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Abstract

The number of autonomous robot use cases significantly increased in multiple
real-life scenarios, e.g., autonomous vehicles for transportation, safety and se-
curity, industrial inspection, or even space exploration. These are only a few
examples from the plethora of new, inspiring, challenging domains where manip-
ulators or mobile robots, e.g., walking machines, can be utilized. The real-life
robotic use cases require robust perception, an intersection of sensor mechanics,
hardware, and multi-modal data processing. Managing this complex system
is often not trivial. Nevertheless, with autonomy comes responsibility and in-
creasing demand for understanding the environment around an agent. The robot
must adapt to unpredictable situations and cope with the open-world assump-
tion. In this thesis, I advocate that the perception system robustness might
be achieved by exploiting the haptic properties of the surroundings. There is
a pressing need to explore this topic as the current solutions must cope better
with this modality.

The following dissertation aims to create a unified robotic perception sys-
tem that would meet the requirements of real-world applications and deliver
appropriate information for onboard robot systems, e.g., localization, obstacle
avoidance, or manipulation. Such a perception system has to be low-cost and
computationally low-demanding due to the limited resources available on a mo-
bile robot. A methodology concerns artificial intelligence, especially machine
learning. These methods dominated the field of perception in recent years due
to their superior performance, and their choice was natural. Deep learning meth-
ods focus predominantly on a supervised setup in material/terrain classification
or when a continuous variable associated with a specific parameter is needed
(e.g., stiffness estimation). Moreover, I also explored an unsupervised learning
setup as it became a fundamental tool for understanding hidden characteristics
in sensory data. Eventually, perception robustness emerged as a crucial char-
acteristic of deploying it in the real world. The dissertation includes multiple
solutions to increase the robustness, primarily by using attention modules.
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Streszczenie

Percepcja robotyczna jest intensywnie rozwijającą się dziedziną, leżącą na styku
sprzętu, mechaniki i wielomodalnego przetwarzania danych, które często nie są
łatwe do wykorzystania. Można zaobserwować, że liczba autonomicznych robo-
tów znacznie wzrosła w wielu dziedzinach życia, takich jak autonomiczne po-
jazdy transportowe, bezpieczeństwo, inspekcja przemysłowa czy nawet eksplo-
racja kosmosu. To tylko kilka przykładów z mnóstwa nowych, inspirujących, ale
wymagających dziedzin, w których roboty będą wykorzystywane do manipulacji
i przemieszczania się. Niemniej z autonomią wiąże się pewna odpowiedzialność i
rosnące zapotrzebowanie na zrozumienie środowiska otaczającego robotycznego
agenta, tak aby mógł się dostosować do nieprzewidywalnych sytuacji. Obecnie
systemy percepcji jedynie w niewielkim stopniu rozpoznają właściwości taktylne
otoczenia.

Celem rozprawy jest stworzenie systemu percepcji robotycznej, który speł-
niałby wymagania rzeczywistych zastosowań i dostarczał informacje dla syste-
mów działających na pokładzie, takich jak lokalizacja, unikanie przeszkód czy
strategia manipulacji. Ponadto, system musi być tani i mało wymagający obli-
czeniowo ze względu na ograniczone zasoby robota mobilnego. Metodyka pracy
dotyczy przede wszystkim sztucznej inteligencji, a zwłaszcza uczenia maszy-
nowego. Metody te zdominowały tę dziedzinę ze względu na najlepsze wyniki,
więc ich wybór był naturalny. W niniejszej rozprawie przedstawione zostały me-
tody głębokiego uczenia nadzorowanego w dwóch typach zadań. Po pierwsze w
klasyfikacji powierzchni dotykanej przez robota. Po drugie w zadaniu regresji
parametrów fizycznych tejże powierzchni, do których zalicza się np. sztywność
dotykanego obiektu. Uczenie nienadzorowane natomiast jest kluczowym narzę-
dziem do zrozumienia ukrytych właściwości danych sensorycznych oraz tego, jak
robot może je wykorzystać bez nadzoru. Także odporność percepcji robota oka-
zała się ważną cechą dla wdrożenia systemu w rzeczywistości. Poniższa rozprawa
zawiera rozwiązania mające na celu jej zwiększenie, głównie poprzez wykorzy-
stanie modułów atencji.
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Content

