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Abstract

Human activity in engineering is dated back to antiquity. The achievements in this
field of science directly contributed to the immensely far-reaching civilizational
development. Nowadays, the expansion of technology is focused on advanced
solutions in the aspect of designing structures to enhance their broadly defined
properties.

The primary determinant in structural design is undoubtedly the load-carrying
capacity, ensuring safe operation and preventing economically undesired
underutilization of a mechanical system. It is necessary to provide specific methods
or tools to give insight into their mechanical behaviour to address this issue. The
presented work is devoted to the analysis and optimization of stress distribution in
complex shell structures. Those serve as structural members of numerous relevant
structures in the industry. The provided considerations are narrowed to problems of
cylindrical pressure vessels; however, a similar methodology can be adapted to nearly
any linear shell problem. Analytical, semi-analytical, numerical and experimental
studies are considered to expand the knowledge and propose improvements to the
investigated topic.

The first phase of the study is based on the theories and methods available in
the literature. The stress and deformations in the cylindrical pressure vessel with
standard ellipsoidal and torispherical dished ends are analyzed using membrane
theory (MT) and the edge effect theory (EET). Two formulations of the EET are
discussed, applied, and compared. The derivation is provided for the linear,
orthotropic material model. The obtained results show that the superposition of MT
and EET can result in unsatisfactory results due to simplifications in MT and
neglection of the effect of surface loads on bending.

The same structures were investigated in a semi-analytical manner using the
Ritz method in a subsequent study. The elastic strain energy and the work of the
external forces were described according to linear shell theory. The functions
describing displacements in the Ritz method are in the form of polynomials,
trigonometric series, and functions similar to those derived from EET. The influence
of the degree of these functions on the obtained results was taken into account. The
achieved outcome agrees with the finite element method (FEM) for a relatively large
range of thicknesses, proven by almost identical values of stress, displacements and

strain energy.



In the conducted analyses of cylindrical pressure vessels, attention was drawn
to the unfavourable stress distribution. Their maximum values in standard dished
ends significantly exceed the stress in cylindrical shells, making them unsatisfactory
solutions. Significant edge loads in the junctions of shell segments cause such an
issue, leading to the appearance of significant bending phenomena. The shapes of
dished ends described by three analytical curves, i.e. Cassini and Booth's oval and
generalized clothoid, were formulated in further analyses. Specific conditions were
defined to diminish the edge effect. They led to the intended effect of improving the
stress distribution in the junction area but caused its maximum value to be shifted
beyond this region. Therefore, the proposed shapes of shells do not constitute a
significant advancement compared to the standard solutions, although their analysis
provided important conclusions for further research.

The ability to carry relatively high loads by shell structures comes from their
geometrical form. It is necessary to refer to optimization methods to seek the desired
improvements in stress distribution. It comes from general reasoning that choosing
some arbitrary geometries from an infinite set of possible solutions usually leads to
poor results. In this work, the optimization is carried out in two separate processes.
A parametric curve is developed to describe the shape of the dished end. Initially, the
fitness function is evaluated according to MT, and the deterministic algorithm
performs the optimization procedure. Due to the simplified nature of MT, the
approach is then modified. The fitness function is calculated using the FEM, and the
optimization is carried out by a genetic algorithm (GA). The obtained enhancement in
the stress distribution is compelling while maintaining manufacturability and
standard general dimensions.

Finally, the optimization results are verified in an experimental study. The
pressure vessel with the optimized dished end is manufactured using Multi Jet
Fusion — a 3D printing technology. Optical scanner measurements are conducted to
verify geometrical deviations and to recreate the CAD model of the imperfect shape.
Such a geometry is then considered in the FEM analysis. Ultimately the structure is
tested on a designed test bench, enabling pressurizing of the vessel. The strain gauge
measurements are performed to evaluate the stress distribution. The results are then
compared for ideal and imperfect geometry by the FEM and juxtaposed with the
experimental study. A good agreement is achieved, confirming the advantageous

characteristics of the developed dished ends.



1. Introduction

The structural members in the form of shells are highly involved in numerous
branches of the industry, including military industry, mechanical, civil, marine
engineering, transportation, aeronautics and astronautics. Such load-carrying
structures in the mentioned areas can be found in roofings, pipelines, pressure
vessels, silos, aircraft, submersible vehicles and space ships. Those examples are
only a fraction of the possible applications. Their widespread utilization in
engineering is justified by exceptional resistance to some external loads under
specific boundary conditions. Compared to other structural members, shells are
characterized by a relatively high ratio of load-carrying capacity to mass, which
constitutes a critical factor in technological advancement due to the desired mass
minimization. In numerous cases, the deformations of shells are comparably modest
because of their significant stiffness. Additionally, shells usually constitute materially
continuous geometries which ensure their integrity and ability to pressurize. The
application of shells can also become vital where space limitation becomes an issue,
as those can take nearly any possible shape.

Currently, the industry strives for the most robust solutions in terms of
structural design. It is based on achieving the highest functionality and optimal
load-carrying capacity while considering economic factors. In the case of shell
structures, obtaining the desired solutions can be generally achieved in two ways.
The first one is the improvement of mechanical properties of a structure, e.g. by
increasing the wall thickness or using materials with higher strength parameters.
This method is simple, minimal and may cause a significant deterioration of other
aspects of the structure.

The second way is to modify the geometry of shells. It should be noted here
that the mentioned advantages of shells are connected with their geometric form. This
method allows for a much broader modification of their properties while maintaining
some of their original properties, e.g. general dimensions, mass or volume. Within
this work, only the latter method is taken into consideration.

The research of this thesis is focused on the analysis and optimization of stress
distribution in complex shell structures. The adopted in the thesis term "complex
shells" refers to shell structures consisting of segments with various shapes and
integral geometry. In most cases, the difference in shape leads to discontinuous
curvature. Such a problem is vital in real-world engineering problems, where

variously shaped shells are joined together. There are numerous examples of complex



shells, and for that reason, the research is narrowed to cylindrical pressure vessels
loaded with uniform internal pressure.

The theory of shells is widely described in the literature. Particularly
noteworthy is the work of Mazurkiewicz and Nagorski [1], where the authors show
the solutions to numerous static and dynamic shell problems. Ventsel and
Krauthammer [2] formulated the theories of plates and shells concerning static and
buckling problems with some examples of their application. Gol'Denveizer [3]
described the thin elastic shells theory and emphasised the analysis of typical
geometries. Calladine [4], in his work, considered the stress and stability of shells,
including elastic and plastic deformations as well as vibrations. Zingoni [5] explained
the theories of membrane and bending phenomena of shell structures and applied
them to multiple practical engineering cases.

Cylindrical pressure vessels are designed with the use of the shell theory.
Magnucki [6] devoted his work to structural analysis and optimization of isotropic
shells, including cylindrical pressure vessels with hemispherical and ellipsoidal
dished ends. Spence and Tooth [7] described concepts and principles for designing
pressure vessels. Magnucki et al. [8] prepared a review of strength and buckling
problems of dished ends of cylindrical pressure vessels. Ziotko [9] focused on the
practical aspects of numerous industrial vessels, including a reference to technical
standards. Such a connection is critical as the design of those structures, their
shapes and operating conditions are described within consistent European and
American standards, i.e. EN 13445 [10] and ASME Section VIII, Division 1, 2 [11],
[12]. Seipp et al. [12] compared the stress distributions between ellipsoidal dished
end and equivalent torispherical shells proposed by the technical standards.

The edge effect theory (EET) constitutes the only known formulation that
enables for analytical solution of bending phenomena in shells. The foundation to the
theory was provided by Reissner [14], referring to spherical structures. Meissner [15]
generalized the theory for an optional shape of a shell and formulated the governing
differential equations of the EET. The first solution to those equations was proposed
by Blumenthal [16] using the asymptotic integration method. Geckeler [17]
introduced certain simplifications to the EET, enabling to rewrite of the governing
differential equations to a single, elementary differential equation. Steuermann [18],
[19] focused on developing the asymptotic integration method application in the EET.

Despite the EET being well established, solving the problems of complex shell
structures remains vital. Pietraszkiewicz and Konopinska [20] provided substancial
input to this topic. Vullo [21] presented the solution to numerous practical problems

of junctures in shells, especially for pressure vessels. Zingoni [22] prepared a review
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of recent studies on strength, stability and dynamics, including the problems of
complex shell structures. Zingoni investigated the discontinuity effect in the shells
junctions considering sludge digesters [23], [24], conical [25], elliptic toroidal [26] and
multi-segmented spherical shells [27]. Zingoni [28] also simplified the derivation of
influence coefficients for symmetric frusta of shells of revolution. Following the
problems studied in the presented work, the stress and deformations in standard
pressure vessels are resolved as a superposition of the membrane theory (MT)
solution and the EET analysis. The latter refers to both Geckeler [17] as well as
Blumenthal [16] and Steuermann [18], [19] approach for solving the governing
differential equations of the EET formulated by Meissner [15].

The analytical formulation of the analysed problems of shell structures is
generally inconvenient and adopts numerous simplifications, potentially impairing
the solution. For that reason, semi-analytical or numerical methods can be
considered beneficial. Among many, the Ritz method constitutes a universal and
widely used method in structural mechanics, which is confirmed by various papers
and monographs. Kumar [29] presented a comprehensive review of the Ritz method
to analyse beams, shells and plates vibration, static and buckling characteristics. In
the case of shell structures, the Ritz method is rarely used to analyse stress and
deformation. Shahgholian-Ghahfarokhi et al. [30] investigated torsional buckling
analysis of functionally graded graphene-platelets reinforced composite porous
cylindrical shells using the Ritz method. Qin et al. [31] presented a unified Fourier
series solution to solve the vibration problem of functionally graded carbon nanotube-
reinforcement composite cylindrical shells, conical shells and annular plates. Lopatin
and Morozov [32] considered a problem of axisymmetric vibrations of composite
orthotropic cylindrical shells with rigid weightless disks attached to their ends. Qin
et al. [33] provided a general approach for the free vibration analysis of rotating
functionally graded carbon nanotube-reinforced composite cylindrical shells. Pang et
al. [34] used a semi-analytical method to investigate the free vibration of doubly-
curved shells of revolution with arbitrary boundary conditions. Senjanovic et al. [35]
developed a finite strip method for vibration analysis of rotating toroidal shells
subjected to internal pressure. On the higher-order shear deformation theory, Choe
et al. [36] established an analysis model for dynamic analysis of composite laminated
doubly-curved revolution shells. The solution of stress and deformation for standard
orthotropic pressure vessels using the Ritz method was described by Sowinski [37]
(A1l). This work is an integral part of the presented thesis.

Due to the constantly increasing need for technological development, the

optimization of shell structures became another vital research area. The theory of
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optimization, fundamental deterministic and heuristic algorithms and their
application are discussed by Kochenderfer and Wheeler [38] and Ostwald [39].
Nocedal and Wright [40] focused on numerical aspects of optimization. Ugray et al.
[41] presented robust NLP solvers embedded in current, commercial computational
software. Arabas [42] discussed the characteristics and application of evolutionary
optimization algorithms. Bochenek and Kruzelecki [43] described and solved the
optimization problems of stability in structural mechanics. Magnucki and Ostwald
[44] referred to the stability and optimization of three-layered sandwich structures.

Currently, there is a significant emphasis on developing highly efficient
pressure vessels due to increased interest in hydrogen energy [45], where the gas
must be stored at immense pressure to maintain sufficient energy density. This trend
implies the need for improving the known technical solutions. Ortega and Robles [46]
investigated a methodology of finding optimal forms of shells of revolution, which
enables obtaining approximately bending-free geometries. Banichuk [47] presented
shape and thickness optimization of the shell of revolution. Bltachut and Magnucki
[48] presented a review work of selected problems concerning strength, buckling and
optimization of cylindrical pressure vessels.

The stability analysis of shells is of great importance, as those are prone to
buckling, manifested by collapse when loaded with external pressure. Prediction of
such a destructive circumstance implies the necessity of determining the
post-buckling behaviour. Bochenek [49] presented a new optimization concept
referring to this undesirable phenomenon. Numerous interesting studies on buckling
and post-buckling have been conducted by Jasion [S0], [51], Jasion and Magnucki
[52] - [55] for a variety of shapes, including the shells with positive and negative
Gaussian curvature. Similar studies were conducted by Sowiniski and Jasion [56] and
Sowinski [57] for shells based on Booth lemniscate and corrugated cylindrical,
barrelled, and pseudo-barrelled structures. Paczos and Zielnica [58] investigated the
stability of orthotropic elastic-plastic open conical shells. Zhang et al. [59] - [61]
devoted their work to analysing shells whose shapes are inspired by nature.

As the stress distribution in standard dished ends of cylindrical pressure
vessels can be considered unsatisfactory [12], [37] (Al), striving to improve it is
crucial. Sowinski and Magncki [62] (A2) developed untypical shapes of dished ends
with the intent to diminish the edge effect phenomenon. Lewinski [63] discussed the
topic of optimal shaping of the dished ends, including step-wise thickness changes.
Magnucki et al. [64] analysed the stress concentration factor minimization in
cylindrical pressure vessels with ellipsoidal heads. Lewinski and Magnucki [65]

developed the shape of the dished end described by the trigonometric series and
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optimized its geometry by applying the condition of continuity of the curvatures in
the joint. Kruzelecki and Proszowski [66] proposed the two- and one-arc dished ends
described by different functions, including Bézier polynomial and optimized their
shapes using a simulated annealing algorithm. Kisigolu et al. [67] studied the
minimum material design of the end closure of propane cylinders. Magnucki et al.
[68] focused on reducing the peak stress in a cylindrical pressure vessel by
introducing the dished end based on a composite curve of a circular arc and
a polynomial of the fifth degree.

The primary issue with the optimization procedure is the lack of accurate
analytical methods for solving the structural problems of shells. The optimization
research provided in the previously mentioned studies [63]-[68] is based on the MT.
Despite a significant reduction of the stress concentration factor due to optimization,
the verification using the finite element method (FEM) resulted in an elevated peak
stress value compared to the membrane state solution [66], [68]. That is the result of
neglecting the bending phenomenon in the analysed shell structures. It is necessary
to consider more accurate theories or methods to achieve a better optimization
outcome.

Carbonari et al. [69] studied shape sequential linear programming optimization of
axisymmetric pressure vessel, intending to reduce von Mises stress. The fitness
function was obtained within the study framework utilizing FEM, where the pressure
vessel was modelled using 2D-axisymmetric shell finite elements. Blachut and
Ramachandra [70] considered the problem of internally pressurised torispherical
domes and proposed to optimize their shape using genetic algorithms (GAs) and FEM.

The application of evolutionary algorithms, as the derivative-free methods, gained
significant attention throughout recent years in structural optimization [71]. It is
most likely connected with their ability to operate on discontinuous fitness functions
present throughout any numerical analysis, where the relationship between input
parameters and output result is undeterminable. There are numerous lately
developed papers to justify the given statement. Firlik et al. [72] focused on tram
wheel profile optimization using a biologically-inspired optimization algorithm. Yang
et al. [73] designed the novel corrugated hierarchical truncated conical shells by
adopting a surrogate model and GA. Kumar et al. [74] presented an isogeometric
shape optimization to design 2D auxetic structures with a prescribed Poisson’s ratio.
Liang and Li [75] developed an optimization scheme to design the postbuckling
behaviour of composite laminates. Imran et al. [76] carried out design optimization
of composite submerged pressure hull under hydrostatic pressure. The authors

analysed the effect of orientation angles and the number of layers on the load-
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carrying capacity of a submersible. Eshani and Dalir [77] focused on optimum design
to maximize the critical buckling load and minimize the structural weight of an angle
grid plate. Zhu et al. [78] investigated the optimal shapes of reticulated shell
structures with the intent to maximize nonlinear buckling load. Dias and Mahendran
[79] optimized cold-formed steel-framed wall studs with sheathing restraints. Karimi
and Kani [80] studied finding the worst imperfection pattern in shallow lattice domes
using GAs.

The optimization in this work is based on the parametric shape of the dished end,
described using a Bézier curve (BC) of arbitrary order. This part of the thesis has
been already published [81] (A3). Some particular restrains are proposed and applied
on its control points to satisfy numerous geometrical conditions, including
non-negative curvature. The shape optimization of the dished end aims to minimize
maximum equivalent von Mises stress in a cylindrical vessel loaded with uniform
internal pressure.

The procedure is performed using two methods. Initially, equivalent stress is
solved analytically according to the MT, while the sequential quadratic programming
(SQP) algorithm seeks the maximum stress along the meridian of the dished end and
attempts to minimize it. Further, numerical FEM calculations are conducted to
validate the outcome of the analysis. Realizing the simplified character of the MT and
the impact of the bending phenomena on shell structures, the procedure is further
changed. The stress distribution is resolved using FEM in ANSYS software, where its
peak value constitutes the fitness function. Due to its discontinuous character, the
optimization is performed using GA in MATLAB software. A significant improvement
in the maximum stress over the standard dished ends is achieved.

The last part of the research is focused on the experimental study of stress
distribution in the cylindrical pressure vessel with the optimized dished end referring
to [81] (A3). A suitable additive manufacturing method (AMM) is selected by
performing static tensile tests according to ISO527 [82]. The topics of different AMMs,
fundamental concepts and their application were covered by Gibson et al. [83]. The
shell structure with the optimized dished end is manufactured in Multi Jet Fusion
(MJF) technology. A test bench is designed to pressurize the vessel internally. During

the test, the strains are measured using strain gauges.

Among many, Hoffman [84] described the practical basics of strain gauge
measurements. Plentiful experimental beam and column studies were conducted by
Paczos [85], Paczos et al. [86], Paczos and Wasilewicz [87], Jasion et al. [88]. These

include the simultaneous strength test and strain gauge measurements. Zhang et al.



[89]-[90] performed experimental buckling studies of untypical steel shells. The
experimental investigation of non-metallic shell structures remains somewhat an
unpopular topic. Zhang et al. [91] considered a collapse performance of externally
pressurized resin egg-shaped shell with corrosion thinning. Tang et al. [93] conducted
an experimental buckling study over corrugated cylindrical shells made of resin.
Lebans and Bisagni [94] described a similar topic, but the cylinders were 3D-printed.
Sharifi et al. [95] considered a numerical and experimental study on the strength of
internally pressurized laminated woven composite shells. To measure the strain, the
authors used surface-bounded sensors.

According to the literature review, the problems of experimental stress
distribution analyses are not well established in shell structures. Numerous papers
are referring to this problem analytically and numerically. In the case of structures
with applicational potential, those should be verified experimentally to prove their
load-carrying capacity or other functional characteristics. The conventional methods
of manufacturing shell structures are significantly limited, making such a process
complicated and economically inefficient. The recent development of additive
manufacturing enables the reproduction of actual structures with nearly any
geometry. Although they are limited to plastics, usually characterized by nonlinear
behaviour and creep phenomenon, in some cases, they can be successfully used in
experimental tests of structures that are ultimately manufactured from steel. This
observation is proven by the promising outcome of the experimental study in this

dissertation.

As the result of the literature review, the following theses of the presented work

are formulated.

(1) The analytical, theory-based solutions to stress and deformation problems in
shell structures can lead to inaccurate results.
(2) The stress distributions in the standard dished ends of cylindrical pressure

vessels are unfavourable.

The two hypotheses are introduced to address the current state of the art issues

in shell structures.

(1) Applying the Ritz method to solve the stress and deformation problems of shell
structures may lead to more accurate results than the analytical solutions.

(2) The shape optimization of the dished end of the cylindrical pressure vessel could
lead to substantial improvement in stress distribution while maintaining their

general dimensions and manufacturability.



2. Linear theory of shells

2.1. Definition of a shell

The term shell is applied to bodies limited by two curved surfaces, where the distance
between the surfaces is small compared to other body dimensions (Fig. 2.1). The
middle surface is defined by the locus of points that lie at equal distances from
internal and external surfaces. The length of a perpendicular to the middle surface
segment between those two surfaces corresponds to the thickness of a shell, denoted
as t. Such a definition enables characterising the shell by providing the geometrical

form of its middle surface and its thickness.

T

external surface

———

middle surface

internal surface

Fig. 2.1. A segment of a shell of revolution

The middle surface of an arbitrary shell structure is described by the principal
radii of curvature, namely R, R, (Fig. 2.1), specified towards two mutually orthogonal
and curvilinear directions ¢,0. Usually, those are refered to as meridional and
circumferential directions. Shells can have vastly diversified shapes depending on the
radii of curvature R;,R, which can be either constant or variable in the given
directions. The most common group of shell structures are shells of revolution, for
which the principal radii of curvature are variable only towards one direction, i.e. the
meridional angle ¢, thus R;(¢), R,(¢). The geometries of revolution are defined by the
revolution of an arbitrary generator (meridian) over an axis. The generator can be

described as a function expressed in an optional coordinate system.
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The shells of revolution constitute a group of meaningful structures in industrial
applications, while shells without such a property are less common, as they are
challenging to design and manufacture using conventional methods. Most of the shell
structures serving as real-world engineering objects are characterised by variable
thickness. The source of this feature is usually a side effect of the manufacturing
processes involved in forming those structures. In most cases, the variation of the
thickness can be considered negligible.

Depending on the thickness t, shells can be divided into two groups ([1]-[6]),
namely thick and thin-walled structures. The latter term is referred to geometries for
which the ratio t/min (R4, R;) is relatively small compared to unity. The exact value
distinguishing the thick and thin-walled structures is difficult to specify; however,

the literature suggests that thin shells satisfy the following condition

t 1
min(R, (), Ra(g)] — 20

Referring to the provided description of shells, this work is focused on shells of

2.1)

revolution with constant thickness. Definition of those geometries can be limited to a

plane intersecting with the axis of revolution, as shown in Fig. 2.2.

b

Fig. 2.2. Axial section of a surface of revolution

The geometrical relation for the surface of revolution is as follows
d (Rysing) =R 2.2
dp 1 Sing) = R, cos . (2.2)

The arc length can be resolved according to integral

@
S=f R,do, (2.3)
4
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where ¢, ¢ are the coordinates over which the meridian length S is determined.

Denoted in Fig. 2.2 coordinate r(¢) is referred to as parallel radius, being related to

the circumferential radius of curvature in the following manner

r = R, sin . (2.4)
2.2. Linear shell theory for axisymmetric shell problems

Within the framework of this research, the analyses are restricted to axisymmetrical
loads acting upon the middle surface of a shell of revolution. Such an assumption
implies that the problem description can be narrowed to meridional angle ¢, while all
the physical quantities remain constant towards circumferential direction 6 (Fig. 2.1).
The further theoretical description is based on Kirchoff-Love linear shell theory
discussed in [1]-[4]. As such a formulation is well established in the literature, its
explanation is kept to a minimum within this dissertation. A section of a shell

structure undergoing deformation is presented in Fig. 2.3.

Fig. 2.3. A section of axisymmetrically loaded shell of revolution undergoing deformation

As shown in Fig. 2.3, the deformation state is described by three quantities,
i.e. u - tangent displacements, w — normal displacements, 9 — rotation of a line tangent
to the middle surface. Notably, only two of those can be considered independent, as

displacements can define the rotation by the following relation

19_1(_|_dW) 05
_R1u o) (2.5)

It is often convenient to additionally define a vertical component of displacements.

Assuming it is consistent with the axis r in Fig. 2.2, one obtains
d, =ucos@ —wsin . (2.6)

In further consideration, the quantities referring to the meridional and

circumferential directions are distinguished by their subscripts ( 4, ;) just as
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principal radii of curvature. The linear strains in the middle surface towards principal

directions expressed with the use of displacements are:

1 /du 1
51=R—1(@—w), £2=R—2(ucotgo—w), (2.7)
while the changes of curvatures:

1 do,

1
X = _R_1W' X2 = —R—2191 cot . (2.8)

Considering the relations in Eq. (2.7), (2.8), one can express the linear strains across

the thickness according to coordinate z (Fig. 2.3):

1 1
&1z = _i(€1 +zx1), &1z = — 1(52 + zx>), 2.9)
R1 Rl

where

<z<- (2.10)

N| =+
N| &+

The material in the study is considered to be perfectly elastic and orthotropic,
aligned with the principal directions ¢,0, where E;,E, — Young's moduli, v{,v, —
Poisson's ratios. The internal loads in the form of normal forces and moments are

expressed as follows:

Ny = Cy (&1 +v2€2), Ny = Cy(&y + v181), (2.11)
My = D1(xy + vax2), My = Dy (xz + vix1), (2.12)
while:
G = 1_E—iv2 G = 1_E—iv2 (2.13)
D, Bat” Eot” (2.14)

=————— Dy=———"
12(1 — vyv,) 27 12(1 —vyvy)

To derive the shear forces, it is necessary to refer to the equilibrium equations of a

shell element [1]. The principal stresses are defined as follows:
Gy G
01 = 7(81 + v,63), 92 = (g2 + v181), (2.15)
and their change across the thickness of a shell:

Cl CZ
01z = T(fu + v,262,), O27 = ?(522 +V1€12). (2.16)
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3. Analytical study

3.1. Membrane state analysis

3.1.1. General theory

For some practical cases of shell structures, one can consider that the bending
phenomena can be inexistent or marginal, implying they do not contribute
significantly to stresses and deformations. The neglection of bending moments M;, M,
assumes that only normal forces N;,N, are present in a shell. This constitutes
the desired simplification of the linear shell theory, which is difficult to solve problems
with for numerous practical analyses. Such an approach is referred to as membrane
theory (MT). As a result of its simplified nature, the authors of [1], [2] suggest the
following conditions of the MT applicability.

1) The middle surface of a shell has smoothly varying and continuous geometry.

2) The thickness of a shell must be sufficiently small, constant or slightly varying.

3) Applied surface loads must be distributed in a continuous and possibly
uniform manner.

4) The edges of a shell can be loaded solely by the forces tangent to a middle
surface, i.e. only normal forces are included. Similarly, the applied boundary
conditions can be imposed only on tangent displacements u to remain valid

reaction forces.

Importantly, the given conditions are based on non-definitive terms when referring
to thickness, radii of curvature and surface loads. The MT can undoubtedly be
successfully adopted for the problems considering uniformly loaded shells with small,
constant thickness and radii of curvature. The first two conditions are usually
consistent with practical cases of shell structures, especially by referring to Eq. (2.1).
Unfortunately, the assumption of constant radii of curvature limits the applicability
of MT to spherical and cylindrical shells. The allowance of potential variations implies
difficulties in determining whether the MT application is justified and, if so, what is
the expected magnitude of inaccuracies.

Let us consider a shell of revolution with an arbitrary shape described within the
range @1 < ¢ < ¢, (Fig. 3.1). In the presented thesis, the coordinate ¢, describes the
first edge, while ¢, corresponds to second edge of a shell. The external forces in the
MT are limited to pressure p and normal force P, applied at the first edge, i.e. ¢ = @;.
As the introduced forces do not include all possible external loads, the MT cannot be

used alone to analyse stress in complex shell structures.
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R=R(p)

//gﬁmw
Fig. 3.1. An arbitrary shell loaded with external forces

The normal internal forces resulting from the applied external loads are as follows:

~ _ P
N1 = pRoNy, Ny = —=——+,
132 smeg (3.1)
~ ~ P -
Nz =PRoNz, Ny = g————Ra,
1 Sin?¢
where:
pP= PRozﬁ: Py = PRozﬁo'
p—pPp L2 Lisz. , B 2¢in2
P = PyR;(¢4)sin“¢, +§(R2 sin®p — R, (¢1)*sin (P1), (3.2)
ar_ L ARy
i 2sing | R, cos ¢ a0 sing |.

The coefficient P, is a dimensionless normal force applied at the first edge of a shell.

The principal strains occurring in the meridional and circumferential directions:

PRy , ~ PRy ~
& = E_1t (N1 - V1N2)' & = E (N — v, Ny) (3-3)

Tangent and normal displacements are expressed in the following manner:

R 2
u= P i, i =sing (f + ¢1), (3.4)
E,t
W=pR02W w=coso(f+c)— &+v L+I?2 (3-9)
E,t ¢ ! R, ?)sin2p ' T?° '

For the sake of further derivation, it is useful to refer to the vertical displacement

component from Eq. (2.6):

PRy - = . R, p ~ 2
d, = Eh dy, d, = sing [(ﬁ_ + v2> —R, |. (3.6)
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The rotation of the line tangent to the meridian of a shell is defined as:

PRELALE N 1( + ), 37
1_E2t 1 1= u do (3.7)

where derivative of the dimensionless normal displacements

aw _ 4 (f + ) sing + — [ﬁ( R+ﬁ)<2 toP ‘“3>+13ﬁ dﬁ1]+
— = —C0SQ — c1) sin v v Cco e .
do _ dg ¢ 1 % 3 sz(p 1\Valtg 2 % do 2d<p
(3.8)
y LR opp P
R, do 172 sinZg )’
and the derivative of the expression P
dﬁ_ﬁ _ 5 +dR 5.9)
o 2sing [ R, cos ¢ a0 sin ¢ :

The function f defined in the above formulae is expressed as

f R{R, — R, =+ 2v, + R\ P d
f Sln(p VZ 112 R V2 aRI Slnz(p @, (3.10)

where a is an orthotropy coefficient defined as

E v
a=-—2=2 (3.11)
Er W

The function f and its first derivative can be written in a more convenient form:

1 LB . =
F=|(-ze ) fiv At ght Retodtsinton (s + gt +3)| -

—PyR;(p1)sin? @, (2v,fy + afs + fo)

d 1 1 - 1 1
é = [(‘Ea + Vz) Y1+ (A —v)P, — §¢3 + Ry (¢1)%sin* ¢, (Vzl/’z; + E“’wbs + Elpe)] (3.13)

where:

fi =f(:ll)1d(l’: f2 —f Yodo, fs —f P3do,

P1
(3.14)
¢ ¢ ¢
fi= [ wado,  fi= [ wsdo, o= [ wedo
P1 P1 P1
~ 3
_np L szl R 1
Y=k Zsing’ Y2 =Ry sing’ s = R, sing’
(3.15)
1 R, 1 R, 1
Yo =3 5= 5 T3 6 =% w3
() R, sin®¢@ R, sin®¢
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The displacements and rotations can be further resolved by assuming
appropriate boundary condition and calculating the constant ¢;. In the presented

paper, tangent displacement is restrained at the second edge (¢ = ¢,) of a shell

ti(p,) = 0. (3.16)

A significant simplification of the above expressions can be achieved for the closed

apex shells, i.e. when ¢, = 0:

- 1.5
Py=0, P= ERZ sin?¢. (3.17)

The components containing the edge load P, then disappear, which enables to rewrite

the expressions for internal forces:

_ 1. ~ 1. R
N1:_ER2; Nz=—§Rz Z—E : (3.18)

Further, the f function and its derivative can be expressed as follows:

1 1
f= (_Ea +V2)f1 + (1 —vy)fy —Ef3,
d 1 1
é = (‘E‘l +V2>¢1 + (1 = vy, —§¢3-

(3.19)

3.1.2. Cylindrical pressure vessels

Cylindrical pressure vessels constitute an essential structure in the industrial
applications, enabling for storage and transportation of gases and liquids. They
consist of a cylindrical shell enclosed by two convex dished ends. The general

geometry of the introduced structure is shown in Fig. 3.2.

straight line curve
(
) I
|
I
8
|
=1
|
2
Tl Q S(e)
' | Y
| 3
l =
I
cylidrical shell | dished end 4
A + -

_/
4
h

Fig. 3.2. The general geometry of the cylindrical pressure vessel

L

Most of the pressure vessels are thin-walled shell structures which can be
described by the parameters referred to their middle surface (Fig. 3.2), i.e.
¢ - meridional angle, R;,R, — meridional and circumferential radii of curvature,

r - parallel radius, S - meridian length, L — cylindrical shell length, R, — cylindrical
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shell radius, h - dished end height, and thickness t. The relative depth of a dished
end is defined as

h
B =— (3.20)

Ry
The standard dished ends are ellipsoidal, torispherical and hemispherical, as
shown in Fig. 3.3. Those are described and manufactured according to coherent
European and American standards, i.e. EN 13445 [10] and ASME Section VIII,

Division 1, 2 [11], [12].

e

e ——————

Fig. 3.3. Dished ends according to EN 13445; a) - torispherical, b) - ellipsoidal, c) — hemispherical

Calculation methods provided in technical standards are based on a simplified
and not necessarily insightful approach. The presented study aims to provide an
analytical solution to deformation and stress problems of pressure vessels using shell
theories. As the solutions considering hemispherical geometries are known, the
research is narrowed to torispherical and ellipsoidal geometries. To investigate the
stress distribution in those, it is convenient to formulate relative equivalent stress

Oy

- o_ﬁcyl)’ (3.21)

G,

. . cyl . .
where: 0, —Vvon Mises stress in a pressure VCSSCI, O'( 0 — maximum von Mises stress

T
in a cylindrical shell beyond any stress disturbance caused by the edge loads. Such
formulation enables to define of the stress concentration factor k, which is the

maximum value of §G,:

(max)
k=2r 3.22
- (cyl) ) ( . )
2"
. _(max) . . .
where: o, — maximum von Mises stress in a pressure vessel.

To proceed with the derivation employing MT, one must refer to separate
geometries of pressure vessels, for which principal radii of curvature constitute

continuous functions.
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3.1.3. Toroidal shell

The further subsections in this chapter refer to the derivation of the necessary
formulae to analyse standard orthotropic pressure vessels according to the MT.
A more detailed description of the selected shells is provided in [37] (Al). Each of the
considered geometries is described by a unique symbol, i.e. s - spherical,
¢ - cylindrical, t - toroidal and e - ellipsoidal, which appear in the bottom indices of
the previously derived expressions. In the case of the toroidal shell (Fig. 3.1):

3 T

P2t = 5 (3.23)

P1t = %T[, 2

For the sake of clarity, the value of ¢,; is not substituted for the derivation of the

selected expressions. Meridional and circumferential radii of curvatures are given as:

_ _ 1 _ _ B cot% -1
Ryt =RoR;, Ry =R, [Rt + m@ - Rt)], R, = cot%T—l' (3.24)
and their first derivatives:
dR dR - cos
-0, 2 = (R, — 1)~ L) (3.25)
do do sin? ¢

To calculate the internal forces, the normal edge load must be defined, which in the

case of the torispherical shell results from the interaction with the spherical segment:

R. (3.26)

N| =

ﬁot = —le((l’n) =

The components of f function in Eq. (3.14) for the analysed shell are:

-2 -
fie = Rt ft(a) - Rt(Rt - 1)ft(b)'
~ 2 -~ ~
fat = Rt ft(a) - ZRt(Rt - 1)ft(b) + (R: — 1)2ft(c)

_ . - R, —1)3 3.27
Fao = REF@ = 3R(Re— DD +3(R, 1)’ - B0 820
t

- 1 d
far = ft(c)' fst = Rtft(e)' for = ft(C) + <ﬁ_ B 1> ft( ),

t

where:
@ =n (tang), ,® = —cotg
2
1l 2 © 1 1 1
@ _ 4 @ _
== +1n(tan* =) + , ———<2+, ) to,
Ie 8lcosp —1 n(an 2) COSZ% fe 3 sin? ¢ ore (3.28)
2 B ¢
1 2R R; — (R, —1)tan+ N N
& = — £ arctan |— (R~ 1) 2 +th0t<p+Rtln(cot—)—cot<p
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Using Eq. (3.16) results in

cie = 0. (3.29)

3.1.4. Spherical shell

The meridional coordinates for the spherical shell of a torispherical dished end

depend on the definition of the toroidal shell:

3

®15s =0, P25 = P10 = 55T (3.30)

Principal radii of curvature are constant:

Ris = Rys = RyRs,
3 1 ) (3.31)
(B — R¢ cos ¢y5),

N

T1- COS Py
therefore their derivatives
dRys _ dRas _ (3.32)
de do
Using Eq. (3.19), one obtains
~ 2 %
fis = fas = f3s = Rs In (tan E)' (3.33)
therefore
fi = 1}? ‘A—a)ln (tang). (3.34)
$2°F 2
Applying boundary condition in Eq. (3.16) yields
C1s = —lﬁ A —a)n (tan@). (3.35)
s 2°° 2
It is worth noting that if the material is isotropic (¢ = 1), then:
¢1s =0, fs=0, (3.36)
which implies the tangent displacements are zero
ug = 0. (3.37)
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3.1.5. Ellipsoidal shell

The meridional angle boundaries of the ellipsoidal dished end are:

T
$1e =0, P2e = > (3.38)
Unlike the previous shapes, both radii of curvature are variable for the ellipsoidal

shell:

Ry, = RyR Ry, = p? ( )
le 0er le sind3 @ \1+ p2cot2¢p/ '’
(3.39)
R RoR R ! ( ! )1/2
ze — T0Tzer %€ " sing \1+ B2 cot2 ¢
Their derivatives are as follows:
dR 52 cos g
S 3 - D () o
do 1+ f4cot?¢ sin* ¢
(3.40)
dRye ) ( 1 )3/2 cos @
dp B ) 1+ B%cot?¢ sin? ¢’

For the closed apex shells i.e. ¢; = 0, the internal forces can be calculated according

to Eq. (3.18). The components of the f function (Eq. (3.19)) are further resolved:

1 2./1— B2 @
fie = —= |21 — B2(2 + B?) arctanh +In(tan*=)| —
e ap2 ﬁztanz%—ﬁz + 2 ( 2)
(B> —1)cosg
(B?—=1)cos2¢p +p%2+1
(3.41)
1 2.1 —p?
f2e = 553 |2y 1 — B?arctanh 7 p + In (tan2 f) ,
2p Eztanzi—ﬁ2+2 2
1 4
- 2 ¥
fze = 25 In (tan 2).
Applying an adequate boundary condition (Eq. (3.16)) yields
J1-—pB2
Cre = [(2 + BP)a — 2B%v, — 4] arctanh /1 — B2. (3-42)

4p2
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3.1.6. Cylindrical shell

To describe the membrane state in a cylindrical shell, it is necessary to transform
the description from the meridional angle ¢ to a linear coordinate ¢. The following

substitution is applied:

T ~
Q= 5 Ride = d¢, (3.43)

where 0 < ¢ < L. Principal radii of curvature are expressed as:

R]. = Roﬁl, ﬁl 4 OO,
(3.44)
R2 = ROR2, ﬁz =1.

