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Abstract 

Human activity in engineering is dated back to antiquity. The achievements in this 

field of science directly contributed to the immensely far-reaching civilizational 

development. Nowadays, the expansion of technology is focused on advanced 

solutions in the aspect of designing structures to enhance their broadly defined 

properties.  

The primary determinant in structural design is undoubtedly the load-carrying 

capacity, ensuring safe operation and preventing economically undesired 

underutilization of a mechanical system. It is necessary to provide specific methods 

or tools to give insight into their mechanical behaviour to address this issue. The 

presented work is devoted to the analysis and optimization of stress distribution in 

complex shell structures. Those serve as structural members of numerous relevant 

structures in the industry. The provided considerations are narrowed to problems of 

cylindrical pressure vessels; however, a similar methodology can be adapted to nearly 

any linear shell problem. Analytical, semi-analytical, numerical and experimental 

studies are considered to expand the knowledge and propose improvements to the 

investigated topic. 

The first phase of the study is based on the theories and methods available in 

the literature. The stress and deformations in the cylindrical pressure vessel with 

standard ellipsoidal and torispherical dished ends are analyzed using membrane 

theory (MT) and the edge effect theory (EET). Two formulations of the EET are 

discussed, applied, and compared. The derivation is provided for the linear, 

orthotropic material model. The obtained results show that the superposition of MT 

and EET can result in unsatisfactory results due to simplifications in MT and 

neglection of the effect of surface loads on bending.  

The same structures were investigated in a semi-analytical manner using the 

Ritz method in a subsequent study. The elastic strain energy and the work of the 

external forces were described according to linear shell theory. The functions 

describing displacements in the Ritz method are in the form of polynomials, 

trigonometric series, and functions similar to those derived from EET. The influence 

of the degree of these functions on the obtained results was taken into account. The 

achieved outcome agrees with the finite element method (FEM) for a relatively large 

range of thicknesses, proven by almost identical values of stress, displacements and 

strain energy.  
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In the conducted analyses of cylindrical pressure vessels, attention was drawn 

to the unfavourable stress distribution. Their maximum values in standard dished 

ends significantly exceed the stress in cylindrical shells, making them unsatisfactory 

solutions. Significant edge loads in the junctions of shell segments cause such an 

issue, leading to the appearance of significant bending phenomena. The shapes of 

dished ends described by three analytical curves, i.e. Cassini and Booth's oval and 

generalized clothoid, were formulated in further analyses. Specific conditions were 

defined to diminish the edge effect. They led to the intended effect of improving the 

stress distribution in the junction area but caused its maximum value to be shifted 

beyond this region. Therefore, the proposed shapes of shells do not constitute a 

significant advancement compared to the standard solutions, although their analysis 

provided important conclusions for further research. 

The ability to carry relatively high loads by shell structures comes from their 

geometrical form. It is necessary to refer to optimization methods to seek the desired 

improvements in stress distribution. It comes from general reasoning that choosing 

some arbitrary geometries from an infinite set of possible solutions usually leads to 

poor results. In this work, the optimization is carried out in two separate processes. 

A parametric curve is developed to describe the shape of the dished end. Initially, the 

fitness function is evaluated according to MT, and the deterministic algorithm 

performs the optimization procedure. Due to the simplified nature of MT, the 

approach is then modified. The fitness function is calculated using the FEM, and the 

optimization is carried out by a genetic algorithm (GA). The obtained enhancement in 

the stress distribution is compelling while maintaining manufacturability and 

standard general dimensions. 

Finally, the optimization results are verified in an experimental study. The 

pressure vessel with the optimized dished end is manufactured using Multi Jet 

Fusion – a 3D printing technology. Optical scanner measurements are conducted to 

verify geometrical deviations and to recreate the CAD model of the imperfect shape. 

Such a geometry is then considered in the FEM analysis. Ultimately the structure is 

tested on a designed test bench, enabling pressurizing of the vessel. The strain gauge 

measurements are performed to evaluate the stress distribution. The results are then 

compared for ideal and imperfect geometry by the FEM and juxtaposed with the 

experimental study. A good agreement is achieved, confirming the advantageous 

characteristics of the developed dished ends. 
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1. Introduction 

The structural members in the form of shells are highly involved in numerous 

branches of the industry, including military industry, mechanical, civil, marine 

engineering, transportation, aeronautics and astronautics. Such load-carrying 

structures in the mentioned areas can be found in roofings, pipelines, pressure 

vessels, silos, aircraft, submersible vehicles and space ships. Those examples are 

only a fraction of the possible applications. Their widespread utilization in 

engineering is justified by exceptional resistance to some external loads under 

specific boundary conditions. Compared to other structural members, shells are 

characterized by a relatively high ratio of load-carrying capacity to mass, which 

constitutes a critical factor in technological advancement due to the desired mass 

minimization. In numerous cases, the deformations of shells are comparably modest 

because of their significant stiffness. Additionally, shells usually constitute materially 

continuous geometries which ensure their integrity and ability to pressurize. The 

application of shells can also become vital where space limitation becomes an issue, 

as those can take nearly any possible shape. 

Currently, the industry strives for the most robust solutions in terms of 

structural design. It is based on achieving the highest functionality and optimal 

load-carrying capacity while considering economic factors. In the case of shell 

structures, obtaining the desired solutions can be generally achieved in two ways. 

The first one is the improvement of mechanical properties of a structure, e.g. by 

increasing the wall thickness or using materials with higher strength parameters. 

This method is simple, minimal and may cause a significant deterioration of other 

aspects of the structure.  

The second way is to modify the geometry of shells. It should be noted here 

that the mentioned advantages of shells are connected with their geometric form. This 

method allows for a much broader modification of their properties while maintaining 

some of their original properties, e.g. general dimensions, mass or volume. Within 

this work, only the latter method is taken into consideration.  

The research of this thesis is focused on the analysis and optimization of stress 

distribution in complex shell structures. The adopted in the thesis term "complex 

shells" refers to shell structures consisting of segments with various shapes and 

integral geometry. In most cases, the difference in shape leads to discontinuous 

curvature. Such a problem is vital in real-world engineering problems, where 

variously shaped shells are joined together. There are numerous examples of complex 
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shells, and for that reason, the research is narrowed to cylindrical pressure vessels 

loaded with uniform internal pressure.  

The theory of shells is widely described in the literature. Particularly 

noteworthy is the work of  Mazurkiewicz and Nagórski [1], where the authors show 

the solutions to numerous static and dynamic shell problems. Ventsel and 

Krauthammer [2] formulated the theories of plates and shells concerning static and 

buckling problems with some examples of their application. Gol'Denveizer [3] 

described the thin elastic shells theory and emphasised the analysis of typical 

geometries. Calladine [4], in his work, considered the stress and stability of shells, 

including elastic and plastic deformations as well as vibrations. Zingoni [5] explained 

the theories of membrane and bending phenomena of shell structures and applied 

them to multiple practical engineering cases. 

Cylindrical pressure vessels are designed with the use of the shell theory. 

Magnucki [6] devoted his work to structural analysis and optimization of isotropic 

shells, including cylindrical pressure vessels with hemispherical and ellipsoidal 

dished ends. Spence and Tooth [7] described concepts and principles for designing 

pressure vessels. Magnucki et al. [8] prepared a review of strength and buckling 

problems of dished ends of cylindrical pressure vessels. Ziółko [9] focused on the 

practical aspects of numerous industrial vessels, including a reference to technical 

standards. Such a connection is critical as the design of those structures, their 

shapes and operating conditions are described within consistent European and 

American standards, i.e. EN 13445 [10] and ASME Section VIII, Division 1, 2 [11], 

[12]. Seipp et al. [12] compared the stress distributions between ellipsoidal dished 

end and equivalent torispherical shells proposed by the technical standards. 

The edge effect theory (EET) constitutes the only known formulation that 

enables for analytical solution of bending phenomena in shells. The foundation to the 

theory was provided by Reissner [14], referring to spherical structures. Meissner [15] 

generalized the theory for an optional shape of a shell and formulated the governing 

differential equations of the EET. The first solution to those equations was proposed 

by Blumenthal [16] using the asymptotic integration method. Geckeler [17] 

introduced certain simplifications to the EET, enabling to rewrite of the governing 

differential equations to a single, elementary differential equation. Steuermann [18], 

[19] focused on developing the asymptotic integration method application in the EET.  

Despite the EET being well established, solving the problems of complex shell 

structures remains vital. Pietraszkiewicz and Konopińska [20] provided substancial 

input to this topic. Vullo [21] presented the solution to numerous practical problems 

of junctures in shells, especially for pressure vessels. Zingoni [22] prepared a review 
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of recent studies on strength, stability and dynamics, including the problems of 

complex shell structures. Zingoni investigated the discontinuity effect in the shells 

junctions considering sludge digesters [23], [24], conical [25], elliptic toroidal [26] and 

multi-segmented spherical shells [27]. Zingoni [28] also simplified the derivation of 

influence coefficients for symmetric frusta of shells of revolution. Following the 

problems studied in the presented work, the stress and deformations in standard 

pressure vessels are resolved as a superposition of the membrane theory (MT) 

solution and the EET analysis. The latter refers to both Geckeler [17] as well as 

Blumenthal [16] and Steuermann [18], [19] approach for solving the governing 

differential equations of the EET formulated by Meissner [15]. 

The analytical formulation of the analysed problems of shell structures is 

generally inconvenient and adopts numerous simplifications, potentially impairing 

the solution. For that reason, semi-analytical or numerical methods can be 

considered beneficial. Among many, the Ritz method constitutes a universal and 

widely used method in structural mechanics, which is confirmed by various papers 

and monographs. Kumar [29] presented a comprehensive review of the Ritz method 

to analyse beams, shells and plates vibration, static and buckling characteristics. In 

the case of shell structures, the Ritz method is rarely used to analyse stress and 

deformation. Shahgholian-Ghahfarokhi et al. [30] investigated torsional buckling 

analysis of functionally graded graphene-platelets reinforced composite porous 

cylindrical shells using the Ritz method. Qin et al. [31] presented a unified Fourier 

series solution to solve the vibration problem of functionally graded carbon nanotube-

reinforcement composite cylindrical shells, conical shells and annular plates. Lopatin 

and Morozov [32] considered a problem of axisymmetric vibrations of composite 

orthotropic cylindrical shells with rigid weightless disks attached to their ends. Qin 

et al. [33] provided a general approach for the free vibration analysis of rotating 

functionally graded carbon nanotube-reinforced composite cylindrical shells. Pang et 

al. [34] used a semi-analytical method to investigate the free vibration of doubly-

curved shells of revolution with arbitrary boundary conditions. Senjanovic et al. [35] 

developed a finite strip method for vibration analysis of rotating toroidal shells 

subjected to internal pressure. On the higher-order shear deformation theory, Choe 

et al. [36] established an analysis model for dynamic analysis of composite laminated 

doubly-curved revolution shells. The solution of stress and deformation for standard 

orthotropic pressure vessels using the Ritz method was described by Sowiński [37] 

(A1). This work is an integral part of the presented thesis. 

Due to the constantly increasing need for technological development, the 

optimization of shell structures became another vital research area. The theory of 
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optimization, fundamental deterministic and heuristic algorithms and their 

application are discussed by Kochenderfer and Wheeler [38] and Ostwald [39]. 

Nocedal and Wright [40] focused on numerical aspects of optimization. Ugray et al. 

[41] presented robust NLP solvers embedded in current, commercial computational 

software. Arabas [42] discussed the characteristics and application of evolutionary 

optimization algorithms. Bochenek and Krużelecki [43] described and solved the 

optimization problems of stability in structural mechanics. Magnucki and Ostwald 

[44] referred to the stability and optimization of three-layered sandwich structures.  

Currently, there is a significant emphasis on developing highly efficient 

pressure vessels due to increased interest in hydrogen energy [45], where the gas 

must be stored at immense pressure to maintain sufficient energy density. This trend 

implies the need for improving the known technical solutions. Ortega and Robles [46] 

investigated a methodology of finding optimal forms of shells of revolution, which 

enables obtaining approximately bending-free geometries. Banichuk [47] presented 

shape and thickness optimization of the shell of revolution. Błachut and Magnucki 

[48] presented a review work of selected problems concerning strength, buckling and 

optimization of cylindrical pressure vessels.  

The stability analysis of shells is of great importance, as those are prone to 

buckling, manifested by collapse when loaded with external pressure. Prediction of 

such a destructive circumstance implies the necessity of determining the 

post-buckling behaviour. Bochenek [49] presented a new optimization concept 

referring to this undesirable phenomenon. Numerous interesting studies on buckling 

and post-buckling have been conducted by Jasion [50], [51], Jasion and Magnucki 

[52] - [55] for a variety of shapes, including the shells with positive and negative 

Gaussian curvature. Similar studies were conducted by Sowiński and Jasion [56] and 

Sowiński [57] for shells based on Booth lemniscate and corrugated cylindrical, 

barrelled, and pseudo-barrelled structures. Paczos and Zielnica [58] investigated the 

stability of orthotropic elastic-plastic open conical shells. Zhang et al. [59] - [61] 

devoted their work to analysing shells whose shapes are inspired by nature. 

As the stress distribution in standard dished ends of cylindrical pressure 

vessels can be considered unsatisfactory [12], [37] (A1), striving to improve it is 

crucial. Sowiński and Magncki [62] (A2) developed untypical shapes of dished ends 

with the intent to diminish the edge effect phenomenon. Lewiński [63] discussed the 

topic of optimal shaping of the dished ends, including step-wise thickness changes. 

Magnucki et al. [64] analysed the stress concentration factor minimization in 

cylindrical pressure vessels with ellipsoidal heads. Lewiński and Magnucki [65] 

developed the shape of the dished end described by the trigonometric series and 
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optimized its geometry by applying the condition of continuity of the curvatures in 

the joint. Krużelecki and Proszowski [66] proposed the two- and one-arc dished ends 

described by different functions, including Bézier polynomial and optimized their 

shapes using a simulated annealing algorithm. Kisigolu et al. [67] studied the 

minimum material design of the end closure of propane cylinders. Magnucki et al. 

[68] focused on reducing the peak stress in a cylindrical pressure vessel by 

introducing the dished end based on a composite curve of a circular arc and 

a polynomial of the fifth degree.  

The primary issue with the optimization procedure is the lack of accurate 

analytical methods for solving the structural problems of shells. The optimization 

research provided in the previously mentioned studies [63]-[68] is based on the MT. 

Despite a significant reduction of the stress concentration factor due to optimization, 

the verification using the finite element method (FEM) resulted in an elevated peak 

stress value compared to the membrane state solution [66], [68]. That is the result of 

neglecting the bending phenomenon in the analysed shell structures. It is necessary 

to consider more accurate theories or methods to achieve a better optimization 

outcome.  

Carbonari et al. [69] studied shape sequential linear programming optimization of 

axisymmetric pressure vessel, intending to reduce von Mises stress. The fitness 

function was obtained within the study framework utilizing FEM, where the pressure 

vessel was modelled using 2D-axisymmetric shell finite elements. Błachut and 

Ramachandra [70] considered the problem of internally pressurised torispherical 

domes and proposed to optimize their shape using genetic algorithms (GAs) and FEM.  

The application of evolutionary algorithms, as the derivative-free methods, gained 

significant attention throughout recent years in structural optimization [71]. It is 

most likely connected with their ability to operate on discontinuous fitness functions 

present throughout any numerical analysis, where the relationship between input 

parameters and output result is undeterminable. There are numerous lately 

developed papers to justify the given statement. Firlik et al. [72] focused on tram 

wheel profile optimization using a biologically-inspired optimization algorithm. Yang 

et al. [73] designed the novel corrugated hierarchical truncated conical shells by 

adopting a surrogate model and GA. Kumar et al. [74] presented an isogeometric 

shape optimization to design 2D auxetic structures with a prescribed Poisson’s ratio. 

Liang and Li [75] developed an optimization scheme to design the postbuckling 

behaviour of composite laminates. Imran et al. [76] carried out design optimization 

of composite submerged pressure hull under hydrostatic pressure. The authors 

analysed the effect of orientation angles and the number of layers on the load-
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carrying capacity of a submersible. Eshani and Dalir [77] focused on optimum design 

to maximize the critical buckling load and minimize the structural weight of an angle 

grid plate. Zhu et al. [78] investigated the optimal shapes of reticulated shell 

structures with the intent to maximize nonlinear buckling load. Dias and Mahendran 

[79] optimized cold-formed steel-framed wall studs with sheathing restraints.  Karimi 

and Kani [80] studied finding the worst imperfection pattern in shallow lattice domes 

using GAs. 

The optimization in this work is based on the parametric shape of the dished end, 

described using a Bézier curve (BC) of arbitrary order. This part of the thesis has 

been already published [81] (A3). Some particular restrains are proposed and applied 

on its control points to satisfy numerous geometrical conditions, including 

non-negative curvature. The shape optimization of the dished end aims to minimize 

maximum equivalent von Mises stress in a cylindrical vessel loaded with uniform 

internal pressure.  

The procedure is performed using two methods. Initially, equivalent stress is 

solved analytically according to the MT, while the sequential quadratic programming 

(SQP) algorithm seeks the maximum stress along the meridian of the dished end and 

attempts to minimize it. Further, numerical FEM calculations are conducted to 

validate the outcome of the analysis. Realizing the simplified character of the MT and 

the impact of the bending phenomena on shell structures, the procedure is further 

changed. The stress distribution is resolved using FEM in ANSYS software, where its 

peak value constitutes the fitness function. Due to its discontinuous character, the 

optimization is performed using GA in MATLAB software. A significant improvement 

in the maximum stress over the standard dished ends is achieved.  

 The last part of the research is focused on the experimental study of stress 

distribution in the cylindrical pressure vessel with the optimized dished end referring 

to [81] (A3). A suitable additive manufacturing method (AMM) is selected by 

performing static tensile tests according to ISO527 [82]. The topics of different AMMs, 

fundamental concepts and their application were covered by Gibson et al. [83]. The 

shell structure with the optimized dished end is manufactured in Multi Jet Fusion 

(MJF) technology. A test bench is designed to pressurize the vessel internally. During 

the test, the strains are measured using strain gauges.  

Among many, Hoffman [84] described the practical basics of strain gauge 

measurements. Plentiful experimental beam and column studies were conducted by 

Paczos [85], Paczos et al. [86], Paczos and Wasilewicz [87], Jasion et al. [88]. These 

include the simultaneous strength test and strain gauge measurements. Zhang et al. 
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[89]-[90] performed experimental buckling studies of untypical steel shells. The 

experimental investigation of non-metallic shell structures remains somewhat an 

unpopular topic. Zhang et al. [91] considered a collapse performance of externally 

pressurized resin egg-shaped shell with corrosion thinning. Tang et al. [93] conducted 

an experimental buckling study over corrugated cylindrical shells made of resin. 

Lebans and Bisagni [94] described a similar topic, but the cylinders were 3D-printed. 

Sharifi et al. [95] considered a numerical and experimental study on the strength of 

internally pressurized laminated woven composite shells. To measure the strain, the 

authors used surface-bounded sensors.  

According to the literature review, the problems of experimental stress 

distribution analyses are not well established in shell structures. Numerous papers 

are referring to this problem analytically and numerically. In the case of structures 

with applicational potential, those should be verified experimentally to prove their 

load-carrying capacity or other functional characteristics. The conventional methods 

of manufacturing shell structures are significantly limited, making such a process 

complicated and economically inefficient. The recent development of additive 

manufacturing enables the reproduction of actual structures with nearly any 

geometry. Although they are limited to plastics, usually characterized by nonlinear 

behaviour and creep phenomenon, in some cases, they can be successfully used in 

experimental tests of structures that are ultimately manufactured from steel. This 

observation is proven by the promising outcome of the experimental study in this 

dissertation. 

As the result of the literature review, the following theses of the presented work 

are formulated. 

(1) The analytical, theory-based solutions to stress and deformation problems in 

shell structures can lead to inaccurate results. 

(2) The stress distributions in the standard dished ends of cylindrical pressure 

vessels are unfavourable. 

The two hypotheses are introduced to address the current state of the art issues 

in shell structures. 

(1) Applying the Ritz method to solve the stress and deformation problems of shell 

structures may lead to more accurate results than the analytical solutions. 

(2) The shape optimization of the dished end of the cylindrical pressure vessel could 

lead to substantial improvement in stress distribution while maintaining their 

general dimensions and manufacturability.  
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2. Linear theory of shells 

2.1. Definition of a shell  

The term shell is applied to bodies limited by two curved surfaces, where the distance 

between the surfaces is small compared to other body dimensions (Fig. 2.1). The 

middle surface is defined by the locus of points that lie at equal distances from 

internal and external surfaces. The length of a perpendicular to the middle surface 

segment between those two surfaces corresponds to the thickness of a shell, denoted 

as 𝑡. Such a definition enables characterising the shell by providing the geometrical 

form of its middle surface and its thickness. 

 

Fig. 2.1. A segment of a shell of revolution 

The middle surface of an arbitrary shell structure is described by the principal 

radii of curvature, namely 𝑅1, 𝑅2 (Fig. 2.1), specified towards two mutually orthogonal 

and curvilinear directions 𝜑, 𝜃. Usually, those are refered to as meridional and 

circumferential directions. Shells can have vastly diversified shapes depending on the 

radii of curvature 𝑅1, 𝑅2 which can be either constant or variable in the given 

directions. The most common group of shell structures are shells of revolution, for 

which the principal radii of curvature are variable only towards one direction, i.e. the 

meridional angle 𝜑, thus 𝑅1(𝜑), 𝑅2(𝜑). The geometries of revolution are defined by the 

revolution of an arbitrary generator (meridian) over an axis. The generator can be 

described as a function expressed in an optional coordinate system.  
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The shells of revolution constitute a group of meaningful structures in industrial 

applications, while shells without such a property are less common, as they are 

challenging to design and manufacture using conventional methods. Most of the shell 

structures serving as real-world engineering objects are characterised by variable 

thickness. The source of this feature is usually a side effect of the manufacturing 

processes involved in forming those structures. In most cases, the variation of the 

thickness can be considered negligible.  

Depending on the thickness 𝑡, shells can be divided into two groups ([1]-[6]), 

namely thick and thin-walled structures. The latter term is referred to geometries for 

which the ratio 𝑡/min⁡(𝑅1, 𝑅2) is relatively small compared to unity. The exact value 

distinguishing the thick and thin-walled structures is difficult to specify; however, 

the literature suggests that thin shells satisfy the following condition  

 
𝑡

min[𝑅1(𝜑), 𝑅2(𝜑)]
≤

1

20
. (2.1) 

Referring to the provided description of shells, this work is focused on shells of 

revolution with constant thickness. Definition of those geometries can be limited to a 

plane intersecting with the axis of revolution, as shown in Fig. 2.2.  

 

Fig. 2.2. Axial section of a surface of revolution 

The geometrical relation for the surface of revolution is as follows  

 
d

d𝜑
(𝑅1 sin𝜑) = 𝑅1 cos𝜑. (2.2) 

The arc length can be resolved according to integral 

 𝑆 = ∫ 𝑅1d𝜑
𝜑

𝜑

, (2.3) 
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where 𝜑, 𝜑 are the coordinates over which the meridian length 𝑆 is determined. 

Denoted in Fig. 2.2 coordinate 𝑟(𝜑) is referred to as parallel radius, being related to 

the circumferential radius of curvature in the following manner 

 𝑟 = 𝑅2 sin𝜑. (2.4) 

2.2. Linear shell theory for axisymmetric shell problems 

Within the framework of this research, the analyses are restricted to axisymmetrical 

loads acting upon the middle surface of a shell of revolution. Such an assumption 

implies that the problem description can be narrowed to meridional angle 𝜑, while all 

the physical quantities remain constant towards circumferential direction 𝜃 (Fig. 2.1). 

