattern Recognition

Proceedings of the International Joint Conference on Neural Networks
Progress in Biomedical Optics and Imaging - Proceedings of SPIE

PR NP R

PRRPRPRPNNRPRREREN

WU R WRNERE R~

Source: Own study

The source title with the highest number of studies is “Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics)” with 7 papers, followed by “Advances in Intelligent Systems and Computing”
and “Proceedings of the International Joint Conference on Neural Networks” both with 5 papers
respectively. These sources are well-regarded in the field of computational intelligence, further
emphasizing the significance of GMLVQ in this domain.

Moreover, the presence of GMLVQ-related papers in high-impact journals such as
“Nature Communications” and “IEEE Transactions on Neural Networks and Learning Systems”
underscores the relevance and impact of this algorithm in the scientific community. The wide
distribution of GMLVQ-related papers across various source titles and their presence in high-
impact journals attests to the algorithm’s versatility and growing recognition in diverse research
fields. This trend is likely to continue as more applications of the GMLVQ algorithm are

discovered and explored.
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4.2.3. Thematic scope and systematic review research questions

The selected papers provide a comprehensive overview of the developments and applications of
Generalized Matrix Learning Vector Quantization (GMLVQ).

Q1: Several improvements and variations to the original GMLVQ have been reported, including
the integration of adaptive tangent distance learning, the use of a more suitable and natural cost
function for ordinal regression problems, and the incorporation of an enhanced feature selection
objective via L1-regularization.

Q2: Various studies have highlighted the impact of feature relevance and metric learning on
GMLVQ’s performance. For instance, using matrix relevance learning for high-dimensional data
and applying localized generalized matrix learning vector quantization for handling imbalanced
classes have enhanced GMLVQ’s performance.

Q3: GMLVQ has been utilized in various application domains, including healthcare, psychology,
astronomy, edge computing, agriculture, cybersecurity, and more. These applications range from
diagnosing diseases, analyzing biomedical data, classifying galaxy catalogs, and detecting sleep
positions.

Q4: Novel uses of GMLVQ reported in the literature include the classification of time-series and
functional data, the analysis of brain activities from resting-state functional MRI (fMRI) data,
and the development of a computer-aided diagnosis system for early detection of glaucoma.

Q5: The performance of GMLVQ across different studies has been generally positive, with
several studies reporting that GMLVQ outperforms other algorithms in terms of accuracy and
computational efficiency. However, the performance can vary depending on the specific
application and the nature of the data.

Q6: Some challenges associated with using GMLVQ have been noted, such as the susceptibility
of Generalized Matrix LVQ to adversarial attacks and the tendency of relevance matrices to
become singular with only one or very few non-zero eigenvalues. Despite these challenges, the
ongoing research and development in this field continue to enhance the robustness and
applicability of GMLVQ. Table 4.3 below shows the findings from all selected studies

concerning the research questions.
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Table 4.3: Selected studies and findings

Source GMLVQ application Empirica GMLVQ  Feature relevance  Improved Application
| study enhanced and metric performance  field
learning

(Ravichandran et  Stability estimation in neural v v v v Remote
al., 2020) networks sensing.
(Bittrich et al., Early folding residue prediction in v v v Bioinformatics
2019) proteins
(Baciu et al., Non-fatty liver disease fibrotic stages v v v Bioinformatics
2022) prediction
(Villmann et al., Classification of non-calibrated data v v v
2022)
(Straat et al., Time series and functional data v v v Healthcare
2020) classification
(Golz et al., EEG data classification v v Healthcare
2020)
(Van Veenetal,  Neurodegenerative diseases v v v v Healthcare
2024) classification using FDG-PET data
(Neocleous et al.,  Early detection of fetal chromosomal v v v Healthcare
2017) abnormalities
(Van Veen et al., Alzheimer’s and Parkinson’s disease v v 4 4 Healthcare.
2018) diagnosis using FDG-PET data
(Nova & Estévez, Overfitting prevention in GMLVQ v v v v
2017) algorithm
(Straat et al., Texture classification considering v v v
2017) color or channel information
(Shumska & Distance-based classification of v v v v Healthcare
Bunte, 2023) functional data
(Melchert et al., Resting-state fMRI data classification v v v v
2016)
(DSouzaet al., Early dementia diagnosis based on v v v Healthcare
2017) cognitive skills
(Alahmadi etal.,  NAQI evaluation in digital v v v v Healthcare
2016) mammography
(Costaet al., Performance improvement of v v v Healthcare
2019) SSM/PCA in neurodegenerative

disease diagnosis
(Van Veen et al., EEG data classification for motor v v v Healthcare
2020) imagery tasks
(F. Tang et al., Model parameters optimization in v v v v Healthcare
2021) gradient-based training
(LeKander etal.,  Investigation of convex and non- v v v v
2017) convex regularization effects
(Biehl et al., Privacy-preserving data analysis tasks v v v Healthcare
2016)
(Nova & Estévez, Matrix Relevance Learning for high- v v v v
2016) dimensional data
(Brinkrolf etal.,  Automated diagnosis of crop diseases v v v Data privacy
2018) in cassava plants
(Schleif et al., Early detection of glaucoma using v v v v Life sciences
2015) fundus photography
(Mwebaze & Bar-like structures delineation v v v Agriculture
Biehl, 2016)
(Guo etal., 2019)  Early recurrence of disease v v v Healthcare

identification in patients
(Strisciuglio et Feature relevances analysis in v v v
al., 2015) classification problems Healthcare
(Mukherjee et al.,  Early detection of crop disease in v v v
2016) cassava crops Healthcare
(Loévdal & Biehl,  Cassava diseases diagnosis v v v v
2024)
(Owomugishaet  Disease-related brain patterns v v v v Agriculture



al., 2020)

(Ahishakiye et
al., 2023)

(Van Veen et al.,
2022)

(Mudali, Biehl,
Leenders, &
Roerdink, 2016)
(Moolla et al.,
2020)

(Biehl etal.,
2016)

(Van Veen et al.,
2021)

(H. Miller et al.,
2024)
(Krishnan &
Shrinath, 2024)
(F. Tang et al.,
2023)
(Lianetal.,
2023)

(M. Fanetal.,
2023)

(M. L. Fanetal,
2022)

(Giorgio et al.,
2022)
(Mohammadi et
al., 2022)
(Shobha &
Nalini, 2022)
(Pauli et al.,
2021)

(Diao et al.,
2021)
(Owomugisha et
al., 2021)
(Saralajew et al.,
2020)

(Nolte et al.,
2019)

(Nolte et al.,
2018)

(Lischke et al.,
2018)
(DSouzaet al.,
2018)
(Fallmann et al.,
2017)

(F. Tang &
Tino, 2017)
(Miyajima et al.,
2017)

(Biehl, 2017)
(Saralajew &
Villmann, 2016)
(Miyajima et al.,
2016)

(Biehl etal.,

identification in neurodegenerative
disorders

Improved classification accuracies for
Parkinsonian syndromes
Non-invasive biomarker strategy to
stage NAFLD

Open-source Python implementation
of LVQ algorithms

Stability estimation in neural
networks

Early folding residue prediction in
proteins

Non-fatty liver disease fibrotic stages
prediction

NAFLD severity staging

10T network attack identification
Classification of data on Riemannian
manifold

Efficient graph analytics
High-dimensional data projection
Covariance matrix data handling
Future tau accumulation prediction in
AD

Compact stellar systems separation
Data fusion

Youth classification into TD or CD
Efficiency improvement of ML
algorithms on edge devices

Cassava diseases diagnosis
Robustness evaluation of LVQ models
Labeled galaxy catalog analysis
Labeled galaxy catalog data analysis
High-dimensional data model learning
Regional self-influence patterns

characterization

Eight sleep positions detection

Ordinal regression problem-solving

Learning of fuzzy inference systems

Biomedical data analysis
Prototype-based classification
learning

Fuzzy inference systems learning
LVQ theoretical analysis
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2015)

(Fischer et al., v
2015) Online, incremental learning tasks v v

Source: Own study

4.3. GMLVQ systematic literature review discussion

4.3.1. Algorithmic enhancement and variations

Based on the findings from the reviewed studies, it is evident that the evolution and
diversification of the GMLVQ algorithm as a computational method have been notable in recent
research. The algorithm was initially designed to improve upon its predecessors, including the
original Kohonen’s LVQ variants, addressing their limitations and enhancing their strengths.
However, the selected studies show considerable adaptations, enhancements, and variations in
GMLVQ. These modifications to the GMLVQ algorithm have increased its computational
efficiency and broadened its applicability across various domains, demonstrating its flexibility
and potential for intelligent decision-making. These improvements enable the algorithm to better
adjust to various data types and application scenarios, resulting in more accurate and efficient
outcomes.

The GMLVQ algorithm has significantly enhanced its adaptability and performance,
particularly in complex data landscapes. One of the critical modifications introduced is the
incorporation of non-linear activation functions (Ravichandran et al.,, 2020). Non-linear
activation functions are mathematical equations that determine the output of a neural network.
The output is then used as input for the next layer in the model. These functions are termed ‘non-
linear’ because they introduce non-linearity into the output of a neuron. A recent literature review
reveals empirical studies involving the reformulation of GMLVQ based on a multi-layer network
approach, making it possible to consider different activation functions, including non-linear ones
in the mapping layer (Ravichandran et al., 2020). This enhancement is crucial as most real-world
data is non-linear and cannot be separated or classified via a simple linear model. From the
reviewed studies, a non-linear activation function has been introduced to the GMLVQ to enhance
its adaptability and performance (Ravichandran et al., 2020). This is evidently in line with
current research trends, where the role of activation functions is increasingly becoming important
(Bawa & Kumar, 2019; Dubey et al., 2022; Khan et al., 2022; Parisi et al., 2024). As noted in a

recent study, activation functions are essential in building deep neural networks’ discriminative
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capabilities (Bawa & Kumar, 2019). The non-linear activation functions allow for a more
nuanced mapping of input features, enhancing the model’s ability to learn and emphasizing the
most relevant features for classification tasks. The uncovered incorporation of the non-linear
activation function in GMLVQ is part of recent trends where non-linear activation functions have
gained more popularity (Dubey et al., 2022; H. Li et al., 2023; B. Liu et al., 2023; Pappas et al.,
2023; H. Zhang et al., 2024). Xiao proposed using a non-linear activation function to solve time-
varying non-linear equations (Xiao, 2016). This study highlights the significance of employing
non-linear activation functions in GMLVQ, especially considering the algorithm's capability to
manage complex non-linear datasets, including those in online or streaming environments. This
advancement represents an important step in enhancing GMLVQ's effectiveness in handling
dynamic and intricate data scenarios.

