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A. Stankiewicz v 

Abstract 

This thesis presents the results of studies concerning the automatic investigation of optical 

coherence tomography (OCT) retina images. The disorders at the border of the human eye retina and 

vitreous (called vitreoretinal interface – VRI) can cause severe retinal damage and carry a high risk of 

vision loss. Their early detection and accurate assessment are beneficial for successful therapy. 

Current approaches for evaluating the VRI pathologies are based only on descriptive methods 

(subjective analysis without quantitative measurement). The author of this dissertation introduces 

innovative solutions for quantitative assessment of the preretinal space and VRI based on automatic 

OCT image analysis. 

The primary measured characteristic indicative of pathological changes is the thickness 

of particular retina layers. For that reason, precise segmentation of OCT retinal image is the key 

element for parameterization of the retina and preretinal space. While manual segmentation 

of volumetric data is very time-consuming, current automatic methods are insufficient to investigate 

the changes in the vitreoretinal interface. 

The author investigated individual steps of the retina image segmentation process and designed 

procedures for improving the automatic analysis of low quality data acquired with OCT. The research 

included selecting appropriate methods for speckle noise reduction and identifying low-quality image 

parts that hinder the overall segmentation process. In addition, the proposed improvements were 

evaluated for graph theory-based segmentation of retinal layers for subjects with VRI disorders.  

The main research conducted by the author concerned the development of novel methods 

for segmentation and parameterization of VRI pathology, namely the vitreomacular traction (VMT). 

The proposed method uses fully convolutional neural networks. The tested architectures based on the 

encoder-decoder design are UNet, LFUNet, ReLayNet, AttUNet, and DRUNet. The proposed system 

allows for achieving preretinal space segmentation accuracy of up to 96 %.  

The presented research was conducted as a part of the CAVRI (Computer Analysis of VitreoRetinal 

Interface) Project. This project is based on interdisciplinary cooperation between the Division 

of Electronic Systems and Signal Processing, Poznan University of Technology, with ophthalmology 

specialists from the Department of Ophthalmology, Heliodor Swiecicki University Hospital, Poznan 

University of Medical Sciences. The proposed solutions were tested on a specially prepared database 

of OCT images. In addition, the author of this thesis prepared a custom software called OCTAnnotate 

to provide the ophthalmology experts with specialized tools to evaluate the vitreoretinal interface. 

The methods proposed in this thesis were also implemented in this open-source software.  

The obtained segmentations were the basis for automated parameterization of pathologic retina 

structure. The devised parameters valuable for clinicians are the volume of the preretinal space, the 

area of attachment of the vitreous to the retina surface, the contour of the fovea, and the parameters 

of the fovea pit shape. The developed techniques allowed for the generation of profiles of VMT 

disorder in the form of data or images understandable to clinicians. The results of experiments show 

that the designed algorithms provide valuable information for quantitative analysis of the VMT 

pathology stage and its progress in a long-term observation. 





 

A. Stankiewicz vii 

Streszczenie 

W pracy przedstawiono badania dotyczące automatycznej analizy obrazów optycznej tomografii 

koherencyjnej (ang. optical coherence tomography — OCT) siatkówki oka ludzkiego. Choroby 

na granicy siatkówki i ciała szklistego (zwanego interfejsem szklistkowo-siatkówkowym, ang. 

vitreoretinal interface — VRI) mogą być przyczyną ciężkich uszkodzeń siatkówki i niosą ze sobą wysokie 

ryzyko utraty wzroku. Ich wczesne rozpoznanie i dokładna ocena są niezbędne dla skutecznej terapii. 

Aktualne metody oceny patologii VRI bazują na metodach opisowych (subiektywnej analizie bez 

pomiarów ilościowych). Autorka tej rozprawy zaproponowała innowacyjne rozwiązania ilościowej 

oceny przestrzeni przedsiatkówkowej oraz stanu VRI oparte na automatycznej analizie obrazów OCT. 

Podstawową mierzoną cechą wskazującą na zmiany patologiczne jest grubość poszczególnych 

warstw siatkówki. Z tego powodu segmentacja obrazu siatkówki OCT jest kluczowym elementem 

parametryzacji siatkówki i przestrzeni przedsiatkówkowej. Podczas gdy ręczna segmentacja danych 

wolumetrycznych jest bardzo czasochłonna, dotychczasowe metody automatyczne 

są niewystarczające do badania zmian w interfejsie szklistkowo-siatkówkowym. 

Autorka pracy badała poszczególne etapy procesu segmentacji obrazu siatkówki i opracowała 

procedury usprawnienia automatycznej analizy obrazów OCT niskiej jakości. Badania obejmują wybór 

odpowiednich metod redukcji szumu speklowego oraz identyfikację fragmentów obrazu które 

utrudniają proces segmentacji. Zaproponowane ulepszenia oceniono poprzez analizę skuteczności 

segmentacji warstw siatkówki opartej na teorii grafów dla pacjentów ze schorzeniami VRI.  

Głównym tematem przeprowadzonych przez autorkę badań było opracowanie innowacyjnych 

metod segmentacji i parametryzacji patologii VRI: trakcji szklistkowo-plamkowej (ang. vitreomacular 

traction — VMT). Zaproponowana metoda wykorzystuje w pełni splotowe sieci neuronowe. 

Przetestowane architektury oparte na topologii w układzie enkoder-dekoder to: UNet, LFUNet, 

ReLayNet, AttUNet oraz DRUNet. Zaproponowany system pozwala na uzyskanie dokładności 

segmentacji przestrzeni przedsiatkówkowej do 96 %.  

Zaprezentowane badania zostały wykonane w ramach projektu CAVRI (ang. Computer Analysis 

of VitreoRetinal Interface). Projekt ten bazuje na interdyscyplinarnej współpracy specjalistów Zakładu 

Układów Elektronicznych i Przetwarzania Sygnałów, Politechniki Poznańskiej ze specjalistami Kliniki 

Chorób Oczu,  Katedry Chorób Oczu i Optometrii, Szpitala Klinicznego im. Heliodora Święcickiego, 

Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. Zaproponowane rozwiązania 

zostały przetestowane na specjalnie przygotowanej bazie obrazów OCT. Opracowane metody 

ewaluacji VRI zostały zaimplementowane w autorskim oprogramowaniu OCTAnnotate udostępnionym 

na licencji open-source.  

Uzyskane segmentacje były podstawą do automatycznej parametryzacji patologicznej struktury 

siatkówki. Opracowane parametry cenne dla klinicystów to objętość przestrzeni przedsiatkówkowej, 

obszar styku ciała szklistego i powierzchni siatkówki, obrys dołka plamki żółtej, oraz parametry kształtu 

dołka plamki żółtej. Opracowane techniki pozwoliły na wygenerowanie zrozumiałych przez lekarzy 

profili wolumetrycznych zmian VMT. Wyniki eksperymentów wskazują, że zaprojektowane algorytmy 

dostarczają cennych informacji do ilościowej analizy stanu patologii VMT i jej zmian w długookresowej 

obserwacji. 
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1 

Chapter 

1 Introduction 

1.1 Imaging of human retina 

The retina is a specialized light-sensitive tissue responsible for receiving visual signals from the 

outside world and transmitting them further to the brain. The retina is placed at the back 

of the eye between the translucent vitreous body and the choroid. It has a layered structure 

of tissue interlaced with a blood vessels network, from which the inner parts of the retina 

receive their nourishment [1]. The retinal blood vessels pass into the eye through the optic 

nerve head with the nerve fibers. The placement of the retina in the structure of the eye 

is illustrated in Figure 1.1. 

 

Figure 1.1 Eye structure (copied with permission from Encyclopeadia Bretannica, Inc.) 

The development of tools for imaging the human retina has undergone a dramatic 

evolution during the last few years [2]. In vivo visualization methods of retinal tissue started 

with the invention of the ophthalmoscope in 1851 [3]. It allows for evaluation and early 

diagnosis of the eye interior, which is crucial for selecting appropriate treatment and 

preserving vision. 

Detailed analysis of morphological structures of the retina was further revolutionized with 

the introduction of noninvasive imaging modalities, such as fundus photography [4]. Fundus 

photography had its origin in 1910 when the construction of the first fundus camera enabled 
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the capturing of the retina image [5]. Since that day, this type of retina documentation has 

become a standard imaging technique. However, because of its safety and low cost, it is still 

used on a day to day practice. 

An extension of this method was the invention of fluorescein angiography in 1961. In this 

method, the image is captured using narrow-band filters to emphasize a fluorescent dye 

injected into the bloodstream [6]. In the 1990s, the indocyanine green dye was introduced, 

which glows in the infrared section of the spectrum. This approach came into use with the 

development of digital cameras sensitive to infrared light. It allows for highlighting the 

structure of the choroid and not only vessels of the inner retina. 

The advantages of fundus images are their high resolution and good quality. Such 

photographs present a wide area of the retinal vessel network in great detail [7]. They depict 

blood flow patterns and hemorrhaging or obstructions in the vascular network. An example 

of fundus images is presented in Figure 1.2. 

 
(a) fundus photography 

 
(b) fundus angiography 

Figure 1.2 Examples of fundus images (images from Heliodor Świecicki Uniwersity Hospital in Poznan) 

Some pathological changes cannot be adequately visualized and evaluated with fundus-

like modalities because they only provide a two-dimensional (2D) en face view of the back 

of the eye. 

Additionally to these methods, there is a range of other, more advanced technologies for 

evaluating the retina structures and changes. They include ultrasound, optical coherence 

tomography (OCT), and laser-based blood flowmeters [2]. Thanks to these methods, 

a tomographic image of the eye can be made. Moreover, it gives the possibility to observe and 

diagnose the eye and the circulatory system within. Especially the introduction of the OCT 

imaging technique has been a milestone in understanding and managing retinal diseases. 

First introduced in 1991, optical coherence tomography is a fast, safe, and non-invasive 

method of examining soft tissue up to 3 mm in depth. It is based on spectral interferometry 

of near-infrared light reflected from semi-transparent objects [8]. The rapid development 

of this imaging technology vastly contributed to its application in many clinical specialties. 

For example, OCT has a high potential for use in ophthalmology [9], mainly due to the 

demonstrated applicability in micron-resolution, cross-sectional visualization of the eye's 
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anterior and posterior parts. In contrast to previous fundus representations, OCT presents 

a three-dimensional (3D) image of the tissue, thus visualizing all of the retinal structures 

in depth. 

An OCT tomogram is a cross-sectional picture representing the optical reflectance 

properties of the examined biological tissue [10]. OCT imaging allows a qualitative assessment 

of tissue features and pathological changes. What is more, it also allows for making objective 

quantitative measurements. Figure 1.3 presents a single cross-section of a healthy human 

retina acquired using the OCT modality. 

 

Figure 1.3 Example of a single OCT cross-section through the healthy macula 

Over the last three decades, OCT technology has undergone a vast improvement. 

Evolution of spectral-domain OCT (SD-OCT) technology allowed for the development 

of volumetric imaging with a cellular resolution [11]. Advanced retina image analysis 

(including visible vasculature) on a micro-scale provides a better understanding of pathology 

development and its diagnosis [12], [13]. The possibilities of OCT-based analysis in image-

guided retinal therapy are why it is the primary imaging method considered in this thesis. 

1.2 Parameterization of the retina image 

Comprehensive biometric processing of retina images makes it possible to quantitatively 

parameterize retina features such as the thickness of individual retinal layers, the structure 

of vascular network, or shape and placement of pathological changes [14]. Parameterization 

of the retina image leads to understanding the effects of changes in the human eye on vision 

quality. Of particular interest are the effects on the number and placement of pathological 

changes on the dynamics and direction of disease evolution. 

The primary measured characteristic is the thickness of particular retina layers. For 

example: thinning of the retinal nerve fiber layer (RNFL) is indicative of glaucoma [15], 

an increase in total retinal thickness (TRT) is consistent with diabetic macular edema (DME) 

[16], and the measurement of the inner nuclear layer (INL) thickness can be used as 

a prognostic factor for visual quality after epiretinal membrane (ERM) surgery [17]. Figure 

1.4a shows an example of retinal thickness measurement in a patient with DME. 
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Besides calculating the thickness of various retinal layers, ophthalmologists also measure 

other tissue features. A few examples show the potential of informative value of such 

parameters: the foveal avascular zone has an acircular shape in central retinal vein occlusion 

[18]; the contour of adhesion between hyaloid and retina surface changes significantly with 

age [19]; the presence of the cardiovascular disease influences width and curvature of retina 

vessels [20]; macular hole (MH) size is used as a prognostic factor in macular hole surgery [21] 

(measurement of minimal macular hole width is illustrated in Figure 1.4b). 

 
(a) retina thickness in diabetic macular edema 

 
(b) minimal width of macular hole 

Figure 1.4 Example of measurements in OCT images for patients with DME and MH 

It is also possible to volumetrically delineate and measure pathological changes, such 

as fluid-filled regions [22], microcystic macular edema [23], or drusen in age-related macular 

degeneration (AMD) [24]. Thanks to this information, it might be possible to define the risks 

of developing specific pathologies. Early detection of pathological changes and implementing 

appropriate prevention protocols can help avoid vision loss in up to 80 % of cases [25]. 

1.3 Automated retinal image analysis 

Manual annotation of 3D structures requires analysis of a series of cross-sections, which 

might comprise even 320 images (depending on the device and scanning protocol). The 

amount of data for such an analysis makes it unfeasible in a daily clinical routine. Additionally, 

an objective evaluation should be based on the information from two or three experts due to 

inter-grader differences. 

A solution to these problems comes with the development of algorithms for automatic 

image segmentation. The correct automatic analysis allows for a quick assessment of the 

current retina state and early diagnosis. In such an OCT-based system, a typical scheme 

of retina analysis, presented in Figure 1.5, includes OCT scan acquisition, preprocessing (e.g., 

noise reduction), segmentation of retina image, calculation of retina features (i.e., the 

thickness of the layers), and visualization of the data. Advanced methods also incorporate the 

correction of continuity of the segmented layers. A single cross-section through the center 

of the retina and en face visualization of layers thickness is presented to the specialist for 

decision making. 
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Figure 1.5 Scheme of a typical retina image analysis procedure 

Several algorithms for retina image segmentation are currently available in commercial 

applications [26–28]. Unfortunately, their use is limited to: 

• segmentation of retinal layers 

• segmentation of the optic nerve head (ONH) 

• cornea segmentation. 

Furthermore, algorithms for OCT retina image analysis incorporated into commercial 

devices are limited to thickness measurement of TRT or selected retina layers (like RNFL 

or ganglion cell complex (GCC)) [26–28]. The automatic analysis may also include retina 

volume or ONH area and volume. Additional scanning protocols designed for vessel 

inspection (namely optical coherence tomography angiography — OCTA) are equipped with 

tools for calculating vessel density in a selected area and delineating a non-flow area (a semi-

automatic method). Measurement of other retina features such as corneal thickness and 

angle, length of vitreous attachment, the width of retinal vessels is typically performed 

manually by the experts and often in an external application. 

Automatic assessment of the retina is mainly focused on detecting pathologies the most 

commonly associated with lower visual acuity or loss of vision. These problems are glaucoma 

(by measuring the thickness of RNFL around ONH), AMD (by analyzing outer retina segments), 

and DME (by calculating TRT) [25]. 

Apart from those disorders, ever more present pathological changes associated with the 

aging eye are the problems with the vitreoretinal interface (VRI). The VRI describes the 

connection between the vitreous (filling the eye) and the retina's surface. As the eye ages, 

vitreous degeneration may lead to the development of pathologies at the VRI. These are 

mainly: epiretinal membrane (ERM) and vitreomacular traction (VMT). Epidemiology studies 

of VRI pathologies show even 3.4 % of prevalence for ERM and 1.6 % for VMT in patients over 

63 years old, and these numbers increase with age [29]. Examples of OCT cross-sections 

through the macula in the presence of VMT and ERM are illustrated in Figure 1.6. 

In 2013, a panel of specialists developed an OCT-based anatomic classification system 

for diseases of the vitreomacular interface [30]. However, the lack of specific guidelines 

for this class of pathologies is why, until now, no standardized evaluation method has been 

developed. Currently, available OCT devices do not include automatic analysis of VRI or even 

segmentation of the posterior surface of the vitreous. 

Preprocessing 

(e.g. noise reduction) 
Retina image 
segmentation 

Visualization 

Correction of 
layers continuity 

OCT scan  
acquisition 

Calculation of 
retina features 
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Figure 1.6 Example of OCT images with vitreoretinal pathologies 

A quantitative analysis of ERM and VMT development is not possible without appropriate 

tools available to the clinicians. Therefore, the application of automatic image analysis for this 

purpose is expected to be of immense help during clinical research and practice. 

Unfortunately, due to the specificity of VRI reflective properties, the existing layers 

segmentation methods are not applicable in a straightforward fashion. 

Automatic retina image analysis is not immune to problems [31]. The most common 

causes of erroneous image segmentation are connected with the acquisition problems, such 

as low image quality (e.g., high noise level, low resolution) and acquisition errors 

(e.g., reflections of the tissue, low signal quality). Nonetheless, issues resulting from the 

characteristics of the object itself are also of importance, and these are involuntary eye 

movements, the presence of pathological changes, shadows caused by vessels or anterior eye 

disorders, as well as non-uniform tissue reflectivity. 

Moreover, even with the modern devices able to take single tissue depth measurement 

with the time of 
1

70000
 of a second, the acquisition of a volumetric scan lasts approximately 

1 second1. For patients with diseased eyes, this is a long time. Furthermore, involuntary eye 

movements frequently cause a discontinuity in the scan data. This situation is most common 

in patients with fixation problems caused by central vision loss or lower central visual acuity. 

Motion correction technology (MCT) algorithms can counteract this phenomenon, but they 

usually prolong scan acquisition even further. Additionally, colossal data size (around several 

dozens to several hundred MB for a single 3D OCT scan) increases the processing time. 

The above-mentioned disadvantages make a quantitative evaluation of retina features 

during examination difficult and hinder clinical research. 

1.4 Aims, scope, and scientific thesis 

This thesis presents algorithms for automatic analysis of OCT retina images to accurately and 

automatically asses VRI conditions.  

 

 
1 Detailed information about imaging speed and scanning protocols of OCT devices is provided in Section 2.2  

 
(a) vitreomacular traction 

 
(b) epiretinal membrane 
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The main objective of the thesis can be divided into three parts: 

• improvement of retina segmentation for low quality OCT data (cognitive 

investigation) 

• development of preretinal space segmentation methods (cognitive investigation)  

• automatic extraction of biometrical features for VMT pathology assessment (clinical 

application). 

Following detailed tasks will help to achieve the selected goals: 

I. selection of case targeted image denoising methods for improved retina 

segmentation accuracy 

II. improvement of stability of the graph-based image segmentation system for low 

quality OCT images 

III. formulation of methods for segmentation of the preretinal space from a 3D OCT scan 

IV. selection of parameters for quantitative analysis of VRI for a clinical application. 

A database of OCT retinal images has been created to check the effectiveness of the 

algorithms experimentally. This database consists of three-dimensional cross-sections of the 

macula imagined using the Avanti RTvue OCT device [27]. The cohort includes 23 healthy 

volunteers (25 eyes) and 23 patients (25 eyes) with the aforementioned specific disease 

of VMT, giving 46 subjects (50 eyes) in total. A set of 3D OCT scans was acquired with 

a specially prepared scanning protocol. In addition, the experts performed manual 

segmentation of the retinal layers to provide reference data for image segmentation accuracy 

analysis. The detailed information on the gathered data is provided in Section 3.1. 

The presented research was conducted in cooperation with ophthalmology specialists 

from the Department of Ophthalmology at Heliodor Swiecicki University Hospital, Poznan 

University of Medical Sciences, as a part of the CAVRI (Computer Analysis of VitreoRetinal 

Interface) Project. The medical ethics committee of Poznan University of Medical Sciences 

approved the project under resolution number 422/14, dated May 8, 2014. Unless stated 

otherwise, all OCT images presented in this thesis were obtained as part of the CAVRI project. 

Scientific thesis 

Based on the previously mentioned objectives, the following scientific thesis can be 

formed: accurate segmentation and parameterization of pathological changes associated 

with the vitreoretinal interface and visualized with 3D OCT images can be done with: 

• appropriate selection of image quality enhancement methods for graph-based retina 

layers segmentation 

• precise preretinal space segmentation algorithms 

• automatic parameterization techniques of vitreoretinal interface structures. 
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Consequently, the proposed techniques allow developing tools for ophthalmologists 

to assess VRI pathology's evolution quantitatively. The results of this work will help 

understand the investigated diseases' processes. 

1.5 Organization of the thesis 

This thesis is divided into three parts and, altogether, six chapters. The first part (Chapters 1 

and 2) presents the fundamentals of retina image processing and gives an overview of the 

investigated vitreoretinal interface pathologies. The second part, Chapters 3 and 4, provides 

a detailed description of the innovative author’s solutions for retina and preretinal space 

segmentation based on volumetric OCT images with present VRI pathology. In the last part, 

Chapters 5 and 6, the present potential applications of derived methods in clinical diagnostics 

with the proposed parameterization approaches and conclude the author’s achievements. 

Part I — introduction and fundamentals 

Chapter 2, “Automated retinal image processing,” provides additional background 

information on retina image processing. It starts with an overview of the retina structure and 

explains processes occurring at the vitreoretinal interface. Next, the development of VRI 

pathologies (with a focus on VMT) and their characteristics are presented. This chapter also 

includes an overview of optical coherence tomography technology, its characteristics, quality 

assessment methods, and image acquisition protocols. Furthermore, typical retina image 

analysis methods are described for retina layers segmentation from OCT images. 

Part II — proposed image analysis algorithms (improvements and new approaches) 

This part, consisting of Chapters 3 and 4, includes the proposed OCT image segmentation 

methods and their evaluation. The formulated scientific thesis is proven with a large number 

of experiments described in this part of the dissertation. 

 

Chapter 3, “Graph-based segmentation of retina,” focuses on improving the stability of the 

image segmentation system and selecting case targeted image denoising methods to achieve 

the first of the stated main objectives: improved retina segmentation accuracy.  

A detailed description of the database used during the experiments is provided in Section 

3.1. The verification of the proposed methods described in subsequent chapters included 

a comparison of automatic segmentation results with the reference data. 

Section 3.2 describes research towards I. of the detailed tasks. It shows the influence 

of image quality on layers segmentation accuracy. First, the influence of OCT image quality 

on the graph-based segmentation algorithm for retina layers is presented. The following 

image denoising methods were examined: averaging filtering [32], anisotropic diffusion [33], 
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wavelet soft thresholding [34], block-matching and 3D filtering (BM3D) [35]. Here, their 

application for separate 2D B-scans as well as 3D OCT data was tested. Finally, the effect 

of noise suppression methods is evaluated based on image segmentation for healthy and 

pathological retinas. 

Section 3.2 also presents studies on overcoming image acquisition problems as the II. 

detailed task of the thesis. Primary concerns are focused on insufficient exposure at the 

peripheral regions of a 3D OCT scan. In this section, the author proposed identifying low signal 

areas and excluding them from the tissue segmentation step. Several approaches for selecting 

an area for exclusion are described. They are based on fixed-length and adaptive estimation 

of the signal strength. Additionally, layers tracking based on three-dimensional information 

of previously obtained layers segmentation was proposed here.  

 

Chapter 4, “Segmentation of preretinal space with neural networks,” describes the proposed 

algorithms for segmentation of the vitreoretinal interface structures to achieve the second 

of the stated main objectives: the development of preretinal space segmentation methods. 

This goal is achieved by completing the III. of the detailed tasks, namely segmentation of the 

preretinal space.  

Section 4.1 begins with describing an application of a fully convolutional neural network 

to obtain pixel-wise semantic segmentation of preretinal space in an OCT image. The author 

describes five selected UNet-based [36] network architectures (baseline UNet, LFUNet, 

Attention UNet, ReLayNet, and DRUNet) and presents the network training setup. 

In Section 4.2, two types of loss functions for network training are presented, namely 

Cross-Entropy Loss and Dice Loss (and their weighted combinations). This section contains 

the description of experiments conducted to determine: the most promising loss function and 

the baseline comparison of the performance of the five network topologies in the designed 

task. Additionally, 4 data augmentation techniques are presented, their implementation 

for the OCT images and their influence on preretinal space segmentation efficiency.  

Section 4.3 presents a problem of incorrect topological order of segmented classes 

common in pixel-wise semantic segmentation tasks. Two solutions are proposed. The first 

incorporates adding a Relative Distance Map to the input image as a second channel. 

The author tested two types of maps (maps utilizing prior segmentations and maps not 

requiring double network training). The second approach proposed by the author aims 

to enlarge the network’s field of view by using a bigger convolution kernel. Furthermore, the 

author proposed and tested a second method to overcome topology incorrectness problems. 

The evaluated solution incorporates a non-typical horizontal or vertical convolutional kernels. 
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Part III — clinical application and concluding remarks 

Chapter 5, “Application of the proposed solutions,” describes research to complete the third 

of the main thesis objectives: automatic extraction of biometrical features for VMT pathology 

assessment. It provides an analysis of parameterization techniques for the vitreoretinal 

interface. The IV. detailed task of this research — a selection of parameters for quantitative 

description of the vitreoretinal interface — is this Chapter's main subject. 

Section 5.1 includes statistics of automatic retina parameterization studies. First, 

the author presented automated extraction of fovea pit features that requires precise 

segmentation methods described in Chapter 4. Additionally, the author described a set 

of new parameters to ascertain the state of the fovea pit and its contour, as well as their 

reproducibility for a long-term VMA/VMT observation.  

Furthermore, the author proposes an automatic investigation of selected biomarkers that 

describe the connection between the vitreous and the retina, namely the preretinal volume 

and adhesion area. The surfaces of ILM and PCV segmented with methods described 

in Chapter 5 are presented in a manner easily understandable to the clinicians, i.e., in the 

form of virtual profile maps. Section 5.2 presents the proposed method for calculating VRI 

connection profiles and examples of its implementation for VMT pathology evaluation. 

The results described in these Sections confirm the possibility of accurately detecting the 

presence of VMT pathology and its current stage, based on the proposed volumetric retinal 

parameters. 

 

Chapter 6, “Conclusions,” summarizes the obtained results. It was concluded that the 

performance of image segmentation algorithms could be improved by selecting a proper 

denoising algorithm that accurately suppresses OCT speckle noise. The performed 

experiments show that tissue continuity characteristics and low quality data parts also impact 

retina segmentation accuracy. 

The last chapter also summarizes the advantages of the developed algorithms for the 

segmentation of preretinal space. The performed experiments confirmed new algorithms' 

ability to introduce valuable information about the vitreoretinal interface. Furthermore, the 

proposed volumetric parameters describing the fovea and preretinal space show a potential 

to support diagnostic procedures and aid in clinical investigations of long-term VRI changes. 

Appendix A1 lists works published by the CAVRI groups in the conducted research. 

Appendix A2, “OCTAnnotate software,” includes additional information about open-source 

software developed during the research. This computer program was developed especially 

for clinicians from Department of Ophthalmology at Heliodor Swiecicki University Hospital, 

Poznan University of Medical Sciences. It implements the solutions for evaluating the 

vitreoretinal interface proposed in this thesis. 
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Chapter 

2 Automated retina image processing 

2.1 Retina and preretinal structure in OCT images 

Research presented in this dissertation focuses on the posterior segment of the human eye 

and mainly the retina structure in the fovea area. This section presents retina morphological 

structures relevant for further image processing and VRI features parameterization. 

2.1.1 Human retina structure 

The retina is a light-sensitive layer of tissue in the innermost part of the eye. Thanks to the 

eye's optics and translucent properties of the vitreous, the photons of light come through the 

cornea, lens, and vitreous, forming a focused two-dimensional image of the visible world. They 

strike the retina cells initiating a cascade of electrical impulses further transmitted by the 

nerves [1]. Retina’s function is analogous to the film or image sensor in a camera. 

Histological analysis of the retina reveals a layered structure of densely packed neural cells 

(ganglion cells, bipolar cells, and light-sensitive photoreceptors) and a layer of pigmented 

epithelial cells [37]. Although there are only these four main tissue layers, thanks to the OCT 

imaging technique, it is possible to visualize ten layers of the structured cell parts (Figure 2.1). 

 
Figure 2.1 Layers and sections of the healthy human retina visualized with the OCT 
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The retina layers distinguishable with the OCT are as follows: 

• Inner Limiting Membrane (ILM), separating the retina from the vitreous 

• Nerve Fiber Layer (NFL), containing axons of ganglion cells 

• Ganglion Cell Layer (GCL), containing nuclei of ganglion cells 

• Inner Plexiform Layer (IPL), enclosing synaptic connections between ganglion and 

bipolar cells 

• Inner Nuclear Layer (INL), consisting of nuclei of bipolar cells, as well as laterally 

arranged amacrine and horizontal cells that provide an inhibitory function to the 

surrounding neurons (horizontal cells are connected to photoreceptors, and amacrine 

cells support bipolar cells) 

• Outer Plexiform Layer (OPL), enclosing synaptic connections between bipolar and 

photoreceptor cells 

• Outer Nuclear Layer (ONL), containing nuclei of photoreceptors 

• External Limiting Membrane (ELM), separating the light-sensitive part of the 

photoreceptors from the rest of the neural tract 

• Inner Segment of Photoreceptors (IS) 

• Outer Segment of Photoreceptors (OS) 

• Retinal Pigment Epithelium (RPE), consisting of densely packed pigmented epithelial 

cells that interconnect with photoreceptors. 

The light-sensitive rods and cones are situated under the inner neural cells through which 

the light has to pass first. The inner layers of neurons are absent only in the central region 

of the retina, called the fovea. Anatomic definition of the fovea describes it as a 1.8 mm 

diameter area with the highest concentration of the photoreceptor cells (190 000 cones / 

1 mm2), ensuring the highest acuity of the central field of vision [38]. The region around the 

fovea with a diameter of 2.8 mm is defined as parafovea. The region around the parafovea 

until the macula's edge (5.8 mm in diameter) is called perifovea. The lack of inner layers in the 

fovea is visible as depression, as shown in Figure 2.1. 

2.1.2 The vitreoretinal interface (VRI) 

The vitreoretinal interface is defined as the connection between the vitreous (filling the 

eye) and the retina (at the back of the eye). The vitreous body is an optically clear semisolid 

gel structure consisting of approximately 98 % water and 2 % structural macromolecules [39]. 

The vitreous body, enclosed with the posterior cortical vitreous (PCV), a cortex composed 
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of a dense collagen matrix, helps keep the retina pressed against the underlying choroid. 

The PCV is estimated to be 100-110 µm thick [40] and has hyperreflective properties when 

illuminated with infrared light. The places of the strongest adhesion between the PCV and the 

retina's surface are at the fovea, the optic nerve head, and major retinal vessels. The strength 

of this connection defines the subsequent evolution of the vitreoretinal interface. 

As the eye ages, the vitreous gel liquefies and collapses. This process coincides with the 

weakening of the vitreoretinal adhesion and progressively leads to posterior vitreous 

detachment (PVD). The PVD development (which starts in young adulthood and advances over 

the decades) was classified into four stages listed in Table 2.1 [41]. A schematic illustration 

of each stage is presented in Figure 2.2. 

Table 2.1 Classification of PVD stages 

Stage Definition Vitreous attachment characteristics 

0 absence of PVD vitreous fully attached to the retina 

1 focal perifoveal PVD vitreous detached in 1–3 perifoveal quadrants 

2 perifoveal PVD 
vitreous attached to the fovea, the optic nerve head, 

and the mid-peripheral retina, otherwise detached 

3 macular PVD 
vitreous attached to optic nerve head and mid-

peripheral retina 

4 complete PVD vitreous fully detached from the retina 

 

 
     (a) Stage 0 

 
      (b) Stage 1 

 
      (c) Stage 2 

 
      (d) Stage 3 

 
      (e) Stage 4 

Figure 2.2 Illustration of PVD stages (areas with light blue color depict the vitreous;  
dark orange represents the retina and optic nerve head,  

light orange illustrates the outer eye tissues) [41] 

The detachment usually starts at the place of the weakest adhesion in one of the four 

peripheral quadrants (nasal, superior, temporal, or inferior). Then progressively follows into 

the other quadrants until the attachment involves only the fovea, ONH, and mid-peripheral 
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retina. In the next step, the PCV elevates from the macula. Complete PVD can be diagnosed 

when the vitreous has no connection with the posterior or mid-peripheral part of the retina. 

An incomplete PVD with normal foveal morphologic features and partial attachment 

of vitreous to the macula is called vitreomacular adhesion (VMA). 

Posterior vitreous detachment is in itself natural, harmless, and asymptomatic. Proper 

PVD development has no visible impact on the retina tissue or visual acuity. Therefore, most 

patients do not notice its occurrence. However, complete detachment is common in around 

10 % of individuals at the age of 50, 40 % of subjects between 60 and 70 years old, and almost 

all subjects at the age of 80 [42]. Furthermore, the prevalence of PVD is significantly more 

common in women than in men of comparable age [43]. Additionally, it has been found that 

PVD develops at an earlier age in myopic eyes than in emmetropic or hyperopic eyes [44]. 

2.1.3 Vitreomacular traction (VMT) 

A situation may occur during PVD when the vitreous collapses, but the collagen fibers 

at the edge of the PCV hold the vitreous firmly to the retina. In such a case, without the 

weakening of the VRI, the process of PVD can become pathological [39]. 

The course of anomalous PVD development depends on the adhesion pattern, vitreous gel 

liquefaction regions, and possible lamellar splits in the PCV (called „vitreoschisis”). Although 

the biochemical mechanisms behind this process are not yet fully understood, the scientists 

derived a group of pathologies with their origin in anomalous changes in the VRI [45]. The 

most common are the epiretinal membrane, vitreomacular traction, macular hole, 

vitreopapillary traction, and peripheral retinal tears. The possible paths of VRI pathologies 

development are illustrated in Figure 2.3. 

 
Figure 2.3 Vitreoretinal pathologies associated with anomalous PVD  
(orange marked groups are the focus of this thesis) (based on [46]) 
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The author of this thesis has focused on developing automatic segmentation algorithms 

for one of the most common disorders of the VRI, namely vitreomacular traction. Detailed 

characteristics and classification of those pathologies are provided in the following sections. 

The vitreomacular traction syndrome is caused by focal adhesion of the PCV to the ILM 

at the fovea with peripheral PVD separation and intact (full-thickness) PCV. It is characterized 

by an elevation of the retinal surface by traction forces and a distortion of the intraretinal 

structure. Figure 2.4 illustrates an example of an optical coherence tomography B-scan 

of VMT. 

 

Figure 2.4 Example of an OCT B-scan through the macula from a patient with VMT 

The VMT syndrome may occur as an isolated condition or be associated with a wide range 

of macular disorders, including macular pucker, macular hole, macular detachment, cystoid 

macular edema, diabetic macular edema, and age-related macular degeneration [47]. 

The vitreomacular traction causes gradual, progressive vision loss. It can manifest with 

metamorphopsia (straight lines appear wavy), visual acuity deterioration, impairment 

of central vision, and blurred vision. 

The epidemiology statistics for VMT show a relatively low prevalence of 0.6 % (14 / 4490 

eyes) when analyzed on a group of subjects of age over 45 [48]. This value increases 

significantly with age, from 1 % in a group of 63-74 years old to 5.6 % in patients over 85 years 

old [29]. However, another 4-year prospective study shows VMT development in 36 % (69 / 

185 eyes) of cases with primary persistent VMA [49]. The VMT is equally frequent in men and 

women, and its bilateral evolution is evident in about 17 % of subjects. Various studies show 

the possibility of spontaneous VMT resolution in up to 23 % of subjects [47]. 

If VMT is left untreated, the probability of developing severe retina damage (frequently 

a formation of a macular hole) increases with time. Thus a surgical intervention is required. 

The current treatment of choice for the VMT is pars plana vitrectomy. A positive outcome 

for this procedure is observable in up to 75 % of cases [50]. Although this surgery is usually 
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effective in improving visual function and relieving symptoms, it is costly and risky. 

Furthermore, subsequent development of the epiretinal membrane after this surgery has 

been reported [51]. 

Classification of VRI pathologies 

There is currently no consensus on the classification protocols for VRI disorders. However, 

in 2013 the first proposition for the classification and staging of VRI diseases was made 

by Duker et al. [30]. It included: VMA, VMT, macular hole, lamellar hole, and macular schisis. 

They were defined based on the analysis of anatomic criteria present in at least 1 OCT B-scan. 

Table 2.2 includes definitions and classification parameters of these conditions. 

Table 2.2 Classification of VRI pathologies by Duker et al. [30] 

Class VMA VMT FTMH 

Definition 

• perifoveal vitreous 

cortex detachment 

from the retinal 

Surface 

• attachment of the 

vitreous cortex within 

a 3-mm radius of the 

fovea 

• no detectable change 

in foveal contour 

or underlying retinal 

tissue 

• perifoveal vitreous cortex 

detachment from the retinal 

surface 

• attachment of the vitreous 

cortex within a 3-mm radius 

of the fovea 

• distortion of the foveal 

surface associated with 

attachment 

• intraretinal structural 

changes, and/or elevation 

of the fovea above the RPE 

• no full-thickness interruption 

of all retinal layers 

• full-thickness foveal lesion 

interrupting all macular 

layers from the ILM to the 

RPE 

Subclassification 

by size 
• focal (≤ 1500 µm) 

• broad (> 1500 µm) 

• small (≤ 250 µm) 

• medium 

((250 𝜇𝑚, 400 𝜇𝑚⟩) 

• large (> 400 µm) 

by other 

conditions 

• isolated 

• concurrent 

• VMT present 

• VMT absent 

by cause 
• primary 

• secondary 

 

Furthermore, VMT may be hard to distinguish from focal VMA in case of only subtle 

distortion of the fovea contour [46]. Such a slight elevation of the fovea margins may 

be difficult to detect, especially during a simplified OCT examination. Therefore, 

in contradiction to the presented diameter-based classification, ophthalmologists also 

consider a shape-based VMT analysis protocol [52]. The classification based on adhesion 

morphology can be divided into two types, illustrated in Figure 2.5: 
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• V-shaped pattern — persistent vitreous adhesion to the fovea with perifoveal 

detachment 

• J-shaped pattern — incomplete PVD with persistent nasal attachment and temporal 

detachment.  

 
(a) V-shaped VMT 

 
(b) J-shaped VMT 

Figure 2.5 The pattern of vitreomacular adhesion in the VMT syndrome captured with OCT [52] 

The latest research regarding VMT analysis proposes the parameterization of VRI 

characteristics for focal VMT based on several morphological features composing an acronym 

“WISPERR” [53]. Table 2.3 lists the features that have been considered significant for the 

classification of VMT severity. Nevertheless, it should be noted that such analysis is made 

manually and based solely on a central cross-section through the retina. 

Table 2.3 Classification of morphological features for focal VMT (WISPERR) [53] 

Feature Values 

width of attachment measurement of the longest vitreomacular adhesion through the fovea [µm] 

vitreoretinal interface 

(0) none 

(1) thickened ILM without ERM 

(2) ERM 

(3) ERM within the central 1–mm or contiguous with VMT 

foveal shape 

(0) normal 

(1) abnormal profile (e.g., elevation, asymmetry) 

(2) eversion 

RPE abnormalities  

in central 1–mm 

(0) not present 

(1) present 

central retinal thickness measurement [µm] 

inner retina changes within  

the central 3–mm 

(0) none 

(1) cysts or cleavage 

outer retina changes within  

the central 3–mm 

(0) none 

(1) focal abnormalities without subretinal fluid 

(2) subretinal fluid with OS–RPE separation 

(3) defect in OS (size [µm]) 

(4) FTMH, the minimum horizontal diameter of the MH [µm] 
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The standard retina evaluation involves the retina thickness measurement within 

individual sectors of an ETDRS grid [54]. The ETDRS grid (illustrated in Figure 2.6) is comprised 

of 3 concentric circles centered at the fovea that divides the macula into 3 zones: the central 

fovea (CF) (less than 1 mm in diameter), the inner macula (IM) (1 – 3 mm), and the outer 

macula (OM) (3 – 6 mm). Each ring is divided into quadrants: temporal, inferior, nasal, and 

superior. The position of temporal and nasal parts depends on the scanned eye. It is used with 

OCT scans for spatial reference in clinical practice and literature, hence its utilization in this 

thesis. 

 

Figure 2.6 ETDRS grid [55] 

2.2 OCT imaging technique 

2.2.1 Hardware aspects of OCT technology 

The optical coherence tomography technique utilizes low-coherence light in the near-

infrared wavelengths (0.75 – 1.4 µm) to obtain high-resolution measurements of light echoes 

reflected from the semi-transparent materials [11]. 

Early OCT devices performed interference analysis of the light reflected from the reference 

mirror and the scanned object. The axial movement of the reference mirror results in different 

flight time delays for the reference light beam. Similarly, the light reflected from the examined 

object has a time delay corresponding to its depth. The image intensity values are determined 

by the envelope of the interferogram [8]. This method is called a time-domain OCT (TD-OCT). 

The speed of depth scans, called A-scans, is limited by the speed of the reference mirror 

(up to thousands of A-scans per second), resulting in low resolution of the gathered data. 

Thus, making a three-dimensional evaluation of objects prone to even subtle movements not 

feasible [56]. 

However, measuring the interference spectrum allows for simultaneous detection of light 

echoes back-scattered from all sample depths. This approach utilizing the Fourier transform 

of the interference signal is called Fourier-domain OCT (FD-OCT). Here, the light spectrum 
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S(ω) has a broad spectral bandwidth (hundreds of nanometers). The frequency of oscillatory 

signal modulating the light source spectrum encodes the information of the location 

of reflective points along the sampling beam. The intensity output of the interferometer may 

be expressed in the Fourier domain as [57]: 

𝑆𝑡𝑜𝑡𝑎𝑙(𝜔) = 𝑆(𝜔) [𝑎𝑟 +∑𝑎𝑛
𝑛

+ 2 ∑ √𝑎𝑛𝑎𝑚 cos(𝜏𝑛𝑚𝜔)

𝑚≠𝑛

+ 2∑√𝑎𝑟𝑎𝑛 cos(𝜏𝑛𝜔)

𝑛

] (2.1) 

where ar describes light attenuation in the reference arm, coefficients an characterize the 

attenuation of light back-reflected from an n-th layer of the measured sample, and values τn 

are the delays of waves returning from layers within the examined object. An inverse Fourier 

transformation (IFT) provides a reconstruction of the axial structure of the sample: 

𝐼(𝜏) = IFT{𝑆(𝜔)}, 

𝐼(𝜏) = (𝑎𝑟 +∑𝑎𝑛
𝑛

)Γ(𝜏) + ∑ √𝑎𝑛𝑎𝑚(Γ(𝜏)⨂𝛿(𝜏 ± 𝜏𝑛𝑚)

𝑚≠𝑛

+∑√𝑎𝑟𝑎𝑛(Γ(𝜏)⨂𝛿(𝜏 ± 𝜏𝑛))

𝑛

. 

(2.2) 

where Γ(τ) represents the auto-correlation (coherence) function between the light reflected 

from the reference mirror and the measured object, and δ(τ) stands for the impulse response. 

Although Fercher et al. first introduced this concept in 1995 [58], it was only in 2003 that 

three independent research groups demonstrated a powerful sensitivity and speed advantage 

of FD-OCT over TD-OCT [59–61]. FD-OCT imaging enables data acquisition up to ∼100 faster 

compared to TD-OCT systems. Furthermore, since imaging sensitivity is linearly dependent 

on acquisition time, increasing the speed also improves the sensitivity of the device [62]. The 

increased interest in OCT research led to the development of two types of FD-OCT analysis: 

• Spectral-domain OCT (SD-OCT) – It employs a broad-bandwidth light source, 

a spectrometer, and a high-speed line scan camera (CMOS or CCD linear sensor) 

to calculate the interference spectrum [63–66]. A diffraction grating is used 

to decompose the obtained interferogram spectrally. Then, the depth of each scatter 

signal is determined with the Fourier transform of the spectral correlogram intensities. 

• Swept-source OCT (SS-OCT), or time encoded frequency domain OCT – It uses 

a modulated narrow-bandwidth light source and a photosensor, which measures the 

correlogram for each center wavelength as a function of time [67], [68]. The acquired 

interferogram is subjected to a Fourier transform to obtain the final depth scan. 

Other approaches use adaptive optics [69] and better light sources [70] to achieve 

ultrahigh resolution of the OCT system. 

The research presented in this dissertation utilizes processing of signals (scans in the form 

of images) gathered using SD-OCT technique. A general scheme of the SD-OCT approach, 

as introduced by Kałużny et al. [9], is illustrated in Figure 2.7.  
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Figure 2.7 Diagram of the SD-OCT method 

The detection procedure is as follows: a broad-bandwidth light source is split into two 

beams, one of which is directed onto the sample tissue, and the second is reflected from 

a fixed-position reference mirror; both back-reflected beams have a time delay related to the 

length of the light’s path (in the case of the sample beam it is determined by the depth of the 

measured internal structures); the spectral modulation of the two beams interference 

is measured with a spectrometer; Fourier transformation of the interference signal results 

in an axial scan (called A-scan) measurement. Multiple parallel A-scans yield a cross-section 

of the examined object (called a B-scan). 