The further theoretical description is based on Kirchoff-Love linear shell theory 

discussed in [1]-[4]. As such a formulation is well established in the literature, its 

explanation is kept to a minimum within this dissertation. A section of a shell 

structure undergoing deformation is presented in Fig. 2.3. 

 

Fig. 2.3. A section of axisymmetrically loaded shell of revolution undergoing deformation 

As shown in Fig. 2.3, the deformation state is described by three quantities, 

i.e. 𝑢 - tangent displacements, 𝑤 – normal displacements, 𝜗 – rotation of a line tangent 

to the middle surface. Notably, only two of those can be considered independent, as 

displacements can define the rotation by the following relation 

 𝜗 =
1

𝑅1
(𝑢 +

d𝑤

d𝜑
). (2.5) 

It is often convenient to additionally define a vertical component of displacements. 

Assuming it is consistent with the axis 𝑟 in Fig. 2.2, one obtains 

 𝑑𝑣 = 𝑢 cos𝜑 − 𝑤 sin𝜑. (2.6) 

In further consideration, the quantities referring to the meridional and 

circumferential directions are distinguished by their subscripts ( 1, 2) just as 
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principal radii of curvature. The linear strains in the middle surface towards principal 

directions expressed with the use of displacements are: 

 𝜀1 =
1

𝑅1
(
d𝑢

d𝜑
−𝑤) , 𝜀2 =

1

𝑅2
(𝑢 cot𝜑 − 𝑤)⁡, (2.7) 

while the changes of curvatures: 

 𝜒1 = −
1

𝑅1

d𝜗1
d𝜑

, 𝜒2 = −
1

𝑅2
𝜗1 cot 𝜑.⁡ (2.8) 

Considering the relations in Eq. (2.7), (2.8), one can express the linear strains across 

the thickness according to coordinate 𝑧 (Fig. 2.3): 

 
𝜀1𝑧 =

1

1 −
𝑧
𝑅1

(𝜀1 + 𝑧𝜒1), 𝜀1𝑧 =
1

1 −
𝑧
𝑅1

(𝜀2 + 𝑧𝜒2), 
(2.9) 

where  

 −
𝑡

2
≤ 𝑧 ≤

𝑡

2
. (2.10) 

The material in the study is considered to be perfectly elastic and orthotropic, 

aligned with the principal directions 𝜑, 𝜃, where 𝐸1, 𝐸2 – Young's moduli, 𝜈1, 𝜈2 – 

Poisson's ratios. The internal loads in the form of normal forces and moments are 

expressed as follows: 

 𝑁1 = 𝐶1(𝜀1 + 𝜈2𝜀2), 𝑁2 = 𝐶2(𝜀2 + 𝜈1𝜀1), (2.11) 

 𝑀1 = 𝐷1(𝜒1 + 𝜈2𝜒2), 𝑀2 = 𝐷2(𝜒2 + 𝜈1𝜒1), (2.12) 

while: 

 𝐶1 =
𝐸1𝑡

1 − 𝜈1𝜈2
, 𝐶2 =

𝐸2𝑡

1 − 𝜈1𝜈2
, (2.13) 

 𝐷1 =
𝐸1𝑡

3

12(1 − 𝜈1𝜈2)
, 𝐷2 =

𝐸2𝑡
3

12(1 − 𝜈1𝜈2)
. (2.14) 

To derive the shear forces, it is necessary to refer to the equilibrium equations of a 

shell element [1]. The principal stresses are defined as follows: 

 𝜎1 =
𝐶1
𝑡
(𝜀1 + 𝜈2𝜀2), 𝜎2 =

𝐶2
𝑡
(𝜀2 + 𝜈1𝜀1), (2.15) 

and their change across the thickness of a shell: 

 𝜎1𝑧 =
𝐶1
𝑡
(𝜀1𝑧 + 𝜈2𝜀2𝑧), 𝜎2𝑧 =

𝐶2
𝑡
(𝜀2𝑧 + 𝜈1𝜀1𝑧). (2.16) 
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3. Analytical study 

3.1. Membrane state analysis 

3.1.1. General theory 

For some practical cases of shell structures, one can consider that the bending 

phenomena can be inexistent or marginal, implying they do not contribute 

significantly to stresses and deformations. The neglection of bending moments 𝑀1,𝑀2 

assumes that only normal forces 𝑁1, 𝑁2 are present in a shell. This constitutes 

the desired simplification of the linear shell theory, which is difficult to solve problems 

with for numerous practical analyses. Such an approach is referred to as membrane 

theory (MT). As a result of its simplified nature, the authors of [1], [2] suggest the 

following conditions of the MT applicability. 

1) The middle surface of a shell has smoothly varying and continuous geometry. 

2) The thickness of a shell must be sufficiently small, constant or slightly varying. 

3) Applied surface loads must be distributed in a continuous and possibly 

uniform manner. 

4) The edges of a shell can be loaded solely by the forces tangent to a middle 

surface, i.e. only normal forces are included. Similarly, the applied boundary 

conditions can be imposed only on tangent displacements 𝑢 to remain valid 

reaction forces. 

Importantly, the given conditions are based on non-definitive terms when referring 

to thickness, radii of curvature and surface loads. The MT can undoubtedly be 

successfully adopted for the problems considering uniformly loaded shells with small, 

constant thickness and radii of curvature. The first two conditions are usually 

consistent with practical cases of shell structures, especially by referring to Eq. (2.1). 

Unfortunately, the assumption of constant radii of curvature limits the applicability 

of MT to spherical and cylindrical shells. The allowance of potential variations implies 

difficulties in determining whether the MT application is justified and, if so, what is 

the expected magnitude of inaccuracies. 

Let us consider a shell of revolution with an arbitrary shape described within the 

range 𝜑1 ≤ 𝜑 ≤ 𝜑2 (Fig. 3.1). In the presented thesis, the coordinate 𝜑1 describes the 

first edge, while 𝜑2 corresponds to second edge of a shell.  The external forces in the 

MT are limited to pressure 𝑝 and normal force 𝑃0 applied at the first edge, i.e. 𝜑 = 𝜑1. 

As the introduced forces do not include all possible external loads, the MT cannot be 

used alone to analyse stress in complex shell structures.  
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Fig. 3.1. An arbitrary shell loaded with external forces 

The normal internal forces resulting from the applied external loads are as follows: 

 

𝑁1 = 𝑝𝑅0�̃�1, �̃�1 = −
�̃�

�̃�2⁡sin
2𝜑

, 

𝑁2 = 𝑝𝑅0�̃�2, �̃�2 =
�̃�

�̃�1⁡sin
2𝜑

− �̃�2, 

(3.1) 

where: 

 

𝑃 = 𝑝𝑅0
2�̃�, 𝑃0 = 𝑝𝑅0

2�̃�0, 

�̃� = �̃�0�̃�2(𝜑1)sin
2𝜑1 +

1

2
(�̃�2

2
sin2𝜑 − �̃�2(𝜑1)

2sin2𝜑1), 

d�̃�

d𝜑
= �̃�2 sin𝜑 (�̃�2 cos𝜑 +

d�̃�2
d𝜑

sin𝜑). 

(3.2) 

The coefficient �̃�0 is a dimensionless normal force applied at the first edge of a shell. 

The principal strains occurring in the meridional and circumferential directions: 

 𝜀1 =
𝑝𝑅0
𝐸1𝑡

(�̃�1 − 𝜈1�̃�2), 𝜀2 =
𝑝𝑅0
𝐸2𝑡

(�̃�2 − 𝜈2�̃�1) (3.3) 

Tangent and normal displacements are expressed in the following manner: 

 𝑢 =
𝑝𝑅0

2

𝐸2𝑡
�̃�, �̃� = sin𝜑 (𝑓 + 𝑐1), 

(3.4) 

 𝑤 =
𝑝𝑅0

2

𝐸2𝑡
�̃�, �̃� = cos𝜑 (𝑓 + 𝑐1) − (

�̃�2

�̃�1
+ 𝜈2)

�̃�

sin2𝜑
+ �̃�2

2
. (3.5) 

For the sake of further derivation, it is useful to refer to the vertical displacement 

component from Eq. (2.6): 

 𝑑𝑣 =
𝑝𝑅0

2

𝐸2ℎ
�̃�𝑣 , �̃�𝑣 = sin𝜑 [(

�̃�2

�̃�1
+ 𝜈2)

�̃�

sin2𝜑
− �̃�2

2
]. (3.6) 
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The rotation of the line tangent to the meridian of a shell is defined as: 

 𝜗1 =
𝑝𝑅0
𝐸2𝑡

�̃�1, �̃�1 =
1

�̃�1
(�̃� +

d�̃�

d𝜑
), (3.7) 

where derivative of the dimensionless normal displacements 

d�̃�

d𝜑
=
d𝑓

d𝜑
cos𝜑 − (𝑓 + 𝑐1) sin𝜑 +

1

�̃�1
2
sin2𝜑

[�̃�1(𝜈2�̃�1 + �̃�2) (2 cot𝜑 �̃� −
d�̃�

d𝜑
)+ �̃��̃�2

d�̃�1
d𝜑

] + 

+
1

�̃�1

d�̃�2
d𝜑

(2�̃�1�̃�2 −
�̃�

sin2𝜑
), 

(3.8) 

and the derivative of the expression �̃� 

 
d�̃�

d𝜑
= �̃�2 sin𝜑⁡(�̃�2 cos𝜑 +

d�̃�2
d𝜑

sin𝜑). (3.9) 

The function 𝑓 defined in the above formulae is expressed as 

 𝑓 = ∫
1

sin𝜑
[(
�̃�2

�̃�1
+ 𝜈2) �̃�1�̃�2 − (

�̃�2

�̃�1
+ 2𝜈2 + 𝛼

�̃�2

�̃�1
)

�̃�

sin2𝜑
]

𝜑

𝜑1

d𝜑, (3.10) 

where 𝛼 is an orthotropy coefficient defined as  

 𝛼 =
𝐸2
𝐸1

=
𝜈2
𝜈1
. (3.11) 

 

The function 𝑓 and its first derivative can be written in a more convenient form: 

𝑓 = [(−
1

2
𝛼 + 𝜈2) 𝑓1 + (1 − 𝜈2)𝑓2 −

1

2
𝑓3 + �̃�2(𝜑1)

2sin2𝜑1 (𝜈2𝑓4 +
1

2
𝛼𝑓5 +

1

2
𝑓6)] − 

−�̃�0�̃�2(𝜑1)sin
2𝜑1(2𝜈2𝑓4 + 𝛼𝑓5 + 𝑓6)⁡ 

(3.12) 

d𝑓

d𝜑
= [(−

1

2
𝛼 + 𝜈2)𝜓1 + (1 − 𝜈2)𝜓2 −

1

2
𝜓3 + �̃�2(𝜑1)

2sin2𝜑1 (𝜈2𝜓4 +
1

2
𝛼𝜓5 +

1

2
𝜓6)] (3.13) 

where: 

 

𝑓1 = ∫ 𝜓1d𝜑
𝜑

𝜑1

, 𝑓2 = ∫ 𝜓2d𝜑
𝜑

𝜑1

, 𝑓3 = ∫ 𝜓3d𝜑
𝜑

𝜑1

, 

𝑓4 = ∫ 𝜓4d𝜑
𝜑

𝜑1

, 𝑓5 = ∫ 𝜓5d𝜑
𝜑

𝜑1

, 𝑓6 = ∫ 𝜓6d𝜑
𝜑

𝜑1

, 

(3.14) 

 

𝜓1 = �̃�1�̃�2
1

sin𝜑
, 𝜓2 = �̃�2

2 1

sin𝜑
, 𝜓3 =

�̃�2
3

�̃�1

1

sin𝜑
, 

𝜓4 =
1

sin3𝜑
, 𝜓5 =

�̃�1

�̃�2

1

sin3𝜑
, 𝜓6 =

�̃�2

�̃�1

1

sin3𝜑
. 

(3.15) 

 



17 

 

The displacements and rotations can be further resolved by assuming 

appropriate boundary condition and calculating the constant 𝑐1. In the presented 

paper, tangent displacement is restrained at the second edge (𝜑 = 𝜑2) of a shell 

 �̃�(𝜑2) = 0. (3.16) 

A significant simplification of the above expressions can be achieved for the closed 

apex shells, i.e. when 𝜑1 = 0: 

 �̃�0 = 0, �̃� =
1

2
�̃�2

2
sin2𝜑. (3.17) 

The components containing the edge load �̃�0 then disappear, which enables to rewrite 

the expressions for internal forces: 

 �̃�1 = −
1

2
�̃�2, �̃�2 = −

1

2
�̃�2 (2 −

�̃�2

�̃�1⁡
). (3.18) 

Further, the 𝑓 function and its derivative can be expressed as follows: 

 

𝑓 = (−
1

2
𝛼 + 𝜈2) 𝑓1 + (1 − 𝜈2)𝑓2 −

1

2
𝑓3, 

d𝑓

d𝜑
= (−

1

2
𝛼 + 𝜈2)𝜓1 + (1 − 𝜈2)𝜓2 −

1

2
𝜓3. 

(3.19) 

3.1.2. Cylindrical pressure vessels 

Cylindrical pressure vessels constitute an essential structure in the industrial 

applications, enabling for storage and transportation of gases and liquids. They 

consist of a cylindrical shell enclosed by two convex dished ends. The general 

geometry of the introduced structure is shown in Fig. 3.2. 

 

Fig. 3.2. The general geometry of the cylindrical pressure vessel 

Most of the pressure vessels are thin-walled shell structures which can be 

described by the parameters referred to their middle surface (Fig. 3.2), i.e. 

𝜑 - meridional angle, 𝑅1, 𝑅2 – meridional and circumferential radii of curvature, 

𝑟 - parallel radius, 𝑆 - meridian length, 𝐿 – cylindrical shell length, 𝑅0 – cylindrical 
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shell radius, ℎ - dished end height, and thickness 𝑡. The relative depth of a dished 

end is defined as 

 𝛽 =
ℎ

𝑅0
. (3.20) 

The standard dished ends are ellipsoidal, torispherical and hemispherical, as 

shown in Fig. 3.3. Those are described and manufactured according to coherent 

European and American standards, i.e. EN 13445 [10] and ASME Section VIII, 

Division 1, 2 [11], [12]. 

 

Fig. 3.3. Dished ends according to EN 13445; a) - torispherical, b) - ellipsoidal, c) – hemispherical 

Calculation methods provided in technical standards are based on a simplified 

and not necessarily insightful approach. The presented study aims to provide an 

analytical solution to deformation and stress problems of pressure vessels using shell 

theories. As the solutions considering hemispherical geometries are known, the 

research is narrowed to torispherical and ellipsoidal geometries. To investigate the 

stress distribution in those, it is convenient to formulate relative equivalent stress  

 �̃�𝑟 =
𝜎𝑟

𝜎𝑟
(𝑐𝑦𝑙)

, 
(3.21) 

where:⁡𝜎𝑟 – von Mises stress in a pressure vessel,  𝜎𝑟
(𝑐𝑦𝑙)

 – maximum von Mises stress 

in a cylindrical shell beyond any stress disturbance caused by the edge loads. Such 

formulation enables to define of the stress concentration factor 𝑘, which is the 

maximum value of �̃�𝑟: 

 𝑘 =
𝜎𝑟
(𝑚𝑎𝑥)

𝜎𝑟
(𝑐𝑦𝑙)

, (3.22) 

where:⁡𝜎𝑟
(𝑚𝑎𝑥)

 – maximum von Mises stress in a pressure vessel. 

To proceed with the derivation employing MT, one must refer to separate 

geometries of pressure vessels, for which principal radii of curvature constitute 

continuous functions.  
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3.1.3. Toroidal shell 

The further subsections in this chapter refer to the derivation of the necessary 

formulae to analyse standard orthotropic pressure vessels according to the MT. 

A more detailed description of the selected shells is provided in [37] (A1). Each of the 

considered geometries is described by a unique symbol, i.e. 𝑠 – spherical, 

𝑐 - cylindrical, 𝑡 - toroidal and 𝑒 – ellipsoidal, which appear in the bottom indices of 

the previously derived expressions. In the case of the toroidal shell (Fig. 3.1):  

 𝜑1𝑡 =
3

20
𝜋, 𝜑2𝑡 =

𝜋

2
. (3.23) 

For the sake of clarity, the value of 𝜑1𝑡 is not substituted for the derivation of the 

selected expressions. Meridional and circumferential radii of curvatures are given as: 

 𝑅1𝑡 = 𝑅0�̃�𝑡, 𝑅2𝑡 = 𝑅0 [�̃�𝑡 +
1

sin𝜑
(1 − �̃�𝑡)] , �̃�𝑡 =

𝛽 cot
𝜑𝑡1
2 − 1

cot
𝜑𝑡1
2 − 1

, (3.24) 

and their first derivatives: 

 
d�̃�1𝑡
d𝜑

= 0,
d�̃�2𝑡
d𝜑

= (�̃�𝑡 − 1)
cos𝜑

sin2𝜑
. (3.25) 

To calculate the internal forces, the normal edge load must be defined, which in the 

case of the torispherical shell results from the interaction with the spherical segment: 

 �̃�0𝑡 = −�̃�1𝑠(𝜑𝑡1) =
1

2
�̃�𝑠. (3.26) 

The components of 𝑓 function in Eq. (3.14) for the analysed shell are: 

 

𝑓1𝑡 = �̃�𝑡
2
𝑓𝑡
(𝑎) − �̃�𝑡(�̃�𝑡 − 1)𝑓𝑡

(𝑏),⁡ 

𝑓2𝑡 = �̃�𝑡
2
𝑓𝑡
(𝑎) − 2�̃�𝑡(�̃�𝑡 − 1)𝑓𝑡

(𝑏) + (�̃�𝑡 − 1)2𝑓𝑡
(𝑐)

 

𝑓3𝑡 = �̃�𝑡
2
𝑓𝑡
(𝑎) − 3�̃�𝑡(�̃�𝑡 − 1)𝑓𝑡

(𝑏) + 3(�̃�𝑡 − 1)
2
𝑓𝑡
(𝑐) −

(�̃�𝑡 − 1)3

�̃�𝑡
𝑓𝑡
(𝑑)

 

𝑓4𝑡 = 𝑓𝑡
(𝑐), 𝑓5𝑡 = �̃�𝑡𝑓𝑡

(𝑒), 𝑓6𝑡 = 𝑓𝑡
(𝑐) + (

1

�̃�𝑡
− 1)𝑓𝑡

(𝑑), 

(3.27) 

where: 

𝑓𝑡
(𝑎) = ln (tan

𝜑

2
) , 𝑓𝑡

(𝑏) = −cot𝜑, 

𝑓𝑡
(𝑐) =

1

8
[

2

cos𝜑 − 1
+ ln (tan4

𝜑

2
) +

1

cos2
𝜑
2

] , 𝑓𝑡
(𝑑) = −

1

3
(2 +

1

sin2𝜑
) cot𝜑, 

𝑓𝑡
(𝑒) =

1

(�̃�𝑡 − 1)
2 {

2�̃�𝑡
2

√1 − 2�̃�𝑡
arctan [

�̃�𝑡 − (�̃�𝑡 − 1) tan
𝜑
2

√1 − 2�̃�𝑡
] + �̃�𝑡 cot𝜑 + �̃�𝑡 ln (cot

𝜑

2
) − cot𝜑}. 

(3.28) 
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Using Eq. (3.16) results in 

 𝑐1𝑡 = 0. (3.29) 

3.1.4. Spherical shell 

The meridional coordinates for the spherical shell of a torispherical dished end 

depend on the definition of the toroidal shell: 

 𝜑1𝑠 = 0, 𝜑2𝑠 = 𝜑1𝑡 =
3

20
𝜋. (3.30) 

Principal radii of curvature are constant: 

 

𝑅1𝑠 = 𝑅2𝑠 = 𝑅0�̃�𝑠, 

�̃�𝑠 =
1

1 − cos𝜑2𝑠
(𝛽 − �̃�𝑡 cos𝜑2𝑠), 

(3.31) 

therefore their derivatives 

 
d�̃�1𝑠
d𝜑

=
d�̃�2𝑠
d𝜑

= 0. (3.32) 

Using Eq. (3.19), one obtains 

 𝑓1𝑠 = 𝑓2𝑠 = 𝑓3𝑠 = �̃�𝑠
2
ln (tan

𝜑

2
), (3.33) 

therefore 

 𝑓𝑠 =
1

2
�̃�𝑠

2
(1 − 𝛼) ln (tan

𝜑

2
). (3.34) 

Applying boundary condition in Eq. (3.16) yields 

 𝑐1𝑠 = −
1

2
�̃�𝑠

2
(1 − 𝛼) ln (tan

𝜑2𝑠

2
). (3.35) 

It is worth noting that if the material is isotropic (𝛼 = 1), then: 

 𝑐1𝑠 = 0, 𝑓𝑠 = 0, (3.36) 

which implies the tangent displacements are zero 

 𝑢𝑠 = 0. (3.37) 
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3.1.5. Ellipsoidal shell 

The meridional angle boundaries of the ellipsoidal dished end are: 

 𝜑1𝑒 = 0, 𝜑2𝑒 =
𝜋

2
. (3.38) 

Unlike the previous shapes, both radii of curvature are variable for the ellipsoidal 

shell: 

 

𝑅1𝑒 = 𝑅0�̃�1𝑒 , �̃�1𝑒 = 𝛽2
1

sin3𝜑
(

1

1 + 𝛽2 cot2𝜑
)
3/2

, 

𝑅2𝑒 = 𝑅0�̃�2𝑒 , �̃�2𝑒 =
1

sin𝜑
(

1

1 + 𝛽2 cot2𝜑
)
1/2

. 

(3.39) 

Their derivatives are as follows: 

 

d�̃�1𝑒
d𝜑

= 3𝛽2(𝛽2 − 1) (
1

1 + 𝛽2 cot2𝜑
)
5/2 cos𝜑

sin4𝜑
, 

⁡
d�̃�2𝑒
d𝜑

= (𝛽2 − 1) (
1

1 + 𝛽2 cot2𝜑
)
3/2 cos𝜑

sin2𝜑
. 

(3.40) 

For the closed apex shells i.e. 𝜑1 = 0, the internal forces can be calculated according 

to Eq. (3.18). The components of the 𝑓 function (Eq. (3.19)) are further resolved: 

 

𝑓1𝑒 =
1

4𝛽2
[2√1 − 𝛽2(2 + 𝛽2) arctanh(

2√1 − 𝛽2

𝛽2tan2
𝜑
2 − 𝛽2 + 2

) + ln (tan4
𝜑

2
)] − 

−
(𝛽2 − 1) cos𝜑

(𝛽2 − 1) cos2𝜑 + 𝛽2 + 1
, 

𝑓2𝑒 =
1

2𝛽2
[2√1 − 𝛽2 arctanh(

2√1 − 𝛽2

𝛽2tan2
𝜑
2 − 𝛽2 + 2

) + ln (tan2
𝜑

2
)], 

𝑓3𝑒 =
1

2𝛽2
ln (tan2

𝜑

2
). 

(3.41) 

Applying an adequate boundary condition (Eq. (3.16)) yields 

 𝑐1𝑒 =
√1 − 𝛽2

4𝛽2
[(2 + 𝛽2)𝛼 − 2𝛽2𝜈2 − 4] arctanh√1 − 𝛽2. (3.42) 
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3.1.6. Cylindrical shell 

To describe the membrane state in a cylindrical shell, it is necessary to transform 

the description from the meridional angle 𝜑 to a linear coordinate 𝜉. The following 

substitution is applied: 

 𝜑 =
𝜋

2
, �̃�1d𝜑 = d𝜉, (3.43) 

where 0 ≤ 𝜉 ≤ 𝐿. Principal radii of curvature are expressed as: 

 
𝑅1 = 𝑅0�̃�1, �̃�1 → ∞, 

𝑅2 = 𝑅0�̃�2, �̃�2 = 1. 
(3.44) 

Assuming the shell is enclosed by a dished end, the horizontal edge load, i.e. the 

expression for 𝑃, �̃� and �̃�0 consequently can be significantly simplified: 

 𝑃𝑐 = 𝑝𝑅0
2�̃�𝑐⁡, �̃�𝑐 = �̃�0𝑐 =

1

2
,

d�̃�𝑐
d𝜉

= 0, (3.45) 

which leads to the following form of the internal forces: 

 

𝑁1 = 𝑝𝑅0�̃�1, �̃�1 = −
1

2
, 

𝑁2 = 𝑝𝑅0�̃�2, �̃�2 = −1. 