Chapters 2 and 3 present tactile and kinesthetic sensing solutions for robotic
arms and walking robots. In both robotic setups, an agent interacted with
a nondeterministic environment, such as deformable objects or rough terrains
with different material classes. All developed perception systems are based on
deep learning methods. When writing this thesis, they achieved state-of-the-art
classification, recognition, and representation of learning results. Methods for
material classification and object stiffness regression using a soft gripper [1] were
taken on in Chapter 2. Moreover, this Chapter also investigates the unsuper-
vised learning approach for haptic data grouping without supervision. This task
is an emerging topic in the robotics community and a way to tackle learning
from the tremendous amount of available datasets without the manual labelling
process, which is time-consuming, expensive, and tedious. Chapter 3 presents
the research conducted in the walking robots area, including the classification
of terrains using F/T sensors feedback or orientation provided by the IMU. All
experiments in this Chapter were performed with a high emphasis on general-
ization for different robots and rapid inference time. That Chapter also presents
the Modality Attention Layer (MAL) as a solution for the weighting input
modalities concerning their significance level, which results in improvements
in a system’s robustness against input data degradation. Chapter 3 presents
the multi-modal fusion methods using deep learning. Multiple state-of-the-art
predictive models were tested on three, separate datasets prepared for differ-
ent robotic, perception-related tasks – manipulation of deformable objects [2],
texture recognition [3], and multi-label classification of haptic adjectives [4].
These datasets include time-series data from different (often non-homogeneous)
modalities, e.g., video streams, and Force / Torque (F/T) sensors, where it is
not a trivial task to couple them together. The work tackled the problem of
multi-modal fusion by measuring the overall performance of different deep neu-
ral networks in the selected tasks. Moreover, the research includes examining
the impact of sensor failures and noise in the input data on the final results
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– looking at the problem from the robotics perspective. The results from this
work gave a highly valued insight into the fusion of different modalities in the
data-driven approaches to robotic tasks.

Chapters in Part III contain experimental verification of developed/adapted
methods. Chapter 5 shows the comparison of different approaches to the object’s
stiffness estimation using a simulated dataset and real-world data samples. It
focuses on the Recurrent Neural Network (RNN) and the number of real-world
data samples included in the simulation dataset to fill in the reality gap – a
common phenomenon present in data-driven approaches trained in the simu-
lated environments. Moreover, the experiments towards unsupervised learning
utilized the Deep Embeddings Clustering (DEC) method [5]. Chapter 6 presents
the Haptic Transformer (HAPTR) - a novel and lightweight approach that uti-
lizes attention modules to classify the terrain samples based on haptic/inertial
time series. In the following work, the HAPTR was compared to state-of-the-art
algorithms and achieved high performance in this task. Chapter 7 presents an
extensive comparison of multi-modal fusion methods – Late Fusion, Mixture of
Experts (MoE), Intermediate Fusion (Mid), and Low-Rank Multimodal Fusion
(LMF), with an emphasis on the significance of the feature level fusion and data
degradation robustness.

In Chapter IV final remarks were given, a summary with discussion on results
and plans for future research. All chapters in the following dissertation include
a domain-specific literature review.
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Part I

Introduction
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Chapter 1

Motivation

1.1 Broad perspective

In the coming years, we will observe a rapidly growing market for ground robots
that can operate in many different environments. The idea that mobile robots
could assist humans in various tasks started penetrating people’s awareness.
Many factors influence the development of advanced robotics systems. Firstly,
we have a global viewpoint based on the competition between countries, re-
search facilities, or commercial companies and the market’s response to that
phenomenon. Secondly, the scientific perspective – seen as the progress in
robotics perception research, inspires more and more people to be engaged in
that competition.