The safety requirements (regarding the amount of light that the retina can be illuminated 

with) limit the acceptable scanning time to 1–3 seconds per volume. A higher imaging speed 

allows for increasing the number of A-scans acquired within the fixed time. Increasing the 

number of parallel tomograms obtained in a sequence makes it possible to yield a higher 

resolution of the three-dimensional data. Such a boost in OCT image resolution enhances the 

comprehension of the internal structures of the measured object. Ultrahigh imaging speed 

is also beneficial for reducing motion artifacts and the patient’s comfort.  

The transverse (fast-scanning) resolution of an OCT B-scan also depends on the central 

wavelength and the quality of the galvanic scanning mirrors and is typically 10–40 µm [4]. The 

longitudinal resolution depends on the central wavelength and width of the radiation source 

spectrum and is currently 3–8 µm in commercially available scanners. The non-fast scanning 

lateral resolution results, on the other hand, from the scanning protocol (limited only by the 

acquisition time). In modern OCT devices, with an acquisition speed of 70 000 A-scans per 

second [27], performing a 3D scan (e.g., 141 B-scans with a resolution of 640×385 points each) 

takes around 0.8 seconds. Fast measurement assures no artifacts caused by movements of the 
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eyeball. The newest devices also employ motion correction technology (MCT) to minimize this 

problem [71]. 

Applications of OCT technology 

The near-infrared light employed by the OCT technique proves to be optimal for examining 

biological objects [72]. Thanks to OCT, it is possible to acquire images that accurately depict 

the actual structure and functions of the tissue. The invention of the Fourier domain OCT has 

further influenced medicine. 

Although OCT technology was initially developed for transparent tissues [73], its fast and 

non-invasive characteristics promote it as a promising imaging technique for transparent and 

non-transparent, soft and hard objects. Additionally, the absorption and scattering properties 

of the eye tissues make its use in ophthalmology especially appealing. For instance, 

Wojtkowski et al. were the first to demonstrate its high enough sensitivity in retinal imaging 

[65]. Visualizing the internal retinal features in detail allows for the early identification 

of disease characteristic biomarkers and evaluating their evolution in response to therapy. 

Lately, more and more FD-OCT devices are being developed by various commercial 

organizations for use in ophthalmology and other clinical fields. For example, OCT technology 

enables in vivo examination of the skin [74] (including volumetric fingerprint analysis [75]), 

respiratory tract [76], gastrointestinal tract [77], nervous systems [78], and many others. 

Optical coherence tomography is also of interest in industrial applications, such 

as nondestructive testing, artwork examination [79], material thickness measurements [80], 

surface roughness characterization [81], and pharmacology [82]. Additionally, feedback-based 

OCT systems apply to the control of manufacturing processes, and fiber-based architectures 

allow for easier access to hard-to-reach spaces [83]. 

Interpretation of OCT images 

The imagined tissue's reflectivity, absorption, and scattering properties influence the OCT 

signal. A tissue with a high scattering coefficient and a property of scattering the light 

in a perfectly backward direction results in strong reflection. A similar situation occurs at the 

boundary between materials of different refractive ratios [8]. Hence, making a map of the 

sample’s reflectivity in the form of an OCT image.  

The signal strength is represented as the intensity value in the OCT image. High intensity 

(white color) corresponds to relatively high reflectivity, mainly caused by collagen fiber 

bundles, cell walls, and nuclei. Low intensity (black color) corresponds to relatively low 

reflectivity, like air or clear fluids. The gray-scaled values illustrate the reflectivity of various 

tissues. Furthermore, intrinsic differences in optical tissue properties determine OCT image 

contrast. Also, the image intensity decreases exponentially with depth due to light 

attenuation in the sample. More so by the blood vessels than by other tissues [2].  
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Although the exact correlation between the histology of the tissue and its OCT image 

is still under investigation, the current understanding of OCT properties allows interpreting 

imagined tissues, as shown in Figure 2.1. High reflectivity layers include nerve fiber layer, 

plexiform layers, a junction between inner and outer photoreceptor segments, and retinal 

pigment epithelium. Low reflectivity layers represent nuclear layers and photoreceptor 

segments. 

OCT characteristics impeding image processing 

As was mentioned in Section 1.4, data acquisition is only the first step in the whole 

processing pipeline leading to the medical diagnosis. Nevertheless, the quality of the OCT scan 

is a crucial factor to consider since the diagnostic measurements are performed directly from 

the acquired image. It influences both manual analysis and computer-aided segmentation 

systems. For example, retina layers segmentation algorithms fail if the image is blurred 

or corrupted by noise. However, these are not the only two causes of an erroneous automatic 

retina investigation. It might be argued that such reasons can be divided into technology-

based and biology-based, as illustrated in Figure 2.8. 

 

Figure 2.8 Classification of phenomena impeding OCT image segmentation 

The main reasons for the low performance of retina image analysis algorithms resulting 

from the applied technology are: 

• speckle noise 

Due to the coherent imaging technique, the OCT images have characteristic granular 

patterns called speckles. These patterns, having an irregular form, may obscure the 

subtle features of the examined tissue. Most of the literature considers speckle 

as an unwanted noise that degrades the image quality, affecting subsequent processing. 
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However, the speckle results from multiple scattering of light within the examined 

object [84]; hence, it carries additional informative value. 

Schmitt [85] states that the noise that corrupts OCT images is non-Gaussian, 

multiplicative, and neighborhood correlated. Thus it cannot be easily suppressed 

by standard software denoising methods. Nevertheless, plenty of methods have been 

developed to reduce its influence. Since OCT noise characteristics and their suppression 

methods are extensive, they will be described further in Section 2.2.2. 

• resolution 

The resolution of OCT images is considered low compared to other retina imaging 

modalities (especially color fundus photography). For example, a single OCT cross-

section through the macula center, acquired with the Avanti RTvue device in a line scan 

mode, has a resolution of 1020×960 pixels. Such an image corresponds to 2×12 mm 

of the tissue. Bearing in mind retina physiology, this means that pixels in the 

photoreceptor area of a single A-scan represent about 6.25 cone cells. Although such 

resolution is not challenging for the retina layers segmentation algorithms, a single 

cross-section provides very limited information and is usually utilized for initial 

screening or documentation. The acquisition modalities having the primary role in the 

treatment planning consist of multiple cross-sections, which in turn enforces lower 

transverse resolution (ranging from 55 to 134 pixels per millimeter), and even lower 

longitudinal resolution. The lower the resolution, the retina layers boundaries become 

blurry and imprecise, thus harder to detect accurately. 

• optical issues 

This group includes reflections, obstructions, media opacities, underexposure, defocus, 

depolarization, and improper centering [86]. Although image analysis algorithms can 

overcome some of the acquisition-based difficulties during preprocessing (as shown 

in Section 4.1), such errors hider these efforts. Fortunately, some of these sub-optimal 

imaging conditions can be detected prior to the image segmentation step, and 

if necessary, the device software will advise additional acquisition steps. 

• device-dependence 

As Ehnes et al. [87] explained, some segmentation algorithms are device-dependent and 

limited to analyzing inner and outer retinal boundaries. Furthermore, the number 

of segmented layers varies between methods and is specific to individual OCT devices 

(see Section 2.3). 

The second category of the phenomena impeding automatic OCT image analysis methods 

comprises issues pertaining to the biology of the examined object. The following aspects 

should be considered when evaluating the image of the retina: 
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• uneven tissue reflectivity 

In the OCT image, tissues have uneven reflectivity and grainy texture related to the 

speckle component. Furthermore, the intensity of a homogeneous area decreases with 

depth deterministically. This intrinsic characteristic of OCT imaging contradicts the 

general assumption of segmentation algorithms that the intensity variation 

of homogeneous regions is only due to the noise [2], [88].  

The adjacent retinal layers have low image contrast due to only slight differences in the 

examined tissue at a small depth scale of imaging [89]. Such a problem leads 

to difficulties in distinguishing anatomical structures of the retina (for example, the 

border between GCL and IPL layers).  

• shadows caused by blood 

Hypo-reflectivity of the hemoglobin, while allowing for the vessels' detection, is also 

an issue for the image analysis. Shadows caused by the vessels obscure the tissue 

underneath, and the structural information is partly lost. Darker areas within the retina 

layers interfere with edge detection and other methods. However, some works 

(e.g., [90]) address automatic vessel detection for more accurate segmentation results. 

• motion artifacts 

Unexpected movement of the patient’s eye or blinking is also relevant. Movement 

during the examination causes data loss and improper image segmentation. Although 

the latest OCT devices include additional features like scanning laser ophthalmoscopy 

or eye-tracking [91], such solutions are not yet widely available.  

• presence of diseases and pathology 

A good quality OCT scan is harder to achieve on diseased eyes. Thus most of the 

available methods and algorithms for automated retinal segmentation are insufficient 

[22], [92]. Moreover, in severe pathologies, like age-related macular degeneration 

(AMD), vitreomacular traction (VMT), or pigment epithelial detachment (PED), 

automated algorithms fail in most cases due to the heavily abnormal data. 

Automated OCT image segmentation systems require proper pre-processing steps 

to overcome said obstructions. The experiments presented in the following chapters will 

demonstrate the influence of some of the described problems. 

2.2.2 Noise in OCT images 

As was stated in Mayer et al. [93], automated segmentation fails on more than half of the 

low quality images. Noise is one of the primary reasons for degrading the quality of an OCT 

image. 
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Origins of noise in OCT 

The research on the OCT images noise [94] shows that it is not an entirely random noise 

as it contains some specific information. It is influenced by the subject’s motion and optical 

properties of the system, such as the size and temporal coherence of the light source, the 

beam’s phase deviation, and the detector’s aperture [85]. It is possible to distinguish the 

following origins of OCT noise: 

1. shot noise – related to the discrete nature of the photocurrent generated by the 

photodetector [57]; additive in nature; can be adequately described by the Additive 

White Gaussian Noise process [95]; is substantially lower in SD-OCT due to the parallel 

registration of the spectral signal [9]. 

2. relative intensity noise (RIN) – light intensity fluctuations generated by the radiation 

source used in the OCT system; increases along with the optical power; can be reduced 

by the balanced detection and cascaded superluminescent diodes [57], [96]. 

3. read noise – generated in the receiving circuit of the OCT system; its influence increases 

along with the scanning depth when the level of the useful signal decreases; can 

be reduced using higher-power radiation sources, low-noise radiation detectors, and 

low-noise amplifiers [97]. 

4. coherent noise – generated by reflections within the measuring instrument [57]; 

extending the exposure time increases the influence of coherent noise over the shot 

noise; by subtracting the signal registered without the object present in the sampling 

arm, it is possible to remove the coherent noise not correlated with the object; 

coherence noise connected to the measured sample might be reduced among others 

by adjusting the optical path difference between the reference mirror and the surface 

of the examined object [65]. 

5. speckle noise – an inherent characteristic of images acquired with any imaging 

technique based on the detection of coherent waves [98]; the speckle noise is a result 

of interference of multiply-scattered radiation; carries both the structural component 

of the imaged object as well as the noise component; can be suppressed by multiple 

acquisitions and averaging. 

A specific feature of OCT imaging is the very high dynamics of the recorded signals. These 

dynamics are related to the attenuation of the signal, along with the depth of imaging. Image 

parts corresponding to the strong signal are degraded mainly through speckles. While 

for parts of the image where the signal level is weak, the fundamental cause of image 

degradation is the noise generated in the receiving circuit of the OCT system. 
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Reducing these OCT noise origins may be attempted with various hardware and software 

techniques (including unique detectors, additional measurements, and acquisitions). 

Improvement of methods for suppressing noise types 1-4 requires access to the hardware and 

raw data recorded by the device. Such access is not feasible in clinical studies without the 

manufacturer's cooperation. Thus, noise types 1-4 will not be subjected to the discussion 

in this thesis. The variety of software approaches for OCT noise reduction is focused on the 

fifth noise source, as discussed in the following sections. 

Characteristics of speckle 

Speckle is a fundamental property of signals acquired by narrow-band detection systems. 

Multiple back-scattering of the radiation inside and outside of the sampled object and random 

delays of the forward-propagating and returning beam influence the spatial coherence of the 

returning wave. The scattered beam forms local places of constructive and destructive 

interference, thus causing the appearance of speckles [85]. The speckle noise reduces image 

contrast and hinders the detection of boundaries of the examined structures, as shown 

in Figure 2.9. 

 
(a) B-scan with expert’s manual segmentation 

 
(b) B-scan with automatic segmentation of retinal 

layers (places with erroneous segmentation are 
indicated by arrows)  

Figure 2.9 Example of OCT retina cross-section (B-scan) with segmentation errors [99] 

As Wojtkowski [62] discussed, the grainy structure of the image changes with the 

longitudinal and lateral resolution of the scan. The lower the longitudinal resolution, the 

vertical size of the speckle decreases. The broader the diameter of the beam illuminating the 

cornea (higher lateral fast-scanning resolution), the smaller the width of the speckle. 

By achieving the smaller speckle size, it is possible to identify the image irregularities 

associated with the tissue instead of the measuring system. 

Additionally, the speckles can be categorized into signal-degrading and signal-carrying 

speckles. The first group corresponds to the auto-correlation signals resulting from multiple 

scattering in the studied medium. The signal-carrying speckles are associated with the cross-

correlation signals (the interference of single scattering radiation with the radiation coming 
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from the reference arm). Thus, not every speckle in the image is characterized as undesirable. 

The parameters of these speckles may depend on the studied object. 

Speckle models 

Speckle noise in OCT images can be approximated as a multiplicative noise with the 

mathematical model as in (2.3) [94]: 

𝐼(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)𝑁𝑚(𝑥, 𝑦) + 𝑁𝑎(𝑥, 𝑦) (2.3) 

where 𝑥 and 𝑦 are the indexes of the 2D image, 𝐼 represents the noise-free OCT image, 𝐼 is 

the noisy observation of 𝐼, 𝑁𝑚 and 𝑁𝑎 are the multiplicative and additive noise, respectively. 

Since the additive noise component is significantly smaller than the multiplicative component, 

the 𝑁𝑎 element in Equation (2.3) can be omitted [100]. 

Nevertheless, the high dynamic range of the recorded data cannot be accurately displayed 

on a monitor. Therefore, the OCT signal is log-compressed to fit the display range. Such 

operation changes the speckle characteristics from multiplicative to the additive form of the 

envelope signal [85], [101].  

The generally adopted statistical behavior of the speckle noise evolved during the last 

years, from decaying exponential distribution [85], through Gaussian distribution [101], 

to Rayleigh distribution [94], [102]. However, recent studies show that a Gamma distribution 

is also suitable for modeling speckles in ultrasound and OCT images [103–105]. As reported 

by Anoop et al. [103], the Gamma distribution of the shape 𝜌 and scale 𝛽 is described as (2.4): 

𝑓(𝑥;  𝜌, 𝛽) =
xρ−1e

−𝑥
𝛽

𝛽𝜌𝛤(𝜌)
for 𝑥 > 0, and 𝜌, 𝛽 > 0 (2.4) 

where 𝑥 denotes the location for each statistically independent observation, and 𝛤(𝜌) is the 

Gamma function defined as (2.5): 

𝛤(𝜌) =  ∫ 𝑥𝜌−1e−𝑥 𝑑𝑥
∞

0

 (2.5) 

Speckle denoising methods 

Reduction of noise in the OCT images is necessary for proper tissue analysis. However, 

it is not possible to automatically assess the level of OCT noise. The techniques for OCT image 

denoising can be categorized into two groups [84], [98]: 1) hardware-based and 2) digital 

image post-processing techniques, as illustrates Figure 2.10.  

The first group is the methods executed during the acquisition time. They require 

recording multiple uncorrelated frames (the so-called multi-frame methods) of a single target 

sampled using different parameters (i.e., at different times, frequencies, directions). Next, the 

acquired data are averaged to form a composite image.  
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Figure 2.10 Classification of OCT image denoising methods 

The following compounding techniques can be found in the literature: spatial 

compounding [106], [107], angular compounding [108], [109], polarization compounding 

[110], and frequency compounding [102]. 

Their advantage is improving the dynamic range of OCT A-scans [111] and reducing the 

occurrence of the auto-correlation components. Noise minimization and tissue structure 

enhancements improve with the number of images used for the averaging [112], [113]. 

However, the compounding techniques require hardware modifications that can 

be expensive and difficult to implement in different OCT imaging systems. Additionally, 

performing multiple subsequent acquisitions extends the acquisition time considerably. That, 

in turn, can cause artifacts associated with involuntary eye movements, trouble with 

maintaining vision focus and blinking. The standard number of frames used in the multi-frame 

techniques is 32, and when using the MCT, even 80 [27]. While for a single OCT cross-section, 

this setting is acceptable, applying it to a 3D OCT image would increase the acquisition time 

up to 62 seconds (for 100×800 A-scans gathered with the speed of 70 000 A-scans per second) 

[114], [115]. It is unfeasible to achieve a valid scan from such prolonged recording. 

Therefore, it is crucial to investigate digital image processing methods to facilitate OCT 

noise reduction. Such an image denoising algorithm should increase the signal-to-noise ratio 

while preserving the image information (such as contrast, textures, and edges) and minimizing 

artifacts [116]. Furthermore, the filtration parameters should consider speckle size 

characteristics resulting from resolution, a decrease in signal-to-noise ratio along with the 

scanning depth, and the directionality of the structures (in order to avoid blurring thin lines).  
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The literature review describes numerous image processing techniques applied to OCT 

image despeckling. The following description presents some of them, categorized according 

to the image processing classification scheme in Figure 2.10: 

1. Spatial analysis: 

a. Classic image filtering techniques, such as:  

i. averaging filtering [32] – In this method, a square filter with odd numbers of rows 

and columns (e.g., 3×3) is used. However, rectangular filters, such as 3×19, can 

also be found in the application for OCT images [90]. 

ii. median filtering [32], [117] - Its advantage in preprocessing OCT examinations 

is to preserve the edges and tissue features and reduce the influence of the 

speckle noise. 

iii. adaptive Wiener filter [118], [119] – This filter computes local statistics (mean and 

variance) with nearest-neighbor constraints for each pixel. The goal is to obtain 

a linear estimate of a noise-free image to minimize the mean squared error 

between the original and estimated images.  

b. Advanced traditional methods: 

i. rotating kernel transformation [120] - This locally adaptive technique is based on 

the sequential application of directional masks and selecting the maximum output. 

It emphasizes thin edges in the image while suppressing a noisy background. 

ii. I-divergence regularization [121] – This method minimizes the I-divergence 

measure for regularization and generates a synthesized complex amplitude image 

that extrapolates additional detail of the known data. It can despeckle the data 

while retaining the detail of the original image. 

iii. local Bayesian estimation [122] - This method uses the recorded data projection 

into the logarithmic space. Next, the conditional posterior sampling approach 

is used to find a general Bayesian least-squares estimate of the noise-free data. 

c. The partial differential equation (PDE)-based filtering:  

i. regular nonlinear diffusion [123] – It is an efficient speckle noise reduction 

method since it preserves the edges of the imagined tissue. 

ii. interval type-II fuzzy anisotropic diffusion filtering [33] – In addition to the regular 

anisotropic diffusion, it considers the uncertainty in the calculated diffusion 

coefficient. This method optimizes the trade-off between signal-to-noise ratio and 

edge blurring. 

iii. complex diffusion filters [124], [125], indicating better feature preservation 

(for photoreceptor segments and retinal vessels) [126]. 

iv. total generalized variation decomposition (TGVD) [100], [127] – It minimizes 

an energy function that takes into account first- and second-order derivatives 
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of the image, the divergence function, and the penalty parameter. Its advantage 

is the ability to preserve the objects’ edges without generating the staircase effect. 

d. Machine learning 

i. conditional generative adversarial network (cGAN) [128] – This deep learning 

model has good generalization ability. Thanks to the edge loss function added 

to the final objective, the model is sensitive to edge-related details. The overall 

denoising performance surpasses other traditional and deep learning methods. 

ii. convolutional neural network (CNN) [129], [130] – The multi-input fully-

convolutional network (FCN) architecture allows the exploitation of high degrees 

of correlation and complementary information among neighboring OCT images 

through pixel by pixel fusion of multiple FCNs. 

iii. learnable despeckling framework (LDF) [131] – LDF uses the autoencoder NN 

to decide which speckle reduction algorithm is the most effective on a given 

image. The result is based on a figure of merit (FOM) – a single image quality metric 

learned with this method. 

2. Filtering in transform domains 

a. Parametric methods 

i. wavelet thresholding [132] (among others, spatially adaptive filtering [34] and 

dual-tree complex wavelet transformation [133]) – In the wavelet thresholding 

method, the noise is evenly distributed between wavelet coefficients. On the 

other hand, most of the informative content is concentrated among the 

coefficients with high magnitude. By selecting a proper threshold value, 

it is possible to reduce the noise while maintaining the characteristic features 

of the image [134]. 

ii. curvelets transform [135] – This method applies similarly to the wavelet 

transform. Thanks to the robust directional features of curvelets, it is possible 

to efficiently represent edges and other structures along curves in the 3D image. 

iii. contourlet transform [136], [137] – It is another extension of the wavelet 

transform exploiting multi-directional information. It improves the signal-to-noise 

ratio, preserves the edges, and gives an advantage for capturing object contours. 

iv. ripplet transform [138] – It generalizes the curvelet transform with additional 

parameters to improve capturing the singularities along the curves. 

b. Data adaptive methods:  

i. multiscale sparsity-based tomographic denoising (MSBTD) [139] – A method that 

uses sparse representation technique (to approximate an image by a weighted 

average of basic elements from a learned dictionary of base functions). 

Its advantage also came from a non-uniform scanning pattern (fraction of B-scans 
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are captured slowly with higher than nominal SNR). The sparse representation 

dictionary for high-SNR images is obtained using compressive sensing principles 

and applied to denoising the neighboring low-SNR B-scans. 

ii. independent component analysis (ICA) [140] – this statistical technique 

for revealing hidden factors from a generative model of the observed multivariate 

data can be beneficial when fewer B-scan images are available. 

 

The literature review also reveals mixed methods that incorporate several of the above-

described approaches. Examples of these are:  

• bilateral filtering [104] – This approach nonlinearly combines range filter (with values 

decreasing with the decay in dissimilarity) and domain filter (with weights inversely 

proportional to the distance between pixels). It removes noise while preserving edges 

in the image.  

• collaborative shock filtering [141] – The method combines the image blocks' similarity 

measure with shock filtering to smooth the areas of the same intensities and sharpen 

the edges between them.  

• cluster-based speckle reduction framework (CSRF) [142] – This technique performs 

clustering pixels into regions with similar optical properties and applies the despeckling 

filter on each cluster individually. Its advantage is preserving the edges and enabling 

more straightforward image analysis methods. 

• block-matching and 3D/4D filtering (BM3D, BM4D) [35], [143] – This algorithm 

is based on an enhanced sparse representation in a transform domain. The sparsity 

enhancement is achieved by grouping 2D (or 3D) similar image fragments into 3D 

(or 4D) blocks. Then, every group undergoes a transformation and collaborative 

filtering with the Wiener filter. The BM3D algorithm adequately preserves the edges 

between the inner tissue structures but tends to excessively smooth the inner areas. 

However, the BM4D algorithm gives promising results for the application in medical 

images. 

• combination of spatial filters with wavelet transform [144] – This method utilizes 

a multi-frame approach and takes advantage of the information from neighboring 

frames to minimize the effect of blurring and emphasize the details in the image. 

 

Not all presented approaches were derived using OCT images of the human retina. Most 

of them were tested on the images of other subjects (e.g., animals) or nonmedical and 

synthetic images. Furthermore, the number of analyzed images and their dimensions also 

differ. Table 2.4 summarizes the variety of analyzed images. 
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Table 2.4 Types of images used for testing image denoising methods 

Subject Subject type Number of images Image size [px] References 

Synthetic and  
non-medical images 

Lena 1 image 256×256 [121] 

Lena, Office, Planes Cameraman, Rice 5 images n/d [132] 

Cameraman, Barbara, Mona Lisa, 
mechanical tools, squares 

4 images and 1 synthetic n/d [125] 

various black and white geometrical 
shapes 

1 synthetic image n/d [124], [126] 

horizontal and multi-directional 
structures 

2 synthetic images n/d [136] 

a simulated 2D phantom image 1 synthetic image 256×256 [104], [138] 

a simulated synthetic OCT retina 
cross-section 

1 synthetic image n/d [100] 

OCT of animal tissue 

tadpole single B-scan 1000×600 [121] 

rabbit single B-scan n/d [32] 

rat (UHROCT database) one 2D and one 3D scan n/d [122] 

rat prostate nerves 3 B-scans n/d [133] 

pig retina 
455 frames (13 B-scans, each recorded 
at 35 eye positions) 

768×496 [113], [132] 

pig retina see Mayer 
1024×512 [104] 

swine retina 20 B-scans 

bovine retina 64 compounded B-scans  1000×512 [118] 

OCT of human tissues 
(other than the retina) 

human fingertip single 3D scan  512×512×10 [35] 

skin 256 B-scans  1000×580 [144] 

skin single B-scan 1000×512 [33] 

coronary arteries one coronary B-scan n/d [120] 

temporal bone single B-scan 700×1024 [34] 

heart tube 2 B-scans n/d [136] 

skin 1360 B-scans n/d [119] 

OCT of human retina 
(healthy) 

healthy retina 

13 eyes: 1 macular 3D scan each 200×200×1024 [124] 

50 B-scans n/d [112] 

single B-scan  1000×512 [33] 

single B-scans image with artificially 
added various Gaussian noise levels 
(5 %, 15 %, 25 %), single B-scan image 
without artificial noise 

1024×512 [126] 

single 3D scan  256×512×64 [135] 

single B-scan  512×256 [137] 

10 3D scans  40×280×1000 [139] 

30 eyes: 100 B-scans each 500×1030 [100] 

 

 



2 Automated retina image processing  

A. Stankiewicz 33 

Subject Subject type Number of images Image size [px] References 

OCT of human retina 
(pathologic) 

15 various retina pathologies 30 eyes: single B-scan each 500×750 [145] 

3 eyes with choroidal 
neovascularization, 2 with cystoid 
macular edema, 9 with diabetic 
retinopathy, and 5 with age-related 
macular degeneration 

Total of 19 macular 3D scans 200×200×1024 [124] 

AMD 7 3D scans 40×280×1000 [139] 

images from Optos 3 single B-scans n/d [136] 

Other modalities 
ultrasound of the prostate and spleen 50 images n/d [138] 

magnetic resonance of the brain single 3D scan 256×256×128 [143] 

n/d – not disclosed 

2.2.3 Analysis of OCT image quality 

Poor quality OCT scans increase the likelihood of improper segmentation of retinal layers, 

thus an erroneous measurement of their thickness, leading to incorrect assessment of retina 

structure and misdiagnosis. For example, in TD-OCT analysis, poor quality scans with low signal 

strength lead to underestimating RNFL thickness [146], [147]. Figure 2.11 shows B-scans 

obtained with the use of the Copernicus HR device. The acquisition consists of 100 B-scans – 

each with a resolution of 800×1010 pixels. The manufacturer software determined the scan 

quality as average (QI equal to 4.52 on a scale of 0 to 10). Nevertheless, it is clear that even 

in a good quality image, the segmentation can be hindered by the lesions present in the retina 

(Figure 2.11c) or underexposed peripheral regions (Figure 2.11d). 

    

(a) fundus reconstruction  
(en face view) 

(b) B-scan no. 53 with 
expert’s annotations, 

QI = 5.29 

(c) B-scan no. 53 with 
automatic annotations 

(d) B-scan no. 8 with 
automatic annotations, 

QI = 2.01 
Figure 2.11 Sample 3D OCT examination – 100×800×1010 data points;  
places with erroneous segmentation are indicated with arrows [148] 

Good quality OCT scans are necessary for proper interpretation of the data. Modern SD-

OCT devices provide an automated assessment of the quality of the acquired scan in real-time. 

This feedback to the operator improves the likelihood of obtaining a good quality scan. 

Nevertheless, one should remember that in some cases (e.g., cataracts), even the 

reexamination will not improve the image quality.  
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Measures of image quality analysis 

Each OCT device manufacturer develops its own scan quality measure. However, such 

metrics calculated by the device software usually have different scales, and their formula 

is not often provided to the public. For the same reason, the image quality indexes are not 

necessarily comparable across instruments [146].  

Currently, there are several metrics utilized to evaluate OCT scan quality. The OCT data 

quality assessment has two components: signal quality and analysis quality. Generally, the 

quality of the acquired signal influences the quality of post-processing and the performance 

of the image analysis. Thus, it is desirable to control the image quality at acquisition time [149]. 

The manufacturers are working on establishing a parameter that can evaluate image quality 

in a manner similar to an OCT expert to obtain accurate and reliable clinical measurements. 

The first OCT devices calculated the signal-to-noise ratio (SNR) as a sole parameter for the 

objective evaluation of the acquired image quality. The SNR assessment indicates the strength 

of the acquired signal based on the single strongest A-scan within a given image. 

Unfortunately, it discriminates the distribution of this signal strength throughout the image 

[149]. Furthermore, calculation of the SNR value requires the hardware parameters and 

preprocessed signal data that are proprietary and not available to OCT users [62], [97]. 

Fortunately, the quality of the post-processing denoising algorithms can be assessed, 

without accessing raw signal data, with the use of: 

• signal-to-mean square error (S/MSE) ratio [150] – a measure suitable for quantitative 

evaluation, computed based on the original and denoised data and defined as in (2.6): 

𝑆

𝑀𝑆𝐸
= 10 log10 [

∑ 𝐼𝑖
2𝑁

𝑖=1

∑ (𝐼�̂� − 𝐼𝑖)
2𝑁

𝑖=1

] (2.6) 

where 𝑁 is the image size, 𝐼 is the denoised image, and 𝐼 is the original image. 

• correlation parameter X – proposed by Wang et al. [151] to evaluate the performance 

of edge preservation or sharpness:  

𝑋 =
∑ (∆𝐼𝑖 − ∆̅𝐼�̅�) × (∆𝐼𝑖 − ∆𝐼

̅
𝑖)

𝑁
𝑖=1

√∑ (∆𝐼𝑖 − ∆̅𝐼�̅�) × (∆𝐼𝑖 − ∆̅𝐼�̅�)
𝑁
𝑖=1 × ∑ (∆𝐼𝑖

𝑁
𝑖=1 − ∆𝐼 ̅𝑖) × (∆𝐼𝑖 − ∆𝐼

̅
𝑖)

 (2.7) 

where 𝛥𝐼 and 𝛥𝐼 are the high-pass filtered versions of 𝐼 and 𝐼 respectively, obtained via 

a 3×3 standard pixel approximation of the Laplacian operator. The �̅�𝐼 ̅and 𝛥𝐼 ̅are the 

mean values of 𝐼  and 𝐼 , respectively. If the correlation measure 𝜒  is close to unity, 

it indicates an optimal effect of edge preservation. 

• mean structure similarity index (MSSIM) [151] – can be used to compare the 

luminance, contrast, and structure of two images with the formula (2.8): 
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𝑀𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
1

𝑁
∑𝑆𝑆𝐼𝑀(𝑋𝑖, 𝑌𝑖)

𝑁

𝑖=1

 (2.8) 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1) × (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1) × (𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 (2.9) 

where 𝑋 and 𝑌 are the original and the denoised images, respectively, 𝜇𝑖 is the mean 

intensity, 𝜎𝑖  is the standard deviation, and the constant 𝐶𝑖 is used to ensure stability. 

• contrast to noise ratio (CNR) – is defined for specific regions of interest in the image 

[126]. It gives an objective measure of useful contrast (defined as the difference 

of means) between a background noise (reference) and an imagined feature (target). 

The CNR is described by (2.10): 

𝐶𝑁𝑅 = 10 log (
𝜇𝑡 − 𝜇𝑟

√𝜎𝑡
2 + 𝜎𝑟2

) (2.10) 

where 𝜇 and 𝜎 are the pixel mean and standard deviation of an area of the image, while 

𝑟 and 𝑡 denote the reference and target image, respectively. 

• signal strength (SS) – is an image quality parameter introduced in the Stratus OCT 

software [149]. SS parameter combines SNR and the uniformity of the signal within 

a scan [152]. The SS scale ranges from 1 to 10, with 1 representing poor image quality 

and 10 representing excellent quality. The Copernicus HR device utilizes a similar 

parameter (named QI). A good quality scan is required for this device to have at least 

6 points, and a low-quality image is up to 4 points [114]. Therefore, it is advised 

to analyze scans having average quality (between 4 and 6 points) with caution.  

• quality index (QI) – is a measure introduced by Stein et al. [149] that utilizes the image 

histogram and is expressed as (2.11): 

𝑄𝐼 =  
𝑃𝑠 − 𝑃𝑙
𝑃𝑙

𝑁𝑚𝑠
𝑁𝑛𝑚

 100 (2.11) 

where 𝑃𝑙, 𝑃𝑛, and 𝑃𝑠  are the pixel intensity values corresponding to 1 % (lowest 

percentile), 75 % (noise) and 99 % (saturation) of all recorded intensities; if 𝑃𝑚 is defined 

as a mathematical mean of 𝑃𝑠 and 𝑃𝑛, then the 𝑁𝑚𝑠 denotes the number of pixels with 

the intensities from 𝑃𝑚 to 𝑃𝑠, and 𝑁𝑛𝑚 denotes the number of pixels with the intensities 

from 𝑃𝑛 to 𝑃𝑚. The higher the value of QI, the better the OCT image quality. The QI value 

is computed from an entire OCT volume consisting of multiple B-scans. 

• maximum tissue contrast index (mTCI) – a metric proposed by Huang et al. [153]. 

It is based on the intensity histogram decomposition model (2.12): 

𝑚𝑇𝐶𝐼 =  
𝑁3 − 𝑁1
𝑁2 − 𝑁1

 (2.12) 
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where 𝑁1 denotes the voxel intensity value of the highest peak in the histogram, 𝑁2 is 

the separation point (99 % of the accumulative density of the background voxels) 

between the vitreous having low reflectance and the foreground corresponding 

to various retinal tissues having higher reflectance, and 𝑁3 denotes the saturation point 

(99.9 % of all voxels). Higher mTCI values represent a better quality image. 

• segmentability index (SI) – is a quality measure derived by Lee et al. [147] for better 

segmentation of the RNFL borders. The SI parameter ranges from 0 to 1, with larger SI 

values corresponding to a more reliable segmentation. The calculation SI is based 

on a random forest regressor utilizing 12 statistical features (means and standard 

deviations), of which 6 describe OCT voxel intensities, dark-to-bright and bright-to-dark 

edge costs. 4 features describe gradient costs alongside the RNFL borders. The last two 

features correspond to the outer boundary of RPE. 

 The measures based on the image histogram (e.g., the QI, mTCI, and similar quality 

metrics) correspond to the subjective evaluation of an expert [147]. Thus, they may help 

identify OCT scans leading to correct intraretinal layer segmentations. 

2.2.4 Image acquisition protocols 

A single acquisition in SD-OCT (i.e., the analyzing beam directed at one point of the object) 

produces one vertical line of the tomogram, called an A-scan. This line represents reflective 

properties of the sample in depth along the analyzing beam, as illustrated in Figure 2.12a). 

The axial resolution of the scan is inversely proportional to the width of the bandwidth. 

Modern OCT devices allow measuring tissue structure up to 3 mm in depth. 

A 2D tomographic image, called B-scan, requires a single sweep of the scanning beam over 

the object's surface. The width of a singular B-scan examination ranges from 6 to 12 mm. The 

scan depth equals 3 mm since the B-scan comprises a series of A-scans. An example of such 

a 2D linear slice through the macula center is presented in Figure 2.12b. The intensity of the 

grayscale image representing the data encodes the measured values. It is also possible 

to obtain a B-scan image by moving the scanning beam over a circular trajectory. This 

procedure is used to analyze the thickness of retinal layers around the optic nerve head. 

A volumetric scan of the object is composed of a collection of 2D images obtained 

in a parallel fashion, as illustrated in Figure 2.12c. It represents a 3D structure with a surface 

of up to 9 by 12 mm. The scan dimensions depend on the device and selected scanning 

protocol. 

Every manufacturer offers various scanning protocols for both the macular region and 

ONH (e.g., single 2D slice, two perpendicular 2D slices forming a cross, radially formed set 

of 2D slices, multiple parallel 2D slices forming a 3D scan, a single circular cross-section around 

the optic nerve, and their various combinations).  
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(a) A-scan 

 
(b) B-scan 

 
(c) 3D scan 

Figure 2.12 OCT scanning dimensions 

This section includes a description of the protocols most commonly utilized in macular 

research and acquisition patterns used to create the CAVRI database. The protocols are 

described using the Avanti RTvue device, manufactured by Optovue [27].  

2D ”Line” scan 

This type of scan consists of a single horizontal line scan. It is a basic high-speed protocol 

that allows for a preliminary analysis of the object's structure. In the Avanti RTvue device, the 

2D slice is acquired multiple times (120 by default), and the obtained frames are subjected 

to averaging as a speckle elimination technique. The available range of the measurement 

length is 2-12 mm. This parameter is set to 12 mm by default and can be adjusted by the user 

as needed. The depth of the scan is 3 mm. Such a B-scan has 1020×960 pixels in resolution. 

An example of a high-quality image obtained with this protocol illustrates Figure 2.13.  

 

  
(a) scanned area of the eye (b) B-scan image (c) en face view with marked 

scanning trajectory  
(orange line) 

Figure 2.13 "Line" scanning protocol 



2 Automated retina image processing  

38 A. Stankiewicz 

A " Cross Line " is another high-speed protocol that allows for a preliminary eye condition 

analysis is called a ”Cross Line.” It consists of 2 scan lines (as described above) arranged 

orthogonally: one horizontal and one vertical. Each 2D slice is acquired multiple times (60 by 

default), and the obtained frames are averaged (separately for horizontal and vertical lines). 

As can be expected, both single and cross lines provide very limited information about 

tissue volume. However, thanks to short acquisition time and good quality (thanks to the 

averaging of multiple samples), they are frequently utilized for initial screening 

or documentation.  

“3D Retina” scan 

This type of scan, illustrated in Figure 2.14, allows for imaging objects in 3D. This scanning 

protocol consists of a fixed number of parallel lines (for example, 141) distributed at fixed 

intervals. The scanned region spans the width determined by the user and encompassing the 

central macula.  

 

  

(a) scanned area (b) set of B-scan images (c) en face view with marked 
scanning trajectories (orange) 

Figure 2.14 "3D Retina" scanning protocol 

The data dimensions of this scan are non-equal for the fast-scanning and non-fast-

scanning directions. Unfortunately, a dense measurement grid prevents the use of averaging 

methods (through time constraints), making this scan of lesser quality. The default settings 

for this type of scan for various manufacturers are described in Table 2.5. 

Obtaining a 3D OCT image requires compromising the scan resolution and the acquisition 

time. However, some commercially available scanners can currently acquire close-to isotropic 

3D volumes (meaning that the size of each voxel is the same in all three dimensions). Based 

on the data in Table 2.5, we see that typically the OCT devices aim to achieve as high lateral 

resolution as possible or isometricity in the x-y plane. Nevertheless, the axial resolution (in the 

z plane) is usually much higher. 

Since every device manufacturer defines its own scanning protocol, comparing scans 

acquired with two different devices requires rescaling the data to achieve identical voxel sizes. 

The goal of achieving isotropic imaging gives an advantage for quantifying the morphological 

properties of the retina. In effect, fewer assumptions need to be made about the structures 

between the measured points. 
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Table 2.5 Characteristics of 3D scan acquisition with various OCT devices1 

Device 
Volume 

dimensions 

[mm] 

Number of 

data points 
Voxel size 

[um] 

Acquisition 
speed 

[A-scans/s] 

Acquisition 
time [s] 

Copernicus HR 
Optopol Technology [114] 

8×8×2 100×800×1080 80×10×1.85 27 000 2.96 

REVO NX 

Optopol Technology [154] 
7×7×2.2 128×1024×944 54.7×6.8×2.3 110 000 1.19 

Avanti RTvue XR 
Optovue [27] 

7×7×2 141×385×640 49.6×18.2×3.1 70 000 0.78 

DRI OCT Triton 
Topcon [28] 

7×7×2.5 256×512×992 27.3×13.7×2.6 100 000 1.31 

Cirrus HD-OCT 
Carl Zeiss Meditec [155], [156] 

6×6×2 200×200×1024 30×30×1.95 27 000 1.48 

Spectralis HRA+OCT,  
Heidelberg Engineering [157] 

6×6×1.8 193×512×512 31×11.7×3.5 40 000 2.47 

ENVISU C class 2300,  
Bioptigen [158] 

10×5×3.4 100×500×1030 100×10×3.3 32 000 1.56 

2.3 Current methods of retina layers segmentation from OCT 

images 

2.3.1 Overview of OCT image segmentation methods 

The availability of OCT imaging opens up many paths to a better understanding of retinal 

structures. However, to objectively (numerically) assess changes in these structures, 

it is necessary to employ image segmentation, particularly retinal layers segmentation. As was 

mentioned in Chapter 1, the retinal layer thickness is an essential indicator of disease status. 

The correct retina layers borders must be first localized and extracted from the image 

to determine tissue thickness. Such automatic detection is a challenging step in any medical 

image analysis system [159], [160]. Hence, various image processing techniques have been 

developed over the last decades [2], [88]. The following pages present their categorization, 

along with the discussion on their strong and weak points. 

According to the literature [4], the first reported methods for automatic segmentation 

of TD-OCT scans were based on 2D image analysis or individual analysis of each image column. 

With this in mind, Kafieh et al. [88] divided OCT layers segmentation techniques into five 

 
1 Data obtained from the literature and based on files gathered from the manufacturers at the 48th congress 

of Polish ophthalmologists (2014). 
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groups with the increasing complexity of data investigation: 1) applicable to A-scans, 

2) intensity-based, 3) active contours, 4) pattern recognition and artificial intelligence, and 

5) graph-based analysis. It is worth noticing that most of the methods developed before 2010 

relied heavily on model-based approaches, in contrast to recent data-driven methods.  

Based on the recent literature review [161], [162], the methods for retina layers 

segmentation from OCT can be grouped into categories as illustrated in Figure 2.15 and 

roughly characterized as follows:  

 

Figure 2.15 Division of OCT layer segmentation techniques 

I. Intensity-based methods, among others: thresholding, peak finding, gradient analysis, 

and edge detection. These methods are based on either 1) intensity values of individual 

pixels to find the most prominent layers or on 2) the gradients and variations between 

them to extract the edge information. They are usually used to determine the most 

significant retina layers. 

These were the early approaches to retina layers segmentation, primarily developed 

for TD-OCT images and a 1D application. A significant drawback of algorithms applicable  

to A-scans is that they lack the contribution from surrounding 3D data. They were 

subsequently extended to dual or multiple thresholding and the 2D analysis of gradients 

or edges [163]. Table 2.6 summarizes the types of OCT data used to evaluate these 

methods. Further works include SD-OCT data and 3D approaches [164], [165]. 

Although such methods can be easily implemented, they are inaccurate, do not perform 

well on thin layers, are frequently case-dependent, and are prone to errors caused 

by noise and pathologies. More advanced methods can later correct these disadvantages. 

However, simple peak finding or edge detection can still be a primary step in detecting 

potential regions of interest or nodes for graphs. 

 

3D 2D 1D 

OCT layers segmentation techniques 

Intensity-based 

Active 
contours 

Artificial Intelligence 

Graph search 

Mixed 
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Table 2.6 Division of referenced intensity-based retina layers segmentation methods 

Method 
1D 2D 

TD-OCT SD-OCT TD-OCT SD-OCT 

Thresholding [73]   [166], [167] 

Peak-finding 
[15], [89], [163], 

[168–170], 
[171–174] [175]  

Edge-based [163], [176]  [177], [178] [177], [179], [180] 

II. Active contour modeling methods based on an energy-minimizing spline for the energy 

functional consisting of smoothness constraint of the spline, and image feature-based 

constraints computed from the image gradient [84]. This method for retinal layer 

segmentation in a 2D image utilizes the initially detected boundaries from thresholding 

computation and gradient image. This approach aims to segment a B-scan into disjoint 

sub-regions representing retinal layers. 

Such a method is well suited for the segmentation of fluid-filled regions, as Fernández et al. 

[22] proposed in their manually initialized deformable models. The significant drawbacks 

of applying active contour modeling to SD-OCT data are computational demands and low 

precision due to noise and pathologies. However, their performance surpasses intensity-

based B-scan approaches [88], [162]. 

The majority of the solutions proposed in the literature on the subject of applying active 

contour modeling to retina layers segmentation focus on 2D SD-OCT data: [15], [93], [178], 

[181–187]. However, some 3D approaches also can be found [188]. 

III. Graph search techniques [87], [90], [189–191] 

The methods that (for many years) were the most efficient in determining retinal layers 

from OCT images were based on graph search techniques, such as max-flow-min-cut 

or shortest path algorithms. In general, image pixels are treated as nodes of a graph, 

for which an optimal solution must be found based on the previously set constraints. 

These methods can incorporate 2D and 3D image data and use various constraints and 

graph edge weight optimization to improve the segmentation accuracy. A detailed 

description of graph theory and dynamic programming framework (GTDP) utilized 

by researchers for retinal layer segmentation can be found in Section 2.3.2.  