(3.46) 

The components of the 𝑓 function can be reduced to: 

 𝑓1𝑐 = 𝜉, 𝑓2𝑐 = 0, 𝑓3𝑐 = 0, 𝑓4𝑐 = 0, 𝑓5𝑐 = 𝜉, 𝑓6𝑐 = 0, (3.47) 

therefore 

 𝑓𝑐 = (𝜈2 −
1

2
𝛼) 𝜉. (3.48) 

Applying the boundary condition in Eq. (3.16) leads to 

 𝑐1𝑐 = 0,⁡ (3.49) 

which results in the following expressions for displacements: 

 �̃�𝑐 = (𝜈2 −
1

2
𝛼) 𝜉, �̃�𝑐 = 1 +

1

2
𝜈2. (3.50) 
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3.2. The edge effect theory 

3.2.1. Doubly curved shells 

To consider all possible external loads that can occur in complex shell structures, 

one must refer to a formulation that includes the bending phenomenon, which is 

omitted in MT. The edge effect theory (EET) is employed in the presented study to 

describe bending effects. It constitutes a simplification of the general bending theory 

of shells. The differential equations of the latter were initially defined by Reissner [14] 

for spherical shells and further generalized by Meissner [15]. The authors introduced 

two unknown functions in the derivation: 

 𝜗 =
1

𝑅1
(𝑢 +

d𝑤

d𝜑
) , 𝑈 = 𝑅2𝑄, (3.51) 

where: 𝑄 – shear force, 𝜗 – rotation of a line tangent to the meridian (Fig. 2.3). The 

form of the proposed governing differential equations is: 

 

𝐿(𝑈) + 𝜈2⁡𝑈 − 𝑅1𝐸2𝑡𝜗 = 𝐹, 

𝐿(𝜗) − 𝜈2𝜗 +
𝑅1
𝐷1

𝑈 = 0, 

(3.52) 

where: 

 𝐿 =
𝑅2
𝑅1

d2

d𝜑2
+ [

𝑅2
𝑅1

cot 𝜑 +
d

d𝜑
(
𝑅2
𝑅1
)]

d

d𝜑
− 𝛼

𝑅1
𝑅2

cot2𝜑, (3.53) 

 

𝐹 = 𝑃0 {
d

d𝜑
[(
𝑅2
𝑅1

+ 𝜈2)
1

sin2𝜑
] + (

𝑅2
𝑅1

+ 2𝜈2 + 𝛼
𝑅1
𝑅2
)

1

sin2𝜑
cot𝜑} − 

−𝑝 [
d

d𝜑
(𝑅2

2) − (
𝑅2
𝑅1

+ 𝜈2)𝑅1𝑅2 cot 𝜑], 

(3.54) 

 𝐷1 =⁡
𝐸1𝑡

3

12(1 − 𝜈1𝜈2)
, (3.55) 

The solution of the system of differential equations as expressed in Eq. (3.52) remains 

unknown. Importantly, they are linear, therefore their general solution has the 

following form: 

 
𝑈 = 𝑈𝑒 + 𝑈𝑠 + 𝑈𝑛, 

𝜗 = 𝜗𝑒 + 𝜗𝑠 + 𝜗𝑛, 
(3.56) 

where 𝑈𝑒 , 𝜗𝑒 are general integrals of homogenous equations assuming 𝑝 = ⁡𝑃0 = 0,

(⁡𝐹 = 0), 𝑈𝑠, 𝜗𝑠 are particular integrals for surface load only (𝑃0 = 0) and finally 𝑈𝑛, 𝜗𝑛 

are particular integrals for normal edge load 𝑃0 (𝑝 = 0). The surface load in this paper 

refers to pressure 𝑝. 

The EET assumes omitting the bending effects caused by surface loads and 

normal edge load 𝑃0. The solution of differential equations in homogenous form 
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(𝐹 = 0) is possible and is referred to as the EET, where the bending phenomenon 

caused by the normal edge load 𝑃0 and surface loads like pressure 𝑝 are neglected. 

Having this in mind, one can rewrite Eq. (3.56) to the following form: 

 𝑈 = 𝑈𝑒 , 𝜗 = 𝜗𝑒 . (3.57) 

This approach assumes the bending effect is caused only by the moments and 

transverse forces applied on the edges of a shell, hence the name of the theory. The 

omitted load components 𝑝, 𝑃0 (Fig. 3.1) might be considered within the MT, and the 

final solution constitutes then a superposition of both membrane and bending state. 

The system of differential equations (Eq. (3.52)) can be further rewritten to: 

 
𝐿(𝑈) + 𝜈2⁡𝑈 − 𝑅1

𝐸2𝑡

𝐷1
�̅� = 0, 

𝐿(�̅�) − 𝜈2�̅� + 𝑅1𝑈 = 0, 

(3.58) 

where 

 𝜗 =
1

𝐷1
�̅�. (3.59) 

There are two methods for solving Eq. (3.58). The solution based on the 

simplifications proposed by Geckeler [17] is the most widely described in the 

literature. Those are as follows. 

A) Value of the functions 𝑈, �̅� (Eq. (3.58)) increase significantly with the order 

of their derivatives, i.e.  

 
d𝑛𝑈

d𝜑𝑛
≫

d(𝑛−1)𝑈

d𝜑(𝑛−1)
,

d𝑛�̅�

d𝜑𝑛
≫

d(𝑛−1)�̅�

d𝜑(𝑛−1)
. (3.60) 

B) The change of radii of curvature near the shells edge, where the disturbance 

occurs, is negligible; therefore, it can be assumed: 

 𝑅1, 𝑅2 = const. (3.61) 

According to Eq. (3.60), the differential operator in Eq. (3.53) can be expressed as 

 𝐿 =
𝑅2
𝑅1

d2

d𝜑2
, (3.62) 

one can further omit the function 𝑈 and �̅� in the first and second expression 

correspondingly in the system of equations Eq. (3.58), which results in: 

 

d2𝑈

d𝜑2
−
𝑅1

2

𝑅2

𝐸2𝑡

𝐷1
�̅� = 0, 

d2�̅�

d𝜑2
+
𝑅1

2

𝑅2
𝑈 = 0. 

(3.63) 
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The above system can be reduced to a single fourth-order differential equation 

 
d4𝑈

d𝜑4
+ 4𝜇4𝑈 = 0, (3.64) 

where:  

 𝜇 = 𝜘𝜌, (3.65) 

 𝜘 = √
3𝛼(1 − 𝜈1𝜈2)

𝑡2

4

, (3.66) 

 𝜌 =
𝑅1

√𝑅2
. (3.67) 

Replacing meridional angle 𝜑 in Eq. (3.64) with a dummy angular coordinate towards 

the same direction denoted by 𝛾 (Fig. 3.4), one obtains 

 
d4𝑈

d𝛾4
+ 4𝜇4𝑈 = 0. (3.68) 

The general solution of the differential equation in Eq. (3.68) can be written in the 

following form: 

 
𝑈 = 2𝜘2[𝑒−𝜇𝛾(𝐴1 cos 𝜇𝛾 − 𝐴2 sin 𝜇𝛾) + 𝑒𝜇𝛾(𝐴3 cos 𝜇𝛾 + 𝐴4 sin 𝜇𝛾)], 

�̅� = 𝑒−𝜇𝛾(𝐴1 sin𝜇𝛾 + 𝐴2 cos 𝜇𝛾) − 𝑒𝜇𝛾(𝐴3 sin 𝜇𝛾 − 𝐴4 cos 𝜇𝛾). 
(3.69) 

It is expected that the solution of the Meissner homogenous equations is 

characterised by the functions that rapidly decay with the increase of the coordinate 

𝛾 from a shell edge. In the above solution, the component 𝑒−𝜇𝛾 is consistent with this 

observation, while 𝑒𝜇𝛾 has the exact opposite property. The increase of the values of 

the functions (Eq. (3.69)) with meridional angle 𝛾 can only occur when it is caused by 

the disturbance on another edge of a shell (Fig. 3.4).  

 

Fig. 3.4. Angular coordinates in the EET 
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To obtain a convenient form of the presented solution, one may introduce new 

variables that express the angular distance from each of the shell edges separately, 

as presented in Fig. 3.4: 

 𝛾 = 𝛾1 = 𝜑 − 𝜑1, 𝛾 = −𝛾2 = −(𝜑2 − 𝜑), (3.70) 

which results in: 

 

𝑈𝑔 = 2𝜘2[𝑒−𝜇𝛾1(𝐴1 cos 𝜇𝛾1 − 𝐴2 sin𝜇𝛾1) + 𝑒−𝜇𝛾2(𝐴3 cos 𝜇𝛾2 − 𝐴4 sin𝜇𝛾2)], 

�̅�𝑔 = 𝑒−𝜇𝛾1(𝐴1 sin𝜇𝛾1 + 𝐴2 cos 𝜇𝛾1) + 𝑒−𝜇𝛾2(𝐴3 sin𝜇𝛾2 + 𝐴4 cos 𝜇𝛾2). 
(3.71) 

In the presented work, the EET solution 𝑈𝑔 , �̅�𝑔 proposed by Geckeler [17] is 

compared to Blumenthal [16] and Steuermann [18], [19] asymptotic integration 

solution 𝑈𝑠, �̅�𝑠 (Eq. (3.72)) of homogenous Reissner-Meissner differential equations. 

The derivation of the latter, unlike the former, assumes the principal radii of 

curvature are functions of the meridional angle. Such a solution is discussed by 

Mazurkiewicz and Nagórski [1], and after unifying symbols and adjusting variables, 

it takes the form: 

 
𝑈𝑠 = 2𝜘2[𝑒−𝜘𝜔1(𝐵1 cos 𝜘𝜔1 − 𝐵2 sin𝜘𝜔1) + 𝑒−𝜘𝜔2(𝐵3 cos𝜘𝜔2 − 𝐵4 sin𝜘𝜔2)], 

�̅�𝑠 = 𝑒−𝜘𝜔1(𝐵1 sin 𝜘𝜔1 + 𝐵2 cos 𝜘𝜔1) + 𝑒−𝜘𝜔2(𝐵3 sin 𝜘𝜔2 + 𝐵4 cos𝜘𝜔2), 
(3.72) 

where: 

 𝜔1 = ∫ 𝜌d𝛾
𝜑

𝜑1

, 𝜔2 = ∫ 𝜌d𝛾
𝜑2

𝜑

. (3.73) 

Note that in the case of a shell with constant radii of curvature, applying the same 

constants yields the same form of the solutions in Eq. (3.71) and Eq. (3.72), as: 

 𝜘𝜔1 = 𝜇(𝜑 − 𝜑1) = 𝜇𝛾1, 𝜘𝜔2 = 𝜇(𝜑2 − 𝜑) = 𝜇𝛾2. (3.74) 

The solution in Eq. (3.71) can be then written to match the form of Eq. (3.72), which 

led to: 

 

𝑈𝑔 = 2𝜘2[𝑒−𝜘�̅�1(𝐴1 cos 𝜘�̅�1 − 𝐴2 sin 𝜘�̅�1) + 𝑒−𝜘�̅�2(𝐴3 cos 𝜘�̅�2 − 𝐴4 sin 𝜘�̅�2)], 

�̅�𝑔 = 𝑒−𝜘𝜔1(𝐴1 sin𝜘�̅�1 + 𝐴2 cos 𝜘�̅�1) + 𝑒−𝜘�̅�2(𝐴3 sin𝜘�̅�2 + 𝐴4 cos 𝜘�̅�2), 
(3.75) 

enabling to introduce the similar functions to Eq. (3.73): 

 �̅�1 = 𝜌∫ d𝛾
𝜑

𝜑1

, �̅�2 = 𝜌∫ d𝛾
𝜑2

𝜑

. (3.76) 
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In the further derivation, it is assumed that the functions 𝑈, �̅�⁡can be described 

by Eq. (3.72) or Eq. (3.75). Following the authors of [1], the internal forces of the EET 

expressed with the functions 𝑈, �̅� are: 

 𝑄1 =
1

𝑅2
𝑈, (3.77) 

 𝑁1 = −
1

𝑅2
𝑈 cot𝜑 , 𝑁2 = −

1

𝑅1

d𝑈

d𝜑
. (3.78) 

 𝑀1 = −(
1

𝑅1

d�̅�

d𝜑
+ 𝜈2

1

𝑅2
�̅� cot𝜑) , 𝑀2 = −𝛼(

1

𝑅2
�̅� cot𝜑 + 𝜈1

1

𝑅1

d�̅�

d𝜑
). (3.79) 

The rotation of the line tangent to the meridian is proportional to �̅� and can be 

resolved according to Eq. (3.59). The normal and tangent displacement components 

are expressed as follows: 

 

𝑢 =
sin𝜑𝑅1
𝐸2𝑡

∫ [
d

d𝜑
(

𝑈

sin𝜑
)(

𝑅2

𝑅1
2 + 𝜈2

1

𝑅1
) + (

𝑅2

𝑅1
2 − 𝛼

1

𝑅2
)
cos𝜑

sin2𝜑
𝑈]d𝜑 + 

+𝐶 sin𝜑, 

𝑤 = 𝑢 cot𝜑 +
𝑅2
𝐸2𝑡

(
1

𝑅1

d𝑈

d𝜑
− 𝜈2

1

𝑅2
𝑈 cot𝜑). 

(3.80) 

Analytical calculation of these functions can be considered difficult due to 

cumbersome integrals. Importantly, normal and tangent displacement components 

are not necessary for further analyses. Instead, one can refer to the vertical 

displacement component defined in Eq. (2.6), which can be simplified to a very 

convenient form 

 𝑑𝑣 = −
𝑅2 sin𝜑

𝐸2𝑡
(
1

𝑅1

d𝑈

d𝜑
− 𝜈2

1

𝑅2
𝑈 cot𝜑). (3.81) 

Remarkably, the functions in Eqs. (3.79), (3.81) are inconsistent with the 

simplification (Eq. (3.60)) proposed by Geckeler, as the derivatives of functions 𝑈, �̅� 

are not neglected in the presence of those functions themselves like in Eq. (3.63). For 

such a reason those are usually rewritten ([1], [2]) to: 

 𝑀1 = −
1

𝑅1

d�̅�⁡

d𝜑
, 𝑀2 = −𝜈2

1

𝑅1

d�̅�⁡

d𝜑
= 𝜈2𝑀1, (3.82) 

 𝑑𝑣 = −
1

𝐸2𝑡

𝑅2 sin𝜑

𝑅1

d𝑈

d𝜑
. (3.83) 

The justification of this simplification is debatable, as it leads to the omission of cot𝜑 

component. When the meridional angle 𝜑 becomes sufficiently small near a shell 

edge, the functions in Eqs. (3.79), (3.81) and corresponding Eqs. (3.82), (3.83) may 

yield considerably different values depending on a studied case. 
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 To simplify the EET approach, it is usually assumed that two edges of a single 

shell structure can be considered separately. This is valid due to the character of the 

solutions in Eq. (3.72) or Eq. (3.75), as their values diminish relatively quickly when 

moving away from the edge, therefore: 

𝑈𝑔 = 𝑈𝑔
(1) + 𝑈𝑔

(2),    �̅�𝑠 = �̅�𝑔
(1)

+ �̅�𝑔
(2)
, 

𝑈𝑔
(1) = 2𝜘2𝑒−𝜘�̅�1(𝐴1 cos𝜘�̅�1 − 𝐴2 sin𝜘�̅�1),  𝑈𝑔

(2) = 2𝜘2𝑒−𝜘�̅�2(𝐴3 cos 𝜘�̅�2 − 𝐴4 sin𝜘�̅�2), 

�̅�𝑔
(1)

= 𝑒−𝜘�̅�1(𝐴1 sin 𝜘�̅�1 + 𝐴2 cos 𝜘�̅�1),   �̅�𝑔
(2)

= 𝑒−𝜘�̅�2(𝐴3 sin 𝜘�̅�2 + 𝐴4 cos 𝜘�̅�2), 

(3.84) 

𝑈𝑠 = 𝑈𝑠
(1) + 𝑈𝑠

(2),   ⁡�̅�𝑠 = �̅�𝑠
(1)

+ �̅�𝑠
(2)
, 

𝑈𝑠
(1) = 2𝜘2𝑒−𝜘𝜔1(𝐵1 cos 𝜘𝜔1 − 𝐵2 sin𝜘𝜔1),  𝑈𝑠

(2) = 2𝜘2𝑒−𝜘𝜔2(𝐵3 cos𝜘𝜔2 −𝐵4 sin 𝜘𝜔2), 

�̅�𝑠
(1)

= 𝑒−𝜘𝜔1(𝐵1 sin 𝜘𝜔1 +𝐵2 cos 𝜘𝜔1),   �̅�𝑠
(2)

= 𝑒−𝜘𝜔2(𝐵3 sin 𝜘𝜔2 + 𝐵4 cos 𝜘𝜔2). 

(3.85) 

Their derivatives are as follows: 

 

d𝑈𝑔
(1)

d𝜑
= 2√2𝜘3𝜌𝑒−𝜘�̅�1 [𝐴1 sin (𝜘�̅�1 −

3

4
𝜋) + 𝐴2 cos (𝜘�̅�1 −

3

4
𝜋)], 

d𝑈𝑔
(2)

d𝜑
= −2√2𝜘3𝜌𝑒−𝜘�̅�2 [𝐴3 sin (𝜘�̅�2 −

3

4
𝜋) + 𝐴4 cos (𝜘�̅�2 −

3

4
𝜋)], 

d�̅�𝑔
(1)

d𝜑
= −√2𝜘𝜌𝑒−𝜘�̅�1 [𝐴1 sin (𝜘�̅�1 −

1

4
𝜋) + 𝐴2 cos (𝜘�̅�1 −

1

4
𝜋)], 

d�̅�𝑔
(2)

d𝜑
= √2𝜘𝜌𝑒−𝜘�̅�2 [𝐴3 sin (𝜘�̅�2 −

1

4
𝜋) + 𝐴4 cos (𝜘�̅�2 −

1

4
𝜋)], 

(3.86) 

 

d𝑈𝑠
(1)

d𝜑
= 2√2𝜘3𝜌𝑒−𝜘𝜔1 [𝐵1 sin (𝜘𝜔1 −

3

4
𝜋) + 𝐵2 cos (𝜘𝜔1 −

3

4
𝜋)], 

d𝑈𝑠
(2)

d𝜑
= −2√2𝜘3𝜌𝑒−𝜘𝜔2 [𝐵3 sin (𝜘𝜔2 −

3

4
𝜋) + 𝐵4 cos (𝜘𝜔2 −

3

4
𝜋)], 

d�̅�𝑠
(1)

d𝜑
= −√2𝜘𝜌𝑒−𝜘𝜔1 [𝐵1 sin (𝜘𝜔1 −

1

4
𝜋) + 𝐵2 cos (𝜘𝜔1 −

1

4
𝜋)], 

d�̅�𝑠
(2)

d𝜑
= √2𝜘𝜌𝑒−𝜘𝜔2 [𝐵3 sin (𝜘𝜔2 −

1

4
𝜋) + 𝐵4 cos (𝜘𝜔2 −

1

4
𝜋)]. 

(3.87) 

In the further derivation, the edge effect theory formulation proposed by 

Geckeler is from now on called EETG, while Blumenthal and Steuermann approach 
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is referred to as EETS. Assuming the functions 𝑈(1), 𝑈(2), �̅�(1), �̅�(2) are expressed by 

Eq. (3.84) or Eq. (3.85), normal and shear internal forces can be written in a concise 

form in EETG and EETS: 

 𝑄1 = 𝑄1
(1) + 𝑄1

(2), 𝑄1
(1) =

1

𝑅2
𝑈(1), 𝑄1

(2) =
1

𝑅2
𝑈(2),⁡⁡ (3.88) 

 

𝑁1 = 𝑁1
(1) + 𝑁1

(2), 𝑁1
(1) = −

1

𝑅2
𝑈(1) cot 𝜑 , 𝑁1

(2) = −
1

𝑅2
𝑈(2) cot𝜑, 

𝑁2 = 𝑁2
(1) +𝑁2

(2), 𝑁2
(1) = −

1

𝑅1

d𝑈(1)

d𝜑
, 𝑁2

(2) = −
1

𝑅1

d𝑈(2)

d𝜑
. 

(3.89) 

Meridional and circumferential moments in EETS are described as: 

𝑀1 = 𝑀1
(1) +𝑀1

(2),⁡⁡⁡⁡ 𝑀2 = 𝑀2
(1) +𝑀2

(2),⁡⁡ 

𝑀1
(1) = −(

1

𝑅1

d�̅�𝑠
(1)

d𝜑
+ 𝜈2

1

𝑅2
�̅�𝑠

(1)
cot𝜑) ,⁡⁡⁡⁡ 𝑀1

(2) = −(
1

𝑅1

d�̅�𝑠
(2)

d𝜑
+ 𝜈2

1

𝑅2
�̅�𝑠

(2)
cot𝜑),⁡⁡ 

⁡𝑀2
(1) = −𝛼(

1

𝑅2
�̅�𝑠

(1)
cot 𝜑 + 𝜈1

1

𝑅1

d�̅�𝑠
(1)

d𝜑
) ,     𝑀2

(2) = −𝛼 (
1

𝑅2
�̅�𝑠

(2)
cot𝜑 + 𝜈1

1

𝑅1

d�̅�𝑠
(2)

d𝜑
). 

(3.90) 

The simplification applied in EETG leads to the following expressions: 

 
𝑀1 = 𝑀1

(1) +𝑀1
(2), 𝑀1

(1) = −
1

𝑅1

d�̅�𝑔
(1)
⁡

d𝜑
, 𝑀1

(2) = −
1

𝑅1

d�̅�𝑔
(2)
⁡

d𝜑
,⁡⁡ 

𝑀2 = 𝑀2
(1) +𝑀2

(2), 𝑀2
(1) = 𝜈2𝑀1

(1), 𝑀2
(2) = 𝜈2𝑀1

(2). 

(3.91) 

Vertical displacements in EETS can be written in a convenient form: 

 

𝑑𝑣 = 𝑑𝑣
(1) + 𝑑𝑣

(2), 

𝑑𝑣
(1) = −

𝑅2 sin𝜑

𝐸2𝑡
(
1

𝑅1

d𝑈𝑠
(1)

d𝜑
− 𝜈2

1

𝑅2
𝑈𝑠

(1) cot𝜑),⁡ 

𝑑𝑣
(2) = −

𝑅2 sin𝜑

𝐸2𝑡
(
1

𝑅1

d𝑈𝑠
(2)

d𝜑
− 𝜈2

1

𝑅2
𝑈𝑠

(2) cot𝜑). 

(3.92) 

After introducing Geckeler simplification to Eq. (3.92), one obtains: 

 

𝑑𝑣 = 𝑑𝑣
(1) + 𝑑𝑣

(2),⁡⁡ 

𝑑𝑣
(1) = −

1

𝐸2𝑡

𝑅2 sin𝜑

𝑅1

d𝑈𝑔
(1)

d𝜑
, 𝑑𝑣

(2) = −
1

𝐸2𝑡

𝑅2 sin𝜑

𝑅1

d𝑈𝑔
(2)

d𝜑
. 