Assuming the shell is enclosed by a dished end, the horizontal edge load, i.e. the

expression for P, P and P, consequently can be significantly simplified:

PcszOZﬁc: ﬁczp()cz y _=0, (3.45)

~ - 1
Ny = pRoNy, Ny = Yy
(3.46)
Nz = pRoﬁz, NZ =—1.
The components of the f function can be reduced to:
fice =%, f2c =0, f3c =0, fac =0, foc =§, foc =0, (3.47)
therefore
1
fe= (vz — Ea) ¢ (3.48)
Applying the boundary condition in Eq. (3.16) leads to
c1c =0, (3.49)
which results in the following expressions for displacements:
1 1
ti, = (vz — Ea) ¢, w,=1 +§V2' (3.50)
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3.2. The edge effect theory

3.2.1. Doubly curved shells

To consider all possible external loads that can occur in complex shell structures,
one must refer to a formulation that includes the bending phenomenon, which is
omitted in MT. The edge effect theory (EET) is employed in the presented study to
describe bending effects. It constitutes a simplification of the general bending theory
of shells. The differential equations of the latter were initially defined by Reissner [14]
for spherical shells and further generalized by Meissner [15]. The authors introduced
two unknown functions in the derivation:
9= ! (u + d—W) U = R,Q, (3.51)

Ry de

where: Q — shear force, ¥ — rotation of a line tangent to the meridian (Fig. 2.3). The

form of the proposed governing differential equations is:

L(U) + v, U — R,E,t9 = F,

(3.52)
R,
L) —vyd+—U=0,
D,
where:
LR2d2+R2t+d<R2>]d R, 2
R, dg? cot¢ PAVNIER aRZ cot” g, (3.53)
F=molgg [ ] (2t ) g eoto)
" %lde [\R, v sin? ¢ R, ve R,/s (pco ¢
(3.54)
-p [d (RZZ) ( +v2>R1R2cot<p]
D = E t3
LT A -y (3.55)

The solution of the system of differential equations as expressed in Eq. (3.52) remains
unknown. Importantly, they are linear, therefore their general solution has the
following form:

U=U°+Us+U",

(3.56)

9 =9¢+9°+9",
where U¢ 9¢ are general integrals of homogenous equations assuming p = P, =0,
(F =0), Us, 9° are particular integrals for surface load only (P, = 0) and finally U", 9"
are particular integrals for normal edge load P, (p = 0). The surface load in this paper
refers to pressure p.

The EET assumes omitting the bending effects caused by surface loads and

normal edge load P,. The solution of differential equations in homogenous form
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(F =0) is possible and is referred to as the EET, where the bending phenomenon
caused by the normal edge load P, and surface loads like pressure p are neglected.

Having this in mind, one can rewrite Eq. (3.56) to the following form:
U=U¢, 9 = v°. (3.57)

This approach assumes the bending effect is caused only by the moments and
transverse forces applied on the edges of a shell, hence the name of the theory. The
omitted load components p, P, (Fig. 3.1) might be considered within the MT, and the
final solution constitutes then a superposition of both membrane and bending state.

The system of differential equations (Eq. (3.52)) can be further rewritten to:

Ept _
L(U)+V2U—R1D—l9 =0,
1

(3.58)
L@) —v,d + R,U =0,
where
9 = iﬁ_ (3.59)
Dy

There are two methods for solving Eq. (3.58). The solution based on the
simplifications proposed by Geckeler [17] is the most widely described in the
literature. Those are as follows.

A) Value of the functions U,9 (Eq. (3.58)) increase significantly with the order

of their derivatives, i.e.

dru d-VDy d9  deDy

3.60
o7 7 D dgn ¥ GemD (3.60)

B) The change of radii of curvature near the shells edge, where the disturbance

occurs, is negligible; therefore, it can be assumed:
R4, R, = const. (3.61)
According to Eq. (3.60), the differential operator in Eq. (3.53) can be expressed as

_ Ry d?

L=—=—7y (3.62)
Ry dg?

one can further omit the function U and 9 in the first and second expression

correspondingly in the system of equations Eq. (3.58), which results in:

(3.63)
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The above system can be reduced to a single fourth-order differential equation

4y

—+4u*U =0, (3.64)

dep* K

where:
U= xp, (3.65)
= “/M (3.66)
t2 ’
Ry

p=— (3.67)

JR;

Replacing meridional angle ¢ in Eq. (3.64) with a dummy angular coordinate towards
the same direction denoted by y (Fig. 3.4), one obtains

4U+44U—0 (3.68)
dy* pr==s '
The general solution of the differential equation in Eq. (3.68) can be written in the
following form:

U =2x%[e ™ (A, cosuy — A, sinuy) + e* (A5 cos uy + A, sinpuy)],
(3.69)
9 =e M (A;sinuy + A, cos uy) — e*Y (A3 sinuy — A4 cos uy).

It is expected that the solution of the Meissner homogenous equations is
characterised by the functions that rapidly decay with the increase of the coordinate
y from a shell edge. In the above solution, the component e ™ is consistent with this
observation, while e#’ has the exact opposite property. The increase of the values of
the functions (Eq. (3.69)) with meridional angle y can only occur when it is caused by

the disturbance on another edge of a shell (Fig. 3.4).

Fig. 3.4. Angular coordinates in the EET
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To obtain a convenient form of the presented solution, one may introduce new
variables that express the angular distance from each of the shell edges separately,

as presented in Fig. 3.4:

Y=vV1=¢—¢1, V=-Y2=—(02—9), (3.70)

which results in:

Uy = 2x*[e 1(A; cos py, — Ay sinpyy) + e #V2(A3 cos uy, — Ay sin py,)],
(3.71)

1§g = e M1 (A, sinuy; + A, cos uy;) + e HY2(Ag sinuy, + A, cos uy,).

In the presented work, the EET solution Uy, 1§g proposed by Geckeler [17] is
compared to Blumenthal [16] and Steuermann [18], [19] asymptotic integration
solution Uy, 9, (Eq. (3.72)) of homogenous Reissner-Meissner differential equations.
The derivation of the latter, unlike the former, assumes the principal radii of
curvature are functions of the meridional angle. Such a solution is discussed by
Mazurkiewicz and Nagorski [1], and after unifying symbols and adjusting variables,
it takes the form:

Us = 2x*[e™*®1(B, cos xw; — B, sinxw,) + e *“2(B; cos xw, — B, sinxw,)],

(3.72)
9y = e 7"?1(By sinxw; + B, cos xw,) + e *“2(B; sin xw, + B, cos xw;),

where:

¢ P2
w4 =f pdy, W, =f pdy. (3.73)
P1 P

Note that in the case of a shell with constant radii of curvature, applying the same

constants yields the same form of the solutions in Eq. (3.71) and Eq. (3.72), as:

nwy = p(Q —@1) = py1,  xwy = p(@z — @) = pys. (3.74)

The solution in Eq. (3.71) can be then written to match the form of Eq. (3.72), which
led to:

Uy = 21*[e™®1(A; cos nwy — Ay sinnd,) + e *P2(A3 cos nw, — Ay sinxd,)],

_ _ (3.75)
Uy = e "?1(Ay sinxw, + Ay cos xw,) + e *¥2 (A3 sinxw, + A4 cos xwy),
enabling to introduce the similar functions to Eq. (3.73):
. 4 . P2
W, = Pf dy, Wy = Pj dy. (3.76)
P1 P
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In the further derivation, it is assumed that the functions U, 9 can be described
by Eq. (3.72) or Eq. (3.75). Following the authors of [1], the internal forces of the EET

expressed with the functions U, 9 are:

1
= — 3.77
Ql Rz U, ( )
Ny = —— U cot N, = i (3.78)
1Ty coto, 2= "R dg .
1d9 1 1 1dd
M, = R1 dgo + v, Rzﬁcotgo My = —a R, — Y cotp + v, R—1% (3.79)

The rotation of the line tangent to the meridian is proportional to 9 and can be
resolved according to Eq. (3.59). The normal and tangent displacement components

are expressed as follows:

sm(ple 2 1 R, 1\ cose
— Uld
[dqo sin ¢ < * 2R1> <R1 aRZ sin? ¢ ¢

+C sin ¢, (3.80)

1dU 1
w =ucote +E(R_1%_VZR_2UCOU‘0>

Analytical calculation of these functions can be considered difficult due to
cumbersome integrals. Importantly, normal and tangent displacement components
are not necessary for further analyses. Instead, one can refer to the vertical
displacement component defined in Eq. (2.6), which can be simplified to a very

convenient form

g = stintp(l dUu 1U ) ) 3.81)
»Z7TEt \R/dp 2R, ? '

Remarkably, the functions in Eqgs. (3.79), (3.81) are inconsistent with the
simplification (Eq. (3.60)) proposed by Geckeler, as the derivatives of functions U, 9
are not neglected in the presence of those functions themselves like in Eq. (3.63). For

such a reason those are usually rewritten ([1], [2]) to:

. — 1 dd " = 1dd Iy 5.82)
1= R, dg’ 2 = V2R1d<p_v2 1 :
1R sm(de
d,=— o 2R - (3.83)
2t 1 @

The justification of this simplification is debatable, as it leads to the omission of cot¢
component. When the meridional angle ¢ becomes sufficiently small near a shell
edge, the functions in Egs. (3.79), (3.81) and corresponding Egs. (3.82), (3.83) may

yield considerably different values depending on a studied case.
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To simplify the EET approach, it is usually assumed that two edges of a single
shell structure can be considered separately. This is valid due to the character of the
solutions in Eq. (3.72) or Eq. (3.75), as their values diminish relatively quickly when

moving away from the edge, therefore:
_ 1 2) 3 @, 3@
Uy =U;D+U,P, 9,=9,"+9,",
Ug(l) = 2x%e ™ "P1(A; cos nw, — A, sinxw,), Ug(z) = 21%e 792 (A5 cos nw, — Ay Sin xw,), (3.84)
5g(1) 59(2)

= e "91(A; sinxw; + A, cos xw,), = e @2 (A5 sinnw, + Ay COS HD,),

) g

U, =U0®+0u,® 9, =985 +32,

U, D = 262e~#91(B, cos xw; — B, sinxw,), Us® = 232e ™92 (B, cos xw, — B, sin xw,), (3.85)
5.0 = 5@

e "®1(By sinxw, + B, cos xw-), = e "“2(B; sin xw, + B, cos xw,).

Their derivatives are as follows:

du,® _ /3 _ 3
dgqo = 2\/2x3 pe @1 [Al sin (%wl - Zn) + A, cos (xwl - Zn)],
du,® _ 3 3
dgqo = —2V2x3pe @2 [A3 sin (%62 — Zn) + A, cos (%62 - Zn)],
) (3.86)
dﬁg( ) = —\/2upe *®1 [A sin (%5 — 1ﬂ) + A, cos (}[5 — 171)]
dg 1 17y 2 1= 27}
ﬁ = \2upe 72 [A sin (%5 — ln) + A, cos (J{(T) — 1n)]
do 3 27y 4 2727}
du,® 3
= 2\2u3pe @1 [B1 sin (J{a)l - —n) + B, cos (}f(u1 — —n)]
do 4
du,® 3 3
do = —2\2u3pe @2 [33 sin (%wz — Zn) + B, cos (xwz - Zn)]
(3.87)
dﬁs(l) = —\2upe "1 [B sin (}tw - 1ﬂ) + B, cos (Ma) - 1ﬂ)]
dg p 1 177 2 1727))
d1§s(2) = \2xpe @2 [B sin (%w — 1n) + B, cos (}f(u - ln)]
de p 3 277 4 27 27|

In the further derivation, the edge effect theory formulation proposed by

Geckeler is from now on called EETG, while Blumenthal and Steuermann approach
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is referred to as EETS. Assuming the functions UM, U@, 9™, 9@ are expressed by
Eq. (3.84) or Eq. (3.85), normal and shear internal forces can be written in a concise

form in EETG and EETS:

1
u=0"+0?® ®= A v, @ = R u®, (3.88)
2 2

1 1
Ny =ND 4+ ND N D = —R—U(l) cotp, NP = —R—U<2> cot g,

2 2
0 . 0 1d (1) - 14d @) (3.89)
N, = N. + N,\“/, N. =———, N = —— .
2 2 2 2 Ry d¢ 2 R, d¢

Meridional and circumferential moments in EETS are described as:

My =MD+ MDD, M, =M, + M,

g g (2
1dY 1 _ 1d9 1 _(2
M® =4 —19( to|, M®P=—-"F—tv,—9 te |,
1 <R1 do VzR2 s Ccoty 1 R, do VzRZ s Ccoty .90)

g @
1 _ 1dY
>, MZ(Z):—a<R—2195 cot<p+v1R—1 dsfp .

g (1
1 _ 1 dY
M, = —a (R—Zﬁs cote + iR, ds(p

The simplification applied in EETG leads to the following expressions:

g (O g @
1 dv 1 dv
M, = M,® M@, m® = __dg—' MP =—— (i" :
Ry do Ry do (3.91)

M, = Mz(l) + MZ(Z): Mz(l) — Vle(l)' MZ(Z) — Vle(Z)-
Vertical displacements in EETS can be written in a convenient form:

d, =d," +d,?,

R,sing (1 dU,™ 1
d L _ _12 - YYs —u o) to)
v E;t \R, dp 2R, s ¢ .02
R,sing (1 dU, (2) 1
d, = - = ———— v, —UPcoty ).
' E,t \R, dg 2R, s ¢
After introducing Geckeler simplification to Eq. (3.92), one obtains:
d, = dv(l) + dv(z),
d,® = _Lwdl}g(l) 4@ = 1R SinqodUg(z). (3.93)
v E;t Ry do ’ v Ezt—Rl do
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To resolve the constants in Eq. (3.84) or Eq. (3.85), the following boundary conditions

are assumed:

Q1(1)(€01) = Qe1, Q1(2)(‘Pz) = Qe2,
(3.94)
Ml(l)((pl) = Mg, M1(2)(§02) = —M,,.

The constants in EETG are calculated according to internal shear forces in Eq. (3.88)

and moments in Eq. (3.91):

Ry (1) Ry (92)
A1 = Qe 7; Az = Q¢ 7:
(3.95)
_ Ry(¢91) VR2(¢1) _ R, (92) VR2(¢2)
Ay = Qo 5o+ Mo Y0, Ay = Qo+ My

Similarly, in EETS, using Eq. (3.88) and Eq. (3.90), the following expressions are

derived:

Ry (1) Ry (92)
B; = Qe1 202’ B3 = Q. 2,42 "
. R, (fP1)3/2 R, (1)
B; = Qe1 + Mgy : (3.96)
2x (%[ Ry (91) — v, cotq) #y[ Ry (1) — v, cotepy
R, (€02)3/2 Ry (¢2)
By = Qe

+ M., .
21(3y/ Ry (@3) + v, cot @y) #y/ Ry (@2) + v, cot g,

It is important to notice that in the case of closed apex shells, i.e. when ¢, = 0,
some of the presented equations are characterised by singularity for ¢ = 0 caused by

the component cotg. This issue is present in the functions expressing meridional,
normal force N;® (Eq. (3.89)) and meridional moment M;® (Eq. (3.90)). Despite the
same formulation of equivalent functions Nl(l),Ml(l), those are not considered when
@, = 0. Values of the functions U®, 9@ as well as their derivatives for ¢ = 0 can be
considered meager, but importantly never exactly zero, thus Nl(z)(O) — too,
M, (2)(0) — too. Described characteristics of those functions is unexpected. Applying
Geckeler simplification in EETG resolves this problem with the moment M;®
(Eq. (3.91)), however the issue persists for the normal force N;®. The effect of the
component cot¢ increases with thickness of a shell as it makes the functions U®,

9@ diminish at a lower pace with the decrease of meridional angle ¢.
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3.2.2. Cylindrical shell

Due to the geometrical form of cylindrical shells, a significant simplification over a
general case from the previous section can be achieved. Importantly, it is necessary

to describe the problem using a linear variable along the shell axis instead of the

meridional angle. The following expressions need to be considered:

L
dp =—d dy = —d
® R ¢, 4 R S (3.97)
T
=3 Ry — oo, R, =Ry, (3.98)

where ¢ is a general, linear coordinate equivalent to the curvilinear coordinate y

(Fig. 3.4). Due to the form of Egs. (3.97), (3.98), EETS and EETG solutions become

identical. The further derivation is based on the EETG due to its convenient form:

§
51:[).[ dg'

1

&2
@y =p f ds, (3.99)
3

where §;, &, are linear coordinates analogous to ¢4, ¢, (Fig. 3.4), and consequently

p=

L

i

(3.100)

The solution of the governing differential equations of EET remains unchanged

concerning Eq. (3.84) and derivatives Eq. (3.86). The constants in those expressions

can be simplified to:

Ro Ry
A1 = Qe m» Az = Q¢ ﬁ’
(3.101)
R R /R
A2=Qe1_0+Me1_0' A4=Qe2_0+Me2_0-
232 n 232 n
The internal forces are described as:
o, = iu(l) 0,® = iU(Z) (3.102)
R, R,
Nl(l) =0, N1(2) =0,
€Y) 2) 3.103
N, _LtdU N @ _1dU (3:109)
z L d& "’ z L d¢’
9(1) 9(2)
mow - 1P e 1997
L d§ L d¢ (3.104)

Mz(l) — V2M1(1):

M2(2) = Vle(z).

The rotation of a line tangent to the meridian 9 can be resolved using Eq. (3.59),

while vertical displacements:

1 RydU®

d. D = _ -
v E,t L d& "’

@ _ i&dU(Z)

- 3.105
v E,t L d&é ( )
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3.3. Stress and deformation analysis in complex shell structures

The primary, practical purpose of the EET is to take into consideration the problems
of shells with discontinuous radii of curvature. In such a case, the shell is virtually
divided into segments with continuous radii of curvature and the interaction between
them is studied. The solution to this problem aims to achieve the state of continuity
of deformations in the form of displacements and rotations using EET and MT by
finding the values of transverse forces and moments in the coupled shells. For most
analyses, it is necessary to consider the simultaneous interaction between edges of
two neighbouring shells in the form of normal and transverse forces X,Y, as well as

bending moments Z (Fig. 3.5).

|
|
|
|
|
Roy(p) :
|

|
shell B I

,/ Ri5(0) ﬁm (0)

Fig. 3.5. The loads in the junction of a complex shell

In a general case of two shells denoted as A and B (Fig. 3.5), the equations of

compatibility can be written as follows:

SXA(Z)XlA + 5YA(2)Y2A + 5ZA(2)ZZA + 5pA(2)P = 5XB(1)X1B + 5YB(1)YIB + 875 (1)213 + 5p3(1)P.
(3.106)

19XA(Z)XM + 19YA(2)Y2A + ﬁZA(Z)ZZA + ﬁpA(Z)p = Uxg (I)XIB +9Wy, 5 + 1923(1)213 + 19;913(1)2%

where the corresponding symbols in the above e refer to the vertical displacement §
and rotation ¥ components caused by the loads X,Y,Z and applied pressure p. The
indices in those describe the corresponding load, shell, and edge notation. For
example (SXA(l) is a displacement component caused by unit normal load X;, =1 on
the first edge of the shell denoted as A. Such factors are calculated employing the
EET for transverse forces Y and moment Z, while MT is used to resolve the effect of
pressure p and normal forces X, analogous to P, (Fig. 3.1) and its dimensionless form

P,. It is essential to note that MT does not consider the normal edge load X applied to
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the second edge of a shell, as it results from the applied external loads relevant for
MT (Fig. 3.1). Notably, the load applied on the first edge usually causes deformations
on the second edge. For that reason, expressions in Eq. (3.106) are not symmetrical
due to the appearance of X;, and X;5 on the opposite site.

The subsequent derivation is provided for a general case of a shell structure.
Following Eq. (3.6) and applying P, =0 and ¢ = ¢; or ¢ = ¢, the displacement

components caused by applied pressure p are:

1 = :
510(1) = _EROZRZ(Q)DZ sin ¢y,
_ , (3.107)
1 1/R,(p,) L " sin“¢g "
) _ 2 2\¥2 2 2 1 2
8, = ERO sing; [E (m + Vz) <R2(<P2) — Ry (1) sin?g, ) Ry (92)7|.
Considering the relation
X, = pRoPy, (3.108)
one obtains:
1 R (p1)
8y = ——Ro (== +1 ),
X Eyh 0 Ri(¢1) "2
(3.109)
1 sing; (Ry(9;)
§x@ =—R — +v
X E;h OSin§02 R1(92) 2

The derivation of the expressions referring to rotations 9 (Eq. (3.106)) in a general
form using MT is omitted, as no significant simplification over Egs. (3.7), (3.8),
(3.12)-(3.15) can be achieved. It is convenient to resolve them specifically for
a selected geometry, for which the angular coordinates of edges ¢4, ¢, are given. In

the typical case of a shell, where ¢, = /2
@ _
Y 0, (3.110)

which can be shown by proving that the derivative of normal displacements equals
zero for ¢, = /2 (Eq. (3.8)) as well as employing the applied boundary condition in
the membrane theory #i(¢,) = 0 and substituting those to Eq. (3.7).

Considering the cylindrical shell, the components of displacements and

rotations are following:

1 v
1 _ s @ _ 2 W _ s (@ _ 72 1 —
b =0T =gy Re, S =8 =g R =0, (3.111)

The rest of the factors from Eq. (3.106) can be derived from EET either using
Blumenthal and Steuermann (EETS) or Geckeler (EETG) approach. Both of those
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formulations are included in the presented work. The coefficients for the first of those
are resolved using Egs. (3.85), (3.87), (3.92), (3.96), while for the latter, according to
Egs. (3.84), (3.86), (3.93), (3.95) and considering the expressions for corresponding

shell edges. The coefficients (Sy(l),ﬁy(l) are obtained by applying to the afromentioned

equations:

Qe =1, Mg, =0, (3.112)
while in the case of 52(1) and 192(1):

Qo1 =0, M, =1. (3.113)

Analogous substitution is applied for the second edge of a shell. Vertical displacement

and rotation components 5y(2),19y(2) are derived assuming:

Q=1 Mg, =0, (3.114)
and lastly for 62(2) and 192(2):

Qez =0, M, =1. (3.115)

The summary of compatibility equations factors is provided in Eq. (3.116) for EETS
and Eq. (3.117) for EETG:

1R, (1) (2% Ry (1) sin @1 — v,? cos ¢ cot ¢;)

Ept #y Ry (1) — vy cot gy ’

8y(1) —

1 13 Ry (1)*/? sin oy

Ezt”\/ R, (1) — v, cot §01’

(SZ(l) = 2

19}/(1) — 1 R2(¢1)3/2 192(1) _ i Rz(gol)
2D1# 3 /R, (1) — v, cOt @y D1 3\/R,(¢;) — v, cot
. 3.116
5@ — 1 Ry (92)(2%°R,(7) sin ¢, — v,7 cos @, cot ¢,) ( )
Y - T ]
Eyt %\ Ry (@) + v, cotp,
3 3
5.@ — —Zi 1Ry (92)Zsin g,
’ E2t30\/ Ry (93) + v; cot 9;
9 2) _ 1 Rz((Pz)3/2 9 ) _ i Rz((pz)
Y z

2D1”}f\/ Ry (¢2) + v, cotg, , D, Ry (@2) + v, cot <,02.
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1 1
& = 2——uRy(91)*?singy, 8,1 = 2— xR, (¢,) sin gy,
Ezt EZt

1
791(Y1) = 2D J{Z Rz ((pl), 791(21) = ﬁ vV RZ ((pl):
1 1
(3.117)
1 3 1
8,9% = —2—xR,(p,)Zsing,, 8,2 = —2— 2Ry () sin p,,
Ezt EZt

1 —
1(/’z(yz) = R, (¢2), 192(22) - ﬂ Ra(02).

Importantly, the displacements and rotation factors are the same for the second edge

2D, 1?

of a shell, when ¢, = /2, as then cotgp, = 0. In the case of the cylindrical shell, the

components of compatibility equations are as follows:

1 1
5y(1) — Z—J{R03/2, 52(1) — Z—HZRO,

E,t E,t
1 1
! 2Dy32 0 DyxV
5 1 (3.118)
8,7 = —2—uRyz, 8P =-2—u’R,,
Eyt o 2 Eyt 0
1 1
19(Y2)= , 19(22)__ R
z 2D;n2 0 z Dyx V7O

The solution of Eq. (3.106) can be considered elementary after introducing static

equilibrium in the juncture, i.e.:
Y1 = Yz, Zl = _Zz. (3119)

The study of stress and deformations in the form of displacements and rotations
can be further conducted considering the superposition of the MT and EET using the
EETG or EETS approach. The superposition of deformations can be easily achieved
using both theories; therefore is not further discussed. It is necessary to recall the

plane stress state to resolve the principal stresses:

1 z
o=y N 4 Ny @ 4 N, @) + 12F (M@ + M, @),

(3.120)
1 z
2=y (N + Ny @ + Ny, @) + 12ﬁ(M21(b) + M, ),
where z is a coordinate across the thickness of a shell (Fig. 2.3), therefore
ezt (3.121)
5= Z = 2 .

35



The coordinate z = t/2 corresponds to the internal surface of the pressure vessel.
Normal forces and moments in Eq. (3.120) have been complemented with additional
superscripts. The symbol m refers to membrane solution while b corresponds to

bending with the use of the EET.

To evaluate the load-carrying capacity of structures made of ductile metals,
one may define equivalent von Mises stress, which for the analysed problem is as

follows

o, = \/012 — 0,0, + 0,2 (3.122)

3.4. Analytical solution
3.4.1. Geometrical and mechanical properties of shells

To perform an exemplary analysis, it is mandatory to assume values of parameters
referring to geometry as well as the mechanical properties of the material. Those are
selected to maintain comparability to a typical liquid petroleum gas pressure vessel.

The parameters corresponding to the shape are following:
Ry = 1000 mm, L =1000 mm, B =0.5,

the value of the introduced relative depth g is standard for ellipsoidal dished ends.
The technical standards allow the manufacturing of ellipsoidal geometries as
equivalent torispherical, i.e. of the same relative depth as ellipsoidal. For this reason,
its value is applied for both shapes to maintain comparability.

A standard thickness of such a shell structure is within 7 mm to 10 mm. In the

analytical solution, the range of thickness is expanded to four distinct values
t=1,5,15,30 mm.

The considered mechanical properties of the material are consistent with typical

structural steel:
E; =2x10°>MPa, v;=0.3,
while isotropic and orthotropic material properties are considered
a=112

The pressure vessels are loaded with uniform internal pressure, which causes the
equivalent von Mises stress of 100 MPa in a cylindrical shell, regardless of its
thickness and radius:

2003 t
3 Ry

p
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3.4.2. Cylindrical pressure vessel with ellipsoidal dished ends

The geometry and interaction forces in the pressure vessel with the ellipsoidal dished

ends are presented in Fig. 3.6.

Y] c| Z Ic ZZC'
( X Ic
)i oot :
p |
: 6:61 c
|
|
|
|
|
|
|
|
|
cylindrical : ellipsoidal
|

shell

shell

Fig. 3.6. Pressure vessel with ellipsoidal dished ends

The compatibility equations in Eq. (3.106) are rewritten to match the symbols of

the analysed shells, i.e. e — ellipsoidal and ¢ - cylindrical:

é‘X(:(l)ch + é‘Y(:(l)ch + 5Zc(1)Zlc + 5pc(1)p = 6Xe(2)Xle + SYe(Z)YZe + SZe(Z)ZZe + 5pe(2)p:
(3.123)
ﬁXc(l)ch + 19}'c(l)ch + 19Zc(l)Zlc + 1L9pc(l)P = 19Xe(2)X1e + ’9Ye(2)Y2 + ﬁZe(Z)ZZ + 19pe(z)p-

Within the analysis framework, the application of EET using both of the previously
discussed solutions of governing differential equations Eq. (3.52) is considered. The
exemplary derivation is conducted for t = 15 mm and isotropic material (¢ = 1), while

the final results are provided for t = 1,5, 15,30 mm.

The second edge of the ellipsoidal dished end corresponds to ¢, = n/2, therefore
the components of compatibility equations are the same in both EETS and EETG
(Egs. (3.116), (3.117)):

mm? mm
Sye® = —6.997 x 107 ——, 870" = ~7343 107

3
mm
8pe? = 3.833x 1071 o

(3.124)
mm 1
Oy P = 7.343 x 10-57, 9,0% = 1.541 x 1076 5

@) _ mmz
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The ellipsoidal dished end is a closed-apex shell i.e. ¢; = 0. The factors referring to
the first edge in Eqgs. (3.116), (3.117) are omitted. In the case of the cylindrical

geometry, only the first edge is taken into consideration, where its corresponding

values are:

mm? mm?
Sxc M =1x 107 =, 8V = 6997 x 107 ——

3
mm mm
5z =7.343 x 1075 —~, 8pe™ = —3.333x 1071 -~

m m (3.125)
I =0—, 9, =7343x10"5—,
N N
1 mm?
9,0 =1.541x 107° N 9, = N.

The normal force acting upon the first edge of the ellipsoidal dished end is

non-existent, thus
X0 = 0. (3.126)

Consequently the coefficients 5Xe(2), Ixe ) are then omitted. The normal force acting

on the cylindrical shell is defined as follows:

Xic = —PRo, Poc (3.127)
where P, is resolved according to Eq. (3.45). Following Eq. (3.119) yields:
ch = Y2€' ZlC = _Zze. (3128)

The solutions to the compatibility equations (Eq. (3.123)) are provided in Table 3.1.

Table 3.1. The interaction loads in the pressure vessel with ellipsoidal dished ends

t [mm] 1 S 15 30
Y1 [N/mm] 1.420 1.588 x 101! 8.252 x 101 2.334 x 102
Yo, [IN/mm] 1.420 1.588 x 101! 8.252 x 101 2.334 x 102
Zcq [N] 0 0 0 0
Zoy [N] 0 0 0 0
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3.4.3. Cylindrical pressure vessel with torispherical dished ends

In the analysis of the pressure vessel with torispherical dished ends, it is mandatory
to consider two junctions, namely spherical to toroidal and toroidal to cylindrical. The

loads resulting from their interactions are presented in Fig. 3.7.

cylindrical toroidal spherical
shell shell shell

Fig. 3.7. Pressure vessel with torispherical dished ends

In the derivation of the constants in the EET, it is assumed that the moments
and transverse forces applied at the first edge (¢ = ¢,) cause no effects on the second
edge (¢ = ¢,) and vice versa. For that reason, the compatibility equations are separate
at both edges. Such an approach is correct only for the cases when the length of
a shell meridian is significant while thickness remains small. Those conditions
assure that the corresponding functions 9 and U diminish to near-zero values before
reaching the opposite edge. Realizing the meridian of the toroidal shell is relatively
short, one may predict that the assumption can be violated with the increasing

thickness of the pressure vessel.

Using Eq. (3.106), the compatibility equations are rewritten to the following

form:

5Xt(1)X1t + 5Yt(1) Yie + 6Zt(1)th + 6pt(1)p = 5Xs(2)Xls + 5}’5(2)Y25 + 525(2)225 + 5ps(2)p'
(3.129)
19)(t(1)X1t + 19yt(1)ylt + 19Zt(1)Z1t + 19pt(l)P = 9y D Xy5 + ‘9Ys(2)Y2t + ﬁZs(Z)ZZt + ﬁps(Z)p'

Sxe M Xy + 5Yc(1)ch + 5Zc(1)Z1c + 5pc(1)P = 8y DXy, + 5Yt(2)Y2t + 5Zt(2)22t + 6pt(2)p'

(3.130)
ﬁXC(l)ch + 19}/c(l)Yu + "92c(1)21c + ﬁpc(l)p = 19Xt(z)Xu + ﬁYt(Z)YZt + ﬁZt(Z)ZZt + 19pt(2)P-
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The coefficients for the spherical shell according to EETS (Eq. (3.116)) are:

mm? mm
Sys® = —7.303 x 1073 ——, 8,sP = —5.732 x 1075 —

(3.131)
mm 1
Oys® =1.263 x 10—47, 9, =1.980x% 107° 5
while in the case of EETG (Eq. (3.117)), the components are different:
mm? mm
Sys? = —7.616 x 1075 ——, 875 = —5.972 x 1075 —,
(3.132)
mm
9y ? = 1.135 x 10‘4T, 9, =2.063 %1076
The factors resulting from the MT (Eq. (3.107)) are:
@ _ _, mm® @ _ gmm’ (3.133)
bps = 1.700 X 107t N Ups = OT. .

For the toroidal shell, following the EETS approach, i.e. using Eq. (3.116), yields:

mm? s mm
8D = 7.942 x 10—, bz W = 6.233x 1075 ~
(3.134)
mm 1
9y M =1373x1074—,  9,P =2153x1076 =
N N’
while referring to expressions in Eq. (3.117) results in:
mm? mm
Sy = 7.616 x 1070 ——, 5, =5.972 x 1075 =,
(3.135)
1

mm
9y, D = 1315 x 1074 = Oz @ = 2063 x10°¢

The considered coefficients on the second edge of the toroidal shell are the same in

both EET formulations as ¢, = n/2:

mm? mm
8y P = —6.997 x 1078 —, 622% =—7.343 x 1075 —,
(3.136)

mm
9ye® = 7.343 x 107°—, 9, = 1.541x 1076 —

Finally, the application of MT (Egs. (3.107), (3.109), (3.110)) enables us to find the

factors in the first:

mm? mm?
5P = 1.501 x 1075 ——, 8pe ) = —4.856 x 1071 N
(3.137)
2

mm mm
Oy =3.181x 107 =, 9,V = ~9.931x 1073 ——,
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and the second edge:

mm? mm
S5xc? = 4.878 x 107 —— 5y = ~1514x 107 N

(3.138)

2
mm mm
19Xt(2) =0 N’ 1919t(2) =0 N

of the toroidal shell. The coefficients for the cylindrical shell remain the same as in

the analysis of the pressure vessel with the ellipsoidal dished end (Eq. (3.125)).
Considering the remaining unknown forces, the first edge of the spherical segment is

a closed-apex shell, therefore
X5 =0, (3.139)
which implies the neglection of the coefficients SXS(Z), 19X5(2). The normal force at the
first edge of the toroidal shell is defined according to the membrane theory
X1t = PRoPoy, (3.140)

while P, is obtained according to Eq. (3.26). Similarly to the previous analysis, the

normal force acting upon the cylindrical shell X, is resolved as in Eq. (3.127):

ch = th’ ZlC = _ZZt- (3141)
Setting the relations from Eq. (3.119):
Yie = Yo, Zyt = —Zas, Yie =Y2, Zic = —Zye, (3.142)

to the compatibility equations (Egs. (3.129), (3.130)) result in two systems of two
equations with two unknowns in each of them. The solution to those is given in

Table 3.2 for EETS and Table 3.3 for EETG.

Table 3.2. The interaction loads in the pressure vessel with torispherical dished ends — EETS solution

t [mm] 1 5 15 30
Y1 [N/mm] —2.011 —2.235x 101  —1.144x10? —3.164 x 102
Y5, [N/mm] —-2.011 —2.235x 10" —1.144x10®>  —3.164 X 102
Z [N] —8.580 —4.795 x 102 —7.470 x 103>  —4.222 x 10*
Zg [N] 8.580 4.795 x 102 7.470 x 103 4.222 x 10*
Y1 [N/mm)] 1.038 1.161 x 10! 6.031 x 10? 1.706 x 102
Y, [N/mm] 1.038 1.161 x 10! 6.031 x 10* 1.706 x 102
Zq1 [N] 0 0 0 0
Zey [N] 0 0 0 0
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Table 3.3. The interaction loads in the pressure vessel with torispherical dished ends — EETG solution

t [mm] 1 S 15 30
Y;; [N/mm] —-2.014 -2.251x 10" —-1.170x10®>  —3.309 x 102
Ys, [N/mm] —2.014 —2.251x 10" —-1.170x10®>  —3.309 x 102
Zi1 [N] —8.939 —4.997 x 102 —7.790 x 103>  —4.407 x 10*
Zs, [N] 8.939 4.997 x 102 7.790 x 103 4.407 x 10*
Y., [N/mm] 1.038 1.161 x 10* 6.031 x 10* 1.706 x 102
Y;, [N/mm] 1.038 1.161 x 10! 6.031 x 101 1.706 x 102
Zg [N] 0 0 0 0
Zsy [N] 0 0 0 0

The results provided in Table 3.2 and Table 3.3 imply that the differences
between solutions in junction loads are moderate. It must be further determined
whether such discrepancy can be impactful in solving the problems of deformations

and stress distribution in the analysed shell structures.

3.5. Results comparison with FEM

It is complicated to evaluate the accuracy of any calculation method without a direct
comparison with another. The solution with the use of the MT and EET is
approximate, and it is expected that accuracy can diminish with the increase in
thickness of a shell. In the presented work, the outcome of the analytical solution is
compared with results from the finite element method (FEM) analysis. The details of

the latter are described in [37] (A1).

Importantly, the coordinates w; and w, (Eq. (3.73)) in the EETS formulation are
elliptic integrals, thus cannot be expressed by elementary functions. To address this
issue, one can refer to the Taylor series expansion of the function p (Eq. (3.67)) at
¢ = ¢, and ¢ = ¢, for w; and w, correspondingly or integrate p numerically. The latter
approach is adopted within this work. The correlation between analytical and
numerical solutions is studied by comparing vertical displacements and equivalent
stress. Two material models are considered, i.e. isotropic (¢ = 1) and ortotropic,
where a = 1.2. Such difference between mechanical properties in two perpendicular

directions can be viewed as exaggerated for structural steel. Realizing that the

42



orthotropy coefficient close to unity could bring no significant change in deformations

and stress, thus elevated value is applied.

The results are summarized in Table 3.4 and Table 3.5 for the pressure vessel
with ellipsoidal dished end considering isotropic material, while the maximum values
from those are juxtaposed in Table 3.8. Similarly, the vertical displacements and
stress distributions for the pressure vessel with torispherical dished ends are given

in Table 3.6 and Table 3.7 and are further compared in Table 3.9.

According to Table 3.4, the EETS and EETG solutions are nearly identical to FEM
results for relatively thin shells with ellipsoidal dished ends. As expected, when the
thickness is increased, the differences become apparent. Those are substantially
smaller for the EETS than EETG as the maximum relative difference reaches 9.393 %
in the first, while it is 21.43 % for the latter (Table 3.8). Following the stress
distributions presented in Table 3.5, one can observe that the analytical solution is
in complete agreement with the numerical study for the shells characterised by the
relatively low thickness. For thicker shells, visible discrepancies are observed as then
the numerical results show distinct values of the stress in the inner, middle and outer

shell surfaces beyond the juncture.