Nowadays, large companies compete in the high-tech industry, accelerating
the development of robotic innovations. Anybotics’s ANYmal [6] or Boston
Dynamics’ Spot are great examples of mobile robots’ maturity, and we can
expect that they will soon be deployed in significant numbers. From a global
standpoint, innovations create new markets and supply chains. That, in turn,
improves the strategic position of a facility that controls a new technology. Let
the development of the space industry be an example. For many years wheeled
robots (e.g., lunar rovers) served different space agencies in their missions to
gather new information about planets in the Solar System. However, there is
still no autonomous system capable of exploring, e.g., steeper slopes – crucial
places from the geological point of view. Wheeled systems are unprepared to
adapt well enough to rough, inclined and unpredictable terrain. However, the
answer to that problem would be a legged platform such as [7] that interacts with
its environment and could adapt its gait to the unpredictable ground surface.
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Additionally, such a robot should also autonomously recover from any fall.
Its perception system should properly recognize terrain properties using all the
available sensory information. Even if there is a limited demand for this type
of system right now, with great confidence, it will appear in the coming years.
One can observe the increasing competition between global, high-tech players
in space exploration. The company that will provide such a solution will make
a tangible profit in the future, creating commercial potential for developing
robotics perception systems.

On the other hand, the rapid development of robotic perception systems
can also be more down-to-earth. Firstly, sensors have become more affordable in
recent years, which has engaged more and more research groups in the field. It is
a scientific breakthrough because of the popularity of advanced sensory systems,
e.g., F/T measurement devices, Light Detection and Ranging (LiDAR) scanners,
2D laser scanners, depth cameras, or a variety of inertial sensors such as Inertial
Measurement Unit (IMU) or more sophisticated Attitude and Heading Reference
System (AHRS). All of them pushed forward the pace at which new technologies
in robotics appeared over the last few years. Innovations in sensory systems
and the increasing computational power of modern processing units brought an
opportunity to apply existing algorithms in the real world, find their limitations,
and improve or replace them with new ones.

A robust robotic perception became an emerging field at the level of govern-
ments and corporations creating the global market. Additionally, the accessibil-
ity to the knowledge and required hardware started to be relatively easy. Taking
both factors into account, the author of the following dissertation believes that
now is the right time to pursue research in that topic – it is not too early, nor
too late 1.

Information about a robot’s environment is crucial when developing a robust
system that would let a robot autonomously adapt to the current circumstances
or explore undiscovered knowledge. Nowadays, robots utilize geometric informa-
tion about its surrounding, and they use camera images, depth maps, or point
clouds – namely visual sources. Multiple research areas use these sources of
visual information, like Simultaneous Localization and Mapping (SLAM), path
planning, obstacle avoidance, scene reconstruction, or manipulation of elastic
objects. Until the robotic agent’s surroundings are static, rigid, and predictive,
the perception problem might be solvable without any high-level understand-
ing. Nowadays, many semi-autonomous machines operating in highly controlled
environments use only geometric information about a scene. A great example

1Panel How to be a Good Citizen of the CVPR Community – a talk by Vladen Koltun.
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of such applications is an Atomated Guided Vehicle (AGV) used chiefly in lo-
gistics and can successfully navigate in 2D maps using laser scanners. However,
such robots are prone to errors whenever their environment stops being static,
e.g., when the human enters the zone or a hall’s arrangement changes. Taking
such cases into account, recently, more and more researchers have noticed that
the environment’s geometry is not enough to achieve a robust perception, es-
pecially when considering the deployment of a robot in the human world. A
high-level understanding also matters and is vital to the perception system. Un-
derstanding the semantics of the scene is crucial to interact with it because it
gives the cues if the robot can complete the task and, if so – how to behave or
interact with the environment to complete a mission.