(3.93) 
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To resolve the constants in Eq. (3.84) or Eq. (3.85), the following boundary conditions 

are assumed: 

 

𝑄1
(1)(𝜑1) = 𝑄𝑒1, 𝑄1

(2)(𝜑2) = 𝑄𝑒2, 

𝑀1
(1)(𝜑1) = 𝑀𝑒1, 𝑀1

(2)(𝜑2) = −𝑀𝑒2. 

(3.94) 

The constants in EETG are calculated according to internal shear forces in Eq. (3.88) 

and moments in Eq. (3.91): 

 

𝐴1 = 𝑄𝑒1
𝑅2(𝜑1)

2𝜘2
, 𝐴3 = 𝑄𝑒2

𝑅2(𝜑2)

2𝜘2
,⁡⁡ 

⁡⁡𝐴2 = 𝑄𝑒1
𝑅2(𝜑1)

2𝜘2
+𝑀𝑒1

√𝑅2(𝜑1)

𝜘
, 𝐴4 = 𝑄𝑒2

𝑅2(𝜑2)

2𝜘2
+𝑀𝑒2

√𝑅2(𝜑2)

𝜘
. 

(3.95) 

Similarly, in EETS, using Eq. (3.88) and Eq. (3.90), the following expressions are 

derived: 

 

𝐵1 = 𝑄𝑒1
𝑅2(𝜑1)

2𝜘2
, 𝐵3 = 𝑄𝑒2

𝑅2(𝜑2)

2𝜘2
, 

𝐵2 = 𝑄𝑒1
𝑅2(𝜑1)

3/2

2𝜘(𝜘√𝑅2(𝜑1) − 𝜈2 cot 𝜑1)
+ 𝑀𝑒1

𝑅2(𝜑1)

𝜘√𝑅2(𝜑1) − 𝜈2 cot𝜑1
, 

𝐵4 = 𝑄𝑒2
𝑅2(𝜑2)

3/2

2𝜘(𝜘√𝑅2(𝜑2) + 𝜈2 cot 𝜑2)
+ 𝑀𝑒2

𝑅2(𝜑2)

𝜘√𝑅2(𝜑2) + 𝜈2 cot 𝜑2

. 

(3.96) 

It is important to notice that in the case of closed apex shells, i.e. when 𝜑1 = 0, 

some of the presented equations are characterised by singularity for 𝜑 = 0 caused by 

the component cot𝜑. This issue is present in the functions expressing meridional, 

normal force 𝑁1
(2) (Eq. (3.89)) and meridional moment 𝑀1

(2) (Eq. (3.90)). Despite the 

same formulation of equivalent functions 𝑁1
(1),𝑀1

(1), those are not considered when 

𝜑1 = 0. Values of the functions 𝑈(2), �̅�(2) as well as their derivatives for 𝜑 = 0 can be 

considered meager, but importantly never exactly zero, thus 𝑁1
(2)(0) → ±∞,

𝑀1
(2)(0) → ±∞. Described characteristics of those functions is unexpected. Applying 

Geckeler simplification in EETG resolves this problem with the moment 𝑀1
(2) 

(Eq. (3.91)), however the issue persists for the normal force 𝑁1
(2). The effect of the 

component cot 𝜑 increases with thickness of a shell as it makes the functions 𝑈(2),

�̅�(2) diminish at a lower pace with the decrease of meridional angle 𝜑. 
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3.2.2. Cylindrical shell 

Due to the geometrical form of cylindrical shells, a significant simplification over a 

general case from the previous section can be achieved. Importantly, it is necessary 

to describe the problem using a linear variable along the shell axis instead of the 

meridional angle. The following expressions need to be considered: 

 d𝜑 =
𝐿

𝑅1
𝑑𝜉, d𝛾 = ⁡

𝐿

𝑅1
𝑑ϛ (3.97) 

 𝜑 =
𝜋

2
, 𝑅1 → ∞, 𝑅2 = 𝑅0, (3.98) 

where ϛ is a general, linear coordinate equivalent to the curvilinear coordinate 𝛾 

(Fig. 3.4). Due to the form of Eqs. (3.97), (3.98), EETS and EETG solutions become 

identical. The further derivation is based on the EETG due to its convenient form: 

 �̅�1 = 𝜌∫ dϛ
𝜉

𝜉1

, �̅�2 = 𝜌∫ dϛ
𝜉2

𝜉

, (3.99) 

where 𝜉1, 𝜉2 are linear coordinates analogous to 𝜑1, 𝜑2 (Fig. 3.4), and consequently 

 𝜌 =
𝐿

√𝑅0
. (3.100) 

The solution of the governing differential equations of EET remains unchanged 

concerning Eq. (3.84) and derivatives Eq. (3.86). The constants in those expressions 

can be simplified to: 

 

𝐴1 = 𝑄𝑒1
𝑅0
2𝜘2

, 𝐴3 = 𝑄𝑒2
𝑅0
2𝜘2

,⁡⁡ 

⁡⁡𝐴2 = 𝑄𝑒1
𝑅0
2𝜘2

+𝑀𝑒1

√𝑅0
𝜘

, 𝐴4 = 𝑄𝑒2
𝑅0
2𝜘2

+𝑀𝑒2

√𝑅0
𝜘

. 

(3.101) 

The internal forces are described as: 

 𝑄1
(1) =

1

𝑅0
𝑈(1), 𝑄1

(2) =
1

𝑅0
𝑈(2),⁡⁡ (3.102) 

 

𝑁1
(1) = 0, 𝑁1

(2) = 0, 

𝑁2
(1) = −

1

𝐿

d𝑈(1)

d𝜉
, 𝑁2

(2) = −
1

𝐿

d𝑈(2)

d𝜉
, 

(3.103) 

 
⁡𝑀1

(1) = −
1

𝐿

d�̅�(1)⁡

d𝜉
, 𝑀1

(2) = −
1

𝐿

d�̅�(2)

d𝜉
,⁡⁡ 

𝑀2
(1) = 𝜈2𝑀1

(1), 𝑀2
(2) = 𝜈2𝑀1

(2). 

(3.104) 

The rotation of a line tangent to the meridian 𝜗 can be resolved using Eq. (3.59), 

while vertical displacements: 

 ⁡𝑑𝑣
(1) = −

1

𝐸2𝑡

𝑅0
𝐿

d𝑈(1)

d𝜉
, 𝑑𝑣

(2) = −
1

𝐸2𝑡

𝑅0
𝐿

d𝑈(2)

d𝜉
. (3.105) 
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3.3. Stress and deformation analysis in complex shell structures 

The primary, practical purpose of the EET is to take into consideration the problems 

of shells with discontinuous radii of curvature. In such a case, the shell is virtually 

divided into segments with continuous radii of curvature and the interaction between 

them is studied. The solution to this problem aims to achieve the state of continuity 

of deformations in the form of displacements and rotations using EET and MT by 

finding the values of transverse forces and moments in the coupled shells. For most 

analyses, it is necessary to consider the simultaneous interaction between edges of 

two neighbouring shells in the form of normal and transverse forces 𝑋, 𝑌, as well as 

bending moments 𝑍 (Fig. 3.5). 

 

Fig. 3.5. The loads in the junction of a complex shell 

In a general case of two shells denoted as A and B (Fig. 3.5), the equations of 

compatibility can be written as follows: 

𝛿𝑋𝐴
(2)𝑋1𝐴 + 𝛿𝑌𝐴

(2)𝑌2𝐴 + 𝛿𝑍𝐴
(2)𝑍2𝐴 + 𝛿𝑝𝐴

(2)𝑝 = 𝛿𝑋𝐵
(1)𝑋1𝐵 + 𝛿𝑌𝐵

(1)𝑌1𝐵 + 𝛿𝑍𝐵
(1)𝑍1𝐵 + 𝛿𝑝𝐵

(1)𝑝, 

(3.106) 

𝜗𝑋𝐴
(2)𝑋1𝐴 + 𝜗𝑌𝐴

(2)𝑌2𝐴 + 𝜗𝑍𝐴
(2)𝑍2𝐴 + 𝜗𝑝𝐴

(2)𝑝 = 𝜗𝑋𝐵
(1)𝑋1𝐵 + 𝜗(1)𝑌1𝐵 + 𝜗𝑍𝐵

(1)𝑍1𝐵 + 𝜗𝑝𝐵
(1)𝑝, 

where the corresponding symbols in the above e refer to the vertical displacement 𝛿 

and rotation 𝜗 components caused by the loads 𝑋, 𝑌, 𝑍 and applied pressure 𝑝. The 

indices in those describe the corresponding load, shell, and edge notation. For 

example 𝛿𝑋𝐴
(1)

 is a displacement component caused by unit normal load 𝑋1𝐴 = 1 on 

the first edge of the shell denoted as A. Such factors are calculated employing the 

EET for transverse forces 𝑌 and moment 𝑍, while MT is used to resolve the effect of 

pressure 𝑝 and normal forces 𝑋, analogous to 𝑃0 (Fig. 3.1) and its dimensionless form 

�̃�0. It is essential to note that MT does not consider the normal edge load 𝑋 applied to 
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the second edge of a shell, as it results from the applied external loads relevant for 

MT (Fig. 3.1). Notably, the load applied on the first edge usually causes deformations 

on the second edge. For that reason, expressions in Eq. (3.106) are not symmetrical 

due to the appearance of  𝑋1𝐴 and 𝑋1𝐵 on the opposite site.  

The subsequent derivation is provided for a general case of a shell structure. 

Following Eq. (3.6) and applying �̃�0 = 0 and 𝜑 = 𝜑1 or 𝜑 = 𝜑2 the displacement 

components caused by applied pressure 𝑝 are: 

𝛿𝑝
(1) = −

1

𝐸2ℎ
𝑅0

2�̃�2(𝜑1)
2 sin𝜑1,⁡⁡ 

𝛿𝑝
(2) =

1

𝐸2ℎ
𝑅0

2sin𝜑2 [
1

2
(
�̃�2(𝜑2)

�̃�1(𝜑2)
+ 𝜈2)(�̃�2(𝜑2)

2 − �̃�2(𝜑1)
2
sin2𝜑1
sin2𝜑2

) − �̃�2(𝜑2)
2]. 

(3.107) 

Considering the relation 

 𝑋1 = 𝑝𝑅0�̃�0, (3.108) 

 one obtains: 

 

𝛿𝑋
(1) =

1

𝐸2ℎ
𝑅0 (

�̃�2(𝜑1)

�̃�1(𝜑1)
+ 𝜈2), 

𝛿𝑋
(2) =

1

𝐸2ℎ
𝑅0

sin𝜑1
sin𝜑2

⁡(
�̃�2(𝜑2)

�̃�1(𝜑2)
+ 𝜈2) 

(3.109) 

The derivation of the expressions referring to rotations 𝜗 (Eq. (3.106)) in a general 

form using MT is omitted, as no significant simplification over Eqs. (3.7), (3.8), 

(3.12)-(3.15) can be achieved. It is convenient to resolve them specifically for 

a selected geometry, for which the angular coordinates of edges 𝜑1, 𝜑2 are given. In 

the typical case of a shell, where 𝜑2 = 𝜋/2 

 𝜗𝑝
(2) = 0, (3.110) 

which can be shown by proving that the derivative of normal displacements equals 

zero for 𝜑2 = 𝜋/2 (Eq. (3.8)) as well as employing the applied boundary condition in 

the membrane theory �̃�(𝜑2) = 0 and substituting those to Eq. (3.7). 

Considering the cylindrical shell, the components of displacements and 

rotations are following: 

 𝛿𝑝
(1) = 𝛿𝑝

(2) = −
1

𝐸2ℎ
𝑅0

2, 𝛿𝑋
(1) = 𝛿𝑋

(2) =
𝜈2
𝐸2ℎ

𝑅0, 𝜗𝑝
(1) = 0. (3.111) 

The rest of the factors from Eq. (3.106) can be derived from EET either using 

Blumenthal and Steuermann (EETS) or Geckeler (EETG) approach. Both of those 
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formulations are included in the presented work. The coefficients for the first of those 

are resolved using Eqs. (3.85), (3.87), (3.92), (3.96), while for the latter, according to 

Eqs. (3.84), (3.86), (3.93), (3.95) and considering the expressions for corresponding 

shell edges. The coefficients 𝛿𝑌
(1), 𝜗𝑌

(1) are obtained by applying to the afromentioned 

equations: 

 𝑄𝑒1 = 1, 𝑀𝑒1 = 0,⁡ (3.112) 

while in the case of 𝛿𝑍
(1)

 and 𝜗𝑍
(1): 

 𝑄𝑒1 = 0, 𝑀𝑒1 = 1. (3.113) 

Analogous substitution is applied for the second edge of a shell. Vertical displacement 

and rotation components 𝛿𝑌
(2), 𝜗𝑌

(2) are derived assuming: 

 𝑄𝑒2 = 1, 𝑀𝑒2 = 0,⁡ (3.114) 

and lastly for 𝛿𝑍
(2)

 and 𝜗𝑍
(2): 

 𝑄𝑒2 = 0, 𝑀𝑒2 = 1. (3.115) 

The summary of compatibility equations factors is provided in Eq. (3.116) for EETS 

and Eq. (3.117) for EETG: 

 

𝛿𝑌
(1) =

1

𝐸2𝑡

𝑅2(𝜑1)(2𝜘
2𝑅2(𝜑1) sin𝜑1 − 𝜈2

2 cos𝜑1 cot𝜑1)

𝜘√𝑅2(𝜑1) − 𝜈2 cot 𝜑1
, 

𝛿𝑍
(1) = 2

1

𝐸2𝑡

𝜘3𝑅2(𝜑1)
3/2 sin𝜑1

𝜘√𝑅2(𝜑1) − 𝜈2 cot 𝜑1
, 

𝜗𝑌
(1) =

1

2𝐷1𝜘

𝑅2(𝜑1)
3/2

𝜘√𝑅2(𝜑1) − 𝜈2 cot 𝜑1
, 𝜗𝑍

(1) =
1

𝐷1

𝑅2(𝜑1)

𝜘√𝑅2(𝜑1) − 𝜈2 cot 𝜑1
, 

𝛿𝑌
(2) = −

1

𝐸2𝑡

𝑅2(𝜑2)(2𝜘
2𝑅2(𝜑2) sin𝜑2 − 𝜈2

2 cos𝜑2 cot𝜑2)

𝜘√𝑅2(𝜑2) + 𝜈2 cot 𝜑2

, 

𝛿𝑍
(2) = −2

1

𝐸2𝑡

𝜘3𝑅2(𝜑2)
3
2 sin𝜑2

𝜘√𝑅2(𝜑2) + 𝜈2 cot 𝜑2

, 

𝜗𝑌
(2) =

1

2𝐷1𝜘

𝑅2(𝜑2)
3/2

𝜘√𝑅2(𝜑2) + 𝜈2 cot𝜑2

, 𝜗𝑍
(2) =

1

𝐷1

𝑅2(𝜑2)

𝜘√𝑅2(𝜑2) + 𝜈2 cot𝜑2

. 

(3.116) 
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𝛿𝑌
(1) = 2

1

𝐸2𝑡
𝜘𝑅2(𝜑1)

3/2 sin𝜑1 , 𝛿𝑍
(1) = 2

1

𝐸2𝑡
𝜘2𝑅2(𝜑1) sin𝜑1, 

𝜗1
(𝑌1) =

1

2𝐷1𝜘
2
𝑅2(𝜑1), 𝜗1

(𝑍1) =
1

𝐷1𝜘
√𝑅2(𝜑1), 

𝛿2
(𝑌2) = −2

1

𝐸2𝑡
𝜘𝑅2(𝜑2)

3
2 sin𝜑2 , 𝛿2

(𝑍2) = −2
1

𝐸2𝑡
𝜘2𝑅2(𝜑2) sin𝜑2, 

𝜗2
(𝑌2) =

1

2𝐷1𝜘
2
𝑅2(𝜑2), 𝜗2

(𝑍2) =
1

𝐷1𝜘
√𝑅2(𝜑2). 

(3.117) 

Importantly, the displacements and rotation factors are the same for the second edge 

of a shell, when 𝜑2 = 𝜋/2, as then cot𝜑2 = 0. In the case of the cylindrical shell, the 

components of compatibility equations are as follows: 

 

𝛿𝑌
(1) = 2

1

𝐸2𝑡
𝜘𝑅0

3/2, 𝛿𝑍
(1) = 2

1

𝐸2𝑡
𝜘2𝑅0, 

𝜗1
(𝑌1) =

1

2𝐷1𝜘
2
𝑅0, 𝜗1

(𝑍1) =
1

𝐷1𝜘
√𝑅0, 

𝛿2
(𝑌2) = −2

1

𝐸2𝑡
𝜘𝑅0

3
2, 𝛿2

(𝑍2) = −2
1

𝐸2𝑡
𝜘2𝑅0, 

𝜗2
(𝑌2) =

1

2𝐷1𝜘
2
𝑅0, 𝜗2

(𝑍2) =
1

𝐷1𝜘
√𝑅0. 

(3.118) 

The solution of Eq. (3.106) can be considered elementary after introducing static 

equilibrium in the juncture, i.e.: 

 𝑌1 = 𝑌2, 𝑍1 = −𝑍2. (3.119) 

 The study of stress and deformations in the form of displacements and rotations 

can be further conducted considering the superposition of the MT and EET using the 

EETG or EETS approach. The superposition of deformations can be easily achieved 

using both theories; therefore is not further discussed. It is necessary to recall the 

plane stress state to resolve the principal stresses: 

 

𝜎1 =
1

ℎ
(𝑁1

(𝑚) +𝑁11
(𝑏) +𝑁12

(𝑏)) + 12
𝑧

ℎ3
(𝑀11

(𝑏) +𝑀12
(𝑏)), 

𝜎2 =
1

ℎ
(𝑁2

(𝑚) +𝑁21
(𝑏) +𝑁22

(𝑏)) + 12
𝑧

ℎ3
(𝑀21

(𝑏) +𝑀22
(𝑏)), 

(3.120) 

where 𝑧 is a coordinate across the thickness of a shell (Fig. 2.3), therefore 

 −
𝑡

2
≤ 𝑧 ≤

𝑡

2
. (3.121) 
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The coordinate 𝑧 = 𝑡/2 corresponds to the internal surface of the pressure vessel. 

Normal forces and moments in Eq. (3.120) have been complemented with additional 

superscripts. The symbol 𝑚 refers to membrane solution while 𝑏 corresponds to 

bending with the use of the EET. 

To evaluate the load-carrying capacity of structures made of ductile metals, 

one may define equivalent von Mises stress, which for the analysed problem is as 

follows 

 𝜎𝑟 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2. (3.122) 

3.4. Analytical solution 

3.4.1. Geometrical and mechanical properties of shells 

To perform an exemplary analysis, it is mandatory to assume values of parameters 

referring to geometry as well as the mechanical properties of the material. Those are 

selected to maintain comparability to a typical liquid petroleum gas pressure vessel. 

The parameters corresponding to the shape are following: 

𝑅0 = 1000⁡mm, 𝐿 = 1000⁡mm, 𝛽 = 0.5, 

the value of the introduced relative depth 𝛽 is standard for ellipsoidal dished ends. 

The technical standards allow the manufacturing of ellipsoidal geometries as 

equivalent torispherical, i.e. of the same relative depth as ellipsoidal. For this reason, 

its value is applied for both shapes to maintain comparability. 

A standard thickness of such a shell structure is within 7 mm to 10 mm. In the 

analytical solution, the range of thickness is expanded to four distinct values 

𝑡 = 1, 5, 15, 30⁡mm. 

The considered mechanical properties of the material are consistent with typical 

structural steel: 

𝐸1 = 2 × 105⁡MPa, 𝜈1 = 0.3, 

while isotropic and orthotropic material properties are considered 

𝛼 = 1, 1.2. 

The pressure vessels are loaded with uniform internal pressure, which causes the 

equivalent von Mises stress of 100 MPa in a cylindrical shell, regardless of its 

thickness and radius: 

𝑝 =
200√3

3

𝑡

𝑅0
. 
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3.4.2. Cylindrical pressure vessel with ellipsoidal dished ends 

The geometry and interaction forces in the pressure vessel with the ellipsoidal dished 

ends are presented in Fig. 3.6. 

 

Fig. 3.6. Pressure vessel with ellipsoidal dished ends 

The compatibility equations in Eq. (3.106) are rewritten to match the symbols of 

the analysed shells, i.e. 𝑒 – ellipsoidal and 𝑐 – cylindrical: 

𝛿𝑋𝑐
(1)𝑋1𝑐 + 𝛿𝑌𝑐

(1)𝑌1𝑐 + 𝛿𝑍𝑐
(1)𝑍1𝑐 + 𝛿𝑝𝑐

(1)𝑝 = 𝛿𝑋𝑒
(2)𝑋1𝑒 + 𝛿𝑌𝑒

(2)𝑌2𝑒 + 𝛿𝑍𝑒
(2)𝑍2𝑒 + 𝛿𝑝𝑒

(2)𝑝, 

(3.123) 

𝜗𝑋𝑐
(1)𝑋1𝑐 + 𝜗𝑌𝑐

(1)𝑌1𝑐 + 𝜗𝑍𝑐
(1)𝑍1𝑐 + 𝜗𝑝𝑐

(1)𝑝 = 𝜗𝑋𝑒
(2)𝑋1𝑒 + 𝜗𝑌𝑒

(2)𝑌2 + 𝜗𝑍𝑒
(2)𝑍2 + 𝜗𝑝𝑒

(2)𝑝. 

Within the analysis framework, the application of EET using both of the previously 

discussed solutions of governing differential equations Eq. (3.52) is considered. The 

exemplary derivation is conducted for 𝑡 = 15 mm and isotropic material (𝛼 = 1), while 

the final results are provided for 𝑡 = 1, 5, 15, 30⁡mm.  

The second edge of the ellipsoidal dished end corresponds to ⁡𝜑2 = 𝜋/2, therefore 

the components of compatibility equations are the same in both EETS and EETG 

(Eqs. (3.116), (3.117)): 

 

𝛿𝑌𝑒
(2) = −6.997 × 10−3

mm2

N
, 𝛿𝑍𝑒

(2) = −7.343 × 10−5
mm

N
, 

⁡⁡𝛿𝑝𝑒
(2) = 3.833 × 10−1 ⁡

mm3

N
, 

𝜗𝑌𝑒
(2) = 7.343 × 10−5

mm

N
, 𝜗𝑍𝑒

(2) = 1.541 × 10−6 ⁡
1

N
, 

𝜗𝑝𝑒
(2) = 0

mm2

N
. 

(3.124) 
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The ellipsoidal dished end is a closed-apex shell i.e. 𝜑1 = 0. The factors referring to 

the first edge in Eqs. (3.116), (3.117) are omitted. In the case of the cylindrical 

geometry, only the first edge is taken into consideration, where its corresponding 

values are: 

 

𝛿𝑋𝑐
(1) = 1 × 10−4

mm2

N
, 𝛿𝑌𝑐

(1) = 6.997 × 10−3
mm2

N
 

𝛿𝑍𝑐
(1) = 7.343 × 10−5

mm

N
, 𝛿𝑝𝑐

(1) = −3.333 × 10−1 ⁡
mm3

N
, 

⁡⁡𝜗𝑋𝑐
(1) = 0

mm

N
, 𝜗𝑌𝑐

(1) = 7.343 × 10−5
mm

N
,⁡⁡ 

𝜗𝑍𝑐
(1) = 1.541 × 10−6 ⁡

1

N
, 𝜗𝑝𝑐

(1) = 0
mm2

N
. 