There are two reasons explaining such a phenomenon. The first refers to the
normal to middle surface stress, which is omitted in the shell theory; however, such
a stress component is expected to be marginal. The other cause of the stress variation
is that the applied pressure causes the bending phenomenon by itself, which is
neglected in the EET. Notably, such observation refers only to the shells with variable
radii of curvature. Inspecting the stress in the area close to the junction of the shells,
one can conclude that the difference between stress in the inner and outer surface in
analytical and FEM solutions are close to the same differences beyond the junction.
This implies that the observed differences are partially caused by the omitted effect
of surface load on bending effects in the analytical solution. If the discrepancies would
be caused only by the neglection of normal to surface stress components in shell
theory, then the through-thickness stress variation would be the same in the dished
end and cylindrical shell. According to the results in Table 3.5, the stress variation
across thickness is considerably more remarkable in the ellipsoidal dished end

beyond the edge disturbance.

Although the summarized results in Table 3.8 suggest that the EETG solution is

closer to FEM in terms of stresses, further analysis can discredit this observation.
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Taking a closer look at the plots for t = 15,30 mm in Table 3.5 concludes the stress
in the middle surface is more consistent for EETS than EETG. Additionally, the
bending effect in the latter diminishes at a higher pace, which is somewhat
incompatible with numerical solutions. Lastly, it is necessary to explain why the
analytical solutions indicate different stress in the middle surface, putting aside the
abovementioned discrepancies between EETS and EETG. Theoretically, any
simplifications in analytical bending moments functions should not contribute to the
stress distribution in the middle surface. For that reason, those differences can be
either the effect of some inaccuracies in the formulation of normal forces in the MT
or the omission of shear forces in the stress calculation, which could become

apparent for thicker shells.

In the pressure vessel with torispherical dished ends, the discrepancies between
analytical and numerical results become considerable even for relatively thin shells.
The vertical displacements shown in Table 3.6 are in near ideal agreement for
t =1 mm, however any further increase shows a visible deviation, especially in the
neighbourhood of the junction of the toroidal and spherical shell. For the thickness
t = 30 mm, a severe inconsistancy is observed, to the point where the displacements
are incompatible in the connected edges of the toroidal and cylindrical shell. It shows
that the loads at the first edge of the toroidal shell have an immense impact on the
displacements on the second edge, violating the prescribed condition of deformations
continuity. The meridian length of the toroidal shell is relatively small compared to
other shells, and as the thickness is increased, the disturbances caused by edge loads
are carried over greater arc length and do not vanish before reaching the opposite
edge. One could rewrite the equations of compatibility (Eq.(3.129), (3.130)) to include
the effect of carrying the deformations to another edge, but it can be considered
a partial and debatable solution. Foremost, in the derivation of constants of the edge
effect theory (Eq. (3.94)), it is assumed that the edges do not interfere with each other,
which contributes to the convenient description of the theory and its application.
Enforcing the compatibility of deformations without rewriting the constants and then
inevitably all the deformations components would lead to incompatibility of internal
forces. Additionally, the components of rotations and displacements referring to the

opposite edge would have a cumbersome form as then w,(¢,), @1(¢,) # 0 and w,(¢,),

Wy (1) # 0.
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EETG

with ellipsoidal dished ends — isotropic material

Table 3.4. Vertical displacements comparison for the pressure vessel
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[mm]
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Table 3.5. Equivalent stress comparison for the pressure vessel
EETS
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EETG

with torispherical dished ends — isotropic material

Table 3.6. Vertical displacements comparison for the pressure vessel
EETS

[mm]
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EETG

with torispherical dished ends - isotropic material

Table 3.7. Equivalent stress comparison for the pressure vessel
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[mm]
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Table 3.8. The summary of results for a pressure vessel with ellipsoidal dished end — isotropic material

Relative difference

Analytical solution (%]

FEM
[mm]  pers EETG EETS EETG
1 174.9 175.0 176.3 0.7796 0.7251
5 169.0 169.8 175.4 3.658 3.216
O-T max
[MPa] ;5 159.2 161.8 173.8 8.374 6.895
30 150.0 154.6 173.0 13.25 10.58
1 0.6701 0.6715 0.6693 0.1157 0.3306
p 5 0.5876 0.5990 0.5830 0.7866 2.743
vmax
[mm] 15 4773 0.5068 0.4609 3.578 9.959
30 03883 0.4311 0.3550 9.393 2143

Table 3.9. The summary of results for a pressure vessel with torispherical dished end — isotropic material

Relative difference

¢ Analytical solution (%]
FEM
[mm]
EETS EETG EETS EETG
1 350.5 350.5 330.3 6.109 6.109
5 342.3 339.2 275.1 24.40 23.28
O-rmax
[MPa] 5 385.0 381.5 239.2 60.98 59.52
30 463.0 456.1 227.9 103.1 100.1
1 0.9946 1.007 1.003 0.8672 0.412
d 5 0.7547 0.7756 0.7529 0.2354 3.010
v max
[mm] 15 0.677 0.691 0.6114 10.73 13.02
30 0.5668 0.5865 0.4819 17.59 21.68

Analogous deviations are present in the stress distributions shown in Table 3.7.
The substantial issues with the solution start for t =15 mm and those include
immense differences in stress values and their incompatibility. The latter can be
explained just as in the case of displacements; however, the cause of excessive stress
in the toroidal shell has a diverse nature. During the analysis of the results, attention
has been brought to the values of the edge loads solved with the use of compatibility
equations. Those have been compared referring to FEM and Ritz method (RM)[37](A1),
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which showed severe discrepancies in the analytical solution. The compatibility
equations have been carefully verified, including comparing the corresponding
components in all three methods. It showed that the factors calculated with the use
of MT differ the most. For that reason, the MT solution for the separate toroidal shell
is further considered and compared to other methods. The results of such analysis
are presented in Table 3.10 for p = 1 MPa and Table 3.11 for X;; =1 N/mm for the
thickness t = 1,15 mm. Those show that while displacements for t = 1 mm are very
close in all methods, the similarity between values vanishes for t = 15 mm. For the
rotations comparison, numerical FEM result is shown only on the first edge. The
juxtaposed data show substantial differences even for the thinner shell, while relative
difference reaches roughly 400% for the thicker structure. As expected, both of the
compared quantities are in linear relation to thickness in the MT. The numerical
solutions do not share such characteristics. It implies that the application of MT in
the case of the open-apex shell induces significant errors in the solution because
bending occurs even in the case of reasonably thin shells. Such an observation is
based on the fact that the numerical results do not change proportionally with the

thickness increase.

Table 3.10. The membrane state solution analysis for toroidal shell subject to a uniform pressure

t Vertical displacements .
Rotations caused by p = 1 MPa
[mm] caused by p =1 MPa
R B R B A {7 I T T P
D s s s s o
B S e

-0.091

-55 b ] 1 i
. Vertical displacements d, [mm] |
M -0.12
=65 g b FEM ---------
77777 RM
_75 L L L L L H H ~0.15 H H H H H H
0.157 0.207 0.257 0.307 0.357 0.407 0.45m 0.507 0.157 0.207 0.257 0.30m 0.357 0.40m 0.457
meridional angle ¢ [rad] meridional angle ¢ [rad]
—-0.000 =
-0.002
20,004} 3
15 B T :
| 3 R‘otatiun ¢ [ra(‘i] 3
| : MT
-0.008¢ E P RM !
050 L L L L L H H 0.010 H H H H H H ;
0.157 0.207 0.257 0.307 0.357 0.407 0.457 0.507 0.157 0.207 0.257 0.307 0.357 0.407 0.457 0.507

meridional angle ¢ [rad]

meridional angle ¢ [rad]
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Table 3.11. The membrane state solution for toroidal shell subject to normal edge force

t Vertical displacements .
Rotations caused by X;; =1 N/mm
[mm] caused by X;; =1 N/mm
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To verify whether a structure is thin-walled, one can refer to the relation
between thickness to minimum radii of curvature (Eq. (2.1)), which value is suggested
to be below 0.05. For the analysed toroidal shell R;; = 342 mm, therefore t/R,,;, = 0.003
and t/R,,;, = 0.043 for thinner and thicker shells correspondingly. It proves that the
toroidal shell is considered thin-walled, and therefore the application of the MT is

justified.

In the effect of a vast overestimation in the MT solution, the incompatibility of
displacements and rotations becomes magnified. To resolve this, the edge loads in
the compatibility equations must be excessive to compensate for enormous
differences in deformations between the second edge of the spherical shell and the
first edge of the toroidal shell. Although the continuity of those is achieved, the edge
loads cause an immense bending phenomenon, leading to unrealistic stresses values.
For the same reason, the distortions are visible in the comparison of vertical
displacement in Table 3.6. Such an observation implies that the application of the
EET for complex shell structures may be unsatisfactory, as the accuracy of the MT
significantly contributes to the bending phenomenon due to the necessity of

compatibility equations formulation.
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The results shown in Table 3.12 and Table 3.13 consider the pressure vessel
with ellipsoidal dished ends with the introduced orthothropy of a = 1.2. Similarly,
Table 3.14 and Table 3.15 refer to torispherical shape. As expected, the compared
vertical displacements and stresses are in good agreement with the numerical method
for the thinner shells. The results share the same issues for the thicker shells as for
the isotropic material. In the case of equivalent von Mises stress comparison, an
additional discrepancy is observed. Following the numerical method, a disturbance
of stress is visible in the area of the dished end apex, i.e. S =0 mm, which is
compatible with the Ritz method solution [37] (Al). This feature does not appear in
the analytical study

Taking into consideration thinner shells, the stress in this area is described only
by the MT and depends entirely on normal membrane forces from Eq. (3.18). These
are described only by the principal radii of curvature, and the material properties do
not contribute to forces N;, N,. Realizing the differences of stress in the inner, middle
and outer surface, such feature can be caused only by the bending phenomenon. The
EET includes only the edge loads as the source of bending; therefore, the distortion
seen in the numerical analysis cannot be reproduced by employing the analytical

solution.

The content provided in Table 3.16 and Table 3.17 summarizes the maximum
vertical displacements and stresses from analytical analysis and compares them to
the numerical FEM values. The difference between them is moderately elevated,
referring to the isotropic material. In the case of the ellipsoidal geometry, stress
compliance for t/R, ratio in the range 0.1% (t = 1 mm) to 3% (t = 30 mm) is within
0.7251% to 13.25% relative difference. For the torispherical geometry, the same values

range from 6.103% to 103.1%.

Discussion over the achieved results indicates severe problems with the
analytical description of stress and deformations. The selection of one of two
compared EET formulations shows the limited impact, as MT mainly introduces the
observed inaccuracies. This is especially apparent for torispherical shell, where any
thickness increase beyond 1 mm (t/R, = 0.1%) leads to a technically unacceptable
solution. Realizing the conditions of the MT applicability from section 3.1.1, one can

conclude that these require additional, more strict guidelines.
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EETG

with ellipsoidal dished ends — orthotropic material

Table 3.12. Vertical displacements comparison for the pressure vessel
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Table 3.13. Equivalent stress comparison for the pressure vessel

with ellipsoidal dished ends — orthotropic material
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EETG

with torispherical dished ends — orthotropic material

Table 3.14. Vertical displacements comparison for the pressure vessel
EETS
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EETG

with torispherical dished ends — orthotropic material
EETS

Table 3.15. Equivalent stress comparison for the pressure vessel
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Table 3.16. The summary of results for a pressure vessel

with ellipsoidal dished end — orthotropic material

Relative difference

¢ Analytical solution (%]
FEM
[mm]
EETS EETG EETS EETG
1 170.2 170.3 174.1 2.218 2.162
5 164.0 164.8 169.1 2.980 2.503
O-T max
[MPa] 5 154.1 156.7 166.1 7.249 5.672
30 144.9 149.5 164.9 12.17 9.367
1 0.5748 0.5759 0.5727 0.3677 0.554
d S 0.5097 0.5185 0.5061 0.7121 2.443
v max
[mm] 15 0.4208 0.4441 0.4077 3.216 8.927
30 0.3479 0.3825 0.3212 8.307 19.09
Table 3.17. The summary of results for a pressure vessel
with torispherical dished end — orthotropic material
¢ Analytical solution Relative (;11fference
FEM (%]
[mm]
EETS EETG EETS EETG
1 335.9 335.4 316.4 6.162 5.992
) 319.7 316.6 266.0 20.18 19.03
O-T max
[MPa] 5 350.3 346.6 230.1 52.21 50.59
30 415.2 409.3 219.0 89.58 86.90
1 0.8575 0.8676 0.8765 2.166 1.01
d ) 0.6541 0.6706 0.6549 0.1269 2.397
v max
[mm] 15 0.5860 0.5966 0.5343 9.675 11.66

30 0.5033 0.5162 0.4314 16.67 19.65




4. Ritz method application

As shown in the previous chapter, the superposition of MT and EET is far from
satisfying for the analysed problems. Despite the numerous theories found in various
valuable monographs and papers, the possibility of precise analytical solutions to
static problems of shells, including bending effects, remains poor. It implies that the
only available calculation method for obtaining a supposedly accurate solution in
terms of stress and deformations is the FEM. The accuracy of the FEM results can
be analysed only by comparing the results to the experimental data. Notably, such a
numerical approach allows obtaining the solution in the discrete form, at each of the
FE model nodes, often limiting the analysis of the internal forces and moments,
especially for doubly-curved shell structures. In a further study, the Ritz method (RM)
is used to investigate the stress and deformation in the standard pressure vessels
with ellipsoidal and equivalent torispherical dished ends. The material model is
consistent with the one introduced in chapter 3, describing the analytical solution.
This study has been previously published [37] (A1), and the reprint of the paper can
be found in Appendix Al.

The description of the RM and its basic assumptions is provided in the
literature [1], [2]. It belongs to the group of so-called variational methods and is based
on the principle of stationary potential energy. The total potential energy of a system
is expressed as strain energy and potential energy of external loads. Those are
described using displacement functions that constitute linear combinations of some
other functions. Ultimately the variational problem is transformed into the differential
formulation. Although the application of the RM can theoretically result in an
analytical solution, it applies only to elementary, straightforward structural
problems. For more advanced investigations, the formulation remains analytical;
however, at some point, it is usually necessary to refer to numerical methods as the
mathematics becomes cumbersome. The utilization of the RM in the presented study
is considered a semi-analytical approach.

The strain energy and the potential energy of external forces are derived for an
arbitrary shell structure using the linear theory of shells. The study considers three
different displacement functions, i.e. polynomials, trigonometric series and modified
trigonometric series. The latter is formulated to resemble the characteristics of
displacements functions obtained using EET. The results are compared to the finite
element method study outcome using ANSYS 19 software.

The convergence of the results is obtained for a wide range of shell thicknesses.
Additionally, the research results refer to the design method of ellipsoidal and
supposedly equivalent torispherical dished ends described in the technical standards

[10]-[12], indicating significant ambiguities.
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5. Diminishing of the edge effect

Following the analytical (MT and EET) and semi-analytical (RM) investigation, one
can conclude that the equivalent von Mises stress distribution in the standard dished
ends of cylindrical pressure vessels is disadvantageous. Notably, ellipsoidal dished
ends are characterised by substantially smaller peak stress than comparable
torispherical dished ends described in [10]-[12]. Despite that, the maximum stress in
the ellipsoidal shell significantly exceeds the stress in the cylindrical segment, making
the standard geometry an unsatisfactory solution. It has been shown in the previous
studies of this work that such a negative feature is related to the loads in the
junctions of the analysed complex shell structures. Investigation of the compatibility
equations can lead to an observation that the calculated transverse forces and
moments are zero when the deformations from the membrane state are equal at the
edges of shells. It shows that developing a specific geometry of the dished end that
satisfies such a deformation condition can theoretically eliminate the edge effect.
Realizing the simplified nature of the MT, instead of eliminating the edge effect, it can
rather lead to the diminishing of the bending phenomenon in the junction. The
described topic has been already presented in the form of the paper [62], which
reprint is provided in Appendix A2.

It is assumed within the paper that the desired shape of the dished head must
meet two particular conditions. The maximum stress in a cylindrical pressure vessel
shall not be higher than in a cylindrical shell in the membrane stress state. The above
condition implies eliminating the edge effect in the junction area. The second
condition is to achieve a membrane stress state in the whole structure, maintaining
the lowest value of the relative depth of the dished end. Its reasoning lies strictly
within practical importance, i.e. applications and manufacturing process. The subject
of the study in the paper includes the following three analytical, nonstandard Cassini
and Booth ovaloidal, as well as clothoidal dished ends. The meridional curves are
explicitly formulated to enable modifying the relative depth of dished ends.

In the research, two geometrical conditions are introduced to the geometry of
the dished ends. The first of them is referred to as the necessary condition of the
edge effect elimination, which imposes equal meridional curvatures in the junction.
The latter considers equal derivatives of the curvature. The stress concentration
factor is analysed according to the relative depth of the selected curves. The problem
is investigated analytically with the MT and verified using the FEM. According to the
results, the stress disturbance in the junction area is substantially reduced. The peak
stress is shifted beyond the junction, which ultimately does not bring a desired

improvement in the stress distribution.
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6. Shape optimization of dished ends

The standard geometries of dished ends of cylindrical pressure vessels were developed
at the beginning of the last century. Among them, there are ellipsoidal and
torispherical geometries (Fig. 3.3) characterized by disadvantageous stress
distribution ([12], [37] (A1)), which is the primary determinant when designing shell
structures. The research [62] (A2), briefly described in the previous chapter, brought
insight into the problem of stress distribution. Despite that, it is necessary to refer to
optimization to improve the stress distribution in dished ends of the cylindrical
pressure vessels.

It has been concluded that the shape optimization of dished ends is the most
suitable among a few possible methods for altering the stress distribution. It is
assumed their depth is equivalent to the standard ones to maintain comparability
and manufacturability. The formulation of the problem and its outcome is described
within the paper [81], provided in Appendix A3.

Referring to the Bézier curve (BC), a unique geometry of arbitrary order is
developed to describe the parametric shape of the dished end. The parametric curve
always fits the initially defined feasibility region and satisfies all geometrical
constraints, including non-negative curvature. The order of the curve must be at least
three due to the constraints; however, it can be increased indefinitely. This property
is critical for optimization as it enables arbitrarily assuming the number of
independent parameters controlling the shape. The increase of the curve order raises
the number of its degrees of freedom which potentially enables obtaining a better
solution due to optimization. Notably, the geometry is proportional to the cylinder
radius (Fig. 3.2); therefore, the optimized shape can be adapted to cylindrical
pressure vessels with any diameter. The mentioned properties show that the curve is
excellent for optimization

The procedure is performed using two methods. Initially, equivalent stress is
solved analytically according to the MT, while the sequential quadratic programming
(SQP) algorithm seeks the maximum stress along the meridian of the dished end and
attempts to minimize it. Further, numerical FEM calculations are conducted to
validate the outcome of the analysis. Realizing the simplified character of the MT and
the impact of the bending phenomena in shell structures, the procedure is further
changed. The stress distribution is resolved using FEM in ANSYS software, where its
peak value constitutes the fitness function value. Due to its discontinuous character,
the optimization is performed using a genetic algorithm (GA) in MATLAB software.
A significant improvement in the maximum stress over the standard dished ends is

achieved.
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7. Experimental studies and numerical verification

7.1. Static tensile tests

The experimental verification of the results obtained in the optimization requires
determining an appropriate manufacturing method. Industrial pressure vessels are
usually made of structural steel by metal forming. The use of such manufacturing
methods for individual vessel models is economically unjustified. The presented
research refers to additive manufacturing methods (AMM), often referred to as 3D
printing, to address this issue. Due to their significant, recent development, they
allow the manufacture of structures of almost any shape while maintaining
acceptable mechanical properties, strength and production costs.

There are many AMM methods, but not all of them are potentially valid for
manufacturing pressure vessels. The models suitable for this study must be
characterised by high geometric accuracy and tightness, allowing their
pressurization. It is also essential that the vessels analysed in the optimization study
in chapter 6 are considered thin-walled. When selecting the appropriate AAM, the
smallest and largest dimensions of the model must be taken into account.
Manufacturing exceptionally thin structures can lead to significant geometrical
inaccuracies or unsatisfactory strength, as in this case, the load-carrying capacity is
not necessarily proportional to the wall thickness. It creates the necessity of relatively
large vessel models, so the wall thickness is within an acceptable range for a given
manufacturing device - a 3D printer.

Based on the analysis of available AMMs that meet the above requirements and
their availability, it is decided to consider two methods, i.e. Selective Laser Sintering
(SLS) and Multi Jet Fusion (MJF). The more suitable method is selected by carrying
out a static tensile test on standard, type 1A specimens according to ISO527 [82]
(Fig. 7.1). It should be emphasised that this comparison depends not only on the
AMM but also on the equipment used to manufacture them. The samples produced
by the SLS method are obtained on an EOS P 396 device, while for the MJF, it is an
HP Jet Fusion 3D 4200, both from polyamide PA12 material.
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Fig. 7.1. The standard 1A specimen for static tensile test according to ISO527
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Considering the potential orthotropic properties of models printed with both
AMMs, specimens manufactured in two directions are analysed, as shown in Fig. 7.2.
In the first case, the axis of the specimen lies in the plane of successive print layers,
while in the second case, the axis is perpendicular to them. For clarity, these
directions are referred to as longitudinal and transverse, respectively, which describe

the alignment of the print layers concerning the specimen axis.

—
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N
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e

Fig. 7.2. Alignment of the specimens in the printing chamber
The introduced directions are coherent with the principal curvature directions
of the cylindrical shell of the vessel, whose axis is considered parallel to the vertical
axis of a 3D printer. Samples manufactured in the longitudinal and transverse

directions in both AMMs are shown in Fig. 7.3.

Y flllliderien

Fig. 7.3. The specimens manufactured in MJF (black) and SLS (white) technology in A, C - longitudinal
direction, B, D - transverse direction

The static tensile test is carried out on a Zwick Z100 universal testing machine
(Fig. 7.4) with a 50 N to 100 kN measurement range. The resolution of the force sensor
is 1 N. The elongation during the test is evaluated using an extensometer with
a resolution of 0.6 pm. The gauge length equals 75 mm, and the strain rate is
1 mm/min. Those values are based on the ISO527 standard. All of the measured
quantities are sampled at 50 Hz. Specimens are clamped with flat, self-tightening

grips during the experiment. The applied pre-test force is 50 N.
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Fig. 7.4. Zwick Z100 universal testing machine Fig. 7.5. The MJF specimen during the test
In the first phase of the study, the specimens are tested to rupture. The

registered stress-elongation relations are shown in Figs. 7.6, 7.7 for the MJF and
Figs. 7.8, 7.9 for SLS technology. The applied test designation symbols are as follows:
M - MJF, S - SLS, L - longitudinal direction, T - transverse direction, where the last
digit indicates the specimen number.
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Fig. 7.6. The results for longitudinal MJF specimens Fig. 7.7. The results for transverse MJF specimens
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Fig. 7.8. The results for longitudinal SLS specimens Fig. 7.9. The results for transverse SLS specimens
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The measurements conclude that the MJF specimens are characterised by
noticeable discrepancies in ultimate strength and varying stress-elongation curves,
even for specimens with the same layer orientation. The most satisfactory results are
obtained for the SLS method with longitudinal printing, where all of the three curves
are almost identical, indicating the repeatability of the material properties.
Unfortunately, tests of SLS samples in the transverse direction show unacceptably
low tensile strength, with failure occurring at stresses substantially smaller than for
the longitudinal direction.

The values of Young's modulus E, offset yield strength R, , and ultimate
strength R,, are determined in each of the tests. The former is determined by linear
regression in the stress range of 2 to 15 MPa. A summary of these results and the
initial dimensions of the samples are presented in Table 7.1. For two SLS specimens
manufactured in the transverse direction, a rupture occurred at stresses lower than
15 MPa; hence, finding Young's modulus is futile. A similar problem is noted when
determining offset yield strength for all the specimens in this group, as the failure
occurred for strains below 0.2%.

Before the test, the dimensions characterising the cross-section are measured
with a micrometer. The thicknesses a and widths b summarised in Table 7.1 are
compared to the standardised dimensions shown in Fig. 7.1 by the relative differences
6, and 6,. The most considerable discrepanacy in thickness is obtained for the
specimens with the most favourable strength parameters, i.e. for SLS manufactured
in the longitudinal direction. For the SL1 sample, the calculated deviation §, = 6.90%
indicates significant difficulties in maintaining the assumed geometrical dimensions.
The compared specimen widths b are on average larger for the SLS method. The
average dimensional differences for MJF specimens are 0.61% for thickness a, and

0.96% for width b. Those values for SLS are 3.25% and 2.04%, respectively.

Based on the performed analyses, it is concluded that the MJF method has a
significantly higher minimum ultimate strength and dimensional stability. The SLS
technology is less suitable for the studied application. This observation only refers to
the aforementioned 3D printers and specific manufacturing process parameters.
Considering the differences in the stress-elongation curves for MJF technology, it
should be assumed that strength tests of MJF products can be conducted for
moderate stress values. Although it is difficult to specify the allowable stress value
unambiguously, the mechanical behaviour below 10 MPa seems satisfactory.
A possible explanation for their divergent characteristics is the positioning of the

samples in the chamber of the printing device.
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The determination of Young's moduli from three moderately different values
(Table 7.1) can be perceived as inaccurate. Additional static tensile tests are carried

out to achieve a more compelling outcome. Those are limited to MJF technology.

Table 7.1 Static tensile tests and measurements summary

Sprfgﬁeen [G]g’a] [f/fg;] [hﬁga] (] [mbm] Oa [%] 0y []
ML1 130 1870 4337 406 982 155 177
ML2 156 2291 3960 400 976 005 243
ML3 143 2076 3957 398 993 060 0.0
MT1 168 2600 4965 401 997 025 027
MT2 150 2098 3187 396 995 108 047
MT3 152 2156 3055 400 999 010 013
SL1 175 2959 4794 428 980 690  2.03
SL2 182 2885 4779 414 980 337  2.00
SL3 180 2959 4831 416 975 398  2.53
SP1 133 N/A 1628 392 975 208  2.53
SP2 N/A  N/A 624 394 984 155 163
SP3 N/A  N/A 894 394 985 163 153

The manufacturing of the other specimens involves locating them as close as
possible to the centre of the chamber of the HP Jet Fusion 3D 4200 machine. Due to
previous research, it seems unreasonable to carry out the test up to rupture. It is
decided to run five load-unload cycles from 1 MPa to 16 MPa to obtain a more accurate
value of Young's moduli. Each time the desired value is reached, the testing machine
holds the force for 120 seconds so that the creep effect is investigated. Exemplary
results are shown in Figs. 7.10, 7.11 for a specimen manufactured in the longitudinal

and transverse directions.

Normal stress [MPa]
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Elongation [%] Elongation [%]

Fig. 7.10. Tensile load-unload cycles for Fig. 7.11. Tensile load-unload cycles for transverse
longitudinal MJF specimen MJF specimen
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A mechanical hysteresis can be observed with the simultaneous creep
phenomenon in the studied material. After reaching the maximum load for the first
time, the deformation increases at constant stress. A partial decrease in the strain is
noted due to unloading and maintaining constant stress of 1 MPa. Subsequent
loading cycles result in less and less creep, both in terms of strain increase and
decrease at constant load. Samples printed in the longitudinal direction are
characterised by significantly less intensive creep than those in which successive
layers are arranged transversely. It explains why the recorded load-unload curves in

Fig. 7.10 show a relationship, which is closer to linear.

Notably, the separate loading and unloading curves follow a similar pattern for
each cycle. For all of them, Young's modulus is determined by linear regression in
the range from 2 MPa to 10 MPa. A summary of the results is presented in Table 7.2,
where the given designations are: L - longitudinal, T - transverse, and the number

following them refers to the specimen number.

Table 7.2. The summary of load-unload tensile tests for MJF specimens

Test Young modulus in consecutive load cycles [GPa] Mean
value
name ED E® EG3) E® E®) [GPa]
L1 1.78 1.71 1.71 1.71 1.71
L2 1.76 1.74 1.73 1.73 1.72 E, =171
L3 1.78 1.71 1.71 1.71 1.71
T1 1.19 1.07 1.05 1.05 1.03
T2 1.19 1.16 1.14 1.13 1.13 E; =113
T3 1.25 1.24 1.23 1.22 1.22

The static tensile tests indicate the equalization of Young's moduli in each
successive loading cycle. The calculated mean values show that Young's modulus for
the longitudinal direction of the printed model is E, = 1.71 GPa, while for the
transverse direction, it is E; = 1.13 GPa. The designations of those quantities refer to
the principal directions of the cylindrical shell, where its axis is aligned with the
vertical printer axis (Fig. 7.2). The differences in Young's moduli indicate definite
orthotropic properties of the material. Due to the observed unfavourable creep
phenomenon, it seems advantageous to carry out further strain gauge measurements
at a much higher strain rate than assumed in the static tensile test according to

ISO527 guidelines.
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7.2. Strain gauge measurements
7.2.1. Test bench and apparatus

A laboratory test bench is developed to verify the dished end optimization results. In
combination with the appropriate shape of the pressure vessel model, it allows its
pressurization. A schematic diagram of the test bench is shown in Fig. 7.12. The
designed model of a pressure vessel consists of a dished end, cylindrical shell, and a
flange. The flange is clamped between two standardised flange connectors fixed by
four M16 bolts. The applied tightening torque is 20 Nm. The EPDM rubber gaskets
are fitted between the flange connectors and the vessel flange to maintain the
tightness of the system and evenly distribute the clamping force. Three threaded
holes are drilled in the blind, bottom flange connector. Those allow connecting
a pressure sensor, manometer and expansion tank with the inside of the pressure

vessel. The expansion tank is further connected with the air compressor.
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Fig. 7.12. Structure of the test bench
During the test, the inside of the vessel is filled with water, as compressing the
air would increase its temperature. It could lead to thermal deformation, which would

be difficult to compensate for in the measurements. Additionally, it increases the
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thermal capacity of the system and protects against a possible explosion. After
placing the test bench upside down, the system is filled with water. In this position,
the air is easily removed from the inside of the vessel and the hoses connected to the
apparatus. It should be noted that the hydrostatic pressure created by the presence
of water does not affect the measurement, assuming that all of the sensors are zeroed
right before the measurement is conducted. Such an approach implies that the
measured strains are related only to the change in pressure inside the vessel applied

by the air compressor.

The nominal diameter of pressure vessels tested in the developed test bench is
200 mm; hence according to the optimization study in chapter 6, the dished end
height is 50 mm. These dimensions refer to the middle surface of the shell. The length
of the cylindrical shell is designed to eliminate the possible impact of the deformations
in the vessel flange area on the measured strains. The thickness of the models
involved in this study is 2 mm for the cylindrical shell and the dished end. The vessel

flange is 5 mm thick. The total height of the structure is 286 mm.

Data acquisition is carried out using two HBM QuantumX MX840 amplifiers
(Fig. 7.13), connected to a computer with CATMAN EASY software installed. The
sampling rate is set to 10 Hz. The total number of available measurement channels
is 16. Pressure measurement is performed using an HBM P8AP strain gauge pressure
sensor (Fig. 7.14) with a rated range of up to 10 bar. A manual reducing valve in the
air compressor controls the applied pressure. The remaining 15 channels are

operated by strain gauges bonded to the pressure vessel surface.

Fig. 7.13. Two HBM QuantumX MX840 amplifiers used for data acquisition

The first type of sensor used for strain analysis is the HBM KY41-4/120 chain
strain gauge (Fig. 7.15). It has ten active sensors that alternately measure in two

perpendicular directions and one optional compensating strain gauge. The distances
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between the active sensors are 4 mm, thus allowing measurements over a length of
36 mm. The second strain gauge type is the HBM XY11-3/120 0°/90° T rosette. Both
of the strain sensors are characterized by a nominal resistance of 120 Q. The strain
gauges are bonded to the pressure vessels using cyanoacrylate adhesive, for which

no undesirable interaction with MJF PA12 models has been demonstrated.

Fig. 7.14. Pressure sensor HBM P8AP Fig. 7.15. Chain strain gauge HBM KY41-4/120

7.2.2. Determination of PA12 mechanical properties

The first MJF pressure vessel included in the study has a torispherical dished end
and geometrical dimensions as shown in Fig. 7.12. This test aims primarily to
determine the mechanical properties of the material by strain gauge measurements,
taking into account the actual strain rates, which are difficult to determine for static
tensile testing. It is also important to note that the mechanical properties may be
slightly different for various geometrical dimensions of models manufactured with
MJF technology. The second goal of this study is to verify the correct operation of the
designed test bench and the system tightness, checking the dimensional accuracy of
the obtained MJF model and indicating any possible problems with the test

procedure.

The pressure vessel manufactured using MJF technology is shown in Fig. 7.16.
The thickness measurements are conducted with an ultrasonic thickness sensor
indicating a range of 1.9 to 2.3 mm. Additional measurements of the cylindrical shell
are conducted using a dial thickness gauge, which confirmed the prior thickness

measurements.
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Fig. 7.16. Test bench setup for the pressure vessel Fig. 7.17. HBM XY11-3/120 0°/90° T rosette
with torispherical dished ends bonded with the cylinder

Although the other strain gauges can be observed in Fig. 7.16, the analysis is
limited to the T rosette (Fig. 7.17). It is bonded on the cylindrical shell, for which the
relation between the pressure and principal strains is known from the membrane
theory (MT). Such a description can be used to some extent to evaluate the material

properties.

During the test, the pressure vessel is subjected to five load-unload cycles from
p =0 MPa to 0.7 > p > 0.6 MPa. After each unloading cycle, the pressure is kept at
zero for at least 30 s, allowing the creep deformations to return to a value close to
zero. The pressure change during the test is shown in Fig. 7.18.
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Fig. 7.18 The change in pressure during the five load-unload cycles
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The registered stress-strain relation is presented in Fig. 7.19 for meridional and

in Fig. 7.20 for circumferential direction. A significant nonlinearity is present in the

case of €;, while the separate load and unload cycles for ¢, can be considered nearly

perfectly linear. Comparing the measured values, one can notice that the strain along

the axis of the cylindrical shell & has negligible values compared to the

circumferential direction.
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Fig. 7.19. Meridional strain measured by T rosette
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Fig. 7.20. Circumferential strain measured by T rosette

In the further analysis, the strain-pressure relationships are considered only for

load cycles omitting unload phases, and it is assumed that at the start of each cycle,

the strains and pressure are zero. The processed in such a manner results are

juxtaposed in Fig. 7.21, where the linear regressions are fitted into the obtained data.
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Fig. 7.21. The measurements of strains in the cylindrical shell - linear regressions for load cycles
In order to determine the mechanical properties of the material, one can refer
to the analytical expressions for strains in the cylindrical shell (Egs. (3.3), (3.46)).
After converting the units and considering that the pressure p in the experiment is

negative referring to the theory, the following relations are obtained:

__ PRy 1 5 [um __ PRy (1 5 [Hm
i O Rl ey B - CER D Ry 71

where: p [bar] — applied pressure, R, [mm] — radius of the middle surface of cylindrical
shell, t [mm] — thickness, E;, E, [MPa] — Young’s moduli towards principal curvature
directions, v;,v, — Poisson’s ratios towards principal curvature directions.
Considering the alignment of the pressure vessel in the printer chamber, the terms
transverse and longitudinal refer to meridional and circumferential directions
respectively. This observation is valid only for the cylindrical shell. Given the form of
the first expression in Eq. (7.1) and assuming that Young's modulus in the meridional

direction Ej is finite, the following relation must hold

&g ~=0=v, =0.5. (7.2)
It explains the recorded ¢; strain characteristics (Fig. 7.19), where its nonlinearity
can be mainly attributed to the stiffness of the adhesive and the creep of the material
in the circumferential direction. Due to the need for further numerical FEM
calculations, the value of Poisson's ratio in the meridional direction is assumed as
vy = 0.49. (7.3)

Other material constants can be estimated by referring to the orthotropy coefficient

(Eq. (3.11)). On the basis of a static tensile test, it was found that Young's modulus
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in the longitudinal (circumferential) direction is certainly not less than in the

transverse (meridional) direction
E, > E;. (7.4)
The Poisson's ratio in the circumferential direction must satisfy the relation
0.5=2v, >2v;. (7.5)
It can therefore be assumed that the material presents almost isotropic properties:
v, = 0.49, a=1. (7.6)

Transforming the relation for circumferential strain in terms of Young's modulus, the

following expression is obtained

g, = PRo (1 1) ! [MPa]
2= iz "2 T al. (7.7)

The thickness of the cylindrical shell at the location of the T rosette is measured using

a dial gauge, which yields t = 2.09 mm. Using the other known parameters:
p = 0.6 bar, Ry = 100 mm, (7.8)
the following values of Young's moduli are resolved:
E, = E; = 2157 MPa. (7.9)

Note that the determined Young's moduli (Eq. (7.9)) are significantly different
than those resulting from the static tensile test (Table 7.2). It is most likely connected
with the much higher strain rate in the strain gauge test. A noteworthy discrepancy
is also noticed between the orthotropy coefficient (Eq. (3.11)) in both tests. The reason
for this may be the more intense creep phenomenon observed in the static tensile
test. With a significant increase in strain rate, the creep phenomenon has little effect

on the analysed strains; hence the material could become nearly isotropic.

7.2.3. Analysis of the optimized pressure vessel

Even though the dished end shape optimization was carried out as part of the
research described in chapter 6 of the dissertation, their direct experimental
verification is not justified. This is due to the different mechanical properties of the
material considered in the optimization problem. The determined stress distributions
for these shapes deteriorate when considering significantly different material
properties of the models manufactured in the MJF technology. For this reason, the
optimization of the dished end is carried out again, considering the material
properties determined in the strain measurements (Egs. (7.3), (7.6), (7.9)) and the

t/R, ratio in accordance with the dimensions in Fig. 7.12. The procedure is performed
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using the same methodology and parameters as in chapter 6, its description is

therefore omitted. The resulting stress distribution is shown in Fig. 7.22.
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Fig. 7.22. The equivalent von Mises stress distribution in the optimized dished end with PA12 (MJF)
material properties

The final pressure vessel model with optimized dished end manufactured in MJF
technology is shown in Fig. 7.23. The layer thickness on the HP Jet Fusion 3D 4200
printer is set to a minimum value of 0.08 mm. The pressure vessel is located in the
centre of the printer chamber. The model is positioned with the dished end facing
upwards, while the axis of the cylindrical shell coincides with the vertical axis of the
3D printer. The total printing time is approximately 9 hours. The cooling time of the

vessel is prolonged to 16 hours to minimize the possible thermal deformation.