1.2 Problem statement

The robotic agent must have some internal representation of the world around
it to adapt to and overcome environmental conditions – the notion of phys-
ical properties as a mass, friction, stiffness, or more categorical, e.g., a class
of an object or a surface. However, it is challenging to provide such repre-
sentation, as mobile robots operate in unstructured and often unpredictable
environments, and their perception systems must handle many disturbances.
Data-driven methods are the most popular yet most effective approaches for
representation learning. Typically, they operate on learnable features where the
recognition task is more facilitated than using raw sensory feedback. Neverthe-
less, they suffer from multiple drawbacks. Firstly, they require a vast amount
of data to generalize. For example, the terrain recognition system trained on
the dataset with samples gathered only on the flat surface probably will not be
fully operational when slopes appear. Secondly, the noise in the training data
might mislead the perception system and turn the training process into overfit-
ting or being sensitive to sample-specific glitches. The thesis’s main objective
is to explore and implement a system composed of functional blocks that would
enable and further improve the overall quality of robotic haptic sensing. The
goals of this dissertation allowed for the formulation of scientific theses, which
gave a present shape to this work:

Haptic robotic perception, defined as a capability of a robotic
agent to recognize complex patterns in tactile and kinesthetic sen-
sations, can be achieved using deep learning methods because they
exhibit superior performance in a vast majority of automated tasks.
That ability can be further extended by unsupervised learning meth-
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ods that let analyze the incoming data and measure its similarity to
previously seen examples, which improves a high-level understanding
of the robot’s environment.

The supporting theses follow the statement of this dissertation that refer
to particular gains brought to the robust perception system as a result of this
research:

• Typically, haptic signals are time-series, e.g., forces, torques, or inertial
measurements representing the motion of a sensor in space. Posing the
problem of haptic perception as a sequence-to-sequence task would enable
us to use an attention mechanism that produces weights for each sample
in the input signal. Feeding such weighted signals to a supervised learning
method would simplify the task of, e.g., terrain classification and improve
the robustness of a proposed system. Such a classifier could focus more
on relevant parts of its input.

• An understanding of the robot’s environment will improve based on the
information from multiple modalities, e.g., F/T signals, images, or raw
sensory signals from haptic electrodes. We can fuse data from heteroge-
neous modalities using deep learning methods, which do not restrict the
proposed system to homogeneous data only.

Chapters of the following dissertation present the author’s research con-
tributions, most of which have already appeared in peer-reviewed scien-
tific journals and conferences from 2019 to 2022. Every Chapter includes
a heading with listed publications that served as a base for the presented
work. The copyright sign with the year of publishing, e.g., (© 2019 -
2022 ELSEVIER), stands next to published graphics and tables if the
publisher’s policy requires that for reusing for non-commercial purposes
such as including in a dissertation.
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Part II

Methods
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Chapter 2

Material recognition

The following Chapter and the corresponding results in Part III are par-
tially based on two publications of the author of this thesis.

• (© 2019 IEEE) J. Bednarek, M. Bednarek, P. Kicki, K. Walas
(2019) "Robotic Touch: Classification of Materials for Manipula-
tion and Walking". In: IEEE International Conference on Soft
Robotics (RoboSoft)

• M. Bednarek, P. Kicki, J. Bednarek, K. Walas (2021) "Gaining a
Sense of Touch Object Stiffness Estimation Using a Soft Gripper
and Neural Networks" in Electronics Journal

2.1 Introduction

Human perception of the world highly depends on its physics. Our sensory sys-
tem provides haptic sensations to the brain, which lets us, e.g., plan a direct
trajectory to grab a cup of tea, squeeze a wet sponge or flip a book page. We
know how to do these things and predict objects’ deformations based on their
physical properties. Moreover, our hands constitute highly effective grippers,
outperforming industrial ones in dexterity. Taking into account our assump-
tions about the world that come from our minds, combined with the embodied
intelligence [8] of our hands, we can perfectly adjust the manipulation process
to varying external conditions. However, machines do not have such in-built
proficiency, and their abilities to manipulate allow only for managing repetitive
tasks.

Soft robotics is a sub-field of robotics that focuses on robot design, its loco-
motion, and real-world interaction with the environment utilizing a paradigm
known as the intelligence by mechanics [8]. It assumes that the robot’s body
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should adapt to the surroundings through decentralized mechanical system-
environment interactions rather than one decision-making unit, e.g., an artifi-
cial neural network. The aftermath of the research on this topic is biologically
inspired soft grippers [9, 1, 10, 11], designed from soft materials in such a way
that can adjust their shape to the grasped objects, which allows them manip-
ulating delicate and deformable objects. One can state that the shape of that
gripper corresponds to the physical properties (e.g., stiffness, elasticity, rough-
ness) of grasped objects. However, these soft grippers are sensorless by design,
and measuring their deformations was not the researcher’s area of interest.