(3.125) 

The normal force acting upon the first edge of the ellipsoidal dished end is 

non-existent, thus 

 𝑋1𝑒 = 0. (3.126) 

Consequently the coefficients 𝛿𝑋𝑒
(2), 𝜗𝑋𝑒

(2) are then omitted. The normal force acting 

on the cylindrical shell is defined as follows: 

 𝑋1𝑐 = −𝑝𝑅0, �̃�0𝑐 (3.127) 

where �̃�0𝑐 is resolved according to Eq. (3.45). Following Eq. (3.119) yields: 

 𝑌1𝑐 = 𝑌2𝑒 , 𝑍1𝑐 = −𝑍2𝑒 . (3.128) 

The solutions to the compatibility equations (Eq. (3.123)) are provided in Table 3.1. 

Table 3.1. The interaction loads in the pressure vessel with ellipsoidal dished ends 

𝑡⁡[mm] 1 5 15 30 

𝑌𝑐1 [N/mm] 1.420 1.588 × 101 8.252 × 101 2.334 × 102 

𝑌𝑒2 [N/mm] 1.420 1.588 × 101 8.252 × 101 2.334 × 102 

𝑍𝑐1 [N] 0 0 0 0 

𝑍𝑒2 [N] 0 0 0 0 
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3.4.3. Cylindrical pressure vessel with torispherical dished ends 

In the analysis of the pressure vessel with torispherical dished ends, it is mandatory 

to consider two junctions, namely spherical to toroidal and toroidal to cylindrical. The 

loads resulting from their interactions are presented in Fig. 3.7. 

 

Fig. 3.7. Pressure vessel with torispherical dished ends 

In the derivation of the constants in the EET, it is assumed that the moments 

and transverse forces applied at the first edge (𝜑 = 𝜑1) cause no effects on the second 

edge (𝜑 = 𝜑2) and vice versa. For that reason, the compatibility equations are separate 

at both edges. Such an approach is correct only for the cases when the length of 

a shell meridian is significant while thickness remains small. Those conditions 

assure that the corresponding functions �̅� and 𝑈 diminish to near-zero values before 

reaching the opposite edge. Realizing the meridian of the toroidal shell is relatively 

short, one may predict that the assumption can be violated with the increasing 

thickness of the pressure vessel. 

Using Eq. (3.106), the compatibility equations are rewritten to the following 

form: 

𝛿𝑋𝑡
(1)𝑋1𝑡 + 𝛿𝑌𝑡

(1)𝑌1𝑡 + 𝛿𝑍𝑡
(1)𝑍1𝑡 + 𝛿𝑝𝑡

(1)𝑝 = 𝛿𝑋𝑠
(2)𝑋1𝑠 + 𝛿𝑌𝑠

(2)𝑌2𝑠 + 𝛿𝑍𝑠
(2)𝑍2𝑠 + 𝛿𝑝𝑠

(2)𝑝, 

(3.129) 

𝜗𝑋𝑡
(1)𝑋1𝑡 + 𝜗𝑌𝑡

(1)𝑌1𝑡 + 𝜗𝑍𝑡
(1)𝑍1𝑡 + 𝜗𝑝𝑡

(1)𝑝 = 𝜗𝑋𝑠
(2)𝑋1𝑠 + 𝜗𝑌𝑠

(2)𝑌2𝑡 + 𝜗𝑍𝑠
(2)𝑍2𝑡 + 𝜗𝑝𝑠

(2)𝑝, 

𝛿𝑋𝑐
(1)𝑋1𝑐 + 𝛿𝑌𝑐

(1)𝑌1𝑐 + 𝛿𝑍𝑐
(1)𝑍1𝑐 + 𝛿𝑝𝑐

(1)𝑝 = 𝛿𝑋𝑡
(2)𝑋1𝑡 + 𝛿𝑌𝑡

(2)𝑌2𝑡 + 𝛿𝑍𝑡
(2)𝑍2𝑡 + 𝛿𝑝𝑡

(2)𝑝, 

(3.130) 

𝜗𝑋𝑐
(1)𝑋1𝑐 + 𝜗𝑌𝑐

(1)𝑌1𝑐 + 𝜗𝑍𝑐
(1)𝑍1𝑐 + 𝜗𝑝𝑐

(1)𝑝 = 𝜗𝑋𝑡
(2)𝑋1𝑡 + 𝜗𝑌𝑡

(2)𝑌2𝑡 + 𝜗𝑍𝑡
(2)𝑍2𝑡 + 𝜗𝑝𝑡

(2)𝑝. 
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The coefficients for the spherical shell according to EETS (Eq. (3.116)) are: 

 

𝛿𝑌𝑠
(2) = −7.303 × 10−3

mm2

N
, 𝛿𝑍𝑠

(2) = −5.732 × 10−5
mm

N
, 

𝜗𝑌𝑠
(2) = 1.263 × 10−4

mm

N
, 𝜗𝑍𝑠

(2) = 1.980 × 10−6 ⁡
1

N
, 

(3.131) 

while in the case of EETG (Eq. (3.117)), the components are different: 

 

𝛿𝑌𝑠
(2) = −7.616 × 10−3

mm2

N
, 𝛿𝑍𝑠

(2) = −5.972 × 10−5
mm

N
, 

𝜗𝑌𝑠
(2) = 1.135 × 10−4

mm

N
, 𝜗𝑍𝑠

(2) = 2.063 × 10−6 ⁡
1

N
. 

(3.132) 

The factors resulting from the MT (Eq. (3.107)) are:  

 𝛿𝑝𝑠
(2) = 1.700 × 10−1 ⁡

mm3

N
, 𝜗𝑝𝑠

(2) = 0
mm2

N
. (3.133) 

For the toroidal shell, following the EETS approach, i.e. using Eq. (3.116), yields: 

 

𝛿𝑌𝑡
(1) = 7.942 × 10−3

mm2

N
, 𝛿𝑍𝑡

(1) = 6.233 × 10−5
mm

N
,⁡ 

𝜗𝑌𝑡
(1) = 1.373 × 10−4

mm

N
, 𝜗𝑍𝑡

(1) = 2.153 × 10−6 ⁡
1

N
, 

(3.134) 

while referring to expressions in Eq. (3.117) results in: 

 

⁡⁡𝛿𝑌𝑡
(1) = 7.616 × 10−3

mm2

N
,⁡⁡⁡𝛿𝑍𝑡

(1) = 5.972 × 10−5
mm

N
, 

𝜗𝑌𝑡
(1) = 1.315 × 10−4

mm

N
, 𝜗𝑍𝑡

(1) = 2.063 × 10−6 ⁡
1

N
.⁡ 

(3.135) 

The considered coefficients on the second edge of the toroidal shell are the same in 

both EET formulations as 𝜑2 = 𝜋/2: 

 

𝛿𝑌𝑡
(2) = −6.997 × 10−3

mm2

N
, 𝛿𝑍𝑡

(2) = −7.343 × 10−5
mm

N
, 

𝜗𝑌𝑡
(2) = 7.343 × 10−5

mm

N
, 𝜗𝑍𝑡

(2) = 1.541 × 10−6 ⁡
1

N
. 

(3.136) 

Finally, the application of MT (Eqs. (3.107), (3.109), (3.110)) enables us to find the 

factors in the first: 

 

𝛿𝑋𝑡
(1) = 1.501 × 10−3

mm2

N
, 𝛿𝑝𝑡

(1) = −4.856 × 10−1 ⁡
mm3

N
, 

𝜗𝑋𝑡
(1) = 3.181 × 10−5

mm

N
,⁡⁡⁡𝜗𝑝𝑡

(1) = −9.931 × 10−3
mm2

N
, 

(3.137) 
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and the second edge: 

 

𝛿𝑋𝑡
(2) = 4.878 × 10−4

mm2

N
, 𝛿𝑝𝑡

(2) = −1.514 × 10−1 ⁡
mm3

N
, 

𝜗𝑋𝑡
(2) = 0

mm

N
,⁡⁡⁡⁡𝜗𝑝𝑡

(2) = 0
mm2

N
, 

(3.138) 

of the toroidal shell. The coefficients for the cylindrical shell remain the same as in 

the analysis of the pressure vessel with the ellipsoidal dished end (Eq. (3.125)). 

Considering the remaining unknown forces, the first edge of the spherical segment is 

a closed-apex shell, therefore 

 𝑋1𝑠 = 0, (3.139) 

which implies the neglection of the coefficients 𝛿𝑋𝑠
(2), 𝜗𝑋𝑠

(2). The normal force at the 

first edge of the toroidal shell is defined according to the membrane theory 

 𝑋1𝑡 = 𝑝𝑅0�̃�0𝑡, (3.140) 

while �̃�0𝑡 is obtained according to Eq. (3.26). Similarly to the previous analysis, the 

normal force  acting upon the cylindrical shell 𝑋1𝑐 is resolved as in Eq. (3.127): 

 𝑌1𝑐 = 𝑌2𝑡 , 𝑍1𝑐 = −𝑍2𝑡 . (3.141) 

Setting the relations from Eq. (3.119): 

 𝑌1𝑡 = 𝑌2𝑠, 𝑍1𝑡 = −𝑍2𝑠, 𝑌1𝑐 = 𝑌2𝑡 , 𝑍1𝑐 = −𝑍2𝑡 , (3.142) 

to the compatibility equations (Eqs. (3.129), (3.130)) result in two systems of two 

equations with two unknowns in each of them. The solution to those is given in 

Table 3.2 for EETS and Table 3.3 for EETG. 

Table 3.2. The interaction loads in the pressure vessel with torispherical dished ends – EETS solution 

𝑡⁡[mm] 1 5 15 30 

𝑌𝑡1 [N/mm] −2.011 −2.235 × 101 −1.144 × 102 −3.164 × 102 

𝑌𝑠2 [N/mm] −2.011 −2.235 × 101 −1.144 × 102 −3.164 × 102 

𝑍𝑡1 [N] −8.580 −4.795 × 102 −7.470 × 103 −4.222 × 104 

𝑍𝑠2 [N] 8.580 4.795 × 102 7.470 × 103 4.222 × 104 

𝑌𝑐1 [N/mm] 1.038 1.161 × 101 6.031 × 101 1.706 × 102 

𝑌𝑡2 [N/mm] 1.038 1.161 × 101 6.031 × 101 1.706 × 102 

𝑍𝑐1 [N] 0 0 0 0 

𝑍𝑡2 [N] 0 0 0 0 
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Table 3.3. The interaction loads in the pressure vessel with torispherical dished ends – EETG solution 

𝑡⁡[mm] 1 5 15 30 

𝑌𝑡1 [N/mm] −2.014 −2.251 × 101 −1.170 × 102 −3.309 × 102 

𝑌𝑠2 [N/mm] −2.014 −2.251 × 101 −1.170 × 102 −3.309 × 102 

𝑍𝑡1 [N] −8.939 −4.997 × 102 −7.790 × 103 −4.407 × 104 

𝑍𝑠2 [N] 8.939 4.997 × 102 7.790 × 103 4.407 × 104 

𝑌𝑐1 [N/mm] 1.038 1.161 × 101 6.031 × 101 1.706 × 102 

𝑌𝑡2 [N/mm] 1.038 1.161 × 101 6.031 × 101 1.706 × 102 

𝑍𝑐1 [N] 0 0 0 0 

𝑍𝑡2 [N] 0 0 0 0 

The results provided in Table 3.2 and Table 3.3 imply that the differences 

between solutions in junction loads are moderate. It must be further determined 

whether such discrepancy can be impactful in solving the problems of deformations 

and stress distribution in the analysed shell structures. 

3.5. Results comparison with FEM 

It is complicated to evaluate the accuracy of any calculation method without a direct 

comparison with another. The solution with the use of the MT and EET is 

approximate, and it is expected that accuracy can diminish with the increase in 

thickness of a shell. In the presented work, the outcome of the analytical solution is 

compared with results from the finite element method (FEM) analysis. The details of 

the latter are described in [37] (A1). 

Importantly, the coordinates 𝜔1 and 𝜔2 (Eq. (3.73)) in the EETS formulation are 

elliptic integrals, thus cannot be expressed by elementary functions. To address this 

issue, one can refer to the Taylor series expansion of the function 𝜌 (Eq. (3.67)) at 

𝜑 = 𝜑1 and 𝜑 = 𝜑2 for 𝜔1 and 𝜔2 correspondingly or integrate 𝜌 numerically. The latter 

approach is adopted within this work.  The correlation between analytical and 

numerical solutions is studied by comparing vertical displacements and equivalent 

stress. Two material models are considered, i.e. isotropic (𝛼 = 1) and ortotropic, 

where 𝛼 = 1.2. Such difference between mechanical properties in two perpendicular 

directions can be viewed as exaggerated for structural steel. Realizing that the 
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orthotropy coefficient close to unity could bring no significant change in deformations 

and stress, thus elevated value is applied. 

The results are summarized in Table 3.4 and Table 3.5 for the pressure vessel 

with ellipsoidal dished end considering isotropic material, while the maximum values 

from those are juxtaposed in Table 3.8. Similarly, the vertical displacements and 

stress distributions for the pressure vessel with torispherical dished ends are given 

in Table 3.6 and Table 3.7 and are further compared in Table 3.9. 

According to Table 3.4, the EETS and EETG solutions are nearly identical to FEM 

results for relatively thin shells with ellipsoidal dished ends. As expected, when the 

thickness is increased, the differences become apparent. Those are substantially 

smaller for the EETS than EETG as the maximum relative difference reaches 9.393 % 

in the first, while it is 21.43 % for the latter (Table 3.8). Following the stress 

distributions presented in Table 3.5, one can observe that the analytical solution is 

in complete agreement with the numerical study for the shells characterised by the 

relatively low thickness. For thicker shells, visible discrepancies are observed as then 

the numerical results show distinct values of the stress in the inner, middle and outer 

shell surfaces beyond the juncture. 

There are two reasons explaining such a phenomenon. The first refers to the 

normal to middle surface stress, which is omitted in the shell theory; however, such 

a stress component is expected to be marginal. The other cause of the stress variation 

is that the applied pressure causes the bending phenomenon by itself, which is 

neglected in the EET. Notably, such observation refers only to the shells with variable 

radii of curvature. Inspecting the stress in the area close to the junction of the shells, 

one can conclude that the difference between stress in the inner and outer surface in 

analytical and FEM solutions are close to the same differences beyond the junction.  

This implies that the observed differences are partially caused by the omitted effect 

of surface load on bending effects in the analytical solution. If the discrepancies would 

be caused only by the neglection of normal to surface stress components in shell 

theory, then the through-thickness stress variation would be the same in the dished 

end and cylindrical shell. According to the results in Table 3.5, the stress variation 

across thickness is considerably more remarkable in the ellipsoidal dished end 

beyond the edge disturbance. 

Although the summarized results in Table 3.8 suggest that the EETG solution is 

closer to FEM in terms of stresses, further analysis can discredit this observation. 
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Taking a closer look at the plots for 𝑡 = 15, 30 mm in Table 3.5 concludes the stress 

in the middle surface is more consistent for EETS than EETG.  Additionally, the 

bending effect in the latter diminishes at a higher pace, which is somewhat 

incompatible with numerical solutions. Lastly, it is necessary to explain why the 

analytical solutions indicate different stress in the middle surface, putting aside the 

abovementioned discrepancies between EETS and EETG.  Theoretically, any 

simplifications in analytical bending moments functions should not contribute to the 

stress distribution in the middle surface. For that reason, those differences can be 

either the effect of some inaccuracies in the formulation of normal forces in the MT 

or the omission of shear forces in the stress calculation, which could become 

apparent for thicker shells. 

In the pressure vessel with torispherical dished ends, the discrepancies between 

analytical and numerical results become considerable even for relatively thin shells. 

The vertical displacements shown in Table 3.6 are in near ideal agreement for 

𝑡⁡= 1  mm, however any further increase shows a visible deviation, especially in the 

neighbourhood of the junction of the toroidal and spherical shell. For the thickness 

𝑡 = 30 mm, a severe inconsistancy is observed, to the point where the displacements 

are incompatible in the connected edges of the toroidal and cylindrical shell. It shows 

that the loads at the first edge of the toroidal shell have an immense impact on the 

displacements on the second edge, violating the prescribed condition of deformations 

continuity. The meridian length of the toroidal shell is relatively small compared to 

other shells, and as the thickness is increased, the disturbances caused by edge loads 

are carried over greater arc length and do not vanish before reaching the opposite 

edge. One could rewrite the equations of compatibility (Eq.(3.129), (3.130)) to include 

the effect of carrying the deformations to another edge, but it can be considered 

a partial and debatable solution. Foremost, in the derivation of constants of the edge 

effect theory (Eq. (3.94)), it is assumed that the edges do not interfere with each other, 

which contributes to the convenient description of the theory and its application. 

Enforcing the compatibility of deformations without rewriting the constants and then 

inevitably all the deformations components would lead to incompatibility of internal 

forces. Additionally, the components of rotations and displacements referring to the 

opposite edge would have a cumbersome form as then 𝜔1(𝜑2), �̅�1(𝜑2) ≠ 0 and 𝜔2(𝜑1),

�̅�2(𝜑1) ≠ 0.  
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Table 3.4. Vertical displacements comparison for the pressure vessel  

with ellipsoidal dished ends – isotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.5. Equivalent stress comparison for the pressure vessel  

with ellipsoidal dished ends – isotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.6. Vertical displacements comparison for the pressure vessel  

with torispherical dished ends – isotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.7. Equivalent stress comparison for the pressure vessel  

with torispherical dished ends  – isotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.8. The summary of results for a pressure vessel with ellipsoidal dished end – isotropic material 

 
t 

[mm] 

Analytical solution 
FEM 

Relative difference 
[%] 

EETS EETG EETS EETG 

𝜎𝑟⁡𝑚𝑎𝑥 
[MPa] 

1 174.9 175.0 176.3 0.7796 0.7251 

5 169.0 169.8 175.4 3.658 3.216 

15 159.2 161.8 173.8 8.374 6.895 

30 150.0 154.6 173.0 13.25 10.58 

𝑑𝑣⁡𝑚𝑎𝑥⁡ 

[mm] 

1 0.6701 0.6715 0.6693 0.1157 0.3306 

5 0.5876 0.5990 0.5830 0.7866 2.743 

15 0.4773 0.5068 0.4609 3.578 9.959 

30 0.3883 0.4311 0.3550 9.393 21.43 

Table 3.9. The summary of results for a pressure vessel with torispherical dished end – isotropic material 

 
t 

[mm] 

Analytical solution 
FEM 

Relative difference 
[%] 

EETS EETG EETS EETG 

𝜎𝑟⁡𝑚𝑎𝑥 
[MPa] 

1 350.5 350.5 330.3 6.109 6.109 

5 342.3 339.2 275.1 24.40 23.28 

15 385.0 381.5 239.2 60.98 59.52 

30 463.0 456.1 227.9 103.1 100.1 

𝑑𝑣⁡𝑚𝑎𝑥⁡ 

[mm] 

1 0.9946 1.007 1.003 0.8672 0.412 

5 0.7547 0.7756 0.7529 0.2354 3.010 

15 0.677 0.691 0.6114 10.73 13.02 

30 0.5668 0.5865 0.4819 17.59 21.68 

Analogous deviations are present in the stress distributions shown in Table 3.7. 

The substantial issues with the solution start for 𝑡 = 15 mm and those include 

immense differences in stress values and their incompatibility. The latter can be 

explained just as in the case of displacements; however, the cause of excessive stress 

in the toroidal shell has a diverse nature. During the analysis of the results, attention 

has been brought to the values of the edge loads solved with the use of compatibility 

equations. Those have been compared referring to FEM and Ritz method (RM)[37](A1), 
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which showed severe discrepancies in the analytical solution. The compatibility 

equations have been carefully verified, including comparing the corresponding 

components in all three methods. It showed that the factors calculated with the use 

of MT differ the most. For that reason, the MT solution for the separate toroidal shell 

is further considered and compared to other methods. The results of such analysis 

are presented in Table 3.10 for 𝑝 = 1 MPa and Table 3.11 for 𝑋1𝑡 = 1 N/mm for the 

thickness 𝑡 = 1, 15 mm.  Those show that while displacements for 𝑡 = 1 mm are very 

close in all methods, the similarity between values vanishes for 𝑡 = 15 mm. For the 

rotations comparison, numerical FEM result is shown only on the first edge. The 

juxtaposed data show substantial differences even for the thinner shell, while relative 

difference reaches roughly 400% for the thicker structure. As expected, both of the 

compared quantities are in linear relation to thickness in the MT. The numerical 

solutions do not share such characteristics. It implies that the application of MT in 

the case of the open-apex shell induces significant errors in the solution because 

bending occurs even in the case of reasonably thin shells. Such an observation is 

based on the fact that the numerical results do not change proportionally with the 

thickness increase.  

Table 3.10. The membrane state solution analysis for toroidal shell subject to a uniform pressure 

t 

[mm] 

Vertical displacements  

caused by 𝑝 = 1 MPa 
Rotations caused by 𝑝 = 1 MPa 

1 

  

15 
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Table 3.11. The membrane state solution for toroidal shell subject to normal edge force 

t 

[mm] 

Vertical displacements  

caused by 𝑋1𝑡 = 1 N/mm 
Rotations caused by 𝑋1𝑡 = 1 N/mm 

1 

  

15 

  

To verify whether a structure is thin-walled, one can refer to the relation 

between thickness to minimum radii of curvature (Eq. (2.1)), which value is suggested 

to be below 0.05. For the analysed toroidal shell 𝑅1𝑡 ≈ 342 mm, therefore 𝑡/𝑅𝑚𝑖𝑛 ≈ 0.003 

and 𝑡/𝑅𝑚𝑖𝑛 ≈ 0.043 for thinner and thicker shells correspondingly. It proves that the 

toroidal shell is considered thin-walled, and therefore the application of the MT is 

justified. 

In the effect of a vast overestimation in the MT solution, the incompatibility of 

displacements and rotations becomes magnified. To resolve this, the edge loads in 

the compatibility equations must be excessive to compensate for enormous 

differences in deformations between the second edge of the spherical shell and the 

first edge of the toroidal shell. Although the continuity of those is achieved, the edge 

loads cause an immense bending phenomenon, leading to unrealistic stresses values. 

For the same reason, the distortions are visible in the comparison of vertical 

displacement in Table 3.6. Such an observation implies that the application of the 

EET for complex shell structures may be unsatisfactory, as the accuracy of the MT 

significantly contributes to the bending phenomenon due to the necessity of 

compatibility equations formulation. 
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The results shown in Table 3.12 and Table 3.13 consider the pressure vessel 

with ellipsoidal dished ends with the introduced orthothropy of 𝛼 = 1.2. Similarly, 

Table 3.14 and Table 3.15 refer to torispherical shape. As expected, the compared 

vertical displacements and stresses are in good agreement with the numerical method 

for the thinner shells. The results share the same issues for the thicker shells as for 

the isotropic material. In the case of equivalent von Mises stress comparison, an 

additional discrepancy is observed. Following the numerical method, a disturbance 

of stress is visible in the area of the dished end apex, i.e. 𝑆 = 0 mm, which is 

compatible with the Ritz method solution [37] (A1). This feature does not appear in 

the analytical study 

Taking into consideration thinner shells, the stress in this area is described only 

by the MT and depends entirely on normal membrane forces from Eq. (3.18). These 

are described only by the principal radii of curvature, and the material properties do 

not contribute to forces 𝑁1, 𝑁2. Realizing the differences of stress in the inner, middle 

and outer surface, such feature can be caused only by the bending phenomenon. The 

EET includes only the edge loads as the source of bending; therefore, the distortion 

seen in the numerical analysis cannot be reproduced by employing the analytical 

solution. 

The content provided in Table 3.16 and Table 3.17 summarizes the maximum 

vertical displacements and stresses from analytical analysis and compares them to 

the numerical FEM values. The difference between them is moderately elevated, 

referring to the isotropic material. In the case of the ellipsoidal geometry, stress 

compliance for 𝑡/𝑅0⁡ ratio in the range 0.1% (𝑡 = 1 mm) to 3% (𝑡 = 30 mm) is within 

0.7251% to 13.25% relative difference. For the torispherical geometry, the same values 

range from 6.103% to 103.1%. 