Graph-based approaches have high accuracy in determining retinal layer boundaries. 

Especially so if additional smoothness constraints have been added (i.e., limiting the 

distance between neighboring surface points or maintaining predefined distance between 

parallel layers) or regional information utilized. Additionally, no previous dataset training 

is necessary to apply this solution. However, they have high computational costs, primarily 

if used directly on a 3D set, and might be inefficient if OCT scan quality is too low or retina 

pathology too severe. 
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IV. Artificial intelligence, including pattern recognition, machine learning, and unsupervised 

clustering methods [167], [192]. 

Many reported methods propose using various machine learning and pattern recognition 

techniques, both supervised and unsupervised. Several examples below describe how they 

can be applied to retina layers segmentation. In addition, they may be applied directly 

to the image intensity values, gradient, combination of image features, or other textural 

information. In contrast to previously introduced methods, these approaches mainly 

incorporate 3D data. 

a. Supervised learning 

i. Support Vector Machines (SVM) [193], [194] – Here, a semi-automatic method 

for detecting the boundaries of the retinal layers is proposed. It uses a multi-

resolution hierarchical representation vector machine from SD-OCT images 

for which incorporated features include intensity value, gradient, spatial location, 

mean and variance of the neighbors, and manually drawn regions. The final 

segmentation is obtained after pixel classification. 

ii. Active Appearance Model (AAM) [195] - Kajic et al. proposed a statistical model 

trained on a set of manually segmented images using the shape and texture 

information of the images. The advantage of such supervised learning is the 

tolerance to noisy or missing data.  

iii. Random Forest (RF) [196] – In this study, after image normalization and spatial 

transformation, a set of features is fed into the Random Forest classifier previously 

trained with labeled ground truth data. The final segmentation results given by the 

classifier are the boundary probabilities at every pixel. 

iv. Neural Networks 

This broad group of algorithms to learn characteristic features of a given data was 

relatively recently employed in retina layers segmentation [161]. The principle 

of this approach utilizes a network of interconnected nodes, which process the 

input image data according to a given signal function and weights that are adjusted 

during the learning process. Beneficial for such a method is the ability to segment 

input images with high precision provided that a sufficiently big dataset with 

reference annotations is available for the training. However, improvements 

in performance achieved, especially for pathological cases, gives an advantage 

over state-of-the-art graph-based methods. A more detailed characterization 

of deep learning for retina layers segmentation includes Section 2.3.3. 

The cost of using neural networks for image segmentation is time consumption 

(training network parameters can take from hours to even days) and high 

resources requirements (the bigger the neural net, the more operational memory 

is needed). In addition, fine-tuning the network topography (i.e., number of layers, 
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number of nodes, method of weights calculation) can be painstaking. Another 

disadvantage is the need to perform the entire training step again if any changes 

in the dataset or preprocessing stage are done. 

b. Unsupervised learning 

i. Fuzzy C-means clustering [197] – in Mayer et al. [197], for each peak in the image, 

a feature vector is constructed that was subsequently clustered with fuzzy  

C-means clustering to define boundaries. Median and Gaussian filters were then 

used in post-processing for error reduction. 

ii. Gaussian Mixture Models (GMM) [192] – intelligent tracking kernel extracts 

boundaries by moving and matching its double faces with locally clustered images 

generated by GMM clustering. 

iii. Markov Gibbs Random Field (MGRF) [198] – Sleman et al. demonstrated that 

an MGRF including intensity, shape, and spatial information of retina layers could 

be used to segment the selected area of the retinal fovea, which integrated 

an adaptive patient-specific retinal atlas. 

Machine learning solutions devised for retina layers segmentation are not limited to those 

mentioned above and can be applied to 2D as well as 3D data. Although not always as good 

as graph-based methods, these methods have good accuracy. Especially unsupervised 

clustering results in less accuracy due to noise, pathologies, and devices from where OCT 

is obtained. An additional disadvantage for many algorithms may be the high time 

consumption necessary to train the model. 

V. Mixed methods – They hierarchically apply multiple approaches to take advantage of their 

potential and minimize time consumption or sensitivity to OCT-specific challenges.  

Kafieh et al. [199] have shown that a K-means cluster can be applied on a diffusion map 

created using Eigen-values and functions decomposition from SD-OCT image intensities. 

Such combination of diffusion maps with K-means clustering as an intermediate step 

reduces the search space to improve accuracy and layer detection by the graph search 

method. Moreover, this method relying on regional image texture exhibits robustness 

in case of low contrast between neighboring boundaries. 

Nevertheless, most recent solutions combine machine learning methods with classic 

or graph-based approaches. One of the approaches proposes using Random Forest to train 

the classifier that determines the cost function of the graph-search step [200]. Hu et al. 

described another concept in which image context information obtained with 

a Convolutional Neural Network is further supplied to a three-neighbor directed graph 

[201]. A similar approach for ONH was published by Zang et al. [202]. Dodo et al. presented 

a method for six retina layers segmentation using Fuzzy Histogram Hiperbolization, Fuzzy 

C-Means clustering, and continuous Max-flow optimization [203]. Lu et al. [204] proposed 
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a novel approach for multiclass retinal fluid segmentation, incorporating graph cuts, a Fully 

Convolutional Network, Random Forest, and a Level Set method. 

Table 2.7 presents the types of images utilized to test some of the described layer 

segmentation methods. The use of synthetic images or OCT scans of animal tissue is common 

for these algorithms. Although most use a healthy human retina, the most recent approaches 

focus on more challenging pathologic eye images. Still, the number of analyzed images 

is relatively small, and their dimensions differ.  

Table 2.7 Types of images used for testing the retina layer segmentation methods 

Subject Subject type Number of images Image size [px] References 

OCT of animal tissue 

healthy and diseased rodent retina n/d 1024×500 [183] 

Mice 200 B-scans n/d [191] 

Mice 10 eyes, single 3D ONH scan 1024×400×400 
[200] 

canine 10 eyes, single 3D ONH scan 768×496×19 

OCT of human retina 
(healthy) 

 

18 eyes, single B-scan 4mm n/d [163] 

single 3D scan 1024×320×138 [164] 

19 eyes, single B-scan 
43 eyes, 3× 3D scan 

1024×480 
480×512×128 

[165] 

72 eyes, 6 radial B-scans 1024×512 [168] 

23 eyes, 6 radial B-scans n/d [89] 

10 eyes, 6 radial B-scans 1024×512 [170] 

70 eyes, 24 radial B-scans n/d [172] 

65 eyes, 16 B-scans 640×933 [173] 

15 eyes, 6 radial B-scans TD-OCT 1024×512 [177] 

10 eyes, 1 raster scan (set of 
horizontal and vertical B-scan 
images), SD-OCT 

640×669 
640×401 

[177] 

10 eyes, single 3D scan 1024×512×128 [180] 

14 eyes, single B-scan 
16 eyes, single B-scan 

450×600 
496×1537 

[182] 

204 eyes, single circular ONH B-scan 768×496 [93] 

30 eyes, 150 B-scans 512×496 [188] 

4 B-scans 1200×700 [192] 

2 eyes, 3D scan 512×496×193 [194] 

466 B-scans (from 17 eyes) 1024×512 [195] 

14 eyes, single 3D scan 1024×496×49 [196] 

5 eyes, single circular ONH B-scan 768×496 [197] 

35 eyes, single 3D scan n/d [198] 

10 eyes, 10 B-scans 
1000×100, 
500×200 

[90] 

91 B-scans n/d [87] 

13 eyes, single 3D scan 1024×200×200 [190] 

78 eyes, single 3D ONH scan 640×304×304 [202] 

225 B-scans 992×512 [203] 
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Subject Subject type Number of images Image size [px] References 

OCT of human retina 
(pathologic) 

ERM 16 eyes, single B-scan 4mm n/d [163] 

AMD 
single 3D scan 1024×320×138 [164] 

choroidal vasculopathy 

AMD 
15 eyes, single 3D scan 1024×512×128 [180] 

20 eyes, single 3D scan 512×496×49 [188] 

glaucoma 19 eyes, single B-scan 1024×480 
[165] 

drusen, glaucoma 2 eyes, single 3D scan 480×512×128 

glaucoma 

6 radial B-scans, 3 circular ONH scans n/d [15] 

24 eyes, 6 radial B-scans n/d [89] 

130 eyes, 16 B-scans 640×933 [173] 

single 3D scan 512×496×193 [194] 

7 eyes, single circular ONH B-scan 768×496 [197] 

10 eyes, single 3D scan 1024×200×200 [199] 

10 eyes, single 3D ONH scan 1024×200×200 [200] 

104 eyes, single 3D ONH scan 640×304×304 [202] 

retinis pigmentosa 95 B-scans (30 patients) 1537×496 [185] 

multiple sclerosis 21 eyes, single 3D scan 1024×496×49 [196] 

choroidal neovascularization, intra- 
and sub-retinal fluid, pigment 
epithelial detachment 

26 eyes, 78 3D scan in total 1024×200×200 [190] 

diabetic retinopathy 10 eyes, 50 B-scans in total 768×496 [201] 

n/d – not disclosed 

Retina layers segmentation implemented in commercial OCT devices 

Segmentation approaches published in the literature vary between the applied methods 

and the number of detected retina boundaries. Interestingly, in the last decade, scientists 

have proven possibilities of segmenting up to 12 retina borders with various image processing 

techniques, e.g., 9 layers with GMM-based pixel classification [192], 9 layers with geodesic 

distance approach [205], 9 layers with deep learning combined with graph search [206], 

10 layers with support vector machines combined with graph theory [191], 11 layers with 

graph theory [87], 12 layers with a hybrid model combining intensity, spatial and shape 

information [207].  

The number of retinal layer boundaries segmented by the commercial applications varies 

between the devices. Although the specific algorithms implemented in commercial devices 

are not publicly available, based on the analysis of the segmentation of the subsequent cross-

sections, it can be derived that they use 2D analysis independently on each B-scan. Table 2.8 

presents the detailed analysis and comparison of the available analytics. 
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Table 2.8 Number of layers segmentable with commercial OCT applications 

Device Manufacturer Segmentable borders Thickness maps 

Copernicus HR 
[114] 

Optopol 
Technology 

5: ILM, RNFL/GCL, IS/OS, 
OS/RPE, RPE/Choroid 

Full Retina, RNFL 
IS/OS-RPE, RPE 

REVO NX  

[154] 
Optopol 
Technology 

6: ILM, RNFL/GCL, IPL/INL, IS/OS, 
OS/RPE, RPE/Choroid 

Full Retina, RNFL, RNFL+GCL+IPL, 
GCL+IPL, RPE, Inner Retina, Outer 
Retina 

Avanti RTvue XR 
[27] 

Optovue 
5: ILM, RNFL/GCL, IPL/INL 
IS/OS, RPE/Choroid 

Full Retina, RNFL, GCC 

DRI OCT Triton 
[28] 

Topcon 
7: ILM, RNFL/GCL, IPL/INL, 
IS/OS, OS/RPE, RPE/Choroid, 
Choroid/Sclera 

Full Retina, RNFL, 
GCL+IPL, RNFL+GCL+IPL, 
Choroid 

Cirrus HD-OCT 
[155], [156] 

Carl Zeiss 
Meditec 

6: ILM, RNFL/GCL, IPL/INL, 
IS/OS, OS/RPE, RPE/Choroid 

Full Retina, RNFL, 
GCL+IPL, RPE 

Spectralis 
HRA+OCT [157] 

Heidelberg 
Engineering 

10: ILM, RNFL/GCL, ELM, 
GCL/IPL, IPL/INL, INL/OPL, 
IS/OS, OS/RPE, RPE/Choroid, 
Bruch's Membrane 

Full Retina, RNFL, GCC 

OCTExplorer 
software [208] 

Iowa Institute 
for Biomedical 
Imaging 

11: ILM, RNFL/GCL, GCL/IPL, 
IPL/INL, INL/OPL, OPL/ELM, 
ELM/IS, IS/OS, Inner Boundary OS, 
OS/RPE, RPE/Choroid 

Full Retina, and between any 
neighboring layers 

Determining segmentation accuracy 

Although a majority of novel approaches have increasingly good accuracy in detecting 

retinal layers, heavily abnormal data samples in severe pathologies can still cause 

segmentation errors. Despite the multitude of methods devised in this field, accurate retinal 

layer segmentation still has much room for improvement when dealing with pathological 

eyes, as was illustrated in Figure 2.9. All the while, noise and low image quality pose 

a challenge for proper retina segmentation, as discussed in Section 2.2.  

The practical method of determining segmentation accuracy is to obtain manual 

segmentations of the investigated images that can be later compared with the developed 

algorithm. Unfortunately, such manual delineation of retina layers on each OCT cross-section 

is a very time-consuming task. Some works reported 10-15 minutes necessary to annotate 

6 lines on a single OCT B-scan [188], [196]. The medical experts preparing grand truth data 

for this study informed of up to 30 minutes necessary for a precise segmentation of images 

with severe VRI disorders.  

Poor signal-to-noise ratio, image artifacts, and uncertainty of retina borders in the 

presence of pathology make obtaining gold standard (reference) data even more challenging. 

Such issues also lead to inter-observer variability [24].  

A numerical comparison of automatic and manual segmentation is necessary to evaluate 

the performance of a devised method. The primary metric for algorithm precision analysis 

is calculating absolute or signed error (frequently in μm rather than in pixels) evaluated for all 
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A-scans using the mean and standard deviation or other metrics [201]. Equations (2.13) and 

(2.14) describe the calculation of Mean Absolute Error (MAE) with Standard Deviation (SD). 

Equation (2.15) defines Root Mean Squared Error (RMSE) for a single retina border on one 

OCT B-scan as will be used in this work: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴(𝑥) − 𝑀(𝑥)|

𝑛

𝑥=1

 (2.13) 

𝑆𝐷 = √
∑ [(𝐴(𝑥) − 𝑀(𝑥)) − 𝑀𝐴𝐸]

2𝑛
𝑥=1

𝑛
 

(2.14) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝐴(𝑥) − 𝑀(𝑥))

2
𝑛

𝑥=1

 (2.15) 

where 𝐴(𝑥) and 𝑀(𝑥) denote the vertical positions of the segmented boundary at the 𝑥-th 

A-scan of the automatic and manual annotation, respectively, and 𝑛 is the number of A-scans 

in the given cross-section. 

The standard statistical measure for the task of classifying pixels to a given layer is the Dice 

coefficient (DC) [203], [209] as given by Equation (2.16). 

𝐷𝐶 = 
2 |𝐺𝑇 ∩ 𝑆𝐸𝐺|

|𝐺𝑇| + |𝑆𝐸𝐺|
 (2.16) 

where 𝐺𝑇 are the pixels manually annotated for a given retina layer (not the border), 𝑆𝐸𝐺 

is the set of pixels labeled by the segmentation methods. In the Boolean data using the 

definition of true positive (TP), false positive (FP), and false negative (FN), this formula (also 

known as F1-score) can be defined as: 

𝐷𝐶 = 𝐹1 = 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.17) 

When also utilizing the value of true negative (TN), we can calculate the accuracy metric 

(ACC) formulated with the Equation (2.18): 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2.18) 

Some papers also described the study on the repeatability of segmentation or retina 

thickness measurement based on OCT data [210], [211]. This way of verifying if the resulting 

segmentation line will be the same (for another scan of the same eye performed within 

minutes) is a valuable tool for confirming given algorithm stability. Nevertheless, this is not 

a common practice and requires a specific acquisition protocol or access to the specially 

prepared dataset. 
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2.3.2 Graph-based retina segmentation 

This section describes the general approach of the graph-theoretic framework with 

dynamic programming [212] for retina layers segmentation as was proposed by Chiu et al. 

[90]. This algorithm is the basis for the method investigated in this dissertation. 

The general methodology stems from treating each pixel in the investigated B-scan image 

as nodes of a graph. The weights of the graph's edges are assigned based on a priori 

information about the layer boundaries. The general scheme of the algorithm for a single OCT 

B-scan is shown in Figure 2.16.  

 
Figure 2.16 General scheme of the retina layer segmentation in the OCT B-scan [90], [148] 

Primarily the input image is subjected to gradient analysis, from which an adjacency 

matrix with the graph weights is calculated. Next, the start and endpoints of the graph are 

selected, and the shortest path between them is found utilizing Dijkstra’s algorithm [212]. 

The obtained path represents the segmented retina layer border. A detailed description 

of the algorithm is presented in the subsections below. 

Preprocessing 

The beginning step for this algorithm is basic denoising with a Gaussian filter. Although, 

as presented in Section 2.2.2, many methods for OCT image denoising are available and still 

undergoing research. In Chapter 3, an influence of the image denoising method on retina layer 

segmentation will be shown, with a particular focus on the selection of a method best suited 

for enhancing the accuracy of segmentation of vitreoretinal interface pathologies. Figure 2.17 

illustrates (a) an original image and (b) its denoised version filtered with a Gaussian mask, 

as was proposed in [90]. 

Inherent to the method, the minimum-weighted path crossing the image from the starting 

point to the end node of the graph tends to be the shortest geometric path (since a path 
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passing a fewer number of edges accumulates a lower total sum of weights). Thus, irregular 

or strongly curved image edges (as observed in Figure 2.17a) are discouraged. As a result, 

an advantage is given to smoother lines even with relatively lower gradient values. 

The solution utilized to overcome this problem is image transformation designed 

to shorten the desired path. Such transformation, straightening the natural retina curvature 

(visible in an OCT image), is commonly referred to as image flattening. 

 

(a) original image 

 

(b) image after denoising 

 

(c) flattened image 

Figure 2.17 Preprocessing steps illustrated on an OCT cross-section 

This procedure is performed based on a preliminary estimate of the RPE layer, which 

is considered the most hyper-reflective in the OCT image. Therefore, finding the pixel with the 

greatest intensity in each column is possible. A second-order polynomial is fitted to the 

obtained points after locating and removing any outliers of over 50 pixels in the vertical 

direction. Next, each column is shifted up or down to obtain a flat RPE line through the whole 

image width. Parts of an image that were not within the original field of view can 

be extrapolated from the mirror image or filled with the value of 0. Figure 2.17c illustrates 

a result of such image transformation. 

Graph representation and weights calculation 

Considering an image I of the size 𝑀 ×𝑁 pixels as a graph G, all the pixels are treated 

as nodes 𝑣 ∈ 𝑉  of the undirected graph connected by the edges 𝑒 ∈ 𝐸 . For each edge, 

a nonnegative weight (cost) 𝑤(𝑒) is assigned. After selecting the beginning and end nodes 

of the graph, it is possible to find a path between them by selecting a set of graph edges. 

Finding the path through the graph is performed by determining the route that has the lowest 

overall sum of weights. Such path segments (cuts) an image into separate regions and 

represents a border of the selected layer of the retina in the investigated OCT B-scan.  

A crucial step in this algorithm is an appropriate assignment of edge weights. Although 

functions of distances between the pixels or differences between intensity values are 

commonly used in determining weight values [213], a feature describing the transition 
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between two regions of different brightness can be utilized for an OCT image. For example, 

low weights can be assigned to the graph edges corresponding to the high values of the 

vertical image gradient and contrariwise for the rest of the image. This is established on the 

assumption that the searched line has distinguishing features with respect to the surrounding 

area. Here we can take advantage of the fact that the neighboring retina layers have different 

reflectivity, resulting in intensity difference between pixels in the vertical direction. Equation 

(2.19) defines the calculation of edge weight 𝑤(𝑣𝑎, 𝑣𝑏)  between nodes 𝑣𝑎  and 𝑣𝑏  using 

vertical gradient values: 

𝑤(𝑣𝑎 , 𝑣𝑏) = 2 − (
𝜕𝑓(𝑣𝑎)

𝜕𝑦
+
𝜕𝑓(𝑣𝑏)

𝜕𝑦
) + 𝑤𝑚𝑖𝑛  (2.19) 

where 𝜕𝑓/𝜕𝑦  represents vertical intensity gradients for the nodes 𝑣𝑎  and 𝑣𝑏  normalized 

to the range of 〈0,1〉, and 𝑤𝑚𝑖𝑛 denotes the minimal edge weight (set at a low positive value 

equal to 10−5 ) that is necessary to ensure system stability – i.e., finding a path even  

if a B-scan contains information holes. From Equation (2.19), node pairs with large vertical 

gradients generate low weight values. By calculating separate edge maps for dark-to-light and 

light-to-dark intensity transitions, it is possible to account for alternating intensity levels 

of subsequent retina layers (as was discussed in Section 2.2.1).  

Figure 2.18 presents an example of gradient images utilized for the generation 

of adjacency matrixes for (a) NFL/GCL, IPL/INL, OPL/ONL, RPE/Choroid layer boundaries, and 

(b) ILM, INL/OPL, ELM, IS/OS, OS/RPE layer boundaries. As can be seen, different structures 

are emphasized in each image. 

 

(a) light-to-dark gradient 

 

(b) dark-to-light gradient 

Figure 2.18 Example of gradient images used to calculate weights for image borders 

Since the desired path should cut the image smoothly through the neighboring pixels, each 

node is linked with only its eight nearest neighbors (e.g., 8-connected pixels), and all remaining 

graph nodes are disconnected. Such an approach excludes the need to incorporate geometric 

distance weights. The calculated weights for dark-to-light and light-to-dark image gradients 

are stored in separate sparse adjacency matrixes 𝐴 ∈ ℝ𝑀𝑁×𝑀𝑁  containing edge weights 
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for every node pair permutation. For an undirected graph, 𝐴  is symmetric, thus allowing 

to ignore half of the matrix (upper or lower triangle). 

Automatic initialization of start and endpoint of the path 

To make the algorithm work autonomously and eliminate the need to calculate the 

shortest path between every possible pair of nodes in the graph, the start and end points 

of the path are selected arbitrarily.  

Assuming that the searched layer stretches over the entire width of the analyzed image 

and knowing that Dijkstra’s algorithm promotes paths with the lowest overall weight, this 

initialization procedure adds a column of nodes on both sides of the graph. Those columns are 

assigned with minimal weights 𝑤𝑚𝑖𝑛 to their edges, ensuring their connectivity and allowing 

for minimal resistance of the cut. Next, the start and end nodes of the graph are predefined 

in the newly added columns (for example, in the top left and bottom right corners) since their 

position will not affect the path moving across the image. Finally, the added columns can 

be deleted after segmentation, leaving the original image with the obtained cut.  

Finding the minimum-weighted path 

The minimum weighted path is searched after assigning weights to the appropriate edges 

and selecting graph endpoints. For this purpose, techniques such as Dijkstra’s algorithm [212] 

(or other optimization algorithms for graph theory, e.g., the max-flow-min-cut technique 

[214]) can be utilized. The selection of a suitable method may depend on the data.  

Figure 2.19 illustrates an example of a B-scan image with an orange dashed line denoting 

the segmentation cut made using this automatic method. 

 

Figure 2.19 An example of the OCT image segmentation result [148] 

Feedback and search region limitation 

Since several parallel retina layers within proximity to each other have similar 

characteristic features (brightness or gradient transition), it is preferable to restrict the search 
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area of the graph for each layer. Limiting graph space is done utilizing a priori knowledge about 

the retina structure shown in the image. For example, both OPL/ONL and IPL/INL borders 

represent the transition of higher intensity values of pixels over the border to the ones under 

it. Therefore, after segmenting the OPL/ONL boundary, it is possible to limit the region 

of interest (ROI) to the area between ILM and OPL layers while searching for IPL/INL boundary. 

In practice, it means excluding from the graph the edges that are outside of the desired ROI. 

Introducing the region of interest into the search region also limits the number of possible 

paths, shortening the computational time. 

Considering parallel layers of alternating brightness, the segmentation is performed 

recursively for each retina layer separately, taking into account the information about the 

previously segmented layers. The order of segmentation is based on prominence as the 

following:  

1. the boundaries with darker regions over the hyper-reflective layers:  

a. ILM – top retina border in the image 

b. IS/OS – the most prominent border under ILM 

c. OS/RPE – the boundary directly under IS/OS 

d. INL/OPL – the boundary between ILM and IS/OS 

2. the borders with more prominent layers over the less distinct ones:  

a. NFL/GCL – the most distinct border directly under ILM 

b. IPL/INL – the boundary between NFL/GCL and INL/OPL 

c. OPL/ONL – border between IPL/INL and IS/OS). 

Figure 2.20 illustrates a region of interest created from previously segmented INL/OPL 

and IS/OS boundaries, overlaid on an image in which OPL/ONL border is searched. 

  
(a) OCT cross-section with previously  

segmented INL/OPL and IS/OS borders 

(b) OCT image with overlaid region  

of interest for OPL/ONL search 

Figure 2.20 Example of an image with the overlaid region of interest for segmenting  
an intermediate layer 
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2.3.4 Neural networks in use of retina layers segmentation 

Deep learning methods are recently (since 2017) a popular area of research for retina 

layers segmentation [161]. Recent literature shows the employment of various neural 

network architectures for retina layers segmentation. Most of them are developed and 

tested on both normal and heavily abnormal data. This task can be approached in two 

different ways.  

1) The first is the pixel classification problem, where the neural network tries to predict 

the probability of each pixel in an OCT image belonging to a class defined as a region 

between specific layers borders. The most commonly used architecture for this task 

is called a U-Net. It was developed only in 2015 specifically for the segmentation 

of biomedical images. It is an FCN with a U-shaped topography (which will 

be described further in this Section). Other proposed frameworks are built either 

based on this network or with a combination of other topologies and approaches (like 

residual or dilating blocks). 

2) In the second approach, the network provides a probability map of a pixel belonging 

to a boundary between specified layers. Those methods require additional post-

processing steps to extract the final boundary position from such a probability map. 

In the majority of the literature, this step is performed with a graph-cut algorithm. 

Various topographies of CNN are utilized for this task. 

Table 2.9 lists a summary of the current approaches. 

Table 2.9 Summary of neural network frameworks for retina layers segmentation 

Approach Network name (topography) Dataset Number of layers Ref. 

Pixel-wise 

semantic 

segmentation 

ReLayNet (based on U-Net 

[36] and DeconvNet [215]) 

Duke SD-OCT public DME dataset [216]: 

10 patients 

• 10 volumes, 11 B-scans each 

(512×740 px) = 110 images 

7 layers and fluid 

segmentation 

[217]  

U-Net for pixel classification 

and graph search for  

boundary detection 

24 patients (6 with ERM, 6 with DME, 12 

healthy) 

• 24 volumes (31 B-scans each)  

= 744 images 

4 layers: 

RNFL, GCL+IPL,  

INL, OPL 

[218] 

Uncertainty U-Net  

(introduced Dropout after 

convolution block) 

50 patients (16 with DME, 24 with RVO, 

10 with AMD and CNV) 

• 50 volumes, 49 B-scans each 

(512×496 px) = 2450 images 

Photoreceptor 

layer and its 

disruptions 

[219]  

U-Net 3D Isfahan public dataset [220], 

13 healthy subjects 

• 13 volumes, 10 B-scans each  

= 130 images 

7 layers [221]  

DenseNet (FCN) [222] University of Miami dataset [223]: 10 

patients with mild non-proliferative 

diabetic retinopathy 

• 10 volumes, 5 B-scans each  

(768×496 px) = 50 images 

5 borders:  

ILM, RNFL/GCL,  

IPL/INL, OPL/ONL,  

RPE/Choroid 

[224]  
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Approach Network name (topography) Dataset Number of layers Ref. 

Semi-supervised GAN (SGNet) 

with U-Net 

1) Duke DME dataset [216] (see above) 

2) OCTRIMA 3D dataset [225] 

• 10 volumes, 10 B-scans each 

(496×768 px) = 100 images 

7 layers and fluid [226]  

U-Net with residual blocks 

[227] for preliminary segm. 

and second identical U-Net 

with additional Dropout and 2 

Fully Connected layers for 

ensuring correct topology of 

final layer borders 

35 patients (with 21 macula sclerosis,  

14 healthy) 

• 35 volumes, 49 B-scans each 

(496×1024 px) = 1715 images 

8 layers and  

pseudocysts 

[228]  

Composition of U-Net and 

FCN 

58 patients (25 diabetic patients,  

33 healthy) 

• 58 volumes, 245 B-scans each 

(245×245 px) = 14210 images 

5 layers and fluid [229]  

Transfer Learning U-Net (with 

pre-trained ResNet [227] 

weights) 

23 patients (with AMD) 

• 23 volumes, 128 B-scans each 

(1024×512 px) 

• Used 1270 images for experiment 

4 borders: ILM,  

IPL/INL, OS/RPE,  

RPE/Choroid 

[230]  

DRUNet (Dilated-Residual U-

Net) 

100 subjects (40 healthy, 60 with 

Glaucoma) 

• Single ONH B-scan averaged 48 times 

5 borders: ILM, 

RNFL, OS/RPE,  

RPE/Choroid, 

Choroid/Sclera 

[231]  

Boundary 

detection 

FCN and BLSTM (Bidirectional 

Long Short-term Memory) 

1) Duke SD-OCT dataset [90] (10 healthy 

subjects) 

• 10 volumes, 11 B-scans each 

(512×740 px) = 110 images 

 

2) OCTRIMA 3D [225] (see above) 

 

3) AMD dataset [24] (20 AMD subjects) 

• 20 volumes, 11 B-scans each 

(300×800 px) = 210 images 

8 boundaries  

for healthy  

and 3 boundaries 

for AMD 

[232] 

CNN (based on Cifar network 

[233]) and graph search 

39 subjects with AMD 

• 117 volumes, 49 B-scans each 

(496×1024 px) = 5733 images 

9 boundaries [206] 

FCN, image enhancement and 

graph search 

38 normal subjects  

• 38 volumes, 555 B-scans in total 

(512×128 px) 

8 boundaries [234] 

Extension of CNN from [206], 

graph search 

101 healthy children 

• 140 radial images (496×1536 px) with 

30-times averaging 

7 boundaries [235] 

CNN and graph search 101 healthy children (see above) 3 boundaries: 

ILM, PE/Choroid, 

Choroid/Sclera 

[236] 

RNN (Recurrent Neural 

Network) [237] and graph 

search 

1) 101 healthy children (see above) 

• 1180 images 

2) AMD dataset – 2700 images 

7 boundaries [238] 

CNN (based on AlexNet [233]) 

plus 2 fully connected layers 

to obtain final border lines 

AMD dataset [239] 

• 380 volumes (265 AMD,  

115 healthy), 512 B-scans each  

(400×60 px) = 194 560 images  

3 boundaries: 

ILM, OS/RPE,  

RPE/Choroid 

[240]  
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Approach Network name (topography) Dataset Number of layers Ref. 

Pixel 

classification 

and boundary 

detection 

2 cascaded modified U-Nets 

for both pixel classification 

and boundary detection with 

topology assurance 

1) 35 patients (with 21 macula sclerosis, 

14 healthy) (same as [228]) 

9 boundaries  

and pseudocysts 

[228]  

U-Net with residual blocks 

with 2 fully connected outputs 

(pixel classification and 

surface position detection for 

improved topology) 

1) 35 patients (with 21 macula sclerosis, 

14 healthy) (same as [228]) 

2) Duke DME dataset [216] 

9 boundaries  

and fluid 

[241]  

2.3.5 U-Net architecture 

This subsection describes a basic U-Net architecture [36] employed for retina layers 

segmentation in an OCT image. This topology, upon which various solutions are built, is also 

the basis of the proposed solution described in this dissertation. 

The U-Net is a version of a fully convolutional network [242], as each block consists 

of a repeated application of convolutions. Two main parts of the network can be 

distinguished: a contracting path (frequently described as an encoder) and an expansive path 

(called the decoder). In each level of the contracting part, the input matrix is subjected two 

times to a padded convolution (denoted as Conv 3×3) with a 3×3 kernel mask [243]. Each 

convolution is followed by the rectified linear unit (ReLU) activation function [244]. This 

is followed by a downsampling operation of 2×2 max pooling with stride 2 (MaxPool 2×2). 

These blocks comprise a single level of the encoder, repeated four times. The number 

of feature channels is doubled at each level while the spatial information is reduced.  

In the decoder part of the network, the feature matrix is subjected to 2×2 convolution 

(denoted as UpConv 2×2), with which the data is upsampled in the spatial dimension while 

at the same the number of feature channels is reduced by half. Such matrix is next 

concatenated with corresponding features from the encoder path, followed by applying two 

3×3 convolutions and ReLU functions similarly to the first part of the network. At the final 

level, a 1×1 convolution is applied to the resulting feature matrix to map them into the desired 

number of classes.  

Finally, an activation function is applied to the output to obtain the probability of each 

pixel belonging to a given class. Typically, for binary classification, it is a sigmoid function 

(defined with Equation (2.20)), or for multiclass classification, a SoftMax function (described 

with Equation (2.21)). 

Sigmoid( 𝐼(𝑥, 𝑦) ) =
1

1 + e−𝐼(𝑥,𝑦)
 (2.20) 

Softmax( 𝐼(𝑥, 𝑦) ) =
e𝐼(𝑥,𝑦)

∑e𝐼(𝑥,𝑦)
 (2.21) 
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It is essential to select the input image size divisible completely by 2 to the power of the 

number of pooling operations in the encoder part. Similarly, the number of initial features 

in the original U-Net is 64. Other possibilities, such as 32 or 128, are also applicable, though 

this parameter affects the performance and accuracy of the network.  

Figure 2.21 illustrates an application of the U-Net to an OCT B-scan with 64 initial features, 

4 encoding/decoding levels, and 8 output classes corresponding to 1: region over the retina, 

2-7: 6 retina layers (7 borders), 8: region below the retina.  

 

Figure 2.21 U-Net architecture (example for input OCT image of resolution 512×512 px with a single channel 
(gray-scale) and 8-channel one-hot encoded output for 8 separate segmented image regions). Each blue box 

represents a multi-channel feature map (the number of channels is denoted on top of the box). The input size 
at each level is denoted on the left-hand side of the boxes. White boxes denote feature maps copied from the 

encoder to the decoder part of the network. Legend in the lower-left corner describes operations indicated 
with colored arrows  

Preprocessing 

To reduce variability in OCT data, most of the methods apply basic image preprocessing 

such as image normalization (i.e., rescaling to the range of 〈0,1〉 ) or standardization 

(otherwise known as z-score) with the following Equation: 

𝑧(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) −  𝜇

𝜎
 (2.22) 

where 𝑥 and 𝑦 are the indexes of pixels within the image 𝐼, 𝜇 is the mean of all pixels, and 

𝜎 denotes the standard deviation of pixels intensity values. 

Although some of the reported applications of neural networks for OCT retina layers 

segmentation utilize image flattening with respect to the Bruch’s membrane (with the same 

procedure as described in Section 2.3.2), it is not as common as with graph-based approach. 

Moreover, none of them apply any image denoising algorithm or other methods of enhancing 

image quality. What must be remembered is that applying any kind of preprocessing step, one 

must always perform it for training, validation, and testing to ensure that the network 

operates on the same principles.  
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Training 

Since neural networks are a type of supervised machine learning, obtaining image 

segmentations is divided into training and testing phases. During the training, an image 

is processed by the network, and the resulting output is compared with the reference. From 

this comparison, a loss value is calculated (various types of loss functions utilized for retina 

layers segmentation will be discussed later). This value is utilized to update the weights of the 

network layers before processing the next image. The training goal is to minimize the loss 

value by repeatedly processing all images through the network. The number of repetitions 

(called epochs) can be chosen arbitrarily or be dependent on the learning process. 

Conversely, it is considered good practice to divide the images in the cohort into three 

parts: training, validation, and testing subsets. These subsets should be exclusive, and each 

should have a similar distribution of all parameters (such as image size, intensity values, spatial 

parameters such as retina orientation, number of subjects from each pathology class). While 

the images in the training dataset are used to learn the network parameters, the images in the 

validation dataset may be processed by the network after each training epoch to determine 

the improvement (or not) of the learning process. Although the loss calculated during the 

validation step is not utilized to update the network parameters, it can be used to tune the 

general experiment's parameters (such as the total number of epochs).  

The final learned parameters of the network (the weights of the convolution kernels) are 

used in the testing stage to obtain a segmentation of the images on the data not yet previously 

“seen” by the network. Finally, the results of this step are compared between competing 

segmentation methods. 

Apart from training a neural network separately in each experiment, it is also possible 

to utilize a network previously trained on a different dataset. Such procedure is called transfer 

learning [245]. The principle involves training a network that can segment other objects in the 

image  (e.g., chair or cat) to segment the desired objects (such as retina fluids). Although 

it may shorten the training process, this strategy is not common in the area of retina layers 

segmentation [238]. 

Loss function 

The previously mentioned loss can also be described as an error between the output of the 

network and the reference data. Numerous loss functions that can be used for medical image 

segmentation tasks have been identified in the literature [246]. They can be either 

distribution-based, region-based, boundary-based, or compounded [247]. Frequently, each 

author of a specific segmentation task implements their version of this crucial algorithm 

component. The most commonly used loss functions for retina layers segmentation are: 
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• Cross-Entropy Loss [248] (also called logistic loss, log loss, or negative log-likelihood) 

is a distribution-based criterion. It is defined as a measure of the difference between 

two probability distributions for a given random variable or set of events. Its use 

in both general target classification and pixel-classification segmentation provides 

good results. A Binary Cross-Entropy Loss is used in a simplified task, where only two 

classes are defined (the segmented object and background). It is defined as: 

𝐿𝐶𝐸(𝑦, �̂�) = −
1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)]

𝑁

𝑖=1

 (2.23) 

where 𝑦𝑖 is the ground truth (taking a value of 0 or 1) of the 𝑖-th element in the set 

of 𝑁 elements, and �̂�𝑖 is the corresponding predicted value (in image segmentation: 

the probability of a pixel 𝑖 belonging to the segmented object). 

In the task of multi-class segmentation, where each retina layer is defined as a separate 

class, this loss function is applied to each class separately, and the final loss value 

(called Categorical Cross-Entropy) is summed across all classes with the following 

Equation: 

𝐿𝐶𝐸(𝑦, �̂�) = −∑(
1

𝑁𝑐
∑[𝑦𝑖 log(�̂�𝑖)]
𝑖∈𝑐

)

𝑐∈𝐶

 (2.24) 

where 𝐶 is the number of classes and 𝑁𝑐 is the number of elements in class 𝑐 ∈ 𝐶. 

• Dice Loss [249] is another type of loss function widely utilized for image segmentation. 

Its advantage is the independence from class imbalance (a situation in which one class 

has substantially more (or less) elements than other classes from the set). This 

situation is frequent in OCT retina images, as retina layers span significantly fewer 

pixels than the vitreous or the region below the retina. Dice Loss is a region-based 

criterion aiming to maximize the overlap of regions between the ground truth and 

predicted segmentation. It can be expressed as: 

𝐿𝐷𝑖𝑐𝑒(𝑦, �̂�) = 1 −∑(
2∑ 𝑦𝑖�̂�𝑖𝑖∈𝑐 + 𝜀

∑ 𝑦𝑖𝑖∈𝑐 + ∑ �̂�𝑖𝑖∈𝑐 + 𝜀
)

𝑐∈𝐶

 (2.25) 

where 𝜀 ∈ 〈0.1, 1〉 is a value added for numerical stability to avoid division by 0. 

Although many more loss functions can be found in the literature [246], they are mostly 

variations of the two most commonly utilized described above. In most recent works 

regarding retina layers segmentation, these two functions are combined (summed with 

arbitrarily chosen weights) and referred to as Dice-Cross-Entropy Loss (or Combo Loss). 

Additionally, it is also possible to provide weights for each class to be segmented both 

for 𝐿𝐷𝑖𝑐𝑒 and 𝐿𝐶𝐸 functions. Such weights can further help with class imbalance as they can 

be derived from the number of elements belonging to each class. 
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Data augmentation (DA) 

As part of a data-driven field of artificial intelligence, deep neural networks are highly 

dependent on the data itself. Furthermore, the greater complexity of the network requires 

more training examples. More training examples with greater variability allow to obtain 

a better model [250]. Unfortunately, the number of training examples of OCT retina images 

is scarce. As shown in Section 3.1.1, even if many OCT images can be acquired, it is also 

necessary to provide reference data for those examples. Creating manual segmentations 

requires expertise, and it is very time-consuming for multiple 3D OCT images. In such 

a situation creating artificial examples through data augmentation is a solution. 

Data augmentation is a method of creating multiple data instances similar to those already 

existing in the dataset but with varying characteristics. The newly generated examples 

represent a more comprehensive set of possible variations of the data, thus allowing the 

model to generalize better [243] (for example, better learn which pixels belong to the given 

retina layers regardless of an image of a left or right eye, retina angle, size of the image 

or presence of noise).  

Employing data augmentation allows to improve the robustness of the model, especially 

if the available dataset has very few training samples. Although in image processing, a variety 

of image augmentation techniques are possible (such as flipping, cropping, rotation, 

translation, noise injection, change of contrast, color space transformations, and others) 

[251], not all of them are applicable to OCT retina images. For example, a vertical flip would 

invert the topology of retina layers, which is unacceptable in layers segmentation. Therefore, 

the image augmentation techniques most frequently used in the literature are horizontal flip, 

random rotation, cropping, and scaling (in the case of training on data from various 

manufacturers). 
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Chapter 

3 Graph-based segmentation of the 

retina 

This Chapter describes the proposed improvements of algorithms for segmentation of retina 

layers from low quality OCT images. It starts in Section 3.1 with the description of OCT image 

data gathered to validate the proposed algorithms.  

Section 3.2 introduces the necessary enhancements of low quality OCT data. For this 

purpose, an analysis of the denoising method able to enhance features specific 

to vitreomacular traction is described. Furthermore, the author introduces segmentation 

enhancement with an adaptive selection of the region of interest for analyzed OCT volume. 

Additionally, the author proposes layers tracking to boost algorithm performance 

by incorporating information on previously segmented layers. 

3.1 CAVRI database 

3.1.1 Availability of OCT data  

Since the introduction of OCT technology in ophthalmology, investigating eye diseases 

with this modality has become the interest of various research centers worldwide. The need 

to obtain numerous images along with reference data of manual annotations became an issue 

for those who wished to conduct experiments in this field. Unfortunately, any data suitable 

for analysis belonged either to the manufacturers of the OCT devices (such data was used 

to create a reference eye atlas for a given device) or hospitals utilizing said devices, thus not 

publicly available. Furthermore, the authors of published algorithms usually perform the test 

on their private datasets. This makes it hard to rank developed algorithms against each other. 

It should be noted that until 2018 not many OCT image databases were publicly available 

for research purposes. However, since then, a few datasets of OCT images of normal eyes and 

those affected with the most common retinal diseases have been published. These can 

be divided into two types:  

• datasets aimed at pathology classification – contain only single cross-sections 

through the fovea and a label of the disease 

• databases aimed at developing retina segmentation algorithms for various 

pathologies – contain volumetric or raster OCT data with corresponding manual 

layer segmentations. 
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Table 3.1 summarizes the statistical information of currently available public human OCT 

datasets for both pathology classification and retina layers segmentation. Nevertheless, none 

of the listed OCT datasets include a specific eye disease named VMT investigated in this work. 

Furthermore, in most, the number of cross-sections or volumes is scarce. Also, not all contain 

reference layers segmentations for a whole OCT volume or more than 3 layers. As can be seen, 

the number of manually labeled OCT volumes in most of the datasets does not exceed 25 

subjects. 

Table 3.1 Summary of publicly available OCT databases 

Database Diseased 
Number of 

subjects 
Annotations 

Volume  

/ single image 
Device References 

AROI nAMD1 25 

for 1136 B-scans: 

fluids and  

4 layer boundaries  

volume 

128 B-scans: 1024×512 px 

3200 images in total 

Zeiss Cirrus  

HD OCT 4000 
[252] 

OCTID 

Normal 

AMD 

CSR2 

DR3  

MH 

206 

55 

102 

107 

102 

only for 25 Normal: 

7 layer boundaries 

single central B-scan 

1024×512 px  

resized to 750×500 px 

572 images in total 

Zeiss Cirrus  

HD OCT 
[253] 

DUKE Farsiu 
Normal 

AMD 

115 

269 

only for central 5mm: 

3 layer boundaries 

volume 

100 B-scans: 512×1000 px 

38400 images in total 

Heidelberg 

Spectralis  

SD-OCT 

[239] 

Miami Dataset DR 10 5 layer boundaries 

volume 

50 B-scans: 768×496 px 

50 images in total 

Heidelberg 

Spectralis  

SD-OCT 

[223] 

OCTRIMA3D Normal 10 8 layer boundaries 

volume 

10 B-scans: 610×496 px 

100 images in total 

Heidelberg 

Spectralis  

SD-OCT 

[225] 

DUKE Chiu 
2011 

AMD 25 3 layer boundaries 

volume 

11 B-scans: 512×1000 px 

275 images in total 

Bioptigen  

SD-OCT  
[24] 

DUKE Chiu 
2015 

DME 10 8 layer boundaries 

volume 

61 B-scans: 496×768 px 

610 images in total 

Heidelberg 

Spectralis  

SD-OCT 

[216] 

DUKE 

Srinivansan 

Normal 

AMD 

DME 

15 

15 

15 

no 

volume 

from 37 to 97 B-scans 

512×492 px 

3231 images in total 

Heidelberg 

Spectralis  

SD-OCT  

[254] 

Labeled OCT 

Images for 

Classification 

Normal 

AMD 

DME 

CNV4 

26 315 

8 616 

11 348 

37 205 

no 

single central B-scan 

512×496 px 

83 484 images in total 

Heidelberg 

Spectralis OCT 
[255] 

1 nAMD – neovascular age-related macular degeneration 

2 CSR – central serous retinopathy 

3 DR – diabetic retinopathy 

4 CNV – choroidal neovascularization 

3.1.2 CAVRI dataset statistics 

A database of eye images with VMT pathology has been created to check the effectiveness 

of the proposed retina segmentation algorithms experimentally. This database consists 

of three-dimensional cross-sections of the macula (3D Retina scanning protocol) imagined 

using the Avanti RTvue OCT device [27]. The cohort includes 66 healthy volunteers (78 eyes) 
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and 46 subjects (52 eyes) with VMT, giving 102 subjects (130 eyes) in total. All of the patients 

signed an agreement form to participate in the study. 