From the review findings, the GMLVQ algorithm has been integrated with various
machine learning models, including Random Forest, SVM, and kNN, demonstrating its
versatility and improved performance through collaborative model utilization (Baciu et al.,
2022). The integration of GMLVQ with other ML models is reported to enhance performance
significantly (Mudali, Biehl, Leenders, Roerdink, et al., 2016). Such integration improves
classification accuracy and ensures more reliable and consistent results across various datasets
and application scenarios. Furthermore, the exploration of iterative and ensemble approaches has
allowed for the leveraging of GMLVQ’s strengths in conjunction with other models and
techniques, such as SSM/PCA, PCA, SVM, and various spectroscopy methods (Biehl et al.,
2016; Lovdal & Biehl, 2024; Moolla et al., 2020; Mudali, Biehl, Leenders, & Roerdink, 2016;
Owomugisha et al., 2020; Van Veen et al., 2022). Our review reveals a study aiming to utilize a
combination of FDG-PET, SSM/PCA, and GMLVQ to accurately discriminate between healthy
controls and individuals with Alzheimer's disease, Parkinson’s disease, and Dementia with Lewy
Bodies (Van Veen et al., 2022). The authors adopt SSM/PCA and GMLVQ as classifiers on FDG-
PET, with the results indicating significant performance in identifying neurodegenerative
disorder patterns and successful FDG-PET data quantification (Van Veen et al., 2022). A similar
study combines GMLVQ and SVM classifiers to detect patterns for Parkinsonian syndrome in
FDG-PET brain data, with the results indicating improved performance in classification (Mudali,
Biehl, Leenders, & Roerdink, 2016). Impressive performance has been reported using GMLVQ

with dimension reduction using PCA in early plant disease detection (Owomugisha et al., 2020).
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The combination of GMLVQ with other classifiers, such as SSM/PCA and SVM, has
demonstrated the algorithm’s capability to enhance classification accuracy and robustness,
leveraging the strengths of each method to handle complex and high-dimensional data
effectively. These adaptations have broadened the algorithm’s applicability across diverse
domains and bolstered its robustness and classification performance, underscoring the potential
of GMLVQ as a computation method with immense potential in intelligent decision-making.
This review reveals that integrating innovative architecture into the GMLVQ model, such
as adopting a Siamese-like structure, has significantly developed in the field (Villmann et al.,
2022). This structure facilitates the simultaneous learning of multiple sets of prototypes, thereby
enhancing classification accuracy and source separation, as reported by the authors (Villmann et
al., 2022). This approach indicates a shift towards more sophisticated model designs catering to
intricate classification scenarios. The Siamese-like GMLVQ architecture is particularly effective
when dealing with data from several potentially non-calibrated sources. The effectiveness of
these approaches is achieved without the need for explicit transfer learning, which presents a
significant advantage by reducing computational complexity and enhancing generalization
capabilities (Villmann et al., 2022). Siamese networks are a type of neural network that share
weights and are designed to process paired data (Oinar et al., 2023). Existing literature shows
that the Siamese network architecture is commonly used in algorithms that rely on contrastive
learning (Oinar et al., 2023). Several studies have shown improved performance in
computational methods integrating Siamese networks (Z. Han et al., 2021; Yan & Melkote, 2023;
Zeng et al., 2019). For instance, integrating Siamese networks has been shown to enhance
accuracy and robustness in various tasks, including image recognition, face verification, and one-
shot learning. These networks excel in scenarios where distinguishing between similar yet
distinct data points is crucial. Siamese networks have also emerged as a dominant paradigm in
tracking applications, showing significant progress in object-tracking tasks (Hayale et al., 2023;
Javed et al., 2023). They have been widely adopted due to their ability to maintain consistency in
feature representation across frames, which is essential for reliable tracking performance.
Therefore, the variation of GMLVQ to incorporate Siamese-like architecture presents a
significant advancement in machine learning, particularly in classification tasks. It extends the
model’s utility across domains and enhances its robustness and classification performance. As

such, the Siamese-like GMLVQ architecture represents a promising direction for future research
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and application of GMLVQ in designing intelligent support systems involving complex data
landscapes. Thus, we can deduce that integrating GMLVQ with innovative architectures such as
Siamese networks make it a powerful tool in advancing computation methods for intelligent
decision support systems.

Our review reveals that adapting the GMLVQ model for complex-valued data through
Wirtinger calculus has expanded avenues for the model’s application (Straat et al., 2017, 2020).
This adaptation allows the model to handle complex numerical data efficiently, addressing a
significant need in machine learning. The use of the Wirtinger calculus in the GMLVQ model
allows for the formulation of gradient-based update rules within the framework of cost-function-
based GMLVQ (Straat et al., 2020). This observation provides a fresh perspective on these
updated rules and their applicability in different contexts, expanding the model’s utility. The
variation has proved effective in classifying time series and similar functional data. This data can
be represented in complex Fourier and wavelet coefficient space, further illustrating the
versatility of the GMLVQ model (Straat et al., 2017). As established in the findings, applying the
method in combination with wavelet-space features for heartbeat classification underscores the
model’s potential in real-world applications (Straat et al., 2020). Thus, the review shows how
innovative adaptations and enhancements can effectively utilize the GMLVQ model in various
domains, from time-series analysis to healthcare.

The review results have unveiled specific variations related to relevance learning in the
context of the GMLVQ model. One of the key advancements in this area is the introduction of a
‘relevance space’ and correction matrices (Biehl, 2017; Biehl et al., 2012; Owomugisha et al.,
2021; Van Veen et al., 2024). Recent research has shown that prototype-based systems can be
significantly enhanced through the data-driven optimization of adaptive distance measures
(Biehl, 2017). Implementing relevance learning within this framework greatly increases the
flexibility of these approaches, offering valuable insights into the importance of the features
being analyzed (Biehl, 2017). This strategic development aims to minimize center-dependent
variation, refining the classification process by focusing on essential features (Van Veen et al.,
2024). In machine learning, data often originates from various sources and combining them can
introduce extraneous variation that impacts both generalization and interpretability. Awo-step
approach has been proposed (Van Veen et al., 2024). Firstly, a GMLVQ model is trained on

control data to identify a ‘relevance space’ that distinguishes between centers (Van Veen et al.,
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2024). Secondly, this space is used to construct a correction matrix restricting a second GMLVQ
system’s training on the problem (Van Veen et al., 2024). Further research reveals that utilizing
local and global relevance matrices in the GMLVQ model demonstrates its capability to
distinguish between complex health conditions such as Parkinson’s and Alzheimer’s diseases
(Van Veen et al., 2018). However, it has been shown that cross-center classification can be
problematic due to potential center-specific characteristics of the available data (Van Veen et al.,
2018). Nevertheless, these variations extend the GMLVQ’s utility across domains and enhance
its robustness and classification performance. As pointed out, the application of GMLVQ as a
prototype and distance-based classification in the biomedical domain represents significant
progress in computation methods for intelligent decision support (Biehl, 2017). As such, the
continuous refinement and integration of relevance learning in GMLVQ enhances its
computational efficiency and expands its applicability, paving the way for more accurate and
reliable decision-making processes in complex biomedical scenarios.

The review findings show that the GMLVQ model has seen significant advancements,
including a nuclear norm as a regularization method, enhancing the model’s generalization and
robustness. This method prevents oversimplification, overfitting, and oscillatory behavior of
small eigenvalues of the positive semi-definite relevance matrix, leading to lower classification
error and better interpretability of the relevance matrix (Nova & Estévez, 2017). The model’s
applicability in image processing has also been enhanced by using a particular matrix format for
multi-channel images and extending the parametrized angle dissimilarity measure, improving its
robustness against variations in lighting conditions (Shumska & Bunte, 2023). This approach is
convenient in texture classification, playing a significant role in healthcare, agriculture, and
industry. Furthermore, the employment of functional expansions, such as the truncated
Chebyshev series, leverages the functional nature of data, providing a nuanced approach to data
representation and classification (Melchert et al., 2016). This method, applied in the space of
expansion coefficients, can significantly improve classification performance, opening new
avenues for applying GMLVQ in diverse data environments. Further enhancements include
transitioning to accommodate data in Riemannian manifolds by modifying the distance metric
within the GMLVQ framework, introducing a novel classification approach for complex data
structures, and expanding the model’s applicability (Adaptive Basis Functions for Prototype-

Based Classification of Functional Data, 2020). Additionally, employing adaptive functional
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bases for data expansion and integrating various regularization techniques for sparsity reflect
ongoing efforts to enhance model efficiency and interpretability (LeKander et al., 2017; Nova &
Estévez, 2016). These advancements contribute to a more versatile and robust GMLVQ
framework capable of handling a wide range of complex data environments with improved
precision and interpretability, thereby broadening its potential applications across various
scientific and industrial domains.

The algorithmic development and variations in the GMLVQ algorithm indicate a dynamic
evolution geared toward addressing various data classification and analysis challenges. This
evolution is characterized by continuously integrating innovative techniques and methodologies
within the GMLVQ framework. From the incorporation of non-linear activation functions and
the use of a nuclear norm as a regularization method to the introduction of a Siamese-like
structure and the employment of functional expansions such as the truncated Chebyshev series,
each modification and enhancement has significantly expanded the model’s utility and
performance. Furthermore, the model’s adaptability is evident in its ability to handle complex
numerical data, multi-channel images, and diverse health conditions. Integrating other machine
learning models, such as Random Forest, SVM, and kNN, further illustrates its versatility and
collaborative model utilization. These developments demonstrate the GMLVQ model’s potential
for future research and application and underscore its role in facilitating intelligent decision-

making processes.

4.3.2. Feature relevance and metric learning

Based on the analysis of selected studies, this review shows that the GMLVQ model has seen
significant advancements in integrating feature relevance and metric learning, enhancing its
efficacy in classification tasks through nuanced mapping of input features. The extension of
GMLVQ includes non-linear activation functions, and the use of DropConnect underlines a
refined approach toward emphasizing the most relevant features for classification tasks
(Ravichandran et al., 2020). This adaptation enables a more nuanced feature mapping, aligning
with metric learning principles to maintain classification stability under various conditions. The
integration of comprehensive visualization capabilities allows for a more detailed interpretation
of data, suggesting the algorithm’s inherent focus on feature relevance and metric learning

(Bittrich et al., 2019). These improvements highlight the GMLVQ model's capability to adapt to
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complex datasets while ensuring robust performance. Consequently, the model's enhanced
interpretability and precision make it a powerful tool for intelligent decision-making across
diverse applications.

The examined studies reveal that combining multi-omics data with regular clinical
parameters in GMLVQ enhances Al model performance, indicating the significant role of metric
learning in handling complex datasets (Baciu et al., 2022). The algorithm’s approach to training a
linear map for source distinction further exemplifies the application of metric learning in parallel
to classification tasks (Villmann et al., 2022). This approach employs a Siamese-inspired
GMLVQ architecture featuring distinct prototypes for target classification and source separation
learning. Within this framework, a linear map is concurrently trained via GMLVQ for
distinguishing sources in the mapping space while simultaneously learning the classification task
(Villmann et al., 2022). Feature relevance and metric learning are highlighted by several
examined studies focusing on the classification of time-domain representations (Straat et al.,
2017, 2020). Using gradient-based update rules within the cost-function-based framework of
GMLVQ highlights the continuous focus on metric learning, suggesting an inherent involvement
in enhancing feature relevance (Straat et al., 2017, 2020). In addition to the potential for
enhancing classification accuracy, this method can significantly reduce the dimensionality of
feature vectors (Straat et al., 2017). Given that the number of parameters in GMLVQ, which
pertain to feature relevance, increases quadratically with the number of dimensions, this
reduction can substantially decrease the computational effort required during the training phase,
thereby enhancing the model's efficiency and focus on the most pertinent features (Straat et al.,
2020). Further research indicates that training directly on complex-valued data with GMLVQ,
utilizing learning rules derived from Wirtinger calculus, provides the advantage of effectively
managing complex dimensions, thereby ensuring a mathematically robust formulation (Straat et
al., 2020). The simultaneous adaptation of prototype vectors and weight matrices during training
further underscores the emphasis on metric learning (Golz et al., 2020). Given its fluctuating
nature, the authors investigate whether the relatively new method, GMLVQ, offers a distinct
advantage in analyzing EEG data (Golz et al., 2020). This method features a learning rule for an
adaptive metric, which may enable it to outperform other methods that use fixed metrics (Golz et
al., 2020). However, the research indicates poor performance and suggests that the weight matrix

adaptation may require more sophisticated regularization techniques to achieve better results.
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Identifying a “relevance space” exemplifies the algorithm’s ability to distinguish between
varying centers by focusing on the most pertinent features indicative of metric learning’s impact
(Van Veen et al., 2024). The GMLVQ’s application in identifying relevant markers from clinical
examinations showcases the direct application of feature relevance principles, demonstrating its
effectiveness in practical healthcare settings (Neocleous et al., 2017). Additionally, incorporating
regularization methods and dissimilarity measures into the GMLVQ model aligns with metric
learning objectives, aiming to refine feature selection and improve classification accuracy by
reducing overfitting and enhancing generalizability (Nova & Estévez, 2017; Shumska & Bunte,
2023). The use of prototypes and relevance matrices, transformed back to original data spaces,
illustrates the practical application of metric learning principles in real-world scenarios,
including early detection of neurodegenerative conditions such as Parkinson’s disease (Van Veen
et al., 2020). These enhancements underscore the flexibility and robustness of GMLVQ and
highlight its potential in various domains, including bioinformatics, where precise feature
relevance can lead to significant advancements in understanding complex biological data.
Furthermore, these techniques' continuous development and integration into GMLVQ reflect
ongoing efforts to enhance its performance and applicability, ensuring it remains a significant
computation method in machine learning and data analysis.