Discussion over the achieved results indicates severe problems with the 

analytical description of stress and deformations. The selection of one of two 

compared EET formulations shows the limited impact, as MT mainly introduces the 

observed inaccuracies. This is especially apparent for torispherical shell, where any 

thickness increase beyond 1 mm (𝑡/𝑅0 = 0.1%) leads to a technically unacceptable 

solution. Realizing the conditions of the MT applicability from section 3.1.1, one can 

conclude that these require additional, more strict guidelines.  
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Table 3.12. Vertical displacements comparison for the pressure vessel  

with ellipsoidal dished ends – orthotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.13. Equivalent stress comparison for the pressure vessel  

with ellipsoidal dished ends – orthotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.14. Vertical displacements comparison for the pressure vessel  

with torispherical dished ends – orthotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.15. Equivalent stress comparison for the pressure vessel  

with torispherical dished ends – orthotropic material 

t 
[mm] 

EETS EETG 

1 

  

5 

  

15 

  

30 
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Table 3.16. The summary of results for a pressure vessel  

with ellipsoidal dished end – orthotropic material 

 
t 

[mm] 

Analytical solution 
FEM 

Relative difference 
[%] 

EETS EETG EETS EETG 

𝜎𝑟⁡𝑚𝑎𝑥 
[MPa] 

1 170.2 170.3 174.1 2.218 2.162 

5 164.0 164.8 169.1 2.980 2.503 

15 154.1 156.7 166.1 7.249 5.672 

30 144.9 149.5 164.9 12.17 9.367 

𝑑𝑣⁡𝑚𝑎𝑥⁡ 

[mm] 

1 0.5748 0.5759 0.5727 0.3677 0.554 

5 0.5097 0.5185 0.5061 0.7121 2.443 

15 0.4208 0.4441 0.4077 3.216 8.927 

30 0.3479 0.3825 0.3212 8.307 19.09 

Table 3.17. The summary of results for a pressure vessel  

with torispherical dished end – orthotropic material 

 
t 

[mm] 

Analytical solution 
FEM 

Relative difference 
[%] 

EETS EETG EETS EETG 

𝜎𝑟⁡𝑚𝑎𝑥 
[MPa] 

1 335.9 335.4 316.4 6.162 5.992 

5 319.7 316.6 266.0 20.18 19.03 

15 350.3 346.6 230.1 52.21 50.59 

30 415.2 409.3 219.0 89.58 86.90 

𝑑𝑣⁡𝑚𝑎𝑥⁡ 

[mm] 

1 0.8575 0.8676 0.8765 2.166 1.01 

5 0.6541 0.6706 0.6549 0.1269 2.397 

15 0.5860 0.5966 0.5343 9.675 11.66 

30 0.5033 0.5162 0.4314 16.67 19.65 
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4. Ritz method application 

As shown in the previous chapter, the superposition of MT and EET is far from 

satisfying for the analysed problems. Despite the numerous theories found in various 

valuable monographs and papers, the possibility of precise analytical solutions to 

static problems of shells, including bending effects, remains poor. It implies that the 

only available calculation method for obtaining a supposedly accurate solution in 

terms of stress and deformations is the FEM. The accuracy of the FEM results can 

be analysed only by comparing the results to the experimental data. Notably, such a 

numerical approach allows obtaining the solution in the discrete form, at each of the 

FE model nodes, often limiting the analysis of the internal forces and moments, 

especially for doubly-curved shell structures. In a further study, the Ritz method (RM) 

is used to investigate the stress and deformation in the standard pressure vessels 

with ellipsoidal and equivalent torispherical dished ends. The material model is 

consistent with the one introduced in chapter 3, describing the analytical solution. 

This study has been previously published [37] (A1), and the reprint of the paper can 

be found in Appendix A1. 

The description of the RM and its basic assumptions is provided in the 

literature [1], [2]. It belongs to the group of so-called variational methods and is based 

on the principle of stationary potential energy. The total potential energy of a system 

is expressed as strain energy and potential energy of external loads. Those are 

described using displacement functions that constitute linear combinations of some 

other functions. Ultimately the variational problem is transformed into the differential 

formulation. Although the application of the RM can theoretically result in an 

analytical solution, it applies only to elementary, straightforward structural 

problems. For more advanced investigations, the formulation remains analytical; 

however, at some point, it is usually necessary to refer to numerical methods as the 

mathematics becomes cumbersome. The utilization of the RM in the presented study 

is considered a semi-analytical approach. 

The strain energy and the potential energy of external forces are derived for an 

arbitrary shell structure using the linear theory of shells. The study considers three 

different displacement functions, i.e. polynomials, trigonometric series and modified 

trigonometric series. The latter is formulated to resemble the characteristics of 

displacements functions obtained using EET. The results are compared to the finite 

element method study outcome using ANSYS 19 software. 

The convergence of the results is obtained for a wide range of shell thicknesses. 

Additionally, the research results refer to the design method of ellipsoidal and 

supposedly equivalent torispherical dished ends described in the technical standards 

[10]-[12], indicating significant ambiguities.  
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5. Diminishing of the edge effect 

Following the analytical (MT and EET) and semi-analytical (RM) investigation, one 

can conclude that the equivalent von Mises stress distribution in the standard dished 

ends of cylindrical pressure vessels is disadvantageous. Notably, ellipsoidal dished 

ends are characterised by substantially smaller peak stress than comparable 

torispherical dished ends described in [10]-[12]. Despite that, the maximum stress in 

the ellipsoidal shell significantly exceeds the stress in the cylindrical segment, making 

the standard geometry an unsatisfactory solution. It has been shown in the previous 

studies of this work that such a negative feature is related to the loads in the 

junctions of the analysed complex shell structures. Investigation of the compatibility 

equations can lead to an observation that the calculated transverse forces and 

moments are zero when the deformations from the membrane state are equal at the 

edges of shells. It shows that developing a specific geometry of the dished end that 

satisfies such a deformation condition can theoretically eliminate the edge effect. 

Realizing the simplified nature of the MT, instead of eliminating the edge effect, it can 

rather lead to the diminishing of the bending phenomenon in the junction. The 

described topic has been already presented in the form of the paper [62], which 

reprint is provided in Appendix A2. 

It is assumed within the paper that the desired shape of the dished head must 

meet two particular conditions. The maximum stress in a cylindrical pressure vessel 

shall not be higher than in a cylindrical shell in the membrane stress state. The above 

condition implies eliminating the edge effect in the junction area. The second 

condition is to achieve a membrane stress state in the whole structure, maintaining 

the lowest value of the relative depth of the dished end. Its reasoning lies strictly 

within practical importance, i.e. applications and manufacturing process. The subject 

of the study in the paper includes the following three analytical, nonstandard Cassini 

and Booth ovaloidal, as well as clothoidal dished ends. The meridional curves are 

explicitly formulated to enable modifying the relative depth of dished ends.  

In the research, two geometrical conditions are introduced to the geometry of 

the dished ends.  The first of them is referred to as the necessary condition of the 

edge effect elimination, which imposes equal meridional curvatures in the junction. 

The latter considers equal derivatives of the curvature. The stress concentration 

factor is analysed according to the relative depth of the selected curves. The problem 

is investigated analytically with the MT and verified using the FEM. According to the 

results, the stress disturbance in the junction area is substantially reduced. The peak 

stress is shifted beyond the junction, which ultimately does not bring a desired 

improvement in the stress distribution. 
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6. Shape optimization of dished ends 

The standard geometries of dished ends of cylindrical pressure vessels were developed 

at the beginning of the last century. Among them, there are ellipsoidal and 

torispherical geometries (Fig. 3.3) characterized by disadvantageous stress 

distribution ([12], [37] (A1)), which is the primary determinant when designing shell 

structures. The research [62] (A2), briefly described in the previous chapter, brought 

insight into the problem of stress distribution. Despite that, it is necessary to refer to 

optimization to improve the stress distribution in dished ends of the cylindrical 

pressure vessels.  

It has been concluded that the shape optimization of dished ends is the most 

suitable among a few possible methods for altering the stress distribution. It is 

assumed their depth is equivalent to the standard ones to maintain comparability 

and manufacturability. The formulation of the problem and its outcome is described 

within the paper [81], provided in Appendix A3. 

Referring to the Bézier curve (BC), a unique geometry of arbitrary order is 

developed to describe the parametric shape of the dished end. The parametric curve 

always fits the initially defined feasibility region and satisfies all geometrical 

constraints, including non-negative curvature. The order of the curve must be at least 

three due to the constraints; however, it can be increased indefinitely. This property 

is critical for optimization as it enables arbitrarily assuming the number of 

independent parameters controlling the shape. The increase of the curve order raises 

the number of its degrees of freedom which potentially enables obtaining a better 

solution due to optimization. Notably, the geometry is proportional to the cylinder 

radius (Fig. 3.2); therefore, the optimized shape can be adapted to cylindrical 

pressure vessels with any diameter. The mentioned properties show that the curve is 

excellent for optimization 

The procedure is performed using two methods. Initially, equivalent stress is 

solved analytically according to the MT, while the sequential quadratic programming 

(SQP) algorithm seeks the maximum stress along the meridian of the dished end and 

attempts to minimize it. Further, numerical FEM calculations are conducted to 

validate the outcome of the analysis. Realizing the simplified character of the MT and 

the impact of the bending phenomena in shell structures, the procedure is further 

changed. The stress distribution is resolved using FEM in ANSYS software, where its 

peak value constitutes the fitness function value. Due to its discontinuous character, 

the optimization is performed using a genetic algorithm (GA) in MATLAB software. 

A significant improvement in the maximum stress over the standard dished ends is 

achieved. 
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7. Experimental studies and numerical verification 

7.1. Static tensile tests 

The experimental verification of the results obtained in the optimization requires 

determining an appropriate manufacturing method. Industrial pressure vessels are 

usually made of structural steel by metal forming. The use of such manufacturing 

methods for individual vessel models is economically unjustified. The presented 

research refers to additive manufacturing methods (AMM), often referred to as 3D 

printing, to address this issue.  Due to their significant, recent development, they 

allow the manufacture of structures of almost any shape while maintaining 

acceptable mechanical properties, strength and production costs.  

There are many AMM methods, but not all of them are potentially valid for 

manufacturing pressure vessels. The models suitable for this study must be 

characterised by high geometric accuracy and tightness, allowing their 

pressurization. It is also essential that the vessels analysed in the optimization study 

in chapter 6 are considered thin-walled. When selecting the appropriate AAM, the 

smallest and largest dimensions of the model must be taken into account. 

Manufacturing exceptionally thin structures can lead to significant geometrical 

inaccuracies or unsatisfactory strength, as in this case, the load-carrying capacity is 

not necessarily proportional to the wall thickness.  It creates the necessity of relatively 

large vessel models, so the wall thickness is within an acceptable range for a given 

manufacturing device - a 3D printer.  

Based on the analysis of available AMMs that meet the above requirements and 

their availability, it is decided to consider two methods, i.e. Selective Laser Sintering 

(SLS) and Multi Jet Fusion (MJF). The more suitable method is selected by carrying 

out a static tensile test on standard, type 1A specimens according to ISO527 [82] 

(Fig. 7.1). It should be emphasised that this comparison depends not only on the 

AMM but also on the equipment used to manufacture them. The samples produced 

by the SLS method are obtained on an EOS P 396 device, while for the MJF, it is an 

HP Jet Fusion 3D 4200, both from polyamide PA12 material.  

 
Fig. 7.1. The standard 1A specimen for static tensile test according to ISO527 
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Considering the potential orthotropic properties of models printed with both 

AMMs, specimens manufactured in two directions are analysed, as shown in Fig. 7.2. 

In the first case, the axis of the specimen lies in the plane of successive print layers, 

while in the second case, the axis is perpendicular to them. For clarity, these 

directions are referred to as longitudinal and transverse, respectively, which describe 

the alignment of the print layers concerning the specimen axis.  

 

Fig. 7.2. Alignment of the specimens in the printing chamber 

The introduced directions are coherent with the principal curvature directions 

of the cylindrical shell of the vessel, whose axis is considered parallel to the vertical 

axis of a 3D printer. Samples manufactured in the longitudinal and transverse 

directions in both AMMs are shown in Fig. 7.3. 

 

Fig. 7.3. The specimens manufactured in MJF (black) and SLS (white) technology in A, C - longitudinal 
direction, B, D - transverse direction 

The static tensile test is carried out on a Zwick Z100 universal testing machine 

(Fig. 7.4) with a 50 N to 100⁡kN measurement range. The resolution of the force sensor 

is 1 N. The elongation during the test is evaluated using an extensometer with 

a resolution of 0.6 μm. The gauge length equals 75 mm, and the strain rate is 

1 mm/min. Those values are based on the ISO527 standard. All of the measured 

quantities are sampled at 50 Hz. Specimens are clamped with flat, self-tightening 

grips during the experiment. The applied pre-test force is 50⁡N. 
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Fig. 7.4. Zwick Z100 universal testing machine Fig. 7.5. The MJF specimen during the test 

In the first phase of the study, the specimens are tested to rupture. The 

registered stress-elongation relations are shown in Figs. 7.6, 7.7 for the MJF and 

Figs. 7.8, 7.9  for SLS technology. The applied test designation symbols are as follows: 

M - MJF, S - SLS, L - longitudinal direction, T - transverse direction, where the last 

digit indicates the specimen number. 

  
Fig. 7.6. The results for longitudinal MJF specimens Fig. 7.7. The results for transverse MJF specimens 

 

  
Fig. 7.8. The results for longitudinal SLS specimens Fig. 7.9. The results for transverse SLS specimens 
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The measurements conclude that the MJF specimens are characterised by 

noticeable discrepancies in ultimate strength and varying stress-elongation curves, 

even for specimens with the same layer orientation. The most satisfactory results are 

obtained for the SLS method with longitudinal printing, where all of the three curves 

are almost identical, indicating the repeatability of the material properties. 

Unfortunately, tests of SLS samples in the transverse direction show unacceptably 

low tensile strength, with failure occurring at stresses substantially smaller than for 

the longitudinal direction. 

The values of Young's modulus 𝐸, offset yield strength 𝑅𝑒0,2 and ultimate 

strength 𝑅𝑚 are determined in each of the tests. The former is determined by linear 

regression in the stress range of 2 to 15 MPa. A summary of these results and the 

initial dimensions of the samples are presented in Table 7.1. For two SLS specimens 

manufactured in the transverse direction, a rupture occurred at stresses lower than 

15 MPa; hence, finding Young's modulus is futile. A similar problem is noted when 

determining offset yield strength for all the specimens in this group, as the failure 

occurred for strains below 0.2%. 

Before the test, the dimensions characterising the cross-section are measured 

with a micrometer. The thicknesses 𝑎 and widths 𝑏 summarised in Table 7.1 are 

compared to the standardised dimensions shown in Fig. 7.1 by the relative differences 

𝛿𝑎 and 𝛿𝑏. The most considerable discrepanacy in thickness is obtained for the 

specimens with the most favourable strength parameters, i.e. for SLS manufactured 

in the longitudinal direction. For the SL1 sample, the calculated deviation 𝛿𝑎 = 6.90% 

indicates significant difficulties in maintaining the assumed geometrical dimensions. 

The compared specimen widths 𝑏 are on average larger for the SLS method. The 

average dimensional differences for MJF specimens are 0.61% for thickness 𝑎, and 

0.96% for width 𝑏. Those values for SLS are 3.25% and 2.04%, respectively. 

Based on the performed analyses, it is concluded that the MJF method has a 

significantly higher minimum ultimate strength and dimensional stability. The SLS 

technology is less suitable for the studied application. This observation only refers to 

the aforementioned 3D printers and specific manufacturing process parameters. 

Considering the differences in the stress-elongation curves for MJF technology, it 

should be assumed that strength tests of MJF products can be conducted for 

moderate stress values. Although it is difficult to specify the allowable stress value 

unambiguously, the mechanical behaviour below 10 MPa seems satisfactory. 

A possible explanation for their divergent characteristics is the positioning of the 

samples in the chamber of the printing device.  



65 

 

The determination of Young's moduli from three moderately different values 

(Table 7.1) can be perceived as inaccurate. Additional static tensile tests are carried 

out to achieve a more compelling outcome. Those are limited to MJF technology.  

Table 7.1 Static tensile tests and measurements summary 

Specimen 
name  

𝐸 
[GPa] 

𝑅𝑒0,2 
[MPa] 

𝑅𝑚 
[MPa] 

𝑎 
[mm] 

𝑏 
[mm] 

𝛿𝑎 [%] 𝛿𝑏 [%] 

ML1 1.30 18.70 43.37 4.06 9.82 1.55 1.77 

ML2 1.56 22.91 39.60 4.00 9.76 0.05 2.43 

ML3 1.43 20.76 39.57 3.98 9.93 0.60 0.70 

MT1 1.68 26.00 49.65 4.01 9.97 0.25 0.27 

MT2 1.50 20.98 31.87 3.96 9.95 1.08 0.47 

MT3 1.52 21.56 30.55 4.00 9.99 0.10 0.13 

SL1 1.75 29.59 47.94 4.28 9.80 6.90 2.03 

SL2 1.82 28.85 47.79 4.14 9.80 3.37 2.00 

SL3 1.80 29.59 48.31 4.16 9.75 3.98 2.53 

SP1 1,33 N/A 16.28 3.92 9.75 2.08 2.53 

SP2 N/A N/A 6.24 3.94 9.84 1.55 1.63 

SP3 N/A N/A 8.94 3.94 9.85 1.63 1.53 

The manufacturing of the other specimens involves locating them as close as 

possible to the centre of the chamber of the HP Jet Fusion 3D 4200 machine. Due to 

previous research, it seems unreasonable to carry out the test up to rupture. It is 

decided to run five load-unload cycles from 1 MPa to 16 MPa to obtain a more accurate 

value of Young's moduli. Each time the desired value is reached, the testing machine 

holds the force for 120 seconds so that the creep effect is investigated. Exemplary 

results are shown in Figs. 7.10, 7.11 for a specimen manufactured in the longitudinal 

and transverse directions. 

  

Fig. 7.10. Tensile load-unload cycles for 
longitudinal MJF specimen 

Fig. 7.11. Tensile load-unload cycles for transverse 
MJF specimen 
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A mechanical hysteresis can be observed with the simultaneous creep 

phenomenon in the studied material. After reaching the maximum load for the first 

time, the deformation increases at constant stress. A partial decrease in the strain is 

noted due to unloading and maintaining constant stress of 1 MPa. Subsequent 

loading cycles result in less and less creep, both in terms of strain increase and 

decrease at constant load. Samples printed in the longitudinal direction are 

characterised by significantly less intensive creep than those in which successive 

layers are arranged transversely. It explains why the recorded load-unload curves in 

Fig. 7.10 show a relationship, which is closer to linear. 

Notably, the separate loading and unloading curves follow a similar pattern for 

each cycle. For all of them, Young's modulus is determined by linear regression in 

the range from 2 MPa to 10 MPa. A summary of the results is presented in Table 7.2, 

where the given designations are: L - longitudinal, T - transverse, and the number 

following them refers to the specimen number. 

Table 7.2. The summary of load-unload tensile tests for MJF specimens 

Test 
name 

Young modulus in consecutive load cycles [GPa] Mean 
value 
[GPa] 𝐸(1) 𝐸(2) 𝐸(3) 𝐸(4) 𝐸(5) 

L1 1.78 1.71 1.71 1.71 1.71 

𝐸2 = 1.71 L2 1.76 1.74 1.73 1.73 1.72 

L3 1.78 1.71 1.71 1.71 1.71 

T1 1.19 1.07 1.05 1.05 1.03 

𝐸1 = 1.13 T2 1.19 1.16 1.14 1.13 1.13 

T3 1.25 1.24 1.23 1.22 1.22 

The static tensile tests indicate the equalization of Young's moduli in each 

successive loading cycle. The calculated mean values show that Young's modulus for 

the longitudinal direction of the printed model is 𝐸2 = 1.71⁡GPa, while for the 

transverse direction, it is 𝐸1 = 1.13⁡GPa. The designations of those quantities refer to 

the principal directions of the cylindrical shell, where its axis is aligned with the 

vertical printer axis (Fig. 7.2). The differences in Young's moduli indicate definite 

orthotropic properties of the material. Due to the observed unfavourable creep 

phenomenon, it seems advantageous to carry out further strain gauge measurements 

at a much higher strain rate than assumed in the static tensile test according to 

ISO527 guidelines.  
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7.2. Strain gauge measurements 

7.2.1. Test bench and apparatus 

A laboratory test bench is developed to verify the dished end optimization results. In 

combination with the appropriate shape of the pressure vessel model, it allows its 

pressurization. A schematic diagram of the test bench is shown in Fig. 7.12. The 

designed model of a pressure vessel consists of a dished end, cylindrical shell, and a 

flange. The flange is clamped between two standardised flange connectors fixed by 

four M16 bolts. The applied tightening torque is 20 Nm. The EPDM rubber gaskets 

are fitted between the flange connectors and the vessel flange to maintain the 

tightness of the system and evenly distribute the clamping force. Three threaded 

holes are drilled in the blind, bottom flange connector. Those allow connecting 

a pressure sensor, manometer and expansion tank with the inside of the pressure 

vessel. The expansion tank is further connected with the air compressor.   

 

Fig. 7.12. Structure of the test bench 

During the test, the inside of the vessel is filled with water, as compressing the 

air would increase its temperature. It could lead to thermal deformation, which would 

be difficult to compensate for in the measurements. Additionally, it increases the 
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thermal capacity of the system and protects against a possible explosion. After 

placing the test bench upside down, the system is filled with water. In this position, 

the air is easily removed from the inside of the vessel and the hoses connected to the 

apparatus. It should be noted that the hydrostatic pressure created by the presence 

of water does not affect the measurement, assuming that all of the sensors are zeroed 

right before the measurement is conducted. Such an approach implies that the 

measured strains are related only to the change in pressure inside the vessel applied 

by the air compressor. 

The nominal diameter of pressure vessels tested in the developed test bench is 

200 mm; hence according to the optimization study in chapter 6, the dished end 

height is⁡50 mm. These dimensions refer to the middle surface of the shell. The length 

of the cylindrical shell is designed to eliminate the possible impact of the deformations 

in the vessel flange area on the measured strains. The thickness of the models 

involved in this study is 2 mm for the cylindrical shell and the dished end. The vessel 

flange is 5 mm thick. The total height of the structure is 286⁡mm.  

Data acquisition is carried out using two HBM QuantumX MX840 amplifiers 

(Fig. 7.13), connected to a computer with CATMAN EASY software installed. The 

sampling rate is set to 10 Hz. The total number of available measurement channels 

is 16. Pressure measurement is performed using an HBM P8AP strain gauge pressure 

sensor (Fig. 7.14) with a rated range of up to 10 bar. A manual reducing valve in the 

air compressor controls the applied pressure. The remaining 15 channels are 

operated by strain gauges bonded to the pressure vessel surface.  

  

Fig. 7.13. Two HBM QuantumX MX840 amplifiers used for data acquisition 

The first type of sensor used for strain analysis is the HBM KY41-4/120 chain 

strain gauge (Fig. 7.15). It has ten active sensors that alternately measure in two 

perpendicular directions and one optional compensating strain gauge. The distances 
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between the active sensors are 4 mm, thus allowing measurements over a length of 

36 mm. The second strain gauge type is the HBM XY11-3/120 0°/90° T rosette. Both 

of the strain sensors are characterized by a nominal resistance of 120 Ω. The strain 

gauges are bonded to the pressure vessels using cyanoacrylate adhesive, for which 

no undesirable interaction with MJF PA12 models has been demonstrated. 