For each eye qualified by the specialist for the study following OCT scans were performed 

after pharmacological pupil dilation: 

• one Line scan 

• one Cross scan 

• four 3D Retina scans.  

For volumetric parameterization of the retina, only the three-dimensional scans were 

considered for further analysis. The examined volume (7×7×2 mm3 of the macula) 

is represented by 141×385×640 data points (i.e., 141 B-scans with 385×640 resolution). This 

means that a B-scan of the size 385×640 px, as in Figure 3.1a, represents the area of 7×2 mm, 

as illustrated in Figure 3.1b. 

 

 

(a) OCT image  
of size 640×385 px 

(b) OCT image (a) resized to show spatial area it represents 

Figure 3.1 Data vs. spatial representation of OCT image 

OCT volumes with severe motion artifacts or underexposure (caused, e.g., by cornea 

occluding) were excluded from the image analysis. Next, three ophthalmologists from the 

Department of Ophthalmology, Heliodor Swiecicki University Hospital, Poznan University 

of Medical Sciences, manually segmented the remaining portion of the acquired scans. 

Annotations included 7 retina borders (namely: ILM, RNFL/GCL, IPL/INL, INL/OPL, OPL/ONL, 

IS/OS, RPE/Choroid) and the posterior cortical vitreous (PCV). The manual annotations were 

obtained with a proprietary software called OCTAnnotate developed by the author of this 

thesis. A detailed explanation of the software capabilities is included in Appendix A2. This 

reference data was further used for evaluating investigated algorithms. 

The PCV line in OCT images has a vertical thickness of 3-10 px, which may cause 

disagreements between experts. Thus, from the obtained data, the author selected a subset 

of 50 subjects with less than 3 px of maximum difference of manual segmentation between 

the experts. One 3D OCT image from each of these 50 subjects was utilized to evaluate the 
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correctness of segmentation algorithms in Chapters 3 and 4. These 50 unique volumetric scans 

are referred to in this thesis as the CAVRI-A1 subset.   

Furthermore, the selected patients were monitored for changes in the vitreoretinal 

interface for 4 years. The frequency of visits stemmed from 4 to 12 months and depended 

on the arrangements with the leading physician. For long-term observation, at least 4 scans 

were considered necessary. The patient was excluded from the further study if full PVD 

occurred or the condition impeded the patient’s ability to see, thus qualified for a surgical 

procedure. Unfortunately, at least 4 scans could not have been obtained for all 50 subjects 

who qualified for the study. The final group for a long-term observation includes 12 cases with 

VMA and 14 cases with VMT (26 cases in total) and is called CAVRI-A2. This subset was utilized 

for the parameterization experiments in Chapter 5. The number of scans with annotations 

used in this study lists Table 3.2.  

Table 3.2 Statistical analysis of CAVRI database – number of eyes, 3D scans, and single cross-sections  
for a given pathology 

VRI status 
Isolated 

cases 

Cases with 

coexisting 

pathology 

Total  

cases 

Cases with single  

examination 

Long-term 

observation 

Unique 

examples 

Total 

examinations 

No. of 3D scans / No. of B-scans 

VMA 19 6 25 13 / 1 833 12×4 / 6 768 25 / 3 525 61 / 8 601 

VMT 20 5 25 11 / 1 551 14×4 / 7 896 25 / 3 525 67 / 9 447 

Total 39 11 50 24 / 3 384 26×4 / 14 664 50 / 7 050 128 / 18 048 

    Subset: CAVRI-A2 CAVRI-A1  

The subjects’ ages ranged from 48 to 80 years (mean age was 62.2 and standard deviation 

7.8 years) for VMA and from 57 to 79 years (mean: 67.8, standard deviation: 5.7) for VMT. The 

gathered data confirms the notion of a higher prevalence of VMT in women than in men, as 18 

of 25 VMT patients and 13 out of 25 VMA subjects were women. The scans were acquired 

for 19 right and 31 left eyes. 

Of 25 VMT patients, the majority had a V-shaped pattern, and only two could be classified 

as J-shaped, making this type of classification invalid for the gathered cohort. In addition, the 

coexisting pathology present in 11 of the cases was either AMD or subretinal effusion. Those 

pathologies are located in the outer retina and are not connected with the vitreoretinal 

interface. Thus their presence would not impede the automated analysis of the VRI structure. 

The main metric of comparison between subjects is the preretinal space volume, 

calculated from the reference segmentation of PCV and ILM lines. For VMA, the average 

preretinal space volume is 3.17 (± 1.96) mm3, while for VMT, it is 12.19 (± 6.09) mm3. 

The Wilcoxon test yielded a p-value close to zero (3.6∙10−10), confirming that this comparison 

is statistically significant. Figure 3.2 presents a box plot of the preretinal space volumes 

for these groups. As can be seen, their distributions are significantly different. 
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Figure 3.2 Box plot of preretinal space volume distributions for VMA and VMT subjects in the CAVRI dataset 

3.1.3 Quality of OCT data 

To numerically assess the quality of the obtained OCT data, values of two metrics were 

calculated for each 3D OCT scan, namely the QI (Quality Index) parameter and the mTCI 

(maximum Tissue Contrast Index).  

The mean value (and standard deviation) of the mTCI for VMA subjects is 5.49 (± 2.28), 

while for the VMT patients, it is 4.4 (± 1.77). Figure 3.3 presents the histogram bar plot of the 

distribution of the mTCI values for the scans in the CAVRI database. The mTCI index indicates 

that the majority of the scans have a low quality (lower index value). 

 

Figure 3.3 Histogram of mTCI values for scans in the CAVRI database 

The second parameter calculated for the images is the QI, and its mean (and standard 

deviation) values are 40.03 (± 8.17) and 38 (± 7.98) for VMA and VMT subsets, respectively. 

Figure 3.4 illustrates the histogram of QI values distribution for the CAVRI database images. 

This parameter indicates a more normal distribution of the quality of the gathered images. 

The mTCI and QI indexes are based on the histogram calculation, thus corresponding to the 
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subjective evaluation of an expert. The difference in their distribution might result from the 

division of pixel intensities that each algorithm considers as belonging to the foreground 

or background (noise).  

  

Figure 3.4 Histogram of QI values for scans in the CAVRI database 

3.2 Proposed methods for enhancement of OCT image 

segmentation 

3.2.1 Influence of OCT image quality on image analysis 

Image quality is an important factor in proper structure segmentation, as was described 

in Section 2.2. Further, Section 3.1 included a detailed qualitative analysis of OCT data 

available for this research. As can be inferred, insufficient signal levels for many samples 

in the dataset impede segmentation accuracy.  

The author conducted an experiment to determine the baseline retina layers 

segmentation accuracy of the OCT images in the CAVRI dataset. The test utilized the state-of-

the-art segmentation method based on graph theory as described in Section 2.3.2, performed 

for each B-scan separately. The algorithm based on Caserel software [256] was implemented 

in Matlab/Simulink environment [257] and adjusted for the images in the CAVRI database. 

The test utilized only retina layers segmentation without detecting pathology or elements 

of the vitreoretinal interface. The analysis included both normal and diseased tissue images 

(the CAVRI-A1 subset). Segmentation accuracy was measured numerically with the indicators 

of mean absolute error (MAE), and root mean squared error (RMSE) (see Section 2.3.1 

for details). The results are presented in Table 3.3 and illustrated in Figure 3.5. The best results 

are for the outer borders of IS/OS and RPE/Choroid, which can be attributed to their higher 

than neighboring tissue reflectivity. Lower values are observed for intraretinal borders where 

pixel intensities for tissue layers are similar. 

0

1

2

3

4

5

6

7

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

N
u

m
b

er
 o

f 
3

D
 s

ca
n

s

QI value

VMA VMT



3 Graph-based segmentation of retina  

A. Stankiewicz 67 

Table 3.3 Results of preliminary OCT layers segmentation for low quality image 

Retina border MAE [px] SD [px] RMSE [px] 

All borders 4.57 7.27 14.01 

ILM 2.84 8.48 15.90 

NFL/GCL 6.65 11.71 19.23 

IPL/INL 6.13 11.09 15.78 

INL/OPL 7.61 10.86 15.87 

OPL/ONL 5.32 9.64 13.32 

IS/OS 1.95 4.69 6.85 

RPE/Choroid 1.51 3.48 5.18 

 
Figure 3.5 Illustration of erroneous retina layers segmentation for 2 examples of low quality B-scans 

The results shown in Figure 3.5 and Table 3.3 underline the importance of addressing the 

problem of low OCT image quality before attempting retina layers segmentation. 

To improve the segmentation accuracy and eliminate the occurrence of errors, 

as illustrated in Figure 3.5, the author of this thesis proposed addressing the problem 

of insufficient quality of the OCT data. Three enhancements have been introduced (two during 

preprocessing stage and one for improving the shortest path search step): 

• selection of speckle suppression method (Section 3.2.2) 

• elimination of underexposed image areas (Section 3.2.3) 

• tracking searched layers through the OCT volume (Section 3.2.4). 
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The proposed improvements are described in detail in the following subsections. Their 

place in the general graph-search algorithm signifies orange blocks in Figure 3.6.  

 
Figure 3.6 Scheme of retina layers segmentation with layers tracking and limiting search region 

3.2.2 Selection of noise reduction method 

In Section 2.2.2, the specificity of speckle noise in OCT images is characterized, as well as 

the typical methods of reducing this noise. To analyze their influence on the vitreoretinal 

interface segmentation accuracy four most promising methods from the groups presented 

in Figure 2.10 were selected, which are: 

• classical methods: averaging filtering 

• partial differential equation-based: anisotropic diffusion 

• parametric method: wavelet thresholding 

• mixed methods: block-matching and collaborative filtering. 

The goal of the comparison was to analyze:  

• the achieved segmentation accuracy (as the main metric of comparison) and  

• the time consumption (to assess clinical applicability).  

The examined methods and their tested parameters are described in detail in the following 

subsections. 

2D methods 

Averaging filtering 

The first evaluated image denoising method is the basic averaging filtering (further 

referred to as AVG). It is based on performing a two-dimensional convolution 

of an investigated image with a previously defined filter. The filter mask is usually defined 

as a square matrix with an odd number of rows and columns (e.g., 3×3), although rectangular 
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filters, such as 3×19, can also be found in the literature [90]. Here, four filter sizes were tested: 

3×3, 5×5, 7×7, and 9×9. 

It should be mentioned that the averaging approach is the main noise suppression method 

used for the line scanning protocol that utilizes multiple acquisitions in a single eye position. 

Anisotropic diffusion filtering 

Anisotropic diffusion (AD) is an efficient noise reduction method. For an input image 𝐼 this 

method, proposed by Perona and Malik [123], defines the denoised image as: 

𝐼 = 𝑐(𝑥, 𝑦)∆𝐼 (3.1) 

where Δ represents the Laplace operator, and 𝑐(𝑥, 𝑦) describes the diffusion coefficient 

dependent on the position (𝑥, 𝑦) in the image space, according to the function: 

𝑐(𝑥, 𝑦) = e
|∇𝐼|2

2𝜅2  (3.2) 

where ∇  defines gradient, 𝜅  is the denoising parameter, being a positive real value that 

is related to the noise level and the expected edge preservation in the image.  

The image gradient calculated with the Prewitt operator is used for edge detection since 

it is considered robust to noise [33]. The lower value of the diffusion coefficient allows 

to avoid blurring of the edges, while the bigger value allows for the smoothing of areas 

between the edges. Choosing an optimal 𝜅 parameter value leads to preserving the lines and 

structures in the image (important for interpretation). This technique is useful for reducing 

the speckle noise in OCT images. 

Wavelet thresholding 

The wavelet thresholding (WT) method provides good results in denoising OCT images. 

This is mainly due to the fact that the noise is evenly distributed between wavelet coefficients, 

while the majority of the informative content is concentrated among the coefficients with 

high magnitude. By selecting a proper threshold value (which might be a difficult task), we can 

reduce the noise, maintaining characteristic features of the image [134]. 

In this algorithm, a single B-scan 𝐼𝑖 (𝑖 denoting the index of the cross-section within the 3D 

scan), represented in the logarithmic scale, is decomposed with the wavelet transform of the 

maximum decomposition level 𝐿 . A result of this transformation are approximation 

coefficients 𝐴𝑖
𝐿  and detail coefficients 𝑊𝑖,𝐷

𝐿 , where 𝐷  describes the direction (horizontal 

or vertical) of image filtering. During the experiments, a wavelet soft thresholding (WST) 

method was used with the Haar wavelet [258]. 

The denoising operations consist of reducing the detail coefficients for a position 𝑥 in the 

image based on the weight 𝐺𝑖,𝐷
𝐿 : 

�̃�𝑖,𝐷
𝐿 (𝑥) = 𝐺𝑖,𝐷

𝐿 (𝑥) ∙ 𝑊𝑖,𝐷
𝐿 (𝑥) (3.3) 
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where each weight 𝐺𝑖,𝐷
𝐿  is calculated for a manually selected threshold 𝜏 according to the 

following Equation: 

𝐺𝑖,𝐷
𝐿 (𝑥) =  {

𝑊𝑖,𝐷
𝐿 (𝑥) − sgn(𝑊𝑖,𝐷

𝐿 (𝑥))𝜏

𝑊𝑖,𝐷
𝐿 (𝑥)

for |𝑊𝑖,𝐷
𝐿 (𝑥)| > 𝜏

0 otherwise

 (3.4) 

The last step of this algorithm requires performing the inverse wavelet transform. Figure 

3.7a presents a general scheme of the described algorithm. 

 
(a) single image wavelet thresholding (b) multiframe wavelet thresholding 

Figure 3.7 Scheme of B-scan image denoising algorithm 

BM3D 

The block-matching and 3D filtering algorithm [259] consists of two cascades: a hard-

thresholding and a Wiener filtering, both of which incorporate:  

1) grouping: similar 2D image fragments are grouped together and stacked in a 3D data 

array. A fragment is grouped if its dissimilarity measure with a reference fragment 

falls below a specified threshold.  

2) collaborative filtering: performed on every fragments group separately by applying 

a 3D linear transform, shrinking the transform coefficients (by hard-thresholding 

or Wiener filtering), and inverting the linear transform to reproduce all fragments. 

3) aggregation: the transformation of the blocks back to the 2D image. The final estimate 

of all overlapping image fragments is aggregated using a weighted average. 

The approach of grouping similar pixels within an OCT image (regardless of their position) 

gives this method the potential for removing speckles and smoothing retina tissues.  
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3D methods 

3D Anisotropic diffusion 

The three-dimensional anisotropic diffusion (AD3D) filtering is an extension of the above-

described method, which was performed for each B-scan separately. On the other hand, 

the 3D approach is performed on a whole volume simultaneously, taking into account voxel 

size in each scan direction. 

Multiframe wavelet thresholding 

The multiframe wavelet thresholding (MWT) [113] method is an extension of the WST, 

but instead of operating on a single image, it uses a set of frames 𝐼𝑖, 𝑖 ∈ 〈1, 𝑁〉, where 𝑁 

defines the number of the processed B-scans. This approach assumes no correlation between 

noise in subsequent image frames. 

Similarly, as with the 2D version, the calculation of the significance weight 𝐺sig,𝑖,𝐷
𝐿 (𝑥) 

for the detail coefficients allows for estimation of the local noise. It is computed as follows: 

𝐺sig,𝑖,𝐷
𝐿 (𝑥) = {

1 for |𝑊𝑖,𝐷
𝐿 (𝑥)| ≥ 𝑘𝜎𝑆,𝑖,𝐷

𝐿 (𝑥)

𝜃𝑖 (𝑊1,𝐷
𝐿 (𝑥),… ,𝑊𝑁,𝐷

𝐿 (𝑥)) otherwise
 (3.5) 

𝜎𝑆,𝑖,𝐷
𝐿 2

(𝑥) =
1

𝑁 − 1
∑ (𝑊𝑖,𝐷

𝐿 (𝑥) − 𝑊𝑗,𝐷
𝐿 (𝑥))

2
𝑁

𝑗=1,𝑗≠𝑖

 (3.6) 

where 𝜎𝑆,𝑖,𝐷  defines the mean squared distance between the detail coefficients in individual 

images, parameter 𝑘 describes the noise reduction level, and 𝜃𝑖  is the normalized parameter 

calculated as in (3.7): 

𝜃𝑖(𝑤1, … , 𝑤𝑁) =
1

𝑁 − 1
∑ |1 −

𝑤𝑖
𝑤𝑗
|

𝑁

𝑗=1,𝑗≠𝑖

 (3.7) 

The extension from the 2D WST version incorporates obtaining new detail and 

approximation coefficients for all images and averaging them before performing the inverse 

transform. A general scheme of this approach is illustrated in Figure 3.7b for an example of 3 

frames. Although this algorithm was developed for a set of frames of a single exposed tissue 

area, the author tested the use of 3 subsequent frames in the 3D OCT set as input images 

for this method. This approach is based on the fact the distance between the subsequent  

B-scans in the 3D examination (for the utilized 3D Retina protocol) is about 50 µm. Thus, only 

a little change in the tissue structure is observed in the neighboring cross-sections.  
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BM4D 

Similarly, as with the AD3D algorithm, the block-matching technique can be used 

in a volumetric manner. Here, the grouping is performed for all pixels within the analyzed 3D 

scan. Such methodology can further improve the structural cohesion of pixel intensities 

in an image. 

Comparison of denoising algorithms 

As was mentioned earlier, the retina layers segmentation procedure is a key step 

in defining the morphological structure of the retina during the diagnosis. However, it was 

also shown that noise in OCT images is causing errors in the segmentation of the retina layers. 

For that reason, the author of this thesis tested the effectiveness of the denoising methods 

based on the image segmentation accuracy. The segmentation algorithm selected for this 

study (reported by Chiu et al. [90]) was described in Section 2.3.2. Additionally, for OCT 

images, a reference image (an ideal image without noise) does not exist. Thus, it is difficult 

to calculate the accuracy of denoising algorithms directly.  

Each image was denoised with each of the earlier described methods. For every method 

(except block-matching), various parameter values presented in Table 3.4 were tested. 

Examples of B-scans obtained after applying each investigated denoising method are 

illustrated in Figure 3.8.  

Table 3.4 Values of parameters chosen for tested denoising methods 

Method AVG AD (2D/3D) WST MWT 

Parameter Mask size 𝜿 τ 𝒌 

Value 1 3×3 1 1 0.1 

Value 2 5×5 5 10 1 

Value 3 7×7 10 30 10 

Value 4 9×9 20 100 100 

The original single cross-section (Figure 3.8a) has a visibly high noise content (a grainy 

structure). Comparison with image Figure 3.8b clearly shows that the method of basic 

averaging (most commonly used for OCT image analysis) blurs the image while the noise is still 

present. The anisotropic diffusion filtering in 2D and 3D forms (Figure 3.8c and 3.8e) shows 

the unification and smoothing of tissues, although some additional white and black spots are 

visible.  
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(a) original B-scan image 

 

(b) average filtering (3×3 mask) 

 

(c) anisotropic diffusion (𝜅 = 20) 

 

(d) wavelet soft thresholding (τ = 10) 

 

(e) 3D anisotropic diffusion (𝜅 = 20) 

 

(f) multiframe wavelet thresholding (𝑘 = 10) 

 

(g) BM3D 

 

(h) BM4D 

Figure 3.8 Example of original B-scan and illustration of tested noise reduction methods 
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The wavelet thresholding method (Figure 3.8d and Figure 3.8f) also blurs the image, 

although the regions of individual tissues are smoothed. Additionally, bigger threshold values 

for the 2D approach cause rectangular-shaped artifacts to appear in the image. On the other 

hand, the 3D method provides a good quality image with low noise content and visible tissue 

separation. The block-matching algorithm (Figure 3.8g and Figure 3.8h) produces smooth 

tissue regions while enhancing the edges and position of the blood vessels. A side effect of this 

approach is wavy artifacts within the tissue areas that may impede image interpretation. 

It can also be noticed that the 2D methods reduce the visibility of the PCV line present 

in the upper left part of the image. WMF and BM4D methods best reveal this line, thanks 

to which it is possible to maintain the most informative content about the pathology 

distribution. 

After noise suppression, each 3D scan was subjected to automatic image segmentation 

based on the graph theory. Verification of effectiveness of the implemented methods was 

based on the calculation of the MAE (SD) and RMSE (with formulas described in Section 2.3) 

between the automatic and manual segmentations of 7 retina layers borders: ILM, NFL/GCL, 

IPL/INL, INL/OPL, OPL/ONL, IS/OS, and RPE/Choroid. Due to divergence in annotating layer 

borders by experts and computers, the difference between them lower than 3 pixels was 

considered negligible (i.e., error equal to zero). All algorithms were implemented in the 

Matlab/Simulink environment [257].  

Figure 3.9 presents the segmentation results after each investigated denoising method. 

As can be seen, the graph-based approach produces irregular segmentation lines due to high 

dependence on the local image gradient. The 3D methods render better segmentations than 

the 2D ones, and the wavelet-based method is better than the AD. Method BM4D (Figure 

3.9h) provides the best accuracy for segmenting pathological tissue, although still some 

inadequacies can be found in places where the segmentation lines are joined (center of the 

image). 

The influence of tested parameter values for each method is illustrated in box plots of the 

MAE [px] in Figure 3.10. It is visible that smaller filter masks for the averaging filtering provide 

better results (Figure 3.10a) since bigger masks tend to blur tissue edges. The BM approach 

in both the 2D and 3D forms (Figure 3.10b) also improves the segmentation accuracy. It can 

also be inferred that lower values of 𝜅  parameter in the AD method (Figure 3.10c) and 

threshold τ for the WST method (Figure 3.10d) guarantee better performance. On the other 

hand, the change of the 𝜅 value in the AD3D approach does not have improvement effect 

(Figure 3.10e). Similarly results show that the 𝑘 parameter in MWT does not influence retina 

layers segmentation accuracy (Figure 3.10f). Additionally, the segmentation error distribution 

shown in Figure 3.10g confirms that the 3D approaches give better accuracy than their 

2D versions.  



3 Graph-based segmentation of retina  

A. Stankiewicz 75 

 

(a) reference segmentation 

 

(b) average filtering (3×3 mask) 

 

(c) anisotropic diffusion (κ = 20) 

 

(d) wavelet soft thresholding (τ = 10) 

 

(e) 3D anisotropic diffusion (κ = 20) 

 

(f) multiframe wavelet thresholding (𝑘 = 10) 

 

(g) BM3D 

 

(h) BM4D 

Figure 3.9 Illustration of reference layers segmentation and automatic segmentation results after noise 
reduction with analyzed methods. Data is presented in a 200×200 pixels section (image is squeezed vertically 

for visualization) cropped from the center of the image in Figure 3.8. 
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(a) averaging filtering 

 

(b) block-matching 

 

(c) anisotropic diffusion 

 

(d) wavelet soft thresholding 

 

(e) 3D anisotropic diffusion 

 

(f) multiframe wavelet thresholding 

 

(g) best of (a), (c) – (f), BM3D, BM4D 

Figure 3.10 Box plots of MAE [px] (for all patients) of automatic retina layers segmentation after preprocessing 
with filtering methods (the number next to the abbreviation in the legends denotes tested parameter value) 
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Table 3.5 and Table 3.6 contain MAE and RMSE results obtained for the best parameter 

values for each denoising method. The best values for each segmented layer are denoted 

in bold. It is worth mentioning that IS/OS and RPE/Choroid borders achieve better 

segmentation accuracy than other layers, regardless of the denoising method. The 

quantitative results indicate better segmentation performance using the 3D methods than the 

2D ones, and all denoising methods positively influence the segmentation (compared to the 

baseline data). Furthermore, the AD methods provide lower average error values than the 

WST and MWT approaches. The best effect on segmentation has the block-matching 

algorithm in the 3D version (BM4D), although the 2D variant outperforms it for IS/OS border. 

Table 3.5 MAE (SD) values for automatic segmentation of selected retina layers [px] 

Method None AVG 

(3×3 px) 

AD 

(𝜿 = 𝟏) 

WST 

(𝝉 = 𝟏) 

BM3D AD3D 

(𝜿 = 𝟏) 

MWT 

(𝝉 = 𝟏𝟎) 

BM4D 

All layers 4.57 (7.27) 4.37 (7.15) 4.45 (7.11) 4.65 (7.72) 4.18 (6.93) 4.53 (7.21) 4.88 (7.33) 3.62 (6.07) 

ILM 2.84 (8.48) 2.86 (8.66) 2.80 (8.42) 3.00 (9.54) 2.53 (7.60) 2.83 (8.47) 3.07 (7.80) 2.42 (7.16) 

NFL/GCL 6.65 (11.71) 6.64 (11.70) 6.46 (11.45) 6.78 (12.52) 6.17 (11.43) 6.57 (11.53) 7.17 (11.77) 5.67 (10.71) 

IPL/INL 6.13 (11.09) 5.72 (10.79) 5.94 (10.81) 6.23 (11.61) 5.52 (10.78) 6.05 (10.97) 6.39 (11.30) 4.40 (9.20) 

INL/OPL 7.61 (10.86) 7.08 (10.49) 7.39 (10.56) 7.70 (11.28) 7.10 (10.54) 7.53 (10.76) 7.83 (11.27) 6.01 (8.67) 

OPL/ONL 5.32 (9.64) 4.89 (9.29) 5.15 (9.42) 5.42 (10.00) 4.68 (9.34) 5.25 (9.60) 5.64 (9.98) 3.70 (7.80) 

IS/OS 1.95 (4.69) 2.08 (4.82) 1.91 (4.63) 1.97 (4.78) 1.90 (4.54) 1.95 (4.72) 2.49 (4.92) 1.91 (4.46) 

RPE/Choroid 1.51 (3.48) 1.33 (3.13) 1.46 (3.43) 1.48 (3.44) 1.39 (3.37) 1.50 (3.50) 1.59 (3.27) 1.22 (3.14) 

Table 3.6 RMSE values for automatic segmentation of selected retina layers [px] 

Method None AVG 

(3×3 px) 

AD 

(𝜿 = 𝟏) 

WST 

(𝝉 = 𝟏) 

BM3D AD3D 

(𝜿 = 𝟏) 

MWT 

(𝝉 = 𝟏𝟎) 

BM4D 

All layers 14.01 13.96 13.87 14.65 13.13 13.82 16.03 12.03 

ILM 15.90 16.08 15.80 17.06 13.15 15.65 17.19 12.58 

NFL/GCL 19.23 19.25 19.02 20.01 18.32 18.85 21.73 17.74 

IPL/INL 15.78 15.63 15.56 16.43 15.07 15.53 18.55 13.25 

INL/OPL 15.87 15.61 15.67 16.44 15.32 15.69 18.58 13.12 

OPL/ONL 13.32 13.23 13.22 13.99 12.84 13.24 15.91 11.05 

IS/OS 6.85 7.01 6.82 6.90 6.50 6.82 8.00 6.53 

RPE/Choroid 5.18 4.72 5.16 5.12 5.41 5.20 5.02 5.18 

 

The analysis of the image quality improvement based on the QI value distribution 

is illustrated in Figure 3.11. As can be noticed, each method influences the image quality, 

enhancing or decreasing the tissue contrast. The QI value can be improved with the AD, WST, 

and AD3D methods, while the general distribution shifts to lower values for AVG, BM3D, 

WMF, and BM4D approaches. 
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Figure 3.11 Box plot of QI values distribution for tested images after denoising with selected methods 

Time consumption of tested denoising methods 

Although the accuracy obtained with the noise suppression method is an important factor, 

the time consumption of this step should also be taken into account. Table 3.7 summarizes 

the average time performance of each evaluated denoising approach for a single B-scan and 

a 3D volume. The test was performed in the Matlab/Simulink environment on a PC with a 64-

bit Windows operating system, 8 BG of RAM, and an Intel Core i7-3770 CPU (3.40 GHz) 

processor. For the algorithms that utilize a single 2D cross-section, the time is summed up for 

all B-scans in a 3D Retina volume.  

Table 3.7 Average time consumption of tested denoising methods [s] 

Method AVG 

(3×3 px) 

AD 

(𝜿 = 𝟏) 

WST 

(𝝉 = 𝟏) 

BM3D AD3D 

(𝜿 = 𝟏) 

WMF 

(𝒌 = 𝟏𝟎) 

BM4D 

1 B-scan 0.25 0.39 0.21 2.94 1.56 1.46 13.23 

3D volume 

(141 B-scans) 
34.64 55.35 30.00 415.10 219.54 206.41 1865.55 

 

The measured time for 2D approaches is substantially lower than for the 3D methods, with 

the smallest value for WST. Within 3D methods, the WMF is the quickest. It should also 

be noted that the computational time of the block-matching algorithm is much longer than 

other methods (6.9 minutes for the 2D version and 31.1 minutes for the 3D version using 

Matlab/Simulink implementation), which is unacceptable for a clinical solution.  

3.2.3 Adaptive selection of the region of interest 

As was shown in Section 3.2.1 in Figure 3.5, low quality B-scan images frequently have 

underexposed tissue regions (i.e., with very low signal) in the peripheral areas of the scan. 

As a result, the retinal layers are in those regions almost entirely invisible. Such a situation 

conflicts with the graph-search method assumption of the continuity of the layers within the 
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whole image width. The author of this thesis considers it the main cause of errors during 

automatic image segmentation. 

An appropriate solution to this situation can be removing low signal parts of the B-scan 

image along the image sides to overcome the discussed obstacle. Furthermore, this cropping 

procedure can be performed in a fixed or an adaptive manner, depending on the OCT signal 

strength. The author of this thesis tested these two propositions.  

Figure 3.12 presents the idea of identification of low quality parts of an image. The dashed 

line represents examples of cut lines: red line – initial image without cutting, orange line – 

image cut with constant width, green line – image cut with adaptively computed width.  

 
Figure 3.12 Two methods of removing low-level signal areas illustrated on  
(left) the B-scan image and (right) the reconstructed fundus image [148] 

For the adaptive solution, the image column at which a single B-scan image (of size 𝑀 rows 

by 𝑁  columns) should be cropped is defined by finding the first from the side column 𝑖 , 

in which the maximum value of the brightness (𝑋) is higher than the predefined threshold  

𝑡ℎ ∈  〈0, 255〉, as it is described by Equation (3.8): 

𝑖: max
𝑗∈〈1,𝑀〉

(𝑋𝑖𝑗) < 𝑡ℎ                               𝑖 ∈ 〈1, 𝑁〉 (3.8) 

Additionally, due to high variations in the maximum brightness value of each column, 

the computed cut width may not be similar for the neighboring cross-sections (as ideally 

presented in the right image in Figure 3.12). This causes a non-smooth cut region when 

analyzing the fundus overview. To overcome this, the preliminarily cut borders determined 

with Equation (3.8) are subjected to a morphological operation with a disc structuring element 

of the size 5×5 px defined in the Matlab/Simulink environment as the strel operator [257].  

adaptive algorithm 

constant crop width 

without 

cropping 

adaptive algorithm 

B-scan cross-section 
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Comparison of standard segmentation method and adaptive improvement technique 

The experiments aimed at determining the influence of the proposed method of removing 

low quality parts of the scan were performed by calculating the segmentation accuracy as the 

main metric of comparison. As before, seven retina layers are segmented, and the MAE (SD) 

and RMSE of their automatic and manual values are calculated. 

From the 50 patients in the CAVRI-A1 dataset, scans of 26 subjects (12 VMA and 14 VMT) 

had underexposed peripheral regions. Baseline results for those selected patients presents 

Table 3.8. Quantitative data are divided into subjects with only VMA condition and those with 

VMT pathology. As can be noticed, the MAE is similar in both groups, with slightly better 

values for the VMT subjects.  

Table 3.8 Baseline results of retina layers segmentation without removing low strength signal 

Retina border 
VMA VMT 

MAE [px] SD [px] RMSE [px] MAE [px] SD [px] RMSE [px] 

All borders 4.75 9.65 13.41 4.45 6.60 9.96 

ILM 3.61 12.72 13.48 2.44 7.04 7.57 

NFL/GCL 6.22 15.31 16.69 5.04 10.30 11.53 

IPL/INL 6.69 14.38 16.03 6.31 10.17 12.02 

INL/OPL 8.24 13.67 16.25 7.93 10.07 12.92 

OPL/ONL 5.53 12.06 13.39 5.95 9.46 11.22 

IS/OS 1.84 5.08 5.47 2.02 4.58 5.08 

RPE/Choroid 1.13 2.83 3.09 1.44 3.65 3.99 

On the selected group of low quality OCT data, the two proposed solutions were tested, 

namely image cropping with constant width and with adaptively computed width. For each 

method, a set of experiments were performed: 

• cropping with constant width of 5 %, 10 %, and 15 % of the B-scan width 

• cropping with adaptive width based on the intensity threshold 𝑡ℎ of: 60, 100, and 140. 

Box plots of the obtained MAE results are illustrated in Figure 3.13 and Figure 3.14 for VMA 

and VMT groups, respectively. 

As expected, better performance of the layers segmentation algorithm can be achieved 

by removing low signal strength data from the analysis. The median values in box plots 

in Figure 3.13 and Figure 3.14 indicate that the more of the peripheral region is removed with 

a constant parameter, the lower error values are obtained. This is true for both patients' 

subsets. For the constant width method, the lowest errors are obtained for removing 15 % 

of the image width. Their mean and median values are 4.09 px and 3.29 px for the VMA subset 

and 4.10 px and 3.80 for the VMT group, respectively. 
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Figure 3.13 Box plot of MAE [px] values of retina layers segmentation for VMA group.  

 
Figure 3.14 Box plot of MAE [px] values of retina layers segmentation for VMT group 

The improvement with the adaptive method is slightly lower for the VMA group regardless 

of the utilized threshold value and allows to obtain the best result with 𝑡 =  140. The mean 

and median values are 4.68 px and 3.67 px, respectively. On the other hand, the accuracy gain 

is better with the adaptive approach when segmenting images with VMT pathology. It allows 

to obtain mean and median error of 3.84 px and 3.51 px, respectively. 

The calculated MAE, SD, and RMSE values for results of cropping 15 % image width 

are listed in Table 3.9. Table 3.10 presents the results of cropping images based on the 

intensity threshold value of 𝑡 =  140. 

From the comparison of the results from Table 3.9 and Table 3.10, as well as the initial 

results reported in Table 3.8, it can be observed that the proposed adaptive approach gives 

the best results for both VMA and VMT groups. Some improvement can also be observed 

by removing 15 % of image width, but only for the VMA subset. Close analysis indicates lower 

error values for all layers regardless of the utilized method. This is further confirmed with 

images in Figure 3.15 presenting correct retina layers segmentations achieved with 

the proposed method for the same cross-sections as in Figure 3.5. As can be noticed 

by limiting the search region of the graph-based method, it is possible to reduce the influence 

of underexposed tissue areas. 
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Table 3.9 Results of layers segmentation after B-scan cropping of constant 15 % width 

Retina border 
VMA VMT 

MAE [px] SD [px] RMSE [px] MAE [px] SD [px] RMSE [px] 

All borders 4.09 8.63 11.81 4.10 8.01 10.99 

ILM 3.28 11.52 12.12 2.64 9.73 10.13 

NFL/GCL 5.19 13.47 14.43 4.52 12.20 12.99 

IPL/INL 5.61 12.77 13.91 5.60 11.41 12.64 

INL/OPL 7.27 12.42 14.34 7.26 11.17 13.14 

OPL/ONL 4.63 10.62 11.53 5.34 10.49 11.68 

IS/OS 1.48 4.57 4.82 1.81 4.75 5.11 

RPE/Choroid 1.14 2.86 3.07 1.56 3.75 4.08 

Table 3.10 Results of layers segmentation after adaptive cropping of B-scan width (with threshold 𝑡 =  140) 

Retina border 
VMA VMT 

MAE [px] SD [px] RMSE [px] MAE [px] SD [px] RMSE [px] 

All borders 4.68 9.20 12.76 3.84 5.23 8.26 

ILM 3.87 11.70 12.54 2.11 5.03 5.56 

NFL/GCL 6.10 14.03 15.44 4.32 8.45 9.49 

IPL/INL 6.48 13.56 15.18 5.38 8.37 9.90 

INL/OPL 8.04 13.04 15.60 7.03 8.41 10.90 

OPL/ONL 5.35 11.74 13.01 5.00 7.94 9.32 

IS/OS 1.82 5.15 5.53 1.69 3.63 4.05 

RPE/Choroid 1.11 2.67 2.91 1.34 3.14 3.46 

 
Figure 3.15 Example of correct retinal layers segmentation for cross-sections from Figure 3.5  

after adaptive cropping of the region of interest 
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The obtained layer borders allow for generating a virtual profile map of the distances 

between selected layers. The ophthalmology specialists use such analysis to evaluate retinal 

thickness in various regions around the fovea, e.g., with a circular ETDRS grid [54] (circles with 

diameters of 1, 3, and 6 mm around the fovea center). Figure 3.16 illustrates a virtual map 

of the distance between ILM and IS/OS borders for the reference (a) and automatic (b, c, d) 

annotations. 

 
(a) manual 

 
(b) without cutting areas of low signal levels 

 
(c) cropping the B-scan image with the selected 

constant width 

 
(d) the adaptive technique of removing the low 

quality area 

Figure 3.16 Retina thickness map calculated from the segmented layers 
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A close investigation of the obtained profiles indicates that excluding low quality parts 

from the graph search visually improves the algorithm's accuracy. Figure 3.16b demonstrates 

a map calculated with the baseline approach without an image cut. It contains artifacts 

in segmentation between the 60th and 70th cross-sections in the form of a red line. Similarly, 

erroneous segmentation was detected around 126th B-scan image (indicated with a blue line). 

Elimination of the selected parts with the constant width method (Figure 3.16c) allowed 

to improve segmentation near the lower outer sector but introduced other erroneous results 

in central cross-sections. Figure 3.16d presents an application of the adaptive technique that 

removed erroneous segmentations from the peripheral regions and also in the central B-scan. 

3.2.4 Influence of layer tracking on segmentation accuracy 

Low OCT data quality hiders also segmentation within a 3D scan, for example, in place 

of shadows caused by blood or low contrast between tissue layers. In such a situation, local 

changes in intensity gradient lead to erroneous segmentation, even if the segmentation was 

correct in a neighboring cross-section with similar quality.  

To eliminate the occurrence of such cases, the author proposed a solution extending 

the previously described graph-based algorithm to track the positions of the previously found 

two of the most prominent layers (namely ILM and IS/OS borders) in the neighboring images. 

This idea is based on the assumption that retinal layers are, by definition, continuous in the 

plane of a single image and between the cross-sections.   

The proposed solution incorporates limiting the search region of the graph for a given layer 

based on its placement in the neighboring cross-sections. The defined region of interest (ROI) 

includes the area encompassing a given line within a vertically limited zone in the B-scan. 

The pixels' weights outside of the ROI are removed from the graph's adjacency matrix. This 

zone's maximum possible vertical width was determined empirically as 20 pixels on each 

vertical side of the previously found line. This allows for the removal of invalid boundaries 

prior to the graph cut. An example of the obtained ROI for the ILM line is shown in Figure 3.17. 

The conducted experiment was aimed at testing a combination of previously proposed 

solution (i.e., limiting graph search to high-quality OCT signal described in Section 3.2.3) with 

two variants of the proposed method for the two most prominent lines in the OCT image: 

• tracking of only ILM surface 

• tracking of ILM and IS/OS borders. 

Furthermore, for tracking both of the lines, three starting points have been tested: 

• starting from the 3D scan edge (denoted as [E]) 

• starting from 1/3rd of the 3D scan vertical plane (i.e., 47th of 141 cross-sections, 
denoted as [M]) 

• starting from the center of the 3D scan (denoted as [C]). 
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(a) ILM segmentation 

 
(b) ROI around found ILM 

Figure 3.17 Example of OCT B-scan (a) with the detected ILM line marked with a red line and (b) with the 
narrow region of interest (ROI) visible as a non-gray-overlayed area along the found ILM line 

The results of the conducted experiments are presented in the following figures. Figure 

3.18 presents box plots of MAE values for VMA and VMT subsets for automatic retina layers 

segmentation without removing low quality signal areas at the scan edges. It can be noticed 

that the interquartile range (IQR) of the distributions for both subsets diminishes slightly with 

tracking both ILM and IS/OS borders: from 1.76 px to 1.20 px for the VMA subset (Figure 

3.18a) and from 2.44 to 2.12 px for VMT (Figure 3.18b).  

When tracking only the ILM layer, such a situation does not occur. Moreover, when the 

starting cross-section of image analysis is at the edge of the scan (denoted as [E]), 

the interquartile value for VMA increases. This can be explained by error propagation for the 

low quality peripheral region. Nevertheless, we do not observe significant changes in the 

median value across the variants. The biggest gain of 0.06 px for the VMA subset is detected 

when tracking both layers and starting from 1/3rd of the scan – the obtained median of MAE 

is 3.62 px. For the VMT subset, the gain in median value is even lower (namely 0.03 px) when 

tracking only the ILM layer regardless of the analysis starting point, resulting in a median 

of MAE equal to 3.84 px. 

Figure 3.19 illustrates results for VMA and VMT subjects while removing 15 % of the image 

width. As can be observed, layer tracking for the VMA subset allows to achieve narrower MAE 

distribution with the same median value of 3.26 px, regardless of the tracking starting point. 

On the other hand, for VMT subjects tracking only ILM leads to greater MAE values, with the 

broadest error distribution when starting from the center of the 3D scan. The best result 

for VMT with a median of 3.43 px was obtained for tracking both layer borders and starting 

from the central cross-section. 
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(a) VMA subset 

 
(b) VMT subset 

Figure 3.18 Box plots of MAE [px] of automatic retina layers segmentation for various layers tracking 
approaches without removing low quality signal at the scan edges 

 
(a) VMA subset 

 
(b) VMT subset 

Figure 3.19 Box plots of MAE [px] of automatic retina layers segmentation for various layers tracking 
approaches with cutting 15 % of image width 

The box plots for adaptive width cut for VMA and VMT subset are presented in Figure 3.20. 

Similarly, as in Figure 3.19, results for the VMA subset show that additional layer tracking 

provides better segmentation with narrower MAE distribution (the interquartile value 

changed from 4.37 to 3.22 px), but here an improvement in the median is also observed. 

The greatest gain in the median value is observed for tracking both ILM and IS/OS borders and 

starting from 1/3rd of the scan vertical width: from 4.00 to 3.30 px. For the VMT subset, 
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no significant changes in the error distribution were detected. However, a slight improvement 

of 0.14 px in the median value can be observed for tracking only ILM line. Additionally, 

the interquartile value increases when the tracking starts from the center of the 3D scan. 

 
(a) VMA subset 

 

(b) VMT subset 

Figure 3.20 Box plots of MAE [px] of automatic retina layers segmentation for various layers tracking 
approaches with adaptively removing low quality signal at the scan edges 

Table 3.11 contains combined results of MAE, SD, and RMSE for both datasets without 

image cropping. Table 3.12 provides results for the experiment by removing a fixed area 

of 15 % image width. The data obtained when utilizing adaptive image width cut is presented 

in Table 3.13. All tables present error values for the starting point in 1/3rd of the 3D scan non-

fast scanning direction (above denoted as [M]) as the best-selected approach. 