Adopting Riemannian metrics and applying algorithms to diverse data types, such as SPD
matrices or functional expansions, demonstrate the extensive integration of feature relevance and
metric learning across various domains and data structures (Adaptive Basis Functions for
Prototype-Based Classification of Functional Data, 2020; M. Fan et al., 2023; Mudali, Biehl,
Leenders, & Roerdink, 2016; F. Tang et al., 2021, 2023). These include the classification of EEG,
where GMLVQ has demonstrated superior accuracy in distinguishing between different mental
states by effectively handling the fluctuating nature of EEG signals (Golz et al., 2020).
Additionally, the method has been applied to symmetric positive definite (SPD) matrices,
providing robust solutions in scenarios where maintaining the geometric structure of the data is
crucial, such as in medical imaging and computer vision tasks (F. Tang et al., 2021).
Furthermore, GMLVQ has proven effective in analyzing both spectral data and time series,
showcasing its versatility in capturing essential patterns across diverse datasets, thereby
improving predictive performance in fields ranging from finance to environmental monitoring

(Adaptive Basis Functions for Prototype-Based Classification of Functional Data, 2020). These
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applications underscore the algorithm’s adaptability and robustness across complex data
environments. Furthermore, the application of GMLVQ in analyzing complex biological,
clinical, and astronomical data showcases its versatility and the critical role of feature relevance
and metric learning in achieving precise classifications and interpretations (Biehl, 2017; H.
Miller et al., 2024; Moolla et al., 2020; Mudali, Biehl, Leenders, & Roerdink, 2016; Nolte et al.,
2018, 2019; Owomugisha et al., 2021). As noted by the authors, GMLVQ is selected for analysis
of morphological features in labeled catalogues from the galaxy and mass assembly because of
its capability to provide classification boundaries, class-representative prototypes, and feature
relevance (Nolte et al., 2019). This research extends to a previous one that similarly applied
GMLVQ to investigate whether the morphological classification can be reproduced (Nolte et al.,
2018, 2019). The generalized Euclidean distances, parameterized by a matrix of adaptive
relevance parameters, highlight the continual evolution of metric learning strategies within
GMLVQ, aiming to enhance the interpretability and effectiveness of classification models (Biehl
et al., 2015). As noted by Moolla et al., the distance metric in GMLVQ is adaptive and optimized
alongside the prototypes during the data-driven training process (Moolla et al., 2020). This
metric is defined by a matrix of adjustable parameters known as the relevance matrix. The
authors further note that diagonal elements of this matrix represent the significance of individual
steroids in the classification scheme (Moolla et al., 2020). These advancements underscore
GMLVQ's significant potential for providing robust, interpretable, and efficient solutions for
complex classification tasks across various domains.

Integrating feature relevance and metric learning within the GMLVQ model signifies a
paradigm shift in machine learning, marking a substantial advancement in how models can
adaptively and intelligently learn from data. This integration allows for a more nuanced
understanding of the importance of individual features, which enhances the model's ability to
provide accurate and insightful classifications. The continuous evolution and refinement of these
methodologies, as evidenced by the studies reviewed, underscore the transformative potential of
the GMLVQ model, highlighting its capacity to evolve alongside advancements in the field. Its
ability to handle complex numerical data, multi-channel images, and diverse health conditions,
among others, speaks volumes about its robustness and precision. For instance, in the medical
field, GMLVQ has shown remarkable success in accurately diagnosing diseases by analyzing

intricate patterns in clinical data, proving its effectiveness in real-world applications (Biehl et al.,
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2016; Golz et al., 2020; H. Miller et al., 2024). Furthermore, its application in various domains,
from biological and clinical data analysis to astronomical data interpretation, showcases its
broad-spectrum applicability and critical role in the quest for knowledge and understanding of
computational methods for intelligent decision-making. The versatility of GMLVQ in adapting to
different types of data environments and its capacity to provide clear, interpretable results make
it a valuable tool in both scientific research and practical applications. Integrating advanced
regularization techniques and adaptive metrics within GMLVQ improves its performance and
ensures that the model remains relevant and practical as new challenges and datasets emerge.
This continued innovation and adaptability highlights GMLVQ's essential role in pushing the

boundaries of what is possible in the computational engineering domain.

4.3.3. Novel use-cases and application areas

The application of GMLVQ spans various fields, reflecting its adaptability and efficacy in
addressing diverse challenges. This section delves into the range of application areas identified in

the selected studies shown in Figure 4.5 below, illustrating the breadth of GMLVQ’s utilization.

Agriculture
8%

Astronomy
Others 3%

22%

Bionformatics
3%

Cybersecurity
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Healthcare

28% 33%

Figure 4.5. Distribution of GMLVQ algorithm application areas
Source: Own study

Predominantly, GMLVQ finds extensive application in the healthcare sector, addressing

various aspects ranging from neurodegenerative disorders, Parkinsonian syndromes, and Non-
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Alcoholic Fatty Liver Disease (NAFLD) to the specific challenge of renal cell carcinoma. This
widespread use within healthcare, including general applications and targeted medical
conditions, underscores GMLVQ’s significance in improving diagnostic accuracy, patient
stratification, and disease understanding (Baciu et al., 2022; Biehl et al., 2016; Costa et al., 2019;
DSouza et al., 2017; Golz et al., 2020; H. Miller et al., 2024; Moolla et al., 2020; Mudali, Biehl,
Leenders, & Roerdink, 2016; Mukherjee et al., 2016; Van Veen et al., 2018; Van Veen et al.,
2020, 2022, 2024). The GMLVQ model is also heavily utilized in bioinformatics, showcasing its
capacity to handle complex biological data, assist in genomic studies, and contribute to the
broader life sciences field (Baciu et al., 2022; Biehl, 2017; Bittrich et al., 2019). The review
findings are consistent with the general trends in the field, as noted from related reviews, which
directly address algorithms and computational methods being adopted in healthcare and
bioinformatics. For instance, a review on using machine learning to forecast Diabetes Type-2
notes the significance of using advanced computational methods for pattern identification and
clustering to identify high-risk individuals (Nimmagadda et al., 2024). The authors discuss
various computational techniques, including SVM, KNN, and RF, and their application in
diabetes detection, noting their good accuracy, specificity, and sensitivity in identifying
individuals at risk (Nimmagadda et al., 2024). This study shows that adopting these techniques
enhances the performance of GMLVQ as a pattern recognition algorithm. Similar reviews have
attempted to discuss related algorithms and machine learning techniques and their use in
healthcare, including identifying skin diseases, predicting respiratory conditions, and analyzing
cardiovascular issues (Kayaalp Ata, 2023; Koul et al., 2024; Singh et al., 2024). These insights
underscore the critical role of integrating advanced machine learning methodologies, like
GMLVQ, in improving diagnostic accuracy and patient outcomes across various medical
domains.

This review reveals the role of GMLVQ in agriculture, where the algorithm is adopted to
aid in crop disease detection and management, showcasing its utility in ensuring food security
and agricultural productivity. The method’s application extends to solving problems related to
cassava diseases and analyzing agricultural data to enhance yield and disease resistance
(Ahishakiye et al., 2023; Mwebaze & Biehl, 2016; Owomugisha et al., 2021). These findings are
also consistent with the general trends, where computational algorithms are increasingly adopted

in agriculture to optimize yields by minimizing constraints such as diseases. Recent empirical

108



studies show the effective use of different machine-learning algorithms in plant disease and weed
detection (Dayang & Kouyim Meli, 2021; Ruigrok et al., 2020) and in predicting plant diseases,
enabling mitigation measures (Dayang & Kouyim Meli, 2021). Therefore, GMLVQ holds great
potential in agriculture, so further research into enhancements and variations for specific
problems is warranted. Continued advancements in GMLVQ could lead to even more precise and
efficient disease detection systems, significantly reducing crop losses and improving food
security. Integrating GMLVQ with other emerging technologies, such as remote sensing and 10T,
could further revolutionize agricultural practices, given its ability to handle complex datasets,
including online and streaming environments. As such, investing in research and development in
this area is crucial for the future of sustainable agriculture.

Another notable application area is astronomy, where GMLVQ is employed in analyzing
galaxy catalogs and compact stellar systems, facilitating the study of celestial objects and
phenomena (Mohammadi et al., 2022; Nolte et al., 2018, 2019). The adoption of GMLVQ in
edge computing indicates its relevance in computational advancements and the development of
efficient computing solutions (Diao et al., 2021), which enables complex research such as
classification and pattern recognition in data collected from deep space. Recent studies argue that
the rapid expansion of space engineering and its technology has enabled data collection from
distant galaxies, and computational algorithms are at the forefront of analyzing such voluminous
data to provide meaningful information (Tyagi et al., 2023). As the astronomical field continues
to advance, computational methods, including GMLVQ and their hybridizations, will play
critical roles in understanding and advancing space exploration. Consequently, the integration of
GMLVQ in astronomical research represents a significant step forward in handling and
interpreting the vast amounts of data generated by modern telescopes and space missions. Future
developments in this area will likely enhance our understanding of the universe, unlocking new
discoveries and insights.

This review shows that GMLVQ contributes to enhancing privacy and tackling
cybersecurity challenges, particularly in 10T networks and against adversarial attacks, reflecting
its relevance in securing data and networks against emerging threats (Brinkrolf et al., 2018;
Krishnan & Shrinath, 2024; Saralajew et al., 2020). The technique’s application in information
networks illustrates its capability to handle network data, optimize information retrieval, and

understand network dynamics (Lian et al., 2023). GMLVQ can significantly mitigate the problem
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of high dimensionality while improving classification accuracy and interpretability. As such, it
will continue to play a crucial role in astronomy alongside other computational methods. The
versatility of GMLVQ in addressing diverse security issues underlines its potential as a
foundational tool in developing robust cybersecurity frameworks. Ongoing advancements and
research in GMLVQ will be pivotal in fortifying defenses against evolving cyber threats and
ensuring the integrity and safety of critical information systems.

Beyond these primary areas, GMLVQ is applied in diverse fields, such as speech-based
emotion recognition and sleep position tracking (Fallmann et al., 2017; Lischke et al., 2018).
This study also reveals the algorithm’s relevance in psychology, particularly in studying conduct
disorder and parenting behavior. It highlights its potential in social sciences to analyze behavioral
data and understand complex human behaviors (Pauli et al., 2021). GMLVQ is also involved in
specialized domains such as fuzzy modeling, fuzzy inference systems, and ordinal regression,
which underlines its expanding reach into areas requiring nuanced data interpretation and
decision-making frameworks (Miyajima et al., 2016, 2017; F. Tang & Tino, 2017). These
applications demonstrate the algorithm’s flexibility and ability to contribute to various research
areas and practical challenges. GMLVQ's broad applicability across these diverse fields
underscores its robustness and adaptability in handling different types of data. Its success in these
areas indicates its potential for future innovations and improvements in machine learning
techniques. Continued exploration and refinement of GMLVQ will likely yield more versatile
and powerful tools for academic research and practical applications.

As observed, the application areas of GMLVQ highlight its versatility and effectiveness
across a broad spectrum of disciplines. The novel use cases of GMLVQ presented in the
literature reveal its versatility and adaptability across various domains and challenges. From
healthcare and bioinformatics to agriculture, astronomy, and beyond, GMLVQ’s contributions
are pivotal in advancing research, enhancing decision-making processes, and addressing domain-
specific challenges. This diversity underscores the method’s adaptability and its potential for
continued evolution and application in new and emerging fields. The novel use of GMLVQ’s
enhancements and variations highlights the dynamic and expanding applications of GMLVQ,
demonstrating its flexibility and potential in addressing a wide range of real-world problems. The

continuous exploration and integration of GMLVQ in different domains advances its
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methodological development and contributes to the broader field of intelligent decision-making

and data analysis.

4.3.4. Performance improvement

The enhancements in GMLVQ models have demonstrated substantial performance
improvements across various domains, illustrating their superiority to conventional LVQ
algorithms. These improvements stem from the refined feature relevance, metric learning,
algorithmic enhancements, and novel use cases reported in the selected studies. For instance,
This review reveals that including information-theoretic measures and stability estimations in
neural networks has shown significant potential in evaluating and enhancing the robustness and
performance of GMLVQ models (Ravichandran et al., 2020). Such measures allow for a more
refined analysis of the algorithm’s stability, leading to better generalization capabilities. These
advancements highlight the continuous evolution of GMLVQ, positioning it as a powerful tool in
machine learning. Consequently, ongoing research and development in this area will unlock even
greater potential and applicability in diverse fields.