  

Fig. 7.14. Pressure sensor HBM P8AP Fig. 7.15. Chain strain gauge HBM KY41-4/120 

7.2.2. Determination of PA12 mechanical properties 

The first MJF pressure vessel included in the study has a torispherical dished end 

and geometrical dimensions as shown in Fig. 7.12. This test aims primarily to 

determine the mechanical properties of the material by strain gauge measurements, 

taking into account the actual strain rates, which are difficult to determine for static 

tensile testing. It is also important to note that the mechanical properties may be 

slightly different for various geometrical dimensions of models manufactured with 

MJF technology. The second goal of this study is to verify the correct operation of the 

designed test bench and the system tightness, checking the dimensional accuracy of 

the obtained MJF model and indicating any possible problems with the test 

procedure. 

The pressure vessel manufactured using MJF technology is shown in Fig. 7.16. 

The thickness measurements are conducted with an ultrasonic thickness sensor 

indicating a range of 1.9 to 2.3 mm. Additional measurements of the cylindrical shell 

are conducted using a dial thickness gauge, which confirmed the prior thickness 

measurements. 
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Fig. 7.16. Test bench setup for the pressure vessel 
with torispherical dished ends 

Fig. 7.17. HBM XY11-3/120 0°/90° T rosette 
bonded with the cylinder 

Although the other strain gauges can be observed in Fig. 7.16, the analysis is 

limited to the T rosette (Fig. 7.17). It is bonded on the cylindrical shell, for which the 

relation between the pressure and principal strains is known from the membrane 

theory (MT). Such a description can be used to some extent to evaluate the material 

properties. 

During the test, the pressure vessel is subjected to five load-unload cycles from 

𝑝 = 0 MPa to 0.7 > 𝑝 > 0.6 MPa. After each unloading cycle, the pressure is kept at 

zero for at least 30 s, allowing the creep deformations to return to a value close to 

zero. The pressure change during the test is shown in Fig. 7.18. 

 

Fig. 7.18 The change in pressure during the five load-unload cycles 
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The registered stress-strain relation is presented in Fig. 7.19 for meridional and 

in Fig. 7.20 for circumferential direction. A significant nonlinearity is present in the 

case of 𝜀1, while the separate load and unload cycles for 𝜀2 can be considered nearly 

perfectly linear. Comparing the measured values, one can notice that the strain along 

the axis of the cylindrical shell 𝜀1 has negligible values compared to the 

circumferential direction.  

 

Fig. 7.19. Meridional strain measured by T rosette 

 

Fig. 7.20. Circumferential strain measured by T rosette 

In the further analysis, the strain-pressure relationships are considered only for 

load cycles omitting unload phases, and it is assumed that at the start of each cycle, 

the strains and pressure are zero. The processed in such a manner results are 

juxtaposed in Fig. 7.21, where the linear regressions are fitted into the obtained data.  
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Fig. 7.21. The measurements of strains in the cylindrical shell - linear regressions for load cycles 

In order to determine the mechanical properties of the material, one can refer 

to the analytical expressions for strains in the cylindrical shell (Eqs. (3.3), (3.46)). 

After converting the units and considering that the pressure 𝑝 in the experiment is 

negative referring to the theory, the following relations are obtained: 

 𝜀1 =
𝑝𝑅0
𝐸1𝑡

(𝜈1 −
1

2
)105 ⁡[

μm

m
] , 𝜀2 =

𝑝𝑅0
𝐸2𝑡

(
1

2
𝜈2 − 1)105 [

μm

m
], (7.1) 

where: 𝑝 [bar] – applied pressure, 𝑅0 [mm] – radius of the middle surface of cylindrical 

shell, 𝑡 [mm] – thickness, 𝐸1, 𝐸2 [MPa] – Young’s moduli towards principal curvature 

directions,  𝜈1, 𝜈2 – Poisson’s ratios towards principal curvature directions. 

Considering the alignment of the pressure vessel in the printer chamber, the terms 

transverse and longitudinal refer to meridional and circumferential directions 

respectively. This observation is valid only for the cylindrical shell. Given the form of 

the first expression in Eq. (7.1) and assuming that Young's modulus in the meridional 

direction 𝐸1 is finite, the following relation must hold 

 𝜀1 ≈ 0⟹ 𝜈1 ≈ 0.5. (7.2) 

It explains the recorded 𝜀1 strain characteristics (Fig. 7.19), where its nonlinearity 

can be mainly attributed to the stiffness of the adhesive and the creep of the material 

in the circumferential direction. Due to the need for further numerical FEM 

calculations, the value of Poisson's ratio in the meridional direction is assumed as 

 𝜈1 = 0.49. (7.3) 

Other material constants can be estimated by referring to the orthotropy coefficient 

(Eq. (3.11)). On the basis of a static tensile test, it was found that Young's modulus 
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in the longitudinal (circumferential) direction is certainly not less than in the 

transverse (meridional) direction 

 𝐸2 ≥ 𝐸1. (7.4) 

The Poisson's ratio in the circumferential direction must satisfy the relation 

 0.5 ≥ 𝜈2 ≥ 𝜈1. (7.5) 

It can therefore be assumed that the material presents almost isotropic properties: 

 𝜈2 = 0.49, 𝛼 = 1. (7.6) 

Transforming the relation for circumferential strain in terms of Young's modulus, the 

following expression is obtained 

 𝐸2 =
𝑝𝑅0
𝜀2(𝑝)𝑡

(
1

2
𝜈2 − 1)

1

105
⁡[MPa]. (7.7) 

The thickness of the cylindrical shell at the location of the T rosette is measured using 

a dial gauge, which yields 𝑡 = 2.09 mm. Using the other known parameters: 

 𝑝 = 0.6⁡bar, 𝑅0 = 100⁡mm,⁡ (7.8) 

the following values of Young's moduli are resolved: 

 𝐸2 = 𝐸1 = 2157⁡MPa. (7.9) 

Note that the determined Young's moduli (Eq. (7.9)) are significantly different 

than those resulting from the static tensile test (Table 7.2). It is most likely connected 

with the much higher strain rate in the strain gauge test. A noteworthy discrepancy 

is also noticed between the orthotropy coefficient (Eq. (3.11)) in both tests. The reason 

for this may be the more intense creep phenomenon observed in the static tensile 

test. With a significant increase in strain rate, the creep phenomenon has little effect 

on the analysed strains; hence the material could become nearly isotropic. 

7.2.3. Analysis of the optimized pressure vessel 

Even though the dished end shape optimization was carried out as part of the 

research described in chapter 6 of the dissertation, their direct experimental 

verification is not justified. This is due to the different mechanical properties of the 

material considered in the optimization problem. The determined stress distributions 

for these shapes deteriorate when considering significantly different material 

properties of the models manufactured in the MJF technology. For this reason, the 

optimization of the dished end is carried out again, considering the material 

properties determined in the strain measurements (Eqs. (7.3), (7.6), (7.9)) and the 

𝑡/𝑅0 ratio in accordance with the dimensions in Fig. 7.12. The procedure is performed 
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using the same methodology and parameters as in chapter 6, its description is 

therefore omitted. The resulting stress distribution is shown in Fig. 7.22. 

 
Fig. 7.22. The equivalent von Mises stress distribution in the optimized dished end with PA12 (MJF) 

material properties 

The final pressure vessel model with optimized dished end manufactured in MJF 

technology is shown in Fig. 7.23. The layer thickness on the HP Jet Fusion 3D 4200 

printer is set to a minimum value of 0.08 mm. The pressure vessel is located in the 

centre of the printer chamber. The model is positioned with the dished end facing 

upwards, while the axis of the cylindrical shell coincides with the vertical axis of the 

3D printer. The total printing time is approximately 9 hours. The cooling time of the 

vessel is prolonged to 16 hours to minimize the possible thermal deformation. 

  

 

 

Fig. 7.23. The model of pressure vessel with optimized dished end manufactured in MJF technology 
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After the printing process, the model is vibration-abrasive machined to achieve 

a smooth surface that allows better contact between the strain gauges and the 

surface. Prior to the experimental study, the pressure vessel is measured using 

a Hexagon Smartscan HE-R8 optical scanner. Measurements are taken for the entire 

geometry on both the external and internal surfaces. The recreated geometry is shown 

in Fig. 7.24 as an STL file. The number of points collected on the model surface is 

631528, which is increased to 1126556 by regularization using SPACECLAIM software 

in ANSYS 2020 R2 system. 

 

Fig. 7.24. The STL geometry of the scanned pressure vessel  

In the next step, the STL file is converted into continuous geometry in the form 

of a CAD model. The geometry is split into parts, overlaid with surfaces and then 

stitched together to form a solid model. The geometric deviations between the 

optimized and scanned geometry are evaluated in SPACECLAIM (Fig. 7.25). For this 

purpose, their geometrical centres and principal axes of inertia are matched. Only 

the dished end and the cylindrical shell are considered, as the flange is not the 

subject of strain gauge measurements. The dimensional tolerance is set to ±0.1 mm. 

Values below the lower tolerance limit are highlighted in blue, while red refers to 

values above 0.1 mm. The total deviation range is between −0.32 mm and 0.43 mm. 

Based on the previous study, it has been recognised that ultrasonic thickness 

measurements can negatively affect plastics. Covering a relatively large surface with 

a coupling agent may, to some extent, change its mechanical properties. Thickness 
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measurements are only taken at a few selected locations and confirmed with a dial 

thickness gauge. Such verification is possible only for the cylindrical surface. The 

resulting CAD file is then subjected to thickness analysis in SOLIDWORKS 2021 

software, as the software used previously does not have this functionality. The result 

of the thickness distribution analysis is shown in Fig. 7.26. The predominant surface 

of the model has a thickness between 1.9 and 2.06⁡mm, which is confirmed by the 

ultrasonic sensor and dial gauge. It constitutes an improved result compared to the 

previous model (Fig. 7.16), where thickness is in the range of 1.9 to 2.3 mm. The 

advancement is most likely due to the reduced layer thickness in the MJF 

manufacturing process. 

   

Fig. 7.25. The geometrical deviations between the optimized and 
scanned geometry 

Fig. 7.26. Thickness distribution in 
the scanned geometry 

The stress distribution obtained from the optimization (Fig. 7.22) is 

characterised by equal values of maximum equivalent stresses in the external and 

internal surfaces. It should be mentioned that strain gauge measurements inside the 

pressure vessel are technically possible on the designed test bench (Fig. 7.12), 

although difficult to perform in practice. The problems are related to the probable 

contact of strain gauges and connection cables with water, although it is possible to 

protect them with suitable covering agents. Another problem is the considerable 

difficulty of bonding a relatively long chain strain gauge on the curved dished end 

surface inside the model so that the sensor axis coincides with the meridional 

direction. In addition, such a test would require the development of a reliable method 

for routing the connection cables outside the vessel and maintaining the tightness of 

the system under pressure. It is decided to limit the experimental study to the 

external surface due to the abovementioned problems.  
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The test employed two KY41-4/120 chain strain gauges and an XY11-3/120 

T rosette on the cylindrical shell (Fig. 7.27). To ensure that the strain gauges are 

aligned along the shell meridian, the model is placed on the levelled test bench, and 

the meridian shape is mapped using a self-levelling cross-line laser. The chain strain 

gauges labelled CSG1 and CSG2 (Fig. 7.27) correspond to the two stress extrema on 

the optimized stress distribution (Fig. 7.22). The T rosette labelled TR is used to 

compare the measurements with the previous test (Fig. 7.21). 

 

Fig. 7.27. Position of the strain gauges in the experimental study 

Each measurement point (Fig. 7.27) is denoted with a symbol M (meridional) or 

C (circumferential), related to the direction of strain measurement, and a number 

counted from the dished end apex. The test bench prepared for the experiment is 

shown in  Fig. 7.28. The soldering terminals are moved as far away as possible from 

the strain gauges to prevent potential local stiffening of the structure. The number of 

bonded sensors exceeds the number of available channels; therefore, the test is 

performed in two steps. Initially, measuring points M11 to C22 are considered, i.e. 

CSG1 is inactive. After the test, the connection cables are resoldered to include points 

M1 to C10 and M11, C12, M15, M19 and C20 (Fig. 7.29). Strain measurements at 

points belonging to CSG2 are conducted to ensure that the results obtained at these 

points are the same as in the first step of the test. 
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Fig. 7.28. Test bench setup for a pressure vessel with 

optimized dished end 

Fig. 7.29. KY41-4/120 chain strain gauges 

bonded with the dished end 

Analogously to the previous study (Fig. 7.18), strain recordings are made for five 

load-unload cycles up to the pressure just above 𝑝 = 0.6 bar. Between each cycle, no 

pressure is applied for at least 30 s. 

 

Fig. 7.30. The change of pressure during the cyclic load-unload test 
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The obtained results are presented in Figs. 7.31-7.40. The strains in Figs. 7.31, 

7.33, 7.35, 7.37 and 7.39 are the unprocessed data recorded directly during the test. 

They show moderate material hysteresis related to material creep. More useful results 

are shown in Figs. 7.32, 7.34, 7.36, 7.38 and 7.40, where the consideration is limited 

to load cycles in the pressure range of about 0⁡to 0.6 bar. The pressure and strains 

are assumed to be zero at the beginning of each cycle. For each measuring point, i.e. 

M1-C22, linear regression is determined, taking all five load cycles into account. 

Dashed lines indicate these, and the corresponding equations are given in boxes 

provided in the figures. The values of coefficients of determination 𝑅2 indicate almost 

perfectly linear relations. 

 

Fig. 7.31. The meridional strain from CSG1, load-unload cycles 

 

Fig. 7.32. The meridional strain from CSG1, load cycles with linear regressions 
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Fig. 7.33. The circumferential strain from CSG1, load-unload cycles 

 
Fig. 7.34. The circumferential strain from CSG1, load cycles with linear regressions 

 
Fig. 7.35. The meridional strain from CSG2, load-unload cycles 
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Fig. 7.36. The meridional strain from CSG2, load cycles with linear regressions 

 
Fig. 7.37. The circumferential strain from CSG1, load-unload cycles 

 
Fig. 7.38. The circumferential strain from CSG2, load cycles with linear regressions 
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The relations presented in Figs. 7.39 and 7.40 refer to measurements on 

a cylindrical shell. Comparing them with the results for the pressure vessel with 

a torispherical dished end (Fig. 7.21), one can see almost the same circumferential 

deformations. However, a significant difference is seen for deformations in the 

meridional direction. Their increased value may be caused by a slight deviation of the 

strain gauge axis from the meridional direction. 

 

Fig. 7.39. The strain in cylindrical shell from TR, load-unload cycles 

 

Fig. 7.40. The strain in cylindrical shell from TR, load cycles with linear regressions 

The conducted measurements enable interpolating the meridional and 

circumferential deformations over the chain strain gauges length. Tables 7.3-7.6 

summarize the strains determined from linear regressions for pressure 𝑝 = 0.6 bar 

and the distance from the apex of the dished end to each measurement point.  
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Table 7.3. The meridional calculated from linear regressions for p=0.6 bar - CSG1 

Measurement point M1 M3 M5 M7 M9 

S [mm] 20 28 36 44 52 

𝜀1(0.6) [μm/m] 707.03 861.24 960.32 1013.3 1006.3 

Table 7.4. The circumferential calculated from linear regressions for p=0.6 bar - CSG1 

Measurement point C2 C4 C6 C8 C10 

S [mm] 24 32 40 48 56 

𝜀2(0.6) [μm/m] 778.30 722.27 624.80 552.29 412.45 

Table 7.5. The meridional strains calculated from linear regressions for p=0.6 bar – CSG2 

Measurement point M11 M13 M15 M17 M19 

S [mm] 81 89 97 105 113 

𝜀1(0.6) [μm/m] 892.53 885.64 823.38 698.14 467.14 

Table 7.6. The circumferential strains calculated from linear regressions for p=0.6 bar – CSG2 

Measurement point C12 C14 C16 C18 C20 

S [mm] 85 93 101 109 117 

𝜀2(0.6) [μm/m] −637.67 −838.36 −984.43 −948.57 −672.54 

Interpolation is achieved using fourth-order polynomials (Eqs. (7.10)-(7.13)). 

The interpolation functions are applicable only within the distance from the first to 

the last considered strain gauge. The described further equations refer to meridian A 

(Fig. 7.27): 

𝜀1
(𝐶𝑆𝐺1) = −2.3227 × 10−4𝑠4 + 3.2667 × 10−2𝑠3 − 2.0673𝑠2 + 74.74𝑠 − 184.9⁡ [

μm

m
], 

𝑆⁡𝜖 < 20⁡; 52 >, 

(7.10) 

𝜀2
(𝐶𝑆𝐺1) = −1.6145 × 10−3𝑠4 + 0.25411𝑠3 − 14.696𝑠2 + 358.88𝑠 − 2347.3⁡ [

μm

m
], 

𝑆⁡𝜖 < 24⁡; 56 >, 

(7.11) 

𝜀1
(𝐶𝑆𝐺2) = −3.5800 × 10−4𝑠4 + 0.13070𝑠3 − 18.293𝑠2 + 1155.2𝑠 − 26712⁡ [

μm

m
], 

𝑆⁡𝜖 < 81⁡; 113 >, 

(7.12) 

𝜀2
(𝐶𝑆𝐺2) = −7.0306 × 10−4𝑠4 + 0.31424𝑠3 − 50.716𝑠2 + 3516.7𝑠 − 89411⁡ [

μm

m
], 

𝑆⁡𝜖 < 85⁡; 117 >. 

(7.13) 
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The expression of strains by the continuous functions allows the principal stresses 

to be determined from the plane stress state: 

𝜎1
(𝐶𝑆𝐺1) =

𝐸1
1 − 𝜈1𝜈2

(𝜀1
(𝐶𝑆𝐺1) + 𝜈2𝜀2

(𝐶𝑆𝐺1))10−6⁡⁡[MPa], 𝑆⁡𝜖 < 24⁡; 52 >, (7.14) 

𝜎2
(𝐶𝑆𝐺1) =

𝐸1
1 − 𝜈1𝜈2

(𝜀2
(𝐶𝑆𝐺1) + 𝜈1𝜀1

(𝐶𝑆𝐺1))10−6⁡⁡[MPa], 𝑆⁡𝜖 < 24⁡; 52 >, (7.15) 

𝜎1
(𝐶𝑆𝐺2) =

𝐸1
1 − 𝜈1𝜈2

(𝜀1
(𝐶𝑆𝐺2) + 𝜈2𝜀2

(𝐶𝑆𝐺2))⁡10−6⁡[MPa], 𝑆⁡𝜖 < 85⁡; 113 >, (7.16) 

𝜎2
(𝐶𝑆𝐺2) =

𝐸1
1 − 𝜈1𝜈2

(𝜀2
(𝐶𝑆𝐺2) + 𝜈1𝜀1

(𝐶𝑆𝐺2))⁡10−6⁡[MPa], 𝑆⁡𝜖 < 85⁡; 113 >. (7.17) 

Finally, the equivalent von Mises subjected previously to the dished end optimization 

can be determined from the following relations: 

𝜎𝑟
(𝐶𝑆𝐺1) = √𝜎1

(𝐶𝑆𝐺1)2 − 𝜎1
(𝐶𝑆𝐺1)𝜎2

(𝐶𝑆𝐺1) + 𝜎2
(𝐶𝑆𝐺1)2⁡[MPa], 𝑆⁡𝜖 < 24⁡; 52 >, (7.18) 

𝜎𝑟
(𝐶𝑆𝐺2) = √𝜎1

(𝐶𝑆𝐺2)2 − 𝜎1
(𝐶𝑆𝐺2)𝜎2

(𝐶𝑆𝐺2) + 𝜎2
(𝐶𝑆𝐺2)2⁡[MPa], 𝑆⁡𝜖 < 85⁡; 113 >. (7.19) 

It is strongly emphasised that the von Mises hypothesis is not suitable for considering 

the failure criteria for plastics, which is not in the scope of the experimental study.  

7.3. Numerical study 

The experimental tests outcome can be directly compared with the distribution (Fig. 

7.22) after calculating the equivalent stress from Eqs. (7.18) and (7.19). However, 

such a comparison would not consider the impact of geometric imperfections. To 

address this issue, the optimized (Fig. 7.41) and scanned geometry (Fig. 7.42) are 

numerically investigated, taking into account the three-dimensional geometric 

models and the other conditions corresponding to the experiment. The geometries 

presented in Figs. 7.41 and 7.42 include the simplified flange connectors and the 

gaskets. 

The numerical studies are carried out in ANSYS 2020 R2 software. They assume 

materially linear and geometrically nonlinear calculations. The latter occurs due to 

the large deformations that can exhibit in the FE model. The flange connectors are 

assumed to be made of structural steel with Young's modulus of 200 GPa and 

a Poisson's ratio of 0.3. The gaskets are characterized by Young's modulus of 6 MPa 

and Poisson's ratio 𝜈 = 0.47. The material properties of the pressure vessel are as 

determined in the strain gauge measurements (Eqs. (7.3), (7.6) and (7.9)) 
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Fig. 7.41. The geometric model of the optimized 

pressure vessel 

Fig. 7.42. The geometric model of the scanned 

pressure vessel 

The studied geometries are divided into second-order solid elements with twenty 

nodes and sixty degrees of freedom, designated as SOLID186 in the ANSYS system. 

To obtain a uniform, high-quality mesh, the geometries are split into parts, and their 

topology is shared.  

  

Fig. 7.43. The FE model of the optimized pressure 
vessel 

Fig. 7.44. The FE model of the scanned pressure 
vessel 

The FE models for both pressure vessels are shown in Fig. 7.43 and Fig. 7.44. 

There are three finite elements across the thickness at any point of the dished end 

and cylindrical shell, as shown in Fig. 7.45 and Fig. 7.46. The FEM shape 
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optimization study in chapter 6 considered four elements across the thickness in the 

axisymmetric study. Such a division in the case of three-dimensional analysis 

becomes difficult to solve, given the nonlinear nature of the study. The total number 

of mesh nodes is 659512 for the optimized geometry (Fig. 7.43) and 981007 for the 

scanned shape (Fig. 7.44). The lower number of nodes for the FE model with the ideal 

geometry is considered due to the regular shapes that do not require that accurate 

discretization. 

  

Fig. 7.45. The FE model of the optimized pressure 
vessel in the area of the dished end apex 

Fig. 7.46. The FE model of the scanned pressure 
vessel in the area of the dished end apex 

A plot of the mesh quality in terms of the orthogonal quality parameter for the 

scanned geometry is shown in Fig. (Fig. 7.47). According to ANSYS documentation, 

the quality of elements with a coefficient of 0.2 − 0.69 is considered good, 0.7 − 0.95 is 

very good, and 0.95 − 1.00 refers to excellent quality. Almost 76% of the total number 

of 194012 elements are classified as excellent, with almost all the remaining elements 

being considered of very good quality. 

 

Fig. 7.47. The orthogonal quality of the FE model of imperfect geometry 

The first step of the numerical study is to consider only the clamping of the 

pressure vessels with the flange connectors. Initially, the vessel flange is not in 

contact with the gaskets; a minimal clearance is provided. The translations at the 

vessel flange are limited by introducing elastic support of near-zero stiffness. It 
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prevents rigid body motion but allows the model to be freely displaced during 

clamping between gaskets. All of the degrees of freedom are restrained for the bottom 

flange connector. A translation is applied to the upper flange, which causes 

a clamping force of approximately 26⁡kN, and the remaining degrees of freedom are 

restrained. It corresponds to a 20 Nm tightening torque of four M16 bolts, assuming 

the friction coefficient between the bolt and nut threads of 0.15. Those conditions are 

coherent with the experimental study. The friction coefficient equal to 0.5 between the 

vessel flange and the rubber gaskets is assumed. The bonded contact between flange 

connectors and gaskets is applied. The purpose of the calculations is solely to obtain 

a deformed FE model to be further studied in the pressurization analysis. Importantly 

for the optimized geometry (Fig. 7.41), this does not lead to any significant 

deformation as the flange is perfectly flat, so no bending occurs.  