On the one hand, one can observe the growing number of available appli-
cations of sensors capable of capturing high-dimensional deformations of soft
and unpredictable physical objects [12, 13, 14]. However, they do not directly
measure the behavior of the soft gripper, but only the properties of the sur-
roundings or grasped objects. In the following dissertation, I argue that we can
use traditional and widespread sensors based on microelectromechanical sys-
tems to predict the physical nature of the robot’s surroundings by estimating
the gripper deformation. Thereby, the following chapter presents findings about
a supervised, hybrid approach that connects an embodied intelligence of a soft
gripper with an artificial intelligence system to provide an easy-to-use, open-
source and inexpensive method of estimating the physical properties of objects
with various stiffness parameters.

The sensors used in material classification are primarily accelerometers [15],
pressure mapping sensors [16], 3D force [17] and 6D F/T sensors [18]. Most
approaches presented in the literature use very controlled environments when
performing experiments, as in the case of accelerometers [15]. Currently, a
preferred approach to material recognition is by a programmed set of exploratory
movements instead of a single touch [17, 16]. However, the desired behavior is
to achieve a high material classification score in an uncontrolled environment
during a normal robot operation without performing particular movements. The
classification should be on the raw signals without additional pre-processing and
hand-crafted representation.

As machine learning methods became more accessible to most researchers,
these learning-based methods constituted a typical way to improve advance-
ments in particular domains. However, some might argue that embodied in-
telligence will follow that trend, as it was usually outside the scope of main-
stream research topics [19]. Robotics is a unique field that almost always
requires some form of interaction with the agent’s environment, which might
prevent unlimited usage of data-driven methods, which happened in other ar-
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eas related to, e.g., computer vision or natural language processing. While the
autonomous robot should also operate in unknown environments, another lim-
itation of learning-based algorithms is their need for adaptation to previously
unseen scenarios. This restriction leads to the limited capability of real-world
deployment except for a narrow set of fields. Yet, there is no simple answer
to these problems because no autonomous machine can be prepared for every
event. The author of the following thesis argues that we should not try to be
ready but actively adapt to changing conditions. In such a setup, unsupervised
learning might improve that high-level understanding of the robot environment,
where the haptic recognition of materials is a good starting point. There needs
to be more research on robot environment understanding using unsupervised
learning methods.

The following chapter investigates multiple approaches to the material and
object recognition task. The stiffness estimation problem was tackled using var-
ious deep learning methods, including convolutional and recurrent architectures.
Moreover, the chapter presents novel haptic datasets for the stiffness estimation
based on real-world and simulated IMU signals from sensors attached to the
fingers of an elastic gripper. Secondly, the author of the following thesis delved
into the challenging problem of unsupervised learning for the haptic recognition
task, where the clustering model did not have any prior knowledge about input
signals. Typically, these algorithms analyze unlabeled datasets to group them
and discover hidden patterns. In robotics, such systems would substantially im-
prove data association of previously seen places, objects, or finding anomalies.
However, scientific publications in that field with real-world robotic setups are
still limited, even though unsupervised learning is an emerging field of Artificial
Intelligence.