Fig. 7.23. The model of pressure vessel with optimized dished end manufactured in MJF technology
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After the printing process, the model is vibration-abrasive machined to achieve
a smooth surface that allows better contact between the strain gauges and the
surface. Prior to the experimental study, the pressure vessel is measured using
a Hexagon Smartscan HE-RS8 optical scanner. Measurements are taken for the entire
geometry on both the external and internal surfaces. The recreated geometry is shown
in Fig. 7.24 as an STL file. The number of points collected on the model surface is
631528, which is increased to 1126556 by regularization using SPACECLAIM software
in ANSYS 2020 R2 system.

Fig. 7.24. The STL geometry of the scanned pressure vessel

In the next step, the STL file is converted into continuous geometry in the form
of a CAD model. The geometry is split into parts, overlaid with surfaces and then
stitched together to form a solid model. The geometric deviations between the
optimized and scanned geometry are evaluated in SPACECLAIM (Fig. 7.25). For this
purpose, their geometrical centres and principal axes of inertia are matched. Only
the dished end and the cylindrical shell are considered, as the flange is not the
subject of strain gauge measurements. The dimensional tolerance is set to +0.1 mm.
Values below the lower tolerance limit are highlighted in blue, while red refers to

values above 0.1 mm. The total deviation range is between —0.32 mm and 0.43 mm.

Based on the previous study, it has been recognised that ultrasonic thickness
measurements can negatively affect plastics. Covering a relatively large surface with

a coupling agent may, to some extent, change its mechanical properties. Thickness
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measurements are only taken at a few selected locations and confirmed with a dial
thickness gauge. Such verification is possible only for the cylindrical surface. The
resulting CAD file is then subjected to thickness analysis in SOLIDWORKS 2021
software, as the software used previously does not have this functionality. The result
of the thickness distribution analysis is shown in Fig. 7.26. The predominant surface
of the model has a thickness between 1.9 and 2.06 mm, which is confirmed by the
ultrasonic sensor and dial gauge. It constitutes an improved result compared to the
previous model (Fig. 7.16), where thickness is in the range of 1.9 to 2.3 mm. The
advancement is most likely due to the reduced layer thickness in the MJF

manufacturing process.

Thickness scale:
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Fig. 7.25. The geometrical deviations between the optimized and  Fig. 7.26. Thickness distribution in
scanned geometry the scanned geometry

The stress distribution obtained from the optimization (Fig. 7.22) is
characterised by equal values of maximum equivalent stresses in the external and
internal surfaces. It should be mentioned that strain gauge measurements inside the
pressure vessel are technically possible on the designed test bench (Fig. 7.12),
although difficult to perform in practice. The problems are related to the probable
contact of strain gauges and connection cables with water, although it is possible to
protect them with suitable covering agents. Another problem is the considerable
difficulty of bonding a relatively long chain strain gauge on the curved dished end
surface inside the model so that the sensor axis coincides with the meridional
direction. In addition, such a test would require the development of a reliable method
for routing the connection cables outside the vessel and maintaining the tightness of
the system under pressure. It is decided to limit the experimental study to the

external surface due to the abovementioned problems.
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The test employed two KY41-4/120 chain strain gauges and an XY11-3/120
T rosette on the cylindrical shell (Fig. 7.27). To ensure that the strain gauges are
aligned along the shell meridian, the model is placed on the levelled test bench, and
the meridian shape is mapped using a self-levelling cross-line laser. The chain strain
gauges labelled CSG1 and CSG2 (Fig. 7.27) correspond to the two stress extrema on
the optimized stress distribution (Fig. 7.22). The T rosette labelled TR is used to

compare the measurements with the previous test (Fig. 7.21).

meridian C

dished end

meridian D

ww 7ze:

XY11-3/120

CSG2 TR

Fig. 7.27. Position of the strain gauges in the experimental study

Each measurement point (Fig. 7.27) is denoted with a symbol M (meridional) or

C (circumferential), related to the direction of strain measurement, and a number
counted from the dished end apex. The test bench prepared for the experiment is
shown in Fig. 7.28. The soldering terminals are moved as far away as possible from
the strain gauges to prevent potential local stiffening of the structure. The number of
bonded sensors exceeds the number of available channels; therefore, the test is
performed in two steps. Initially, measuring points M11 to C22 are considered, i.e.
CSG1 is inactive. After the test, the connection cables are resoldered to include points
M1 to C10 and M11, C12, M15, M19 and C20 (Fig. 7.29). Strain measurements at
points belonging to CSG2 are conducted to ensure that the results obtained at these

points are the same as in the first step of the test.
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Fig. 7.29. KY41-4/ 120 chain strain gauges

Fig. 7.28. Test bench setup for a pressure vessel with

bonded with the dished end

optimized dished end

Analogously to the previous study (Fig. 7.18), strain recordings are made for five

0.6 bar. Between each cycle, no

load-unload cycles up to the pressure just above p

pressure is applied for at least 30 s.
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Fig. 7.30. The change of pressure during the cyclic load-unload test

78



The obtained results are presented in Figs. 7.31-7.40. The strains in Figs. 7.31,

7.33, 7.35, 7.37 and 7.39 are the unprocessed data recorded directly during the test.

They show moderate material hysteresis related to material creep. More useful results

are shown in Figs. 7.32, 7.34, 7.36, 7.38 and 7.40, where the consideration is limited

to load cycles in the pressure range of about 0to 0.6 bar. The pressure and strains

are assumed to be zero at the beginning of each cycle. For each measuring point, i.e.

M1-C22, linear regression is determined, taking all five load cycles into account.

Dashed lines indicate these, and the corresponding equations are given in boxes

provided in the figures. The values of coefficients of determination R? indicate almost

perfectly linear relations.
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Fig. 7.31. The meridional strain from CSG1, load-unload cycles
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Fig. 7.32. The meridional strain from CSGI, load cycles with linear regressions
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The relations presented in Figs. 7.39 and 7.40 refer to measurements on
a cylindrical shell. Comparing them with the results for the pressure vessel with
a torispherical dished end (Fig. 7.21), one can see almost the same circumferential
deformations. However, a significant difference is seen for deformations in the
meridional direction. Their increased value may be caused by a slight deviation of the

strain gauge axis from the meridional direction.
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The conducted measurements enable

summarize the strains determined from linear regressions for pressure p = 0.6 bar
82

circumferential deformations over the chain strain gauges length. Tables 7.3-7.6
and the distance from the apex of the dished end to each measurement point.



Table 7.3. The meridional calculated from linear regressions for p=0.6 bar - CSG1

Measurement point M1 M3 M5 M7 M9
S [mm] 20 28 36 44 52
€1(0.6) [pm/m] 707.03 861.24 960.32 1013.3 1006.3

Table 7.4. The circumferential calculated from linear regressions for p=0.6 bar - CSG1

Measurement point C2 C4 Co6 C8 C10
S [mm] 24 32 40 48 56
£(0.6) [pm/m] 778.30 722.27 624.80 552.29 412.45

Table 7.5. The meridional strains calculated from linear regressions for p=0.6 bar — CSG2

Measurement point M11 M13 M15 M17 M19
S [mm)] 81 89 97 105 113
€1(0.6) [pm/m] 892.53 885.64 823.38 698.14 467.14

Table 7.6. The circumferential strains calculated from linear regressions for p=0.6 bar — CSG2

Measurement point C12 Cl4 C1lo6 C18 C20
S [mm)] 85 93 101 109 117
£,(0.6) [pm/m] —637.67 —838.36 —984.43 —948.57 —672.54

Interpolation is achieved using fourth-order polynomials (Eqgs. (7.10)-(7.13)).
The interpolation functions are applicable only within the distance from the first to
the last considered strain gauge. The described further equations refer to meridian A

(Fig. 7.27):

m
£,(CS61) = 23227 x 10™*s* + 3.2667 x 10253 — 2.067352 + 74.74s — 184.9 [MF]

(7.10)
Se<20;52>,
1 4 2 pm
£,(C56D = 16145 x 1073s* + 0.2541153 — 14.69652 + 358.88s — 2347.3 [F]
(7.11)
Se<24;56>,
CSG Hm
£,(6562) = _3.5800 x 10~*s* + 0.13070s3 — 18.293s2 + 1155.25 — 26712 [F]
(7.12)
Se<81:;113 >,
CSG pm
£,(6562) = _7.0306 x 10~*s* + 0.31424s3 — 50.716s2 + 3516.7s — 89411 [H]
(7.13)

Se<85;117 >.
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The expression of strains by the continuous functions allows the principal stresses

to be determined from the plane stress state:

Ey

01 = ——— (&, (656 4 v,¢,(C61) 1076 [MPa],  Se <24;52 >, (7.14)
1—-vivy
E
0,56 = = (,(C6D ¢ (€S6D)1076 [MPa], Se<24;52>, (7.15)
1—-viv,
E
0,656 = L (,(C562) 4y, ¢, (€S6) 1076 [MPa], Se<85;113 >, (7.16)
1—-vv,
E
05 = m—— (&% +v,6, (%) 107 [MPa],  Se<85;113>. (7.17)
—V1V2

Finally, the equivalent von Mises subjected previously to the dished end optimization

can be determined from the following relations:

o.r(csal) — \/O-l(CSGl)Z _ 0.1(6561)0-2(6561) + 0-2(0501)2 [MPal], Se<24:52>, (7.18)

O'r(CSGZ) — \/O-I(CSGZ)Z _ O-l(CSGZ)O-z(CSGZ) + O-Z(CSGZ)2 [Mpa]’ Se<85;113 >. (7.19)

It is strongly emphasised that the von Mises hypothesis is not suitable for considering

the failure criteria for plastics, which is not in the scope of the experimental study.

7.3. Numerical study

The experimental tests outcome can be directly compared with the distribution (Fig.
7.22) after calculating the equivalent stress from Eqgs. (7.18) and (7.19). However,
such a comparison would not consider the impact of geometric imperfections. To
address this issue, the optimized (Fig. 7.41) and scanned geometry (Fig. 7.42) are
numerically investigated, taking into account the three-dimensional geometric
models and the other conditions corresponding to the experiment. The geometries
presented in Figs. 7.41 and 7.42 include the simplified flange connectors and the
gaskets.

The numerical studies are carried out in ANSYS 2020 R2 software. They assume
materially linear and geometrically nonlinear calculations. The latter occurs due to
the large deformations that can exhibit in the FE model. The flange connectors are
assumed to be made of structural steel with Young's modulus of 200 GPa and
a Poisson's ratio of 0.3. The gaskets are characterized by Young's modulus of 6 MPa
and Poisson's ratio v = 0.47. The material properties of the pressure vessel are as

determined in the strain gauge measurements (Egs. (7.3), (7.6) and (7.9))
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Fig. 7.41. The geometric model of the optimized Fig. 7.42. The geometric model of the scanned
pressure vessel pressure vessel

The studied geometries are divided into second-order solid elements with twenty
nodes and sixty degrees of freedom, designated as SOLID186 in the ANSYS system.
To obtain a uniform, high-quality mesh, the geometries are split into parts, and their

topology is shared.

Fig. 7.43. The FE model of the optimized pressure  Fig. 7.44. The FE model of the scanned pressure
vessel vessel

The FE models for both pressure vessels are shown in Fig. 7.43 and Fig. 7.44.
There are three finite elements across the thickness at any point of the dished end

and cylindrical shell, as shown in Fig. 7.45 and Fig. 7.46. The FEM shape
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optimization study in chapter 6 considered four elements across the thickness in the
axisymmetric study. Such a division in the case of three-dimensional analysis
becomes difficult to solve, given the nonlinear nature of the study. The total number
of mesh nodes is 659512 for the optimized geometry (Fig. 7.43) and 981007 for the
scanned shape (Fig. 7.44). The lower number of nodes for the FE model with the ideal
geometry is considered due to the regular shapes that do not require that accurate

discretization.

Fig. 7.45. The FE model of the optimized pressure  Fig. 7.46. The FE model of the scanned pressure
vessel in the area of the dished end apex vessel in the area of the dished end apex

A plot of the mesh quality in terms of the orthogonal quality parameter for the
scanned geometry is shown in Fig. (Fig. 7.47). According to ANSYS documentation,
the quality of elements with a coefficient of 0.2 — 0.69 is considered good, 0.7 — 0.95 is
very good, and 0.95 — 1.00 refers to excellent quality. Almost 76% of the total number
of 194012 elements are classified as excellent, with almost all the remaining elements

being considered of very good quality.

169047,00

150000,00 —----------- Rt R e e EE R

125000,00 |- S S — S S S -

%

umber of Elements
:
E]
|

_____________________________________________________________________________________

|

25000,00 |-  ETTE PR T rr e T

0,00 i : T T
0,66 0,70 0,75 0,80 0,85 0,90 0,95
Element Metrics
Fig. 7.47. The orthogonal quality of the FE model of imperfect geometry
The first step of the numerical study is to consider only the clamping of the
pressure vessels with the flange connectors. Initially, the vessel flange is not in
contact with the gaskets; a minimal clearance is provided. The translations at the

vessel flange are limited by introducing elastic support of near-zero stiffness. It
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prevents rigid body motion but allows the model to be freely displaced during
clamping between gaskets. All of the degrees of freedom are restrained for the bottom
flange connector. A translation is applied to the upper flange, which causes
a clamping force of approximately 26 kN, and the remaining degrees of freedom are
restrained. It corresponds to a 20 Nm tightening torque of four M16 bolts, assuming
the friction coefficient between the bolt and nut threads of 0.15. Those conditions are
coherent with the experimental study. The friction coefficient equal to 0.5 between the
vessel flange and the rubber gaskets is assumed. The bonded contact between flange
connectors and gaskets is applied. The purpose of the calculations is solely to obtain
a deformed FE model to be further studied in the pressurization analysis. Importantly
for the optimized geometry (Fig. 7.41), this does not lead to any significant

deformation as the flange is perfectly flat, so no bending occurs.

4,2431 Max
. 37731
™ 3303
2,833

2,3629
E 1,8929
14228

0,95277
I 0,48272

0,012672 Min

. 7,0978 Max
6,3092

5,5206
4732
39434
3,1548
2,3662
1,5777
0,78905
0,00045648 Min

Fig. 7.48. The equivalent von Mises stress Fig. 7.49. The equivalent von Mises stress
distribution in the optimized geometry distribution in the scanned geometry

The same conditions as in the first study are considered in a subsequent
numerical analysis, except the elastic support. A vertical displacement of 0.05 mm is
applied to the upper flange connector, which prevents the rigid body motion of the
vessel. The internal surface of the model is loaded with a pressure of 0.6 bar. The
resulting distributions of equivalent von Mises stress are shown in Fig. 7.48 and
Fig. 7.49 taking into account all bodies of the numerical model. As expected, their
distribution is axisymmetric for the geometrically perfect model (Fig. 7.48). For this
reason, its analysis might seem futile, but it allows for direct reference to the scanned
geometry and provides insight into the numerical accuracy of the axisymmetrical

analysis from the optimization study (Fig. 7.22).
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In the case of the other model, it is noteworthy that the stress values are
significantly higher in the area of transition of the flange to the cylindrical shell. The
reason for this is a moderately deformed flange on the scanned model, which leads
to an increase in the intensity of the bending phenomenon. Considering the goal of
the study, this is not a significant issue. In the case of the scanned geometry, the
stress distribution is not axisymmetric, although noticeable regularity resembling
such a state is obtained. It is convenient to investigate the equivalent stress only in
the cylindrical shell and dished end. Such results are presented in Fig. 7.50 and
Fig. 7.51. The maximum stress values on the legends are adjusted to the highest
stresses in the dished ends. The areas where the resulting stress is higher correspond
to the grey colour. Those are related only to the flange-cylinder transition.

3,5726 Max
3,2083
. 28875
- 2,5666
2,2458
1925
1,6041
1,2833

0,96249
0,59224 Min

0

Fig. 7.50. The equivalent stress in the cylindrical shell and dished end - geometrically perfect model

— 4,012 Max
3,48
3,164
2,847
2,531
2,215
1,898
1,582

' 1,265
0,9491

0,5194 Min

0

Fig. 7.51. The equivalent stress in the cylindrical shell and dished end - geometrically imperfect model
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On the basis of the numerical FEM calculations, it is concluded that the
maximum values of the equivalent stresses in the dished ends vary moderately.
Reading the values 6, 4, = 3.208 MPa (Fig. 7.50) and 6, 4 = 3.480 MPa (Fig. 7.51), it
can be evaluated that the relative difference is 8.469%. With a high degree of certainty,
it can be deduced that the stress increase is mainly due to the smaller thickness of
the dished end in the scanned model. At the point where the maximum stresses occur
in the imperfect dished end, the thickness is about 1.9 mm (Fig. 7.26), so the relative
thickness difference is close to 5%. Because of the local character of variations in
thickness, it would not be correct to recalculate the stresses for the case where the

thickness would hypothetically be 2 mm as in the optimization.

7.4. Comparison of experimental and numerical studies

The numerically and experimentally obtained results require a more in-depth
comparison due to their varied form. The data included in Fig. 7.52 summarises
meridional strain for the optimized and scanned geometries obtained using FEM as
well as experimentally determined values. The strain of the imperfect shape is studied
for four meridians, i.e. A, B, C, D (Fig. 7.27). It is important to note that the functions
in Egs. (7.10)-(7.19) correspond to the meridian A. A moderate difference in
deformations can be seen for the optimized and scanned geometries, especially in the

range from § = 50 mm to S = 70 mm.
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Fig. 7.52. The comparison of meridional strains

Comparing the results of the FEM calculations for the imperfect geometry, the

most considerable differences are seen for the cylindrical shell. They are expected due
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to the occurrence of thickness variations for this geometry (Fig. 7.26). In the case of
the dished end, they are in good agreement. Relating them to the experiment, it may
be concluded that they share similar characteristics and values. The measurement
points where these deformations are most divergent are M1 for CSG1 and M11 for

CSG2.

The circumferential strains are juxtaposed in Fig. 7.53. The observed differences
between the results of the FEM study for the scanned geometry can be seen in the
cylindrical shell and the area of minimum strain, i.e. close to S =100 mm.
Nevertheless, it can be considered that the distributions of the analysed values are
more convergent than for the meridional direction. The obtained deformations are
almost identical within the CSG2 range, while minor inconsistencies are visible for
points C2 and C10 in CSG1.
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Fig. 7.53. The comparison of circumferential strains

Given the dissertation topic, a comparison of the stress distributions obtained
for all of the studied cases in this chapter should be considered the most critical
analysis. The values for the experiment are obtained using Egs. (7.18) and (7.19). For
interpretation clarity, the stress distributions are limited to meridian A in the case of
imperfect geometry. The obtained stress distribution differs slightly for the optimized
geometry compared to the axisymmetric analysis (Fig. 7.22). The value of the stress
concentration (Eq. (3.22)) factor increased from kgptimizea = 1.188 t0 kyprimizea = 1.204.
Due to its small change, this can be considered as an acceptable numerical error.
The reason for this issue is the modestly lower quality of the mesh than in the

simplified analysis, where four instead of three elements across the thickness are
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present. Additionally, the elements are less regular, as can be observed in Fig. 7.45.
The stress character for the scanned geometry is similar to that obtained in the
optimized model. An increased value of the stress in the inner and outer surfaces can
be perceived as considerably regular. Such a phenomenon is expected due to the
smaller thickness of the imperfect structure. The determined value of maximum
stress corresponds to the stress concentration factor ks.gnneq = 1.284, which
corresponds to relative increase of 6.645% concerning the optimization result. The
equivalent stress referring to the experimental study (Eqgs. (7.18), (7.19)) is almost
identical for the CSG2 sensor and moderately different for the CSG1 compared to the
FEM study results of imperfect geometry. As expected, the maximum value of the
investigated stress occurs within CSG1, and its value corresponds to the kexperiment =
1.304 stress concentration factor. The relative increase of the stress concentration
factor is then 1.558% and 8.306% referring to the scanned and optimized geometry,
respectively.
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Fig. 7.54. The comparison of equivalent stress distributions
Summarising the achieved results, one can conclude that the experimental
study confirms the results obtained numerically using FEM. This is particularly
evident in the study of geometry, which is obtained from optical measurements.
Differences between the optimal stress distribution and those resulting from the
experimental study are noticeable. This phenomenon is expected due to imperfections

in the form of shape differences and smaller, variable thickness in the manufactured

91



pressure vessel. The selected AMM leads to satisfactory dimensional and geometrical
tolerances in contrast to other technologies from this group. However, it should be
noted that conventional manufacturing methods can lead to much higher geometrical
precision when producing full-scale cylindrical pressure vessels. The experimental
study confirms the stress distribution in an imperfect model; therefore, it can be
concluded that errors in shape and thickness distribution mainly contribute to the
discrepancies in results. Reducing the magnitude of those imperfections can lead to

near-optimal stress distribution.

When evaluating the quality of the presented experimental investigation, it is
necessary to consider the number of factors that could negatively affect its outcome.
Among many, the most relevant can be considered the mechanical characteristics of
the plastic, the well established but still developed manufacturing method, the known
errors occurring in the strain gauge measurements and the difficulty in bonding them
to the curvilinear surface while maintaining correct orientation. Having those in
mind, the difference in the stress concentration factor of 8.306% between the
geometrically ideal and the actual pressure vessel in the experimental study can be
considered satisfactory. The conducted numerical and experimental studies
confirmed the favourable stress distribution obtained in the shape optimization

study, showing potential in their application in the industry.
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8. Conclusions

In this work, analytical, semi-analytical, numerical and experimental investigations
have been carried out within the shell structures framework. Complex forms of these

structures have been taken into account, referring to cylindrical pressure vessels.

Analytical studies were carried out according to the theories available in the
literature, i.e. membrane theory and the edge effect theory. A description of the
geometries of standard dished ends was presented. The formulae allowing to describe
displacements and stresses by means of the membrane theory were derived for them.
Analysis of the problem using the edge effect theory referred to its two known
formulations. Isotropic and orthotropic material properties were taken into account.
Superposition of solutions resulting from both theories has been carried out for
a pressure vessel with the ellipsoidal and torispherical dished end. The obtained
results were compared with numerical calculations using the finite element method.
In the case of the ellipsoidal geometry, stress compliance for t/R, in the range 0.1%
to 3% was within 0.7251% to 13.25% relative difference. For the torispherical geometry,
the same values range from 6.103% to 103.1%, indicating a significant inaccuracy of
the analytical solution with increasing shell thickness. The reason for this is shown
to be due to the occurrence of normal force at the edge of the toroidal shell, considered
within the framework of the membrane theory, which leads to acceptable results only

for minimal thickness.

Deficiencies in the selected analytical solutions constituted a motivation to use
other methods to achieve more satisfactory results. The next stage of the study
concerned semi-analytical analysis using the Ritz method. The elastic strain energy
was formulated on the basis of linear shell theory with Kirchoff-Love assumptions.
The work of external forces involved all possible loads, i.e. pressure, normal forces,
transverse forces and moments at the edge of the shells. Compatibility equations for
displacements and rotations were defined, allowing the interaction of the shells to be
taken into account. The displacement functions were in the form of polynomials,
trigonometric series and functions resembling the solutions of governing differential
equations of the edge effect theory. The influence of the order of these functions on
the solution was analysed and compared to the results of finite element calculations.
It was shown that satisfactory results could be obtained with a sufficiently high order
of displacement functions, while their form has a limited influence on the solutions.
For both dished ends with a t/R, ratio between 0.5% and 3%, the relative differences

in maximum stresses were from 0.02064% to 1.310%, regardless of the value of the
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orthotropy coefficient. This represents a tremendous improvement over the analytical
solution. The outcome of the study shows the potential in applying the Ritz method
to the static problems, not only considering the pressure vessels but also for the
design of a broad spectrum of shell structures. Such observations prove the validity

of the first hypothesis posed in the dissertation.

In the conducted analytical and semi-analytical investigations of cylindrical
pressure vessels, attention was drawn to the unfavourable stress distribution. Their
maximum values in standard ellipsoidal and torispherical dished ends significantly
exceed the stress in the cylindrical shell, making them unsatisfactory solutions. An
explanation for such a phenomenon are the loads acting upon the edges of the shells,
leading to an intense bending effect. This remark has led to research aimed to develop
dished end shapes in which the edge effect is negligible. For this purpose, expressions
describing the shapes of the shells were derived in the form of analytical curves, i.e.,
Cassini and Booth's oval and generalized clothoid. These were characterised by
continuous curvatures and their derivatives in the juncture with the cylindrical shell.
The effect of dished ends relative depth on the distribution of equivalent stresses was
also analysed. The research had the intended effect, although it indicated that the
location of maximum stresses was shifted away from the area where the segments of

the structures were joined.

Conclusions from previous studies have shown the enormous influence of the
dished end shape on the stress distribution. In order to further improve it, the
problem of shape optimization was addressed. A unique shape based on the Bézier
curve of arbitrary order was developed, satisfying numerous constraints, including
a non-negative meridional radius of curvature. Regardless of the parameters
describing its shape, the geometry maintains manufacturability and the relative

depth as the standard dished ends.

Initially, the optimization assumed an analytical evaluation of the fitness
function using membrane theory and employing a sequential quadratic programming
algorithm. Different curve orders were considered to evaluate sufficient numbers of
the independent variables describing the dished end geometry. The membrane theory
optimization enabled the reduction of the stress concentration factor to k = 1.141. The
corresponding value for the standard geometries is k= 1712 to k= 1746 for
ellipsoidal shape and k = 2.356 to k = 2.738 for equivalent torispherical, depending on
the thickness. The verification of the developed geometry was performed using the

finite element method, which led to an increase in k parameter to 1.350, 1.378, 1.415,
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depending on thickness to cylinder radius ratio t/R,. Such an issue is the effect of

the bending phenomenon neglection in the membrane theory,

As the next step, the optimization was conducted using a more complex
approach. The commercial software MATLAB and ANSYS were coupled to perform the
procedure by evaluating the fitness function in the latter. A genetic algorithm has
been used to optimize the stress concentration factor. Despite the substantial
computational time needed to process the calculations, the results can be considered
compelling. The analysed parameter was reduced to 1.199, 1.184 and 1.206 for the t/R,
ratio 0.5, 1.0, 1.5% respectively. Summarizing the findings of the optimization study,
the stress in the standard dished ends is 71.2% to 173.8% higher than in the
cylindrical shell beyond any disturbance. The developed shapes are characterised
merely by 184% to 20.6% greater equivalent von Mises stress. The proposed
geometries constitute a significant improvement over the shapes described by the
current technical standards while maintaining their manufacturability and general

dimensions.

It was decided to carry out experimental studies to verify the optimization
results. This started with searching for an appropriate method to manufacture the
pressure vessels models. The production of those using conventional methods is
economically unjustified; hence additive manufacturing methods were employed. Two
possible technologies that could potentially be used were considered, namely
Selective Laser Sintering and Multi Jet Fusion. The more suitable method was
selected based on a static tensile test on specimens manufactured from PA12 in two
orientations. Multi Jet Fusion was found to have a higher minimum ultimate strength
and more satisfactory dimensional stability. In order to determine the mechanical
properties, a vessel with a torispherical dished end was manufactured and studied
using strain gauge measurements on a developed test bench. The material properties
were determined for an appropriate strain rate using analytical formulae describing

deformations in the cylindrical shell.

The shape of the dished end was re-optimised, taking into account the
mechanical properties of the printed PA12 model. The pressure vessel with the
optimized shape was manufactured using the Multi Jet Fusion method and then
measured using an optical scanner. The actual, imperfect geometry of the structure
was compared with the ideal, optimized geometry. The model of the printed pressure
vessel was reconstructed as a CAD file and numerically studied using the finite

element method to investigate the influence of geometric imperfections on the optimal
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stress distribution. The actual model was then subjected to strain gauge
measurements on the test bench. Those were taken at twenty-two points, allowing
for the determination of equivalent stresses in the area where the extrema were

expected.

Finally, the numerical calculations using the finite element method for the
optimized and scanned geometry were compared with the experimental results. The
experimental and numerical results for the scanned geometry were shown to be in
good agreement. The relative difference in the stress concentration factor k was
1.558%. Both of these results differ slightly from the result for the optimized geometry,
compared to which the experimental study indicates a relative difference of 8.306%.
This is mainly due to the reduced thickness of the actual model at the measurement
locations, caused by inevitable geometric imperfections introduced in the
manufacturing process. It should be noted that conventional manufacturing methods
can lead to much higher geometrical precision when producing full-scale cylindrical
pressure vessels. According to the second dissertation hypothesis, shape

optimization had the intended effect.

Given that the results obtained for a plastic pressure vessel obtained by 3D
printing are satisfactory, it is expected that the actual stress distribution can be even
closer to the optimal for industrial pressure vessels. It shows that developed dished
end shapes have significant potential for their application. The proposed
improvements enable to increase their load-carrying capacity or reduce their weight,
which is essential in any industry involving the transport or storage of liquids and

gases.
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Currently, the design of pressure vessels is based mainly on the simplified calculations described in the
technical standards. Despite the numerous theories found in various valuable monographs and papers, the
possibility of precise analytical solutions of static problems of shells including bending effects remains poor.
The only alternative to such calculations is the finite element method. The presented paper focuses on the
application of the Ritz method for the stress and deformation analyses of standard pressure vessels assuming
orthotropic model of the material. The strain energy and the potential energy of external forces are derived
for an arbitrary shell structure. Three different displacement functions are considered within the study. The
results are compared to the solutions obtained with a use of the finite element method. The convergence of the
results is obtained for wide range of the shell thickness. Additionally, the outcome of the study is referred to
the design method of ellipsoidal and supposedly equivalent torispherical dished ends described in the technical

standards, indicating significant ambiguities.

1. Introduction

Pressure vessels constitute a group of thin-walled structures com-
posed of shells of revolution, widely used in numerous branches of
the industry to storage and transport of gases and liquids. Most of the
pressure vessels consist of cylindrical shell and two convex dished ends.
There are three main shapes of the dished ends used to manufacture the
pressure vessels, namely torispherical, ellipsoidal and hemispherical.
Due to the required operational safety, their design is based on cal-
culations provided in the coherent European and American standards.
The formulae describing recommended thickness of the shell is based
on the membrane theory — a significantly simplified shell theory,
complemented by coefficients from experimental analyses. Although
such calculations methods are not necessarily precise, they allow to
design the structures that meet the required operational safety. Impor-
tantly the design approach described within the standards may result
in obtaining the structures, which load-carrying capacity significantly
exceeds the mandatory level. The overestimated thickness of the shell
structures leads to an increased mass and cost of the manufacturing
process. To obtain more satisfactory solutions, different approach for
calculating the stress and deformation should be used.

One may distinguish two theories describing stress and deformation
in the shell structures i.e. the membrane theory and the moment theory.
The latter allows to study the bending effects caused by changes of
principal radii of curvature of a structure. The exact solution of the
governing differential equations of moment theory is currently not

E-mail address: krzysztof.sowinski@put.poznan.pl.
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possible to obtain for shells with variable radii of curvature. The theory
of the edge effect constitutes a simplification of the moment theory,
in which the bending effects result from the loads at the edges of a
shell structure, assuming the applied pressure causes only membrane
forces. The solutions based on the edge effect theory is correct merely
for the shells of constant radii of curvature. An example of a shell
structures for which the edge effect theory is valid are the pressure
vessels with hemispherical dished ends. In case of the other dished ends
such assumptions lead to the imprecise solution, where stress values
can be overestimated or underestimated, depending on the shape of
the dished end.

Currently the only available calculation method allowing for obtain-
ing supposedly accurate solution in terms of stress and deformation is
the finite element method. The accuracy of the finite element method
results can be analysed only by comparing the results to the experi-
mental data. Importantly finite element method allows to obtain the
solution in the discrete form at each of the FE model nodes, often
limiting the analysis of the internal forces and moments, especially for
doubly-curved shell structures. In the presented paper the Ritz method
is used to study the stress and deformation in the standard pressure
vessels, where orthotropic material model is taken into consideration.
The results are compared to the finite element method study outcome
using ANSYS 19 software.

Mazurkiewicz and Nagérski [1] among others described profoundly
the basis of the theory of elastic thin-walled isotropic and orthotropic
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Fig. 1. Dished ends according to EN 13445; (a) - torispherical, (b) - ellipsoidal, (c) - hemispherical.
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Fig. 2. General geometry of the cylindrical pressure vessel.

shell structures including static, dynamic and buckling problems.
Ventsel and Krauthammer [2] formulated the theories of plates and
shells concerning static and buckling problems with some examples of
their application. Zingoni [3] explained the theories of membrane and
bending phenomena of shell structures and applied them to multiple
practical engineering cases.

The design of pressure vessels is performed strictly within stan-
dards [4-6], allowing to ensure safe operation of the structures. There
are many papers dealing with the problems of cylindrical pressure
vessels. Btachut and Magnucki [7] presented a review work of selected
problems concerning strength, buckling and optimization of cylindrical
pressure vessels. Magnucki et al. [8] performed an analysis of stress
concentration factor minimization in cylindrical pressure vessels with
ellipsoidal heads. Kisigolu et al. [9] studied design of propane cylinder
end closures considering geometry, material thickness, strength and
buckling.

Magnucki et al. [10] performed a comprehensive review of dished
ends of the cylindrical pressure vessels. Magnucki and Lewinski [11]
focused on finding a shape of the dished end with favourable stress

distribution. Sowiniski and Magnucki [12] defined and studied non-
standard dished heads of internally pressurized cylindrical pressure
vessels with a view to diminish the edge effect. Zingoni et al. [13]
analysed the problem of discontinuous multi-segmented spherical shells
for high volume liquid containment. Zingoni [14] performed a research
considering simplification of the derivation of influence coefficients
in symmetric frusta by decomposing a system of arbitrary shell-edge
actions into symmetric and anti-symmetric components.

The shape optimization of dished ends is of special significance
in the field of pressure vessels analyses. Lewinski and Magnucki [15]
proposed an approach for shaping the dished heads with a use of
trigonometric series. Magnucki et al. [16] optimized the shape of dished
head based on a curve composed of a circular arc and a fifth degree
polynomial. Karuzelecki and Proszowski [17] used a convex parametric
Bézier polynomial as the geometry of dished end and optimized its
shape.

The cylindrical pressure vessels are thin-walled structures, there-
fore structural stability has a great meaning in their analysis. The
description of stability of cylindrical shells is presented in [1-3]. Jasion
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Fig. 3. Geometry description and loads of an arbitrary shell structure.

and Magnucki [18-22] studied multiple untypical shapes of pressure
vessels including Cassini ovaloids, pseudospheres, clothoidal-spherical,
barrelled shells and ellipsoidal heads with a central nozzle. Sowiriski
and Jasion [23] considered the pressure vessel with meridian based on
Booth lemniscate of variable shape. Sowiriski [24] researched the linear
and nonlinear stability problems of corrugated cylindrical shells. Zhang
et al. [25-27] analysed stability of pressure vessels based shapes found
in the nature and Cassini ovals.

The importance of the Ritz method in the field of structural analysis
is indisputable. Kumar [28] presented a wide review of the Ritz method
to analyse vibration, static and buckling characteristics of beams, shells
and plates. In the case of shell structures the Ritz method is rarely used
to analyse stress and deformation. Shahgholian-Ghahfarokhi et al. [29]
investigated torsional buckling analysis of functionally graded
graphene-platelets reinforced composite porous cylindrical shells with
a use of Ritz method. Qin et al. [30] presented a unified Fourier series
solution to solve the vibration problem of functionally graded carbon
nanotube-reinforcement composite cylindrical shells, conical shells and
annular plates. Lopatin and Morozov [31] considered a problem of
axisymmetric vibrations of composite orthotropic cylindrical shell with
rigid weightless disks attacked to its ends. Qin et al. [32] provided a
general approach for the free vibration analysis of rotating functionally
graded carbon nanotube reinforced composite cylindrical shells. Pang
et al. [33] used a semi analytical method to investigate the free
vibration of doubly-curved shells of revolution with arbitrary boundary
conditions. Senjanovic et al. [34] developed a finite strip method
for vibration analysis of rotating toroidal shells subjected to internal
pressure. Choe et al. [35] established an analysis model for dynamic
analysis of composite laminated doubly-curved revolution shell on the
higher order shear deformation theory.

The Ritz method has not been applied to the practical cases of
the pressure vessels. The analytical solution for such problems can
be imprecise, therefore the use of Ritz method may allow to obtain
satisfactory results in the analyses of stress and deformations in the
standard pressure vessels. Additionally, the semi-analytical formulation
of the problem can include orthotropic properties of the material.
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2. Geometry of standard dished ends

The standard dished ends according to EN 13445 [4] are ellipsoidal,
torispherical and hemispherical (Fig. 1). The latter type is not consid-
ered within the paper as the accurate solution for those can be obtained
in analytical approach with the use of the edge effect theory.

The shape of torispherical ends is based on two radii i.e. r; — inside
radius of curvature of a knuckle and R; — inside spherical radius of
the central part of the torispherical end. According to EN 13445 [4],
ellipsoidal end shall be designed as nominally equivalent torispherical
ends with

0.5
r =D, (7 —0.08), &)
and
R; = D; (0.44K +0.02), @
where
D.
K=—, 3
W 3)

D; — internal diameter of the cylindrical shell, 4, — internal height
of the head. According to the standard the parameter K is within the
range

1.7<K <22. 4

The identical formulae for shaping the ellipsoidal end is presented in
ASME Section VIII, Division 1, 2 [5,6]. Despite the fact, that obtained
geometry of the equivalent ellipsoidal and torispherical shells can be
considered visually similar, the stress distribution in the elastic range
differs significantly for those. Such problem was recently studied and
discussed by Seipp et al. [36], indicating the equivalency between
torispherical and ellipsoidal ends is not supported by the finite element
method analyses and the membrane theory. In this paper ellipsoidal
dished end is assumed to be the one described by the true elliptical
shape.

Within the framework of this study, the dished ends are defined with
a reference to the geometry of their middle surfaces, which is preferable
to perform further mathematical description. The general geometry of
the cylindrical pressure vessel is presented in Fig. 2.