The literature review shows that the application of GMLVQ in bioinformatics
demonstrates comparable performance to state-of-the-art classifiers, with improvements notably
in integrating multi-omics data and clinical parameters, which led to an impressive increase in
performance from 87% to 99% (Bittrich et al., 2019). Thus, GMLVQ and its variations hold the
potential to handle complex biological data efficiently. Similarly, in healthcare, GMLVQ
applications have achieved considerable success. For instance, in neuroimaging and disease
classification, the GMLVQ models have facilitated the development of machine learning systems
with reduced bias, allowing for more informative relevance profiles that medical experts can
interpret (Van Veen et al., 2024). The algorithm’s application to EEG data classification and
FDG-PET data for neurodegenerative diseases showcases its utility in handling varied healthcare
data, often achieving classification accuracy that outperforms traditional methods and offering
more interpretable results (Biehl et al., 2016; Golz et al., 2020; Mudali, Biehl, Leenders, &
Roerdink, 2016; Van Veen et al., 2018; Van Veen et al., 2022). Further performance
improvements are noted in the industry, where GMLVQ has been adapted to enhance texture
classification, offering better generalization and robustness against varying conditions, which is

essential in these dynamic fields (Shumska & Bunte, 2023), and in agriculture, where the
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algorithm variations perform efficiently in disease detection. Thus, these findings demonstrate
the algorithm’s versatility and effectiveness beyond the medical domain.

Performance enhancements are not just limited to classification accuracy but also include
better interpretability of relevance matrices, reduced computational effort, and improved
generalization abilities (Melchert et al., 2016; Nova & Estévez, 2017). For example, GMLVQ
achieved state-of-the-art results in speech-based emotion recognition, which indicates its
effectiveness in processing and classifying complex emotional speech data (Lischke et al., 2018).
Additionally, in more specialized applications such as sleep position tracking and fuzzy inference
systems, GMLVQ models have shown remarkable accuracy, outperformed conventional
methods, and illustrated the adaptability and efficiency of GMLVQ in diverse application areas
(Fallmann et al., 2017; Miyajima et al., 2016, 2017). GMLVQ presents a notable advancement
over traditional LVVQ due to its incorporation of metric and relevance learning, allowing for more
nuanced feature weighting and adaptation. Thus, metric and relevance teaching leads to a more
refined classification that is particularly beneficial in complex data landscapes where traditional
methods may falter due to the lack of these sophisticated mechanisms.

The performance improvements documented across various studies demonstrate the
effectiveness of the GMLVQ enhancements and highlight the importance of continuous
algorithmic development to meet the evolving needs of different domains. This advancement in
performance, coupled with increased interpretability and adaptability, solidifies GMLVQ’s
superiority over conventional LVQ models and establishes it as a valuable tool in the arsenal of
machine-learning methodologies for intelligent decision-making. Integrating advanced features,
such as adaptive metrics and relevance learning, ensures that GMLVQ remains at the forefront of
machine learning innovations. Furthermore, its versatility across diverse applications, from
healthcare to astronomy, underscores its robust potential. As research continues to push the
boundaries of GMLVQ, it promises to deliver even more impactful solutions, driving progress in

various scientific and industrial fields.

4.4. Implications, limitations, and future research direction

This systematic literature review of GMLVQ models has yielded significant theoretical
implications, expanding the understanding of classification algorithms and their application in
various fields. This review highlights GMLVQ’s adaptability through its enhancements and
variations to accommodate different data types and structures, such as complex-valued data and
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time series. This observation underscores a theoretical advancement in the adaptability of
machine learning models to varied data landscapes, pushing the boundaries beyond traditional
classification methods. Furthermore, incorporating relevance learning and metric optimization
within GMLVQ models exemplifies how these advancements can lead to more precise and
interpretable outcomes. The versatility of GMLVQ in addressing domain-specific challenges,
from healthcare diagnostics to astronomical data analysis, showcases its broad applicability and
robustness. Additionally, the continuous evolution of GMLVQ underscores the importance of
ongoing research and innovation in the field, ensuring that machine learning models remain
relevant and practical. Overall, this review not only highlights the current strengths of GMLVQ
but also paves the way for future explorations and enhancements in machine learning
methodologies.

Integrating metric learning within GMLVQ models, allowing for dynamic weighing and
selecting relevant features, contributes to the theoretical understanding of distance metrics’
importance in classification tasks. In GMLVQ, adaptive metric learning considers the structural
knowledge about the data’s functional characteristics, proposed to allow for efficient processing
of functional data, such as time series and hyper-spectra, synonymous with streaming
environments (Villmann et al., 2014). Metric learning is particularly critical in healthcare and
bioinformatics, where feature relevance can significantly influence diagnosis accuracy. Metric
learning is already a significant area of active research, with several studies exploring its
effectiveness in different contexts and domains (Huai et al., 2022; Song et al., 2022). As research
continues to delve into the intricacies of metric learning, its integration within GMLVQ models
promises to yield even more sophisticated and effective classification algorithms. Consequently,
these advancements will likely drive significant improvements in various fields, from medical
diagnostics to real-time data processing and intelligent decision-making applications.

As observed in the selected studies, applying regularization methods and relevance
learning in GMLVQ demonstrates theoretical progress in addressing overfitting and improving
model generalization. This study has revealed the enhancement of feature selection via the L1,
spectral, and both convex and non-convex regularization techniques (Lischke et al., 2018; Nova
& Estévez, 2016, 2017). Regularization is a critical aspect of machine learning theory, as it
ensures that models remain effective and reliable when applied to new, unseen data.

Incorporating these techniques within GMLVQ models highlights their ability to maintain high
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performance across different datasets and reduce the risk of overfitting. This advancement
strengthens the model’s robustness and practical applicability in real-world scenarios. Ultimately,
the continuous improvement and integration of regularization methods within GMLVQ underline
its potential to set new benchmarks in machine learning.

Similarly, this review has several practical implications. The significant success of
GMLVQ models in healthcare, from neurodegenerative disease classification to medical
imaging, showcases their practical usefulness in diagnosing and understanding complex medical
conditions. Such success has real-world implications, potentially improving diagnostic accuracy
and patient outcomes. Moreover, the application of GMLVQ in agriculture for disease detection
in crops and bioinformatics for analyzing biological data highlights the model’s practical
relevance in addressing food security and understanding biological processes. GMLVQ’s role in
cybersecurity, specifically in 10T networks, and its application in data privacy illustrate its
practical benefits in protecting digital information and infrastructure, an increasingly important
concern in this digital age. In addition, the review demonstrates GMLVQ’s application across
various domains, suggesting its potential in other areas that require complex decision-making
and classification, such as environmental monitoring, finance, and social media analytics.
Furthermore, in the context of intelligent decision-making or decision support systems for
manufacturing process selection, GMLVQ offers significant advantages. The model's ability to
adaptively learn and identify the most relevant features can be leveraged to optimize
manufacturing processes by selecting the most efficient and cost-effective methods.

Recent studies have noted the significance of intelligent support methodologies, such as
artificial neural networks, in manufacturing process selection (Mumali & Katkowska, 2024). By
integrating GMLVQ into decision support systems, manufacturers can enhance operational
efficiency, reduce production costs, and improve overall product quality. The use of GMLVQ in
this manner underscores its versatility and practical utility, making it a valuable tool in both
strategic and operational decision-making processes within the manufacturing industry. Overall,
the diverse applications of GMLVQ across multiple fields demonstrate its broad utility and
potential to drive innovation and efficiency in various sectors. As such, continued research and
development in GMLVQ can further extend its practical implications, solidifying its role as a

cornerstone in intelligent decision support systems.
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While this review provides comprehensive insights into GMLVQ models, it is not
without limitations. First, the scope of review is limited to articles and conference papers from
leading journals, potentially omitting relevant studies from other sources or grey literature that
could provide additional insights. Second, the selected studies show a heavy concentration of
GMLVQ applications in healthcare and bioinformatics, which may skew the understanding of the
model’s versatility and effectiveness in other fields. The review lacks a systematic comparative
analysis between GMLVQ and other classification models across all domains, which could
provide a clearer picture of its relative strengths and weaknesses.

The findings from this review suggest several future research directions for GMLVQ,
notably the expansion of its research into the manufacturing domain. This review shows the
GMLVQ algorithm’s success in healthcare and limited application in manufacturing. Existing
reviews on artificial neural network-based decision support in manufacturing processes highlight
the growing interest in using machine learning algorithms to handle complex decisions in
product and process design (Mumali, 2022; Mumali & Katkowska, 2024). The author further
notes that computational methods, including artificial neural networks, are used in product and
process design within the manufacturing domain to simplify decision-making by predicting time-
series events, analyzing complex variables, and simulating different scenarios (Mumali, 2022).
The rapidly increasing complexity and uncertainty in manufacturing necessitate decision support
systems capable of handling more complex data (Mumali, 2022; Mumali & Katkowska, 2024).

The manufacturing landscape is experiencing increased complexity, uncertainty, and
streaming environments, whereby large volumes of complex data are streamed in real time, for
example, from loT devices. The effectiveness of decision support systems in manufacturing is
enhanced when combined with intelligent computational methods such as artificial neural
networks and genetic algorithms (Mumali & Katkowska, 2020). The combination leads to robust
and comprehensive capabilities for managing manufacturing processes. GMLVQ holds great
potential in the realm of manufacturing processes. The relevance learning and feature selection
capabilities of GMLVQ are ideal for analyzing data in a streaming environment (Klingner et al.,
2014). As noted in their application in astronomy, GMLVQ algorithms effectively handle high-
dimensional data (Mohammadi et al., 2022; Nolte et al., 2019). As such, there is a significant
opportunity to explore using the GMLVQ algorithm in managing manufacturing processes,

including selection, design, and control. Research could focus on adapting GMLVQ to the
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specific challenges and data types found in manufacturing settings, such as the selection of
optimal manufacturing processes for a given product, considering a multitude of constraints,
including sustainability goals, material properties, design requirements, time, cost, and safety,
among others.

In addition, there is a need for more comparative studies that pit GMLVQ against other
classification algorithms across various metrics and domains to understand its relative
performance and applicability better. Further research should also explore leveraging GMLVQ in
interdisciplinary research. Combining insights from healthcare, bioinformatics, and other fields
could lead to novel applications and enhancements of the model. For instance, integrating
GMLVQ with emerging technologies, such as blockchain for data privacy, edge computing for
real-time analytics, and augmented reality for enhanced data visualization, could open new
avenues for application and research. By addressing these future research directions, the field can
further improve the theoretical understanding and practical applications of GMLVQ models,

contributing to their evolution and effectiveness in addressing complex classification challenges.
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5. Methodology for Intelligent Support in Manufacturing Process
Selection

This chapter introduces the use of GMLVQ algorithms to optimize manufacturing process
selection. The proposed method is exemplified in selecting the optimal polymer processing
method in the prevailing conditions of technological capabilities, domain expert knowledge, and
sustainability goals. The chapter begins with a problem description and introduces GMLVQ as
and its capabilities in handling complex and high-dimensional data typically of today’s complex
manufacturing landscapes. The chapter devolves into GMLVQ-based methodology for intelligent
selection of polymer processing methods, showcasing critical components including data
collection and preprocessing, model training, and output evaluation. The methodology’s
performance is compared with Support Vector Machine, a comparable peer methodology for
intelligent selection of manufacturing processes that similarly handles non-linear complex data.
The chapter describes an experimental setup that involves hyperparameter optimization to
identify the optimal activation function and regularization techniques. The chapter shows that the
application of GMLVQ for manufacturing process selection demonstrates substantial promise,
particularly in its ability to achieve high accuracy and efficient prototype learning of the complex
selection parameters. The model's robust performance, highlighted by 100% accuracy in the
tested dataset, emphasizes its potential to effectively classify complex manufacturing processes,
especially when coupled with advanced solver techniques such as BFGS optimization, Swish
activation function, and Elastic-Net regularization. The chapter includes limitations of the study

and future research directions.

5.1. Problem description and the GMLVQ algorithm

Process selection is essential to modern manufacturing systems, with far-reaching consequences
for productivity, product quality, and competitiveness. Producers have to contend with complex
process options for specific material properties, design requirements, and production quantities
in the diversified industrial environment of the modern era. While such choices have been based
on specialized experience and expertise in the past, the heightened complexity of manufacturing
environments now demands more systematic and data-based methods. As manufacturing
technologies continue to develop with high-speed innovation in traditional and additive
processes, the capability to quantitatively assess and choose the best process has grown more
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critical. This problem is compounded by the dynamic interplay between human consideration
factors in decision-making and technical variables, suggesting the need for intelligent, adaptive
multiple information source decision support systems to base process selection decisions.