  
Fig. 7.48. The equivalent von Mises stress 

distribution in the optimized geometry 
Fig. 7.49. The equivalent von Mises stress 

distribution in the scanned geometry 

The same conditions as in the first study are considered in a subsequent 

numerical analysis, except the elastic support. A vertical displacement of 0.05 mm is 

applied to the upper flange connector, which prevents the rigid body motion of the 

vessel. The internal surface of the model is loaded with a pressure of 0.6 bar. The 

resulting distributions of equivalent von Mises stress are shown in Fig. 7.48 and 

Fig. 7.49 taking into account all bodies of the numerical model. As expected, their 

distribution is axisymmetric for the geometrically perfect model (Fig. 7.48). For this 

reason, its analysis might seem futile, but it allows for direct reference to the scanned 

geometry and provides insight into the numerical accuracy of the axisymmetrical 

analysis from the optimization study (Fig. 7.22). 
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In the case of the other model, it is noteworthy that the stress values are 

significantly higher in the area of transition of the flange to the cylindrical shell. The 

reason for this is a moderately deformed flange on the scanned model, which leads 

to an increase in the intensity of the bending phenomenon. Considering the goal of 

the study, this is not a significant issue. In the case of the scanned geometry, the 

stress distribution is not axisymmetric, although noticeable regularity resembling 

such a state is obtained. It is convenient to investigate the equivalent stress only in 

the cylindrical shell and dished end. Such results are presented in Fig. 7.50 and 

Fig. 7.51. The maximum stress values on the legends are adjusted to the highest 

stresses in the dished ends. The areas where the resulting stress is higher correspond 

to the grey colour. Those are related only to the flange-cylinder transition. 

 

Fig. 7.50. The equivalent stress in the cylindrical shell and dished end - geometrically perfect model 

 

Fig. 7.51. The equivalent stress in the cylindrical shell and dished end - geometrically imperfect model 
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On the basis of the numerical FEM calculations, it is concluded that the 

maximum values of the equivalent stresses in the dished ends vary moderately. 

Reading the values 𝜎𝑟⁡𝑚𝑎𝑥 = 3.208 MPa (Fig. 7.50) and 𝜎𝑟⁡𝑚𝑎𝑥 = 3.480⁡MPa (Fig. 7.51), it 

can be evaluated that the relative difference is 8.469%. With a high degree of certainty, 

it can be deduced that the stress increase is mainly due to the smaller thickness of 

the dished end in the scanned model. At the point where the maximum stresses occur 

in the imperfect dished end, the thickness is about 1.9 mm (Fig. 7.26), so the relative 

thickness difference is close to 5%. Because of the local character of variations in 

thickness, it would not be correct to recalculate the stresses for the case where the 

thickness would hypothetically be 2 mm as in the optimization. 

7.4. Comparison of experimental and numerical studies 

The numerically and experimentally obtained results require a more in-depth 

comparison due to their varied form. The data included in Fig. 7.52 summarises 

meridional strain for the optimized and scanned geometries obtained using FEM as 

well as experimentally determined values. The strain of the imperfect shape is studied 

for four meridians, i.e. A, B, C, D (Fig. 7.27).  It is important to note that the functions 

in Eqs. (7.10)-(7.19) correspond to the meridian A. A moderate difference in 

deformations can be seen for the optimized and scanned geometries, especially in the 

range from 𝑆 = 50 mm to 𝑆 = 70 mm.  

 

Fig. 7.52. The comparison of meridional strains 

Comparing the results of the FEM calculations for the imperfect geometry, the 

most considerable differences are seen for the cylindrical shell. They are expected due 
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to the occurrence of thickness variations for this geometry (Fig. 7.26). In the case of 

the dished end, they are in good agreement. Relating them to the experiment, it may 

be concluded that they share similar characteristics and values. The measurement 

points where these deformations are most divergent are M1 for CSG1 and M11 for 

CSG2. 

The circumferential strains are juxtaposed in Fig. 7.53. The observed differences 

between the results of the FEM study for the scanned geometry can be seen in the 

cylindrical shell and the area of minimum strain, i.e. close to 𝑆 = 100 mm. 

Nevertheless, it can be considered that the distributions of the analysed values are 

more convergent than for the meridional direction. The obtained deformations are 

almost identical within the CSG2 range, while minor inconsistencies are visible for 

points C2 and C10 in CSG1. 

 

Fig. 7.53. The comparison of circumferential strains 

Given the dissertation topic, a comparison of the stress distributions obtained 

for all of the studied cases in this chapter should be considered the most critical 

analysis. The values for the experiment are obtained using Eqs. (7.18) and (7.19). For 

interpretation clarity, the stress distributions are limited to meridian A in the case of 

imperfect geometry. The obtained stress distribution differs slightly for the optimized 

geometry compared to the axisymmetric analysis (Fig. 7.22). The value of the stress 

concentration (Eq. (3.22)) factor increased from 𝑘𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 1.188 to 𝑘𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 1.204. 

Due to its small change, this can be considered as an acceptable numerical error. 

The reason for this issue is the modestly lower quality of the mesh than in the 

simplified analysis, where four instead of three elements across the thickness are 
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present. Additionally, the elements are less regular, as can be observed in Fig. 7.45. 

The stress character for the scanned geometry is similar to that obtained in the 

optimized model. An increased value of the stress in the inner and outer surfaces can 

be perceived as considerably regular. Such a phenomenon is expected due to the 

smaller thickness of the imperfect structure. The determined value of maximum 

stress corresponds to the stress concentration factor 𝑘𝑠𝑐𝑎𝑛𝑛𝑒𝑑 = 1.284, which 

corresponds to relative increase of 6.645% concerning the optimization result. The 

equivalent stress referring to the experimental study (Eqs. (7.18), (7.19)) is almost 

identical for the CSG2 sensor and moderately different for the CSG1 compared to the 

FEM study results of imperfect geometry. As expected, the maximum value of the 

investigated stress occurs within CSG1, and its value corresponds to the 𝑘𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 =

1.304 stress concentration factor. The relative increase of the stress concentration 

factor is then 1.558% and 8.306% referring to the scanned and optimized geometry, 

respectively. 

 

Fig. 7.54. The comparison of equivalent stress distributions 

Summarising the achieved results, one can conclude that the experimental 

study confirms the results obtained numerically using FEM. This is particularly 

evident in the study of geometry, which is obtained from optical measurements. 

Differences between the optimal stress distribution and those resulting from the 

experimental study are noticeable. This phenomenon is expected due to imperfections 

in the form of shape differences and smaller, variable thickness in the manufactured 



92 

 

pressure vessel. The selected AMM leads to satisfactory dimensional and geometrical 

tolerances in contrast to other technologies from this group. However, it should be 

noted that conventional manufacturing methods can lead to much higher geometrical 

precision when producing full-scale cylindrical pressure vessels. The experimental 

study confirms the stress distribution in an imperfect model; therefore, it can be 

concluded that errors in shape and thickness distribution mainly contribute to the 

discrepancies in results. Reducing the magnitude of those imperfections can lead to 

near-optimal stress distribution. 

When evaluating the quality of the presented experimental investigation, it is 

necessary to consider the number of factors that could negatively affect its outcome. 

Among many, the most relevant can be considered the mechanical characteristics of 

the plastic, the well established but still developed manufacturing method, the known 

errors occurring in the strain gauge measurements and the difficulty in bonding them 

to the curvilinear surface while maintaining correct orientation. Having those in 

mind, the difference in the stress concentration factor of 8.306% between the 

geometrically ideal and the actual pressure vessel in the experimental study can be 

considered satisfactory. The conducted numerical and experimental studies 

confirmed the favourable stress distribution obtained in the shape optimization 

study, showing potential in their application in the industry. 
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8. Conclusions 

In this work, analytical, semi-analytical, numerical and experimental investigations 

have been carried out within the shell structures framework. Complex forms of these 

structures have been taken into account, referring to cylindrical pressure vessels. 

Analytical studies were carried out according to the theories available in the 

literature, i.e. membrane theory and the edge effect theory. A description of the 

geometries of standard dished ends was presented. The formulae allowing to describe 

displacements and stresses by means of the membrane theory were derived for them. 

Analysis of the problem using the edge effect theory referred to its two known 

formulations. Isotropic and orthotropic material properties were taken into account. 

Superposition of solutions resulting from both theories has been carried out for 

a pressure vessel with the ellipsoidal and torispherical dished end. The obtained 

results were compared with numerical calculations using the finite element method. 

In the case of the ellipsoidal geometry, stress compliance for 𝑡/𝑅0⁡ in the range 0.1% 

to 3% was within 0.7251% to 13.25% relative difference. For the torispherical geometry, 

the same values range from 6.103% to 103.1%, indicating a significant inaccuracy of 

the analytical solution with increasing shell thickness. The reason for this is shown 

to be due to the occurrence of normal force at the edge of the toroidal shell, considered 

within the framework of the membrane theory, which leads to acceptable results only 

for minimal thickness.  

Deficiencies in the selected analytical solutions constituted a motivation to use 

other methods to achieve more satisfactory results. The next stage of the study 

concerned semi-analytical analysis using the Ritz method. The elastic strain energy 

was formulated on the basis of linear shell theory with Kirchoff-Love assumptions. 

The work of external forces involved all possible loads, i.e. pressure, normal forces, 

transverse forces and moments at the edge of the shells. Compatibility equations for 

displacements and rotations were defined, allowing the interaction of the shells to be 

taken into account. The displacement functions were in the form of polynomials, 

trigonometric series and functions resembling the solutions of governing differential 

equations of the edge effect theory. The influence of the order of these functions on 

the solution was analysed and compared to the results of finite element calculations. 

It was shown that satisfactory results could be obtained with a sufficiently high order 

of displacement functions, while their form has a limited influence on the solutions. 

For both dished ends with a 𝑡/𝑅0 ratio between 0.5% and⁡3%, the relative differences 

in maximum stresses were from 0.02064% to 1.310%, regardless of the value of the 
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orthotropy coefficient. This represents a tremendous improvement over the analytical 

solution. The outcome of the study shows the potential in applying the Ritz method 

to the static problems, not only considering the pressure vessels but also for the 

design of a broad spectrum of shell structures. Such observations prove the validity 

of the first hypothesis posed in the dissertation. 

In the conducted analytical and semi-analytical investigations of cylindrical 

pressure vessels, attention was drawn to the unfavourable stress distribution. Their 

maximum values in standard ellipsoidal and torispherical dished ends significantly 

exceed the stress in the cylindrical shell, making them unsatisfactory solutions. An 

explanation for such a phenomenon are the loads acting upon the edges of the shells, 

leading to an intense bending effect. This remark has led to research aimed to develop 

dished end shapes in which the edge effect is negligible. For this purpose, expressions 

describing the shapes of the shells were derived in the form of analytical curves, i.e., 

Cassini and Booth's oval and generalized clothoid. These were characterised by 

continuous curvatures and their derivatives in the juncture with the cylindrical shell. 

The effect of dished ends relative depth on the distribution of equivalent stresses was 

also analysed. The research had the intended effect, although it indicated that the 

location of maximum stresses was shifted away from the area where the segments of 

the structures were joined. 

Conclusions from previous studies have shown the enormous influence of the 

dished end shape on the stress distribution. In order to further improve it, the 

problem of shape optimization was addressed. A unique shape based on the Bézier 

curve of arbitrary order was developed, satisfying numerous constraints, including 

a non-negative meridional radius of curvature. Regardless of the parameters 

describing its shape, the geometry maintains manufacturability and the relative 

depth as the standard dished ends. 

Initially, the optimization assumed an analytical evaluation of the fitness 

function using membrane theory and employing a sequential quadratic programming 

algorithm. Different curve orders were considered to evaluate sufficient numbers of 

the independent variables describing the dished end geometry. The membrane theory 

optimization enabled the reduction of the stress concentration factor to 𝑘 = 1.141. The 

corresponding value for the standard geometries is 𝑘 = 1.712 to 𝑘 = 1.746 for 

ellipsoidal shape and 𝑘 = 2.356 to 𝑘 = 2.738 for equivalent torispherical, depending on 

the thickness. The verification of the developed geometry was performed using the 

finite element method, which led to an increase in 𝑘 parameter to 1.350, 1.378, 1.415, 
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depending on thickness to cylinder radius ratio⁡𝑡/𝑅0. Such an issue is the effect of 

the bending phenomenon neglection in the membrane theory, 

As the next step, the optimization was conducted using a more complex 

approach. The commercial software MATLAB and ANSYS were coupled to perform the 

procedure by evaluating the fitness function in the latter. A genetic algorithm has 

been used to optimize the stress concentration factor. Despite the substantial 

computational time needed to process the calculations, the results can be considered 

compelling. The analysed parameter was reduced to 1.199, 1.184 and 1.206 for the 𝑡/𝑅0 

ratio 0.5, 1.0, 1.5% respectively. Summarizing the findings of the optimization study, 

the stress in the standard dished ends is 71.2% to 173.8% higher than in the 

cylindrical shell beyond any disturbance. The developed shapes are characterised 

merely by 18.4% to 20.6% greater equivalent von Mises stress. The proposed 

geometries constitute a significant improvement over the shapes described by the 

current technical standards while maintaining their manufacturability and general 

dimensions.  

It was decided to carry out experimental studies to verify the optimization 

results. This started with searching for an appropriate method to manufacture the 

pressure vessels models. The production of those using conventional methods is 

economically unjustified; hence additive manufacturing methods were employed. Two 

possible technologies that could potentially be used were considered, namely 

Selective Laser Sintering and Multi Jet Fusion. The more suitable method was 

selected based on a static tensile test on specimens manufactured from PA12 in two 

orientations. Multi Jet Fusion was found to have a higher minimum ultimate strength 

and more satisfactory dimensional stability. In order to determine the mechanical 

properties, a vessel with a torispherical dished end was manufactured and studied 

using strain gauge measurements on a developed test bench. The material properties 

were determined for an appropriate strain rate using analytical formulae describing 

deformations in the cylindrical shell.  

The shape of the dished end was re-optimised, taking into account the 

mechanical properties of the printed PA12 model. The pressure vessel with the 

optimized shape was manufactured using the Multi Jet Fusion method and then 

measured using an optical scanner. The actual, imperfect geometry of the structure 

was compared with the ideal, optimized geometry. The model of the printed pressure 

vessel was reconstructed as a CAD file and numerically studied using the finite 

element method to investigate the influence of geometric imperfections on the optimal 
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stress distribution. The actual model was then subjected to strain gauge 

measurements on the test bench. Those were taken at twenty-two points, allowing 

for the determination of equivalent stresses in the area where the extrema were 

expected.  

Finally, the numerical calculations using the finite element method for the 

optimized and scanned geometry were compared with the experimental results. The 

experimental and numerical results for the scanned geometry were shown to be in 

good agreement. The relative difference in the stress concentration factor 𝑘 was 

1.558%. Both of these results differ slightly from the result for the optimized geometry, 

compared to which the experimental study indicates a relative difference of 8.306%. 

This is mainly due to the reduced thickness of the actual model at the measurement 

locations, caused by inevitable geometric imperfections introduced in the 

manufacturing process. It should be noted that conventional manufacturing methods 

can lead to much higher geometrical precision when producing full-scale cylindrical 

pressure vessels. According to the second dissertation hypothesis, shape 

optimization had the intended effect. 

Given that the results obtained for a plastic pressure vessel obtained by 3D 

printing are satisfactory, it is expected that the actual stress distribution can be even 

closer to the optimal for industrial pressure vessels. It shows that developed dished 

end shapes have significant potential for their application. The proposed 

improvements enable to increase their load-carrying capacity or reduce their weight, 

which is essential in any industry involving the transport or storage of liquids and 

gases.   
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Appendix A1. The Ritz method application for stress and deformation analyses 

of standard orthotropic pressure vessels 
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Appendix A2. Shaping of dished heads of the cylindrical pressure vessel for 

diminishing of the edge effect 
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Appendix A3. Stress distribution optimization in dished ends of cylindrical 

pressure vessels 
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Extended Abstract in Polish 

Działalność człowieka w dziedzinie inżynierii sięga starożytności. Osiągnięcia w 

tym obszarze nauki bezpośrednio przyczyniły się do daleko idącego rozwoju 

cywilizacyjnego. Obecnie rozwój technologii koncentruje się na zaawansowanych 

rozwiązaniach w zakresie projektowania konstrukcji w celu poprawy ich szeroko 

rozumianych właściwości.  

Podstawowym wyznacznikiem w projektowaniu konstrukcji jest bez wątpienia ich 

nośność, zapewniająca bezpieczną eksploatację i zapobiegająca nieoptymalnemu 

wykorzystaniu biorąc pod uwagę czynniki ekonomiczne. W celu odniesienia się do tego 

problemu konieczne jest zapewnienie specjalnych metod i narzędzi umożliwiających 

badania wytrzymałościowe. Prezentowane zagadnienia są poświęcone analizie i 

optymalizacji rozkładu naprężeń w złożonych konstrukcjach powłokowych. Struktury te 

służą jako elementy nośne wielu istotnych konstrukcji znajdujących zastosowanie 

przemyśle. Przedstawione rozważania są zawężone do problemów walcowych zbiorników 

ciśnieniowych, jednakże podobna metodologia może być zaadaptowana do niemal 

każdego problemu liniowego z obszaru powłok. 

Na podstawie analizy literatury sformułowano następujące tezy w rozprawie. 

(1) Rozwiązania analityczne oparte na teorii powłok problemów naprężeń i deformacji 

konstrukcji powłokowych mogą prowadzić do niedokładnych wyników. 

(2) Rozkład naprężeń w znormalizowanych dennicach ciśnieniowych zbiorników 

walcowych jest niekorzystny. 

Celem odniesienia się do powyższych problemów z zakresu konstrukcji 

powłokowych, sformułowano następujące hipotezy. 

(1) Zastosowanie metody Ritza do rozwiązywania problemów naprężeń i deformacji 

powłok może prowadzić do otrzymywania wyników o większej dokładności niż w 

przypadku rozwiązań analitycznych. 

(2) Optymalizacja kształtu dennicy walcowego zbiornika ciśnieniowego może 

doprowadzić do znaczącej poprawy rozkładu naprężeń przy zachowaniu 

znormalizowanych wymiarów. 

W pracy podejmowane są badania analityczne, semi-analityczne, numeryczne i 

eksperymentalne celem pogłębienia wiedzy i zaproponowania poprawy w świetle 

analizowanej problematyki naukowej. 

Pierwsza część badań jest oparta na teoriach oraz metodach zawartych w literaturze. 

Naprężenia oraz deformacje ciśnieniowych zbiorników walcowych ze znormalizowanymi 
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dennicami elipsoidalnymi i toroidalno-sferycznymi są analizowane z zastosowaniem 

teorii bezmomenowej oraz teorii zaburzeń brzegowych. Dwa sformułowania teorii 

zaburzeń brzegowych są rozważane, zastosowane i porównane. Wyprowadzenia są 

przedstawione dla liniowego, ortotropowego modelu materiałowego. Otrzymane wyniki 

pokazują, że superpozycja rozwiązania w ramach teorii bezmomentowej oraz zaburzeń 

brzegowych może prowadzić do otrzymania niezadowalających wyników w związku z 

uproszczeniami w teorii bezmomentowej oraz pominięciu wpływu obciążeń 

powierzchniowych w zjawiskach zgięciowych. 

 Te same konstrukcje są poddawane analizie semi-analitycznej z zastosowaniem 

metody Ritza. Funkcje opisujące przemieszczenia w metodzie Ritza przyjmują postać 

wielomianów, szeregów trygonometrycznych oraz funkcji przypominających rozwiązania 

otrzymywane w teorii zaburzeń brzegowych. Badany jest wpływ stopnia owych funkcji 

na uzyskiwane wyniki. Rezultaty badania pokazują, że zgodność wyników z metodą 

elementów skończonych jest otrzymywana dla relatywnie dużego zakresu grubości, co 

potwierdzają niemal identyczne wartości naprężeń, przemieszczeń oraz energii 

odkształcenia sprężystego.  

W przeprowadzonych obliczeniach walcowych zbiorników ciśnieniowych, uwagę 

zwraca się na niekorzystny rozkład naprężeń. Maksymalne wartości naprężeń 

zredukowanych w dennicach znormalizowanych znacząco przekraczają te, które 

powstają w części walcowej. Taki stan rzeczy powodowany jest nadmiernymi 

obciążeniami brzegowymi w połączeniu powłok, doprowadzając do zjawisk zgięciowych. 

Kształty den zostały w dalszych rozważaniach opisane za pomocą trzech krzywych 

analitycznych tj. owalu Cassiniego i Bootha oraz uogólnionej postaci klotoidy. 

Zdefiniowane zostały pewne warunki geometryczne celem zmniejszenia intensywności 

efektu brzegowego. Doprowadziły do zamierzonej poprawy rozkładu naprężeń w 

obszarze połączenia powłok, jednakże sprawiły, że doszło do ich wzrostu poza tym 

miejscem. Zaproponowane powłoki nie stanowią znaczącej poprawy w odniesieniu do 

kształtów znormalizowanych, jednak ich badania przyczyniły się do sformułowania 

istotnych wniosków dla dalszych prac. 

Zdolność do przenoszenia relatywnie wysokich obciążeń przez konstrukcje 

powłokowe wynika z ich postaci geometrycznej. Poszukiwanie bardziej korzystnych 

rozwiązań związane jest zatem z odwołaniem się do zagadnień optymalizacji ich kształtu. 

W ramach ogólnych rozważań na ten temat, dość można do wniosku, że wybór 

arbitralnych rozwiązań z nieskończonego zbioru możliwości zazwyczaj prowadzi do 

niezadowalających wyników. W niniejszej pracy optymalizacja prowadzona jest w dwóch 
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oddzielnych procesach. Opracowana została krzywa parametryczna opisująca geometrię 

dennicy. Początkowo funkcja celu jest wyznaczana przy odwołaniu do teorii 

bezmomentowej powłok, a optymalizacja prowadzona jest z zastosowaniem 

deterministycznego algorytmu. W związku z uproszczoną naturą rozwiązania 

analitycznego, procedura zostaje następnie zmodyfikowana. Wartość funkcji 

przystosowania obliczana jest za pomocą metody elementów skończonych, natomiast 

optymalizacja jest realizowana za pomocą algorytmu genetycznego. Otrzymana poprawa 

rozkładu naprężeń jest znacząca przy możliwości wytwarzania dennic metodami 

konwencjonalnymi i zachowaniu znormalizowanych wymiarów ogólnych. 

Ostatecznie wyniki optymalizacji są weryfikowane w ramach badania 

eksperymentalnego. Zbiornik ciśnieniowy ze zoptymalizowaną dennicą jest otrzymany 

za pomocą technologii wytwarzania przyrostowego Multi Jet Fusion. Pomiary wymiarów 

modelu realizowane są przy użyciu skanera optycznego, celem weryfikacji imperfekcji 

geometrycznych oraz utworzenia modelu CAD rzeczywistej konstrukcji. Geometria ta 

jest poddana badaniom numerycznym metodą elementów skończonych. Wytworzony 

zbiornik zostaje zbadany na zaprojektowanym stanowisku laboratoryjnym 

pozwalającym na obciążenie go wewnętrznym ciśnieniem. Analiza polega na 

zastosowaniu tensometrów do wyznaczenia rzeczywistego rozkładu naprężeń. Wyniki 

zostają porównane dla geometrii zoptymalizowanej i rzeczywistej w ramach obliczeń 

metodą elementów skończonych, a następnie zestawione z rezultatem badań 

eksperymentalnych. Osiągnięta zostaje zadowalająca zgodność, potwierdzająca 

korzystną charakterystykę opracowanych kształtów dennic. 
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