The relative depth of a dished end is defined as

h
b= % 5)
The parameter f is similar to the inverse of K (Eq. (3)). In the paper
the case of g = 0.5 is analysed, as it is the most common value for the
pressure vessels. The principal radii of curvature R, R, are related with

parallel radius r in the following manner:

4 1 —
dp cosg ’ sing

©

1

To perform the necessary calculations using the Ritz method, four
separate shells have to be considered i.e. toroidal, spherical, ellipsoidal
and cylindrical. The torispherical dished end consists of the toroidal
and spherical shell. The principal radii of curvature of latter is following

1 Ry,
R, = Ry, = R - . 7
ts 2 0 [1 —cos @y (ﬂ Rycos gy, 2

The principal radii of curvature for the toroidal segment are described
by the following formulae:

ﬂcot(%) -1
th =RO—

Ry=Ryd———2— + —[1-———=2 |}, ®)
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Fig. 4. Boundary conditions for (a) open apex shell, (b) closed apex shell.

In the case of ellipsoidal dished end the principal radii of curvature
depend on the angle ¢:

1

L (14003 (9)
sin ¢

$? 2 0 -3
(1+p7cot“p) 2, R,, =R,

Rle:RO - 3
sin” @

Finally, the geometry of the cylindrical shell is described as follows:

R, —>, Ry =R, (10)

Each of the shells is described by individual range of a parameter
along which its geometry is defined. For the doubly curved shells, the
parameter is meridional angle ¢ shown in Fig. 2. For the torispherical,
spherical and ellipsoidal shell the parameter changes in the following
ranges:

P19 Pp PuSPLQm P SP=L @, an
where:

T
@51 = @01 =0, P2 = P2 = P2 = bR 12)

The parameter ¢,; = ¢, has to be determined. Following the descrip-
tion in the standard [4] it is possible to estimate that

3
P =P R 55T a3

The geometry of the cylindrical shell is defined with a use of coordinate

&, assuming:
£=2. 0<x<L (14)

where L — length of the cylindrical shell. The coordinate ¢ is within
the following bounds

1 288 (15)
3. General theory of shells
3.1. Axisymmetric orthotropic shells

The shell theory adopted in the paper is Kirchhoff-Love linear shell
theory [1]. To apply the Ritz method, it is necessary to describe the
theory with a use of displacements functions. Strains in the middle
surface are defined as follows:

e = L (du_
! R, \ do
where: u,w — tangent and normal displacements. Vertical and hori-

zontal displacements:

w), €)= Rlz(ucotqo—w), ae)

d,=ucosep —wsing , d, =using +wcosg . a7

The rotation of a line tangent to meridian

1 (dw
=== . 18
: R, <d(/’ +u> (18
The change in the curvatures
1 d |1 dw 1 dw
14l dwi =—(u-). 19
“ R, do [Rl <u+ dfﬂ)] “ R R, <u d<ﬂ> (19

To analyse the stress beyond middle surface, one must define strains
across the thickness ¢ of a shell:

1 1
£, = — (&1 +zx1), &, =—(+21), (20)
- = 1-=

Ry Ry
where —7/2 < z < t/2. The internal forces in the form of forces and

moments are following:

N, =C (El+\/262), N, =G, (£2+v1£1), 21)
M, =D, (x; +v212) My =D, (2 +vix), (22)
where:

Et E,t
C=—>1— C=—, (23)
1-viv, 1-viv,
E, E,1
D = ————m—, D) = —————, 24)
12(1 = v, vy) 12(1 = v, vy)
in which: E|, E, — Young’s modulus, v;,v, — Poisson’s ratio. The
principal stresses are defined as follows:
C C
o} :T](£|+v2£2), 62272(62+v]£]). (25)
Stress across the thickness of a shell:
G G
o1z = (e12 +v2€22) 02z = (e2: +vierz) - (26)
Strain energy is formulated in the following manner
»2 P
UE:ﬂ/(pl (N151+N2£2+M1)(1+M2)(2)r£ v do, 27)

where: ¢, ¢, are the coordinates describing boundaries of a shell
(Fig. 3).

3.2. Orthotropic cylindrical shells

In the case of cylindrical shells, most of the formulae from the
previous section can be significantly simplified. Strains definition can
be rewritten to the form:

1 du 1

e 28)
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Importantly, the vertical and horizontal displacements are coherent
with normal and tangent directions correspondingly. The changes in
curvature are following:

1 d>w

=——, =0, 29
11 2 a2 12 (29)

therefore the strains across the thickness:

e, =€ +21, £y, = ——é5. (30)
The internal forces and stresses are described as in the case of general
axisymmetric shell theory. Strain energy of the cylindrical shell is
formulated analogously to the doubly curved shells

e
UE=7zL/ (Nye| + Noey + My, + My ) rdé. (€3]
Eel

4. The Ritz method application
4.1. Theoretical description

The Ritz method is described widely in the literature [1,2]. The
method is based on minimization of the total potential energy of a
system IT expressed as strain energy U, and potential energy of external
forces W,
n=u,-Ww, (32)

An arbitrary shell structure of revolution is determined by the
meridional angle in the range ¢, < ¢ < ¢, (Fig. 3).

The structure is loaded on its edges with normal forces X, X,,
transverse loads Y;,Y, and moments Z,, Z,, while uniform pressure p
acts on the middle surface of the shell. To apply the Ritz method for
such a problem, it is necessary to describe the strain energy and poten-
tial energy of the external forces as functions of unknown displacements
functions. The latter is expressed as

2 2
W, =2z [Z X;r (@) ulp) + Y Yir (@) we)

i=1 i=1

2 23
dr 1
7. )9 () — —_— de| . 33
+.-=§1 i (9;) 91(ep) p/w] wrdq) e (p] (33)

In the paper the potential energy is derived using the function of
parallel radius r instead principal radii of curvature R,,R,, which
can be simply calculated from the second expression of Eq. (6). The
components of strain energy expression (Eq. (27)) for an orthotropic
shell are derived using Egs. (6), (16), (19), (21), (22):

-1 2 -1
du ( dr du dr
Ne, =C, [—2cosqo rwa <£) +cosqor<£> <£>

5 dr - du
+cosg rw (@) | — + vy(cos @ u—
do do

—sing@ w((ii—u —Cos @ uw + sin @ wz)]
@

Nye, =C, {COS(p w2t j—; —2sin g uwr™! j—; +sing tan gu?r~! (;1—;

du . du . )
+v; [cos@ u— —sing w— —cos @ uw +sinp w
do do
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-3
My, =D, {cosrp rsin’ gu? (j—;)

-3 2 -3
—2COSZ(pSin(p ru(;l—(l; <§—;> + cos® @r <§—;> <§—;>

-3 -3
+2cos @ sinz(pru(;—l; (s—;) —20052<psinq; rg—;?j—';} <(§1—;>

2 -3
+cos @ sinz(pr<3—l;> (j—;)
4

2 = 2 —4
+2cos2(psin(pruzﬂ <ﬂ> —2cos3q)rud—uﬂ<ﬂ>
@

de? \ de de de? \ de
+4cos2(asinqo rud—wﬂ <£ -
de de? \ de
—4 2 —4
du dw d?r [ dr . dw &2 ( dr
—2co8’ pr—— — [ — +2cos? — ] —= | —
cos (prdw 0 dg? <dw> cos” gsing r i0) 197 \do

2 \2 -5
3 2 d-r dr
+ cos —_— —_—
o <d(P2> <d(ﬂ>
2 -5 2 2 -5
dw [ d?r dr dw d?r dr
2cos3 dw ( d7r ar 3 dw ar ar
FReos e, (d(pZ) <dw> s wr(d(ﬂ) <d(p2> <d(ﬂ>
3

) Z
—2cos? psing rud—w ( dr )

3 do? @ 3
3 du d?w ((dr\ s . dwdiw (dr\”
+2cos W@d_Z @ —2cos” grsing @d_z @
P @
et o Er P (N e @ ((ar )
de? de? \do do de? dp? \ de

+cos3 Qr (12_w ’ ﬂ -
dg? de
3 o
+v, [—cosz(psinqo u? <§—;> + cos® @u:_; <§_;>

-2 -2
—2C052(psin(p ud—w <_r> +cos3<pﬂd—w<i>
do \do ®

(34

dr\ ™' d ar )™
My, =D, {cos3 ou*r™! <é> +2cos? (puﬁr_] <$>
2 -1
+cos3<p<j—:}> ! <§—;>
+v; | —cos? @sing u? ar _2+50g3 uﬂ dr 2
! T e\ 0 e

-2
—2cos? psing ud—w <ﬂ>
de

+cos? d—Wd—u ﬂ ‘Z_sz sin d_w ’ ﬂ N
(pd(pd(p de S gsme de do
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The analogous expressions are obtained for the cylindrical shell. Those
can be further substituted into Eq. (31):

du du du
Nyg; =Cy [L (d_5> +v2wd§] , Nygy =G, [—w +v1wd5
R, (d*w 2
=D ===, M, y, =0.
'3 < 4z ) 242
(35)
Within the study three different displacement functions are consid-
ered, namely polynomial, trigonometric series and modified trigono-

metric series. Each function is represented by unknown parameters g;
or b;. Polynomials are defined in Eq. (36):

n
w= Y b (36)
i=0

The trigonometric series are based on both sine and cosine functions in
the following order:

P—@ 7 P—P
=ay+ n(i——= ) +aycos | i——= )|,
u=a, 2[“2' 1 sil < (012) ay; ¢ S<I(p2—q)12)]
P—¢ P—P
w=by+ b sin | i ——— =) + by, cos | i —— .
0 2[2‘1 < <p12> x <<0 ¢12>]

The modified trigonometric series are formulated with a reference
to the analytical solution of differential equations of the edge effect
theory [1,2] and suited for the Ritz method application:

n3

- 15 p-
R P2~ @ Ze 75 (o-01)
P2 — P i=1
1S e—o 1S e—o
X |ay;_y sin 3 + ay; cos 3
i @,— @ 18 @)— @
— )
Lo Ze_Tr_z(wz_‘P)
P2 = P15
X |a sm<15(o2 (p>+a cos<1s¢2_(o>]
2n;+2i-1 3 2n)+2i -3 _ ’
1t [
N Q=@ (2] (38)
w=by+ - @ Ze—m(w ?1)

P2~ 915

bz,lsm< ’S;(p (pl)+b2,-cos<lsu>]
P8 9— ¢ £ o=

ny
L OO S )
P2~ @ i=1

(1S ¢pr—@ 1
X | boy, 42i-1 Si0 (Tt_3 prap— > + byyy 421 €08 <

Sp-9 )]
Bor—ar )]
where S is the meridian length of a shell

P2 P2
S:/ Rld(p=/ dr_1 do. (39)
» ¢ dpcose

It is important to note that the displacement functions described by
Eq. (38) are not suitable for the shells with variable radii of curvature.
The modified trigonometric series is designed to describe normal dis-
placements characterized by the disturbances in the area of the shell
edges that diminish relatively quickly along the shell meridian. Aside
from those disturbances, the displacements remain constant which is
true for the shells with constant radii of curvature.

The boundary conditions applied on the displacement functions
vary, depending on whether the closed apex or open apex shell is
considered (Fig. 4).

In the case of closed apex i.e. ¢; = 0 following boundary conditions
are assumed:

dy (1) =0,d, (@) = 0,9,()) = 0. (40)
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Fig. 5. Edge loads for the pressure vessel with ellipsoidal ends.

Table 1
Number of the unknown parameters in the displacement functions and number of the
independent variables.

P TS MTS
n, 2(n; + 1) 2(2n, + 1) 2(2ny +2n,+ 1)
n (closed apex) 2n) -1 4n, — 1 Any +ny)—1
n (open apex) 2n) +1 4n,y + 1 4 (ny+ny) +1
n (cylindrical shell) 2n, 4n, A(ny + ny)

Considering an open apex shell i.e. ¢; > 0 the boundary condition is
imposed only on the horizontal displacements

dy (¢2) =0. (41)

For the symmetrical half of the cylindrical pressure vessel the boundary
conditions are following:

dy (€2) =0,  8;(&,) =0. (42)

The boundary conditions provided in Egs. (40)-(42) consider sepa-
rated shell structures. To achieve structural compatibility in the junc-
tions of deformed pressure vessel additional boundary conditions have
to be applied. The compatibility equations i.e. boundary conditions for
the junction of the ellipsoidal and cylindrical shell (Fig. 5) have the
form:

dU ((pBZ) = du (502) > '91 ((p62> = 191 (562) . (43)

For the pressure vessel with torispherical dished ends (Fig. 6) three
shells constituting two junctions have to be considered, therefore:

d, ((pr) =d, ((Prl) > 9 ((Psz) =9 (fﬂzl) >
dy (9n) = dy (£2) 91 (0n) =91 (&) -

After applying the boundary conditions described in Egs. (40)-(42)
to the displacement functions it is possible to formulate the total
potential energy as a function of the remaining a; and b, parameters.
Importantly, one must consider the number of parameters g; and b; in
the displacement functions hereinafter denoted 7, as well as number of
independent variables n in the total potential energy expression. Those
are presented in Table 1, where: P — polynomials, TS — trigonometric
series, MTS — modified trigonometric series.

The independent variables are defined in a form of the vector ¢
(Eq. (45)). The form of ¢ varies depending on the applied boundary
conditions

(44

¢ ={ag.ap, ... by by, ...} (45)

After integrating the functions in Eq. (34) or Eq. (35) to obtain total
potential energy it is further differentiated with respect to each of the
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Fig. 6. Edge loads for the pressure vessel with torispherical ends.

Table 2
Solution for the ellipsoidal shell resulting from the unit edge loads.
chl) C:YZ) ciZZ) L,él))
a, 0 —-1.213x 1073 —6.858 X 107° 7.908 x 1072
ay 0 -3.116 x 107* —4.574 %1073 -1.179
a, 0 4.922x 1073 1.113 x 10~ 1.029
as 0 —-4.803 x 107 —-6.992 x 107> —3.883x 107!
ag 0 1.164 x 1073 1181 x 1073 5.632% 1072
by 0 1.646 x 1073 5.884 x 1076 1.105
b, 0 -1.412x 1072 -2.235x107* -5.898
by 0 4761 x 1072 6.224x 107 9.064
b, 0 —5.281 x 102 —5.289 % 10~ -6.280
bs 0 2.155x 1072 1.605 x 10~ 2.151
be 0 —2.860 x 1073 —1.704 x 1075 —2.954 x 107!
Table 3
Solution for the cylindrical shell resulting from the unit edge loads.
XD g ez &
a, 3.333x107* —2.013x 1073 1.960 x 10~ 1.000 x 107!
a, 0 1.159 x 102 -1.825x107* 0
ay 0 —2.944 x 1072 6.312x 107 0
a, 0 3.711%x 1072 -1.028 x 1073 0
as 0 —2.273x 1072 7.971 x 107 0
ag 0 5375%x 1073 -2.373%x107* 0
by 1.00 x 107 —6.599 x 1073 7.264 % 1075 3.333%x 107!
by 0 —2.481x 107! 9.386 x 1073 0
by 0 3.096 x 107! ~2.600 x 102 0
b, 0 —3.147 x 102 3.634 x 1072 0
bs 0 —1.981 x 10! -2.503 x 102 0
be 0 1.019 x 107! 6.762 x 1073 0

independent variables in the vector ¢ to find the minimum of it

an __d
de; AV

U, - W, =0, (46)

where ¢; are the components of the vector ¢ (Eq. (45)) fori=1,2,...,n.
The problem is then rewritten to the system of equations considering
all of the derivatives in Eq. (47)

Uc-Wf =0, (47)

where: U — strain energy matrix, W — energy of external forces
matrix , f — force vector

= {X0LY. 20 X0 Yy, Zo,p} (48)
The solution of the problem is obtained in the following form

c=U"'wf. (49)
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Fig. 7. Vertical displacements for the pressure vessel with ellipsoidal end for t =
15 mm.
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Fig. 8. Meridional stress for the pressure vessel with ellipsoidal end for t = 15 mm.

The above approach for obtaining displacement functions assumes
that the edge loads contained in f (Eq. (48)) are known. The aim
of this study is to take into consideration complex shell structures,
i.e.: the structures that consist of more than one shell described by
continuous principal radii of curvature. To analyse the interaction
between connected shells it is necessary to formulate the compatibility
equations based on Egs. (43), (44). The edge loads for the pressure
vessel with ellipsoidal dished ends are presented in Fig. 5.
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Fig. 12. The circumferential stress for the pressure vessel with torispherical ends for
t =15 mm.

Fig. 13. Exemplary FE model of the pressure vessel with torispherical dished ends.

Table 4
Solution for the ellipsoidal shell.

ct’

-200 ‘ ; ;
~240
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

a, 2493 x 10
as -1.989

a, 1.280

as —2.038x 10~!
ag ~1.316x 1072
by 1.764

b, -8.827

b, 1.109 x 10!
b, -5.858

bs 1.708

b 2463 % 107!

arc length S [mm]

Fig. 11. The meridional stress for the pressure vessel with torispherical ends for t =
15 mm.

The compatibility equations are following:

8 VX +6,4 VY 46,7V Zey +6,4Pp = 5,2X,
+6," DY +6, 7P Zy +6,Pp,
9 VX + 94TV + 80PV 2y +9,Pp =9, X 0 + 9,777,
+ 1932(22)292 + Sez(p)p.
(50)

The above formulae defines that in the deformed structure, displace-
ments as well as rotations on the shells edges must be equal. Co-
efficients 6 and 9 refer to the vertical displacement (Eq. (17)) and
rotations (Eq. (18)) at the shell edge, caused by one of the unit loads
X,Y, Z. The edge loads are normal X and transverse Y, while Z is the
moment (Fig. 5). Each of the components in the compatibility equations
is related to a certain shell structure, where: e — ellipsoidal shell,
¢ — cylindrical shell. For example §,,(X? is a vertical displacement
component on the second edge (¢ = ¢, = ¢,,) of the ellipsoidal shell
caused by the normal force X, = 1.

Obtaining each of the displacement § and rotation 9 components
requires solving Eq. (49) for a specific edge load contained in the
vector f (Eq. (48)). In the case of §,,*? and 9,,*? the only non-zero
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Table 5
Solution for the cylindrical shell.

CC

a —2.844 % 107!
a, 9.338 x 10~
as -2.277
a, 2.74
as -1.584
ag 3.471x 107!
by —-5.845% 1072
b, -1.691 x 10!
by 1.306 x 10!
b, 1.762 x 10"
bs -3.179 x 10!
be 1.291 x 10!
Table 6
Solution for the spherical shell load with the unit edge loads.
X2 Y2 c(22) C(_p)
s s s s
a, ~5.592 x 1073 2.849 x 1073 1.094 x 10~* 4.675
a, —2.195 x 102 1.119 x 102 1.860 x 10~ 1.966 % 10!
a 2.030 x 10~ —1.034 x 107! —1.140 x 1073 —1.818 x 10?
a, —8.037 x 107! 4.095 % 107! 7.443 x 1074 7.199 x 10?
as 1.342 —6.837 x 107! 9.364 x 1073 -1.202x 103
ag —7.202 x 107! 3.669 x 107! —1.589 x 102 6.450 x 10?
by —6.141 x 1073 -3.129x 1073 1128 x 10~ 5.541
by -1.817 x 107! 9.260 x 102 3.329 % 1073 1.629 x 102
by 2.614 -1.332 —4.555 %102 2342 103
by -1.380 % 10! 7.031 2.133x 107! 1.236 x 10*
bs 3.010x 10! —1.534x 10! -3.758 x 107! —2.696 x 10*
b —2.236 x 10! 1.139 x 10! 1.919 x 107! 2.003 x 10*

component is X, =1
F*? =10,0,0,1,0,0,0}" . (51)

The unknown parameters in the displacement functions are obtained
with a use of Eq. (49), which example is as follows

X2 =y, tw, f o), (52)

Vertical displacements and rotations are further considered as functions
of the parameters ¢ and the meridional angle ¢:

d,=d,(c.9), 9,=9,(c.9). (53)

The coefficients in the compatibility equations are calculated for the
selected edge of the shell, for example:

6e2(X2) = dv (Ce(XZ)v(PeZ) 4 ‘992(X2) = '91 (Ce(XZ)v(PeZ) . (54

The expressions in Eq. (50) contain six unknown edge loads: X, Y.,
Z\, X2e> Yooy Zy,. The number of unknowns can be reduced assuming:

Xa=-Xe, Ya=-Yo Zg=-Z, (55

To further reduce the number of the unknown forces to two, the edge
loads X,Y are expressed with their horizontal H and vertical V load
components:

X1 =._Hcl7 Y, =Vc]’. (56)
Xy ==V 008 @ = Hpp sin@ey, Yoo = Ve Sin@y = Hy COS @
Similarly to Eq. (55), following condition occurs:
H, =-Hp, Ve = Ve (57)
Horizontal force H,, is known from the equilibrium equation
1
HeZ = _Ere ((peZ)p' (58)

Substituting Eq. (57) to Eq. (56) using Egs. (55), (58) allows to express
the compatibility equations (Eq. (50)) with one of the vertical forces
V and edge moments Z, therefore it is possible to calculate the edge
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loads X, Yi., Z., Xoe» Y2e» Zy.. The unknown parameters ¢ in the
displacement functions can be then obtained for both of the shells:

Jfe= {Xclechch’O’O’OvP}T’ (59)
¢ =U"W.f., (60)
fe= {O’O’O’XeZ’YeQ’Zﬂap}T’ (61)
¢ =U""W,f,. (62)

Torispherical dished end, unlike ellipsoidal, is characterized by the
discontinuous radii of curvature along its meridian. Such fact implies
that spherical and toroidal shells have to be considered separately. The
edge loads for the pressure vessel with torispherical ends are presented
in Fig. 6.

The compatibility equations must include both junctions simulta-
neously, namely spherical to toroidal and toroidal to cylindrical. Such
approach implies the both edges of the toroidal shell are interacting
with each other i.e. loads at the first edge cause displacement and
rotation on the second edge and vice versa. Therefore, in the following
equations, displacements and rotations on both of the edges of the
toroidal shell contain all of the forces, namely X,,, Y,, Z,,, X5, Y,
Zy,:

X1 Y1 Z1
81XV X oy 48, VY +6,FVZ +5,47p
X2 Y2 72 X1
=65 X + 6, + 6,707, +6,Pp+ 6, %V X,
+85,"Y +6,40 2,
X1 Y1 z1 X2
51XV X, +6,70Y, + 8,7V Z, + 6,V p+ 5,5V X,
+6, 7Y, 45,72,
= ESZ(XZ)XS2 + 525(Y2)Y52 + 652(22) ZQs + 552(/1)17,
(63)
X1 Y1 Z1
9V X 4+ 9,Y 49,902 +9,Pp
X2 Y2 72 X1
= 9,5 X, + 9,7V, + 8,927, + 9,Pp+ 9,4V X,
+9,00Y, + 9,V 7,
X1 Y1 Z1 X2
81 9VX, 8,0V, + 9,707, +9,Pp+9,%PX,,
+9,2Y, +9,%7 2,
X2 Y2 72
=8.¥2( )X.s'2+19x2( )Y,\‘2+19s2( )ZA'2+19s2(p)p'

Displacements and rotations components &, 9 caused by the unit forces
are obtained in the same manner as in case of the pressure vessel with
ellipsoidal ends (Eq. (52)). The conditions of the edge loads equality
are assumed:

Xn=—Xp, Yn=—Yp, Zy=-Zy, X\ =—Xp, Y1 =-Yp,
ch =—4Lp-

(64)

The edge loads are expressed by their horizontal and vertical compo-
nents H and V:

Xa=-H,. Yy=Vg,
Xip=-Vpcospy— Hysingy, Y, =Vysing, — Hycospp, (65)
Xy =-Vicosg, — Hysing,, Y, =V;sing, — H;cosp,,

X =-Vacospy —Hysingg,, Yo =Vysing, - Hycosgg.

The horizontal and vertical load components must be equal at each
juncture:

Hcl =~ Vcl = _Vt2’ Htl = M- Vrl = —Vs2- (66)

Forces H,, and H, are known from the equilibrium conditions:

1 1
Hy = 5T (¢2) p: Hy, = =3 (002) p- (67)

Substituting Egs. (64)-(67) to the compatibility equations (Eq. (63))
one obtains a system of four equations with two unknown vertical
forces V and two unknown moments Z. The system can be easily
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Table 7
Solution for the toroidal shell resulting from the unit edge loads.
C:Xl) L‘:Y]) C:X]) C:XZ) CI(YZ) C:ZZ) L‘:I’)
a 1217 x 1073 —2.046 x 102 7.682 x 1074 0 -1.230x 102 —~1.300x 107 3.787 x 107!
a, 1.684 x 107 —2.108 x 102 —~1.124x 1073 0 3.999 x 1072 3.038 x 1074 5.344x 107!
a; -3.617x 1073 8.067 x 1072 7.055x 1074 0 —6.210 x 102 -3.858 x 107 -1.137
a, 2.646 x 1073 ~7.682 x 1072 —1.354x 107 0 5.289x 1072 2633 x 1074 8.283 x 107!
as -8.682x 107 3.183 x 1072 —4.089 x 1075 0 -2.279 x 102 -7.319x 107 ~2.708 x 107!
ag 1.061 x 10~ —5.008 x 1073 1.553x 107 0 3.703 x 1073 1.671 x 1076 3.295x 1072
by 1.257x 1073 ~3.556x 1073 5.508 x 107 0 5362 %1073 5.330x 1075 4.299 x 107!
b, 4259 %107 —1.433x 107! —9.688 x 107 0 —3.986 x 1072 —6.252x 107 1.148 x 107!
b, —1.447 x 1073 5.075x 107! —1.115x 1073 0 1.405 x 107! 2.193x 1073 —4.121 x 107!
by —2.888 x 1073 —6.847 x 107! 3.877x 107 0 —2.478 x 107! —3.658 x 1073 —9.686 x 107!
by 5911x 1073 4.568 x 107! —-3.592x 1073 0 ~1.168 x 10”! 3.250 x 1073 1.902
bs —3.410x 1073 —1.521 x 107! 1457 x 1073 0 ~1.168 x 10~ —1.434x 1073 -1.087
be 6.526x 1074 2.025x 1072 —2242x 107 0 2.237x 1072 2362x 1074 2,073 x 107!
Table 8 The value of R, corresponds to the typical liquid petroleum gas pres-
Solution for the spherical shell. . . s
L sure vessel. The thickness of such shell structures is usually within
c, .
o the range of 7 mm to 10 mm, however to generalize the problem, the
a, X K
a —4.560 x 10! following values are assumed
a, 1.875 x 10°
_ 2
o 331710 1 =5,15,30 mm.
aq 1.971 x 10
by 1.3154
b, 3.714 x 10! Following the authors of [1], the orthotropy coefficient is introduced
by -5.342 x 107
b, 2.867 x 103 E, v
b. —-6.413 x 10° x=7="
> S E v
be 4.917x 10
1 . . .
zS 2'20561 10 Mechanical properties of the material are related to the standard struc-
5 -4,
tural steel:
Table 9 _ 5 _
Solution for the toroidal shell. Ey =2x10° MPa, v =03
c’ . . . .
205 The applied pressure is proportional to the thickness of the shells.
a X
a ~3.560 Its magnitude causes equivalent von Mises stress of 100 MPa in the
-2 . . .
% 211810 cylindrical shell in the membrane state
a, 1.893
as -1.073
ag 1.984 x 10! _ 200V3 t
by 4337x1072 3 Ry
b, 1360 x 10"
b, -5.622x 10"
by 8.710 x 10"
by —6.701 x 10"
bs 2.982 4.3. Solution for the pressure vessel with ellipsoidal dished ends

solved, which enables to define the edge loads: X,., Y;., Z,., X;, Y},
Z11, Xops Yoy, Zoyy Xog, Yoy, Zsg. Using Eq. (49) the unknown parameters
in the displacement functions are calculated:

fo={Xe1. Y1, Z,1,0,0,0,p} ", (68)
e =U""W,fe (69)
fi= {le’Ytl’Zzl’XtZ’YrZ’th’P}T» (70)
¢ =U""W 1, 71)
£ ={0,0,0,X5. Yy, Zip, 0}, (72)
¢ = U WS, 73)

4.2. Geometric parameters and mechanical properties of the studied shells

To perform further calculations, it is necessary to assume numeri-
cal values of geometric parameters of the studied pressure vessels as
well as mechanical properties of the material. Following values of the
geometric parameters are considered:

Ry = 1000 mm, L = 1000 mm, p=0.5.

10

In the further presentation both displacement functions are consid-
ered in a form of six degree polynomial (Eq. (36)), therefore n; = 6.
According to Table 1 the number of unknown parameters in displace-
ment functions is n = 11. The exemplary analysis is performed for
the thickness ¢ 1. For
the ellipsoidal shell the boundary conditions (Eq. (40)) lead to the

15 mm and isotropic material i.e. «

following expressions:

1
—7r3a5 +

1 2
- +
noay ]

llra+
378

1
7 —7z4a6>, by =0.

ap =0, a,=—7r<la2+ %

2

The obtained, normalized strain matrix has the form which is given as
Eq. (74) in Box L.

The first three columns of the energy of external forces matrix are
equal to zero (Eq. (75)) due to form of the force vector f, (Eq. (61)),
where X, =Y, = Z, = 0. The fourth column equals to zero as the
horizontal displacements are restrained at the second edge ¢ = ¢,, =
7 /2, therefore the presence of the normal load X,, has no effect on the
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Ué‘
[ 0.05902 0.1554 0.3141 0.5747 1 —0.03586 —0.08420 —0.1184 —0.1666 —0.2356 —0.3355]
0.05346 0.1461 0.3033 0.5659 1 -0.02999 -0.07605 -0.1097 —0.1573 —-0.2259 —0.3257
0.04968 0.1394 0.2951 0.5591 1 -0.02628 -0.07061 -0.1038 -0.1512 -0.2198 -0.3200
0.04692 0.1343 0.2887 0.5535 1 -0.02373 -0.06671 -0.09962 -0.1468 -0.2156 -0.3166
0.04483 0.1303 0.2835 0.5490 1 -0.02188 -0.06377 -0.09642 -0.1436 -0.2126 -0.3143
=1-0.07346 -0.1786 —0.3404 —-0.5954 -1 0.1692 0.2147 0.2701 0.3531 0.4742 0.6498 74)
-0.05919 -0.1554 -0.3139 -0.5743 -1  0.07367 0.1213 0.1630 0.2237 0.3118 0.4401
—-0.05505 -0.1483 -0.3053 -0.5672 -1  0.06130 0.1078 0.1481 0.2067 0.2923 0.4178
-0.05201 -0.1428 -0.2985 -0.5615 -1  0.05382 0.09935 0.1388 0.1966 0.2817 0.4074
-0.04968 -0.1385 —-0.2931 -0.5568 -1  0.04881 0.09353 0.1326 0.1902 0.2758 0.4033
| —0.04785 -0.1350 —-0.2886 —0.5529 -1  0.04524 0.08929 0.1282 0.1861 0.2728 0.4033 |
Box L
solution. The normalized strain matrix for the analysed shell is presented as
- - Eq. (78) given in Box II. The energy of external forces matrix for the
0o 0 0 O 0 0 0 o . X
cylindrical segment W, is obtained
0o 0 0 O 0 0 0
0000 0 0 0 [3.033% 107 0 0 00 0 o ]
0000 0 0 0 1.769 x 107* 0 0 0 0 0 0
0.0 00 0 0 0 1.348 x 1074 0 0 0 0 0 0
- _ -5 -3
w,={0 0 0 0 1.290 x 10 0 8.899 x 107 |. 1137 x 104 0 0 0 0 0 0
_ -5 _ -8 -3
0O 0 0 O 1.092 x 10 5.561 x 10 1.873 x 10 LO11 x 10-* 0 0 0 o0 o 0
_ -5 _ -8 -3
0o 0 0 O 1.134 x 10 8.666 x 10 1.339x 10 9,269 X 105 0 0 0 o0 o 0
- -5 _ —7 _3 W, =
0o 0 0 O 1.197 x 10 1.219 x 10 1.072 % 10 0 —1062% 10~ 0 0 0 0 1062x10-!
_ - -7 —4
0 0 0 O 1.269 x 10 1.616 x 10 9.158 x 10 0 0 2560x10~7 0 0 0 —8.564x 102
_ -5 -7 —4
0 0 0 0 1.349 x 10 2.061 x 10 8.153 % 107" | 0 0 2011x107 0 0 0 -8378x10-2
(75) 7 -2
0 0 1.841 x 10 0 0 0 -8283x10
Using the matrices given in Egs. (74), (75) the unknown parameters - ,
in the displacements functions c can be calculated at the selected edge 0 0 1763 x 10 0 0 0 -8227x10
for the specific loads in the vector f. The solution based on Eq. (51) 0 0 1720107 0 0 0 —8.192x10°2
for the separate unit edge loads X,,,Y,,. Z,,, p acting on the ellipsoidal } (7’9)

shell is provided in Table 2.

Using the parameters in Table 2, the displacement and rotation com-
ponents of compatibility equations (Eq. (50)) are obtained according to
Eq. (54) for the second edge:

5,00 = omez, 6,7P =7.027%x 107 mez
65, =7.464x107° ”I‘\I—m 5, =4.207x 107! anﬁ
8, =0 T, 0,07 = ~Tde4x 107 T2, e
3 mm?

9,7 = 1550 x 10—6%, 9,7 = —1.101 x 10

To obtain the edge loads at the junction of the ellipsoidal and
cylindrical shell the analogous calculations have to be performed for
the cylindrical shell. The boundary conditions (Eq. (42)) are expressed
as:

a,=—(ay+ay+a;+a,+as+ag),

77
by = —(2by + 3b3 + 4by + 5b5 + 6bg).

11

The calculated parameters in the vector ¢ for the cylindrical shell are
given in Table 3.

Further, the displacements and rotations components are calculated
according to Eq. (54) at the first edge (¢ = &) of the cylindrical shell:

2 2
6, %D =—1.000x 1074 B 5, D = 6599 % 1073 T
3
6,70 = 72641075 B2 5,0 =-3333x 1070 T
(80)
mm _s mm
9,%D =0 ~ 9,9V =7.264 % 10 ~
2
9,7V = —1524 x 10*"%, 9,0 = 0%
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UL'
[ 1 1 1 1 1 1 -0.3 0.2 0.375 0.5400 0.7 0.8571]
0.5833 0.7778  0.875  0.9333  0.9722 1 -0.175 0.1458 0.28 0.4083 0.5333  0.6563
0.4444  0.6667 0.8 0.8889  0.9524 1 —0.1333 0.1200 0.2333 0.3429 0.45 0.5556
0.3750 0.6 0.75 0.8571  0.9375 1 —0.1125 0.105 0.2057 0.3037 0.4 0.4950
0.3333  0.5556 0.7143  0.8333  0.9259 1 -0.1 0.09524  0.1875 0.2778 0.3667  0.4545
0.3056  0.5238 0.6875 0.8148 0.9167 1 —0.09167  0.08839 0.1746 0.2593 0.3429  0.4256
= (78)
-0.105 -0.100 -0.105 -0.105 -0.105 -0.105 0.35 -0.2333 -0.4375 -0.6300 -0.8167 -1
0.08470  0.1059 0.1143 0.1186 0.1210 0.1225  —0.2823 0.2259 0.4306 0.6252 0.8143 1
0.08286  0.1061 0.116 ~ 0.1212  0.1243  0.1263  —-0.2762 0.2247 0.4294 0.6243 0.8138 1
0.08192 0.1062  0.117  0.1229 0.1264 0.1287 —0.2731 0.224 0.4286 0.6237 0.8135 1
0.08137 0.1063 0.1177  0.124  0.1279 0.1304 -0.2712 0.2235 0.4281 0.6234 0.8133 1
10.08102 0.1063  0.1182 0.1248 0.1289 0.1317  -0.2701 0.2232 0.4278 0.6231 0.8132 |
Box II.
The edge loads resulting from the interaction of the ellipsoidal and
cylindrical shell are obtained substituting Egs. (76), (78), (79) into
compatibility equations (Eq. (50)): Table 10
: : Solution for the cylindrical shell.
C(
N N a, —2.426 % 107!
X, =-8.660x102—, Y, =8942x10'—, Z, =5623x10> N, a 7.631x 107!
mm mm a -2.013
X, = 8.660 x 102 X Y,, = —8.942 x 10! N Z, =—-5623x 10> N. a 2.641
mm mm as -1.692
(81) a 4218 % 107!
by 7.022 % 1072
by ~1.877 x 10!
by 2,979 x 10
The final solution for the pressure vessel with ellipsoidal dished ends is by —1.803 x 10']
b ~5.087 x 10

achieved applying the edge loads (Eq. (81)) to Egs. (59), (61) and then
solving Egs. (60), (62). The results are summarized in Tables 4, 5.

The vertical displacements (Eq. (17)) based on the solution in
Tables 4, 5 are presented in Fig. 7. Importantly, the results along the
cylindrical shell are not constant beyond the junction of the shells. This
phenomenon is not compatible with analytical solution based on the
edge effect theory [1-3]. According to such formulation of the problem,
the bending deformations caused by the edge loads diminish relatively
promptly along the meridian of the shell. In the case of the cylindrical
shell, lack of the edge loads implies the membrane state of the shell,
as the applied pressure cause no bending effects. Such consequence
does not apply to the shells with variable principal radii of curvature
e.g. ellipsoidal, where the pressure itself cause bending of the shell. The
fluctuation of vertical displacements for the cylindrical shell in Fig. 7
results from insufficient number of the independent variables in the
displacement functions.

The meridional and circumferential stress components in the inner,
middle and outer surface are given in Figs. 8 and 9 correspondingly.

The problem with the displacement functions is more significant for
the principal stresses, especially for the meridional stress in cylindrical
shell in Fig. 8. Despite the stress in the middle surface of both shells at
the junction is comparable, the discontinuity of stress in the inner and

12

outer surface is severe. The observed phenomenon implies that degree
of polynomial should be higher or different displacement functions
should be used.