Recent developments in artificial intelligence provide promising solutions for this
problem, and machine learning algorithms have played an essential role in developing decision
support systems. GMLVQ is one of those algorithms that has excelled because it can learn and
weigh the importance of different features adaptively. This capability is crucial in manufacturing
environments where decisions must consider the many interrelated factors and uncertainties
inherent in high-dimensional data. GMLVQ extends the classical Learning Vector Quantization
framework by incorporating a relevance matrix that transforms the feature space (Mumali &
Katkowska, 2025). This extension of metric learning effectively captures correlation and
similarity on varying scales of multiple process parameters. It thus offers a strong foundation for
manufacturing process classification and optimum selection. Such a feature is especially
beneficial in polymer processing, where subtle differences in material behavior or production
conditions can significantly impact the final product.

This study presents a new decision aid that utilizes GMLVQ's capability to select the
appropriate processing technology of a chosen plastic that best suits blow molding, injection
molding, or rotation molding. By fusing large-scale information processing and knowledge
related to specialties, our GMLVQ-based system attempts to overcome some of the constraints of
conventional selection techniques. The proposed method can make decision-making more
precise, optimized, effective, and efficient, and lead to high-quality, sustainable production
processes.

The choice of polymer processing techniques exemplifies the suggested model. Various
processing technologies characterize the polymer production environment, each with its own
product needs and production objectives to achieve. Blow, injection, and rotational molding
stand out by their distinctive features and extensive industrial use. However, selecting the most
suitable approach is a complex decision-making issue that directly influences production
efficiency, product quality, and cost-effectiveness. There are some benefits and inherent
limitations to all these polymer processing processes. Blow molding is well adapted to producing
hollow products and containers, injection molding to manufacture complex parts with high

reproducibility for large-volume production, and rotational molding to achieve design flexibility
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and economy for medium-volume production runs. The selection process must, therefore, weigh
a set of competing considerations that include material properties, design complexity, production
volume, and cost factors.

The combination of technical and subjective human parameters makes the task even more
complex. The traditional decision-making methods that are used universally across most
disciplines and industries depend, to a large extent, on the recommendations and analysis
provided by specialists, or they may also adhere to naive and often ill-informed rules of thumb.
This very particular type of methodology is susceptible to significant errors and illusions due to
frequently disregarding the widespread and complex range of factors present in decision-making.
These factors have high levels of heterogeneity with complex technical information that could
require specialized knowledge and prevalent cognitive biases that distort human judgment. These
factors can collectively lead to inefficient decision-making that fails to reflect the best possible
line of action. Considering such deficits, it is clear that a paradigm shift to embracing more
systematic and fact-based decision-making is critical to dealing with such issues effectively.
Such a shift would allow decision-making with adequate regard to the wide-ranging expertise in
concerned areas, coupled with the input of a detailed objective evaluation of all concerned
variables.

The systematic review in section 4 unveiled that GMLVQ uses a full matrix incorporating

pairwise correlations of used dimensions with the following form:

d' w8 = E-w)' AE -w) (5.1)

In the metric equation 5.1 above, A isan N x N matrix, ¢ is a data point, w denotes the weight
space. In LVQ, a cost minimization function serves as the learning approach as depicted by

equation 5.2 below:

so(f) 62

df+ di

In the equation 5.2 above, @ represents a monotonically increasing function, while the distance

of the data point ¢, from the nearest prototype wy with a similar class label y, is denoted by d},
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which equals to dl(w,, §). By contrast, the distance of the data point ¢, from the nearest
prototype wy with a different class label than . is denoted by dﬁ, which equals to dl(w,(, ).
The similarity measure in the metric form shown by equation 5.2 above holds if A is positive,
which can be achieved by substitution 4 with QQ". An assumption is made that € is symmetric,

given the symmetric square root of A equals QO exists. The equation for GMLVQ is, therefore,
derived by computing the derivatives of the cost minimization function of LVQ with respect to w
and Q.

Awy = ay. P(R(®)). ut (). A. (E— wy) (5.3)
Awg = a;. D(p(®). n* (8). A. (€ — wy) (5.4)

804 = = (). (1 ©)- (10(m = wym)- [2( = w))],) = 1. ((6m -
wim)-10GE = wOlt)) 55)

Figure 5.1 below is the proposed methodology for selecting manufacturing processes based on

Data Collection GMLVQ model Output

Experts knowledge Normalization Regularization

* Product requirements X,
A=
g >

- Product design
Z-score

JO¥) = Yay, W) + AW

Transformation L2 (Ridge)

—»| Selected Process J

Algorithm Training

h 4

J— " Feature normalization

Prototype distance
- Optimization usng Broyden-Fletcher-Goldfarb-Shanno —»  calculation

c T = Classification decision
v Test ‘Accuracy calculation
[ Trained algorithm J < T

Process parameters Model optimization

Encoding . ' Distance calculation (Adaptive Squared Euclidean)
. - Loss function

!

Figure 5.1. Methodology for manufacturing process selection based on GMLVQ
Source: Own study

As shown in Figure 5.1 above, the proposed methodology uses a three-tier system to
operationalize the GMLVQ algorithm. In the data collection section, a vector of process selection
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parameters is constructed from heterogeneous data sources, including domain expert knowledge,
formalized product requirements and specifications, and product design, taking into
consideration environmental impact. These parameters are normalized and regularized in the
GMLVQ model section before algorithm training. The GMLVQ algorithm training involves
quantification of the pairwise relations via an adaptive squared-Euclidean metric whose
relevance matrix is iteratively refined by minimizing the GMLVQ cost function; the optimization
proceeds with a quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) solver technique that
jointly adapts prototypes and the metric to converge toward class-separating manifolds. The
converged model feeds the output section, wherein unseen feature vectors are normalized, their
prototype distances computed in the learned metric space, and subsequently assigned to
manufacturing process classes. Metrics such as overall accuracy, confusion-matrix statistics, and
guide a final hyper-parameter optimization to provide a rigorously optimized, interpretable

classifier that differentiates the optimal polymer process selection recommendation.
5.2. Experimental setup for GMLVQ-based intelligent decision support

5.2.1. Dataset description and preprocessing

This study uses a dataset containing historical data on four polymer processing methods for
manufacturing cylindrical and cubic plastic containers using thermoplastics. The four processes
include blow molding, injection molding, rotational molding, and thermoforming. The dataset
contains 200 samples involving the four processing methods and a total of 14 parameters,
including size (m®), surface finish (R), tolerance, wall thickness, cycle time (s), precision,
processing rate, labor cost, suitability for large runs, suitability for small runs, scrap generation,
scrap recycling, and energy use. The list of selection parameters is not exhaustive. However, for

this study, only 13 parameters are considered, as shown in the Figure 5.2 below.
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Figure 5.2. Process selection criteria/parameters
Source: Own study

The dataset features a mix of numerical, ordinal, and categorical values. Size, surface
finish, tolerance, wall thickness, and cycle time are numerical. Ordinals include precision,
processing rate, labor cost, scrap generation, and energy use. Binary categorical parameters
include large runs suitability, small runs suitability, and scrap recyclability. Table 5.1 below

shows data types for the various parameters used.

Table 5.1. Manufacturing process selection parameters

Parameter Type Values
1 Size Numerical
2 Surface finish Numerical
3 Tolerance Numerical
4 Wall thickness Numerical
5 Precision Ordinal High/Moderate/Low
6 Processing rate Ordinal High/Moderate/Low
7 Cycle time Numerical
8 Labor cost Ordinal High/Moderate/Low
9 Large runs suitability Binary categorical Yes/No
10 Small runs suitability Binary categorical Yes/No
11 Scrap generation Ordinal High/Moderate/Low
12 Scrap recyclability Binary categorical Yes/No
13 Energy use Ordinal High/Medium/Low
Source: Own study
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Preliminary data reprocessing was necessary to adjust several parameters to ensure
compatibility with the GMLVQ model and the comparable algorithms. The dataset contained a
mix of categorical, ordinal, and numerical variables, requiring transformation into a format
suitable for machine learning models. Binary categorical variables (Large runs, Small runs,
Scrap recycle) were encoded using binary assignment Yes = land N = 0. Ordinal variables
(Precision, Processing rate, Scrap generation, Energy use) were encoded as: High = 3,
Moderate/Medium = 2, and Low = 1. Encoding ordinal variables ensured the classification
models respect the inherent ranking relationships between levels. In addition, a target encoding
was performed whereby the four polymer processing methods (Blow Molding, Injection
Molding, Rotational Molding, Thermoforming) were mapped to numerical labels 0, 1, 2, and 3,
respectively. Using O-based indexing ensures that models can efficiently handle classification
without unnecessary shifts in numerical space. Once encoded, the dataset, now consisting of

- - - - - . ’ X_
numerical variables, was standardized using the Z-score normalization, computed as X = T"

where X' is the standardized feature, u is the mean, and ois the standard deviation.
Standardization is necessary to ensure all parameters contribute to model learning and prevent
dominance by high-magnitude variables like cycle time in seconds. The dataset was split into

75% training and the remaining 25% portion for testing throughout the experiment.

5.2.2. Tools and evaluation metrics

The algorithm training and testing were conducted on a Lenovo ThinkPad P4s Generation 5
laptop with an AMD Ryzen 7 PRO 8840HS processor, Radeon 780M Graphics, 3301 MHz, 8
cores, and 16 logical processors. Python programming language version 3.13.2 was used to run
normalization, regularization, and training and testing algorithms using Jupyter Lab version
4.3.5.

A total of 7 evaluation metrics were adopted for the model, including classification
metrics, discriminative projection, feature distribution visualization, class-wise feature
importance, relevance matrix, decision boundary, and execution time. The classification metrics
used include accuracy as the primary performance metric and a confusion matrix to help
visualize true and predicted class assignments and detect misclassification across the polymer

processing methods. Classification metrics also include precision, recall, and F1-score to
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understand class imbalance. A discriminative projection was plotted using the first two
eigenvectors of the GMLVQ-transformed data. The class separation was visualized, with
GMLVQ prototypes highlighted to show decision boundaries. Feature distribution before and
after standardization was used to showcase the spread and skewness in both cases. The GMLVQ
relevance matrix (L) was analyzed per class, highlighting the most discriminative features for
each polymer processing method. A bar chart per class was generated, showing which features
were most influential in decision-making. The diagonal of the GMLVQ relevance matrix was
plotted to show the model's weighted different features and indicate redundant features with low
weights. The final trained model’s decision boundary was plotted using the transformed data to
show how well the model classifies different polymer processing methods. The execution time
served as an evaluation metric during optimization to find the best activation function,

regularization method, and solver type for the GMLVQ model.

5.2.3. Model fit, optimization, and comparative models

The Z-score normalization was implemented to ensure that all features had a mean of zero and a
standard deviation of one, enhancing numerical stability and preventing the model from being
biased toward high-magnitude variables. This preprocessing step was necessary to ensure each
feature contributed equally to the distance calculations in the GMLVQ model. Different
regularization strategies were explored to enhance generalization further and prevent overfitting,
including L1 (Lasso), L2 (Ridge), and Elastic-Net. L2 regularization was the most effective in
balancing feature weights, particularly in cases where strong correlations were present, ensuring
that no single feature dominated the learning process.

Hyperparameter tuning was performed using a grid search approach to determine the
optimal configuration for the model. The selection of solvers was a key aspect of this process, as
different solvers impact both computational efficiency and classification accuracy. Three solvers
were evaluated: Waypoint-Gradient Descent, Adaptive-Moment Estimation (Adam), and
Broyden-Fletcher-Goldfarb-Shanno (BFGS). The solver that achieved the best balance between
accuracy and execution time was chosen for the final model. The activation function was also
crucial in determining how feature transformations were applied within the model. Two
activation types were assessed: Swish Activation, known for its smooth, non-monotonic
properties that allow better gradient flow, and Sigmoid Activation, a traditional bounded function

that ensures stable updates during classification.
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Finally, the Relevance Matrix Regularization process was used to fine-tune feature
importance weights, ensuring that the model effectively learned the most discriminative features.
The optimal regularization method, whether L1, L2, or Elastic-Net, was selected based on
classification accuracy and computational efficiency. This comprehensive approach to model
optimization allowed the GMLVQ model to achieve high performance while maintaining
interpretability and efficiency. To validate the effectiveness of the GMLVQ model, it was
compared against the Support Vector Machine (SVM). SVM was used as a baseline model for
classification using Radio Basis Function (RBF) kernel due to its ability to handle non-linearly
separable data. L2 Regularization was applied to prevent overfitting and control model

complexity. SVM’s accuracy and execution time were compared to the performance of GMLVQ.
5.3. Results and analysis

5.3.1. Correlation matrix, training, and hyperparameter optimization

The correlation matrix provides a statistical overview of the relationship between different
variables. Each value in the matrix depicts the Pearson correlation coefficient, which measures
the linear association between a pair of parameters. The correlation values range from -1 to 1,
where 1 signifies a perfect positive correlation, -1 indicates a perfect negative correlation, and 0
implies a lack of correlation. Table 5.3 shows the correlation heatmap.
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Feature Correlation Heatmap
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Figure 5.3. Process selection parameters correlation heatmap
Source: Own study

Based on the results depicted by the correlation heatmap in Figure 5.3 above, surface
finish and wall thickness exhibit a strong negative correlation (-0.4336), indicating that one of
these features might be redundant or that their relationship needs to be accounted for during
model training. A strong positive correlation (0.4687) between size and wall thickness is
exhibited. A moderate correlation is observed between surface finish and tolerance (0.3776). By
contrast, cycle time and scrap generation show a weaker correlation (0.0459, indicating they hold
independent discriminative power. Similarly, scrap recycling and processing time have a near-
zero correlation, suggesting that other factors likely drive them.