Table 3.11 The baseline MAE, SD, and RMSE values (in [px]) of automatic retinal layers segmentation  

Retina border 
Base algorithm 

Additional tracking of ILM 

border 

Additional tracking of ILM and 

IS/OS borders 

MAE SD RMSE MAE SD RMSE MAE SD RMSE 

Average value 4.45 7.18 14.07 5.58 6.33 18.04 4.38 4.37 9.94 

ILM 2.80 8.49 16.15 5.07 5.45 23.50 2.98 3.35 9.70 

NFL/GCL 6.47 11.52 19.25 8.26 9.16 23.63 6.40 7.28 14.40 

IPL/INL 5.96 10.90 15.80 7.18 9.53 17.90 5.79 7.76 11.17 

INL/OPL 7.42 10.65 15.88 8.42 10.38 18.96 7.20 7.84 11.79 

OPL/ONL 5.16 9.47 13.34 5.87 9.19 15.09 4.88 7.00 9.55 

IS/OS 1.93 4.61 6.86 1.93 4.61 6.86 1.91 3.44 4.40 

RPE/Choroid 1.44 3.36 5.17 2.31 7.16 14.55 1.50 2.84 4.07 
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Table 3.12 The MAE, SD, and RMSE values (in [px]) for the automatic retinal layers segmentation using the  
B-scan image truncated of a constant width value (15 % image width) 

Retina border 
Base algorithm 

Additional tracking of ILM 

border 

Additional tracking of ILM and 

IS/OS borders 

MAE SD RMSE MAE SD RMSE  MAE SD RMSE 

Average value 3.93 6.64 12.36 4.62 7.08 16.58 5.28 5.82 15.45 

ILM 2.60 7.66 13.97 3.75 6.90 19.90 2.89 4.62 9.56 

NFL/GCL 5.66 10.59 17.20 6.46 9.82 19.89 5.94 8.00 14.17 

IPL/INL 5.04 9.66 13.37 5.90 10.82 18.16 6.04 8.92 15.43 

INL/OPL 6.57 9.66 13.61 7.51 11.69 20.10 7.85 9.58 17.28 

OPL/ONL 4.42 8.65 11.71 4.99 9.62 15.05 5.77 8.35 14.66 

IS/OS 1.64 4.37 6.58 1.64 4.37 6.58 3.88 5.13 13.83 

RPE/Choroid 1.56 3.72 5.83 2.10 5.92 11.32 4.56 5.81 20.90 

Table 3.13 The MAE, SD, and RMSE values (in [px]) for the automatic retinal layers segmentation using the  
B-scan image truncated of a width calculated based on the signal quality level 

Retina border 
Base algorithm 

Additional tracking of ILM 

border 

Additional tracking of ILM and 

IS/OS borders 

MAE SD RMSE MAE SD RMSE  MAE SD RMSE  

Average value 4.24 7.10 13.76 5.07 5.96 17.44 4.10 4.66 9.97 

ILM 2.82 8.66 16.34 4.58 5.53 23.51 2.23 3.34 6.30 

NFL/GCL 6.22 11.38 18.88 7.58 8.86 23.33 5.66 6.98 12.91 

IPL/INL 5.59 10.57 15.23 6.53 9.14 17.89 5.17 7.32 9.63 

INL/OPL 7.04 10.30 15.27 7.82 9.77 18.40 6.81 8.41 12.61 

OPL/ONL 4.78 9.19 12.90 5.30 8.55 14.49 4.57 7.26 9.67 

IS/OS 1.81 4.60 6.72 1.81 4.60 6.72 2.27 4.31 7.37 

RPE/Choroid 1.41 3.21 5.02 1.86 5.95 10.94 2.00 4.59 9.47 

Analysis of the obtained results indicate that both tracking of layers (limitation of the 

searched region of interest) and removal of low quality signal parts of the image can improve 

the algorithm efficiency. In the case of tracking ILM and IS/OS borders, the average RMSE 

value for adaptive edge detection is 2-times smaller. The exclusion of low quality signal parts 

leads to lower MAE, SD, and RMSE values for all layers except RPE/Choroid border. Utilizing 

both proposed solutions allows to reduce the MAE to 4.1 px. This means the high efficiency 

of the proposed approach.  

Figure 3.21 illustrates a bar plot of the median of MAE [px] for a combination of the two 

proposed solutions: tracking retina borders across cross-sections (starting from 1/3rd of the 

scan) and an adaptive approach to limiting the graph-search region to sufficient signal quality. 

As can be noticed, tracking of layers borders improves segmentation accuracy regardless 

of the image area taken for analysis. 
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Figure 3.21 Bar plot of an average error for each variant of the automatic segmentation methods 

Summary of the proposed methods for enhancement of retina layers segmentation from 

OCT images 

The experiments presented in this Chapter discussed the influence of OCT data quality 

on the accuracy of retina layers segmentation with a graph-based method. To summarize, 

the conducted experiments show that retina layers segmentation accuracy is affected by the 

speckle noise and can be improved with propped selection of noise suppression in OCT image. 

A comparison of results for the two investigated subsets (VMA and VMT) leads to the 

following conclusions: 

1) Noise reduction:  

a. the best segmentation accuracy can be obtained with OCT noise suppression 

with block-matching and collaborative filtering (BM4D); nevertheless, 

this method requires the longest computational time and cannot be applied 

directly in a clinical application  

b. the WST method is a balanced solution to compromise the required time with 

segmentation accuracy and image quality. 

2) Removing low quality signal:  

a. the conducted experiment confirm that low signal strength areas of the OCT  

B-scans impede proper segmentation of retina layers.  

b. the suggested solution of limiting graph search region to visible area of retina 

tissue improves segmentation accuracy: the gain in MAE value is 14 % for both 

VMA and VMT subsets.  

c. despite higher computational requirements, the adaptive method allows 

for better results than the easier method of removing parts of the image with 

a constant width. 
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d. the distribution of the segmentation error for the VMA subset is better when 

using adaptive width cut regardless of the tracking method, while for the VMT 

subset both edge cutting methods improve segmentation (although 

the combination of tracking both layers and using fixed image width cut 

provided the best results) 

3) Layers tracking: 

a. tracking of ILM layers allows to lower the MAE values in the majority of the 

cases, while tracking of both ILM and IS/OS borders provides better results than 

only tracking ILM layer 

b. setting the starting point for tracking at the edge of the scan (i.e., first cross-

section) is susceptible to error propagation stemming from low signal strength 

in the peripheral area and diminishes the accuracy of the overall segmentation 

c. for the VMA subset, the best results are obtained when the starting point 

for tracking is set in the center of the scan, where the signal strength and layers 

contrast is high, and no discontinuities of the layers in healthy tissue are 

present 

d. for the VMT subset, the best results are obtained for tracking from 1/3rd of the 

scan (where the probability of tissue irregularities is low and the signal level 

is sufficiently high); setting the starting point in the center of the scan 

introduces error propagation due to irregularities and discontinuities of the 

tissue. 

The conducted experiments prove that the accurate analysis of low quality OCT images 

is possible even when OCT signal quality is too low, and underexposure or the presence 

of lesions requires adjustment of the graph-based algorithm. Furthermore, the proposed 

adaptive solution improves the segmentation accuracy, which is the first and crucial step 

for further calculations in medical diagnosis. 
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Chapter 4 

4 Segmentation of preretinal space 

with neural networks 

In this Chapter, an algorithm for segmentation of preretinal space is presented. For this 

purpose, the author utilized a convolutional neural network in a task of pixel-wise semantic 

segmentation. Section 4.1 describes the proposed solution, an adaptation of five network 

architectures for OCT data, and the training setup. Section 4.2 evaluates the selected network 

architectures. A set of experiments presents the influence of two types of loss function and 

four data augmentation techniques on the overall segmentation scores.  

Section 4.3 discusses the problem of the incorrect topology of segmented classes that 

results from similar intensities of the pixels in vitreous and preretinal space areas of the OCT 

image. The author presents two solutions of incorporating either a Relative Distance Map 

or a non-typical convolution kernel. Extensive experiments contained in this Section evaluate 

their effect on improving topological correctness. 

4.1 Employment of UNet-based neural networks for PCV 

detection  

4.1.1 Selection of network architecture 

For the segmentation of the PCV line using a deep learning approach, the author utilized 

a fully convolutional neural network based on the U-Net topology. The literature review 

indicated five convolutional network architectures that gave promising results. They include 

UNet, Attention UNet, ReLayNet, LFUNet, and DRUNet. These five networks were adapted 

to the task of preretinal space segmentation. The processing pipeline of the proposed system 

to obtain a segmentation of VRI structures from a single OCT image is presented in Figure 4.1.  

The proposed framework learns correct preretinal space segmentation by separately 

processing a cohort of 2D OCT cross-sections. The predicted probability maps produced by the 

neural network are compared with the ground truth, and the resulting error (loss) is used 

to update the network weights. The final binary segmentation maps are used to calculate 

borders between the segmented image regions, namely the PCV, ILM, and RPE lines. During 

the test phase, error metrics of Dice Coefficient (DC), Mean Absolute Error (MAE), and 

Topology Incorrectness Index (TII) are computed. 
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Figure 4.1 General scheme of the processing pipeline 

Below is a short description of each tested architecture and its characteristics. Each 

network was adapted for the preretinal space segmentation problem by defining the number 

of output channels of multi-class classification as 4 separate retina structures aimed 

to identify: vitreous, preretinal space, retina, and region below the retina. The input for each 

network is a single channel (gray-scale) OCT image with 640×384 px resolution. Figures 

located under the descriptions illustrate the architecture of each network model. Each blue 

box represents a multi-channel feature map (the number of channels is denoted on top of the 

box). The input size at each level is denoted on the left-hand side of the boxes. White boxes 

denote feature maps copied from the encoder to the decoder part of the network. Legend 

in the lower-left corner describes operations indicated with colored arrows. The most 

promising topologies are: 

• Baseline UNet – is an architecture proposed by [36] that obtains good accuracy in the 

semantic segmentation of biomedical images. The detailed construction of the UNet 

architecture was described in Section 2.3.4. The advantage of UNet is a skip 

connection: i.e., the feature maps at the end of each encoder level are concatenated 

to the upsampled decoder maps before being processed by the convolution blocks. 

Such operation allows for preserving relevant information from the input features. 

The final probability maps are obtained by applying a softmax activation function after 

a final 1×1 px convolution operation in the decoder block that transforms the last 

feature matrix into a segmentation mask for each class. Figure 4.2 presents a scheme 

of this architecture (with 32 initial features). 
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Figure 4.2 U-Net architecture employed for the preretinal space segmentation problem  

• Attention UNet – An extension of the UNet architecture is the Attention UNet 

proposed by [260]. It introduces attention gates to highlight any significant features 

passed through the skip connection. Its advantage is maintaining a simple design while 

decreasing model sensitivity to the background regions. The general design of this 

network is similar to the baseline UNet, with five double 3×3 px convolution blocks 

in the encoder and decoder paths. The attention module is applied to each encoding 

result before concatenating to the decoder blocks. This grid-based gating mechanism 

aims to minimize the influence of irrelevant or noisy features. The PyTorch 

implementation of the Attention UNet network utilized in this experiment was 

obtained from [261]. Figure 4.3 illustrates the adaptation of this network (with 32 

initial features) to the task of preretinal space segmentation. 

 

 
Figure 4.3 Attention Gates U-Net architecture employed for the preretinal space segmentation problem 
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• ReLayNet [217] was the first CNN employed for the retina layer segmentation task. 

It is based on UNet, but with fewer convolution layers in each encoder and decoder 

block, a non-expanding number of features, and only 3 pooling/unpooling operations. 

An addition to such simplified architecture is the Batch Normalization procedure 

performed after each convolution and before the ReLU activation function. 

The ReLayNet also differs from the baseline UNet with the kernel size used for each 

convolution, which is 7×3 px instead of 3×3 px. As was reported in [217], this ensures 

that the receptive field at the lowest level in the network covers the entire retina 

depth. Figure 4.4 illustrates the adjustment of this network for the preretinal space 

segmentation.  

 
Figure 4.4 ReLayNet architecture employed for the preretinal space segmentation problem 

• The LFUNet network architecture is a combination of UNet [36] and FCN [262] with 

additional dilated convolutions [263].  In this network, the encoder part incorporates 

the baseline UNet encoder (4 blocks of two convolution layers with kernel size 3×3 and 

a 2×2 px max pooling layer with stride 2). The decoder part consists of two parallel 

paths: the baseline UNet decoder and an adaptation of FCN. The FCN path performs 

the addition of up-sampled feature blocks from the last encoder block with original 

encoder blocks of the matching size. The upsampling in both paths is performed with 

the 2×2 px up-convolution layer after each convolution block. The additional strength 

of this network introduces the last part, which is a concatenation of final feature maps 

obtained from both decoder paths. They are subsequently dilated with three separate 

kernels, and the resulting matrices are again concatenated before final convolution. 

The output probability map for each pixel belonging to one of 𝐶 classes was obtained 

with the Softmax function. ReLu (Rectified Linear Unit) was used for all activation 

functions in the hidden layers. Adaptation of this architecture (with 32 initial features) 

to the preretinal space segmentation task is presented in Figure 4.5. 
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Figure 4.5 LFUNet architecture employed for the preretinal space segmentation problem 

• The DRUNET architecture [231] also comprises an encoder and decoder parts with 

skip-connections. As with the ReLayNet, the pooling operations here are reduced to 3. 

Incorporating residual blocks [227] in both parts is what gives this topology the 

advantage. The contribution of the residual block is the addition of a residual feature 

map (from the first map in each of the lower levels) after a 1×1 convolution layer. 

Additionally, all blocks were constructed using dilated convolution layers, which allows 

for a bigger field of view for this architecture. The dilation rate doubles from 1 to 4 

in the encoder path. The features are transferred from the encoder to the decoder 

sections with a residual block with a dilation rate of 8. In the decoder part, two residual 

blocks with dilation rates of 4 and 2 are used. A standard block (without residual 

connection) with a dilation rate of 1 is used at the last decoder level. A 1×1 convolution 

layer with the number of filters equal to the segmented classes and a softmax 

activation function produces the final probability outputs. In contrast to previous 

networks, 16 initial features are sufficient here, and their number does not increase 

with each level (similar to the ReLayNet). Figure 4.6 presents the adjustment of this 

topology to the preretinal space segmentation task. 

Based on the literature review, these five network architectures were selected as the most 

promising for the preretinal space segmentation from the OCT images. Each of the topologies 

has its strengths and individual characteristics likely to contribute to this task. A comparison 

of their performance is described in the following Sections.  

Although some networks (e.g., ReLayNet) were originally trained on image patches, this 

approach cannot be applied to the considered task. Due to the PCV line not being sufficiently 

visible throughout the scan or partially connected to the ILM line, using narrow patches could 

mislead the network. In the proposed experiment, the input to each network is an entire  
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B-scan with the resolution of 640×384 px (illustrated in the above Figures) to encourage 

smoother layer surfaces across the image.  

 
Figure 4.6 DRUNet architecture employed for the preretinal space segmentation problem 

4.1.2 Training and evaluation setup 

This Section describes the setup and parameters of the system for all segmentation 

experiments conducted with DNN described above. The evaluation metrics used for 

comparison are the Dice Coefficient and Mean Absolute Error described in Section 2.3.1. 

Additionally, in the course of experiments, a new metric of Topology Incorrectness Index (TII) 

(described in Section 4.3) was established to determine the topology correctness of the 

segmented anatomical regions.  

The goal of the segmentation task is to predict 4 separate areas in the image, further 

described as a set of classes 𝐶 =  {0: Vitreous, 1: Preretinal Space, 2: Retina, 3: Space 

under Retina}. The task in a multi-class classification is to obtain the class-wise probabilities 

of each pixel in the image. Then, after a SoftMax function, each pixel is assigned to the class 

with the highest probability. 

All neural networks described in this paper were implemented using Python 3.7 with 

PyTorch 1.8.1 [264] and NVIDIA CUDA 11.2 libraries [265]. The experiments were conducted 

on a 64-bit Ubuntu operating system with an Intel Core i7-7700K 4.20GHz computing 

processor and 32 GB RAM. In addition, the NVIDIA GeForce GTX 1080 Ti GPU card with 11 GB 

memory was used during training and evaluation.  

The CAVRI dataset of 7050 images was randomly split into training, validation, and testing 

subsets with the ratio of 80 %, 10 %, and 10 %, respectively. Each image, before processing, 
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was subjected to a standard 𝑧 −  score normalization [266]. The network weights were 

learned with the images from the training set. At the end of each training epoch model's 

accuracy and validation loss were calculated using the validation set. After a finished training, 

the obtained network model was evaluated using the test set, which contains images 

previously unseen by the network.   

The PyTorch Lightning 1.3.5 library was used for experiments to implement training, 

validation, and testing procedures. During training, the network weights were optimized using 

an Adam optimizer [267] and the following parameters: learning rate 𝑙𝑟  =  5 ∙ 10
−6, 𝛽1 =

0.9, 𝛽2 = 0.999. The batch size was set to one, due to the random cropping procedure used 

for data augmentation (see Section 4.3), which produces images of various sizes. Every 

network was trained for at least 50 epochs, and the training was stopped if the validation loss 

did not decay for the last five epochs. Models were evaluated on the best checkpoint 

determined with the lowest validation loss value. Although the original UNet, LFUNet, and 

Attention UNet architectures have 64 channels in the first layer, these networks were 

implemented with 32 initial feature vectors due to memory constraints. However, based 

on the initial experiments, this change does not significantly impact model accuracy. Similarly, 

no significant difference in performance for the DRUNet topology was observed when using 

32 or 16 initial features; thus, the smaller number was selected. 

During training, the progress of the learning process is ascertained at the end of every 

epoch by calculating: 

• accuracy (ACC) according to Equation (2.18), 

• and loss value with one of the methods described in Section 4.2.1. 

These two metrics are obtained for both the training and validation sets. The final model 

evaluation was performed using the test set, and the metrics of: 

• Dice Coefficient (DC) – computed for each of the segmented classes separately 

(i.e., Vitreous, Preretinal Space, Retina, and Region below Retina) with Equation (2.16), 

• Mean Absolute Error (MAE) with Standard Deviation (SD) – calculated using Equation 

(2.13) for three lines (i.e., PCV, ILM, and RPE) separating the segmented regions. 

4.2 Influence of training parameters on PCV segmentation 

accuracy 

A comprehensive set of experiments designed to measure the performance of various 

deep neural networks employed to segment preretinal space from OCT images was 

performed. This section presents the evaluation of the influence of loss function, data 

augmentation, and network architecture on the model accuracy. 
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4.2.1 Loss function 

The specificity of retina layers segmentation in OCT images requires a comprehensive 

evaluation of the experiment setup. This includes analysis of the parameters such as loss 

function and its weights. Thus, the accuracy of segmentation with the most commonly used 

loss functions is compared in this Section.  

The author of the thesis tested the segmentation accuracy of the prediction 𝐼 for a ground 

truth image 𝐼  using Weighted Categorical Cross-Entropy Loss (WCCE) 𝐿𝑊𝐶𝐶𝐸(𝐼, 𝐼) , and 

Weighted Dice Loss (WDice) 𝐿𝑊𝐷𝑖𝑐𝑒(𝐼, 𝐼) which are extensions of loss functions described in 

Section 2.3.4, as well as their weighted sum defined as a Combined Loss function 𝐿𝑡𝑜𝑡𝑎𝑙(𝐼, 𝐼).  

The adaptation of WCCE Loss to the problem of preretinal space segmentation with 

separate weights for each segmented region describes Equation (4.1): 

𝐿𝑊𝐶𝐶𝐸(𝐼, 𝐼) = − ∑[
1
𝑛𝑐
∑𝜔𝑐(𝑥, 𝑦) · 𝐼𝑐(𝑥, 𝑦) · log (𝐼𝑐(𝑥, 𝑦))
𝑥,𝑦

]

𝑐∈𝐶

 (4.1) 

where 𝐼𝑐(𝑥, 𝑦) is a binary ground truth mask for class 𝑐 ∈ 𝐶 = {0, 1, 2, 3} (defined in Section 

4.1.2) taking value 0 or 1 at each location (𝑥, 𝑦) , for 𝑥 ∈ 𝑋 = {1, . . . , 𝑤} and 𝑦 ∈ 𝑌 =

{1, . . . , ℎ}, where 𝑤  and ℎ denote the width and height of the image respectively; 𝐼𝑐(𝑥, 𝑦) 

is the prediction probability of the pixel with indices 𝑥 and 𝑦 belonging to class 𝑐; 𝑛𝑐  is the 

number of elements in a given class 𝑐; and 𝜔𝑐(𝑥, 𝑦) is an additional weight given to each pixel 

based on its class and position within it.  

In detail, the PCV line is frequently on the level of speckle noise, and because of OCT 

characteristics, the region edges can be blurred. Hence, to boost the network’s sensitivity 

to class boundaries, the pixels at the edges are given additional weight 𝑞1 . Additionally, 

the pixels belonging to classes of interest (namely preretinal space and retina) are given 

an additional weight 𝑞2  to adjust for their lower area in the image (as opposed to the 

background). Equation (4.2) describes the overall pixel weight calculation: 

𝜔𝑐(𝑥, 𝑦) = 1 + 𝑞1 ∙ 𝑓(|∇𝑦𝐼𝑐(𝑥, 𝑦)| > 0) + 𝑞2 ∙ 𝑓(𝐼𝑐(𝑥, 𝑦)|𝑐=1,2) (4.2) 

where 𝑓(∗) is an indicator function taking the value of 1 if the (∗) is true, and else 0. The ∇𝑦 

operator represents the vertical gradient. The weights 𝑞1 = 10  and 𝑞2 = 5  are chosen 

experimentally. The utilized loss function is implemented as proposed in the referenced and 

compared methods [217], [229] to sustain consistency between each network architecture.  

Figure 4.7 illustrates a visualization of the weights calculated for an example of an OCT 

image and its ground truth data. Colors in the ground truth represent the assignment of each 

pixel to a given class (black – Vitreous, dark gray – Preretinal Space, light gray – Retina, and 

white – Region below Retina). For the 4 selected classes, the weighing scheme associates the 

value of 1 to the background regions (both the Vitreous and the Region below the Retina) and 
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5 for the classes of interests (i.e., Preretinal Space and Retina). The borders between classes 

have a weight of 10. The colors in the weight map denote the weight value for a given pixel. 

The plot on the right visualizes a cross-section of the weight map through the middle (192nd  

column for an image of 640×384 px resolution). 

Original Image Ground truth 𝐼 Weights map 𝜔 

Central cross-section  

of the weights map 

𝜔(: ,192) 

  
  

Figure 4.7 Visualization of the pixel-wise weight components for the cross-entropy loss.  

The second loss function is computed based on a Dice coefficient (2.16). The Dice 

Coefficient utilized to measure the overlap of regions belonging to a given class 𝑐 describes 

the adapted Equation (4.3): 

𝐷𝑖𝑐𝑒𝑐 =
2|𝐼𝑐 ∩ 𝐼𝑐|

|𝐼𝑐| + |𝐼𝑐|
  (4.3) 

where |∗|  denotes a sum of pixels in the corresponding mask of ground-truth 𝐼𝑐  and 

prediction 𝐼𝑐 for a class 𝑐. 

Consequently, the Dice loss 𝐿𝐷𝑖𝑐𝑒  takes into account the Dice Coefficient for all of the 

classes. It is expressed as follows: 

𝐿𝐷𝑖𝑐𝑒(𝐼, 𝐼) = 1 −∑ 𝜆𝑐𝐷𝑖𝑐𝑒𝑐(𝐼𝑐, 𝐼𝑐)
𝑐∈𝐶

 (4.4) 

where 𝜆𝑐 is a weight assigned to each class to compensate for their imbalance within the set. 

Numeric analysis of all of the pixels in the dataset belonging to each class shows that the 

preretinal space is the most underrepresented class, while the background (vitreous region 

and the region below the retina) spans the largest area in each volume. The weights 𝜆𝑐 

presented in Table 4.1 are calculated for each class using the following formula: 

𝜆𝑐 =

1
𝑛𝑐

∑
1
𝑛𝑐𝑐

 (4.5) 
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where 𝑛𝑐  is the number of pixels belonging to class 𝑐 for all 𝑐 ∈ 𝐶. All weights sum up to 1, 

giving a Dice loss equal to 0  for all classes with a maximum Dice Coefficient, according 

to Equation (4.4). 

Table 4.1 Loss weights 𝜆𝑐  for each segmented class 

Class 0: Vitreous 1: Preretinal Space 2: Retina 3: Region below Retina 

Loss weight 0.1 0.5 0.29 0.11 

 

The overall loss function 𝐿𝑡𝑜𝑡𝑎𝑙(𝐼, 𝐼) , being a weighted sum of the above-described 

formulas, is calculated as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙(𝐼, 𝐼) = 𝛼𝐿𝐶𝐸(𝐼, 𝐼) + 𝛽𝐿𝐷𝑖𝑐𝑒(𝐼, 𝐼) (4.6) 

where 𝛼 ∈ 〈0,1〉  and 𝛽 ∈ 〈0,1〉  are the weights assigned to each loss component. 

The parameters for pixel-wise weight in Equation (4.2) are 𝑞1 = 10 and 𝑞2 = 5. 

Segmentation results – comparison of various loss functions 

This subsection presents a quantitative comparison of preretinal space segmentation with 

a UNet architecture using various combinations of the above-described loss functions. Next, 

the performance of five DNN networks described in Section 4.1 was tested with the most 

promising loss function.  

To evaluate which loss function would be the best for the defined task, the author of the 

thesis trained a basic UNet network using various loss functions according to Equation (4.6):  

• Weighted Categorical Cross-Entropy Loss (i.e., 𝛼 = 1, 𝛽 = 0) only,  

• Weighted Dice Loss (i.e., 𝛼 = 0, 𝛽 = 1) only,  

• Combined Loss with equal weights for CCE and Dice Loss (i.e., 𝛼 = 1, 𝛽 = 1), 

• Combined Loss favoring CCE Loss (i.e., 𝛼 = 1, 𝛽 = 0.5), 

• Combined Loss favoring Dice Loss (i.e., 𝛼 = 0.5, 𝛽 = 1).  

Figure 4.8 presents the accuracy and loss values used to evaluate the training process. 

As can be seen in the plots, the accuracy in both the training (Figure 4.8a) and the validation 

(Figure 4.8c) phases increases rapidly from 0 in the initial epochs. It saturates at 0.995 for the 

40th epoch for both training and validation. The growth rate is similar for all losses, although 

the accuracy using only Dice Loss and only CE Loss increases more slowly than the others. 

The quickest accuracy growth is obtained with Combined Loss with weights 𝛼 = 0.5, 𝛽 = 1, 

although at the end of the training best validation accuracy is obtained with Combined Loss 

with weights 𝛼 = 1, 𝛽 = 0.5 (0.997). 
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(a) training accuracy 

 
(b) training loss 

 
(c) validation accuracy 

 
(d) validation loss 

Figure 4.8 Plots of accuracy and loss for training and validation subsets comparing various tested loss functions 

The loss values (Figure 4.8b and Figure 4.8d) represent the loss calculated with each 

described method. As the combined loss is a sum of both CE and Dice loss, its value is greater 

than each of them separately, and the final values cannot be compared directly. Nevertheless, 

all loss values decrease in each epoch (i.e., the network learns valuable information), and after 

50 epochs reach the value of 0.04 for the Dice Loss and 0.085 for the CE Loss. 

Table 4.2 contains the test results obtained for this experiment. They indicate that the 

best accuracy can be obtained with the Combined Loss with the weights of 𝛼 = 1 (for WCCE 

Loss) and 𝛽 = 0.5 (for WDice Loss). Only the MAE value for the PCV line gave a better result 

with a Combined Loss favoring the Dice component. The lowest accuracy values for the 

Preretinal Space (both Dice Coefficient and the PCV MAE) were obtained using WCCE Loss 

only. Other image regions received the lowest scores when utilizing only Weighted Dice Loss. 

Therefore, both methods can be considered beneficial for maintaining good accuracy of both 

Retina and Preretinal Space regions segmentation. Based on the above, the Combined Loss 

with weight values of 𝛼 = 1 and 𝛽 = 0.5 were chosen for all further experiments. 

It should also be noted that the Dice Coefficients of Vitreous, Retina, and Region below 

Retina are close to or above 0.99 regardless of the loss function used. The significant influence 

can be observed only for the Preretinal Space scores and PCV line, for which the best loss 

combination gives an improvement of 3.7 %. 
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Table 4.2 Dice Coefficient and Mean Absolute Error results of 4-class segmentation with UNet using various 
loss functions and weights 

Loss 

Dice Coefficient MAE [px] 

Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

Weighted Cross Entropy 0.9921 0.9089 0.9927 0.9976 10.40 0.57 0.78 

Weighted Dice 0.9895 0.9431 0.9913 0.9956 2.67 0.66 1.04 

Weighted Combined Loss (α=1, β=1) 0.9928 0.9386 0.9919 0.9968 2.73 0.60 0.91 

Weighted Combined Loss (α=0.5, β=1) 0.9924 0.9403 0.9921 0.9967 2.52 0.61 0.85 

Weighted Combined Loss (α=1, β=0.5) 0.9942 0.9458 0.9929 0.9976 2.83 0.56 0.75 

Segmentation results – comparison of various network architectures 

The next experiment was designed to compare the performance of the five selected neural 

network architectures. All five topologies are trained with the same parameters (e.g., learning 

rate, loss function, number of epochs). Figure 4.9 illustrates the learning process of the five 

networks.  

 
(a) training accuracy 

 
(b) training loss 

 
(c) validation accuracy 

 
(d) validation loss 

Figure 4.9 Plots of accuracy and loss for training and validation subsets showing performance of various 
network architectures with the same parameters 

The training accuracy (Figure 4.9a) and loss (Figure 4.9b) are computed at the end of each 

epoch on the training set. As can be noticed the models gain accuracy of over 0.99 at the end 

of the training. The lowest value of 0.994 obtains ReLayNet, and the Attention UNet reaches 
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the best accuracy of close to 1. Similarly, the training loss drops to 0.12 for all networks except 

the Attention UNet, which achieved a training loss of 0.03.  

On the other hand, when analyzing the validation plots of accuracy (Figure 4.9c) and loss 

(Figure 4.9d), it is apparent that both Attention UNet and ReLayNet have not learned 

to generalize. After reaching a loss value of around 0.25 and 0.4, respectively, their loss 

increases and appears to have a random component. Furthermore, the rest of the models did 

not show the signs of overfitting – their loss steadily decreased and retained lower values. 

These models obtained much lower validation loss at the end of the training: 0.11 for UNet, 

0.12 for LFUNet, and 0.18 for DRUNet. 

Table 4.3 presents baseline results of DC and MAE scores obtained utilizing various 

network architectures and the best Loss function determined in the previous experiment. 

In addition, Table 4.3 includes the results of a graph-based approach employed for this task 

as an extension of the method described in Chapter 3. Here, the graph search was conducted 

to directly find three segmentation layers (i.e., PCV, ILM, and RPE), for which the MAE results 

were performed in a straightforward fashion using Equation (2.13). As the obtained lines 

separate regions searched with semantic pixel-wise segmentation, these regions were used 

to calculate the corresponding Dice Coefficients. The graph-search algorithm was 

implemented in the Matlab/Simulink environment [257] on a 64-bit PC with Windows 10 

operating system, Intel Core i7-3770 3.40 GHz processor, and 8 GB RAM. 

Table 4.3 The baseline Dice Coefficient and Mean Absolute Error (with Standard Deviation) results of 4 class 
pixel segmentation with various neural network models 

Model 

Dice Coefficient MAE (SD) [px] 

Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

Graph-search 0.9842 0.8217 0.9385 0.9888 7.29 (13.7) 5.10 (12.1) 5.20 (15.5) 

UNet 0.9942 0.9458 0.9929 0.9976 2.83 (6.05) 0.56 (0.14) 0.75 (0.35) 

LFUNet 0.9928 0.9337 0.9922 0.9972 3.11 (5.72) 0.60 (0.18) 0.84 (0.46) 

Attention UNet 0.9822 0.8679 0.9918 0.9953 5.40 (10.04) 0.63 (0.77) 0.87 (1.11) 

ReLayNet 0.9529 0.7827 0.9906 0.9814 25.66 (26.34) 0.84 (1.30) 1.45 (1.77) 

DRUNet 0.9923 0.9184 0.9891 0.9972 4.23 (10.20) 0.80 (1.19) 1.13 (0.93) 

The Dice Coefficient and MAE (SD) metrics show that all neural networks perform better 

than the graph-based method. It should be noted that when utilizing graph search, the MAE 

value is over 5 px for both retina borders, while for all CNNs, this value varies between 0.5 and 

1.5 px. From the CNNs, the UNet has the best performance in all segmented areas and 

borders, with 94.58 % Preretinal Space classification correctness and MAE for PCV line 

of 2.8 px. Furthermore, the ReLayNet gives the worst results (78.27 % DC for the Preretinal 

Space and MAE of 25.66 px for PCV), which may be explained by a relatively lower number 

of features compared to other architectures.  
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In general, the preretinal space boundary of PCV and the image classes it separates (i.e., 

Vitreous and Preretinal Space) have worse accuracy than the clearly defined ILM and RPE 

borders and the two image regions they define. This confirms the difficulty of determining 

preretinal space boundary due to similar pixel intensities of this region to the vitreous part. 

4.2.2 Data augmentation 

This Section describes data augmentation (DA) techniques utilized in this research 

to improve the model's ability to generalize and increase the overall segmentation accuracy. 

Thanks to this, the number of the image examples in the training subset expanded artificially 

with each technique while maintaining the data characteristics that may occur naturally. 

The following 2D transformations from those introduced in Section 2.3.5 were used: 

• Horizontal Flip – allows obtaining a mirrored image which coincides with having a scan 

of the other eye (left for right and right for left), preserving the morphology of retinal 

structures (such as vessels and layers topology). 

• Rotation – slight variations in retina orientation are natural when acquiring an OCT scan. 

Thus, training the model with randomly rotated examples allows it to anticipate various 

retina orientation angles. To determine the range of feasible rotations, the author 

performed a statistical analysis of the retina orientation distribution within the CAVRI 

dataset (see Figure 4.10). The obtained results indicate similar distribution for all subsets 

(within ±25°). Therefore, an angle span of ±20° was selected for a random rotation. 

   

Figure 4.10 Circular distributions of retina orientations in each subset of the CAVRI dataset [268] 

• Vertical Translation – automatic acquisition protocol in an OCT device aims to focus 

the device's optics on the retina and place it in the center of the scan. Therefore, 

a statistical analysis of the retina position within the image was performed to determine 

the retina vertical position distribution. For that purpose, the center of mass in each 

image was estimated. The obtained positions were plotted within the image dimensions 

range, as illustrated in Figure 4.11. As can be seen, each subset maintains a similar 

distribution, confirming the appropriate dissemination of samples between the subsets. 

Based on the gathered information, the range of vertical translation of the image was 

set to ±10 % of the image height, equal to ±64 px. 
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Figure 4.11 Distribution of center of mass of images. Blue dots represent the calculated position of the center 
of mass for each OCTcross-section. The Red ’+’ sign denotes the mean center of mass, and the red ellipsis 
encapsulates the 2.5 standard deviations of the data. The data is presented on the plane with resolutions 

equal to the OCT cross-sections [268] 

• Random Crop – performing an augmentation technique of random cropping allows 

to improve the robustness of the network regardless of image size or the ratio of fovea 

width to the image width. In the following experiments, a crop with randomly selected 

values for both width and height was employed (within the range of 80 – 100 % of the 

original values). 

 

Utilization of such data augmentation techniques allowed to increase the number 

of training examples, as shown in Table 4.4. 

Table 4.4 Number of images used for the training and evaluation [268] 

CAVRI Dataset Training Validation Testing 

Baseline images 5608 721 721 

After removing 3 % of anomalies [268] 5434 701 703 

After removing 3 % of anomalies and adding DA 27170 701 703 

 

Figure 4.12 illustrates the application of the selected data augmentation techniques 

on examples of OCT images from the CAVRI database.  
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Original Image Horizontal flip Random rotation Random translation Random crop 

     

    
 

     

    
 

Figure 4.12 Example B-scans and their transformations with selected data augmentation techniques 

Segmentation results – effect of various data augmentation techniques 

The following experiment was set up to test the influence of data augmentation 

on training the neural network model. Utilizing only basic UNet architecture, the author 

tested expanding the training subset with: 

• each data augmentation technique separately (4 tests, 10 868 training examples), 

• two techniques (6 test combinations, 16 302 training examples), 

• three techniques (4 test combinations, 21 736 training examples), 

• all techniques (27 170 training examples). 
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Table 4.5 presents the results of DC, and MAE (with SD) obtained on the test subset. 

The values are grouped according to the number of images used for the training (i.e., the 

number of data augmentation techniques used).  

Table 4.5 Dice Coefficient and Mean Absolute Error (with Standard Deviation) results of 4 class segmentation 
with baseline UNet using various data augmentation techniques (best values in a given category are in bold) 

Model 

Dice Coefficient MAE (SD) [px] 

Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

No augmentation 0.9954 0.9486 0.9931 0.9978 2.19 (4.55) 0.54 (0.17) 0.73 (0.36) 

Flip 0.9958 0.9471 0.9929 0.9978 2.72 (6.17) 0.59 (0.49) 0.77 (0.50) 

Rotation 0.9964 0.9560 0.9939 0.9982 1.69 (3.69) 0.50 (0.13) 0.64 (0.26) 

Translation 0.9961 0.9524 0.9937 0.9981 2.24 (5.44) 0.51 (0.13) 0.65 (0.28) 

Crop 0.9957 0.9483 0.9937 0.9980 3.32 (6.89) 0.57 (0.71) 0.67 (0.61) 

Flip + Rotation 0.9963 0.9541 0.9938 0.9982 2.53 (7.03) 0.52 (0.30) 0.65 (0.34) 

Flip + Translation 0.9965 0.9555 0.9940 0.9982 2.31 (5.21) 0.50 (0.13) 0.62 (0.28) 

Flip + Crop 0.9966 0.9578 0.9941 0.9983 1.48 (2.93) 0.51 (0.38) 0.62 (0.40) 

Rotation + Translation 0.9965 0.9567 0.9940 0.9982 1.83 (3.83) 0.49 (0.12) 0.62 (0.26) 

Rotation + Crop 0.9964 0.9558 0.9940 0.9982 1.91 (4.49) 0.50 (0.22) 0.62 (0.30) 

Translation + Crop 0.9964 0.9576 0.9940 0.9982 1.73 (4.19) 0.52 (0.71) 0.64 (0.65) 

Flip + Rot. + Trans. 0.9967 0.9573 0.9942 0.9982 1.99 (5.18) 0.50 (0.23) 0.61 (0.31) 

Flip + Rot. + Crop 0.9968 0.9575 0.9941 0.9983 1.62 (3.32) 0.50 (0.19) 0.61 (0.28) 

Flip + Trans. + Crop 0.9967 0.9569 0.9943 0.9982 1.98 (4.87) 0.49 (0.32) 0.58 (0.32) 

Rot. + Trans. + Crop 0.9964 0.9584 0.9942 0.9983 1.68 (4.07) 0.49 (0.22) 0.60 (0.32) 

Flip + Rot. + Trans. + Crop 0.9968 0.9591 0.9944 0.9984 1.33 (2.88) 0.50 (0.28) 0.57 (0.29) 

 

Although it might be expected that utilizing any data augmentation technique improves 

model performance, as can be seen in Table 4.5, only in the case of adding Rotation of the 

input image that supposition holds true (all DC values were increased by up to 0.74 % and 

MAE values were decreased by up to 0.5 px). This supports the observation that angle setting 

for each patient is an individual parameter that can change even between examinations. 

Moreover, the Cropping of the image lowered the segmentation accuracy of the preretinal 

space (DC dropped by 0.03 %, and MAE value for PCV increased by 1.13 px), and the Flipping 

of the image degraded all metrics except the Dice Coefficient of the background regions. 

When implementing two data augmentation techniques, thus tripling the number 

of training examples, a combination of Flipping and Cropping provided the best results for all 

metrics (improvement of 0.92 % DC for Preretinal Space and 0.71 px MAE for PCV). 

An exception is the MAE value for ILM and RPE lines (here, a combination of Rotation and 

Translation improved the MAE value to 0.49 px).  

By combining three data augmentation techniques, the results are of similar 

improvement. Their differences are up to 0.15 % of DC and 0.37 px of MAE value. Thus, 
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no best approach was ascertained here. Nevertheless, combining all 4 methods provided the 

best results and improved the classification of Preretinal Space to 95.91 % and lowered 

the MAE value for the PCV line to 1.33 px (and to 0.5 px for ILM and 0.57 px for RPE lines). 

No significant improvement for other classes was observed, as they are all above 99.44 % 

correctly segmented.  

Segmentation results – effect of data augmentation for various CNNs 

Following the results of the above experiment, the author tested the influence of applying 

all data augmentation methods (i.e., horizontal flip, random rotation, random translation, 

and random cropping) on the performance of the selected five neural network architectures. 

Figure 4.13 presents training and validation metrics obtained during this analysis. 

 
(a) training accuracy 

 
(b) training loss 

 
(c) validation accuracy 

 
(d) validation loss 

Figure 4.13 Plots of accuracy and loss for training and validation subsets showing training performance 
of various network architectures when utilizing all data augmentation techniques 

Plots presented in Figure 4.13a show that the training accuracy reaches 98 % after only 2 

epochs when without data augmentation, at least 7 epochs were needed (see Figure 4.9a). 

Although training loss in Figure 4.13b obtains a value similar to before (Figure 4.9b), and the 

Attention UNet being the best architecture (with training loss of 0.05), here LFUNet and 

baseline UNet have a lower value (0.075), while training loss of ReLayNet and DRUNet 

saturate at the level of 0.1. 
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Plots in Figure 4.13c show that for validation accuracy, the saturation level of values close 

to 1 (only ReLayNet and Attention UNet has a lower value of 0.98 and 0.993, respectively) are 

achieved for earlier epochs. The validation loss (Figure 4.13d) has greater values than the 

training loss, as can be expected. Similarly, as for previous measures, the final values at the 

50th epoch are lower (0.09 for LFUNet and 0.16 for DRUNet) when compared to the 

experiment without utilized data augmentation (0.12 and 0.21 for LFUNet and DRUNet, 

respectively, in Figure 4.9d). Here also, an overtraining of ReLayNet and Attention UNet can 

be observed.  

By comparing plots from Figure 4.13 and Figure 4.9, a conclusion can be made that 

by adding data augmentation, it is possible to train the network using a smaller number 

of epochs with lower validation loss.  

Table 4.6 shows the effect of applying models trained with data augmentation on the 

testing set. Since the graph-based approach is not a machine learning method (data 

augmentation is not applicable here), it was excluded from the comparison. 

Table 4.6 Dice Coefficient and Mean Absolute Error (with Standard Deviation) results of 4 class pixel 
segmentation with various neural networks using 4 data augmentation techniques 

Model 

Dice Coefficient MAE (SD) [px] 

Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

UNet 0.9968 0.9591 0.9944 0.9984 1.33 (2.88) 0.50 (0.28) 0.57 (0.29) 

LFUNet 0.9973 0.9590 0.9942 0.9985 1.50 (3.53) 0.50 (0.12) 0.57 (0.24) 

Attention UNet 0.9850 0.8802 0.9926 0.9956 4.02 (6.54) 0.60 (0.26) 0.80 (0.73) 

ReLayNet 0.9603 0.8015 0.9918 0.9859 12.63 (13.84) 0.71 (0.59) 0.96 (0.88) 

DRUNet 0.9951 0.9370 0.9916 0.9978 2.35 (3.76) 0.62 (0.23)  1.09 (1.58) 

As can be expected, adding more varying images helps train the network. This strategy 

boosts the segmentation outcome in all of the methods. The MAE value of the PCV line is two 

times smaller compared to the data in Table 4.3 (for all methods). Slight improvement in MAE 

value for ILM and RPE lines can be observed (of 0.1 px and 0.2 px, respectively). The Dice 

Coefficient for the Preretinal Space class has improved from 1.5 % for the UNet, and up to 

2.5 % for LFUNet architecture (compared to Table 4.3). The Dice Coefficients for other classes 

remained at a similar level of over 99.44 – 99.85 %. The ReLayNet and Attention UNet obtain 

poor results of both DC (80.15 % and 88.02 % for Preretinal Space, respectively) and MAE 

(12.69 px and 4.02 px for PCV).  

Figure 4.14 illustrates the improvement in DC distribution for the Preretinal Space class 

after utilizing the data augmentation technique. From the box plots can be deduced that not 

only the average value has increased (presented in Table 4.6), but the overall performance 

was also improved. This conclusion is based on a visibly narrower interquartile range (IQR) 
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and a higher minimum score for all tested network architectures. The biggest improvement 

is observed for the LFUNet (increase in minimum value by 7.6 % and 2.8 % in IQR). 

 
(a) without data augmentation 

 
(b) with data augmentation 

Figure 4.14 Box plots for Dice Coefficient of Preretinal Space for various neural network architectures 

Figure 4.15 presents examples of the obtained segmentation masks. Examples shown 

in Figure 4.15 include a set of representative cases of VMT and VMA and illustrate a qualitative 

comparison of the obtained results. It includes 2 VMA cases (rows 1 and 2), 2 VMT cases with 

perifoveal vitreous detachment (examples 3 and 4), and 1 VMA case of slight detachment over 

a wide area (last row). 

Standard UNet architecture and LFUNet provide the best probability maps, although UNet 

has slightly better performance in segmenting preretinal space, retinal area, and PCV border. 

In the presented images, it is visible that poor evaluation scores from Table 4.6 for ReLayNet 

and Attention UNet are the effect of the network's difficulty in discerning the areas with 

similar intensities (namely: Vitreous, Preretinal Space, and Region below the Retina). 

As an effect, patches of those classes appear in incorrect places in the prediction masks. Such 

occurrences are less common with UNet and LFUNet; nevertheless, those architectures are 

not immune to them, and further improvements are necessary. 

The UNet and LFUNet correctly learn the preretinal and retinal borders (regardless of the 

PCV intensity in the image). Their results are a significant improvement over the graph-based 

method. For both VMT and VMA cases, these networks perform very well visually. 