4.4. Solution for the pressure vessel with torispherical dished ends

In the analysis of the pressure vessel with torispherical dished ends,
the thickness as well as the displacement functions remain the same as
in the previous section. The boundary conditions for the spherical shell
are obtained according to Eq. (40):

ag =0,
by = —tan (%2) (’10 + 4100+ 600" + 0300° + a0
+aspp’ +a0,0°) = bro o’
+b300” +b40 " + 50’ + b,

The strain energy matrix is formulated for the spherical segment of the
pressure vessel as Eq. (82) given in Box III.
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U,
[1 04713 02221 0.1047 0.04933 0.02325 0.09191 0.05189 0.02714 0.01369  0.006769 |
1 05316 02675 0.1314  0.0637 0.03064 0.07701 0.04489 0.02400  0.0123 0.00616
1 05676 02977 0.1504 0.07445 0.03639 0.0671  0.03989 0.02165 0.01123  0.005675
1 05915 03191 0.1646  0.0828 0.04098 0.06003 0.03615 0.01982 0.01037  0.005278
1 0.6086 03352 0.1757 0.08947 0.04473 0.05474 0.03325 0.01837 0.009668 0.004947

=11 0.6213 0.3477 0.1845 0.09492 0.04785 0.05063 0.03092 0.01717 0.009084 0.004667 (82)
1 03949 0.1622 0.06837 0.02938 0.01281  0.1211  0.06602 0.03361  0.01659  0.008062
1 04077 0.1707 0.07292 0.0316 0.01385 0.1169 0.06431 0.03294 0.01634  0.007967
1 04168 0.1772 0.07646 0.03338 0.01471 0.1138  0.06298 0.03241  0.01614  0.007892
1 04236 0.1822 0.0793 0.03484 0.01543 0.1114 0.06193 0.03199 0.01597  0.007832
|1 04290 0.1862 0.08162 0.03605 0.01603 0.1095 0.06108 0.03164 0.01584  0.007784 |

Box III.
The energy of external loads matrix is expressed in the following Table 11

manner

[0 0 0 -2748x10™* 1.400x 107 —1.534x1077 —6.023x 1072]
0 0 0 -2748x10"" 1400x10™* —1.534x1077 —6.022% 107>
0 0 0 —2748x10"* 1400x10™* —1.534x1077 —6.021x 107
0 0 0 —2748x10"* 1400x10™* —1.534x1077 —6.021x 107
0 0 0 =-2748x107* 1.400x10™* —1.534x1077 —6.021x1072
W,=|0 0 0 =2747x107* 1400x10™* —1.534x107 —6.020x1072].
0 0 0 0 0 -3.339x10°®  —3.049x 107!
0 0 0 0 0 —4.180x 10®  —3.051 x 107!
0 0 0 0 0 -5.022x107°  -3.053x 107!
0 0 0 0 0 -5.864x 107 —3.054 x 107!
0 0 o0 0 0 -6.707x 10 =3.055x 107"
(83)

The coefficients of the displacement functions caused by the unit edge
loads are obtained according to Eq. (49). Their values are summarized
in Table 6.

The coefficients of the compatibility equations (Eq. (63)) are cal-
culated at the second edge ¢ = ¢,, = 37/20 of the spherical shell:

3 IIll’Il2

3 mm

2
8,XY = -2919x 10™ 5,0 =1.487x10™ ~

5 mm

3
6, = 6.055x 10 5, = 2.444%,

s mm (84)
N

9,%Y = -2.105x107°

9, =5395% 10 9,0 = 22749 x 1075 B2,

, mm?

1 .
=, 9,P =-4832x10
N 52

The toroidal segment of the torispherical dished end is the shell with
open apex, therefore the boundary condition described by Eq. (41) are
used. Applying such restriction on the horizontal displacements yields
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Mesh convergence study results for the pressure vessel with torispherical dished ends
and 7 =5 mm.

100 200 300 400 500
2 277.4 275.3 274.7 275.0 275.1
- [MPa] 4 278.8 276.3 275.5 275.2 275.3
rmax 6 279.8 276.0 275.4 275.3 275.3
8 277.7 275.7 275.3 275.3 275.3
Table 12

Mesh convergence study results for the pressure vessel with torispherical dished ends
and ¢ =30 mm.

100 200 300 400 500
2 227.4 227.4 227.1 227.0 227.0
[MPa] 4 228.4 227.9 228.0 227.9 228.0
Ormax 6 228.6 228.1 228.2 228.1 228.2
8 228.7 228.2 228.3 228.2 228.2
the result
ap = lr(la+17ra +17rza+17r3a+17r4a+17r5(1)
0 27T TR BT T 3T 5T e 6

The strain energy matrix is obtained for the toroidal shell as Eq.
(85) given in Box IV.

In the external load energy matrix W,, the fourth column equals
zero, as the load X, causes no horizontal displacements due to the
applied boundary condition (See Eq. (86) given in Box V ).

The problem is further solved for the unit edge loads contained
in the vector f, (Eq. (70)). For each of the unit loads the unknown
parameters in the displacement functions take different values which
are given in Table 7.

The components of compatibility equations for the torispherical
dished ends are determined according to Eq. (54)
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U,
[ 0.0679 0.1424 0244 0391 06315 1 —0.07238 —0.07691 —0.0887 —0.1088 —0.1394 —0.1845 —0.2501]
0.0519 0.1193 0.2187 0.3727 0.6155 1 —0.05456  —0.06361 —0.0785 —0.101 —0.134 —-0.1819 -0.2514
0.04271 0.105 0.202 0.3565 0.6038 1 —0.04444  —0.05556 —-0.07202 —-0.09594 —-0.1306 —0.1807 —-0.2535
0.03704 0.09562 0.1904 0.3446 0.5949 1 —0.03827 —0.05035 -0.06762 —0.09243 —0.1282 -0.1801 -0.2557
0.03331 0.08907 0.1819 0.3356 0.588 1 —0.03425 —0.04677 -0.06447 —-0.08984 —0.1265 -0.1799 -0.2578
0.03072 0.08427 0.1755 0.3285 0.5823 1 —-0.03149  —0.04417 —-0.0621 -0.08787 -0.1252 -0.1797 -0.2597
=[-0.07061 —0.146  —-0.2476 —0.3992 —0.6336 -1 0.08806  0.09262 0.106 0.1293  0.1652 02182  0.2955
—0.05348  —0.1214 —0.2207 —03744 —0.6165 —1 006602  0.07558  0.0922 0.1178  0.1556 02106  0.2906
—0.04387 —0.1065 —0.2035 —03576 —0.6045 -1 005376  0.06558  0.08379  0.1107 0.15 0.207 0.29
—0.03802 —0.09687 —0.1916 —03455 —05955 —1 004635 005921  0.07825  0.1061  0.1465 02054  0.2915
—0.03419  —-0.09017 —0.183 —0.3364 —0.5884 -1 0.04154 0.05487 0.07438 0.1028 0.1443 0.2049 0.2941
—-0.03153 -0.08529 -0.1764 -0.3292 —-0.5827 -1 0.03823 0.05176 0.07153 0.1004 0.1428 0.2051 0.2973
|-0.02958 —-0.08158 —0.1713 -0.3234 -0.5781 -1 0.03583 0.04943 0.06936 0.09864 0.1418 0.2058 0.3011 |
(85)
Box IV.
[6.425 % 1076 0 1.878x107% 0 0 0 0 ]
4782 %1070 0 1398x107% 0 0 0 0
3.858 x 107° 0 1.128x107% 0 0 0 0
33x107° 0 9.648%x10™° 0 0 0 0
2.94 % 107° 0 8.596x 107 0 0 0 0
2.694 x 107° 0 7.877%x10™° 0 0 0 0
W, = 0 —-5.701 x 1076 0 0 -7.01x107% 0 2.465x 1073 |. (86)
0 -1.915x 107 —1.188x107® 0 —7.848x107® —1.461x107% 1.827x1073
0 —6418x 1077 -7964x 1070 0 —8769x107® —3264x107% 1.475x1073
0 —2.138x 1077 —=3979x 107 0 -9735x107® —5436x107% 1.264x1073
0 —7.068x 1078 —1.754% 107 0 -1.073x107° -7.988x107% 1.128 x 1073
0 —2321x 107 —7.199%x 1071 0 -1.174x107° -1.093x 1077 1.035x 1073
| 0 —757x 107 —2818x 10710 0 —1277x107° —1.426x1077 9.686x 1074]
Box V.
5,%) = —3789 x 107! m;ﬁ 5, =-1328x107! anﬁ
. . 9,%D = _5.562 % 107 “I‘\]—m 9,%D = 6496 x 1077 %
5, XD = ~1.159 x 1073 ml'\ln . 8D =-3388x 107 % XD — MM gD _ g DI
1 N 12 N
5, = omez, 5,0 = omez, 9,90 = 1,066 x 107 % 90D = -6.101x 107 %
5, 0D = 5,848 x 10°3 mIr\Inz, 5,00 = 8813 x 10~ mez 9P =4.587x10° T2, 90P = -7412% 107 T2,
3, = ~1.208 x 107 mez 5, =7017x 107 mez Iy = 1808 x 10_6%’ 870 = 105010775
5,7D = Z5335x 105 nIl\I_m 5,70 = Z3.731x 107 ml\;n, 8<22> 1.291 x 1077 HII\IH: 9,%Y = 1549 x 107° mm2
5,7 = 2,694 % 10° % 5,%? =7.412% 107 mNm, 9,0 =—1762x 107 T 9,0 — 2 132x 107 B (87)
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Substituting Egs. (87), (84) and (80) to the compatibility equations
(Eq. (63)) leads to the following edge loads resulting from the inter-
action between the shells:

X, = -8.660x 10—, ¥, =5883x 10' 2, Z,, = ~4453x 10° N,
mm mm
X, = 8.660 x 100X Y, = —5.883 x 10! N Z, = 4453 x 10°N,
mm mm
X, =—1.365 x 100 Y, = —9.504 x 10! X Z, =-1756x 10° N,
mm mm
X, = 1.365 x 100 X Y, = 9.504 x 10 N Z,=1.756x 10> N.
mm mm
(88)

The calculated edge loads allow to resolve the unknown parameters of
the polynomials describing the displacements of the shells. Those are
presented in Tables 8, 9, 10 for each of the shells.

The vertical displacements for the pressure vessel with torispherical
dished ends based on solution given in Tables 8, 9, 10 is shown in
Fig. 10. Similarly to the pressure vessel with ellipsoidal dished ends,
the vertical displacements slightly fluctuate along the meridian of the
cylindrical shell.

Such issue is more evident for the meridional and circumferential
stress in the inner, middle and outer surface, presented in Figs. 11, 12.
The stress distributions seem far from satisfactory. The disturbances in
meridional stress at the edges of the shells are significant, especially
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in the inner and outer surface of the pressure vessel. Interestingly,
principal stresses tend to be characterized by abnormal distribution for
S = @ = 0. In the case of the circumferential stress the discontinuities
at the junctions can be considered acceptable. The obtained results
for the both pressure vessels suggest that the order of polynomials
is insufficient. It is necessary to consider the displacement functions
with higher number of the independent variables as well as different
displacement functions in the further analysis.

5. Result comparison with FEM

The results presented in the previous section of the paper focused
merely on one example of the pressure vessel with ellipsoidal and
torispherical dished ends. The solutions were also described by one of
the displacements functions, namely polynomials (Eq. (36)). According
to the obtained displacements and principal stresses functions, it is
important to note that the order of polynomials is insufficient to
obtain satisfactory solution. Such observation results from the discon-
tinuous functions at the edges of the analysed shells, non-constant
displacements and stresses far from the loaded edge of the cylindrical
segments.

The evaluation of accuracy of the solutions based on the Ritz
method requires their comparison with the finite element method. In
the paper the numerical FEM calculations are performed with a use of
Ansys 19 software. The analysis type is static, linear, axisymmetric with

Table 13
Vertical displacements comparison for the displacement functions based on polynomials — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
(mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM ~=-== FEM
0.6 o 0.6 i
04 04
02 02
0.0 0.0
-0.2 -0.2
-04 -04 \
-0.6, -06
-08 -08
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM ===== FEM
0.6 RM 06 RM
04 0.4
02 02
0.0k 0.0~
15 L s S0 .
-02 -02 '
-0.4 -0.4
P NIGHS S Lo
-0.6 -0.6
-08 -08
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arc length S [mm] arclength S [mm|
08 Vertical displacements d, [mm] 03 Vertical displacements d, [mm]
----- FEM ~==== FEM
0.6 RM 06 RM
0.4 / 0.4
02 02
0.0~ 0.0
~02 ki S8 02
-0.4 -04,
-0.6 -0.6,
-08 -08
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm)]

15
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Table 14
Equivalent stress comparison for the displacement functions based on polynomials — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
[mm]
280 Equivalent stress o, [MPa] #00 Equivalent stress v, [MPa]
external surface (RM) external surface (RM)
240 middle surface (RM) middle surface (RM)
internal surface (RM) 160 ——— internal surface (RM)
200 ===== externalsurface(FEM) | | | o W e external surface (FEM)
middle surface (FEM) middle surface (FEM)
T RIS RSN SRS MY L 1 | 0y, | (RN P Internal surface (FEM) 120 R internal surface (FEM)
5 120 80 (
S S S
80 /? |
o/
W 40 f
40 ?
E
"0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 "0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
et Equivalent stress 7, [MPa] 400 Equivalent stress o, [MPa]
external surface (RM) external surfa
240 middle surface (RM) middle
= internal surface (RM) —— internal surface (RM)
200 ===== externalsurface(FEM) | | | . . . 1y AR ==ees external surface (FEM)
middle surface (FEM) middle surface (FEM)
D7) RO S| SRy SO S, R PRRRD B internal surface (FEM) ===== Internal surface (FEM)
»
15 | 120 /
/
!
80
MV“
40 V
0 )
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength § [mm]
280 Equivalent stress -, [MPa] 200 Equivalent stress -, [MPa]
external surface (RM) external surface (RM)
240 middle surface (RM) 5\ middle surface (RM)
”\ internal surface (RM) 160 / — I surface (RM)
200 \ ===== external surface (FEM) / ‘\ -==-=-= external surface (FEM)
\ middle surface (FEM) / “ middle surface (FEM)
A U internal surface (FEM) " £
TN\
0 = i HE
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]

perfectly elastic material. The geometry is divided into quadrilateral,
two dimensional, eight-node finite elements PLANE183 with three
degrees of freedom at each node.

Performing mesh convergence study enabled to evaluate the suf-
ficient density of finite element mesh. Two considered factors in the
study are the number of elements across the thickness », and along
the meridian n,,. Because the geometry has to be virtually split in the
middle surface to read the analysed values, the parameter », has to be
an even number. During the mesh convergence study the maximum
stress and displacement as well as total strain energy value were
investigated in the pressure vessels with ellipsoidal and torispherical
dished ends. According to the obtained results the peak stress value
0,max fOr the latter is the most susceptible for the changes in the finite
element mesh.

It is assumed that the mesh density is sufficient if the increase in
the finite element number results in up to 0.1% relative difference in
O,max- According to the results presented in Tables 11, 12 in the case
of the thickness + = 5 mm the finite element model requires relatively
high value of n,,. For the thicker pressure vessel i.e. = 30 mm more
elements are required across the thickness #,. By calculating the relative
differences with respect to the changes in n, and n,, the assumed
accuracy condition is fulfilled for n, = 4 and n,, = 400 considering both
thickness values.

16

An exemplary FE model is presented in Fig. 13, where the thickness
of the model was increased to = 50 mm and the number of elements
along the meridian reduced to n, = 200 for better readability. To
reduce size of the problem, only symmetrical half of the axisymmetric
model of the pressure vessel is considered. The normal displacements
are restrained i.e. v = 0 at the edge highlighted in Fig. 13 to obtain
the symmetry boundary condition. The pressure is applied to the inner
edge of the FE model.

The comparison of results is performed for the pressure vessels with
torispherical and ellipsoidal ends of the thickness ¢+ = 5,15,30 mm,
where orthotropy coefficient a = 1, 1.2. The analysed results are vertical
displacements and equivalent stress. In the case of the Ritz method, the
equivalent stress is based on the state of plane stress. The displace-
ment functions are considered in a form of polynomials (Eq. (36)),
trigonometric series (Eq. (37)) and polynomials complemented with
modified trigonometric series (Eq. (38)). The latter is used to describe
the normal displacements in the shells with constant radii of curva-
ture, namely spherical and cylindrical, while the remaining displace-
ments functions are polynomials. The number of unknown parameters
(Table 1) for all types of the displacement functions corresponds to
the two polynomials of order ten, representing normal and tangent
displacements.
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Table 15
Vertical displacements comparison for the displacement functions based on trigonometric series — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
(mm]
08 Vertical displacements d, [mm] L Vertical displacements d, [mm]
vvvvv FEM ===== FEM
0.6 RM 0.6 RM
0.4 0.4 \
02 02
0.0 00M
5 —~—————
-02 -0.2
~04 -0.4
-0.6 -06,
-0.8 -0,
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 "0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM ===== FEM
0.6 RM 0.6 RM
04 04
02 0.2
0.0 0.0
15 \\\\
-0.2 -0.2
-0.4 -04
-0.6 -06
-08 -08
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 200 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm| arclength S [mm]
08 Vertical displacements d, fmm] 08 Vertical displacements d, (mm]
----- FEM -=-== FEM
0.6 RM 0.6 RM
0.4 04
02 02
0.0 o,o\
-0.2 -02
-0.4 -0.4
-0.6 -0.6
0.8 -08
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]

The vertical displacements obtained using the Ritz method and
the finite element method are compared in Table 13 for the isotropic
material (a = 1). The solutions from the Ritz method nearly perfectly
match FEM solutions. Insignificant differences can be observed for
the pressure vessels of the thickness + = 5 mm. Relatively far from
the loaded edge of cylindrical shells, where displacements shall be
constant, the vertical displacements for the cylindrical shell fluctuate
around the FEM solution. It indicates that the displacement functions
have difficulties to preserve constant value when it occurs over the
greater arc length and when the edge disturbances are abrupt. Such
phenomenon was also observed in the previous section of the paper for
the polynomials of order six (Figs. 8 and 9), however for the pressure
vessels of the thickness ¢ = 15 mm.

Equivalent stress distributions comparison presented in Table 14
demonstrates similar results in both of the methods. The peak stress
value occurs always in the inner surface, therefore the other two curves
can be easily referred to the middle and outer surface. For the thickness
t = 30 mm a slight differences in the maximum stress values can be
observed, the Ritz method tends to yield insignificantly lower value
of the peak stress. Due to fluctuation of the vertical displacements
in the cylindrical shell for t+ = 5 mm the stress share the same
characteristics.

The vertical displacements for the displacement functions in the
form of trigonometric series shown in Table 15 are nearly identical
to those described by the polynomials. The change of the form of the

17

displacement functions does not have an effect on the fluctuation of the
solution for the cylindrical shell.

As expected, negligible differences are also observed in the stress
distributions in Table 16. The displacement functions in the form
of polynomials and trigonometric series are not suitable to describe
constant values over the arc length S. Importantly the compatibil-
ity equations are not imposed on the meridional stress, therefore
the continuity of equivalent stress is fulfilled solely on the basis of
minimum potential energy principle. The agreement of the circum-
ferential stress is achieved due to the equivalency of the vertical
displacements.

The solutions shown in Tables 17, 18 refer to the displacement
functions in a form of polynomials (Eq. (36)) and modified trigono-
metric series (Eq. (38)). The latter is used to describe normal dis-
placements in the spherical and cylindrical shell. The character of
modified trigonometric series allowed to obtain constant value of the
vertical displacements beyond the loaded edges of the spherical and
cylindrical shell. As a result the stress remains constant as well, which
is coherent with the FEM solution. Similar character of the solution
can be obtained from an analytical approach using theory of the edge
effect, however its values would significantly vary from the presented
results.

For more detailed comparison the maximum equivalent stress values
Omax> Maximum vertical displacements d,,,,, and strain energy U, are
compared for Ritz method and FEM in Tables 19, 20 considering all of
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Table 16
Equivalent stress comparison for the displacement functions based on trigonometric series — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
[mm]
280 {\ Equivalent stress o, [MPa] 200 Equivalent stress o, [MPa]
\ external surface (RM) external surface (RM)
240 middle surface (RM) middle surface (RM)
——— internal surface (RM) ——— internal surface (RM)
200 $ o ===== external surface (FEM) ===== external surface (FEM)
/ \ middle surface (FEM) middle surface (FEM)
160 ‘ """ internal surface (FEM)
5 120
——————— T PN ———
N {'%.._..
80 \ !
\ /
40 \ /
V
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
280 Equivalent stress o, [MPa] 200 Equivalent stress o, [MPa]
external surface (RM) external surface (RM)
240 7~ middle surface (RM) middle surface (RM)
——— internal surface (RM) 160[=sssnfonassdenesnslosesatesnosd e Rdp ononokien ——— internal surface (RM)
200 -t m e e b mmmes extemalsurfacePEM) L | [0 Wb e external surface (FEM)
-~ middle surface (FEM)
o 1] i O R e B (P | internal surface (FEM)
sSsooo
15 120 80 /
i
80 y
40 /
40 v
0
"0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arc length S [mm] arc length S [mm]
280 Equivalent stress o, [MPa] 200 Equivalent stress o, [MPa]
external surface (RM) external surface (RM)
240 middle surface (RM) middle surface (RM)
e internal surface (RM) 160 internal surface (RM)
200 / \ ===~ external surface (FEM) === external surface (FEM)
\\ middle surface (FEM)
160 \ ----- internal surface (FEM) 120
30 120} i
80
40
40
0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]

the displacement functions. The following abbreviations are used for
the displacement functions: P — polynomials, TS — trigonometric
series, PMTS — polynomials and modified trigonometric series. The
calculation of the relative differences considers FEM result as reference
value, which do not exceed 2% for all of the analysed cases. The type
of displacements functions has insignificant effect on the results in
Tables 19, 20, which indicates regularity of the calculations based on
Ritz method.

The greatest discrepancies of the results are observed for the thick-
ness ¢t = 30 mm, and the least for = 5 mm. It is necessary to consider
the difference in the applied load in both of the methods. The Ritz
method based on the general shell theory implies the load is applied
to the middle surface of the shell. Finite element method solutions
assume the pressure acts on the inner surface of the pressure vessel. The
latter case represents a realistic condition, while general shell theory
uses simplified approach which is valid for thin-walled structures. The
area of the middle surface is greater than area of inner surface of the
pressure vessel, therefore the magnitude of load is greater in case of the
Ritz method. Such phenomenon leads to the increased values of strain
energy for thicker shells. Interestingly, the maximum value of vertical
displacements and equivalent stress are lower for the solutions based
on the general shell theory.
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The previously presented results assume isotropic properties of the
material. The manufacturing process of the pressure vessels is based
on plastic forming where material exhibits strain hardening. Degree of
the strain hardening is different along meridional and circumferential
direction. Moreover, the properties of the material are non-uniform
along the principal directions. Such phenomenon is manifested by
non-uniform thickness of the manufactured dished ends. The variable
mechanical properties and thickness towards meridional direction is
not considered within the paper. In the further analyses, the material
model is perfectly elastic and orthotropic, where orthotropy coefficient
a = 1.2. Such value might be considered excessive for a structural steel,
however the greater the value of the coefficient, the more significant
discrepancies between the methods are expected. As the aim of this
section is to evaluate the accuracy the Ritz method application, the as-
sumed value is justified. The orthotropy coefficient « > 1 indicates that
the degree of the strain hardening is greater towards circumferential
direction.

According to the analyses results considering the isotropic material,
the change of displacement functions has rather insignificant effect
on the solution. In case of the orthotropic material, only polynomial
based displacement functions are studied. The displacements compari-
son between the both methods for the orthotropic material is presented
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Table 17
Vertical displacements comparison for the displacement functions based on polynomials and modified trigonometric series — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
[mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
»»»»» FEM -=--= FEM
06 RM 06 RM
0.4 0.4
02 0.2
5 0.0 0.0
-02 -0.2
-0.4 -0.4,
-0.6, -06
-08 -08
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM —==== FEM
0.6 RM 0.6 RM
0.4 0.4
02 0.2
15 0.0 0.0
-0.2 -0.2
-0.4 -0.4,
JESNSHIGNUIG UHOHOH CNSN
-0.6 -0.6,
-08 -0.8
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm] arclength S [mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM smnes. FEM
0.6 R 0.6 RM
0.4 0.4
02 02
30 [ * i S
-0.2 -0.2
-0.4 -0.4,
e )
-0.6, -0.6,
-08 -08
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arc length S [mm] arclength S [mm]

in Table 21. The applied change in the material properties did not
influence the coherence of the results.

Unlike the vertical displacements, the distribution of equivalent
stress exhibits a significant change in the area of § = 0 mm in
both of the methods due to the change of material properties. The
correlation of equivalent stress between the Ritz method and finite
element method is shown in Table 22. In the result of abrupt change
of the stress distribution in the mentioned area, Ritz method solutions
differs moderately from finite element method. To address this issue
more complex displacement functions can be used.

The maximum values of the vertical displacements, equivalent stress
and total strain energy are juxtaposed in Table 23 for the torispherical
end and in Table 24 for the ellipsoidal end. According to the obtained
data, the increase in thickness leads to higher values of the relative
differences. Such phenomenon is also observed in the case of the
isotropic material and results from the differences in the location of
the applied pressure.

6. Conclusions

The possibilities of solving the problems of stress and deformation in
the pressure vessels is undoubtedly poor. Despite the analytical formu-
lation of the selected shell problems is well defined in the literature,
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the solution is not possible for most of the practical cases of shell
structures. The design of pressure vessels is regulated by the procedures
described in the technical standards. Such calculations are based on the
membrane theory. The assumption of no bending phenomena in the
membrane theory usually results in serious miscalculations of displace-
ments and stresses. The edge effect theory is accurate only for the shells
of constant radii of curvature near their edges, which was the basis of
the derivation performed by Geckeler [1,2]. Additionally, the analyses
of the shell structures with discontinuous radii of curvature based
on the edge effect theory require the definition of the compatibility
equations similar to those presented in the paper. In the process of
calculation of the edge loads one must use the deformations based on
the membrane theory in the compatibility equations, which introduces
erratic values to the solution before its obtained. These deformations
are accurate only for the shells with constant radii of curvature due
to the nature of the membrane theory. Importantly, application of the
edge effect theory for the shells with variable radii of curvature can
result in technically correct solution, however it is difficult to evaluate
the impact of such simplification. The application of the Ritz method
enables to perform semi-analytical analyses of shell structures including
the bending effects as the result of the applied pressure and interaction
between shells in the juncture. Furthermore the form of the solution
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Table 18
Equivalent stress comparison for the displacement functions based on polynomials and modified trigonometric series — isotropic material.
t . . . .
torispherical ends ellipsoidal ends
[mm]
&0 Equivalent stress o, (MPa] 200 Equivalent stress -, [MPa)
external surface (RM) = external surface (RM)
240 middle surface (RM) N middle surface (RM)
internal surface (RM) 160! X internal surface (RM)
200 ===== external surface (FEM) ok ===== external surface (FEM)
middle surface (FEM) AV middle surface (FEM)
71| MY [ IO . . 3 | 40 O I A Internal surface (FEM) internal surface (FEM)
5 120
80 /:
40f-----+ S
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Table 19
Results comparison summary for the pressure vessel with torispherical dished ends
— isotropic material.

Table 20
Results comparison summary for the pressure vessel with ellipsoidal dished ends
— isotropic material.

t Ritz method functions FEM Relative difference [%] t Ritz method functions FEM Relative difference [%]
[mm] [mm]
P TS PMTS P TS PMTS P TS PMTS P TS PMTS
5 2749 2748 2749 2752 0.1029 0.1412 0.1030 5 175.3 1753 1752 1754 0.08000 0.08120 0.1337
?ﬁ’g‘a] 15 238.2 238.2 2382 239.2 0.4117 0.4098 0.4117 ‘Eﬁl";a] 5 172.7 1727 173.0 173.80 0.6372 0.6306  0.4811
30 225.6 225.6 2256 2279 1.036 1.036 1.036 30 170.8 1709 170.8 173.0 1.291 1.216 1.291
d 5 0.7524 0.7524 0.7524 0.7529 0.07514 0.07526 0.07612 d 5 0.5821 0.5821 0.5825 0.5830 0.1502 0.1583  0.08763
[::Tg] 15 0.6097 0.6097 0.6097 0.6114 0.2657 0.2660  0.2657 [rl;":;] 15 0.4591 0.4591 0.4591 0.4609 0.3806 0.3866  0.3937
30 0.4778 0.4778 0.4778 0.4820 0.8698 0.8698  0.8698 30 0.3509 0.3509 0.3509 0.3550 1.152 1.149 1.152
5 1895 1894 1895 1890 0.2213 0.2174  0.2311 U 5 1579 1579 1579 1575 0.2522 0.2435  0.2740
U, [kJ] 15 53.55 53.55 5355 53.15 0.7576 0.7575 0.7576 [kEJ] 15 45.80 4580 4580 4541 0.8657 0.8655 0.8658
30 100.5 100.5 100.5 98.83 1.647 1.647 1.647 30 88.16 88.16 88.16 86.57 1.827 1.827 1.827

based on the Ritz method enables to define continuous functions of
displacements, strains, stresses and internal forces.

Due to the formulation of the general shell theory of thin shells, it
was initially expected that the precision of the analyses may be unsatis-
factory for relatively thick shells, especially in the areas of the junctions

20

where the bending effects arise. The trend of relative differences growth
with the increasing thickness is evident throughout the comparison
of the results between the two methods. It can be simply explained
by the discrepancy in the method of external load application. The
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Table 21
Vertical displacements comparison for the displacement functions based on polynomials orthotropic material.
t . . . .
torispherical ends ellipsoidal ends
(mm]
08 Vertical displacements d [min) o8 Vertical displacements d, mm]
vvvvv FEM ===== FEM
06 i 0.6 i
0.4 0.4
02 0.2
0.0 < 1 0.0
-0.2 \ -0.2
0.4 -0.4]
-0.6 -0.6
-08 -08
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 "0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arclength S [mm| arclength S [mm|]
08 o8 Vertical displacements d, {mm]
& Vertical displacements d, [mm] S i
_____ FEM 02 FEM
0.6 ’M RM
0k 0.4
o2 02
0.0
0.0
15
02 -0.2
64 0.4
N =] =
sphere torus cylinder Lol o
-0 %% ""200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 ‘
arclength S [mm] arclength S [mm]
08 Vertical displacements d, [mm] 08 Vertical displacements d, [mm]
----- FEM -==== FEM
0.6 M 0.6 RM
0.4 0.4
02 0.2
0.0 0.0
30
-0.2 -0.2
-0.4 -0.4, ————
-0.6 -0.6, - -
-0.8 -0.8
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
arc length S [mm] arclength S [mm]

analyses based on the Ritz method assume that the load is acting on the
middle surface of the shells. The finite element method allows to model
more realistic case, where the load is applied to the internal surface of
the pressure vessels. In the effect of this issue, the total external load
magnitude is greater in the Ritz method analyses, which causes elevated
values of the strain energy. Nonetheless, to evaluate the quality of
the solutions based on the semi-analytical approach it is necessary to
address the significance of such differences. Among the results given
in Tables 19, 20, 23 and 24 the peak stress value is of the greatest
importance in the design of the pressure vessels. The maximum relative
difference of 1.31% for the peak equivalent stress is observed for
the pressure vessel with ellipsoidal ends and the orthotropic material.
Importantly, the change of the material properties from isotropic to
orthotropic did not influence significantly the accuracy of the solutions.
The minor inconsistency is seen for the equivalent stress (Table 22) at
the apex of the dished ends where arc length S = 0, due to nonuniform
material properties towards principal directions of the shells. Such issue
can be easily addressed by applying more independent variables into
the displacement functions.

21

The results of the study indicate that the form of the displacement
functions does not have a great effect on the solution, however the
number of independent variables must be relatively high to meet
required precision of the displacement and stress distributions. Within
the paper it is suggested that polynomials of order six are insufficient to
successfully describe the displacements in the analysed pressure vessels.
The increase of the polynomial order to ten enabled to achieve satis-
factory results. The displacement functions in the form of polynomials
and trigonometric series led to minor problems with the solution for the
cylindrical and spherical shells for the thickness # = 5 mm. The problem
was addressed by introducing the displacement function based on
modified trigonometric series formulated in the similar manner to the
analytical solution of differential equations of the edge effect theory.
The function was used exclusively to describe the normal displace-
ments in the shells of constant radii of curvature i.e. cylindrical and
spherical.

According to the obtained results there are severe differences be-
tween stress and displacement distributions for the pressure vessels
with ellipsoidal and equivalent torispherical ends. Such issue indi-
cates that the design method provided in the standards is far from
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Table 22
Vertical displacements comparison for the displacement functions based on polynomials and modified trigonometric series — orthotropic
material.
t . . . .
torispherical ends ellipsoidal ends
[mm]

Equivalent stress o, [MPa] 200 Equivalent stress -, [MPa]
external surface (RM) exter rface (RM)
middle surface (RM) middle surface (RM)

——— internal surface (RM) 160 -~ ——— internal surface (RM)
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:
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precise. Despite the relative peak stress difference between ellipsoidal
and equivalent torispherical end ranges from 32% to 56% depending
on thickness, the standards allow to design the latter as true ellip-
soidal end. To further investigate this discrepancy, the analyses should
consider the shape of the imperfect, manufactured dished ends. The
performed analyses showed that the influence of the orthotropy on
the stress distribution is crucial, therefore it should be taken into
consideration during the design of pressure vessels. The values of the
orthotropy coefficient lesser than unity i.e. when strain hardening is
greater towards the meridional direction can lead to the problem where
the peak stress moves to the vertex of the dished end. The presented
results considered less negative case where the orthotropy coefficient
is greater than unity. The real values of the orthotropy coefficient
in the pressure vessels are difficult to predict due to the possible
variances in the mechanical properties of different steels as well as the
manufacturing processes.

Summarizing the findings of the performed analyses one may con-
clude that the accuracy of the achieved results is preserved for rela-
tively thick shells considering their thickness to radii of curvature ratio,
even in the areas of discontinuity. The outcome of the study shows the
potential in the application of the Ritz method to the static problems

22

Table 23
Results comparison summary for the pressure vessel with
— orthotropic material.

torispherical dished ends

t [mm] Ritz method FEM Relative difference [%]
5 266.0 266.1 0.02064
Grmax [MPa] 15 229.7 230.2 0.2098
30 216.5 219.0 1.096
5 0.6546 0.6549 0.04571
dypax [Mm] 15 0.5333 0.5343 0.1799
30 0.4289 0.4314 0.5885
5 16.40 16.36 0.1858
U, [kJ] 15 46.502 46.203 0.64758
30 87.690 86.463 1.4190

not only considering the pressure vessels, but for the design of wide
spectrum of the shell structures.
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Table 24

Results comparison summary

for the pressure vessel with ellipsoidal dished ends

— orthotropic material.

t [mm] Ritz method FEM Relative difference [%]
5 169.5 169.1 0.1931
Gomex [MPal 15 165.8 166.1 0.2163
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U, [kJ] 15 39.89 39.50 0.9985
30 77.14 75.61 2.020
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The paper is devoted to diminishing of the edge effect in three nonstandard dished heads of a cylindrical pressure
vessel subjected to internal uniform pressure. The problem of the edge effect diminishing in the joint of the
dished head with the cylindrical shell is analytically and numerically studied. The meridians of the analysed
dished heads as the shells of revolution are plane curves in the Cassini oval, Booth lemniscate and clothoid forms.
Geometrical relationships of the middle surfaces of the dished heads are formulated. The stress state of these

dished heads are analytically and numerically studied using finite element method in Ansys system. The results
of the studies are compared and presented in Tables and Figures.

1. Introduction

Stationary or mobile pressure vessels usually consist of the cylinder
and two dished heads. Such structures are loaded with internal, uniform
pressure. Standard shapes of the dished head i.e.: hemispherical, tori-
spherical and ellipsoidal are subjected to the stress concentration oc-
curring in the area of joint of the cylinder and dished head. The mini-
mization of the stress concentration is a significant problem,
particularly in designing of pressure vessels. Stress concentration phe-
nomenon, caused by the bending of the structure in the meridional
plane is called the edge effect. Reason of such structural behaviour is
sudden change in the meridional curvature in a dished head.

Ventsel and Krauthammer [1] among others, described, the basis of
the theory of thin-walled shells, membrane and bending states with
special attention paid to the edge effect. There are many papers devoted
to the problem of the edge effect minimization. Magnucki and Lewiriski
[2] formulated and theoretically analysed the problem of bending and
shear stresses in the joint of the pressure vessels by introducing some
special function describing shape of the meridian. Zingoni [3] ex-
plained the theories of membrane and bending behaviour of elastic
shells, and applied those theories to numerous practical engineering
cases. Magnucki et al. [4] described the minimization of stress con-
centration factor in cylindrical pressure vessels with ellipsoidal heads.
Ortega and Robles [5] investigated a methodology of finding optimal
forms of shells of revolution, which enables obtaining approximately
bending-free geometries. Banichuk [6] presented shape and thickness

* Corresponding author.
E-mail address: krzysztof.sowinski@put.poznan.pl (K. Sowiriski).

https://doi.org/10.1016/j.tws.2018.07.018

optimization of the shell of revolution. Kisioglu et al. [7] considered
strength and buckling of propane cylinder end-closures using experi-
mental and numerical approaches. Blachut and Magnucki [8] presented
a review work concerning optimization in terms of structural stability
and strength of pressure vessels. Zingoni [9] presented simplification of
determining influence coefficients in force method referring to various
shells in non-membrane stress state. Lewiriski and Magnucki [10] pro-
posed cosinusoidal-spherical dished head shape of a cylindrical pres-
sure vessel which highly reduced the edge effect. Kruzelecki and
Proszowski [11] presented the shape optimization of dished head re-
presented by convex Bézier polynomial. Zingoni investigated dis-
continuity effect in the shells junctions considering multi-segmented
spherical shells [12], sludge digesters [13,14] and conical shells [15].
Pietraszkiewicz and Konopiniska [16] delivered a wide review of mul-
tiple types of joints in shell structures in the aspects of stress distribu-
tion. Magnucki et al. [17] focused on elimination of the edge effect in
pressure vessels. Authors proposed a meridian of dished head in form of
a polynomial of the fifth degree and a circular arc. Such shape ensured
significantly lower effect of the bending. Zingoni [18] reviewed recent
research on the strength, stability and vibration behaviour of liquid-
containment shell structures.

Due to thin-walled nature of pressure vessels, structural stability has
great meaning in their analysis. Blachut [19] presented buckling of
composite shallow spherical caps loaded with external pressure. Bta-
chut [20] reviewed buckling behaviour of multiple shell structures in-
cluding domed ends. Blachut [21] compared sensitivity of buckling
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load to initial shape imperfection of externally pressurised steel domes.
Jasion and Magnucki described the buckling problems of Cassini ova-
loidal [22] and clothoidal-spherical [23] shells under external pressure.
Btachut [24] investigated buckling, collapse and first ply failure of
spheroidal shells under external pressure. Zhang et al. [25] analysed
buckling and post-buckling behaviour of egg-shaped shells. Zhang et al.
[26] examined the effect of shape on elastic buckling of Cassini oval
shells under uniform external pressure.