The objective function used by the model is the generalized learning objective to learn
the prototype’s position alongside the relevance matrix adopted in the distance function. Rather

than using the conventional squared Euclidean distance, GMLVQ uses the modified version:
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d*w,x) = (x —w)TA (x —w)
where A is a positive semi-definite matrix, w the prototype and x the sample. To optimize

hyperparameters, this study evaluated three solver types, including waypoint gradient descent,

Adam, and BFGS, against two activation functions, namely Sigmoid f(x) = ﬁ and Swish

f(x) = H:—_M, which previous research shows performs better over typical ReLU(Villmann et

al., 2020). Three regularization techniques, L1, L2, and Elastic-Net, were also included to select
the optimal combination. Both Adam and BFGS reached an accuracy of 100%, while waypoint
gradient descent reached 93% accuracy across the activation functions. Comparing execution
time, the best-performing combination using waypoint gradient descent used sigmoid activation
and elastic-net regularization with 93% accuracy. For this reason, waypoint gradient descent was
dropped in favor of Adam and BFGS, which registered a 94% to 100% range. The execution
time for the two algorithms was evaluated for the activation function and regularization type
combination. Because of the slight variation in execution times, 3 iterations were performed, and

the results are as shown in Figure 5.4, Figure 5.5, and Figure 5.6 below.
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Figure 5.4. Iteration 1 of the Solver-Activation-Regularization combination
Source: Own study

As shown in Figure 5.4 above, Adam takes the longest execution time for Swish and
Sigmoid activation functions in combination with L1, L2, and elastic net regularization. By
contrast, BFGS takes the least execution time in similar settings. The best performance is,
however, seen in BFGS solver in combination with Swish activation function and elastic net

regularization.
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Figure 5.5. Iteration 2 of the Solver-Activation-Regularization combination
Source: Own study

Similarly, the second iteration as shown by Figure 5.2 above shows that Adam takes the
longest execution time for Swish and Sigmoid activation functions in combination with L1, L2,
and elastic net regularization. On the other hand, BFGS takes the least execution time in similar

settings. The best performance is again observed in the BFGS-Swish-Elastic net combination.
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Figure 5.6. Iteration 3 of the Solver-Activation-Regularization combination
Source: Own study

The third iteration, as shown in Figure 5.6 above yielded a similar trend to the first two
iterations. The average execution time for the 3 iterations was computed, and as shown by Table
5.2 below, which indicates the BFGS-Swish-Elastic-net as the winning combination of GMLVQ

parameters.
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Table 5.2: Accuracy and execution time for solver-activation-regularization combination

Iteration 1 Iteration 2 | Iteration 3 Average
Solver Activation Regularization Accuracy | Time (sec) Time (sec) Time (sec) | Time
sec

Adam Swish L1 94% 0.3645 0.3643 0.356 8.36)16
Adam Swish L2 94% 0.2838 0.2927 0.2998 0.2921
Adam Swish Elastic-net 94% 0.2627 0.2933 0.2709 0.2756
Adam Sigmoid L1 96% 0.2604 0.2347 0.2445 0.2465
Adam Sigmoid L2 96% 0.2348 0.2611 0.2365 0.2441
Adam Sigmoid Elastic-net 96% 0.2507 0.2267 0.2426 0.2400
BFGS Swish L1 100% 0.2175 0.2264 0.2086 0.2175
BFGS Swish L2 100% 0.2325 0.2049 0.2107 0.2160
BFGS Swish Elastic-net 100% 0.2163 0.2261 0.2017 0.2147
BFGS Sigmoid L1 100% 0.2659 0.2304 0.2348 0.2437
BFGS Sigmoid L2 100% 0.2438 0.2601 0.2436 0.2492
BFGS Sigmoid Elastic-net 100% 0.2604 0.2308 0.2585 0.2499

Source: Own study

Based on the results in Table 5.2 above, further analysis is performed using the optimized
hyperparameters, and the confusion matrix is obtained as shown in the Figure 5.7 below.
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Figure 5.7. Confusion matrix
Source: Own study

As shown in Figure 5.7 above, the 4 x 4 confusion matrix reveals a perfectly diagonal
outcome: all 50 test observations were assigned to their correct manufacturing process class,
thermoforming with a score of 12/12, rotational molding with a score of 13/13, injection molding
with a score of 12/12 and blow molding with a score of 13/13, and zero off-diagonal entries. As
a result, every standard performance metric reaches its theoretical optimum with an overall
accuracy of 100%, macro-averaged precision of 100%, macro-averaged recall of 100%,

macro-averaged Fi of 100, and Cohen’s k constat of = 1.000.
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The BFGS-Swish-Elastic-net combination produced a feature importance heatmap show

in and Figure 5.8 below.
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Figure 5.8. Feature importance heatmap
Source: Own study

The feature-relevance heatmap produced by the GMLVQ relevance matrix is strikingly
unimodal, as shown in Figure 5.8 above. Surface finish (Ra) dominates with a normalized
importance of 1.0, whereas every other attribute, even cycle time(s), which is the next most
relevant, is at 4.2 x 107*, a value more than three orders of magnitude below it. The remaining
features are clustered in the 107 to 1077 range. Because all inputs were z-score-standardized
before training, these relevance values directly express how strongly the adaptive
squared-Euclidean metric must stretch or compress each axis to achieve perfect class separation.

The unscaled five-number summaries reveal two distinct groups of features. Continuous,
wide-range variables (Size, Surface finish, Tolerance, Wall thickness, and Cycle time) are highly
right-skewed. For instance, Cycle time stretches from 24.6 s to an extreme 1194s, with its upper
quartile already four times the median, indicating a long-tail of unusually slow cycles. Size
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shows a similar pattern: while half the parts fall below 4 m3, the largest part (18.7 m3) is nearly
five times the 75th-percentile, suggesting occasional out-of-scale products that could dominate
distance-based learning if left unstandardized. Surface finish (Ra) spans more than an order of
magnitude (16 pm-500 um) and, with a median (105 um) well above the lower quartile (49 pum),
reflects an asymmetric distribution skewed toward rougher surfaces. Tolerance and
wall thickness exhibit milder but still noticeable skew; maxima are roughly three and two times
their respective upper quartiles, showing that a few precision-sensitive or thick-walled parts sit at
the fringes of the dataset. The remaining eight variables are coarse, ordinal indicators (values O -
3) whose interquartile ranges collapse to single integers. For Precision, Processing rate,
Labor cost, Scrap generation, and Energy use, the first quartile equals the minimum, signaling
that at least 25 % of observations occupy the base level. At the same time, medians lie at level 2,
implying a symmetric climb to “moderate” values. Large runs and Small runs reveal a classic
dummy-variable split: both have zeros at Q: and ones at Qs, confirming binary usage. Finally,
Scrap recycling stands out with a hard floor of zero and a Qs of one, indicating that three-
quarters of records report no recycling at all. These disparate scales and skewed distributions
underscore why standardization is essential before feeding the data into metric-based algorithms
such as GMLVQ. The feature distribution before and after standardization is summarized by

Figure 5.9 below.
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Figure 5.9. Feature distribution before and after standardization
Source: Own study

As shown by Figure 5.9 above, every feature oscillates within a comparable, unit-free
band of roughly +3 standard deviations after z-scoring, erasing the multi-order-of-magnitude
disparities seen in the raw data while preserving each attribute’s intrinsic shape. The
heavy-tailed continuous variables (Size, Surface finish, Tolerance, Wall thickness, and
Cycle time) all show medians clustered modestly below the grand mean (-0.15 o to -0.47 o)
with lower whiskers extending to about —1.6 ¢ and upper extremes reaching between +1.7 ¢
(Surface finish) and +3.4 ¢ (Size), confirming that a handful of particularly large or slow-cycle
parts still register as outliers but no longer dominate the numeric scale. The ordinal, 0 - 3

process indicators now occupy symmetric, integer-like positions: their first quartiles lie at either

135



—1.01 6 or —1.42 6 (encoding the modal “0” category), their medians hover within +0.13 o
(reflecting a mid-level “1” or “2”), and their upper quartiles reach +0.99 ¢ to +1.29 &, mirror
images of the lower tails, thereby retaining categorical structure yet fitting neatly into the same
variance budget as the metric features. In short, standardization equalizes feature influence for
distance-based learning while still flagging rare, extreme observations through moderate positive
or negative z-scores rather than overwhelming raw magnitudes.

The BFGS solver, Swish activation function, and elastic-net regularization combination
achieve 100% classification with the GMLVQ model. This result indicates that the learned
prototypes and relevance matrix carve out decision regions that perfectly separate the four
manufacturing-process classes on the held-out test set. The BFGS optimizer accelerates
convergence toward a local optimum of the GMLVQ cost, and Swish’s smooth, non-monotonic
activation furnishes additional curvature that helps fine-tune prototype positions. The elastic-net
regularization, meanwhile, keeps individual relevance weights from exploding while still
allowing sparsity. Combined, these choices extracted a metric space where every test instance
lies closest to the correct class prototype. The optimized model accuracy is as shown by Figure
5.10 below.
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Figure 5.10. Optimized model accuracy
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The diagonal of the learned relevance matrix is almost singularly dominated by surface
finish (Ra), whose weight (0.9996) dwarfs every other attribute by at least three orders of
magnitude. The only secondary signal the model retains is a faint trace for cycle
time (4.2 x 10#%), while the remaining eleven features, including geometric measures such as
size, wall thickness and tolerance, as well as all cost-, volume- and sustainability-related
indicators, sit in the 107° range and are therefore functionally ignored when the adaptive

squared-Euclidean metric computes distances.

Relevance Matrix Diagonal (Optimized Model)

1.0 4

0.8 1

ES

Relevance Weight

=
=

0

W o @ o o 2
ey oo o o £ i o
g o o e o) i
e f o 6“‘%\ ¥ o

b
e

Features

Figure 5.11. Relevance matrix diagonal
Source: Own study

5.3.2. Comparison with Support Vector Machines (SVM)

SVM and GMLVQ are supervised machine learning algorithms for pattern recognition and
classification tasks. They are designed to identify the decision boundaries that best separate
classes in the feature space based on labeled data. This study involved comparing the accuracy
obtained on the same dataset using a similar normalization approach and applying regularization.

Table 5.3 and Table 5.4 below shows the accuracy of the two algorithms.
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Table 5.3: SVM accuracy

precision recall fl-score support
0 1.00 1.00 1.00 13
1 0.80 1.00 0.89 12
2 1.00 0.77 0.87 13
3 1.00 1.00 1.00 13
accuracy 0.94 50
macro avg 0.95 0.94 0.94 50
weighted avg 0.95 0.94 0.94 50
SVM Accuracy: 94%

Source: Own study

As indicated in Table 5.3 above, the support for each class is evenly distributed (12 -13
parts per class), so the overall accuracy of 94 % (47/50 correct) reflects only three
misclassifications. The SVM is flawless on the two extreme classes, classes 0 (Blow Molding)
and 3 (Thermoforming), where precision, recall, and F; all equal 1.00, indicating that these
categories have well-separated margins in the kernel space. The errors are confined to the middle
pair. For class 1, Injection Molding, the model never misses a true instance (recall = 1.00) but
occasionally over-predicts the label (precision =0.80), implying that a few parts from other
processes sit just inside the class-1 decision boundary. Class 2, Rotational Molding, shows
perfect precision (1.00) yet reduced recall (0.77), meaning three true rotational cases were
absorbed by neighboring classes, most likely by the more inclusive class 1, given its
false-positive pattern. Macro- and weighted-average metrics (precision = 0.95, recall ~0.94)
mirror the overall accuracy, confirming that class imbalance is negligible. In short, the SVM
captures the gross structure of the data but struggles to carve a clean separating surface between
the two mid-spectrum polymer processing methods, hinting at feature overlap that could be
mitigated by additional discriminators or a more flexible kernel.