Furthermore, the placement of preretinal space in the image or the area it spans does not 

affect their accuracy. 
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Figure 4.15 Example B-scans with corresponding reference mask and segmentation results for analyzed neural 
networks and a graph-based method. Each shade in the segmentation mask represents a separate class. 

The neural network learns smoother region borders than the graph-search (dependent 

on image intensity gradient). Since it is not affected by local intensity variations -- it can 

robustly generalize the preretinal space structure. Moreover, the graph-based approach has 

difficulty correctly detecting the PCV border where it connects with the ILM line. This 

is a disadvantage compared to the neural network methods that do not present such 

hindering.  

In cases when the preretinal space takes a narrow area of the image (e.g., last row in Figure 

4.15), a slight thickening of preretinal space in the prediction mask (e.g., region border 1 px 

higher) would significantly affect the DC value (e.g., decreasing it by half). Such a result may 
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lead to the assumption that the designed network is not performing well. Thus, the MAE value 

(relatively small in such a case) should also be considered.  

When comparing the performance of various network architectures, not only their 

accuracy should be taken into account, but also their computational complexity and time 

needed for evaluation. Table 4.7 presents the training and prediction time for the tested 

networks and the number of their trainable parameters.  

Table 4.7 Comparison of complexity and average time consumption of the evaluated DNN models 

Model 

No. of 

parameters 

[×106] 

Training time 

without DA 

(50 epochs) [h] 

Training time  

with DA 

(50 epochs) [h] 

Prediction time 

(3D scan of 141 B-scans) [s] 

excluded 

image loading 

included  

image loading 

UNet 7.8 4.17 18.33 0.26 6.33 

LFUNet 8.1 9.58 29.58 0.32 6.98 

Attention UNet 9.4 7.92 34.38 0.47 6.97 

ReLayNet 28.3 6.67 27.92 0.19 6.52 

DRUNet 0.88 2.92 12.50 0.29 5.46 

From the data presented in Table 4.6 and Table 4.7, it can be noticed that both ReLayNet 

and Attention UNet, despite having a greater number of network features, do not obtain 

correct segmentations. UNet and LFUNet, having around 8 million parameters, obtain similar 

accuracy results, with UNet being slightly better (0.17 px lower MAE for PCV line). 

Interestingly, the DRUNet architecture, despite having a significantly lower number 

of parameters (9 times less than UNet and LFUNet), obtains only a 2.2 % lower DC for 

classification of Preretinal Space and 1 px higher MAE of PCV. Furthermore, DRUNet produces 

good quality maps with only some imperfections near borders and singular pixel patches 

of the incorrect class (see Figure 4.15).  

Thanks to incorporating specialized equipment like the NVIDIA GeForce GTX 1080 Ti 

GPGPU card for fast image processing, the total prediction time for a 3D OCT scan (including 

loading scan to memory) is from about 5.6 s for DRUNet, up to almost 7 s for LFUNet. This 

is an acceptable time consumption for a clinical application. 

4.3 Improving correctness of layers topology 

4.3.1 Problem formulation 

The disadvantage of pixel classification is the difficulty of the network to capture high-level 

information about the problem, such as the fact that the retina layers have strict topological 

order, and no pixel from the upper retinal layer can be classified as part of the layers located 

below and vice versa. Figure 4.16 illustrates such topologically incorrect classification.  
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Figure 4.16 Two examples of topologically incorrect segmentation of OCT retina image using baseline UNet 
architecture. Each color in the ground truth and segmentation map represent a different class (from the 

darkest: Vitreous, Preretinal Space, Retina, Region below Retina). 

This problem is prevalent for the tasks where pixels from different classes have similar 

spatial characteristics (e.g., intensity, gradient). Although the most recent approaches are 

focused on ensuring the correct topology of retina layers during segmentation [269], [270], 

they tend to increase the system's complexity. 

To analyze the prevalence of this problem within the CAVRI dataset, the author introduced 

Topology Incorrectness Index (TII). This metric indicates the percentage of tested images with 

incorrect layers topology in the vertical direction. It is computed based on a vertical gradient 

of the predicted segmentation mask. The author tested the segmentation masks obtained 

with the best models from the previous experiment (with data augmentation, see Section 

4.2.2). The results are presented in Table 4.8. 
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Table 4.8 Topology incorrectness index (TII) of OCT segmentation using data augmentation 

Model 
DC for  

Preretinal Space 

MAE (SD) 

for PCV 
TII [%] 

No. of 

parameters 

UNet 0.9591 1.33 (2.88) 15.08 7.8 M 

LFUNet 0.9590 1.50 (3.53) 11.52 8.1 M 

DRUNet 0.9370 2.35 (3.76) 30.30 3.4 M 

Attention UNet 0.8802 4.02 (6.54) 44.95 9.4 M 

ReLayNet 0.8015 12.63 (13.84) 88.34 28.3 M 

As can be deduced from the information gathered in Table 4.8, both UNet and LFUNet 

provide segmentation maps with 95.9 % correctness (Dice Coefficient) and low border error 

value (1.3 – 1.5 px of MAE for PCV). Nevertheless, even up to 15 % of OCT cross-sections 

contain incorrect order of classes. These erroneous patches can be small and near the 

segmented borders, which has a relatively low impact on the classification metrics. 

Nevertheless, other network architectures suffer significantly from this problem, with 

ReLayNet being the worst (88 % of images with erroneous topology).  

The author of this thesis addressed the issue of incorrect class topology in OCT image 

segmentation by introducing a Relative Distance Map tailored to preretinal space 

characteristics as guidance information for the system. The proposed solution is described 

in detail in Section 4.3.2, with a comparison to the state-of-the-art method. Furthermore, the 

author also proposed and evaluated an alternative improvement method incorporating 

various sizes of the convolution kernel of the DNN. This is discussed further in Section 4.3.3. 

4.3.2 Enhancing Preretinal Space segmentation with Relative Distance Map 

It is important to notice that the problem of preserving correct retina layers topology 

during segmentation is even more challenging for the preretinal space since it has almost the 

same intensity range as the vitreous. Thus, it could be beneficial to provide additional 

information to the neural network that incorporates weight for each image pixel regarding its 

position within the image. Such weight map, called Relative Distance Map (RDM), can 

be added to the neural network as a second channel of the input image. The discussed 

solution is based on an approach presented by Lu et al. [204]. This method utilizes prior 

information of retina borders obtained from an initial segmentation with a CNN.  

The author of this thesis proposed a modified version of this approach tailored to the 

problem of segmenting the preretinal space. Here, the weight map utilizes prior segmentation 

of both the retina borders and the preretinal space border. In addition, the author also tested 

if a map calculated without prior segmentation (which would not require two cascaded 

networks and is computationally less expensive) could also facilitate this task. Figure 4.17 

presents a general scheme describing the idea of utilizing an RDM.  
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Figure 4.17 Proposed improvement of the preretinal space segmentation system with DNN [268] 

 

Relative Distance Map based on prior segmentation 

In the original solution [204] (referred to in this thesis as 2NetR – second net Retina) weight 

in the map 𝑀(𝑥, 𝑦) for each pixel with indexes 𝑥 and 𝑦 is calculated with Equation (4.7): 

𝑀(𝑥, 𝑦) =
𝑦 −  𝐼𝐿𝑀(𝑥)

𝑅𝑃𝐸(𝑥)  −  𝐼𝐿𝑀(𝑥)
 (4.7) 

where 𝐼𝐿𝑀(𝑥) and 𝑅𝑃𝐸(𝑥) represent the vertical index value of ILM and RPE lines in an 𝑥 

column of the image, respectively. As a result, the RDM takes: 

• a negative value for pixels above the retina: 𝑀(𝑥, 𝑦) ∈ (−∞, 0),  

• value in the range between 0 and 1 for pixels within the retina region: 𝑀(𝑥, 𝑦) ∈ 〈0, 1〉, 

• a value greater than 1 for pixels below the retina: 𝑀(𝑥, 𝑦) ∈ (1,∞). 

Given similar pixel intensities of the Vitreous and Preretinal Space classes, such weight 

assignment may not be sufficient to distinguish between them. To increase the significance 

of preretinal space, the author proposed to utilize a distance map (further called 2NetPR – 

second net PreRetinal space) that would take the following values: 

• for vitreous region: 𝑀(𝑥, 𝑦) ∈ (−∞, 0), 

• for preretinal space: 𝑀(𝑥, 𝑦) ∈ ⟨0, 0.5), 

• for retina: 𝑀(𝑥, 𝑦) ∈ 〈0.5, 1〉,  

• for the region below the retina: 𝑀(𝑥, 𝑦) ∈ (1,∞). 

This can be defined for each pixel with the Equation:  
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𝑀(𝑥, 𝑦) =

{
  
 

  
 

𝑦 −  𝑃𝐶𝑉(𝑥)

𝑅𝑃𝐸(𝑥)  −  𝑃𝐶𝑉(𝑥)
 if 𝑦 < 𝑃𝐶𝑉(𝑥) or 𝑦 > 𝑅𝑃𝐸(𝑥),

1

2

𝑦 −  𝑃𝐶𝑉(𝑥)

𝐼𝐿𝑀(𝑥)  −  𝑃𝐶𝑉(𝑥)
 if 𝑦 ∈  〈𝑃𝐶𝑉(𝑥), 𝐼𝐿𝑀(𝑥)〉,

1

2

𝑦 −  𝐼𝐿𝑀(𝑥)

𝑅𝑃𝐸(𝑥)  −  𝐼𝐿𝑀(𝑥)
 if 𝑦 ∈  〈𝐼𝐿𝑀(𝑥), 𝑅𝑃𝐸(𝑥)〉.

 (4.8) 

with 𝑃𝐶𝑉(𝑥) representing the 𝑦 coordinate of the PCV line in 𝑥 image column.  

Nevertheless, such a map requires prior knowledge of the retina borders in a given cross-

section. This information can be obtained via the graph-theory approach [204] or by 

performing the segmentation twice – incorporating two neural networks [229]. Furthermore, 

this method is subjected to error propagation, which may occur if the initial segmentation 

algorithm provides incorrect ILM and RPE borders. 

Relative Distance Map without prior segmentation 

To minimize the need for multiple segmentation runs, the author also investigated 

an approach that does not require any a priori knowledge about the retina position within the 

analyzed image. Two following solutions are evaluated: 

• Basic Map with Orientation (further called BasicOrient) – Firstly, a map of linearly 

spaced values in the range of 〈0,1〉 is taken into consideration. This test aims to check 

if such a simple map will provide the network with sufficient information about the 

layers' hierarchy. Additionally, the values are arranged according to the retina 

orientation to account for its rotation within the image. The retina orientation 

is determined by applying a Gaussian filter on the image (with σ = 3), obtaining vertical 

and horizontal image edges using Sobel edge detection, calculating pixel-wise arctan 

of the acquired borders, and estimating its mean value.  

• Cumulative Sum Map (further called CumSum) – The second method is based 

on calculating a cumulative sum of intensity image values for each column of the 

image. This approach stems from the assumption that pixels in the vitreous and 

preretinal space region have very low-intensity values compared to the retinal region.  

Additionally, the pixels below the retina have average (or low) intensity, hence 

providing lower variations in the cumulative sum.  

 

Figure 4.18 illustrates prepared distance maps for an example of an input B-scan, using 

four methods described above.  The color of  the upper row images represents values in the 

range given for each distance map. The images below illustrate the same map but in grayscale. 

Here, the colors represent the value range of B-scan image intensity (i.e., black: values below 

0, the shade of gray: values in the range of 〈0,1〉, white: values bigger than 1). 
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Figure 4.18 Visualization of tested distance maps for an example of a B-scan. The upper row utilizes a color 
scale individual for each map. Maps in the lower row have the same color scale as the B-scan image (showing 

which pixels are within the same value range) [268] 

When analyzing both color and gray-scales images in Figure 4.18, it can be noticed that 

the 2NetPR map makes a distinction in the placement of the preretinal space (compared 

to the 2NetR map) while maintaining a similar value scale (from -5 to 5 for this example). 

The color placement of the CumSum map indicates shadows caused by irregular retina tissue 

reflectivity and a nonlinear vertical character of the weight map. Its values range from 0 to 2.5, 

though values of the retina region are in a range similar to the 2NetR map (0 to 1). Moreover, 

the BasicOrient map presents a linear weights distribution (all with the same values as the  

B-scan intensities) with a slight rotation to the left (7°). 

Segmentation results - preserving layers topology with RDM 

The experiment undertaking the problem of topology incorrectness was conducted 

by performing the 4-class segmentation procedure two times: first, inputting only the OCT  

B-scan to the neural network; and a second time, with a 2-channel input composed  

of a B-scan image and a Relative Distance Map. The general setup of the experiment is the 

same as described in Section 4.1.2, utilizing the Combined Loss function and data 

augmentation (see Section 4.2). 

The training procedure was analyzed based on accuracy and loss measures on the training 

and validation sets at the end of each training epoch. Figure 4.19 presents the obtained 

evaluation values for the UNet architecture utilizing baseline processing (”no map”), 

BasicOrient map, CumSum map, 2NetR map, and 2NetPR map. 
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(a) training accuracy 

 
(b) training loss 

 
(c) validation accuracy 

 
(d) validation loss 

Figure 4.19 Accuracy and loss plots for training and validation datasets. 

From the plots presented in Figure 4.19, no significant difference in the training can 

be observed. For the training accuracy (Figure 4.19a), the BasicOrient map obtains lower 

values (0.992 instead of an average of 0.993 after 50 epochs). Validation accuracy (Figure 

4.19c) is similar for all maps, with the highest value of 0.9983 reached after the first 10 epochs 

using the 2NetPR map and baseline approach, achieving a slightly lower final accuracy 

(0.9978). 

Figure 4.19b illustrating the training loss, indicates that the 2NetPR map allows the 

network to reach the lowest loss value faster (after barely 10 epochs) without overfitting – 

its validation loss (Figure 4.19d) does not increase over the next training epochs. 

Nevertheless, all other methods obtain lower validation loss (from 0.083 to 0.088) except for 

the 2NetPR, which stops at 0.108. 

Table 4.9 includes the results of the evaluation on the test subset. It contains Dice 

Coefficient values for five tested network architectures with each of the proposed maps and 

the baseline investigation. The best results obtained for each neural network architecture are 

marked in bold. 
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Table 4.9 Dice Coefficient of 4 class pixel segmentation with various relative distance maps 

Model 
Distance 

Map 

Dice Coefficient 

Vitreous Preretinal space Retina Region b. Retina 

UNet 

--- 0.9968 0.9591 0.9944 0.9984 

BasicOrient 0.9976 0.9606 0.9944 0.9987 

CumSum 0.9977 0.9609 0.9945 0.9987 

2NetR 0.9976 0.9601 0.9943 0.9986 

2NetPR 0.9975 0.9588 0.9943 0.9987 

LFUNet 

--- 0.9973 0.9590 0.9942 0.9985 

BasicOrient 0.9975 0.9583 0.9942 0.9987 

CumSum 0.9977 0.9605 0.9944 0.9987 

2NetR 0.9974 0.9581 0.9944 0.9987 

2NetPR 0.9973 0.9571 0.9943 0.9987 

DRUNet 

--- 0.9951 0.9370 0.9916 0.9978 

BasicOrient 0.9870 0.8935 0.9889 0.9914 

CumSum 0.9932 0.9153 0.9909 0.9975 

2NetR 0.9928 0.9195 0.9915 0.9979 

2NetPR 0.9960 0.9513 0.9909 0.9975 

Attention UNet 

--- 0.9850 0.8802 0.9926 0.9956 

BasicOrient 0.9824 0.8551 0.9880 0.9962 

CumSum 0.9886 0.9025 0.9926 0.9981 

2NetR 0.9860 0.8675 0.9920 0.9980 

2NetPR 0.9963 0.9508 0.9926 0.9981 

ReLayNet 

--- 0.9603 0.8015 0.9918 0.9859 

BasicOrient 0.9614 0.7528 0.9771 0.9930 

CumSum 0.9730 0.7937 0.9906 0.9976 

2NetR 0.9651 0.7594 0.9905 0.9974 

2NetPR 0.9968 0.9544 0.9927 0.9981 

 

The results in Table 4.9 show that for all of the neural network architectures adding 

an RDM improves segmentation for the Vitreous, Preretinal Space, and Region below the 

Retina classes (only for the Retina class, no improvement was observed since both retina 

borders are distinctly visible). The greatest gain is noted for the Preretinal Space class: 7.06 % 

and 15.29 % for the Attention UNet and ReLayNet, respectively, but only 0.18 %, 0.15 %, and 

1.43 % for the UNet, LFUNet, and DRUNet respectively. It should be noticed that with the 

neural networks with better initial segmentation scores (UNet and LFUNet), only slight 

improvement can be observed, and it is with the CumSum map. For the networks with lower 

original Dice Coefficient values of Preretinal Space (Attention UNet, ReLayNet, and DRUNet), 

the 2NetPR map provides better results.  

Table 4.10 presents MAE results and the TII for these experiments to indicate how each 

discussed method influences the network's ability to discern similar classes. 
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Table 4.10 Mean Absolute Error (with Standard Deviation) and Topology Incorrectness Index results of 4 class 
pixel segmentation with various distance maps 

Model Distance Map 
MAE (SD) [px] TII 

[%] PCV ILM RPE 

UNet 

--- 1.33 (2.88) 0.50 (0.28) 0.57 (0.29) 15.1 

BasicOrient 1.42 (3.33) 0.47 (0.12) 0.56 (0.26) 4.8 

CumSum 1.25 (2.52) 0.47 (0.12) 0.55 (0.25) 6.8 

2NetR 1.48 (2.94) 0.48 (0.27)  0.59 (0.38) 9.4 

2NetPR 1.20 (2.49) 0.50 (0.33) 0.57 (0.50) 3.7 

LFUNet 

--- 1.50 (3.53) 0.50 (0.12) 0.57 (0.24) 11.5 

BasicOrient 1.58 (3.32) 0.49 (0.12) 0.58 (0.26) 8.8 

CumSum 1.22 (2.54) 0.47 (0.12) 0.56 (0.25) 4.8 

2NetR 1.64 (3.97) 0.48 (0.22) 0.56 (0.40) 6.3 

2NetPR 1.26 (2.57) 0.51 (0.33) 0.56 (0.40) 5.0 

DRUNet 

--- 2.35 (3.76) 0.62 (0.23) 1.09 (1.58) 36.0 

BasicOrient 6.77 (8.15) 1.46 (0.48) 1.88 (1.02) 54.9 

CumSum 3.86 (6.72) 0.65 (0.31) 1.04 (0.87) 49.4 

2NetR 3.50 (6.48) 0.76 (2.97) 0.98 (2.84) 40.0 

2NetPR 1.97 (6.81) 0.80 (5.20) 1.05 (3.84) 18.4 

Attention UNet 

--- 4.02 (6.54) 0.60 (0.26) 0.80 (0.73) 50.5 

BasicOrient 7.31 (13.36) 0.87 (2.01) 2.05 (5.40) 52.9 

CumSum 4.50 (11.96) 0.59 (0.21) 0.79 (0.53) 38.7 

2NetR 4.74 (11.54) 0.72 (1.86) 0.98 (1.87) 44.1 

2NetPR 2.04 (4.18) 0.65 (2.07) 0.86 (2.25) 12.8 

ReLayNet 

--- 12.63 (13.84) 0.71 (0.59) 0.96 (0.88) 88.3 

BasicOrient 20.00 (23.96) 0.59 (2.26) 0.79 (5.54) 92.0 

CumSum 15.06 (19.13) 0.79 (0.89) 1.00 (0.72) 79.5 

2NetR 18.55 (19.63) 0.70 (0.65) 1.11 (0.82) 88.1 

2NetPR 1.42 (2.64) 0.58 (0.72) 0.81 (0.88) 10.8 

 

When analyzing the results from Table 4.10, it can be noticed that all maps have improved 

the topology for CNNs that previously performed relatively better with respect to vertical 

layers order (i.e., UNet and LFUNet). Here, the best TII improvement is from 15.1 % to 3.7 % 

for UNet with 2NetPR and from 11.5 % to 4.8 % for LFUNet with CumSum. At the same time, 

the best performance for these networks for MAE values gave the CumSum map – 0.47 px for 

ILM and 0.55 px for RPE (the only exception is the MAE for PCV line that has the lowest value 

of 1.2 px when utilizing 2NetPR map).  

For the other networks (DRUNet, Attention UNet, and ReLayNet), the simple BasicOrient 

map increases the topology error (TII increased to 54.9 %, 52.9 %, and 92 % for these 

networks, respectively) and the MAE (2.9 times for DRUNet, 1.8 times for Attention UNet, and 

1.6 times for ReLayNet). Nevertheless, the 2NetPR gives the best topology improvement and 

reduces the incorrectness of class order to 18.4 %, 12.8 %, and 10.8 % for these architectures, 

respectively. The lowest MAE value for PCV is also obtained using the 2NetPR map (1.97 px 

for DRUNet, 2.04 px for Attention UNet, and 1.42 px for ReLayNet, which are values close 
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to those obtained by UNet and LFUNet). No significant improvement can be observed for the 

MAE of ILM and RPE lines, and the error values are similar (ranging from 0.58 px to 1 px).  

From the above comparison, the proposed maps significantly improve layers' topology 

(from 2 to 8 times). Two of the proposed relative distance maps (CumSum and 2NetPR) 

perform better than the original 2NetR map. Furthermore, the CumSum map is less 

computationally expensive and does not require any prior segmentation. Nevertheless, 

a simple linear map (BasicOrient) does not preserve correct layers topology and, in most 

cases, hiders network's ability to segment OCT images properly. On the other hand, for UNet 

and LFUNet, this map lowered the number of images with incorrect topology (to 4.8 % and 

8.8 %, respectively). 

4.3.3 Increasing segmentation accuracy with a non-typical kernel size 

As was stated before, the pixel intensity values of the Preretinal Space class are similar 

to those of the Vitreous class. Therefore, classification of a given pixel may be done based 

on limited information about the pixel’s surroundings. Furthermore, the shape and area of the 

preretinal space vary from B-scan to B-scan.  

Another way of increasing the network’s robustness to the spatial hierarchy of the classes 

is by increasing its field of view. This can be achieved with is using a bigger convolution kernel. 

Although AlexNet [233] used a big 11×11 px kernel which increases object classification, after 

the introduction of the VGG network [271], large kernels were replaced with multiple small 

3×3 filters. Since then, the majority of works on CNN (including those described in the 

literature review in Section 2) use only standard square kernels of the size 3×3. On the other 

hand, the ReLayNet [217] authors incorporated a vertical convolutional kernel of 7×3 px 

to be consistent with input OCT image dimensions. They also explained that the network with 

such kernel size could capture the entire retina at the lowest encoder level.  

Nevertheless, for the retina layers segmentation task this approach has not been 

sufficiently discussed or analyzed. Furthermore, in standard image processing, the shape and 

values of an applied filter are designed to reflect the shape of features to detect [272]. 

For example, there are different filters for vertical, horizontal, and diagonal edge detection 

tasks. In the neural network solution, when the orientation and shape of the objects to be 

classified are unknown, a square convolution kernel gives an advantage. 

A close analysis of OCT images allowed the author of this thesis to notice that: 

• image dimensions are non-equal with different ratios for fast-scanning and non-

fast-scanning directions; typically, as was indicated in [217], kernel shape in CNN 

should reflect the input image shape (e.g., a CNN with a square input image has 

a square-shaped kernel), and therefore a network with rectangular input data 

could benefit from a rectangular convolution filter 
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• the searched objects within the image (retina borders and layers) are arranged 

horizontally (only a small difference in intensity can be detected from left to right 

side of the image, mainly due to rotation or spherical tissue structure), and pixel 

intensities vary significantly in the vertical direction in a narrow part of the image 

(retina layers) 

• the PCV line has various arrangements within a 3D OCT scan, it is frequently 

underexposed (what generates line discontinuities), and its placement, 

orientation, and attachment points are hard to foresee. 

The above observations allowed the author of this thesis to hypothesize that the image 

processing performed with a convolution kernel tailored to the data distribution in the image 

would be beneficial for retina segmentation. Furthermore, it can also be advantageous 

to utilize a bigger convolutional kernel to detect spatial intensity changes. Therefore, 

in contrast to common CNN approaches, the author investigated utilizing a non-typical 

convolutional kernel, both of a bigger size and rectangular shape. In the proposed 

experiments, the influence of the following kernel sizes is analyzed: 

• square kernels: 3×3, 5×5, and 7×7 px 

• vertical kernels: 5×3, 7×3, and 9×3 px 

• horizontal kernels: 3×5, 3×7, and 3×9 px. 

Figure 4.20 illustrates different fields of view spanned with standard (3×3 px), vertical 

(7×3 px), and horizontal (3×7 px) kernels. 

 

(a) square kernel 

 

(b) vertical kernel 
 

(c) horizontal kernel 

Figure 4.20 Illustration of retina region in OCT image covered with each analyzed kernel type 

Segmentation results – applying a non-typical convolution kernel 

The author of the thesis proposed conducting the following experiment: to perform OCT 

image segmentation with the previously discussed neural network architectures (i.e., UNet, 

LFUNet, DRUNet, and ReLayNet), utilizing various kernel sizes. The tested kernel size 

is consistent for all network layers (in all of the encoder and decoder blocks, and the last 1×1 

convolution filter remains unchanged). The experiment setup is the same as described in 

Section 4.1.2 with 4 data augmentation techniques and a Combined Loss function. 

Figure 4.21 presents training and validation loss values used to evaluate the training 

process of a UNet with various convolution kernels. The plotted training loss curves (Figure 

4.21a, c, and e) show that the bigger the kernel, the lower the training loss, and therefore the 
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model better fits the training data. Nevertheless, no significant gain can be observed 

for kernels bigger than 5×5, 3×5, and 5×3 px (with the lowest value of 0.05 for both horizontal 

and vertical kernels and 0.04 for 7×7 kernel).  

As can be deduced from the validation loss (Figure 4.21b, d, and f), a network with a bigger 

kernel reaches a lower loss value in fewer epochs (15 for square kernels and 20 for both 

horizontal and vertical convolution kernels). The final loss value for bigger kernels is lower 

than for a standard 3×3 kernel (0.093 for 3×3 kernel, 0.07 for 7×7 kernel). Additionally, 

the validation loss of a rectangular kernel is similar to that of 7×7 (0.07 for 9×3 and 0.075 

for 3×9). Nevertheless, no significant gain for kernels over 3×7 and 7×3 px is detected.  

 
(a) training loss  / square kernel 

 
(b) validation loss / square kernel 

 
(c) training loss / vertical kernel 

 
(d) validation loss / vertical kernel 

 
(e) training loss / horizontal kernel 

 
(f) validation loss / horizontal kernel 

Figure 4.21 Plots of training and validation loss for segmentation with UNet  
and various convolutional kernel types and sizes. 
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Table 4.11 to Table 4.14 present the effect of convolutional kernel size on the performance 

of preretinal space segmentation on the test set. Understandably, the average DC increases 

for all segmented regions as the kernel size increases (gain for the Preretinal Space with 7×7 

kernel is 0.44 % for UNet, 0.48 % for LFUNet, 1.1 % for DRUNet, and 20.04 % for ReLayNet). 

The same observation can be made for the MAE for all searched borders, but the greatest 

improvement is observed for the PCV line (MAE lower by 0.43 px for UNet, 0.62 px for LFUNet, 

0.84 px for DRUNet, and 111.3 px for ReLayNet).  

When it comes to the TII improvement, the presented data indicate that for all of the 

network architectures, the standard 3×3 kernel does not provide the best results (TII 

decreases by 9.4 % for UNet, 8.25 % for LFUNet, 8.39 % for DRUNet, and 3.7 % for ReLayNet 

even with the 5×3 kernel). The greatest improvement in topology correctness can be observed 

with a vertical 9×3 kernel for UNet and LFUNet (TII decreased by 12.75 % and 10.38 %, 

respectively). The networks with initially worse topology index benefit the most from a square 

7×7 kernel (TII improvement by 16.22 % and 15.93 % for DRUNet and ReLayNet, respectively). 

Table 4.11 DC, MAE, and TII results of OCT segmentation with various kernel sizes for UNet model 

Kernel size 

[px] 

DC MAE (SD) [px] 
TII 

[%] Vitreous 
Preretinal 

space 
Retina 

Region 

b. Retina 
PCV ILM RPE 

3×3 0.9968 0.9591 0.9944 0.9984 1.33 (2.88) 0.50 (0.28) 0.57 (0.29) 15.08 

5×5 0.9980 0.9615 0.9945 0.9988 1.08 (2.16) 0.47 (0.12) 0.54 (0.24) 4.55 

7×7 0.9981 0.9635 0.9948 0.9988 0.92 (0.97) 0.45 (0.12) 0.52 (0.23) 4.55 

5×3 0.9978 0.9615 0.9944 0.9987 1.17 (2.44) 0.48 (0.17) 0.58 (0.26) 5.69 

7×3 0.9981 0.9628 0.9946 0.9988 0.95 (0.94) 0.47 (0.12) 0.54 (0.25) 2.84 

9×3 0.9981 0.9626 0.9947 0.9988 0.93 (0.74) 0.47 (0.12) 0.52 (0.25) 2.42 

3×5 0.9977 0.9620 0.9945 0.9987 1.22 (2.86) 0.47 (0.12) 0.55 (0.25) 9.67 

3×7 0.9980 0.9631 0.9946 0.9987 0.98 (1.83) 0.46 (0.12) 0.55 (0.25) 6.83 

3×9 0.9981 0.9640 0.9946 0.9987 0.90 (1.04) 0.46 (0.12) 0.54 (0.24) 5.12 

Table 4.12 DC, MAE, and TII results of OCT segmentation with various kernel sizes for LFUNet model 

Kernel size 

[px] 

DC MAE (SD) [px] 
TII 

[%] Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

3×3 0.9973 0.9590 0.9942 0.9985 1.50 (3.53) 0.50 (0.12) 0.57 (0.24) 11.52 

5×5 0.9981 0.9630 0.9947 0.9988 0.91 (0.81) 0.47 (0.12) 0.53 (0.24) 2.84 

7×7 0.9982 0.9638 0.9947 0.9988 0.88 (0.72) 0.46 (0.13) 0.52 (0.23) 2.99 

5×3 0.9980 0.9613 0.9944 0.9987 1.17 (2.78) 0.48 (0.12) 0.55 (0.24) 3.27 

7×3 0.9981 0.9632 0.9947 0.9988 0.90 (0.80) 0.46 (0.12) 0.52 (0.23) 3.13 

9×3 0.9981 0.9631 0.9946 0.9987 0.89 (0.63) 0.47 (0.13) 0.54 (0.25) 1.14 

3×5 0.9978 0.9622 0.9946 0.9987 1.10 (2.57) 0.47 (0.13) 0.54 (0.24) 7.25 

3×7 0.9980 0.9631 0.9947 0.9988 0.94 (1.48) 0.47 (0.12) 0.52 (0.23) 4.55 

3×9 0.9980 0.9626 0.9946 0.9987 0.99 (1.65) 0.47 (0.12) 0.54 (0.24) 4.41 
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Table 4.13 DC, MAE, and TII results of OCT segmentation with various kernel sizes for DRUNet model 

Kernel 

size [px] 

DC MAE (SD) [px] 
TII 

[%] Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

3×3 0.9951 0.9370 0.9916 0.9978 2.35 (3.76) 0.62 (0.23) 1.09 (1.58) 35.99 

5×5 0.9961 0.9428 0.9922 0.9979 1.82 (3.07) 0.58 (0.17) 0.86 (0.59) 25.03 

7×7 0.9967 0.9480 0.9928 0.9982 1.51 (1.35) 0.57 (0.19) 0.77 (0.64) 19.77 

5×3 0.9952 0.9389 0.9921 0.9980 2.14 (3.50) 0.61 (0.29) 0.86 (0.51) 27.60 

7×3 0.9950 0.9288 0.9917 0.9978 2.50 (4.57) 0.61 (0.22) 0.90 (0.50) 35.42 

9×3 0.9934 0.9179 0.9917 0.9978 3.51 (7.04) 0.61 (0.21) 0.92 (0.54) 43.81 

3×5 0.9945 0.9382 0.9914 0.9978 2.50 (5.83) 0.62 (0.23) 0.94 (0.78) 33.29 

3×7 0.9917 0.9121 0.9886 0.9971 5.54 (6.02) 0.93 (0.31) 1.21 (1.82) 59.32 

3×9 0.9943 0.9346 0.9907 0.9977 2.40 (3.95) 0.69 (0.68) 1.11 (1.81) 33.00 

Table 4.14 DC, MAE, and TII results of OCT segmentation with various kernel sizes for ReLayNet model 

Kernel size 

[px] 

DC MAE (SD) [px] 
TII 

[%] Vitreous 
Preretinal 

space 
Retina 

Region  

b. Retina 
PCV ILM RPE 

3×3 0.8686 0.6384 0.9782 0.9451 121.24 (78.46) 1.94 (4.06) 5.15 (5.84) 100.00 

5×5 0.9447 0.8047 0.9909 0.9769 21.74 (38.21) 0.72 (0.75) 1.44 (1.85) 93.31 

7×7 0.9688 0.8388 0.9920 0.9885 9.94 (13.53) 0.64 (0.47) 0.93 (0.92) 84.07 

5×3 0.9393 0.7900 0.9906 0.9721 14.69 (14.13) 0.95 (2.09) 1.57 (1.90) 96.30 

7×3 0.9603 0.8015 0.9918 0.9859 12.63 (13.84) 0.71 (0.59) 0.96 (0.88) 88.34 

9×3 0.9676 0.8068 0.9904 0.9893 11.17 (12.91) 0.68 (0.34) 1.09 (0.68) 85.78 

3×5 0.9156 0.7543 0.9831 0.9557 22.64 (24.98) 1.06 (1.57) 2.22 (3.01) 98.86 

3×7 0.9167 0.7481 0.9851 0.9590 41.36 (54.81) 1.01 (1.17) 4.80 (6.57) 98.29 

3×9 0.9192 0.7758 0.9871 0.9570 29.09 (37.86) 0.82 (2.12) 1.83 (3.30) 97.44 

 

A noticeable improvement in segmentation accuracy can be observed mainly for 

Preretinal Space class and PCV line. Interestingly the results for UNet and LFUNet obtained 

with both horizontal kernel of the size 3×9 px and vertical kernel of 9×3 px are comparable 

to those obtained with a 7×7 square kernel (the biggest difference in MAE is 0.02 px for UNet 

and 0.11 px for LFUNet).  

For the Retina class, the gain in Dice Coefficient is limited to 0.04 % for UNet, 0.05 % for 

LFUNet, 0.12 % for DRUNet, and 1.38 % for ReLayNet. Furthermore, the MAE improvement 

of retina borders (i.e., ILM and RPE lines) does not exceed 0.05 px for UNet and LFUNet, 

0.32 px for DRUNet, and 4.22 px for ReLayNet, which is obtained with a 7×7 square kernel. 

Figure 4.22 to Figure 4.25 present results of Preretinal Space Dice Coefficients for the 

evaluated neural network architectures. Here, square, vertical, and horizontal kernels are 

ordered by the area spanned by the kernel and depicted with consistent colors for each kernel 

type. 
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Figure 4.22 Dice Coefficients of Preretinal Space class segmentation for UNet with various kernel sizes 

When analyzing bar plots of Preretinal Space DC values for UNet (Figure 4.22), it can be 

noticed that all rectangular kernels (regardless of their orientation) give better results than 

the 3×3 and 5×5 square kernels. Additionally, a horizontal 3×9 kernel outperforms the 7×7 

kernel by 0.15 %. Interestingly, all horizontal kernels give better results (by 0.05 %, 0.03 %, 

and 0.14 % for 3×5, 3×7, and 3×9 kernels respectively) than their vertical counterparts. 

 
Figure 4.23 Dice Coefficients of Preretinal Space class segmentation for LFUNet with various kernel sizes 

For LFUNet (Figure 4.23) the worst result (95.9 %) is obtained with the standard 3×3 

kernel, and the best with 7×7 kernel (96.38 %). Furthermore, kernels of the size 3×7, 7×3, and 

9×3 px perform similarly (gain of 0.01 %, 0.02 %, and 0.01 %, respectively) to a square kernel 

of 5×5 px (which spans a greater area). With smaller kernels (i.e., 5×3 and 3×5 px) higher DC 

value is obtained with a horizontal kernel (gain of 0.09 %), while for bigger kernels (i.e., 9×3 

and 3×9 px) the result is better with a vertical kernel (gain by 0.05 %).  

DRUNet results in Figure 4.24 show that all square kernels are better than any rectangular 

kernel. The best Dice Coefficient of 94.8 % was obtained with a 7×7 mask. Although 

improvement over the 3×3 kernel is only 1.1 %. Furthermore, horizontal kernels give a higher 

DC value (e.g., 1.5 % gain for 3×9 kernel) than their vertical counterparts (except for kernels 

3×5 and 5×3, with equivalent results of 93.8 %). Nevertheless, incorporating kernel 9×3 

decreased the Dice Coefficient by 2.1 % compared to the 5×3 kernel. 
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Figure 4.24 Dice Coefficients of Preretinal Space class segmentation for DRUNet with various kernel sizes 

 
Figure 4.25 Dice Coefficients of Preretinal Space class segmentation for ReLayNet with various kernel sizes 

For the ReLayNet (Figure 4.25), a square kernel of 7×7 px produces the best result with 

a DC value of 83.9 %. Here the gain of 20.1 % over the standard 3×3 kernel is significant. 

Furthermore, the results for the vertical kernel give better segmentation scores than their 

horizontal counterparts (an improvement from 3.1 % for the 9×3 kernel to 5.3 % for the 7×3 

kernel). These results confirm the validity of selecting the 7×3 kernel by the authors of this 

architecture, although the gathered data show a possibility for further improvement. 

To objectively select a convolution kernel for OCT data segmentation, its computational 

cost and prediction time should also be considered. Table 4.15 presents the number 

of parameters learned by each network and the prediction time (excluding the time of loading 

the image into the memory / and including that time). 

Data presented in Table 4.15 confirms that prediction time increases with the size of the 

network, with the longest prediction for a square kernel of 7×7 px (from 5.9 s for DRUNet 

up to 13.3 s for LFUNet). The difference between the prediction time between the smallest 

and the largest convolution kernel is 4 s for UNet, 6.3 s for LFUNet, 0.9 s for DRUNet, and 1.9 s 

for ReLayNet. It can also be observed that performing computations with a horizontal kernel 

is slightly faster (a difference of 0.05 s on average) than with a vertical kernel of the same size. 
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Table 4.15 Prediction time1 for the evaluated neural networks 

Kernel 

size 

UNet LFUNet DRUNet ReLayNet 

No. of 

parameters 

[×106] 

Prediction  

time [s] 

No. of 

parameters 

[×106] 

Prediction  

time [s] 

No. of 

parameters 

[×106] 

Prediction  

time [s] 

No. of 

parameters 

[×106] 

Prediction  

time [s] 

3×3 7.8 0.257 / 6.33 8.1 0.324 / 6.98 0.88 0.248 / 5.46 13.7 0.148 / 5.85 

5×5 20.3 0.336 / 8.01 20.7 0.406 / 9.64 2.1 0.261 / 5.91 33.2 0.170 / 6.69 

7×7 39.1 0.337 /10.31 39.6 0.407 /13.34 4.0 0.273 / 6.39 62.4 0.185 / 7.72 

5×3 12.5 0.338 / 7.10 12.8 0.409 / 8.15 1.3 0.265 / 5.58 21.0 0.187 / 6.36 

7×3 17.2 0.339 / 7.63 17.5 0.410 / 9.02 1.8 0.268 / 5.72 28.3 0.189 / 6.52 

9×3 21.9 0.344 / 8.27 22.3 0.411 /10.02 2.3 0.259 / 5.84 35.6 0.189 / 6.77 

3×5 12.5 0.333 / 7.07 12.8 0.407 / 8.11 1.3 0.250 / 5.63 21.0 0.185 / 6.27 

3×7 17.2 0.338 / 7.60 15.5 0.408 / 9.00 1.8 0.259 / 5.80 28.3 0.186 / 6.49 

3×9 21.9 0.339 / 8.20 22.3 0.410 / 9.90 2.3 0.257 / 5.95 35.6 0.187 / 6.79 

The experiments described in this Section show that by applying an appropriate 

convolution kernel, it is possible to boost the segmentation accuracy of the neural network. 

Nevertheless, the size and orientation of such masks should be adapted to the specificity 

of the network architecture. For example, the DRUNet, which incorporates convolutions with 

dilatation, benefits from a square kernel, while both UNet and LFUNet perform the best with 

horizontal kernels.  

Although a bigger convolutional kernel increases the computational cost of the system, 

the author poses that such adjustment (even utilizing a non-uniform filter) improves the 

accuracy of pixel-wise segmentation. Furthermore, it can be noticed that by utilizing 

a horizontal convolution kernel, it is possible to learn network weights that better fit the 

horizontal arrangement of the searched retina layers. Furthermore, a bigger convolution 

kernel helps to overcome the problem of PCV border discontinuity within the OCT image, 

making the network robust to these kinds of problems.  

Summary of preretinal space segmentation with neural networks 

The experiments presented in this Chapter discussed the specific character of the 

preretinal space segmentation problem based on the OCT data. A detailed analysis of the 

obtained results with the use of various neural network architectures leads to the following 

conclusions: 

1) a Combined Loss function favoring distribution-based over the region-based criterion 

provides the best segmentation results for the 4-class classification of OCT images 

in the gathered cohort 

2) application of any data augmentation technique improves the segmentation accuracy 

for the examined data, and the best results are obtained when all discussed techniques 

are applied (horizontal flip, random rotation, random translation, random cropping), 

 
1 The hardware utilized for the test is the same as for the training (see Section 4.1.2). 
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thus significantly expanding the training subset and improving models ability 

to generalize 

3) from the five evaluated neural network architectures, the baseline UNet and 

its extended version of LFUNet provide the best segmentation accuracy (both with and 

without utilizing data augmentation) 

a. the Attention UNet and ReLayNet do not obtain sufficient results for the 

preretinal space task 

b. the DRUNet architecture produces results slightly worse than UNet, with 

a much lower number of parameters to train 

4) for all of the tested network architectures occurs a problem with incorrect class 

topology within the OCT image (most noticeable for the ReLayNet and Attention UNet 

models, less so for the other networks) 

5) the method of adding a Relative Distance Map as a second channel to the network’s 

input image to improve the topology correctness resulted in a significant improvement 

in segmented classes order 

a. the proposed 2NetPR map tailored to the preretinal space properties provides 

the best results here 

b. for UNet and LFUnet, better pixel classification scores also are obtained with 

the CumSum map 

6) accuracy of the pixel-wise semantic image segmentation can be improved by selecting 

an appropriate convolution kernel 

a. choosing the biggest kernel of 7×7 px is not necessary, as the results show that 

non-typical kernels of 3×9 and 9×3 provide similar classification accuracy with 

lower computational requirements 

b. experiments confirm that vertical kernels give the best improvement in terms 

of topology correctness. 

The conducted experiments prove that the proposed application of neural networks 

to preretinal space segmentation from OCT images gives good results. Furthermore, 

it is a robust solution even with underexposed or pathological tissue. It is not susceptible 

to tissue discontinuity, as is the case with the graph-based approach. The proposed method 

provides accurate preretinal space segmentation, the first and crucial step for the quantitative 

evaluation of VRI changes during medical diagnosis. 
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Chapter 

5 Application of the proposed solutions 

In order to accurately assess the pathology evolution and select an appropriate treatment 

course, it is crucial to obtain objective measurements of the analyzed tissue. Thus, 

the quantitative tools for diagnosis and disease monitoring are essential in clinical practice. 

Precise segmentation algorithms of retina layers and the preretinal area analyzed in this thesis 

are crucial elements in diagnostic assessment.  

The methods derived in Chapter 3 for improving retina layers segmentation were further 

used in the clinical application of automated fovea parameterization described in Section 5.1. 

In addition, the novel preretinal space segmentation technique introduced in Chapter 4 was 

subjected to an automated VMA and VMT analysis investigated in Section 5.2.  

5.1 Fovea Parameterization 

5.1.1 Current fovea evaluation 

Thanks to utilizing OCT imaging technology and measurement tools available in the OCT 

software, it is possible to manually quantify the current retina condition and its changes [273]. 

As described in Section 1.2, a primary feature used to detect and assess vision-related diseases 

is the retina thickness, particularly Central Retina Thickness (CRT) [16]. Figure 5.1 illustrates 

the CRT measurement performed manually on the OCT image. 

  
Figure 5.1 Example of current fovea evaluation by manual measurement of central retina thickness (CRT) 

To evaluate the state of the retina and the possibility of developing a macular hole, 

it is also possible to measure foveal diameter, foveal depth, fovea angle, and curvature [274], 

[275]. Other measurements for quantitative analysis are also the area of the fovea pit and the 

area of the inner retina within the central cross-section [276]. Nevertheless, all of these 

CRT 
187 µm 
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parameters are obtained only manually, and no reports have been found that evaluated these 

parameters in terms of suitability for VMA and VMT assessment. Typically, the retina thickness 

remains the primary comparable parameter along with the retina volume measurement 

within individual sectors of an ETDRS grid [54].  