It is assumed within paper, the desired shape of the dished head
must meet two particular conditions. Maximum stress in a cylindrical
pressure vessel shall not be higher than in a cylindrical shell in the
membrane stress state. The above condition implies elimination of the
edge effect in the area of joint. The second condition is to achieve
membrane stress state in the whole structure, maintaining possibly
lowest value of the relative depth of dished head. Reasoning behind it
lies strictly within practical importance i.e. applications and manu-
facturing process.

The subject of the analytical and numerical studies of the paper
includes the following three nonstandard Cassini ovaloidal, Booth
ovaloidal and clothoidal dished heads. Exemplary shapes of these
curves are shown in Fig. 1. Their mathematical description is presented
later in the paper.

The meridional curves are formulated in such a manner that allows
to modify relative depth of the dished head, therefore their curvatures
and stress distribution change. Stress concentration factor is being
analysed in a function of the relative depth for the selected curves. The
problem is investigated analytically as well as with the use of FE
method.

2. Analytical study
2.1. Membrane stress state

Meridional and circumferential force intensity: N;, N, in the shell
structure loaded with internal uniform pressure are following:

1
N, = —pR,,
1 2P2 1)

N, = lPRz 2—& s
2 R 2)

where: p - internal uniform pressure, R;, R,- meridional and cir-
cumferential radius correspondingly
Stress resultants in the principal directions:

3

where ¢, is the thickness of a shell.
Equivalent von Mises stress

a) b)

A\
N—T—
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Oog = 012 — G102 + G2, 4

Applying above for the cylindrical shell for which Ri—c0, R, = R,
one obtains
V3
Teqo = _BRO,
L

2 5)

where R, is radius of cylindrical shell.
To compare equivalent stress in both parts of a vessel, relative
equivalent stress is introduced

P Oeq h
5= Jah

(6)

B
Ueq 0

where: g, , — equivalent von Mises stress in a dished head.
2.2. General geometry of dished head

Any dished head as a part of cylindrical pressure vessel is a surface
of revolution with positive Gaussian curvature. Standard dished heads
are ellipsoidal, torispherical and hemispherical. The geometrical rela-
tion for any surface of revolution is

%(stine) = Rycos6, 100
where angular coordinate 6,<6<6;.

Geometry of a cylindrical pressure vessel is presented in Fig. 2.

As it appears from Fig. 2 and Eq. (7) geometry of a dished head can
be defined by the principal radii: R, R, in a function of the angular
coordinate 0 < 6 < 7/2. Assuming that dished head is represented by a
plane curve (meridian) r(x) described in Cartesian coordinate system,
meridional principal radius can be resolved from equation

[T

R =-

d?r

o ®
R, = 1+ —| .
? r\/ +(dx) ©

Circumferential radius is defined in following manner
Length of an arbitrary meridian in Cartesian coordinate system

b dr\?
s = ‘/o- VH—(E) dx
To maintain consistency of the vessel geometry in the joint of the

cylindrical shell and a dished head, following conditions must be ful-
filled

dr
—lp =0,
ax

(10)

r(0) = Ry. an

Fig. 1. Exemplary shapes of: a) Cassini ovals, b) Booth ovals, c) generalized clothoids.
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Fig. 2. Geometry of a cylindrical pressure vessel.

Standard dished heads are subjected to stress concentration due to
discontinuity of their curvatures with the cylindrical shell. Necessary
condition of the edge effect elimination is equality of the meridional
radius in the joint
limR; = oo.
w0 (12)

It is more convenient to express necessary condition (Eq. (12)) in
terms of the curvature

1

K=—,
1 R1

13

K;(0) = 0. a4

Necessary condition is insufficient to eliminate the edge effect. To
define sufficient condition one must consider the change in the mer-
idional curvature of the dished head. Such condition is not defined yet,
therefore the problem remains vital. However, to reduce intensity of the
edge effect in the joint, condition of continuity of the meridional cur-
vature is introduced

Fraie as)

Important geometrical parameter of the dished head is its relative
depth S, defined as follows

Ry (16)

where: R, — radius of the cylindrical shell, i - depth of the head (Fig. 2).
Due to practical limitations related to manufacturing process of the

T
? ¢ tangent at 7 (0)

cylindrical shell
ovaloidal heads

dished heads it is essential to keep relatively low value of parameter 3.
For standardised ellipsoidal heads it is 8 ~ 0.5.

2.3. Cassini ovaloidal dished head

Cassini oval is a quadratic plane curve described as a set of points,
such that the product of its distances from two fixed points is constant.
Considering the desired shape of dished head, only flat (Fig. 1) oval is
taken into account. Such choice ensures continuity of meridional radius
in the joint of the pressure vessel (Eq. (15)). To change the relative
depth of the head, standard geometry of Cassini oval is modified to
following form

r(§) = Ro%(§), a7)

L E
FE = |-1- 3—+2\/1 +35
Ty B B 18)
where £ = x/R, is a dimensionless coordinate 0 < £ < g.

Ovaloidal heads, based on Eq. (18) for various value of parameter
are shown in Fig. 3.

Meridional radius R, . and dimensionless meridional radius R, . for
Cassini oval are obtained

Ri.= ROE o &)
3
9 C-A®)»? 2]2
o= _1/32 [1 + ﬁ‘*Al(s)Zﬁ-(E)Zg
R N N D GG
AORE B PAGEAGE ° (20)

Fig. 3. Dished heads based on the flat Cassini oval with
various relative depth f3.

axis of revolution 0.4 0.8 12 1.6 2.0
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where

(21)

It follows from Eq. (20) that regardless of relative depth 3, necessary
condition (Eq. (12)) is fulfilled. Moreover condition described by Eq.
(15) occurs

dKl c

lo =0. 22)

Full description of Eq. (22) is not presented due to its cumbersome
form. Referring to Eq. (9) circumferential radius of Cassini ovaloid is
obtained

9 2-AQ))

Re= R+ O (23)

Length of the meridian in form of modified Cassini oval is following

Se = Ro%e, (24)
dimensionless curve length

B f \/ /39“ f(j(;)‘; (f ();)Zgzczg_ (25)

Dimensionless meridional curvature K. in a function of di-
mensionless curve length 3, for Cassini ovaloids with different § para-
meter is presented in Fig. 4.

From Egs. (1) and (2) meridional and circumferential force intensity
are obtained. Applying those to Egs. (3) and (4) equivalent von Mises
stress distribution is evaluated. Fig. 5 presents relative equivalent stress
for Cassini ovaloidal heads &, (Eq. (6))

2.4. Booth ovaloidal dished head

Booth lemniscate is a plane curve of order four. Assuming desired
shape of a dished head only flat (Fig. 1) Booth lemniscate is considered.
To change relative depth of a dished head, standard geometry of flat
Booth lemniscate is modified to following form:

1(§) = R (§),

HEEREC]

(26)

() =
27)

Dished head, based on the curve (Eq. (27)) for various parameter
are shown in Fig. 6.

Meridional radius R, , and dimensionless meridional radius R, of
Booth ovaloid are obtained

0.5

L0 L5 20 25 3

Fig. 4. Dimensionless meridional curvature for Cassini ovaloids with different
relative depth f3.
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Qi

0.5 Lo L5

Fig. 5. Relative equivalent von Mises stress for Cassini ovaloids with diverse
relative depth 8.

Ryy = RoRy, (28)
[ 8 (1-Bi() gz]
~ V2, B 516756
Rip=—-—F ,
4 1-B1§) _ 4 B1®)-1’Bi)+2B261 4
B®B©) B2 B1(&*B2(&)? ° 29)
where:
| £y
Bl(§)=\/1+2 2>,
B (30)
§ 2
By(¢) = \/1—( f) +B(®).
(€20)]

Analogously to Cassini ovaloid, Booth lemniscate, regardless of
parameter meets the condition (Eq. (12)). Additionally such curve
meets the condition described by Eq. (15). Dimensionless meridional
curvature for Booth ovaloids K, with different 8 parameter is pre-
sented in Fig. 7.

Circumferential radius is determined from Eq. (9)

8 (1

) B©)
f%=““@%+a3@éﬁy

Length of the meridian in form of modified Cassini oval is following

2
& (32)

b = Ro5Sh, (33)
dimensionless curve length
~ k 8 (1-B:i(§)* ,,
= 1+ ———282dE.
=, \/ FROBE © 34)

From Egs. (1) and (2) meridional and circumferential force intensity
is obtained. Applying those to Egs. (3) and (4) equivalent von Mises
stress distribution is evaluated. Fig. 8 presents relative equivalent von
Mises stress for Booth lemniscate &, (Eq. (6)).

2.5. Clothoidal dished head

Clothoid is a curve the curvature of which changes linearly with its
curve length. Complete description of its geometry can be found in
[27]. To study the edge effect, geometry of a clothoid is modified by
adding exponential coefficient k. The new curve is named generalized
form of clothoid. Such modification allows to change relative depth of
the dished head. Principal radius of the generalized form of clothoid is
expressed in following manner

).

a

1s = a(_
N

(35)
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Fig. 6. Dished heads based on the flat Booth lemniscate
with various relative depth .

axis of revolution 0.4

)
8]

i B=1.6
1.0

0.5

Sp

0 0.5 1.0 L5 2.0 25,

Fig. 7. Dimensionless
relative depth .

meridional curvature for Booth ovaloids with different

1.0 25 s,

Fig. 8. Relative equivalent von Mises stress for Booth ovaloids with diverse
relative depth f3.

where: a - size coefficient, s — curve length.
Geometry of generalized form of clothoid is described by the para-
metric equations:

X = craX, (36)
y = cay, (37)
where coefficient ¢
1
(1+k )m
Ck=|—T .
2 (38)

Dimensionless coordinates X and ) are following:

750

X

4
fl cos(zt“")dt,
0 2
5
fl sin(zt“")dt,
0 2

t — dimensionless parameter (0 < t<f). Assuming the
dished head parameter # must be in the range 0<f; < 1.

Size coefficient a can be evaluated assuming value of cylindrical
shell radius R,

39

V= (40)

shape of the

Ro
ay @)’

41)

To describe generalized clothoid in a similar manner to previous
curves it requires modification of its coordinates. Considering above
description of the geometry one may obtain coordinates in following
form:

Xs = RoX;, (42)
k= R, (43)
where dimensionless coordinates:
f g k
~ A cos(;t” )dt
Tl (matk) gy
A sm(;t + )dt (44)
‘/:1 sin(%t”")dt
A _—
1 . T 14k
A sm(;t + )dt (45)

Determining geometry of generalized clothoid requires solving Egs.
(44) and (45) by numerical integration. To obtain exponential coeffi-
cient k for some specific values of parameter 8 one must take into ac-
count following relation

~ ‘[(;1 cos(%t”")dt.
- /(;1 sin(%t“")di (46)

Considering the form of Eq. (46), coefficient k cannot be resolved
analytically, therefore numerical methods are required. Selected values
of 8 and corresponding parameters k are shown in Table 1.

Geometry of dished heads described by generalized form of clothoid
are presented in Fig. 9.

From Eq. (35) it stands that for k = 1 generalized clothoid re-
presents a standard clothoid, and for k = 0 it is an circular arc. With the

Table 1
Relative depth B and corresponding exponential coefficient k.

Relative depth 8
Exponential coefficient k

0.4
— 0.676

0.8
—0.241

1.2
0.250

1.6
0.764

2.0
1.292

2.4
1.825
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Fig. 9. Dished heads based on the generalized form of
clothoid with various exponential coefficient k.

axis of revolution 0.4 0.8

increase of exponential parameter k the relative depth 8 of the dished
head increases. As it is shown in Fig. 9, for k < 0 (8 < 1) there is no
consistency of the geometry (Eq. (11)), therefore such cases are
omitted, thus k > 0. Meridional and circumferential radii are expressed
correspondingly:

Riy = qaRis, (47)
Ry = craRys, (48)
where dimensionless radii R, Ry:
Es = #7

(1+k) 7tk (49)
I~ 7y
Ryy=—7F7"—.

cos(;tﬂ*k) (50)

For k > 0 radius of generalized clothoid in the joint is infinite
R;(0)>c0, while for k =0, meridional radius remains constant
Rl s = Ry, which represents the hemispherical head. To analyse the
geometry profoundly, curvature is derived

dKls — LCH’ZIS

dt  cwa dr’ (51
dR, _, Q+k)mth!

e~ 2 ’ (52)

Unlike the previous two curves, derivative of curvature (Eq. (52)) in
the joint (¢t = 0) varies depending on k parameter. Moreover it is de-
scribed with a different parameter. Although it can be assumed that
t —» x for t ~ 0, therefore derivatives of curvature for all curves can be
compared in the joint. It can be observed that for k < 1, Eq. (52) is
infinity, while for k > 1 it remains zero. Additionally, when k = 1, limit
of derivative of curvature remains constant and is equal to 7. In this
case, it describes standard clothoid for which curvature changes line-
arly along its length. Length s; and dimensionless length 3 of general-
ized clothoid is following:

Ss = Ro5Ss, (53)
.
s 1 . T k :

A sm(;t1+ )dt (54)

Dimensionless meridional curvature XK, in a function of di-
mensionless length of the curve is presented in Fig. 10.

To calculate the membrane stress resultants (Eq. (3)), circumfer-
ential radius R, is necessary (Egs. (48), (50)), thus it is inevitable to
numerically resolve Eq. (45). Relative equivalent stress (Eq. (6)) for
clothoidal heads &; is presented in Fig. 11.

751

=0.9 =1.2

0 0. 25 3

(98

1.0 L5 2.0

Fig. 10. Dimensionless meridional curvature for

different exponential coefficient k.

generalized clothoids with

ST

1.0 s
0.9
0.8
B=1.6
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0.6
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Fig. 11. Relative equivalent von Mises stress for clothoidal heads with diverse
exponential coefficient k.

3. Numerical FEM study
3.1. Description of numerical analysis

From the membrane stress state it stands both bending and shear
forces are neglected to simplify the problem. Such approach is justified
for the structures with relatively low values of shell thickness and
smooth geometry. Edge effect cannot be studied referring to the
membrane stress state, therefore numerical FEM study is performed to
obtain stress concentration factors for previously presented dished
heads. Equivalent von Mises stress is analysed in the middle, inner and
outer surface of the pressure vessel. It is expected that analytical de-
scription must be compatible with FEM solution in the middle surface,
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excluding the area of the joint. Additionally elimination of the edge
effect implies absolute unity of analytical and numerical approach.

To study the edge effect, static structural analysis in Ansys 18
software is performed. Analysis is limited to some specific values of the
relative depth 8 = 0.1, 0.2, .., 2.5. Additionally since generalized clo-
thoid does not fulfil the geometry consistency condition for 8 < 1 (Eq.
(11)), the relative depth of clothoidal dished heads must be equal to or
greater than unity (8 > 1). To achieve similar length of the pressure
vessels meridians, constant volume is assumed. Due to that the length of
the cylindrical shell is variable. The following geometrical dimensions
are taken into account: radius of the cylindrical shell Ry = 1000 mm,
shell thickness t; = 2 mm, volume V = 12.5 m®. The mechanical prop-
erties of the material are: Young's modulus E = 205 GPa, Poisson's ratio
v =03.

Three symmetry planes are used to simplify the model, thus one-
eighth of the pressure vessel geometry is analysed. Those planes are two
mutually orthogonal, meridional planes and the plane dividing the
model in half along its length. Symmetry conditions on the three edges
are sufficient to support the structure. The model is loaded with internal
uniform pressure which translates into nodal forces at each node of the
mesh. Digital surface model of the pressure vessel is split into second
order, quadrilateral and triangular shell elements SHELL281. Each node
of the finite element has six degrees of freedom. Equivalent von Mises
stress is analysed on the middle, inner and outer surface of the pressure
vessel along its meridian. The FE model of the pressure vessel is pre-
sented in Fig. 12. Assumed finite elements size is 15 mm which ensures
smooth stress distribution along the meridian. Importantly such size
can be considered excessive to provide negligible values of discretiza-
tion error, therefore mesh convergence analysis is not presented.

3.2. FEM results

Numerous FE models are solved to investigate the problem of the
edge effect. Stress distribution along the pressure vessel meridian for
three different types of heads are presented in Figs. 13-15. Numerical
solution is compatible with the analytical solution in the membrane
stress state in the middle surface, except the area of joint. Reason of
such discrepancy is the membrane stress state disturbance due to the
edge effect. Analytical solution is not presented on Figs. 13-15 to
maintain good readability, however those can be compared with
Figs. 5, 8, 11.

Presented solutions show that for all types of dished heads the edge
effect decreases with an increase of parameter . Such structural be-
haviour is related with the change of the meridional curvature dis-
tribution in the joint area. Intensity of the edge effect varies depending
on the type of dished head. Comparing Figs. 13 and 14, for 8 = 0.6 and
B = 0.7 it can be seen that the edge effect intensity is lower for Cassini

meridian
(symmetry)

_ SHELL2SI
(uniform, internal pressure)

axial vertex

meridian
(symmetry)

Fig. 12. FE model of the pressure vessel.
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oval, similarly to its curvature growth. Therefore, performed study
shows that the edge effect is characterised not only by the curvature in
the joint, but also by its distribution in the area of joint. To fully
eliminate the edge effect the meridional curvature must change
smoothly, with suitably moderate tempo. Importantly, for all of the
analysed curves peak stress value in the area of joint is observed in the
outer surface of the cylindrical shell. This is not a general tendency for
all cylindrical pressure vessels, since for some of the normalised dished
heads peak stress occurs beyond the cylindrical shell.

Additionally for both ovaloidal heads, for relatively low values of
relative depth f peak equivalent stress arises beyond the joint area. For
those cases, presented in Figs. 13, 14 stress values significantly vary in
the outer, middle and inner surfaces. It is essential that membrane stress
state describes precisely stress in the middle surface. However, despite
assuming particularly low value of shell thickness ¢, comparing to the
other geometrical dimensions, from numerical solution it stands stress
may vary considerably across the thickness due to bending. Reason for
that is a significant change in the meridional curvature. Such issue
undoubtedly increases peak stress in the structure, therefore membrane
stress state is insufficient to analyse stress in those cases.

To summarize obtained results maximum values of the stress in the
cylindrical shell and dished heads is compared to the membrane stress
in cylindrical shell .4 ¢ (Eq. (5)). Following relative equivalent stresses
are introduced:

=~ Tcc = 9 b =~ e s
Occ = > Gep = > Oes = ’
Ueq 0 aeq 0 Geq 0 (55)

where: o, 6., 0.5 are maximum values of the equivalent stress in the
cylindrical shell in the pressure vessel based on Cassini oval, Booth
lemniscate and clothoid correspondingly,

Gro= He, G,= b g, =T,

Ueq 0 aeq 0 Ueq 0 (56)
where: gj, ., 0, Oy s are maximum values of the equivalent stress in the
dished head in the pressure vessel based on Cassini oval, Booth lem-
niscate and clothoid correspondingly.

From Fig. 16 it stands stress concentration factor in the area of joint
has certainly lower values for the ovaloidal dished heads. Those geo-
metries fulfil introduced condition of continuity of meridional curva-
ture (Eq. (15)). It can be observed that all relative maximum stress
values converge to a value greater than unity. Reason for that is stress
variability across shell thickness in FEM solution. In fact presented re-
sults converge to the relative stress value in the inner surface of the
cylindrical shell. Such negligible stress differences are omitted in
membrane stress theory by assuming stress is constant across the
thickness. Observed convergence is much faster for Cassini oval and
Booth lemniscate.

4. Conclusions - final remarks

Presented work focused on achieving the membrane stress state in a
cylindrical pressure vessel with three nonstandard dished heads in
Cassini oval, Booth lemniscate and clothoid form. Membrane stress
state implies elimination of the edge effect. Such phenomenon is caused
by the bending moments and shearing forces in the meridional plane of
a shell. The problem of elimination of the edge effect is important
particularly in designing pressure vessels. Many papers revealed that
achieving negligibly intensity of the edge effect is possible for dished
heads with relatively high values of relative depth §. Similarly, in
presented study the edge effect was gradually reducing while increasing
parameter 3, which eventually leads to the membrane stress state.
Depth of a dished head has great meaning in terms of practical im-
portance, therefore normalised ellipsoidal and torispherical heads are
suitably shallow. Elimination of the edge effect referring to dished
heads must be considered maintaining possibly low value of the relative
depth.
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Fig. 13. Equivalent stress along tank meridian with Cassini ovaloidal heads with variable parameter f.
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Fig. 14. Equivalent stress along tank meridian with Booth ovaloidal heads with variable parameter f.
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Fig. 15. Equivalent stress along tank meridian with clothoidal heads with variable parameter .

Study shows that curves meeting the necessary condition of the edge
effect elimination can still be prone to stress concentration in the area
of joint. The problem is especially evident for clothoidal heads, which
meet such condition for 8 > 1. Ovaloidal dished heads fulfil proposed
condition of the continuity of the meridional curvature, which ensures
considerably lower values of stress concentration factor in the area of
joint. Moreover, dished heads based on Cassini oval and Booth

753

lemniscate are characterised by substantially higher convergence ratio
(Fig. 16). Consequently membrane stress state is achieved for lower
values of relative depth. However, such geometries are susceptible to
significantly greater values of stress beyond the area of joint for rela-
tively low values of relative depth 8 due to bending. Reason for that is
sudden change in meridional curvature. However, to define relatively
shallow dished heads, meridional curvature must change at
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Fig. 16. Relative maximum values of the equivalent stress

smped 5;,‘. & described by Egs. (55), (56).

71 (4) (2007) 527-535.

*
0.7
0.2 0.4 0.6 0.8 1.0 2 1.4 1.7 1.8 p
considerably high rate. Having that in mind reducing both relative
depth and the edge effect intensity is contradictory in some measure. 71

Importantly, presented results show that elimination of the edge effect
is not possible, however shaping of the dished heads allows to achieve
negligible intensity of the investigated phenomenon.

Introduced condition (Eq. (15)) has significant meaning in terms of
shaping the dished heads. Fundamental problem in shaping the dished
heads is to ensure that maximum stress in the structure is not higher
than in a cylindrical shell in the membrane stress state. Therefore, it is
crucial that the edge effect must be primarily diminished in the area of
joint. Presence of the edge effect beyond the joint does not necessarily
imply excessive values of the stress, which can be observed in Figs. 13,
14. Additionally to achieve a desired geometry of the meridional curve,
its curvature distribution must be undoubtedly taken into account.
Curvature shall meet the introduced condition, and have possibly
smoothest distribution along curve length.
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The standard geometries of dished ends of cylindrical pressure vessels were developed at the beginning of the
last century. Among them, there are ellipsoidal and torispherical geometries characterized by disadvantageous
stress distribution, which is the primary determinant when designing shell structures. This paper focuses on
shape optimization of dished ends with the depth equivalent to the standard ones, with the intent to minimize
the maximum von Mises stress in a cylindrical pressure vessel. Referring to the Bézier curve (BC), a unique
geometry of arbitrary order is developed to describe the parametric shape of the dished end. The optimization
is implemented using two approaches. Initially, the fitness function is obtained analytically through the
membrane theory (MT). A deterministic optimization algorithm is adopted to complete the procedure. Further,
the optimization method is modified to obtain the fitness function using the finite element method (FEM). To
process the solution, a genetic algorithm (GA) is employed. The obtained improvement of stress distribution
is compelling while maintaining the manufacturability of the shell structure.

1. Introduction

Shell structures are widely used in numerous applications in engi-
neering. The fundamental theories concerning thin-walled shells are
discussed by Mazurkiewicz and Nagorski [1], Magnucki [2], Ventsel
and Krauthammer [3] and Zingoni [4]. The most common types of such
structures are cylindrical pressure vessels. Their purpose is mainly to
store and transport gases and liquids, which can be considered a basic
need of many industries. Typically, cylindrical pressure vessels consist
of a cylindrical shell and two convex dished ends manufactured in
plastic forming processes. Their design and shapes are described within
consistent European and American standards, i.e. EN 13445 [5] and
ASME Section VIII, Division 1, 2 [6,7].

A comprehensive review of dished ends, including standard geome-
tries and untypical shapes, was performed by Magnucki et al. [8].
The standard dished ends are ellipsoidal, torispherical and hemispher-
ical. The first two types are primarily used for the manufacturing of
cylindrical pressure vessels. Notably, technical standards also allow
to design and manufacture ellipsoidal dished ends as equivalent tori-
spherical shells in terms of their relative depth, often referred to as
semi-ellipsoidal dished ends. This approach is proven to be debat-
able due to severe discrepancies in stress distributions in the elastic
range [9,10]. The hemispherical shape is characterized by a higher
cost of production and the decrease in volume of the pressure vessel
compared to other geometries due to its significant depth. For those
reasons, this type of dished end is not common in industrial pressure
vessels.

The stress distribution is usually the fundamental factor in designing
various structures, including pressure vessels. Peak stress value can
be viewed as the primary determinant of shell thickness considering
structural analyses. This implies that minimizing the maximum stress
can result in a diminishing of the thickness, which is desired from
an economic standpoint. Assuming the thickness remains unchanged,
pressure vessels can be loaded with higher pressure to increase the
stored energy density. This topic became a severe issue due to the
recent development in hydrogen energy, requiring efficient storage and
transportation systems [11].

Despite well-known drawbacks of hemispherical ends, those are
characterized by favourable equivalent von-Mises stress distribution.
The dished ends with smaller relative depth, e.g. torispherical, ellip-
soidal or semi-ellipsoidal, are characterized by significant disturbance
in the stress near the junction of dished end and cylindrical shell
[9,12,13]. Such phenomenon, referred to as the edge effect described
in the literature [1-3], is the result of interaction between joined shells,
introducing transverse force and bending moment in the junction.
The described phenomenon significantly increases the maximum stress
value in the structure.

Interestingly, there is no apparent justification for the shapes of
dished ends presented in technical standards [5-7]. Those geometries
were supposedly arbitrarily assumed due to their simplicity and man-
ufacturability, which is understandable, especially considering the first
version of the ASME Boiler and Pressure Vessel Code was published in
1915 [14]. Despite the progress in science and technology, which has
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a tremendous effect on the industry, the shapes of dished ends remain
unchanged throughout the last century.

Performing stress and deformation analyses of shell structures re-
quire insight into the possible methods for solving such problems.
Literature concerning shell structures [1-4] describes two theories that
enable to study of stress and deformation in shell structures, i.e. mem-
brane theory (MT) and moment theory. The first of them neglect the
bending phenomenon and restrains the internal loads only to normal
forces. Such an approach is only justified for shells for which thickness
to radii of curvature ratio is sufficiently low, and the changes in prin-
cipal radii are smooth. The analyses based on the MT are satisfactory
merely for shells with constant radii of curvature, i.e. hemispherical or
cylindrical shells.

The moment theory assumes internal forces in a shell in the form
of normal and transverse forces as well as bending and twisting mo-
ments. Unfortunately, the governing differential equations of moment
theory are currently impossible to solve for shells with variable radii of
curvature. To study the bending phenomenon in shell structures, one
may refer to the edge effect theory, which constitutes a simplification
of the moment theory. The edge effect theory can be considered accu-
rate [15] when the shell is sufficiently thin, the change of curvature
is moderate for the joined shells and the relative height of the shells is
considerable. One must note, however, that in the case of the structures
with discontinuous radii of curvature e.g. most the cylindrical pressure
vessels, the edge loads are initially unknown. Those can be calculated
only by defining displacements and rotations compatibility equations.
Such an approach implies the displacements and rotations caused by
surface loads e.g. pressure, are resolved according to MT. For the shells
with variable radii of curvature MT can become inaccurate, even for
relatively thin shells. This yields inexact values of the edge loads,
which in consequence directly reduces the accuracy of the edge-effect-
approach solution, regardless of the accuracy of the edge effect theory
itself.

Numerous authors have studied the optimization of pressure ves-
sels and dished ends themselves. Magnucki et al. [16] focused on
reducing the peak stress in a cylindrical pressure vessel by introducing
the dished end based on a composite curve of a circular arc and a
polynomial of the fifth degree. Magnucki and Lewiniski [17] aimed
at finding a shape of a dished end that ensures its full charge with
stress. Banichuk [18] presented the optimization of a shell structure of
revolution, including both shape and thickness distribution. Lewiriski
and Magnucki [19] developed the shape of the dished end described
by the trigonometric series and optimized its geometry by applying the
condition of continuity of the curvatures in the joint. Kruzelecki and
Proszowski [20] proposed the two- and one-arc dished ends described
by different functions, including Bézier polynomial and optimized their
shapes using simulated annealing algorithm. Blachut [21] considered
parabolic and cubic splines together with circular arcs to approximate
the meridional shape of externally pressurized domes in the process of
maximizing the collapse pressure.

The primary issue with the optimization procedure is the lack of
accurate analytical methods for solving the structural problems of
shells. The researches provided in papers [16-21] are based on the
MT. Despite a significant reduction of the stress concentration factor
due to optimization, the verification using FEM resulted in an elevated
peak stress value compared to the membrane state solution [16,20].
The reason for that is simply neglection of the bending phenomenon in
the analysed shell structures. It is necessary to consider more accurate
theories or methods to achieve a better outcome of the optimization.

Carbonari et al. [22] performed a more complex analysis and stud-
ied shape sequential linear programming optimization of axisymmetric
pressure vessel, intending to reduce von Mises stress. Within the study
framework, the fitness function was obtained utilizing FEM, where
the pressure vessel was modelled using 2D-axisymmetric shell finite
elements. Blachut and Ramachandra [23] considered the problem of
internally pressurized torispherical domes and proposed to optimize its
shape using genetic algorithms (GAs) and FEM.
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Fig. 1. The general geometry of the cylindrical pressure vessel.

The application of GAs, as the derivative-free method, gained signif-
icant attention throughout recent years in structural optimization [24].
It is most likely connected with their ability to operate on discon-
tinuous fitness functions present throughout any numerical analysis,
where the relationship between input parameters and output result
is undeterminable. There are numerous recently developed papers to
justify the given statement. Firlik et al. [25] focused on tram wheel pro-
file optimization using a biologically-inspired optimization algorithm.
Yang et al. [26] designed the novel corrugated hierarchical truncated
conical shells by adopting a surrogate model and GA. Kumar et al. [27]
presented an isogeometric shape optimization to design 2D auxetic
structures with a prescribed Poisson ratio. Liang and Li [28] developed
an optimization scheme to design the postbuckling behaviour of com-
posite laminates. Imran et al. [29] carried out design optimization of
composite submerged pressure hull under hydrostatic pressure. The au-
thors analysed the effect of orientation angles and the number of layers
on the load-carrying capacity of a submersible. Eshani and Dalir [30]
focused on optimum design to maximize the critical buckling load and
minimize the structural weight of an angle grid plate. Zhu et al. [31]
investigated the optimal shapes of reticulated shell structures with the
intent to maximize non-linear buckling load. Dias and Mahendran [32]
carried out the optimization of cold-formed steel framed wall studs with
sheathing restraints. Karimi and Kani [33] studied finding the worst
imperfection pattern in shallow lattice domes using GAs.

In this paper, the parametric shape of the dished end is described
using a Bézier curve (BC) of arbitrary order. Some particular restrains
are proposed and applied on its control points to satisfy numerous
geometrical conditions, including non-negative curvature. The shape
optimization of the dished end aims to minimize maximum equivalent
von Mises stress in a cylindrical vessel loaded with uniform internal
pressure.

The procedure is performed using two methods. Initially, equivalent
stress is solved analytically according to the MT, while the sequential
quadratic programming (SQP) algorithm seeks the maximum stress
along the meridian of the dished end and attempts to minimize it. Fur-
ther, numerical FEM calculations are conducted to validate the outcome
of the analysis. Realizing the simplified character of the MT and the
impact of the bending phenomena in shell structures, the procedure is
further changed. The stress distribution is resolved using FEM in ANSYS
software, where its peak value constitutes the fitness function. Due to
its discontinuous character, the optimization is performed using GA in
MATLAB software. A significant improvement in the maximum stress
over the standard dished ends is achieved.

2. Cylindrical pressure vessel geometry
Cylindrical pressure vessels consist of cylindrical shell enclosed

by two convex dished ends. The general geometry of the cylindrical
pressure vessel is presented in Fig. 1.
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Fig. 2. Dished ends according to EN 13445; (a) - torispherical, (b) - ellipsoidal, (c) - hemispherical.

Most of the pressure vessels are thin-walled shell structures which
can be described by the parameters referred to their middle surface
(Fig. 1), i.e. ¢ — meridional angle, R,, R, — meridional and circumfer-
ential radii, r — parallel radius, .S - meridian length. The relative depth
of a dished end is defined as

h
_h 1

p R (€]

The standard dished ends are ellipsoidal, torispherical and hemi-
spherical. Those are described and manufactured according to coherent
European and American standards, i.e. EN 13445 [5] and ASME Section
VIII, Division 1, 2 [6,7]. The description of parameters of those shell
structures can also be found in [9] (see Fig. 2).

It is convenient to formulate relative equivalent stress to study the
stress distribution in pressure vessels
5= —— @

r— 0’
ULCy)

. . vl
where: 6, — von Mises stress in a pressure vessel, o'

von Mises stress in a cylindrical shell beyond any stress disturbance
caused by the edge loads. Such formulation enables to define of the
stress concentration factor k, which is the maximum value of 5,:

— maximum

o_(max)
k= —— 3
(G0 3
Gr
where: ¢ - maximum von Mises stress in a pressure vessel. The

definition of stress concentration factor is similar to the one presented
in [8]; however, the denominator does not always refer to the result
of the membrane state analysis. For the FEM analysis, the value in the
internal surface is slightly higher than in the middle surface in case of
internal pressure or external under-pressure. This is due to the stress
component normal to the middle surface which leads to a change of
stress across the thickness. Such component is omitted in thin-walled
shells theories.

The dished ends with smaller relative depth, i.e. torispherical, ellip-
soidal or semi-ellipsoidal, are characterized by significant disturbance
in the stress near the junction of dished end and cylindrical shell. Such
phenomenon, referred to as the edge effect described in the litera-
ture [1,3] is the result of interaction between joined shells, introducing
transverse force and bending moment in the junction. The described
phenomenon significantly increases the maximum stress value in the
shell structure. The stress concentration factors for the cylindrical
pressure vessels with standard dished ends are shown in Table 1, [8,9].

Table 1
Stress concentration factor in standard dished ends.
t/R, [%] Stress concentration factor k
Hemispherical Ellipsoidal Equivalent
torispherical
(semi-ellipsoidal)
0.5 1.030 1.730 2.752
1.5 1.030 1.738 2.392
3.0 1.030 1.754 2.279

3. The parametric shape of the dished ends

Performing shape optimization of a structure requires defining its
geometry in some parametric form. Numerous types of curves have
been previously used to describe the parametric shape of such shells,
including trigonometric series [19], Bézier polynomials [20] and poly-
nomials [22]. The definition of a parametric curve fulfilling various
geometric conditions with a sufficient number of free variables can be
considered challenging.

Let us consider some parametric curve describing the meridian of a
dished end x (¢), y(¢) for which ¢, < ¢ < ¢;. To obtain an appropriate
geometry of dished end, applying adequate restrains on the introduced
curve is necessary. Assuming r — y (Fig. 1), its initial point must remain
coincident with the cylindrical shell, therefore:

x(6)=0.  y(&%)=R &)

The final point of the curve intersects with the axis of revolution of the
cylindrical shell:

x(&)=pR. y(G)=0. (5)
Furthermore, the curve is tangent to the cylindrical shell

dy

— =0, 6
dx x=0 ( )

and perpendicular to the axis of revolution, defined by two equivalent
expressions:

dx

dx a
dy

=0, = —00. (7)
y=0 dx x=pR

The conditions described in Egs. (4)-(6) can be applied to the
number of well-known curves. Satisfying the constrain in Eq. (7) is
difficult for the functions like polynomials or trigonometric series. In
previous studies, i.e.: [16,17,19,20], the authors combined a parametric
curve with a circular arc, which resolved this issue. Notably, the results
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Fig. 3. Triangular feasibility region I7I.

obtained in [20] show that complementing the dished end shape with
a circular arc generally worsens the optimization results.

To diminish the bending phenomena and to take into consideration
the manufacturability of dished ends with conventional methods, its
meridian should maintain non-negative meridional curvature in the
domain ¢, < ¢ < ¢, therefore:

()]

ac ¢

R ()=—————=—>0. (8)
g ag? T AT ac

The condition of the non-negative meridional curvature significantly

reduces the possibility of obtaining unfeasible curves that are pointless

to analyse. The creation of such geometries would drastically hinder

the optimization procedure, especially when the fitness function is

evaluated using FEM. Unfortunately, its application is complex if the

dished end is to be described by one continuous curve characterized

by some general form of the functions x (), y(¢). The form of the fifth-

order BC considered in [20] enabled to obtain of unfavourable, locally

concave dished ends.

Having in mind the restraints applied on the first derivatives of
the curve (Egs. (6), (7)), one can deduce that the functions with non-
negative curvature must be contained in triangular feasibility region I7
(Fig. 3) defined as

y(x)ell, 9

and described in the following manner (Fig. 1).
H={(x,y)GRZ:OSxSﬂR;—%x+RSySR}. 10

The restraint in Eq. (9) can be considered the necessary condition
of non-negative curvature, i.e. all of the curves fulfilling the condition
in Eq. (8) can be found in the region I1. Importantly, the expression
in Eq. (9) is not sufficient condition of non-negative curvature as many
curves in the region II can violate the prescribed restrain.

It is challenging to limit the parametric shape described by polyno-
mials or trigonometric functions in the region 1. The authors of [19]
and [20] cleverly reduced the number of independent parameters in
the functions describing the shape of the dished end, which enabled
to achieve geometrically feasible shapes for all possible values of
independent parameters. Notably, the more free parameters, the more
“flexible” the shape is, therefore the better solution can be obtained in
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the optimization process as presented in [20]. It proves that reducing
the number of independent variables limits the optimal solution.

Within the framework of this research, BC is selected to describe the
parametric shape of the dished end. The general form of the curve is
as follows:

n
n!

x(@) = ; mC a1 =0""x,,
(1mn

n
n! i n—i
=y " __ria- ,
y(©) ; TS =9
where: x;,y,; are coordinates of the control points denoted as ¢;, n —
number of control points. Let us consider a BC of an arbitrary degree
n — 1 defined by the set of n control points

c={cq,...,¢,}, 12)
while
G = (xci3yp[)5 i=1,...,n 13)

The convex hull property of BC implies the curve is always contained
within a convex hull of its control points. Following such property, if
the control points are defined in the triangular feasibility region I7,
then the curve is also contained in this region

cell = y(x)ell, 14)

which satisfies the necessary condition of non-negative curvature
(Eq. (9)). Moreover, the curve starts and ends in the first and last
control point correspondingly, therefore:

x, =0, Yo =R

cl (15)

Xen = PR, Yen =0.