Table 5.4: GMLVQ accuracy

precision recall fl-score support
0 1.00 1.00 1.00 13
1 1.00 1.00 1.00 12
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2 1.00 1.00 1.00 13

3 1.00 1.00 1.00 13

accuracy 1.00 50
macro avg 1.00 1.00 1.00 50
weighted avg 1.00 1.00 1.00 50

GMLVQ Accuracy: 100%

Source: Own study

The classification report in Table 5.4 shows a perfect score for all test samples on a class-by-
class basis. All the polymer processing methods were assigned to their correct category, yielding
precision = recall = F, =1.00 for every class and an overall accuracy of 100%. The result
indicates that the GMLVQ model constructed prototypes, and the adaptive metric separated all

four classes without a single overlap in the test fold.
5.4. Discussion and summary

5.4.1. Interpretation and analysis of the results

The correlation matrix presented above outlines the relationships between various process
parameters. The correlations influence the suitability of the data for the GMLVQ algorithm and
its ability to provide valuable insights for classification and pattern recognition. The correlation
analysis, as depicted in Figure 5.3, indicates that the data was well-suited for the GMLVQ. The
results showed several strong or moderate correlations, particularly between size and wall
thickness and surface finish and tolerance, which provide a strong foundation for prototype
learning in GMLVQ. Given GMLVQ’s ability to take advantage of the relevance matrix to assign
appropriate weights to the features based on their correlation with class boundaries, parameters
such as size, wall thickness, surface finish, and tolerance were well aligned with the model’s
ability to distinguish classes on their features. Weakly correlated parameters such as precision
and energy use could not significantly impact the prototype learning but could still be used in
determining the decision boundaries. The data was highly suitable for GMLVQ, with clear
patterns that the model could learn. The relationships between parameters guide the learning
process, effectively allowing GMLVQ to separate classes based on their most relevant inherent

features.
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The hyperparameter optimization results indicated higher performance using Swish than
Sigmoid activation function. Both Swish and Sigmoid achieved 100% accuracy with Adam and
BFGS solver types. However, Swish registered the lowest execution time. This result is in line
with previous research that demonstrated the superiority of Swish over Sigmoid and ReLU as
activation functions for GLVQ (Villmann et al., 2020). Swish was shown to outperform ReLU
and sigmoid, achieving higher accuracy for appropriate parameter choice, especially about
convergence performance (Villmann et al., 2020). The Swish function's non-monotonic nature
allows it to preserve information flow better by controlling the amount of non-linearity dictated
by the dataset and the algorithm complexity, thus avoiding the vanishing gradient problem
(Dubey et al., 2022). Additionally, it tends to converge faster than sigmoid, especially in more
complex scenarios, and has been used extensively in recent studies (Alhassan & Zainon, 2021;
Allu & Padmanabhuni, 2022, 2023; Fatima & Pethe, 2022; Jinsakul et al., 2019; Mercioni &
Holban, 2020). Therefore, Swish provided a better learning dynamic for the GMLVQ model by
addressing the vanishing gradient problem that could be problematic with the sigmoid.

Furthermore, the hyperparameter optimization results revealed that Adam and BFGS
optimizers achieved 100% accuracy across all activation functions. Previous studies describe
Adam as a stochastic optimizer that dynamically adjusts learning rates while adapting the
parameters in real time for excellent results (Kingma & B, 2015; D. Yi et al., 2020). On the other
hand, BFGS is described as a quasi-Newton method that demonstrates superior performance by
ensuring convergence to an optimal solution (Ibrahim et al., 2014; J. Y. Wu et al., 2020). Based
on the observation revealed from hyperparameter optimization, Adam and BFGS are well-suited
for the classification task. Both solver types can handle the complexity of the GMLVQ model
and produce high-accuracy solutions. However, introducing execution time as an evaluation
metric saw BFGS considered as the sole solver type for the model, given its high accuracy
coupled with low execution time.

Regularization is significant when training machine learning models and algorithms such
as the GMLVQ, as it allows for good generalization on unseen data. Three regularization
techniques, including L1, L2, and Elastic-Net (Friedman et al., 2010; Santos & Papa, 2022),
were used during hyperparameter optimization. L1 regularization focuses on feature selection by
setting some coefficients to 0, while L2 reduces the magnitude of coefficients without setting

them to zero, improving generalization (Friedman et al., 2010). Elastic-net regularization
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combines the advantages of L1 and L2 and is described as a compromise between L1 and L2
penalties (Friedman et al., 2010). The hyperparameter optimization results indicated the best
accuracy and execution time with the model parameters.

BFGS solver type is one of the most powerful algorithms for solving unconstrained
optimization problems (Guerrout et al., 2018). Existing literature points out that BFGS has the
advantages of meeting the requirements for conjugate direction and being the most numerically
stable quais-Newton algorithm (Xue et al., 2022). In this study, BFGS is preferred for its fast
convergence and little iteration, which are inherent features ideal for efficiently processing large
amounts of high-dimensional data. Being a variation of the Quasi Newton optimization method,
BFGS approximates the inverse of the Hessian matrix, leading to quicker convergence than the
traditional gradient descent methods. As a result, the model can better traverse in the solution
space, reducing the number of iterations to solve the optimal solution. The GMLVQ model seeks
to optimize prototypes and the relevance matrix to minimize classification error. The speed and
robustness of BFGS are especially useful in the case of intricate interdependencies among
features and classes. This efficiency in optimizing the learning process directly contributes to the
100% accuracy achieved.

The Swish activation function is a key contributor to the improved performance of the
GMLVQ model, particularly in non-linearity and gradient flow. Swish introduces a smooth, non-
monotonic nature that enhances the model's ability to learn complex decision boundaries. In
contrast to common activation functions such as sigmoid or ReLU, Swish addresses the
constraints of the vanishing gradient issue and the dying ReLU issue, offering uninterrupted
gradient propagation, which aids the model in learning optimally, particularly within the
prototype learning stage of GMLVQ. This smooth gradient flow is essential to GMLVQ’s
prototype-based learning. It updates the relevance matrix and prototypes better, with better class
separation and improved convergence. Swish also accelerates learning because it gives smoother
gradients than sigmoid, which results in faster convergence and ultimately produces 100%
accuracy in the model. By allowing the model to handle non-linear class boundaries more
effectively, Swish allows GMLVQ to learn highly accurate and well-separated prototypes, such
that the model generalizes well on unseen data.

The Elastic-Net regularization combines the best of both the L1 and L2 regularization

techniques and, therefore, is highly effective in preventing overfitting without compromising
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feature selection and shrinking coefficient values. For the GMLVQ model, Elastic-Net helps to
find a compromise between feature selection with L1 regularization and shrinkage with L2
regularization so that the model can retain only the most beneficial features and not get unduly
bogged down by useless ones. This is particularly crucial in GMLVQ, where correct prototypes
and a proper distance metric are very important for appropriate classification performance.
Elastic-Net, through the use of L1 and L2 regularization, effectively controls the complexity of
the model by properly optimizing the relevance matrix and prototypes without overfitting noisy
samples. Also, this balanced regularization allows GMLVQ to generalize well so that the learned
prototypes are not over-specific to the training data but capture the actual class structure. This
ability to generalize is among the reasons why Elastic-Net is to be blamed for the model's 100%
accuracy. It prevents the model from memorizing non-useful information and focuses on the
underlying relationships in the data. The combination of BFGS, Swish, and Elastic-Net
regularization has proven to be a highly efficient optimization framework for the GMLVQ
model, with 100% accuracy and best performance.

The BFGS solver accelerates convergence, enabling the model to optimize prototypes
and the relevance matrix effectively and quickly, even in high-dimensional, complex data. The
Swish activation function enhances the optimization process by enabling smooth gradient flow,
avoiding the vanishing gradient issue, and enabling the model to better learn non-linear
boundaries between classes. Swish's smooth, non-monotonic nature enables quicker convergence
and ensures the model can produce highly precise class separations. Lastly, Elastic-Net
regularization prevents overfitting by combining L1 and L2 regularization so that GMLVQ can
focus on the most valuable features while ensuring that the learned prototypes can be generalized
to new data. These components work synergistically to construct a robust, effective, and accurate
GMLVQ model capable of handling prototype-based classification tasks. This is a perfect
solution to solving complex pattern recognition and classification problems. The feature
importance values and outputs of the confusion matrix provide a clear image of the performance
and action of the GMLVQ model. The confusion matrix demonstrates a perfect classification
with 13 accurate predictions for each class (Blow Molding, Injection Molding, Rotational
Molding, and Thermoforming) and O misclassifications for each class, providing a perfect

accuracy rate of 100%.
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This outcome confirms that the model successfully separated the classes using the
identified prototypes, which efficiently captured patterns in the data without confusion or conflict
between different classes. Alternatively, the feature importance values give insight into the
direction of the attention of the model during training. Significantly, the surface finish is the top-
ranked feature at 0.9995571, which indicates its key role in class discrimination. This aligns with
its high level of importance in manufacturing operations, where surface quality is often a prime
discriminator. The other features, such as size, tolerance, wall thickness, and precision, have
extremely low feature importance values ranging from 3.4e-06 to 2.7e-06, signifying that these
variables were less critical in class boundary specification in this dataset. The relatively low
importance values of parameters like cycle time, Processing rate, Labor cost, and others once
again validate that even though they contribute to the model, they are not as loaded in classifying
the data as surface finish. These findings show the model's ability to classify the data accurately.
It highlights the paramount role of surface finish in decision-making, presenting informative
information regarding which characteristics are most significant in effective class separation for

this manufacturing process.

5.4.2. Comparison with SVM and theoretical and practical implications

GMLVQ and SVM are two supervised pattern recognition and classification algorithms of
learning. Based on labeled inputs, they must designthe best decision boundaries for class
separationin  the feature space. The two methods differ in solving classification
issues based on alternate principles, learning mechanisms, and mathematical bases. While
GMLVQ is a prototype-based learning classifier that learns prototypes of every class as a
function of the distance between an instance and such prototypes, SVM is a boundary-based
learning classifier and strives to learn the optimal hyperplane that separates instances from
disparate classes in feature space. The optimal hyperplane is regarded as maximizing the margin,
or the separation between the closest points of the two classes, the so-called support vectors. The
difference between SVM and GMLVQ provides adequate explanations concerning the
advantages and disadvantages of the two models for classification performance.

The SVM model has 100% accuracy, which is superior to that of GMLVQ in terms of
total accuracy. The class 0 and class 3 precision, recall, and F1-scores are all perfect (1.00) in
both models, but SVM is imperfect in class 1, with a precision of 0.80 and an F1-score of 0.89.

This outcome indicates that while SVM is strong in most cases, it is not as strong in handling
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class 1 and thus results in some misclassifications. On the other hand, GMLVQ achieves perfect
performance on all classes with a 1.00 precision, recall, and f1-score for each class, giving a total
accuracy of 1.00, indicating that GMLVQ would perfectly classify all instances. The weighted
average and macro average of GMLVQ also show its consistency by having F1-scores of 1.00
for all classes, proving its ability to generalize perfectly to unseen data. As such, the GMLVQ is
better equipped to handle class imbalances or uncertain class boundaries because it fared better
even when it had a class that SVM did not handle well. GMLVQ's capability via prototype-based
learning and relevance matrix adjustment also made its classification error-free. For SVM,
although it was correct in all aspects except precision on class 1, this shows its inability to
optimize all classes uniformly. Lastly, while SVM is an effective classifier, GMLVQ offers a
superior and optimally generalized solution, especially in complicated or fine-grained class
separability cases.

The theoretical value of this study lies in the comparative analysis of the GMLVQ model
and SVM, both machine learning models, in classification problems. The study underscores the
importance of prototype-based learning in recognizing complex, non-linear relationships in high-
dimensional data. With the addition of BFGS optimization, Swish activation, and Elastic-Net
regularization, GMLVQ is shown to have more extraordinary adaptability and generalization
performance with a 100% accuracy rate across all classes, against SVM's 94% accuracy. This
observation suggests that GMLVQ with adaptive prototypes using relevance matrices can better
deal with class imbalance and intricate decision boundaries. As such, the model can be more
stable in some cases. Theoretical also provides more understanding of why it is beneficial to
have Swish activation being non-monotonic and smooth to enhance learning in prototype-based
approaches by preventing gradient vanishing issues and enhancing learning rate and
convergence. Furthermore, the research highlights the necessity of Elastic-Net regularization in
striking a balance between feature shrinkage and selection so that the model is not overfitted but
still preserves the importance of salient features. These findings are contrary to the traditional
application of boundary-based learners like SVM, and they offer a theoretical explanation for
enhancing prototype-based models capable of handling non-linear decision boundaries and
complex datasets.