5.1.2 Proposed automatic fovea pit parameterization 

When analyzing the volumetric characteristics of the fovea pit with present VMA or VMT 

conditions, the fovea contour and shape can be considered interesting parameters. Figure 5.2 

presents a visualization of the 3D OCT macula scan with the annotated ideal fovea contour.  

 
Figure 5.2 3D visualization of OCT macula scan with annotated ideal fovea contour [277] 

To measure the characteristics of the fovea shape in the presence of VRI changes, 

the author of the thesis introduced the fovea pit contour (FPC) parameterization [277]. 

Its calculation is performed automatically based on a single 3D OCT scan and can be used 

to quantify and evaluate the macula changes that occur with time. It aims to aid clinical 

differentiation between normal and pathologic macular conditions. Figure 5.3 presents 

a general scheme for calculating the fovea pit contour profile based on a 3D OCT scan 

centered at the macula. 

The first step of the algorithm is the acquisition of volumetric OCT data. Next, 

preprocessing procedures are performed. Here are employed the adaptive techniques 

proposed in Chapter 3, i.e., wavelet-based (WST) noise reduction and adaptive selection 

of image area useful for further analysis. 

The next step is the segmentation of the OCT image to detect the inner limiting membrane 

(ILM) and retinal pigment epithelium (RPE) boundaries of the retina. This procedure 

is performed with the graph-based algorithm utilizing layer tracking described in Section 3.2.4. 

 

 

Ideal fovea contour 
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Figure 5.3 The general scheme of an algorithm for automatic calculation of fovea contour profile 

Next, from the segmented lines, a retina thickness virtual map 𝑉𝑀𝑅  is calculated 

as a difference between the ILM and RPE surfaces. Equation (5.1) is used here: 

𝑉𝑀𝑅(𝑥, 𝑦) = 𝑤𝑧(𝐼𝐿𝑀(𝑥, 𝑦) − 𝑅𝑃𝐸(𝑥, 𝑦)) (5.1) 

where 𝑥 ∈ 〈0, 384〉 denotes the horizontal index of the OCT cube (i.e., the B-scan column),  

𝑦 ∈ 〈0, 140〉 sands for the index of the cross-section, 𝑤𝑧 represents the axial resolution of the 

scan, 𝐼𝐿𝑀 and 𝑅𝑃𝐸 are matrixes of the segmented ILM and RPE surfaces, and 𝑉𝑀𝑅  is the 
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matrix of the retina virtual map values. This results in distance matrixes of the size 141×385 

for one 3D OCT scan (the dimensions stem from the scan resolution).  

The last step of the algorithm is a calculation of individual fovea pit parameters, including: 

• coordinates of macula center (𝑥𝑐, 𝑦𝑐 ) – this is a reference point for further 

calculations. It is determined as the highest elevation of the IS/OS junction layer 

based on the flattened (with respect to the RPE layer) retina borders. For a healthy 

eye, this coordinate also corresponds to the lowest depression of the retina surface 

(i.e., ILM layer). Figure 5.4 illustrates the found macula center annotated with 

a vertical orange line on a B-scan of a VMA subject. 

 
Figure 5.4 Example of central B-scan with annotated macula center (orange vertical line) 

• fovea pit contour (FPC) [277] – defined as a ridge around the fovea center 

o The search for FPC is performed individually in each of 360 equally spaced 

angles 𝛼 ∈ {0, 1, … , 359}. The algorithm determines the 𝐹𝑃𝐶(𝛼) as a position 

of maximum retina thickness value along the line from the fovea center 

(𝑥𝑐, 𝑦𝑐) constructed at the 𝛼 angle. The search is performed within the inner 

macula (IM), i.e., between the circles specified around the fovea center with 

radiuses 𝑟1 = 0.5 mm and 𝑟2 = 1.8 mm, respectively. Figure 5.5a illustrates 

the search region on a retina thickness virtual map.  

o The identified 360 points form a curve describing the fovea pit contour. 

The curve coordinates are subjected to mean filtering with a window of 5 

elements to minimize irregularities. Figure 5.5b illustrates the computed FPC 

curve overlaid on the color retina thickness map with the ETDRS grid. Figure 

5.5c illustrates an example of the retina thickness plot (blue line) of a B-scan 

from Figure 5.4. The fovea center (𝑥𝑐 , 𝑦𝑐) and two contour points of 𝐹𝑃𝐶(0) 

and 𝐹𝑃𝐶(180)  are annotated with red dots. The black arrows indicate 

the measured distance from the fovea center to the contour points. 

The vertical orange lines illustrate the limits of the search region. 

o It should be noted that the FPC can be defined only for a macula with 

a depression in the central area. Limiting the search region by excluding 

the central fovea (i.e., defining the inner circle of 𝑟1 = 0.5  mm) allowed 

to perform FPC search also for mild VMT cases (i.e., with deformed fovea pit, 
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but still present ridge around the fovea distortion). Nevertheless, the FPC 

cannot be obtained for patients with advanced VMT stage, where the disease 

progression resulted in fovea eversion. 

• central retina thickness (CRT) – this value is determined directly from the 𝑉𝑀𝑅 

at the coordinates of the macula center (see Figure 5.6): 

𝐶𝑅𝑇 = 𝑉𝑀𝑅(𝑥𝑐, 𝑦𝑐) (5.2) 

• central fovea pit depth 𝐹𝑃𝐷𝐶  – the distance between the mean value of retina 

thickness along the FPC curve and retina surface at the fovea center coordinates 

(see Figure 5.6): 

𝐹𝑃𝐷𝐶 =
∑ 𝑉𝑀𝑅(𝐹𝑃𝐶(𝛼)𝛼 )

360
− 𝑉𝑀𝑅(𝑥𝑐, 𝑦𝑐) (5.3) 

 

(a) retina thickness map with annotated circles (of 
r1 and r2 radiuses) bounding the search region; the 
FPC(α) point is searched along the line drawn from 

the fovea center at the α angle 

 

(b) retina thickness map with overlaid ETDRS grid 
and obtained fovea pit contour 

 
(c) retina thickness profile through the central B-scan with annotated fovea center (middle red dot), fovea 
contour points (left and right red dots), limits of the search region (vertical orange lines), distance from the 

fovea center to the contour border (black arrows) 

Figure 5.5 Illustration of FPC search method for a VMA case 

Fovea pit contour 

α 
r1 

r2 

FPC(0) FPC(180) 



 5 Application of the proposed solutions  

136 A. Stankiewicz 

 
Figure 5.6 Illustration of automatically measured fovea pit parameters for a VMA example 

• maximal fovea pit depth 𝐹𝑃𝐷𝑀  – the distance between the mean value of the 

retina thickness along the FPC curve and the lowest retina surface point enclosed 

by the FPC curve: 

𝐹𝑃𝐷𝑀 =
∑ 𝑉𝑀𝑅(𝐹𝑃𝐶(𝛼)𝛼 )

360
− min
∀𝑥,𝑦⊂𝐹𝑃𝐶

𝑉𝑀𝑅(𝑥, 𝑦) (5.4) 

• central fovea diameter 𝐹𝐶𝐷 – the distance in the 𝑥 direction between the opposite 

fovea contour points within the central B-scan (see Figure 5.6): 

𝐹𝐶𝐷 = 𝑤𝑥|𝑥𝐹𝑃𝐶(0) − 𝑥𝐹𝑃𝐶(180)| (5.5) 

where 𝑥𝐹𝑃𝐶(𝛼) denotes the 𝑥 coordinate of the FPC point at the 𝛼 angle, and 𝑣𝑥 is 

the lateral scan resolution.  

 

• central fovea pit area 𝐹𝐶𝐴  – area enclosed by the line 𝐿𝐷 connecting the central 

fovea diameter points (𝐹𝑃𝐶(0) and 𝐹𝑃𝐶(180)) and the retina surface within the 

central B-scan (see a shaded area in Figure 5.6); it is computed as: 

𝐹𝐶𝐴 = 𝑤𝑥𝑤𝑧 ∑ (𝐿𝐷(𝑥) − 𝑉𝑀𝑅(𝑥, 𝑦𝑐))

𝑥𝐹𝑃𝐶(180)

𝑥=𝑥𝐹𝑃𝐶(0)

 (5.6) 

where 𝐿𝐷(𝑥) denotes a value of the line connecting the 𝐹𝐶𝐷 endpoints. It can be 

obtained with the equation:  

𝐿𝐷(𝑥) =
(𝑥 − 𝑥𝐹𝑃𝐶(0))|𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(180), 𝑦𝑐) − 𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(0), 𝑦𝑐)|

|𝑥𝐹𝑃𝐶(180) − 𝑥𝐹𝑃𝐶(0)|
+ 𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(0), 𝑦𝑐) (5.7) 

• fovea shape coefficient 𝑐𝐹𝑆 – the correlation of the fovea shape within the central 

B-scan to a function 𝐹𝐺  (see a gray curve fitted to the fovea contour points in Figure 

5.6) obtained by parameterization of a Gaussian function with available fovea 

features. The 𝐹𝐺  function and 𝑐𝐹𝑆 parameter are computed as follows: 

FCA 

FFCD 
CRT 

FPDC 

FCD 

 

FG 

LD 
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𝐹𝐺(𝑥) = 𝐶𝑅𝑇 + 𝐹𝑃𝐷𝐶 − 𝐹𝑃𝐷𝑀 e
− 
(𝑥−𝜇)2

2𝜎2  (5.8) 

𝑐𝐹𝑆 =
𝑛∑ (𝐹𝐺(𝑥)𝑉𝑀𝑅(𝑥, 𝑦𝑐))𝑥 − ∑ 𝐹𝐺(𝑥)𝑥 ∑ 𝑉𝑀𝑅(𝑥, 𝑦𝑐)𝑥

√𝑛∑ 𝐹𝐺
2(𝑥)𝑥 − (∑ 𝐹𝐺(𝑥)𝑥 )2√𝑛∑ 𝑉𝑀𝑅

2(𝑥, 𝑦𝑐)𝑥 − (∑ 𝑉𝑀𝑅(𝑥, 𝑦𝑐)𝑥 )2
 (5.9) 

where the expected value 𝜇 = 𝑥𝑐 is the position of the fovea pit center along the 

B-scan width, and the variance 𝜎 =
𝐹𝐶𝐷

2√2ln2∗𝑏
 is determined by the fovea pit 

diameter 𝐹𝐶𝐷 divided by the coefficient 𝑏 = 2.5 and the ratio of 2√2ln2 between 

the FWHM (i.e., full width at half maximum) value and 𝜎. The 𝑏 value was obtained 

experimentally based on the ratio between the 𝐹𝐶𝐷 and the width of the fovea pit 

at half of its depth. Value 𝑛 is the number of 𝑥 points within 𝐹𝐶𝐷. 

The 𝑐𝐹𝑆  can take values in the range of 〈−1,1〉 Where 1 represents the highest 

similarity of the fovea shape to the parameterized Gaussian function, and the value 

of -1 indicates the lowest correlation of these curves. 

• fovea pit area 𝐹𝑃𝐶𝐴 – the area enclosed by the FPC curve in the lateral direction, 

defined as a sum of areas of triangles created by two neighboring contour points 

and scan center: 

𝐹𝑃𝐶𝐴 = 𝑤𝑥𝑤𝑦∑√𝑠(𝛼)(𝑠(𝛼) − 𝑟𝐹𝑃𝐶(𝛼))(𝑠(𝛼) − 𝑟𝐹𝑃𝐶(𝛼+1))(𝑠(𝛼) − 𝑑(𝛼))

𝛼

 (5.10) 

𝑠(𝛼) =
1

2
(𝑟𝐹𝑃𝐶(𝛼) + 𝑟𝐹𝑃𝐶(𝛼+1) + 𝑑(𝛼)) (5.11) 

𝑑(𝛼) = √(𝑥𝐹𝑃𝐶(𝛼) − 𝑥𝐹𝑃𝐶(𝛼+1))
2
+ (𝑦𝐹𝑃𝐶(𝛼) − 𝑦𝐹𝑃𝐶(𝛼+1))

2
 (5.12) 

where 𝑠(𝛼) is the perimeter of a single triangle created between points 𝐹𝑃𝐶(𝛼), 

𝐹𝑃𝐶(𝛼 + 1) , and (𝑥𝑐, 𝑦𝑐) , 𝑑(𝛼)  is the distance between points 𝐹𝑃𝐶(𝛼)  and 

𝐹𝑃𝐶(𝛼 + 1), 𝑦𝐹𝑃𝐶(𝛼) denotes the 𝑦 coordinate of the FPC point at the 𝛼 angle, 𝑤𝑦 

is the lateral non-fast scanning data resolution. 

• fovea pit volume 𝐹𝑃𝑉 – the volume of the fovea pit enclosed by the retina surface 

and the surface connecting the FPC points, 

𝐹𝑃𝐶𝑉 = 𝑤𝑥𝑤𝑦𝑤𝑧∑ℱ(𝑟𝑐(𝑥, 𝑦) < 𝑟𝐹𝑃𝐶(𝛽))(𝐿𝑇(𝑥, 𝑦, 𝛽) − 𝑉𝑀𝑅(𝑥, 𝑦))

𝑥,𝑦

 (5.13) 

𝛽 =
180 arctan

𝑦 − 𝑦𝑐
𝑥 − 𝑥𝑐

𝜋
 (5.14) 
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𝐿𝑇(𝑥, 𝑦, 𝛽) =
(𝑦 − 𝑦𝐹𝑃𝐶(𝛽)) (𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(𝛽+180), 𝑦𝐹𝑃𝐶(𝛽+180)) − 𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(𝛽), 𝑦𝐹𝑃𝐶(𝛽)))

𝑦𝐹𝑃𝐶(𝛽+180) − 𝑦𝐹𝑃𝐶(𝛽)

+ 𝑉𝑀𝑅(𝑥𝐹𝑃𝐶(𝛽), 𝑦𝐹𝑃𝐶(𝛽)) 

(5.15) 

where ℱ(∙) is a function taking a value of 1 if the expression in the parenthesis 

is true and 0 otherwise, 𝑟𝑐(𝑥, 𝑦) is the radius to the point (𝑥, 𝑦) from the central 

fovea point (𝑥𝑐, 𝑦𝑐), 𝑟𝐹𝑃𝐶(𝛽) is the radius of the FPC point at the angle of 𝛽 defined 

as the angle between the (𝑥, 𝑦)  point and the fovea center point (𝑥𝑐, 𝑦𝑐) , 

𝐿𝑇(𝑥, 𝑦, 𝛽)  is the line connecting 𝐹𝑃𝐶(𝛽)  and 𝐹𝑃𝐶(𝛽 + 180)  points, 𝑦𝐹𝑃𝐶(𝛽) 

represents the 𝑦 coordinate of the 𝐹𝑃𝐶(𝛽) point. 

• perimeter 𝐹𝑃𝐶𝑃  of the FPC curve calculated as a sum of distances between all 

subsequent FPC points: 

𝐹𝑃𝐶𝑃 =∑√(𝑤𝑥(𝑥𝐹𝑃𝐶(𝛼) − 𝑥𝐹𝑃𝐶(𝛼−1)))
2
+ (𝑤𝑦(𝑦𝐹𝑃𝐶(𝛼) − 𝑦𝐹𝑃𝐶(𝛼−1)))

2

𝛼

 (5.16) 

• circularity 𝐹𝑃𝐶𝐶  of the FPC curve computed as follows 

𝐹𝑃𝐶𝐶 = 4𝜋
𝐹𝑃𝐶𝐴

𝐹𝑃𝐶𝑃
2 (5.17) 

• maximal and minimal Feret diameters [µm] of the FPC shape. 

The parameters listed above are automatically calculated by the OCTAnnotate software 

designed by the author of this thesis. The software is described in detail in Appendix A2.  

Figure 5.7 illustrates the graphical interface of the OCT cross-sections tab in this software. 

It is used to evaluate the segmented layers' correctness visually and, if necessary, make 

manual corrections. In this tab, the image on the left presents the central B-scan, and the 

cross-section on the right is a composition of a perpendicular, non-fast scanning cross-section. 

The blue and green lines in the reconstructed fundus image in the lower right corner illustrate 

the position of the presented cross-sections from the en face view. Each segmented retinal 

layer and the vitreous border are denoted with a color line on the OCT B-scan. The colors 

associated with each layer are denoted in the upper right section of the tab. 

Figure 5.8 presents the Retina analysis tab in the OCTAnnotate software. The color map 

in the upper left corner presents the retina thickness virtual map (VM) with overlaid ETDRS 

grid and automatically computed fovea pit contour. On the right of the VM are listed all of the 

automatically computed retina statistics described in this section. Plots on the far right 

illustrate retina thickness in the currently investigated B-scan (upper) and central B-scan 

(middle) with annotated scan center and contour points (red dots). The plot in the lower right 

corner presents a retina thickness profile along the FPC curve. The ETDRS grids in the lower 

left part of the tab present total retina and inner retina volumetric analysis in individual ETRDS 

sectors. 
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Figure 5.7 Example of OCT cross-section segmentation evaluation with OCTAnnotate software 

 

Figure 5.8 Example of retina evaluation with OCTAnnotate software 

Reproducibility 

When analyzing live retina tissue with OCT, it is important to consider the reproducibility 

of the obtained measurement, i.e., whether a repeated examination with the same conditions 

(e.g., with the same device and no anatomical changes of the object) will yield similar results 
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[278–280]. The measurement of a live retina tissue may be influenced by many factors such 

as light exposition, light wavelength, ocular magnification, or OCT device model [275]. Despite 

the automation of the acquisition process (e.g., automatic selection of focus and scanning 

area), two subsequent three-dimensional OCT scans typically do not have the exact same 

orientation or position.  

Figure 5.9 shows 4 OCT cross-sections through the fovea center acquired from one eye 

during 5 minutes. As can be seen, each scan varies in the orientation and position of the retina 

tissue and image contrast and brightness. 

 
Figure 5.9 OCT cross-sections through the fovea from 4 subsequent examinations of one eye [277] 

Due to the challenges mentioned above, the author of this thesis investigated the 

reproducibility of the fovea pit contour calculation and its variation resulting from the OCT 

acquisition [277]. The experiment was conducted for a set of 4 scans acquired from a healthy 

eye in 5 minutes. Each scan was analyzed according to the algorithm presented in Figure 5.3 

to determine the fovea contour curve.  

 
Figure 5.10 FPC retina thickness profile calculated for 4 examinations of a single eye, with average and 

standard deviation values computed for all angles [277] 
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Figure 5.10 presents the obtained average and standard deviation values of the FPC retina 

thickness profile computed for 360 angles. As can be seen, the data distribution for the retina 

thickness around the FPC profile has a high correlation. The average standard deviation for all 

the angles is 1.63 µm. These results lead to the conclusion that changes in the scan orientation 

do not have a significant impact on the determination of the FPC parameters for healthy eyes. 

Retina shape parameterization using FPC characteristics 

To investigate the validity of the proposed parameters in clinical application, the author 

performed a statistical analysis of the scans in the CAVRI dataset. That includes 25 VMA 

subjects, 4 VMT subjects without fovea deformation – denoted as VMT0, and 13 VMT subjects 

with slight fovea deformations that are not classified as eversion – denoted as VMT1. Subjects 

with severe VMT were excluded from the analysis due to no visible ridge around the fovea. 

Figure 5.11 presents box plots of the automatically obtained typical fovea pit parameters 

for the scans in the CAVRI dataset.  

 
(a) central retina thickness 

 
(b) fovea pit depth 

 
(c) foveal area within the central B-scan 

 
(d) foveal diameter within the central B-scan 

Figure 5.11 Statistics of typical fovea parameters for the CAVRI dataset 

As can be expected, the CRT value (illustrated in Figure 5.11a) statistically increases with 

progressing VMT. Here, the mean CRT value is 194.88 µm for VMA subjects, 206.87 µm 
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for VMT0, and 230.66 µm for the VMT1 subset. The increase in CRT is related to the decrease 

in fovea pit depth, as shown in Figure 5.11b. The mean 𝐹𝑃𝐷𝐶  values are 130.71 µm, 105.86 

µm, and 82.69 µm for VMA, VMT0, and VMT1 respectively. Nevertheless, it should be noted, 

that the mean difference between 𝐹𝑃𝐷𝐶  values for the investigated subjects is greater than 

the differences in CRT.  

Similarly, the central foveal area 𝐹𝐶𝐴  results in Figure 5.11c present lower values with 

progressing fovea changes, although their distribution is similar. The mean and standard 

deviation values of 𝐹𝐶𝐴 are 130.06 (± 39.79) µm2, 111.94 (± 49.35) µm2, and 98.22 (± 43.78) 

µm2 for the VMA, VMT0, and VMT1, respectively. On the other hand, when analyzing central 

fovea diameter 𝐹𝐶𝐷 values in Figure 5.11d, their distributions present no significant difference 

between subsets. The mean 𝐹𝐶𝐷 values are 2361.77 (± 290.44) µm, 2310.55 (± 406.63) µm, 

and 2463.74 (± 280.92) µm for VMA, VMT0, and VMT1 subsets, respectively. These results 

lead to the conclusion that the changes in the fovea pit shape have no significant influence 

on the shape of the parafoveal region (i.e., within the inner macula ETDRS ring). 

The newly introduced fovea shape coefficient 𝑐𝐹𝑆 , reflects the fovea pit deformations 

resulting from progressing VMT. This can be deduced by analyzing the results presented 

in Figure 5.12a. Here, the mean and standard deviation values are 0.987 ± 0.007 for VMA 

group, 0.974 ± 0.012 for VMT0, and 0.821 ± 0.289 for VMT1. These results show that the fovea 

shape changes with the development of VMT (the more advanced VMT, the lower 𝑐𝐹𝑆 value). 

The presented box plot shows that VMA can be distinguished from VMT with this parameter, 

although differentiation between the beginning stages of VMT might benefit from 

combination with other parameters. 

 
(e) fovea shape coefficient 

 
(f) fovea pit volume 

Figure 5.12 Statistics of proposed fovea parameters for the CAVRI dataset 

Figure 5.12b presents the automatically computed volume of the fovea pit 𝐹𝑃𝑉. Here, the 

mean and standard deviation values are 0.118 ± 0.042 mm3 for VMA, 0.103 ± 0.040 mm3 

for VMT0, and 0.098 ± 0.036 mm3 for VMT1. Although the box plot shows a wide distribution 

of the volume data for all subsets with a common range between 0.089 and 0.127 mm3, 
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the mean values and box plot whiskers confirm a tendency of more advanced VMT cases 

having lower values of fovea pit volume. 

Figure 5.13 illustrates the fovea contour statistics in the form of box plots. The main 

analyzed characteristics are FPC area, perimeter, circularity, and maximal Feret diameter. 

Figure 5.13a with FPC area measurements shows that the mean value of FPC area 𝐹𝑃𝐶𝐴 

is similar for all subsets (i.e., 3.85, 3.99, and 3.95 mm2 for VMA, VMT0, and VMT1 groups, 

respectively). It is also noticeable that the range of the obtained values is relatively wide 

(e.g., 2.69 mm2 for VMA, 1.97 mm2 for VMT0, and 1.98 mm2 for VMT1), although the 

distribution of VMT is narrower than that of VMA. 

 
(a) FPC area 

 
(b) FPC perimeter 

 
(c) FPC circularity 

 
(d) maximal Feret diameter of the FPC 

Figure 5.13 Statistics of selected fovea pit contour (FPC) parameters for the CAVRI dataset 

The calculated FPC perimeter 𝐹𝑃𝐶𝑃 values are presented in Figure 5.13b. Here, the mean 

and SD values are 8.402 ± 0.953 mm for VMA, 8.915 ± 0.992 mm for VMT0, and 8.974 

± 0.775 mm for VMT1. Although the mean values are similar, they slightly increase with the 

development of VMT, which may be associated with increased irregularity and distortion 

of the fovea pit center.  



 5 Application of the proposed solutions  

144 A. Stankiewicz 

The mean values of FPC circularity 𝐹𝑃𝐶𝐶  of 0.685 ± 0.073 for VMA, 0.628 ± 0.049 for VMT0 

and 0.625 ± 0.118 for VMT1 also support that assumption. These measurements are 

presented in Figure 5.13c. Interestingly, the subjects of both VMA and VMT had nonregular 

FPC, which can be deduced from the wide distribution of the FPC circularity parameter. 

Nevertheless, the VMT, in general, tends to have smaller values of the FPC circularity. 

The maximal FPC diameter 𝐹𝑃𝐶𝐷  values presented in Figure 5.13d indicate that fovea 

distortion and change in shape lead to increased maximal FPC diameter (e.g., from 2.48 mm, 

to 2.58 mm, and 2.64 mm mean values for VMA, VMT0, and VMT1 subset, respectively). Also, 

both minimum and maximum values of the box plots increase for each investigated group. 

5.1.3 Example of automatic fovea parameterization in the long term 

VMA/VMT observation 

The volumetric fovea parameterization presented in Section 5.1.2 can be used for a long-

term evaluation. This will be demonstrated by observing changes in the fovea pit parameters 

for the case of VMT. A 69-year-old patient (at the time of enrollment) with VMT in the left eye 

was examined 4 times in the observation period of 3 years. Table 5.1 presents the current 

typical evaluation of fovea shape with the CRT and retina volume measurement in individual 

ETDRS grid sectors (i.e., central fovea (CF), central fovea with inner macula (CF+IM), and total 

retina).  

Analysis of B-scans in Table 5.1 shows that by the time of the first examination, the patient 

suffered from a mild VMT. Based on the B-scan image (for the initial exam), the fovea pit 

is slightly distorted, and the IS/OS layer in the central fovea is elevated. From the gathered 

measurements, both the CRT values and retina volume in all investigated areas (i.e., CF, 

CF+IM, and total ETDRS grid) steadily increased over time. 

The change is small between the first and second examination (only a 3.1 µm increase 

in CRT and 0.002 mm3 in CF volume). After another 7 months (until the third visit), the 

measurable change is more significant, i.e., 15.53 µm in CRT and 0.008 mm3 in CF volume. 

After 3 years of observation, the VMT progressed to fovea eversion, visible in the last cross-

section. Since the previous examination, CRT and CF volume increased by 77.62 µm and 

0.043 mm3, respectively. These values show, in general, the progress of VMT with time. 

Next, the author also gathered with automatic parameterization the fovea characteristics 

typically measured manually and the proposed FPC and shape values proposed in Section 

5.1.2. The results obtained for the above-analyzed subject are presented in Table 5.2. 

Data gathered in Table 5.2 shows that the diameter of the fovea pit in the central cross-

section slightly increases from examination to examination (from 2534.35 µm at the beginning 

to 2697.69 µm final measurement). At the same time, its area and depth decreased (area 

decreased by 73.12 mm2, which is 47 %, and central depth decreased by 92.61 µm, i.e., 83 %).  
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Table 5.1 Example of typical fovea evaluation for subsequent control exams of one patient: central B-scan 
images, with central retina thickness (CRT) and volume in ETDRS grid 

Exam no. / 

Time elapsed 
Central B-scan 

Retina volume quantified  

in ETDRS grid sectors 

Typical automatic retina 

parameterization 
1

 /
 -

--
 

  

CRT: 

  

CF retina volume: 

CF+IM retina volume: 

Total retina volume: 

195.61 µm 

 

0.177 mm3 

2.044 mm3 

7.698 mm3 

2
 /

 2
 m

o
n

th
s 

  

CRT: 

  

CF retina volume: 

CF+IM retina volume: 

Total retina volume: 

198.71 µm 

 

0.179 mm3 

2.056 mm3 

7.687 mm3 

3
 /

 9
 m

o
n

th
s 

  

CRT:  

 

CF retina volume: 

CF+IM retina volume: 

Total retina volume: 

214.24 µm 

 

0.187 mm3 

2.091 mm3 

7.877 mm3 

4
 /

 3
 y

ea
rs

 

  

CRT:  

 

CF retina volume: 

CF+IM retina volume: 

Total retina volume: 

291.86 µm 

 

0.220 mm3 

2.131 mm3 

7.876 mm3 

Furthermore, fovea pit depth in the exact fovea center and the introduced measurement 

of maximal fovea pit depth decrease with the progression of VMT. However, its changes are 

not as big and are noticeable only for the last examination (i.e., 19.53 µm of central depth and 

62.04 µm for maximal depth) when the fovea underwent eversion. Similarly, with time, the 

automatically measured fovea pit volume has decreased, from 0.153 mm3 in the beginning 

to 0.141 mm3 after 2 months and to 0.095 mm3 by the last examination. 

The fovea shape coefficient results indicate that even if the measured diameter, area, 

or depth in the central B-scan does not indicate the progression of VMT, this is reflected in the 

parameterized fovea shape. This value decreased from 0.984 in the 1st examination to 0.979 

in the 2nd, 0.957 in the 3rd, and finally to 0.259 when the fovea shape was distinctly distorted. 
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Table 5.2 Automatically obtained fovea pit parameters with OCTAnnotate software for an example of VMT 

 
Parameter 

Exam 1  

/ --- 

Exam 2  

/ 2 months 

Exam 3  

/ 9 months 

Exam 4  

/ 3 years 

Ty
p

ic
al

ly
 

m
ea

su
re

d
 

m
an

u
al

ly
 central fovea pit diameter [µm] 2534.35 2570.31 2679.92 2697.69 

central fovea pit area [mm2] 156.04 145.63 144.72 82.92 

central fovea pit depth [µm] 112.14 112.06 100.16 19.53 

N
o

ve
l 

maximal fovea pit depth [µm] 114.53 112.12 100.24 62.04 

fovea pit volume [mm3] 0.153 0.141 0.141 0.095 

fovea shape coefficient [-] 0.984 0.979 0.957 0.259 

Fo
ve

a 
P

it
 C

o
n

to
u

r 

FPC area [mm2] 4.569 4.465 4.846 4.599 

FPC perimeter [mm] 8.734 8.601 8.818 8.688 

FPC circularity [-] 0.753 0.759 0.783 0.766 

FPC maximal Feret diameter [µm] 2.735 2.733 2.759 2.734 

FPC minimal Feret diameter [µm] 2.031 2.061 2.031 1.951 

 

The fovea pit contour parameters obtained for the investigated subject give inconclusive 

results. The measured FPC area varied from 4.465 mm2 to 4.846 mm2 in the observation 

period. The FPC perimeter also varied with no apparent tendency from 8.601 mm 

to 8.818 mm. These two parameters are directly linked to the FPC circularity (in the range 

of 0.753 to 0.783), which did not show significant changes. 

Table 5.3 illustrates the retina thickness virtual maps with annotated FPC and central fovea 

profiles (with annotated fovea center, contour points, central area, and fitted shape function) 

for the investigated examinations. 

Investigating virtual color maps with fovea pit contour in Table 5.3 and its parameters 

listed in Table 5.2, it is noticeable that the general shape of the fovea contour is similar in all 

of the scans. The color maps also indicate that the retina thickness did not change between 

the first and third examinations. The change after 3 years involved only the central fovea 

(the color of the virtual map changed in the CF ring of the ETDRS from green to yellow).  

The plots of the central retina profile and fitted to them Gaussian-based curve show 

progressing changes of the VMT. Between the 1st, 2nd, and 3rd examination, the thickness 

profile shows increased elevation of the retina surface in the fovea region (peaks in the central 

fovea depression indicate edges of the vitreous contact area that elevate the fovea). As can 

be noticed, the proposed parameterized shape curve indicates a correct fit to the annotated 

red points. The last examination shows an even more distorted fovea center with a shape 

disjoined from the gray curve, confirmed by the calculated correlation values in Table 5.2. 
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Table 5.3 Example of proposed fovea evaluation for subsequent control exams of one patient: central B-scan, 
retina thickness virtual map, ETDRS grid with retina volumes in individual sectors, central retina profile plot 

Exam no.  

/ Time 

elapsed 

Retina thickness virtual map Plot of central retina profile 
1

 /
 -

--
 

 

 

2
 /

 2
 m

o
n

th
s 

 

 

3
 /

 6
 m

o
n

th
s 

 

 

4
 /

 3
 y

ea
rs
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5.2 Preretinal space parameterization 

5.2.1 Current manual evaluation of preretinal space 

Currently, the medical community lacks the understanding of which retinal biomarkers 

lead to spontaneous resolution or pathological development of VMT. Such assessment 

is needed for providing a prognosis based on OCT images. Most clinicians rely on visual 

inspection of a 2D or 3D scan and a descriptive evaluation of the current VMT stage. Figure 

5.14a presents an example of a central OCT cross-section from a 3D scan of a patient with 

VMT in the right eye. Figure 5.14b illustrates the 3D OCT data of this scan presented in the 

form of a cloud of points, allowing only a visual assessment of changes in VRI (without 

quantitative analysis). 

 
(a) central B-scan 

 
(b) 3D visualization as a cloud of points 

Figure 5.14 Example of VMT evaluation with Copernicus HR OCT device 

CAVRI dataset classification by Duker 

Standard methods of evaluation and classification of VMA and VMT rely on analyzing 

a single horizontal spectral domain OCT scan, as proposed by Duker et al. [30]. The single 

parameter used to determine the state of VMT is the width of vitreous to retina adhesion 

(at the fovea). An example of such evaluation is illustrated in Figure 5.15.  

 

Figure 5.15 Example of a B-scan image used for descriptive assessment with annotated measurement of 
vitreoretinal adhesion width. 

Elevated fovea PCV 
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This simplified assessment technique defines the analyzed case as either broad or focal 

adhesion. The statistical analysis of subjects within the CAVRI dataset with this parameter 

is presented in Table 5.4 and Figure 5.16. The only information deduced from this assessment 

is that focal adhesion is more prevalent in VMT cases, and broad adhesion is more common 

in VMA. Furthermore, this analysis is made manually since no OCT device provides automatic 

tools to measure the vitreous adhesion area.  

Table 5.4 Statistics of CAVRI dataset based on evaluation proposed by Duker et al. [30] 

Classification VMA VMT 

focal (≤ 1500 µm) 2 19 

broad (> 1500 µm) 23 6 

 

Figure 5.16 Histogram of CAVRI cases according to Duker classification  
(a vertical gray line shows the division between focal and broad classes) 

CAVRI dataset classification with WISPERR 

The WISPERR classification [53] of VMT changes was presented in Section 2.1.3. Although 

proposed in 2016, this evaluation protocol was cited 21 times1, only concerning the outcome 

after macular hole surgery. Furthermore, none of the citing papers described statistical 

analysis of their cohort using this parametric assessment.  

For the proprietary CAVRI dataset, these parameters were determined manually 

to observe the trend of parameters distribution in the study group. The data is presented 

in Table 5.5 and Figure 5.17. 

 

 

 
1 https://scholar.google.com/scholar?cites=12120084529609086048, accessed on 24/02/2022 
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Table 5.5 Statistics of WISPERR parameters for CAVRI dataset  
(for measurements, an average value with standard deviation is given) 

Feature Values VMA VMT 

Width of attachment 

(W) 

measurement of the longest 

vitreomacular adhesion through the 

fovea [µm] 

3903.64 

(1100.55) 

975.66 

(962.60) 

vitreoretinal Interface 

(I) 

(0) none 

(1) thickened ILM without ERM 

(2) ERM anywhere 

(3) ERM within the central 1–mm 

(0): 100 % 

(0): 72 % 

(1): 20 % 

(2): 4 % 

(3): 4 % 

foveal Shape 

(S) 

(0) normal 

(1) abnormal profile 

(2) eversion 

(0): 100 % 

(0): 16 % 

(1): 60 % 

(2): 24 % 

RPE abnormalities  

in central 1–mm 

(P) 

(0) not present 

(1) present 

(0): 64 % 

(1): 36 % 

(0): 64 % 

(1): 36 % 

central retinal 

Elevation (E) 
measurement [µm] 

205.19 

(25.06) 

278.36 

(116.52) 

Inner Retina changes 

within central 3–mm 

(R1) 

(0) none 

(1) cysts or cleavage 
(0): 100 % 

(0): 32 % 

(1): 68 % 

Outer Retina changes 

within central 3–mm 

(R2) 

(0) none 

(1) focal abnormalities 

(2) subretinal fluid 

(3) defect in OS 

(4) FTMH 

(0): 64 % 

(1): 28 % 

(2): 0 % 

(3): 8 % 

(0): 60 % 

(1): 28 % 

(2): 8 % 

(3): 4 % 

 

As can be noticed based on the gathered information, all VMA cases have a normal 

(without thickening) vitreoretinal interface, normal foveal shape, and no cysts in the inner 

retina area. However, some cases (36 %) present RPE abnormalities that include (1) focal 

abnormalities of the outer retina (28 %) and (3) defects in the OS layer (8 %). As can be 

expected, the average central retinal thickness in VMA (205.19 ±25.06 μm) is smaller than for 

VMT (278.36 ±116.52 μm) (see also Figure 5.17d).  

The longest width of VRI attachment is also predictably larger for VMA (3903.64 ±1100.55 

μm) than for VMT (975.66 ±962.60 μm), and their distribution presented in Figure 5.17a 

is separable. Even though the CAVRI dataset does not include ERM cases that could hinder the 

VRI segmentation process, 2 of the cases include the presence of ERM within the OCT scan. 

From the rest of the VMT cases (23), only 5 present a thickened ILM (see Figure 5.17b). In the 

majority of the VMT subjects (e.g., 15), the fovea presents an abnormal profile, 6 have 

an evident eversion, and 4 maintained normal shape (see Figure 5.17c). Furthermore, from 

Figure 5.17e, it can be deduced that cysts or cleavage in the inner retina frequently 

accompanies the VMT formation. On the other hand, changes within the outer retina are 

similarly common for VMA and VMT subjects (see Figure 5.17f). 
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(a) W feature 

 
(b) I feature 

 
(c) S feature 

 
(d) E feature 

 
(e) R1 feature 

 
(f) R2 feature 

Figure 5.17 Statistical charts of WISPERR features for the CAVRI dataset 
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Although this parameterization gives more information than the classification by Duker 

et al. [30], it is still ambiguous. For example, they do not indicate the location of changes in the 

vitreoretinal interface (e.g., in the superior, inferior, left, or right part of the macula). Thus far, 

it is unknown how these parameters should be used to assess the VMT stage, predict its 

progression, or propose a treatment course. Furthermore, all parameters need to be obtained 

manually, as none are implemented in any commercial or research software.  

5.2.2 Proposed Virtual Map for evaluation of the preretinal space 

A more sophisticated approach for preretinal space assessment involves 3D imaging of the 

whole PCV and retinal complex. One of the solutions proposed by the author is visualization 

using the so-called Virtual Maps (VM) of the distance between the segmented structures. 

It allows the quantification of the preretinal space volume.  

The proposed solution utilizes 3D OCT cross-sections to generate a Virtual Map of the 

preretinal space profile. The acquired series of 3D OCT volumetric data was subjected 

to automatic segmentation of retina and preretinal space borders presented in Chapter 4. 

The proposed algorithm for preparing a quantitative Virtual Map for the VMA and VMT 

assessment illustrated in Figure 5.18 consists of the following steps: 

1. Acquisition of a 3D OCT scan. 

2. Image preprocessing (noise suppression and image cropping for graph-based 

method, or normalization for DNN-based method). 

3. PCV, ILM, and RPE lines segmentation in every B-scan in a 3D set (with either graph 

search or DNN). 

4. VRI structures parameterization: 

a. Preretinal space 

i. calculation of distance between the PCV and ILM line 

ii. generation of a Virtual Map of the preretinal space profile  

iii. calculation of preretinal space volume in each ETDRS sector 

b. Vitreous to retina adhesion area 

i. calculation of the adhesion area between PCV and ILM lines 

ii. generation of a quantitative map of the adhesion area. 

For each acquired OCT B-scan, the developed system calculates vertical distances (depths) 

between the vitreous and the surface of the retina (i.e., between the ILM and PCV lines) with 

the following Equation: 

𝑉𝑀𝑃𝑅(𝑥, 𝑦) = 𝑃𝐶𝑉(𝑥, 𝑦) − 𝐼𝐿𝑀(𝑥, 𝑦) (5.18) 

where 𝑥 ∈ 〈0, 384〉 denotes the horizontal index of the OCT cube (i.e., the B-scan column), 

𝑦 ∈ 〈0, 140〉 sands for the index of the cross-section, 𝑉𝑀𝑃𝑅  is the matrix of the preretinal 

space virtual map values, and 𝑃𝐶𝑉  and 𝐼𝐿𝑀  are matrixes of the segmented PCV and ILM 
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surfaces, respectively. This results in distance matrixes are the size of 141×385 for each 3D 

OCT scan (the dimensions of the matrix depend on the scan resolution).  

 
Figure 5.18 General methodology for volumetric parameterization of the preretinal space 
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Next, the obtained VM matrix is visualized as a color depth map, as illustrates Figure 5.19. 

Here, the VM is overlaid on a reconstructed fundus image (to reference the placement 

of retinal vessels). Figure 5.19 presents examples of segmented central B-scans and their 

corresponding preretinal space Virtual Maps for VMA and VMT subjects from a CAVRI dataset.  

 

(a) central B-scan with layers segmentations  
for VMA example 

 
(b) central B-scan with layers segmentation  

for VMT example 

 
(c) virtual map for VMA example 

 
(d) virtual map for VMT example 

Figure 5.19 Examples of preretinal space virtual profile map 

The width and height of the VM image are described in [mm] with respect to the fovea 

center, and the color of the VM at each point illustrates the depth of the preretinal space 

in [µm]. This provides a clinician with valuable information on the stage of posterior vitreous 

detachment in the examined region. 

When interpreting VM for VMA example in Figure 5.19c, it can be noticed that the vitreous 

has separated from the retina surface in the right (nasal) area with a distance of around 

200 μm1 (pink color of VM), and upper-right (superior-nasal) area with a distance of about 

 
1 201 μm in 314th column of 67th B-scan for this example according to the data in the OCTAnnotate software.  
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300 μm (pink orange color of VM). Slight elevation (about 50 μm denoted with dark purple 

color) can also be observed in the lower (inferior) region. The rest of the scan shows the 

vitreous attached to the retina (the black semi-transparent color). It should be noted that such 

detailed analysis is not possible based solely on the central B-scan (as illustrated in Figure 

5.19a), which gives information only for the nasal and temporal quadrants. A similar 

observation can be made about the VMT case presented in Figure 5.19b and d. 

As shown in Section 3.2.3, the ETDRS grid may be superimposed on a Virtual Map for 

spatial reference (as is visible in Figure 5.19c and d). The quantitative assessment of the 

preretinal space and adhesion area is performed for each ETDRS quadrant separately and 

in rings. The developed algorithms are designed to assess quantitatively: 

• preretinal space volume for all 9 ETDRS sectors 

• vitreous to retina adhesion area for 3 ETDRS rings. 

The calculations and visualization methods developed during this research were 

implemented in the OCTAnnotate software designed by the author of this thesis (see 

Appendix A2). 

 Figure 5.20 illustrates the Preretinal Space tab of the graphical user interface 

in OCTAnnotate software. In the left part of the tab, the Duker and WISPERR classification 

parameters are placed. Next, to the right of these parameters is a reconstructed fundus image 

with overlaid ETDRS grid and vitreous to retina contact areas overlaid in yellow. Below this 

map are displayed the numerical values of the contact area in ETDRS rings. The color map 

in the center of the tab, with overlaid ETDRS grid, represents the vertical differences between 

the previously segmented PCV and ILM surfaces. The color bar below the map illustrates the 

values assigned to each map color. The circular graph on the right illustrates the numerical 

values of the preretinal space in specific sectors of the ETDRS grid. The values visible in each 

sector denote the preretinal space volume in a given sector. The background color 

representing this value (the greater volume, the darker color) allows a quick and intuitive 

assessment. 

 
Figure 5.20 Example of preretinal space evaluation with the OCTAnnotate software 
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Analysis of measurement error 

Figure 5.21 illustrates calculating the volume between ILM and PCV surfaces. From the  

B-scan resolution and the number of B-scans stems the volume 𝑉𝑣𝑜𝑥𝑒𝑙 of a single voxel: 

𝑉𝑣𝑜𝑥𝑒𝑙 = 𝑤𝑥 × 𝑤𝑦 × 𝑤𝑧 (5.19) 

where, 𝑤𝑥 is the lateral fast-scanning data resolution (18,18 µm), 𝑤𝑦 is the distance between 

neighboring B-scans (49,6 µm), and 𝑤𝑧 is the axial resolution (3,1 µm)1. This gives a single 

voxel the volume of 2795.36 μm3 (i.e., 0.000002795 mm3).  

Based on these values, it is possible to calculate the error of preretinal space volume 

quantification. For example, when the PCV line is segmented with an MAE of 1 px, the volume 

of preretinal space will differ by 1×141×385 px, which is 0.1517 mm3 within the whole OCT 

scan, and by 0.088 mm3 within the ETDRS grid. For a healthy retina with an average thickness 

of 200 μm, this equals 1.55 % of 9.8 mm3 retina volume within a 7×7×2 mm OCT scan. This 

error margin is clinically acceptable considering the examined area and voxel size. 

 
Figure 5.21 Illustration of voxel measurement 

Preretinal volume parameterization using ETDRS grid 

For the gathered OCT scans in the CAVRI dataset, the conducted research also involved 

statistical analysis of the quantified preretinal space volume within each sector of the ETDRS 

grid. For that purpose, the obtained segmentation was processed as was described above and 

in Figure 5.18. The calculations were made in the OCTAnnotate software (see Appendix A2).  