The BC is tangent to the line intersecting the first two and the last
two control points. The constrain of tangency (Eq. (6)) and perpendic-
ularity (Eq. (7)) is satisfied by assuming:

Ye2 = Vel Xe(n—1) = Xen- (16)

Depending on the selection of the remaining control points, one
may obtain the curves that do not meet the condition of non-negative
curvature (Eq. (8)). The assumption of some additional restraints can
resolve this issue. The BCs are characterized by the variation dimin-
ishing property, which implies no line can intersect the curve more
times than it intersects the polygon defined by its control points,
i.e. control polygon. Notably, any curve with non-negative or non-
positive curvature cannot be intersected by any line more than twice.
Having those properties in mind, if the control polygon of a BC is
convex, then it has non-negative or non-positive curvature, as any line
cannot intersect such a curve more than twice.

It is necessary to introduce a method for selecting the control points
coordinates to obtain a convex control polygon. In the presented paper
following procedure is adopted. The location of the first and last control
point is selected according to Eq. (15) in the region IT, = IT (Eq. (10)).
To parametrize the described curve, auxiliary points k; = (xy;, yi)s
I; = (x;;,y;) are provided, where the coordinates of initial auxiliary
points are (Fig. 4):
xp1 =0, yn =R a7

For each of the auxiliary points, one of their coordinates remains
constant:

ya=R  x;=BR (18)
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The feasibility regions for the following control points are defined as
follows:
cell;,

I, = { (x,y) eR%: Xe(i—1) S X < Xgps

Yen = Ye(i-1) (19)
————— (¥ = X)) + Ve
Xen = Xe(i-1) e=b <=
Yi-1) = Ye(i-1
<y< 2D D (X - Xc(i—l)) + yc(i—l)} s
Xen =~ Xe(i—1)

therefore IT, = I1; = IT (Fig. 4).
To obtain the coordinates of control points c,, ...
points are defined in the parametric form:

,¢,_, the auxiliary

X = Xpmt) T K (Xen = Xamny) » Vi = A4Yi—ny, i=2,...,n—1, (20)
where:
0<Kk <1, 0<A<l, 1)
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Table 2

Arbitrary parameters of an exemplary BC of order four.
Ky K3 Ky Ay A3 n
0.3 0.4 0.5 0.8 0.7 0.6

which implies:

Xpi 2 Xp(i=1)» Vi £ Vig-1)- (22)

The position of ¢,, ...,c,_; is defined as the intersection of two lines
passing through the points {k,-,cn} and {/;,¢;_;} correspondingly, as
shown in Fig. 5, therefore formulae describing the considered control
points are as follows:

(xkiycn - ykixcn) (xli - xc(i—l)) - (xliyc(i—l) - ykixcn) (xki - xcn)
Xej = ’
(xki - xcn) (yli - yc(i—l)) - (yki - ycn) (xli - xc(i—l))
(xkiycn - ykixcn) (yli - yc(i—l)) - (xliyc(i—l) - ykixm) (yki - ycn)
Yei = .
(in - xcn) (Yu' - yc(i—l)) - (yki - ch> (x,,- - xt(i—l))

(23)

Despite the structure of Eq. (23) referring to the coordinates of
control points seem cumbersome due to its recurrent character, it can
be rewritten to a very convenient form:

Xei = ﬂR&’ Yei = R&’ (24)
aci aci

where:

Xei =K — 4 (k= 1) Xego1ys (25)

Yei = Z’iyc(ifl)’ (26)

ag =K — A (k= 1) ag_yy.- 27)

The following assumption is necessary to include the constraints in
Eq. (15):

X =0, Yer =1,

(28)
7cn = 0’ acn = 1'
Following Eq. (24), it is possible to express the control points in a
dimensionless manner assuming:

Xei = ﬁRici’ Yei = Ryci (29)

and further obtaining:

ici = &’ yci = & (30)

Aci ci

Similarly, one can describe BC (Eq. (11)) in the dimensionless form:

x(©)=pRXE),  y(©) =Ry BD

where:

n

20 = Y —E -0,

& i (n =1
(32)

n
o n! i i
— . 1=y ..

(9 ; TS

Let us further consider an exemplary BC of order four, i.e. n = 5
and apply the arbitrary values of parameters «;, 4;, shown in Table 2 to
create the curve. The position of the remaining points cs, ¢, is resolved
according to Eq. (24), which is presented in Figs. 6 and 7.

The BC based on the control points cy,...,cs shown in Fig. 7 is
presented in Fig. 8, where the light green area shows the convex control
polygon.

To satisfy the tangency and perpendicularity condition in Egs. (6),
(7), it is applied:

K =1 A=l (33)
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regardless of the order of BC, which result is shown in Fig. 9. Indepen-
dent parameters are further described as a vector V in the following
form

V={x... Apa ) (€D

Components of the variables vector are referred to as V;, where i =
1,2,...,2n—6.

According to the formulation of the proposed geometry, the para-
metric curve always fits the initially defined feasibility region IT and
satisfies all of the constraints, including non-negative curvature. Its
shape is defined by 2n — 6 parameters «;, A;, which values are simply
within the range of 0 < V; < 1. The order of the curve must be at
least three (n = 4) due to the constraints; however, it can be increased
indefinitely. This property is critical for optimization as it enables
arbitrarily assuming the number of independent parameters controlling
the shape. The increase of the curve order increases the number of its
degrees of freedom which potentially enables to obtain better solution
due to optimization. Interestingly, the geometry is proportional to the

i Kpns A3, ..
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Fig. 8. Control polygon for the exemplary BC.
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Fig. 9. Application of tangency and perpendicularity conditions.

parameter R, implying that the optimized shape can be adapted to
the cylindrical pressure vessels with any diameter. The mentioned
properties show that the curve is excellent for optimization as it is
unnecessary to introduce any other constraints aside from the value
range of the parameters 0 < V; <1 to the optimization algorithm.

To visualize the possible shapes of dished ends based on the pro-
vided description, a couple of BC of order seven are presented in
Fig. 10, for which the parameters k;, 4; are selected randomly.

4. Membrane state optimization

As discussed in previous sections, using the MT to evaluate stress
and deformation in dished ends of pressure vessels with variable radii of
curvature can lead to inaccurate results. Despite that, the optimization
in membrane stress state is considered within this paper mainly to eval-
uate the impact of the number of control points n on the optimization
outcome.



Sowiriski

1.0k} 10K

08R

o08R}

06k

04R}

00kk: c £ L L
00fR 025R 04SR O06fR 08BfR LOAR
108 N

00Rb: « 7 p H
0.0/ 024R O4pR 06AR O0BAR 1.0pR

108 108 .

08K} 08k osrf

06Rf
0aRf

04k 0ARF

oork

08R

04R

08k

06

Thin-Walled Structures 171 (2022) 108808

108

o8kt

04k}

\=0480
\r=0362

=100 A
\=0411

00Rk: i x : i
005R 0208 OASR 06SR OBFR LOAR

00kt c . i L
00fR 028 OAGR O06fR OBAR 10AR
LORje®

o8kt o8k}

o6k}

4R}

A:=100
\=0815 1

008

00k

oR
Q0GR 026k 04SR 06AR OBPR LOAR 00pk 025R O04AR O06PR OBAR LOAR 00fR 024k 04GR 0658 OBAR LOAR

0AR 024R O0A4BR O6PR OBER 1OBR 0OGR 025K OAAR 06AR OBPR LOAR 00AR 02AR 04GR 066R OBAR 1OAR
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The definition of principal radii of curvature R,, R, in meridional
and circumferential directions correspondingly is critical for calculating
stress distribution. In the case of a curve given in the parametric
form (Eq. (11)), principal radii of curvature can be resolved from the
following formulae:

3/2 2
RGN RGN
a¢ a¢ a¢ a¢
ST w0 2T & - 69
d¢ de? de? d¢ dc
Using Egs. (31) and (32), and applying the following relation:
R, = RR,, R, = RR,, (36)
dimensionless radii of curvature are obtained:
3/2 1/2
(r) +(2) (r) (%)
- 1 d¢ da¢ . 1. d¢ d¢
il irry-ranrryraat L & '
d¢ dcz T A2 d¢ a¢
37)

Internal forces in the membrane state depend solely on the applied
pressure and principal radii of curvature:

1 R,
—-=pR, [2-—=).
o (- &)

The normal stress components are in linear relation with internal

forces:
Ny Ny
oy = —, 0y = —.
1= LA

1
N, = —EpRz, N, = (38)

(39)

The equivalent von Mises stress is further calculated according to the
plane stress state to analyse the stress distribution

0oy = \/ 012 — 010y + 052 (40)
Applying Egs. (38) and (39) to Eq. (40) yields
1p Ry, (Ry
==-=R1/3+—=—(=-3]). 41
=T R <R1 ) “n

The stress in the cylinder is calculated by substituting: R, = R, R; - ©
into Eq. (41)

6@ = \/75 R (42)

Referring to Eq. (2), one can define relative equivalent stress & in the
membrane state
( 3) ’

_ 3
& =
The optimization problem in membrane stress state is defined as

R,
r 3 S

R,

_ R
Ry [3+ e 43)
Rl

min  max

v ¢ 6, (. V), (44)
subject to:
0V, <1, 0<¢<1 (45)

The optimization is conducted in MATLAB 17 software. To find the
global minimum of the fitness function, GlobalSearch — MATLAB em-
bedded algorithm is used, which details are discussed in [34]. The algo-
rithm is set to run sequential quadratic programming (SQP) solver [35]
from multiple start points to sample numerous basins of attraction.
A positive definite approximation of the Hessian matrix in SQP is
calculated using Broyden-Fletcher—Goldfarb-Shanno method. MATLAB
uses the finite-difference method for calculating derivatives to obtain
gradients. The stopping criteria are defined as finishing the analysis for
all of the generated trial points.

Initially, the optimization is performed for four control points (n =
4), i.e. for BC of order three. Further, the number of control points is
being increased, and the result is compared to the previous one. The
process is repeated until the relative difference in the maximum value
G, i.e. stress concentration factor k (Eq. (3)) does not exceed 0.5%. Such
state is achieved when applying n = 8, i.e. for the BC of order seven,
characterized by 10 independent variables (Eq. (34)). The optimized
relative stress 6, distribution for the BC of order five (n = 6), six (n = 7)
and seven (n = 8) is presented in Fig. 11. As expected, the increase in
the number of degrees of freedom enables obtaining a more satisfactory
solution indicated by the decreasing value of stress concentration factor
k.
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Fig. 11. The optimized relative equivalent stress distributions for selected BCs.
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Fig. 12. The optimized shapes of dished ends based on BC of order: A - five, B — six, C — seven.

The shapes of the optimized dished ends and the corresponding in-
dependent variables are presented in Fig. 12. One may notice the simi-
larity between shapes, which indicates the consistency of the performed
optimization.

The obtained solution is further validated by performing numerical
FEM analyses with the use of ANSYS 2018 software. A necessary
description of those is provided in Section 5.2 of the paper. Such
procedure is conducted for the pressure vessel with the dished end
based on the BC of order seven, where n = 8 (Fig. 12-C) characterized
by the most favourable stress distribution. During the FEM study, the
shell structure is benchmarked for the thickness ¢+ = 5,10,15 mm,
consistent with typical liquid petroleum gas pressure vessels with the
cylindrical shell radius Ry, = 1000 mm. Each of the pressure vessels is
loaded with internal pressure causing the equivalent stress of 70 MPa
in the cylindrical shell using MT (Eq. (46)). The results of the study are
shown in Fig. 13. The detailed stress distributions in the inner and outer
surfaces are compared with the MT solutions in the middle surface in
Figs. 14-16.

As expected, the stress occurring in the limiting surfaces of the shells
is significantly higher than in the middle surface. Its peak value occurs

in the outer surface regardless of the thickness. The increase of the
thickness yields in the increase of the peak stress expressed as the stress
concentration factor k. The relative difference between the parameter
k using both calculation methods reaches nearly 20%, which severely
decreases the achieved improvement of the optimized dished ends over
the standard shapes. To potentially improve the optimization outcome
one could refer to more complex shell theories, however, those are
significantly limited. The only available theory enabling for analytical
evaluation of the stress including the bending phenomenon is the edge
effect theory. Due to its simplified character, its adaptation could not
necessarily be successful, similarly to MT, which is also justified by lack
of the papers using the edge effect theory in the optimization problems.

5. Finite element method optimization
5.1. The procedure description
Regarding the shell structures, the lack of accurate analytical meth-

ods for solving the problems of stress and displacements makes it
necessary to use numerical calculations while considering the bending
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Fig. 13. FEM study results for the optimized dished end of order seven.
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Fig. 14. The comparison of equivalent stress distribution for =5 mm.
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Fig. 15. The comparison of equivalent stress distribution for s = 10 mm.

phenomenon. The application of FEM for obtaining the fitness function solution to the analysed problem. Although the idea itself is simple,
in the optimization procedure is expected to lead to a more satisfactory its utilization requires considerable effort. Foremost, the availability of
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Fig. 17. The optimization procedure flowchart.

optimization algorithms in commercial FEM software is quite limited;
therefore, one cannot rely solely on its code to perform the optimiza-
tion. It creates the need to write an original code for a selected problem.
One must also consider that the use of FEM enables to obtain the
solution for discrete values of variables, which restrains the possible
optimization algorithms that can be adopted due to the discontinuous
character of the fitness function.

In the presented analysis, MATLAB 2017 software is coupled with
ANSYS 2018 to perform the optimization procedure, as shown in
Fig. 17. The prepared MATLAB code uses PYTHON programming lan-
guage interface to communicate with ANSYS. Initially, MATLAB starts
ANSYS software, establishes the connection, opens predefined ANSYS
project file and applies values of the parameters (Eq. (34)). The project
consists of two components. The first is responsible for creating ge-
ometrical models using SpaceClaim software, while the other utilizes
Mechanical application for performing FEM analyses over the geomet-
rical models. Using scripting capabilities in SpaceClaim, the prepared
code creates the geometry of the dished end based on the BC of order
seven, according to the formulae in Egs. (31), (32). The project file in
Mechanical creates an FE model with necessary boundary conditions
and performs the analysis. After sending the request to perform the
calculations, the fitness function value is calculated according to the
peak equivalent stress value retrieved by MATLAB.
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During the process, MATLAB is additionally responsible for man-
aging errors that inevitably emerge during FEM calculations. Those
issues mainly correspond to incorrect geometry created in SpaceClaim,
Mechanical inability to obtain the solution or software errors resulting
in unexpected shutdowns or hangs. To resolve such problems, MATLAB
closes ANSYS applications and makes a second attempt to solve the pre-
viously failed simulation. When the problem persists, MATLAB applies
a penalty on the corresponding geometry in the form of a relatively
high fitness function value.

The optimization is performed with the use of a build-in MATLAB
GA. Notably, the solutions achieved by such algorithms should to re-
ferred to as “suboptimal” due to their nature. On account of simplicity,
an exception is made, and the term “optimal” is used within this
paper. Each of the populations processed by the algorithm consists of
200 unique shapes of the dished ends. The first population for the
initially analysed problem, i.e. 1 = 5 mm, is based on the membrane
state solution (Fig. 12-C), while the remaining 199 geometries are
represented by random values in the range 0 < V; < 1 (Eq. (21)).
In the case of the pressure vessels of different thicknesses, instead of
using the solution from the optimization, the solution from ¢ = 5 mm
is introduced to the first population. Subsequent populations are based
on 10% elite individuals, 45% crossover children, and 45% mutated
entities. The crossover type is single point, while the mutation is carried
out by MATLAB function, which randomly generates directions that are
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Fig. 18. An exemplary FE model of the analysed pressure vessels.

adaptive concerning the last generation. There are two stopping criteria
of the GA. The first of them implies that the optimization is termi-
nated when 200 populations are processed. Another condition assumes
halting the optimization when the minimum fitness function value
did not change throughout 30 consecutive populations, eliminating
unnecessary stalling of the algorithm.

It is important to note that the developed procedure is exceptionally
time demanding. Although numerous successful attempts were made
to reduce the evaluation time, the final version of the code requires
27 to 33 s for obtaining a single fitness function value on the Intel i5-
7500 CPU and SATA III solid-state drive. The most crucial operations in
terms of time consumption are geometry creation and communication
between ANSYS systems, i.e. SpaceClaim and Mechanical. After the
geometry is transferred to Mechanical, it takes about 6 s to prepare
the FE model and perform the numerical calculations. Considering
that finishing the optimization procedure assumes 40 000 evaluations
of the fitness function, the procedure requires nearly two weeks of
uninterrupted operation to achieve the solution. Unfortunately, this
issue cannot be solved using the hardware with greater computational
power, as the evaluation time comes from the software limitations and
not computational time. The only seemingly possible method to reduce
the time is to solve the problem parallelly using multiple instances
of ANSYS processes. This idea brings numerous problems, including
ANSYS licensing and coupling of the software.

Considering the challenges mentioned above, the effect of the GA
parameters on its performance is not studied in this paper. The se-
lected parameters are established during the observations of numer-
ous unsuccessful optimization attempts performed during the code
development.

5.2. Finite element model

The axisymmetrical static structural analysis in ANSYS 2018 soft-
ware is used to obtain the fitness function value in the form of the stress
concentration factor. The analysis includes geometrical nonlinearity.
The material model is perfectly elastic and isotropic with Young’s
modulus E = 200 GPa and Poisson’s ratio v = 0.3. Following geometrical
parameters are considered (Fig. 1): Ry = 1000 mm, L = 1500 mm,
h =500 mm i.e. § =0.5. Length of the pressure vessel ensures avoiding
the possible interaction between disturbances in the areas of shell
junctions due to the edge effect. A quarter of the axisymmetric cross-
section of the pressure vessel is studied to reduce the computational
time of the analysis. The symmetry condition is applied by restraining
the displacements towards y axis i.e. v =0 (Fig. 18).
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The geometry of the pressure is divided into two-dimensional,
second-order, quadrilateral PLANE183 finite elements with three de-
grees of freedom at each node. The mesh parameters are justified by the
previously performed mesh convergence study for the standard dished
ends in [9]. It is assumed that the stress gradient for the optimized
dished ends should be lower, which makes the mesh applicable for
the analysed problem. All of the FE models are divided so that there
are four finite elements across the thickness. The creation of the mesh
prioritizes equilaterality of the finite elements, which implies that the
thickness determines the number of finite elements along the meridian.
An exemplary FE model is shown in Fig. 18, where the thickness is
increased to ¢ = 50 mm for better readability.

During the numerical calculations, the pressure vessel is loaded
with internal pressure causing the equivalent stress of 70 MPa in the
cylindrical shell in the membrane state:

140v/3 ¢
The relation between the pressure and thickness ensures the compa-
rability of the results. The fitness function value in the form of stress
concentration factor k£ (Eq. (3)) is calculated directly in ANSYS, where
the stress in the cylindrical shell is probed in the internal surface at the
location where the translational boundary condition v = 0 is applied.

5.3. The results

During the optimization, two factors are monitored (Fig. 19) to
evaluate the progress of the procedure ie. k,,;, and k,,. The first
refers to the individual with the minimum value of the stress con-
centration factor k in the population, while the latter is the mean
value for all entities. Initially, both of the parameters are character-
ized by relatively high values. As expected, they reduce asymptoti-
cally throughout the subsequent populations. Both parameters show
no significant changes beyond 140 populations, justifying the applied
stopping criteria referred to the maximum number of the analysed
populations.

Some deviations from the asymptotic character of the studied pa-
rameters require further discussion. The fluctuations of k,,, are ob-
served for the thickness + = 5,10 mm, which are initiated by the
abrupt change of k,,;,. Such a phenomenon occurs when the algorithm
suddenly finds the more satisfactory solution, which is significantly
different in terms of the variables that describe the dished end ge-
ometry. As a result of the crossover operator, the individuals in the
successive populations are based on two significantly diverse groups of
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Fig. 19. Summary of the FEM and GA optimization.
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Fig. 20. The stress distribution for the optimized dished ends with the use of FEM.

solutions. The mean value of k parameter increases, while the trend of
k,n;, Temains unchanged due to the elite individuals.

Another issue with the mean value of the stress concentration factor
k,ug is observed for the pressure vessel of the thickness = 10 mm.
When the algorithm processes about 100 populations, the parameter
tends to increase for a single population suddenly. By studying the
results closely, it has been noted that such problems are the effect
of the algorithm applying the penalty for one or two solutions in the
population due to the erroneous geometries created by SpaceClaim
software.

The final results of the FEM calculations processed by the GA are
shown in Fig. 20. Comparing them to those presented in Fig. 13, one
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can note a significant decrease in the peak stress and a more uniform
distribution.

The optimized shapes of dished ends, including their convex poly-
gon, are presented in Fig. 21. The parameters (Eq. (34)) describing all
three curves are similar in their values, which implies the shapes of
the optimized dished ends are alike. The stress distributions for these
shells in the internal and external surfaces are presented in Figs. 22-24.
For each of them, the optimal solution is achieved when the stress in
the inner surface near the juncture with the cylindrical shell equalizes
with the stress in the external surface for § = 0 mm. According to the
convex polygons in Fig. 21, the control points for the BCs are located
precisely in the mentioned areas. This phenomenon is not observed
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Fig. 21. The optimized shapes of dished ends based on BC of order seven: A - 5 mm, B - 10 mm, C - 15 mm.

2000

90
80
70 S
T
-9
= 60
5
2 50
B
7] g . e
£ 40 internal surface (FEM)
-;: external surface (FEM)
= 30 k=1.199 (FEM)
=4
L
20
101 = —-
0
0 200 400 600 800 1000 1200 1400 1600 1800

arclength S [mm]

Fig. 22. The equivalent stress distribution for =5 mm.

in the optimization using the MT (Fig. 12), where the control points
are distributed evenly along the curve regardless of its order. It shows
that those areas of the structure are the most important in optimizing
the shapes of the dished ends when the bending phenomenon is not
neglected.

Interestingly, the solution using MT implies that the slope of the
curve should remain low at the beginning and the end of the curve.
Analogously, the edge effect theory implies the curvature change near
the shells junction should be moderate to reduce the bending phe-
nomenon. This observation does not agree with the shapes obtained
using FEM and GA, where a considerable bending effect occurs in
the optimized geometries. However, in the latter case, the bending
phenomenon is distributed somewhat evenly throughout the meridian
of the dished end.

6. Summary of the optimization

To provide more insight into the optimized shapes of the dished
ends, one must compare their geometries directly with each other
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and the standard geometries. The summary of the stress concentration
factors is provided in Table 3. The improvement of the peak stress in
the developed dished ends is remarkable. It is important to note that
the values are slightly different than in Table 1 since the stress in the
cylindrical shell is obtained through FEM calculations in the internal
surface, where its value is higher than in the middle surface. Instead of
performing the comparison for the selected thickness values, the results
are generalized concerning 7/ R, ratio. As initially expected it has been
found that there is a linear relationship between the magnitude of the
applied pressure and the stress distribution. Additionally, the shape of
the dished end is proportional to the radius of the cylindrical shell R;
therefore the forementioned generalization is justified.

The differences in the stress concentration factor k retrieved in
MT and FEM must be further discussed. One must note that any
disturbance of the membrane state increases the peak stress value in
a shell structure. For that reason, it is supposed that the optimization
using FEM and GA must yield a worse outcome than MT and SQP
optimization. This remark is even more evident when one considers the
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Table 3

Summary of the stress concentration factors for the analysed dished ends.

t/R, [%] Stress concentration factor k
Standard dished ends MT optimization FEM optimization
Ellipsoidal Equivalent
torispherical
(semi-ellipsoidal)
0.5 1.746 2.738 1.350 1.199
1.0 1.727 2.476 1.378 1.184
1.5 1.712 2.356 1.415 1.206

character of the employed optimization algorithms. The deterministic
SQP algorithm is highly efficient at finding the global minimum of the
fitness function, whereas GA can be limited to local minima when the
fitness function is complex, implying the solution might be suboptimal.
To prove this point, the previously shown data for + = 5 mm is
further compared with the outcome of other optimization attempts
with the same conditions. According to Fig. 25, all three solutions
converged to different results, despite k,,;, reached an asymptote and
the individuals in the final populations became nearly identical in
each of them separately. One can conclude the further increase in the
number of processed populations is futile.

To evaluate the optimality of the results provided in the previous
section, one should consider the magnitude of the differences in the
results using both approaches. Those appear to be insignificant; MT and
SQP optimization lead to k = 1.141 in membrane state, and the maxi-
mum stress concentration factor using the other optimization method is
k = 1.206 for t = 15 mm (Table 3). The absolute difference for the least
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favourable case is then 6.5%. To properly compare these values, the
stress in the middle surface from GA optimization should be considered,
which would decrease the aforementioned absolute difference. For that
reason, is it assumed that the application of GA and FEM is successful.

The above observations imply that the further potential decrease
of the stress concentration factor k£ when including the bending phe-
nomenon can be minimal and technically meaningless. This conclusion
only applies to the type of the developed curve, its parameters, the
considered restraints and the material model. Nevertheless, it is un-
clear what particular changes in these conditions could lead to more
favourable stress distribution. Interestingly, no correlation between the
thickness ¢ and the solution can be defined. It could be predicted that
the increase in thickness can reduce the potential optimality, which is
coherent with the shell theories. All of the shapes are further juxtaposed
in Fig. 26, where the axis order is changed to ensure better readability
of the figure. The comparison of the analysed shapes immediately
brings attention to their similarity. The most crucial difference between
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the standard and optimized shapes is the more evident convexity of the
latter. The optimized shape for + = 5 mm shows a remarkable resem-
blance to the geometry optimized using MT, whereas such similarity
vanishes for the thicker shells. This observation is expected and can be
explained by the insignificant effect of the bending phenomenon for a
relatively thin shell.

The more noticeable differences can be observed in the principal
radii of curvature comparison in Figs. 27 and 28, which explicitly
describe the shapes of the considered shell structures. The ellipsoidal
dished end, as well as the geometry optimized using MT, are character-
ized by an asymptotic decrease of the meridional radius of curvature
R, towards the edge, i.e. ¢ = z/2. The shapes optimized using FEM,
where the bending phenomenon is considered, only partially share
the same behaviour. An abrupt change is observed in the area of the
shells edge, where R, reaches nearly zero. The rate of change of this
parameter depends on thickness. With the increase of thickness, the
rate of the mentioned change decreases. It is worth mentioning that the
radius of curvature for the cylindrical shell is also zero; therefore, its
decrease leads to the diminishing of the edge effect. This condition was
previously studied and successfully applied in [13] as such behaviour
is expected according to the edge effect theory.

7. Conclusions

In the presented paper, the problem of dished end shape optimiza-
tion was considered. The research aimed to minimize the maximum
stress in the dished end of a cylindrical pressure vessel. A unique shape
based on the Bézier curve (BC) of arbitrary order was developed, which
satisfies numerous constraints, including non-negative meridional ra-
dius of curvature. Regardless of the parameters describing its shape, the
geometry maintains manufacturability and the relative depth (Eq. (1))
as the standard dished ends.

Initially, the optimization assumed analytically evaluating the fit-
ness function using membrane theory (MT) and employing sequential
quadratic programming (SQP) algorithm. Different curve orders were
considered to evaluate sufficient numbers of the independent variables
describing the dished end geometry. It has been concluded that the
BC of order seven, described by n = 8 control points and ten free
parameters, is satisfactory for the optimization. The applied geomet-
rical parameters and material model were selected to be coherent with
typical technical applications.

The MT optimization enabled the reduction of stress concentration
factor to k = 1.141. The corresponding value for the standard geome-
tries is k = 1.712 to k = 1.746 for ellipsoidal shape and k = 2.356 to k =
2.738 for equivalent torispherical, depending on the thickness (Table 3).
The verification of the developed geometry was performed using FEM,
which led to an increase in k parameter to 1.350, 1.378, 1.415, depending
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on thickness to cylinder radius ratio ¢t/R,. Such an issue is the effect
of the bending phenomenon neglection in the MT, which significantly
reduces the optimality of the stress distribution.

As the final step, the optimization was conducted using a more
complex approach. The commercial software MATLAB and ANSYS were
coupled to perform the procedure by evaluating the fitness function in
the latter. A genetic algorithm (GA) has been used to optimize the stress
concentration factor. Despite substantial computational time needed to
process the calculations, the results can be considered satisfying. The
analysed parameter was reduced to 1.199, 1.184, 1.206 for the 1/ R, ratio
0.5, 1.0, 1.5% correspondingly.

Despite the formulated BC-based shape enabled to achieve a sat-
isfactory outcome of the study, the optimization required significant
computational time due to the number of fitness function evaluations
in the GA optimization approach. This could be connected with one of
the properties of BCs. A modification to a single control point i.e. one of
the optimization variables results in the global change of geometry. The
ability to change the shape locally could be beneficial. Such property
is consistent with nonuniform rational b-splines (NURBS), where the
changes to a single control point can affect shape only in its neighbour-
hood. This is connected with the weights of the control points, which
can be introduced as another variable in the optimization.

Summarizing the findings of the analysis, the stress in the stan-
dard dished ends is 71.2% to 173.8% higher than in the cylindrical
shell beyond any disturbance. The developed shapes are characterized
merely by 18.4% to 20.6% greater equivalent von Mises stress. The
proposed geometries constitute a significant improvement over the
shapes described by the current technical standards.

Importantly, the optimized geometries do not necessarily constitute
the shapes of the least mass. The decrease of the mass could be obtained
by reducing the meridian length of a dished end. This would lead to an
increase of the peak stress and result in the necessity of proportional
increase of the thickness, and finally increase of the mass. It is difficult
to evaluate if the decrease of the meridian length could at least com-
pensate for the increase of the thickness in terms of mass. According to
the shapes comparison provided in the paper, supposedly insignificant
changes to geometry can result in a severe increase in peak stress. As
the differences in length of the compared dished ends can be considered
minor, then reducing the meridian length could contradictory result in
the increase of the mass. One should also note the reduction of meridian
length would most definitively lead to an undesirable shrink in the
volume of the pressure vessel.

Realizing the similarities between the studied geometries, it is in-
teresting to what extent the obtained results can be replicated in
an experimental study. Further research is necessary to evaluate the
imperfection sensitivity of the developed structures.
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Extended Abstract in Polish

Dzialalnos¢ czlowieka w dziedzinie inzynierii siega starozytnosci. Osiggniecia w
tym obszarze nauki bezposrednio przyczynily sie do daleko idacego rozwoju
cywilizacyjnego. Obecnie rozwoj technologii koncentruje sie na zaawansowanych
rozwiazaniach w zakresie projektowania konstrukcji w celu poprawy ich szeroko

rozumianych wlasciwosci.

Podstawowym wyznacznikiem w projektowaniu konstrukgcji jest bez watpienia ich
nosnos¢, zapewniajaca bezpieczna eksploatacje i zapobiegajaca nieoptymalnemu
wykorzystaniu biorac pod uwage czynniki ekonomiczne. W celu odniesienia sie do tego
problemu konieczne jest zapewnienie specjalnych metod i narzedzi umozliwiajacych
badania wytrzymalosciowe. Prezentowane zagadnienia sa poswiecone analizie i
optymalizacji rozkladu naprezen w zlozonych konstrukcjach powlokowych. Struktury te
stuza jako elementy nosne wielu istotnych konstrukcji znajdujacych zastosowanie
przemysle. Przedstawione rozwazania sg zawezone do problemow walcowych zbiornikéw
cisnieniowych, jednakze podobna metodologia moze byc¢ zaadaptowana do niemal

kazdego problemu liniowego z obszaru powlok.
Na podstawie analizy literatury sformulowano nastepujace tezy w rozprawie.

(1) Rozwiqzania analityczne oparte na teorii powtok probleméw naprezen i deformacji
konstrukcji powlokowych mogq prowadzi¢ do niedoktadnych wynikow.
(2) Rozktad naprezern w znormalizowanych dennicach cisnieniowych zbiornikéw

walcowych jest niekorzystny.

Celem odniesienia sie¢ do powyzszych probleméw 2z zakresu konstrukcji

powtokowych, sformutowano nastepujace hipotezy.

(1) Zastosowanie metody Ritza do rozwiqzywania probleméw naprezen i deformacji
powlok moze prowadzi¢ do otrzymywania wynikéw o wiekszej doktadnosci niz w
przypadku rozwiqzarn analitycznych.

(2) Optymalizacja ksztaltu dennicy walcowego zbiornika cisnieniowego moze
doprowadzi¢ do znaczacej poprawy rozkladu naprezen przy zachowaniu
znormalizowanych wymiarow.

W pracy podejmowane sa badania analityczne, semi-analityczne, numeryczne i
eksperymentalne celem poglebienia wiedzy i zaproponowania poprawy w Swietle
analizowanej problematyki naukowe;j.

Pierwsza czeS¢ badan jest oparta na teoriach oraz metodach zawartych w literaturze.

Naprezenia oraz deformacje ciSnieniowych zbiornikow walcowych ze znormalizowanymi
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dennicami elipsoidalnymi i toroidalno-sferycznymi sa analizowane z zastosowaniem
teorii bezmomenowej oraz teorii zaburzen brzegowych. Dwa sformulowania teorii
zaburzen brzegowych sa rozwazane, zastosowane i porownane. Wyprowadzenia sg
przedstawione dla liniowego, ortotropowego modelu materialowego. Otrzymane wyniki
pokazuja, ze superpozycja rozwiazania w ramach teorii bezmomentowej oraz zaburzen
brzegowych moze prowadzi¢ do otrzymania niezadowalajacych wynikow w zwigzku z
uproszczeniami w teorii bezmomentowej oraz pominieciu wplywu obcigzen

powierzchniowych w zjawiskach zgieciowych.

Te same konstrukcje sg poddawane analizie semi-analitycznej z zastosowaniem
metody Ritza. Funkcje opisujace przemieszczenia w metodzie Ritza przyjmuja postac
wielomianow, szeregéw trygonometrycznych oraz funkcji przypominajacych rozwiazania
otrzymywane w teorii zaburzen brzegowych. Badany jest wplyw stopnia owych funkcji
na uzyskiwane wyniki. Rezultaty badania pokazuja, ze zgodnos¢ wynikow z metoda
elementow skonczonych jest otrzymywana dla relatywnie duzego zakresu grubosci, co
potwierdzaja niemal identyczne wartoSci naprezen, przemieszczen oraz energii

odksztalcenia sprezystego.

W przeprowadzonych obliczeniach walcowych zbiornikéow ciSnieniowych, uwage
zwraca sie na niekorzystny rozklad naprezen. Maksymalne wartoSci naprezen
zredukowanych w dennicach znormalizowanych znaczaco przekraczaja te, ktore
powstaja w czesci walcowej. Taki stan rzeczy powodowany jest nadmiernymi
obciazeniami brzegowymi w potaczeniu powlok, doprowadzajac do zjawisk zgieciowych.
Ksztalty den zostaly w dalszych rozwazaniach opisane za pomoca trzech krzywych
analitycznych tj. owalu Cassiniego i Bootha oraz uogoélnionej postaci klotoidy.
Zdefiniowane zostaly pewne warunki geometryczne celem zmniejszenia intensywnosci
efektu brzegowego. Doprowadzily do zamierzonej poprawy rozkladu naprezen w
obszarze polaczenia powlok, jednakze sprawily, ze doszlo do ich wzrostu poza tym
miejscem. Zaproponowane powloki nie stanowia znaczacej poprawy w odniesieniu do
ksztaltow znormalizowanych, jednak ich badania przyczynily sie do sformulowania

istotnych wnioskow dla dalszych prac.

Zdolnos¢ do przenoszenia relatywnie wysokich obciazen przez konstrukcje
powlokowe wynika z ich postaci geometrycznej. Poszukiwanie bardziej korzystnych
rozwiazan zwigzane jest zatem z odwotaniem sie do zagadnien optymalizacji ich ksztattu.
W ramach ogélnych rozwazan na ten temat, doS¢ mozna do wniosku, ze wybor
arbitralnych rozwiazan z nieskonczonego zbioru mozliwosci zazwyczaj prowadzi do

niezadowalajacych wynikéw. W niniejszej pracy optymalizacja prowadzona jest w dwoch
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oddzielnych procesach. Opracowana zostala krzywa parametryczna opisujaca geometrie
dennicy. Poczatkowo funkcja celu jest wyznaczana przy odwolaniu do teorii
bezmomentowej powlok, a optymalizacja prowadzona jest 2z zastosowaniem
deterministycznego algorytmu. W zwiazku 2z uproszczona naturg rozwigzania
analitycznego, procedura zostaje nastepnie zmodyfikowana. Wartos¢ funkcji
przystosowania obliczana jest za pomoca metody elementéw skonczonych, natomiast
optymalizacja jest realizowana za pomoca algorytmu genetycznego. Otrzymana poprawa
rozkladu naprezen jest znaczaca przy mozliwosci wytwarzania dennic metodami

konwencjonalnymi i zachowaniu znormalizowanych wymiaréw ogolnych.

Ostatecznie wyniki optymalizacji sa weryfikowane w ramach badania
eksperymentalnego. Zbiornik ciSnieniowy ze zoptymalizowana dennica jest otrzymany
za pomoca technologii wytwarzania przyrostowego Multi Jet Fusion. Pomiary wymiarow
modelu realizowane sa przy uzyciu skanera optycznego, celem weryfikacji imperfekcji
geometrycznych oraz utworzenia modelu CAD rzeczywistej konstrukcji. Geometria ta
jest poddana badaniom numerycznym metoda elementéow skonczonych. Wytworzony
zbiornik zostaje zbadany na zaprojektowanym stanowisku laboratoryjnym
pozwalajacym na obciazenie go wewnetrznym ciSnieniem. Analiza polega na
zastosowaniu tensometrow do wyznaczenia rzeczywistego rozkladu naprezen. Wyniki
zostaja porownane dla geometrii zoptymalizowanej i rzeczywistej w ramach obliczen
metoda elementow skonczonych, a nastepnie zestawione z rezultatem badan
eksperymentalnych. Osiagnieta zostaje zadowalajaca 2zgodnosS¢, potwierdzajaca

korzystna charakterystyke opracowanych ksztaltow dennic.
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