Practically, the findings of this study are of great potential value to industries and

applications wherein the accuracy of classification and generalizability are paramount. The fact

144



that GMLVQ can attain perfect accuracy over all classes in this research demonstrates that it can
be used for applications such as classifying data and pattern recognition, whose classifying errors
will be very costly. For example, in the diagnosis of diseases or production in manufacturing,
wherein every class can be a group of diseases or products, respectively, 100% accuracy in
classifying new unseen instances can have tangible impacts on reliability and efficiency. Further,
GMLVQ employs BFGS optimization, Swish activation function, and Elastic-Net regulation is a
sign that GMLVQ is well-suited to deal with high-dimensional data, a bane in most real-world
datasets. In practice, this would mean that GMLVQ can be utilized in applications such as
recognition of images, forecasting in the stock market, and processing of bioinformatics, wherein
data is complicated and non-linear. Further, the research demonstrates that it matters to select a
model regarding the particular dimensions of a dataset in question, wherein GMLVQ offers a
more generic solution to datasets with non-separable classes or higher-order feature interactions,
which is worth it. Lastly, the findings have direct practice implications for users who want to
implement high-performance classifying models that will be good fits for training instances and

transfer to real-world cases.

5.4.3. Limitations of the proposed GMLVQ model and future research direction

Even though the proposed strategy demonstrates promising outcomes through the GMLVQ
model application when selecting the manufacturing process, several constraints must be
considered. The initial constraint is that the dataset is minimal, with 50 samples per class for four
manufacturing processes. A sample size of this magnitude may not sufficiently represent the
underlying variability within each class, potentially limiting the generalizability of the model's
findings. With such a small dataset, there is an increased risk of overfitting, where the model
may learn to classify the training data with high accuracy but fail to generalize well to unseen
data despite the perfect performance in this instance. Second, the confusion matrix reports that
GMLVQ was 100% accurate; this finding might be overstated due to the small dataset and
because small-data-trained models tend to show overstated accuracy values.

Furthermore, although feature importance values reported that some manufacturing
parameters, such as surface finish, were critical, with surface finish being dominant among them,
overemphasis on some features by small data may be possible and losing some feature-feature
interactions that would be very important with large and complicated datasets. The predominance

of the surface finish in this case may also be case-specific. More research using large datasets
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will have to be undertaken to check if such a correlation will be valid with other manufacturing
conditions or if other features, such as wall thickness or cycle time, would dominate in different
cases.

In addition, GMLVQ's application of prototype-based learning with a relevance matrix
can be sensitive to feature range and distribution in small datasets, as reflected through feature
importance rankings with extreme weight disparities. As good as it is here with this model's
performance being reported, such performance must be interpreted cautiously because it remains
to be seen if it will generalize to other datasets with diverse samples and feature interactions.
Therefore, although GMLVQ offers a promising solution to a selection of manufacturing
processes, its application is limited by dataset size, and testing on more diverse and more
extensive datasets would make it more robust to establish applicability in real-world settings.

Future research using GMLVQ in manufacturing process selection must overcome
current constraints and widen the range of applications of the technique to make it more
generalizable and robust. The initial step is to examine the impact of using broader and more
diverse datasets to test model performance. Using datasets with more extensive sample sizes and
dimensionality can allow it to test GMLVQ generalizability more effectively in real-world
applications, particularly in manufacturing operations with inherent variability. Second, future
research must examine using time-series or multi-source datasets to more effectively simulate
manufacturing operations that vary over time, since many variables would have changed with
time or been subject to multiple information sources, e.g., sensors and working conditions.
Another promising research direction would be to investigate hybrid approaches wherein
GMLVQ would be integrated with other machine learning techniques, such as deep learning or
ensemble techniques, to increase classification efficiency and resilience, particularly to difficult
instances with overlapping classes or non-linear transformations. Explainable Al (XAl)
techniques can be explored to make GMLVQ more explainable and see more transparently
through what mechanisms prototypes and relevance matrices play in deciding to select a process.
Further research can also thoroughly examine GMLVQ's applicability to large-scale
manufacturing systems, with high-level real-time decision-making and model efficiency critical.
Finally, testing other regularization techniques, for instance, Dropout, L2 regularization, or
Bayesian regularization, on GMLVQ's generalization performance would provide crucial insight

into how to prevent overfitting and increase model robustness in real-world applications with
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noisy conditions. By concentrating on those areas, upcoming research will have enormous
capability to increase GMLVQ's applicability and usability to manufacturing process selection to
more diverse industries and to facilitate more effective and intelligent decision-making in
complex industrial systems.

In summary, the application of GMLVQ for manufacturing process selection
demonstrates substantial promise, particularly in its ability to achieve high accuracy and efficient
prototype learning. The model's robust performance, highlighted by 100% accuracy in the tested
dataset, emphasizes its potential to effectively classify complex manufacturing processes,
especially when coupled with advanced techniques such as BFGS optimization, Swish
activation, and Elastic-Net regularization. While the results are promising, the study also
acknowledges key limitations, including the small sample size of the dataset and the potential for
overfitting, which calls for caution when generalizing findings to larger, more varied datasets.
Furthermore, the dominance of certain features, such as surface finish, highlights the need for
further investigation into the interactions between features in more diverse environments. Future
research should focus on expanding the dataset, incorporating dynamic and multi-source data,
and enhancing the interpretability and scalability of GMLVQ models to tackle real-world, high-
dimensional, and noisy data. Ultimately, this research sets the stage for more comprehensive and
generalized applications of GMLVQ in manufacturing and other industrial domains, paving the

way for more effective, data-driven decision-making in complex process optimization tasks.
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6. Conclusions and Future Perspectives

This dissertation's two research hypotheses (H1, H2) are positively verified. The empirical
research findings indicate that subjective decision factors, including cognitive bias, groupthink,
and personal preference, significantly affect the choice of manufacturing processes. The findings
are unsurprising, as long-standing research has shown that human decision-making frequently
involves cognitive biases caused by dependence on judgmental heuristics. The study shows that
subjective decision factors, including cognitive bias, personal preference, and groupthink,
adversely affect the manufacturing process and its outcomes, including increased rework, quality
inconsistency, high waste generation rates, and extended lead times. These factors limit the use
of domain knowledge by contributing to the failure to consider process complexity, alternative
processes, and process variants. These findings verify the first hypothesis, which stipulates that
subjective decision factors such as cognitive biases, personal preferences, and groupthink
significantly contribute to the selection of inefficient manufacturing processes by limiting the use
of domain knowledge in decision-making. The subjective degradation of the decision-making
process of production management runs counter to modern manufacturing based on the concepts
of Industry 4.0 and Industry 5.0.

The second research hypothesis is also verified. The results of the synthesized literature
strongly indicate the potential of intelligent methodologies to optimize the selection of
manufacturing processes. Practical experimentation involving selecting polymer processing
methods using the proposed GMLVQ algorithm results in 100% accuracy compared to 94%
derived from SVM. While these results require further verification with larger and diverse
datasets, it remains evident that a GMLVQ-based intelligent methodology can optimize the
selection of manufacturing processes. This observation verifies the second hypothesis, which
postulates that an intelligent decision support methodology based on an improved generalized
learning vector quantization neural network can optimize the selection of manufacturing
processes. Such optimization of the production management decision-making process is in line
with modern manufacturing, which is based on the concepts of Industry 4.0 and Industry 5.0.

The future research should involve more extensive integration of GMLVQ with
intelligent decision-support systems, focusing on selecting manufacturing processes. One of the
objectives of future studies should be to address the significant challenges of scalability and
robustness of GMLVQ in manufacturing process selection problems. The model should be
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thoroughly investigated by the use of more extensive and more diverse datasets, which will be
used to determine their generalizability. The current research is based on small datasets with
limited scope, thus limiting the model in capturing the complexity and variability found in large
industrial settings. In particular, future studies should explore applying the GMLVQ model in
large manufacturing systems, where decision-making speed is critical and models must process
high-dimensional, noisy data efficiently. Furthermore, subsequent research must explore ways to
create adaptive learning systems designed to evolve and refine their decision-making algorithms
with knowledge acquired over time. Continuous updates are essential to ensure that such systems
do not become stodgy and can react to new threats and opportunities.

Another promising line of future research is the integration of hybrid models, blending
GMLVQ with other state-of-the-art machine learning techniques such as deep learning,
reinforcement learning, or ensemble techniques. Such hybrid methods will be able to solve even
more complex decision issues, particularly in manufacturing operations with complicated
interdependencies and non-linear connections. Moreover, it will be essential to justify GMLVQ-
based decision aid systems with more transparent and explainable interpretative Al approaches to
make such systems more acceptable to broader trust and application in industrial practice. It will
also be essential to continue to develop the HCI dimension to a point at which human factors
such as human bias, groupthink, and human preference are appropriately integrated into the
decision-making procedure in a way that will allow GMLVQ to function as a competent
supporting decision aid to human decision-makers. Finally, it is possible to consider applying
GMLVQ to industrial operations other than polymer processing and other sectors like aerospace,
automotive production, and electronics manufacturing that require decision complexity and
optimization priorities. Through these expanded avenues of research, GMLVQ could evolve into
a more versatile, adaptable, and scalable solution for intelligent process selection across diverse
industries

This research has been conducted with the key aim of illustrating the tremendous and
impressive potential that GMLVQ has as an intelligent decision-support tool. The GMLVQ
model is especially beneficial to the complex task of optimizing the selection process of
manufacturing processes. This premise becomes especially compelling when one considers the
highly critical role played by two categories of information: that which is hard-data-driven and

that which is subjectively contributed by human beings, both of which can play crucial roles in
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influencing decision-making processes. This aligns with the vision of Industry 5.0, which
emphasizes the integration of humans and machines for sustainable development. In this human-
centric approach, humans are at the center of decision-making, supported by intelligent tools and
machines. Using an integration of empirical results with a carefully systematic and thorough
review of previous methodologies, this research quickly illustrates how cognitive biases, agendas
influenced by personal interests, and the groupthink phenomenon can significantly hamper the
proper utilization of domain-specific knowledge. These significant obstacles ultimately result in
inefficient manufacturing decisions that fail to achieve the desired standards of efficiency or
productivity. The intervention and introduction of GMLVQ present a very appealing solution to
these limitations because it expertly balances objective data and crucial human factors, allowing
for the proper selection of the optimal manufacturing processes that may be available under any
context. During this research, the GMLVQ model has shown a tremendously remarkable level of
accuracy, registering a staggering 100% rate each time it performed activities involving the
selection of manufacturing processes. This impressive achievement demonstrates its noteworthy
capability to handle high-dimensional and noisy data and perform exceptionally well in decision-
making in real-world scenarios, where such complexities occur and pose very challenging
difficulties.

However, it is worth observing that although the findings obtained from the study are
promising and offer a sense of reassurance, it is also worth noting that the study outlines several
critical shortcomings that cannot be ignored. Among those shortcomings, one particular aspect is
the relatively limited sample size of the dataset used, which can potentially provide opportunities
for overfitting risks. This is a common challenge that generally arises in studies with limited
data. In addition, the model's capacity to generalize well to more realistic and diverse industrial
settings remains to be tested, mainly when using larger datasets and real-world manufacturing
datasets that better mirror real-world instances found in the industry.

In consideration of future studies, such areas of study need to focus on enhancing the
model’s ability to integrate information from various sources, which would significantly increase
its performance and scalability, thus making it more context-variable. In addition, there is an
urgent need to focus on making the model more explainable to users, making it more
straightforward to interpret its decision-making process. By venturing into these specific research

areas, future studies can maximize the use of GMLVQ in decision-making systems. This
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maximized use would ultimately lead to the formulation of more accurate, objective, and
strongly data-grounded methodologies for manufacturing process selection. This study plays a
key role in closing the gap between subjective decision-making factors and fact-based methods,
thus making a promising step forward to making more efficient and reliable selections of
production processes while simultaneously solving the continuously updated industrial

application challenges.
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