The author calculated preretinal space volume and generated virtual maps representing 

the distance between the PCV and retina surface for each patient in the VMA and VMT groups 

within the CAVRI dataset. The obtained results allowed the clinicians to quantitatively assess 

the differences in each ETDRS sector between these two groups of subjects. Figure 5.22 

presents the box plots of the calculated volumes for the central fovea and 4 inner macula 

sectors. Figure 5.23 presents corresponding preretinal space volumes for the outer macula, 

while Figure 5.24  illustrates the sum of inner and outer sectors in each quadrant of the ETDRS. 

 
1 wx, wy, and wz values for 3D Retina scan are obtained with Avanti RTvue OCT device (Optovue Inc.) 
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Figure 5.22 Box plot of preretinal space volume for CAVRI dataset within fovea and inner ETDRS ring 

 

Figure 5.23 Box plot of preretinal space volume for CAVRI dataset within fovea and outer ETDRS ring 

 

Figure 5.24  Box plot of preretinal space volume for CAVRI dataset within fovea and four ETDRS sectors 

The gathered results indicate that the preretinal space volume in the inner macula region 

is similar in all directions. The biggest difference is observed for the VMT subset between the 
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nasal inner IQR of 0.247 mm3 and the inferior inner IQR of 0.414 mm3. The most significant 

difference in the average preretinal space volume is detected between the temporal inner 

(0.293 mm3) and superior inner (0.336 mm3) sectors. For the VMA subset, the calculated 

preretinal space volumes are significantly smaller, with the biggest average value being 

0.035 mm3 for the superior inner sector and the smallest average value of 0.0098 mm3 for the 

inferior inner sector.  

The preretinal space of the fovea is understandably significantly smaller due to the 

spanning range of a smaller diameter and frequently having attached vitreous to the retina 

surface. The average value of the preretinal space in the central fovea for VMA 

is 0.00184 mm3, while for the VMT is 0.079 mm3. 

The data presented in Figure 5.23 indicates greater vitreous separation from the retina 

surface for VMT subjects in the superior outer quadrant (average value of 1.654 mm3) than 

in the inferior, nasal and temporal outer quadrants (average value of 1.376 mm3, 1.316 mm3, 

and 1.326 mm3, respectively). Furthermore, the smallest IQR value is observed for the nasal 

outer sector (0.823 mm3) and the biggest for superior and inferior outer sectors (1.448 mm3 

and 1.459 mm3, respectively). Although the outer ETDRS ring spans a 3.38 times greater area 

than the inner ring, the preretinal space volumes in these rings differ on average 4.54 times 

for VMT and 16.22 times for VMA. 

For VMA subjects, the distribution of preretinal space volume is similar for the outer and 

inner ETDRS rings. The biggest average value in the outer ring is obtained for the superior 

sector (0.533 mm3) and the smallest for the inferior sector (0.224 mm3). The nasal and 

temporal sectors have a similar average preretinal space volume (0.347 mm3 and 0.313 mm3, 

respectively) but differ in the IQR (0.38 mm3 and 0.32 mm3, respectively). 

Due to the fact that the preretinal space volume values are significantly greater in the 

outer ring than in the inner ring and the fovea, the data presented in Figure 5.24 maintain 

a similar distribution to the values described for the outer ETDRS ring. It should also be noted 

that the average preretinal space volume for the VMT subjects is 4.83 and 4.36 times greater 

than for VMA in the temporal and nasal quadrants, respectively, and 3.50 and 7.20 times 

greater in the superior and inferior quadrants, respectively. 

Parameterization of vitreous to retina adhesion area  

The vitreous to retina adhesion area corresponds to the PCV-ILM distance equal to 0 µm. 

To account for retinal layers segmentation error and annotation uncertainty, the author set 

a margin of 10 µm when determining the VRI adhesion area. Figure 5.25 illustrates the 

adhesion area overlaid on the reconstructed fundus image for examples of VMA and VMT 

presented in Figure 5.19.  
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(a) VMA example 

 
(b) VMT example 

Figure 5.25 Visualization of the adhesion area (in red) overlaid on the reconstructed fundus image 

When analyzing the adhesion map for the VMA example in Figure 5.19a, it can be noticed 

that the vitreous is fully connected in the Central Fovea region (i.e., 0.785 mm2), spans 58 % 

of Inner Macula (i.e., 4.086 mm2), and 14 % of Outer Macula (i.e., 3.969 mm2). Furthermore, 

compared to the preretinal space volume map, the contact area map shows in more detail 

that the vitreous is separated in the superior and nasal inner macula and superior, nasal, and 

inferior outer sectors. Irregularities also noticeable in such maps stem from border annotation 

uncertainties concerning axial resolution (1 px represents 3.1 μm). 

Table 5.6 includes the average adhesion values for each ETDRS ring for VMA and VMT 

subjects from the CAVRI dataset and a VMA/VMT ratio for these areas. For VMA subjects, the 

adhesion area stems almost the whole Central Fovea (94.6 %) on average, while in VMT, 

it is about 32.6 % of the CF region. For the Inner Macula ring difference between these values 

is even greater: 10.1 % for VMT and 77.2 % for VMA. When investigating the Outer Macula 

ring, the adhesion area spans a significantly smaller area than the area of the whole OM (6.2 % 

for VMT and 23.2 % for VMA). This confirms that OM (and the area beyond it) is the first region 

of vitreous separation. Furthermore, the calculated adhesion areas are 4.79 times greater for 

VMA than for VMT subjects. The greatest difference is observed for the inner macula region, 

for which the VMA/VMT adhesion ratio is 7.66. Figure 5.26 illustrates box plots for these 

subsets. 

From data in Table 5.6 and Figure 5.26, it is also noticeable that the range of adhesion area 

values for CF in VMA is very small (standard deviation of 0.096 mm2). This can be explained 

by the fovea being one of the last regions separating from the vitreous. Thus, the adhesion 

spans almost all of the CF until it separates.  
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Table 5.6 Average adhesion area values for VMA and VMT in individual rings of ETDRS grid 

Region 
Total area 

[mm2] 

Average (SD) adhesion area [mm2] VMA / VMT 

adhesion ratio VMT VMA 

Central Fovea 0.785 0.256 (0.222) 0.743 (0.096) 2.90 

Inner Macula 6.284 0.633 (1.089) 4.849 (1.635) 7.66 

Outer Macula 21.205 1.306 (2.694) 4.912 (3.514) 3.76 

Total 28.274 2.195 (3.626) 10.504 (4.680) 4.79 

 
Figure 5.26 Box plot of vitreoretinal contact area for CAVRI dataset in 3 ETDRS rings 

The proposed method allows to perform precise determination of the adhesion area. 

It is much more accurate than a simple approximation with an ellipse proposed by [47]. Since 

the strength of the attachment between the posterior surface of the hyaloid and the retina 

is considered an important factor in VMA and VMT pathology, the developed quantitative 

evaluation methods are valuable tools for their assessment.  

5.2.3 Advantage of volumetric preretinal space parameterization in the long 

term VMA/VMT observation 

The volumetric analyses presented earlier are an effective tool for long-term evaluation. 

This will be demonstrated by observing changes in the preretinal space for the case of VMT. 

A 66-year-old patient (at the time of enrollment) with VMT in both eyes was examined 6 times 

in the observation period of 1.5 years. After 3 months, the VMT in the right eye was 

disconnected, while the left eye remained under observation.  

Table 5.7 presents an evaluation with the current manual parameterization methods 

by Duker and WISPERR. The obtained measurements show how limited the classification 

by Duker is, where attachment width during the first three months differs by only 255.20 μm, 

and the classification remains unchanged. 
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Table 5.7 Example of typical VMT evaluation with current classification methods for subsequent control exams 
of one patient: central B-scan images, classification by Duker, and WISPERR parameterization 

Exam no. / 

Time elapsed 
Central B-scan Duker classification 

WISPERR 

parameterization 
1

 /
 -

--
 

 

Adhesion width:  

Classification:  

3627.60 µm 

Broad 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

3627.60  µm 

(1) 

(1) 

(0) 

208.03 µm 

(1) 

(0) 

2
 /

 1
 m

o
n

th
 

 

Adhesion width:  

Classification:  

3427.08 µm 

Broad 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

3500.00 µm 

(1) 

(1) 

(0) 

217.34 µm 

(1) 

(0) 

3
 /

 3
 m

o
n

th
s 

 

Adhesion width:  

Classification:  

3372.40 µm 

Broad 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

3226.56 µm 

(1) 

(1) 

(0) 

245.28 µm 

(1) 

(0) 

4
 /

 6
 m

o
n

th
s 

 

Adhesion width:  

Classification:  

273.44 µm 

Focal 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

401.04 µm 

(1) 

(2) 

(1) 

291.86 µm 

(1) 

(1) 

5
 /

 1
 y

ea
r 

 

Adhesion width:  

Classification:  

255.21 µm 

Focal 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

255.21 µm 

(1) 

(1) 

(1) 

254.60 µm 

(1) 

(1) 

6
 /

 1
.5

 y
ea

r 

 

Adhesion width:  

Classification:  

--- 

--- 

W: 

I: 

S: 

P: 

E: 

R1: 

R2: 

--- 

(1) 

(1) 

(1) 

167.66 µm 

(1) 

(1) 
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Between the 3rd and 4th examination, the vitreous detaches in the temporal region (see 

right side of the B-scan), the attachment width decreases to 273.44 μm and changes the 

classification to focal. The final examination shows a total vitreous detachment, for which 

most measurements cannot be obtained. 

Data gathered in Table 5.7 shows that the WISPERR parameterization allows for a more 

detailed analysis of the current VMT stage and development prognosis. The W parameter 

is similar to the Duker adhesion width measurement and, for the 1st examination, has the 

same value of 3627.60 μm. In the given example, the W parameter decreases during the first 

three months, but to 3226.56 μm instead of 3372.40 μm. These differences result from the 

cross-section used for the measurement. In the following examinations, the W parameter also 

decreases significantly. However, the 4th observation shows that the broadest adhesion 

(401.04 μm) is almost twice as long as the Duker measurement (273.44 μm), thus not in the 

central B-scan. Between the 4th and 5th examination, the attachment becomes more focal. 

Its maximal width diminished further to 255.21 μm, changing the shape of the fovea and 

allowing a smaller retina elevation (E parameter decreases from 291.86 μm to 254.50 μm).  

With WISPERR parameterization, valuable information give the parameters W and E. For 

the evaluated patient, when the width attachment (W parameter) was decreasing, the E value 

increased from 208.03 μm in the beginning to 245.28 μm in the 3rd examination indicating 

a strong pull of the detaching vitreous. The E value increased further to 291.86 μm in the 4th 

examination, when the attachment became focal. Then, the elevation width decreased 

to 254.60 μm along with the decrease in maximal width (W), which suggests a weakening 

of the VRI adhesion and an upcoming vitreous separation. After vitreous detachment, the 

fovea shape returns to a natural depression with a central retina thickness of 167.66 μm. 

The I parameter is constant for all examinations and shows a thickened ILM structure. 

The S parameter for the first three examinations indicates an abnormal fovea shape (1) and 

changes to eversion (2) when the adhesion becomes focal, returning to the abnormal profile 

right after the vitreous detachment. The parameter P directly corresponds to parameter R2, 

which describes the RPE structure. The first three examinations show a normal RPE (0), while 

after the change in the attachment (broad to focal), dehiscence in the RPE layer is visible (1), 

which stays even after the vitreous detachment. Finally, parameter R1 indicates that cysts 

have formed in the inner retina. Although this parameter is directly linked to the shape of the 

fovea (fovea eversion in most cases causes retinal cysts), the cysts were present even for the 

abnormal fovea profile (R1 value of (1)) and stayed after vitreous detachment. 

Although such analysis gives valuable information about the changes of the VMT, 

the proposed volumetric evaluation shows preretinal space volume changes over time 

in individual ETDRS sectors. Table 5.8 illustrates the evaluation of the same OCT scans with 

virtual color maps of the preretinal space, ETDRS volume grids, and adhesion area maps with 

measured contact area in each ETDRS ring. 
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Table 5.8 Example of proposed VMT evaluation for subsequent control exams of one patient: virtual color 
maps, ETDRS grids with preretinal volumes in individual sectors, adhesion area maps, and parameters 

Exam no. 
/ Time 

elapsed 

Preretinal space  
virtual map 

Preretinal space volume 
quantified in ETDRS grid sectors 

Vitreous to retina  
adhesion area 

1
 /

 -
--

 

 
 

 
CF:  0.222 mm3 

IM:  3.891 mm3 

OM: 12.807 mm3 

2
 /

 1
 m

o
n

th
 

 
 

 
CF: 0.359 mm3 

IM: 3.838 mm3 

OM: 12.077 mm3 

3
 /

 3
 m

o
n

th
s 

 
 

 
CF: 0.247 mm3 

IM: 2.456 mm3 

OM: 8.520 mm3 

4
 /

 6
 m

o
n

th
s 

 
 

 
CF: 0.091 mm3 

IM: 0.0 mm3 

OM: 0.0 mm3 
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Exam no. 
/ Time 

elapsed 

Preretinal space  
virtual map 

Preretinal space volume 
quantified in ETDRS grid sectors 

Vitreous to retina  
adhesion area 

5
 /

 1
 y

ea
r 

 
 

 
CF: 0.050 mm3 

IM: 0.0 mm3 

OM: 0.0 mm3 

6
 /

 1
.5

 y
ea

r 

 
 

 
CF: 0.0 mm3 

IM: 0.0 mm3 

OM: 0.0 mm3 

Data presented in ETDRS volume grids in Table 5.8 include the volume of total preretinal 

space in the EDTRS range at the beginning of the study as 1.711 mm3, followed by 1.804 mm3 

in the next test, 3.142 mm3 in the third, 5.633 mm3 in the fourth, 5.974 mm3 in the fifth, and 

7.823 mm3 in the sixth test. The vitreous adhesion in the ETDRS area in the first examination 

was 16.92 mm2, and in subsequent studies, it was 16.27 mm2, 11.22 mm2, 0.09 mm2, 

0.05 mm2, respectively, and in the sixth study, it was zero. 

The detailed analysis of the virtual maps and ETDRS volume grids clearly shows that the 

vitreous was first separated in the outer nasal area (with a preretinal space volume 

of 1.016 mm3). The detachment progressed to the outer superior region to reach 1.654 mm3 

after 3 months. Maps for the 4th examination (after 6 months) illustrate that the vitreous 

is detached in whole inner and outer macula rings (with a volume of 4.634 mm3 in the outer 

and 0.93 mm3 in the inner ETDRS ring), and the attachment spans only the central fovea. 

The contact area map shows that the central fovea region is constantly attached throughout 

the evaluation and detaches as last. Interestingly the changes in VRI associated with 

weakening of the vitreous adhesion between the 4th and 5th examination are visible as a slight 

increase of preretinal volume in all ETDRS sectors.  

The measured preretinal space volume changes are also visualized in Figure 5.27 for four 

ETDRS quadrants in total. The data indicate that although the greatest separation was in the 
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nasal area (1.148 mm3) initially, its change up to the 5th examination was only by 0.016 mm3. 

The largest progress can be observed in the superior quadrant, which changed from initial 

0.48 mm3 to 1.85 mm3 in the 3rd examination and finally to 2.51 mm3. The preretinal space 

volume in the superior quadrant also remained the greatest throughout every observation 

period. Furthermore, the measured volume increased in the temporal and inferior quadrants 

only after vitreous separation in the outer ETDRS ring. 

 
Figure 5.27 Bar plot of preretinal space volume in the central fovea and four ETDRS quadrants 

Summary of application of the proposed solutions  

The author presented novel volumetric parameterization methods for evaluating retina 

and preretinal space characteristics with present VMA and VMT. The proposed automatic 

parameterization methods were applied in a clinical setting and analyzed in terms of validity. 

The statistical analysis of subjects from the CAVRI dataset indicates the following key results:  

1) concerning fovea parameterization: 

a. the standard evaluation parameters of CRT, fovea pit depth 𝐹𝑃𝐷 , central fovea 

area 𝐹𝐶𝐴  and central fovea diameter 𝐹𝐶𝐷 , can be determined in an automatic 

procedure; their distributions show the difference for the investigated VMT cases 

b. fovea shape coefficient 𝑐𝐹𝑆, introduced by the author, shows a correlation of the 

measured retina thickness profile to a statistically normal fovea shape, and has 

a potential to be used as a parameter for VMT stage classification; the 

automatically obtained fovea pit volume and maximal fovea pit depth provide 

further details about the changes in the fovea pit region 

c. the proposed fovea pit contour and its characteristics (area, perimeter, circularity, 

and maximal diameter) have acceptable reproducibility and indicate slight 

differences between the VMA and VMT development 

0

0.5

1

1.5

2

2.5

3

Exam 1 Exam 2 Exam 3 Exam 4 Exam 5 Exam 6

P
re

re
ti

n
al

 s
p

ac
e 

vo
lu

m
e 

[m
m

3 ]

Fovea Temporal Superior Nasal Inferior



 5 Application of the proposed solutions  

166 A. Stankiewicz 

d. introduced automatic fovea pit parameterization can be used to illustrate changes 

in the fovea that occur in the long term VMA/VMT observation 

2) concerning preretinal space parameterization: 

a. both Duker and WISPERR-based classification of the VRI (limited to the central OCT 

cross-section) do not fully reveal the possible changes that occur in VRI 

b. using the presented algorithms, it is possible to create detailed VRI virtual maps 

that accurately reflect the profile of the vitreous body adherence to the retina and 

allow to assess the preretinal space volume in individual ETDRS sectors quickly 

c. developed parameterization methods of the preretinal space volume and VRI 

contact area allows to quantitatively and accurately distinguish VMA and VMT 

d. in a long-term VMA/VMT observation, the proposed quantitative parameterization 

of preretinal space volume and contact area provides more detail about the 

progression of the vitreous separation than Duker or WISPERR classifications 

(especially in the superior and inferior macula regions). 

The obtained results prove the validity of the proposed parameterization of the fovea and 

preretinal space for accurate assessment of the VMA/VMT condition. The developed methods 

for automatic segmentation and parameterization of preretinal space and retina allow 

to measure differences between VMA and AMT and track their changes in time. The author 

believes that the proposed parametric evaluation can provide valuable information to further 

the understanding of VMA and VMT progression. The obtained parameterized data has the 

potential to be used for diagnostics and clinical decision-making, as well as in research.
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Chapter 

6 Conclusions 

Biometric analysis of the retina morphological structures is crucial for diagnosing patients with 

ophthalmic diseases. Implementation of non-invasive diagnostic methods, such as optical 

coherence tomography (OCT), in modern visualization systems, allows for the investigation 

of the retina at the cellular scale. Modern OCT devices allow for detailed visualization of the 

vitreous and retinal area with the acquisition speed of up to 100 000 A-scans/second and axial 

scan resolution of 3 µm. Although a volumetric 3D scan provides more information about 

retina changes in the whole macular region, its acquisition time takes even 1 s. Also, its quality 

is much lower than multiply acquired and averaged single B-scan examination through the 

macula center. For this reason, advanced signal processing algorithms are necessary 

to improve the obtained 3D image quality and reliability of its investigation. 

The amount of data acquired using the OCT modality makes a detailed manual assessment 

of the examined tissue impractical in the clinical routine. The introduction of automatic 

segmentation of the retinal structures from medical images allows the analysis of the retina 

tissue quantitatively. The software solutions implemented in modern OCT devices are 

increasingly advanced. Nevertheless, some pathological changes, e.g., those in the border 

of the vitreous and the retina (i.e., vitreoretinal interface), still lack effective methods 

for segmentation, parameterization, and pathology stage assessment. Because the VRI 

abnormalities (e.g., vitreomacular adhesion and traction – VMA/VMT) have been classified 

by a team of ophthalmologists relatively recently, i.e., in 2013, there are no automated 

methods for determining the profile of VMT in relation to the surface of the retina.  

The research objective in this thesis was to extract biometrical features mainly 

for VMA/VMT assessment using automatic procedures based on volumetric OCT data. 

The main achievements of this work can be summarized in the following remarks: 

1. Manufacturers of OCT devices constantly try to overcome the low quality of the 

acquired images. In order to improve the segmentation accuracy for the gathered 

CAVRI OCT images with specific conditions of VMT, the author tested several state-of-

the-art noise reduction methods. The goal was to obtain the correct segmentation 

of the retina layers with a graph-based approach and enhance the vitreoretinal 

interface characteristics – mainly the low signal level of the vitreous border. However, 

graph-based segmentation using image gradient analysis is susceptible to noise and 

local signal level variations. 
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a. The author tested the following noise reduction methods: averaging filtering, 

median filtering, anisotropic diffusion, wavelet soft thresholding, block-matching 

and collaborative filtering (BM3D), 3D anisotropic diffusion, multiframe wavelet 

soft thresholding, and 3D block-matching and collaborative filtering (BM4D). The 

literature-based methods were adopted to the specificities of 3D OCT data, and 

a wide range of filter parameters were tested. 

The conducted experiments demonstrate that among 2D noise reduction methods 

(i.e., those applied to each OCT B-scan separately), the BM3D allows obtaining the 

best layers segmentation accuracy with an average MAE of 4.18 px for all layers. 

Furthermore, from the group of 3D methods (i.e., considering neighboring  

B-scans), the BM4D method also provides the best segmentation accuracy with 

an average MAE of 3.62 px. Nevertheless, it should be noted that this method 

is also the most computationally expensive, where filtering of 3D volume takes 

415.10 s and 18655.55 s for BM3D and BM4D, respectively. 

b. The author noticed that low signal strength parts of the B-scan hinder the process 

of finding the shortest path of the graph-based algorithm for retina layers 

segmentation. Thus, the author proposed a method of removing low quality parts 

of the OCT image to improve the stability of the graph search method.  

The tested methods involved two approaches: removing the constant width of the 

peripheral section of the B-scan from further investigation or performing 

an adaptive cropping technique based on a selected threshold. Both approaches 

were tested with multiple threshold values.  

The obtained results show that for the VMA cases, the best result is obtained with 

cropping of a constant 15 % of B-scan width, which improves the segmentation 

accuracy for this group from 4.75 px of MAE to 4.09 px. On the other hand, for the 

VMT subset, the best outcome gives the adaptive cropping of B-scan width with 

the threshold of 𝑡=140, and improvement of MAE value from 4.45 px to 3.84 px.  

c. Furthermore, the author proposed tracking specific retina layers borders (i.e., ILM 

and IS/OS) when processing subsequent OCT cross-sections. This procedure allows 

further improvement of the segmentation correctness.  

The general idea stems from the fact that the retina tissue is continuous between 

neighboring cross-sections; thus, it is possible to limit the search region for the 

graph-based method to the desired B-scan area. Additionally, the author tested 

the influence of the tracking procedure’s starting point (i.e., from the edge of the 

scan, from 1/3rd of the scan, or the center of the scan) on the overall segmentation 

correctness and eventual error propagation. 

Based on the obtained results, it can be concluded that the best results can 

be obtained when both hyperreflective retina borders (i.e., ILM and IS/OS) are 
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tracked throughout the 3D OCT scan starting from the 1/3rd of the volume. 

The average MAE value for all cases with this approach is 4.10 px. Additionally, 

as illustrated in Section 3.2.3, the proposed solution allowed removing inter-

section irregularities of the segmented retina borders. 

2. The current solution implemented in research or commercial OCT software does not 

allow for segmentation of the vitreous border (i.e., PCV) and preretinal space area 

or precise quantitative observation of its changes in VMA and VMT cases. Therefore, 

the author aimed to obtain correct PCV line segmentation using modern OCT image 

analysis based on neural networks. 

a. For automated preretinal space segmentation, the author selected the most 

promising convolutional neural networks and implemented them in 4-class pixel-

wise semantic segmentation for PCV extraction from OCT images. Among the 

selected architectures were: baseline UNet, LFUNet, Attention UNet, DRUNet, and 

ReLayNet.  

i. First, two cost functions (e.g., Categorical Cross-Entropy Loss and Weighted 

Dice Loss) and three of their combinations with various weights were tested. 

The best results with a Preretinal Space Dice Coefficient of 0.9458 were 

obtained utilizing a Combined Loss function with a weight of 1 for Weighted 

Categorical Cross-Entropy Loss and 0.5 for Weighted Dice Loss. 

ii. Using the selected loss function, the author tested the performance of the 

above-listed network architectures. Here, the best results for the Preretinal 

Space were obtained with the baseline UNet with the MAE of 2.83 px, 0.56 px, 

and 0.75 px for PCV, ILM, and RPE borders, respectively. It should be noted that 

the deep learning approach provides better results for preretinal space 

segmentation than the graph-search method, for which the obtained Dice 

Coefficient was only 0.8217 and MAE was 7.29 px, 5.10 px, and 5.20 px for PCV, 

ILM, and RPE lines, respectively. 

iii. Additionally, the author analyzed the influence of 4 data augmentation 

techniques (horizontal flip, random rotation, random translation, and random 

cropping) on the improvement of preretinal space segmentation. 

The conducted experiments show that the preretinal space segmentation can 

be improved with additional data augmentation from 0.9486 to 0.9591 for the 

Preretinal Space Dice Coefficient with baseline UNet. 

b. The author also discussed the problem of the incorrect order of segmented retina 

borders and proposed a solution for reducing the number of topologically incorrect 

segmentations. Two approaches were tested: incorporating additional topology 

information in the form of a Relative Distance Map (RDM) and utilizing a nontypical 

convolution kernel. 
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i. Two RDMs utilizing prior segmentation of the retina borders (referred 

to as 2NetR and 2NetPR) were proposed, and additional two RDMs that do not 

require prior information of the retina borders (named BasicOrient, and 

CumSum). Results presented in Section 4.3.2 show that the 2NetPR map 

proposed by the author reduces the percentage of topology errors from 15.1 % 

to 3.7 % for UNet and even from 88.3 % to 10.8 % for ReLayNet. For LFUNet, 

the best results were obtained with the CumSum method, for which the 

topology incorrectness decreased from 11.5 % to 4.8 %. 

ii. To increase the robustness of the network to a spatial hierarchy of the classes, 

the author proposed increasing the network’s field of view with a bigger 

convolution kernel. Three types of kernels were tested: typical square (3×3, 

5×5, and 7×7), vertical (5×3, 7×3, and 9×3), and horizontal (3×5, 3×7, and 3×9). 

The greatest improvement in topology was observed for vertical 9×3 kernel 

for UNet and LFUNet (incorrectness decreased to 2.42 % and 1.14 %, 

respectively). For the UNet, the best Preretinal Space Dice Coefficient of 0.9640 

and MAE for PCV of 0.90 px were obtained with horizontal kernel 3×9. Similar 

results for Preretinal Space Dice Coefficient of 0.9638 and PCV MAE of 0.88 px 

for LFUNet were obtained with kernel 7×7. It can be noticed that a solution 

utilizing a non-standard convolution kernel gives better results than additional 

RDM while omitting the problem of error propagation. 

3. Precise retina and vitreous borders segmentation in an OCT scan is key to the correct 

assessment of retina and preretinal space. Thanks to correct OCT image segmentation, 

the parameters of the morphological structures can be obtained automatically. 

Currently, no research or commercial OCT software provides an automated 

measurement of VRI features and structures. The research conducted by the author 

aimed at developing automatic parameterization of VRI for quantitative VMA/VMT 

assessment. 

a. In Section 5.1, the author proposed and evaluated novel fovea parameterization 

techniques for VMA and VMT investigation. A set of key fovea anatomical features 

(based on a central B-scan) has been implemented in an automatic procedure. 

Additionally, the author introduced new parameters of the fovea shape 

coefficient, fovea pit contour, and volume (based on a 3D OCT scan). The statistical 

analysis of the fovea parameters within VMA/VMT subsets and long-term VMT 

observation indicates the proposed parameters' validity and usefulness in tracking 

VRI changes.  

b. Utilizing this thesis's preretinal space segmentation method, the author performed 

automated parameterization of the preretinal space volume and vitreous to retina 

adhesion area within each ETRDS grid sector. The author shows that observation 
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of the preretinal space volume is a unique and informative way to monitor changes 

in the vitreoretinal interface. The discussion in Section 5.2 presents the advantage 

of incorporating, proposed by the author, volumetric 3D analysis of VRI profiles 

in the form of virtual maps. Furthermore, by performing a structural investigation 

of VMA/VMT using the designed 3D data analysis (instead of a single B-scan), 

the author presents tools to quantitatively and objectively track disease 

progression in long-term observation. 

In summarizing, the results of experiments presented by the author prove the scientific 

thesis stated in Section 1.4. Thus, in the author’s opinion, the scientific aim of this Ph.D. 

dissertation has been accomplished. 

The innovative way of observing changes in the VRI area was developed thanks to the 

cooperation of an interdisciplinary research team consisting of employees of the Department 

of Ophthalmology, Heliodor Swiecicki University Hospital, Poznan University of Medical 

Sciences, and employees of the Division of Electronic Systems and Signal Processing, Institute 

of Automatic Control and Robotics, Poznań University of Technology. The cooperation 

resulted in multiple publications in scientific journals, conference presentations, and the 

submission of a patent application (see Appendix 1).  

Open-source software prepared during conducted research and published 

on http://dsp.org.pl/badania/4/ and the https://github.com/krzyk87 pages can help other 

scientists in the study of VRI pathologies and improvement of medical image analysis 

procedures. Furthermore, the gathered unique OCT dataset can be helpful to research groups 

worldwide investigating ophthalmic pathologies. The OCTAnnotate software (see Appendix 2) 

was used for long-term follow-up of patients in the doctoral research of Elżbieta Marciniak, 

M.D., and in research related to master's and bachelor's theses in the Department 

of Ophthalmology at Poznan University of Medical Sciences. 

Furthermore, the research presented within this thesis was supported by the National 

Science Centre with the following research grants: 

• Preludium 8: “Maximizing informative content of low quality OCT scans for modern 

computer-aided diagnostic procedures (Project CADOCT),” project no. 2014/15/N/ 

ST6/00710, 2015 – 2017. 

• Etiuda 7: “Automatic parameterization of human retina image,” project no. 

2019/32/T/ST6/00500, 2019 – 2021.  

Concluding, the proposed solutions for precise segmentation and parameterization of the 

retina and preretinal space can be applied in a clinical setting to aid during the diagnostic 

procedures. The developed algorithms contribute to the scientific development of medical 

imaging technologies and boost advanced diagnostic software solutions. The designed 

software provides ophthalmologists with new tools to study VRI and conduct a quantitative 

http://dsp.org.pl/badania/4/
https://github.com/krzyk87
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assessment of VMT pathology. Additionally, they present the data in a format intelligible 

for clinicians, such as virtual maps of epiretinal pathologies.  

Furthermore, the proposed precise segmentation and quantitative evaluation are suitable 

for classification protocols. They can be used to automatically classify the retina and preretinal 

space state in various VMA/VMT cases and other conditions. The introduced parameterization 

has the potential to aid in the automatic detection of morphological changes, monitoring the 

progression of the disorder, early pathology detection, or classification of the pathology 

advancement. The presented research can significantly impact the clinicians’ approach 

to patients with VRI pathologies. It has potentially valuable input for selecting case-

appropriate treatment therapy or planning a surgical strategy. 
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Appendix 

A2. OCTAnnotate software 

A2.1 General information 

The OCTAnnotate is a software developed for clinical investigation of macular pathologies 

from 3D OCT scans, focusing on the vitreoretinal interface (VRI) presented in this dissertation. 

The author of this thesis prepared the graphical user interface and implemented algorithmic 

tools based on the cooperation with clinicians and medical students from the Department of 

Ophthalmology, Poznań University of Medical Scientists. 

This software allows for: 

• maintaining a database of OCT scans (including filtering and searching through 

the gathered list of patients, visits, and scans) 

• quick preview of OCT scans in the database (with reconstructed fundus image 

and central OCT cross-sections) 

• opening 3D OCT scans from various manufacturers (directly from the list of scans 

in the database or as external files) 

• visualization of OCT cross-sections 

• image processing for enhancement of the investigated features (e.g., change of 

contrast and brightness, filtering) 

• manual determination of the boundaries of the retinal structures (adding new 

segmentations and editing existing ones) 

• loading automated retina layers segmentations (from Matlab and Python files) 

• calculating and displaying retina thickness profile and fovea parameters 

• calculating and displaying vitreoretinal interface parameters 

• performing error calculations between automatic and manual retina layers 

segmentations. 

Currently, it is possible to visualize and perform parametrization of retina structures 

based on 3D OCT scans of the human retina obtained using the following protocols: 

• Centralna 3D with Copernicus HR (from Optopol Technology, Poland) 

• Retina 3D with Revo NX (from Optopol Technology, Poland) 

• 3D Retina with Avanti RTvue (from Optovue Inc., USA). 
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It is possible also to incorporate analysis of Retina Map scans from the Avanti RTvue 

device and the 3D scans from Topcon Triton, Zeiss Cirrus HD OCT, and Heidelberg Spectralis 

SD-OCT devices.  

Figure A2.1 illustrates the graphical user interface of the software with visible: 

• database of patients 

• selected patient visits and scans 

• filtering and searching interface 

• preview of the selected scan (reconstructed fundus and central horizontal and 

vertical cross-sections). 

 
Figure A2.1 View of the Patients tab in the OCTAnnotate software 

The prepared software is an autonomous program, i.e., no additional software is required 

to run it. It was created for computers with the Windows operating system and tested on 

Windows 7 and 10. This application was prepared in the C++ programming language with Qt 

[281] and QCustomPlot [282] libraries.  

The database interface utilizes the SQLite libraries [283] to store and filter the records 

with internal SQL commands (it is not required for the user to know the SQL syntax). It is 

possible to use several databases of patients and switch between them if necessary. The 
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database stores information such as the patient’s name, age, gender, list of eye disorders 

(assigned manually by the user), or user’s notes regarding the given subject. 

The user can select a subject from the list of patients to list his/her visits and scans. After 

selecting a 3D scan from the list of scans in the lower window, the program displays a quick 

scan preview in the right part of the window. Double-clicking the scan name with the left 

mouse button loads the entire scan into the memory for a detailed investigation. 

Furthermore, any 3D stack of images (.bmp or .tiff files) in a single folder can be loaded for 

investigation. In such a case, the software requires additional information on voxel size.  

A2.2 "OCT cross-sections" tab 

Figure A2.2 illustrates the graphical interface of the OCT cross-sections tab in this 

software. It is used to visually inspect particular OCT cross-sections, evaluate the segmented 

layers' correctness, and, if necessary, make manual corrections.  

 
Figure A2.2 View of the "OCT cross-sections" tab in the OCTAnnotate software 

In this tab:  

• the image on the left presents the currently investigated B-scan (denoted with a green 

line in the reconstructed fundus image in the lower right corner of the window) 
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• the image on the right is a perpendicular, non-fast scanning cross-section composed 

of stacking selected image columns of all horizontal B-scans (placement of this cross-

section in the 3D data is visualized with a vertical blue line in the reconstructed fundus 

image) 

• each segmented retinal layer is denoted with a color line in the OCT B-scan image (the 

colors associated with each layer are denoted in the upper right part of the tab) 

• buttons and sliders in the upper part of the tab provide basic image processing such 

as zooming in or out of the image, automatic and manual adjustment of brightness or 

contrast, and switching between a horizontal and vertical display of the images. 

 

The following retina structure borders are possible to annotate by the user: 

1. PCV (posterior cortical vitreous) 

2. ERM (epiretinal membrane) – inner and outer boundary 

3. ILM (inner limiting membrane) 

4. NFL/GCL (nerve fiber layer / ganglion cell layer) 

5. GCL/IPL (inner plexiform layer) 

6. IPL/INL (inner nuclear layer) 

7. INL/OPL (outer plexiform layer) 

8. OPL/ONL (outer nuclear layer) 

9. ELM (external limiting membrane) 

10. Myoid / Ellipsoid Zone 

11. IS/OS (inner / outer segments of photoreceptors) 

12. IB OPR (inner boundary of outer photoreceptor segment) 

13. OS/RPE (retinal pigment epithelium) 

14. RPE/Choroid.  

 

If there is a file with previous annotations for the selected OCT scan, these annotations 

will be drawn in the B-scan image on the scan loading. The user can determine which lines 

will be displayed by selecting checkboxes next to the desired retina boundaries. Similarly, to 

change the layer’s annotation, the user must select a radio button next to the given layer. 

Making changes (or new annotations) is done by drawing on the B-scan image while holding 

a left mouse button. A given segmentation line can have only one vertical position in each 

image column. The segmentations are erased by moving the mouse while holding the right 

mouse button. 

By clicking on the reconstructed fundus image (in the lower right part of the window), the 

user can select the B-scan and the perpendicular cross-section corresponding to the given 

mouse position in the fundus image.  



 A2 OCTAnnotate software  

A. Stankiewicz 203 

The place in the fundus image marked with a red cross illustrates the current position of 

the center of the macula. The default midpoint is equal to the scan execution center unless 

otherwise specified. This point can also be changed manually by the user. 

A2.3 “Retina analysis” tab 

The “Retina analysis” tab provides the information for quantitative evaluation of the 

retina thickness and volume, fovea profile, and parameters derived in this thesis. Figure A2.3 

presents the Retina analysis tab in the OCTAnnotate software.  

 
Figure A2.3 View of the "Retina analysis" tab in the OCTAnnotate software 

 

The following data is displayed in this tab:  

1. Retina thickness virtual map with overlaid ETDRS grid and automatically computed 

fovea pit contour. The retina thickness within individual sectors of an ETDRS grid is the 

primary comparable parameter for retina disease assessment. For this purpose, a virtual 

map of the retina thickness is calculated as a difference between the annotated ILM and 

RPE retina borders. Figure A2.4 illustrates an example of this data visualization 

technique. 
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Figure A2.4 Illustration of a retina thickness virtual map section of the “Retina analysis” tab 

The calculated retina thickness values are represented in the color scale. A given color 

indicates the map value in [μm]. By hovering the mouse pointer over a selected point in the 

map the user can obtain the precise retina thickness value (current point coordinates (𝑥, 𝑦) 

and retina thickness will be displayed in the lower left corner next to the “Value:” label).  

The default color scale (placed below the map) is “Jet,” although the user can change this 

with a combo box above the map. The scale has default value range from 0 to 500 μm. The 

color for a distance of 0 pixels between the layers is dark blue. Values of the map greater than 

500 μm are shown in brown (maximum value). The value range and quantization step (the 

default is 20 μm) can be changed with fields above the map.  

The map has a description of the axis in two coordinate systems: 

• the first, placed on the left and bottom, shows the actual distances to the center of 

the scan in [mm] 

• the second, placed on the right and top, is the index of the cross-section and the 

column of the image. 
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2. Retina statistics derived for this thesis, 

including: 

• central retina thickness 

• total and inner retina volume 

within central 3 mm diameter 

• fovea pit volume, area, and depth  

• central fovea diameter and area (in 

the central B-scan) 

• fovea pit contour statistics: 

perimeter, circularity, maximal and 

minimal Feret diameters 

• fovea shape correlation to a 

Gaussian function (for central 

cross-section and volumetric 

segmentation) 

Figure A2.5 presents these parameters 

automatically calculated and displayed for 

the user. The detailed information on the 

procedures utilized for calculations of these 

values.  

 
Figure A2.5 Illustration of part of "Retina analysis" 

tab with retina statistics values 

3. Retina thickness profile for the currently investigated B-scan (Figure A2.6) and central 

B-scan (Figure A2.7) 

 
Figure A2.6 Illustration of retina thickness profile for the currently investigated B-scan 

On these plots the following features are annotated: 

• scan center and contour points (red dots) 

• central fovea pit area (gray region in Figure A2.7) 

• 3D Gaussian function estimation (gray line fitted to the fovea pit shape). 
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Figure A2.7 Illustration of retina thickness profile for the central B-scan 

4. Retina thickness profile along the fovea pit contour curve. This plot illustrated in Figure 

A2.8 shows a circular profile of the fovea thickness contour starting from the temporal 

direction (T), through the superior (S), nasal (N), inferior (I), and back to the temporal. 

 
Figure A2.8 Illustration of the retina thickness profile along the fovea pit contour curve 

5. Volumes within individual ETDRS grid sectors (see Figure A2.9): 

• full-thickness retina (left grid) 

• inner layers retina (right grid). 

The ETDRS grid is a circular graph with the numerical values of the tissue volumes 

in specific sectors of the retina. The values visible in each sector denote the retina volume 

in a given sector. The background color allows a quick and intuitive assessment (the greater 

volume, the darker color). 

An additional feature of the software is the possibility to export the automatically 

measured retina parameters for further statistical analysis. In addition, the obtained virtual 

maps and ETDRS volumetric grids can be used for publishing and case reporting. 
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Figure A2.9 Illustration of ETDRS grids with volume information for total and inner retina 

A2.4 "Preretinal space" tab 

The "Preretinal space" tab provides detailed information about the vitreoretinal interface 

parameters derived in this thesis. Figure A2.10 illustrates the “Preretinal Space” tab of the 

graphical user interface in the OCTAnnotate software.  

 
Figure A2.10 View of the "Preretinal space" tab in the OCTAnnotate software 
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The main features presented here are: 

1. Virtual map of the preretinal space – the color map in the center of the tab  with overlaid 

ETDRS grid. It represents the vertical differences between the segmented PCV and ILM 

surfaces. The color bar below the map illustrates the values assigned to each map color. 

 
Figure A2.11 Illustration of a preretinal space virtual map 

Similarly, as with the virtual retina map, the preretinal space profile can be adjusted for 

color scale and scale quantization steps with the controls above the image. If necessary the 

maximal value of the color scale (default of 700 µm) can also be changed by the user. 

Furthermore, in this tab, it is also possible to illustrate the thickness of any individual layer 

of the retina (the distance between any two segmented borders). The choice between which 

layers to calculate and display the map is made by selecting the layer name from the lists on 

the left side of the window (the user can select the top and bottom layer borders).  

By checking the "Overlay on fundus image" box above the displayed thickness map, the 

reconstructed fundus image will be shown in the image. The transparency of the virtual map 

can be adjusted with a visible slider above the map. 
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2. ETDRS grid map of preretinal space 

volume.  

This graph illustrates the same kind of 

information as the grids in the “Retina 

analysis” map, but for the preretinal 

space. Values in each ETDRS field 

(calculated based on the virtual map) 

indicate volume in each sector. The 

value outside of the grid in the upper left 

corner is the sum of all fields.  

The preretinal space volume grid 

has a color background calculated based 

on the percentage of the volume 

occupied within each sector (the greater 

volume, the darker the background 

color). 

 

 
Figure A2.12 Illustration of preretinal space  

ETDRS volume grid 

3. Contact area map overlaid on the 

reconstructed fundus image. 

Next to the virtual map is a 

reconstructed fundus image with 

overlaid ETDRS grid and a contact area 

(in yellow) between the vitreous and the 

retina.  

Below this map are displayed the 

numerical values of the contact area in 

three ETDRS rings (CF – central fovea, IM 

– inner macula, OM – outer macula). 

Values on the right of each field provide 

percentages of the contact area with 

respect to each ring area.  

Due to segmentation uncertainties 

between the experts, a threshold 

parameter (with default value of 10 µm) 

was introduced, i.e., the vertical 

difference between PCV and ILM less 

then a given threshold is treated as 0. 

 

 
Figure A2.13 Illustration of contact area map with 

measurements 
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4. Automatic VRI classification with 

Duker and WISPERR parameters. 

Based on the reference segmentations 

the program automatically computes 

the vitreoretinal interface parameters 

for Duker and WISPERR classification.  

The displayed values are obtained 

based on the reference segmentations. 

Width measurements are calculated 

from the contact map values. The VRI is 

based on the relative pixel intensity 

around the ILM border. The fovea shape 

is derived from the fovea pit to Gaussian 

correlation estimation. 

 
Figure A2.14 Illustration of automatically computed VRI 
classification parameters in the "Preretinal space" tab 

A2.5 “Error analysis” tab 

The last tab illustrated in Figure A2.15 provides error analysis between the automatic and 

reference segmentations currently loaded into the software memory. 

 
Figure A2.15 View of the "Error analysis" tab in the OCTAnnotate software 
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Data in this tab allows the user to visually compare the reference and automatic 

segmentation lines on each OCT cross-section individually. Additionally the software provides 

visualization of the virtual map for a selected retina layer (see example for total retina 

thickness map in Figure A2.16).  

 

Figure A2.16 Illustration of retina thickness virtual map computed from automatic layers segmentation 
overlaid on a reconstructed fundus image 

Similarly to the preretinal space virtual map this visualization can be overlaid on 

a reconstructed fundus image (with various transparency settings), and adjusted for color 

scale, value range, and scale quantization step. 

For the loaded reference and automatic segmentations the program calculates vertical 

difference between each layer annotations. The default error measurements include: 

• mean squared error (MSE) and its standard deviation (SD) for all segmented layers 

(in [px]) 

• MSE and SD for a layer selected by the user (in [px] and [µm]) 

• percentage of erroneous segmentations for the selected layer 

• MSE and SD for the virtual map (in [px] and [µm]). 

Figure A2.17 presents these statistics in the software window. 
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Figure A2.17 Illustration of (left) a list of layers to display on an OCT B-scan and (right) error measurements 
between automatic and reference retina layers segmentations 
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