2.2 Related work

2.2.1 Stiffness measurement

In [20], authors proposed a practical application for a continuous rail rigidity
measurement using the accelerometer and oscillating mass on the rolling wheel.
This work indicates that the issue under examination is vital in engineering.
Unlike the previous method, the authors of [21] propose to use the non-contact
measurement of spindle stiffness. The authors suggested a magnetic loading
device that enabled them to make measurements while the spindle rotated.
Due to the usage of magnetic loading, that method limits itself to ferromag-
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netic objects. Measuring a stiffness was also possible at a much smaller scale
than presented in [22]. The authors reviewed the nanoindentation continuous
stiffness measurement techniques and applications. The range of stiffness coeffi-
cients of materials is extensive. To avoid saturation and enhance precision, the
authors of [23] proposed a portable measurement device able to adjust a sens-
ing range by manipulating tool parameters, such as touch module separation,
indenter protrusion, and spring constant of the force sensing module. Authors
of [24, 25] analyzed the stiffness measurement techniques applied to the polymer
foams, which are similar to those used in this paper. In [24] there, was proposed
a procedure for measuring stiffness using dot markers on object surfaces and
compression plates to exert a force on an object. Authors stressed that non-
axial compression tests resulted in worse performance, which was usually the
case in robotic manipulation. Similar to the proposed solution, in [26], authors
proposed the IMU-based approach. However, in a different task – the recon-
struction of the configuration of a soft gripper. As opposed to that work, the
experimental section of this thesis describes the proposed indirect measurements
of the object’s stiffness property by the change of behavior of the soft gripper
while squeezing, not the gripper’s configuration itself.

2.2.2 Stiffness estimation

The work [27] presents an alternative approach that does not require measuring
the object deformation. The authors proposed the Candidate Observer-Based
Algorithm, which exploits two force observers, with different stiffness candi-
dates, for estimating the stiffness of objects with complex geometry. Unfortu-
nately, the authors did not refer to the ground truth stiffness measurements.
However, such a comparison was made in [28]. The neural network was trained
to predict the stiffness coefficient based on a maximum penetration and maxi-
mum contact pressure variation. Authors of [4] presented an alternative deep
learning strategy for understanding the haptic properties of objects. The real-
world objects were classified in the set of haptic adjectives in the multi-label
fashion based on haptic signals from BioTac sensors [29] and images. That work
showed a correlation between haptic sensor readings and the structure of real-
world objects, and this fact was utilized in the following work. The extensive
overview of machine learning methods in the soft robotics aspect was described
in [30]. The authors distinguished between sensor characterization and systems
characterization. In the group of sensor characterization, the use of RNNs for
parameters regression is widespread, as we are dealing with signals and contin-
uous values of sensor parameters. On the system characterization level, one is
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more focused on high-level labels, successful grasp [31], or slip detection. How-
ever, the classification of signals with categorical values is more common. In [32]
learned, control mechanisms were used, reinforcement learning [33] or learned
differentiable models [34].

2.2.3 Processing inertial data

The popularity of IMU stems from its availability and low price. One possible
use in the robotics community is a robot’s state estimation. In [35], acceleration
and angular velocities collected from sensors located on the humanoid leg and
joints’ angles were used to estimate the velocities of robot links. Authors in [36]
presented multiple interesting approaches for indirectly measuring ground re-
action forces during a human walk using wearable IMUs. The other field that
often utilizes acceleration is material classification. In [3], authors used the hap-
tic device SensAble Phantom Omni [37] to gather accelerations and velocities
while scratching material surfaces. The authors of [38] used that dataset to
train a deep Convolutional Neural Network (CNN) to map from raw signals to
textures’ classes. The presented method stays close to our solutions for stiffness
estimation.

2.2.4 Fabric recognition

The authors of [39] proposed a material classification solution that basis on raw
acceleration gathered during exploratory moves of a sensor mounted at the tip
of the rigid tool. Similar to our material classification method, data gather-
ing was carried out by authors of [17] based on readings from the optical force
sensor. The field of tactile material recognition also draws inspiration from bi-
ological systems, which was described in [16]. The authors used a skin-like flex-
ible pressure-sensitive sensor. This method exceeded human-level performance
in material recognition and differentiation, based only on pressure distribution
signal processing. All of the works mentioned above were deep-learning-based
and trained in a supervised manner. In [40], a different approach was proposed –
the authors made an architecture based on Generative Adversarial Network [41]
in a semi-supervised fashion, which enabled a robot to learn from unlabeled
data or even adapt itself to the previously unseen types of material. Sensing
a force when the model predictive control framework gathers haptic data sam-
ples becomes crucial. Authors of [42] proposed a robotic dressing assistant for
people with disabilities, where a RNN predicts force signals to be applied while
performing this type of task.
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2.2.5 Unsupervised robotic perception

Unsupervised learning is currently the most emerging yet least explored field of
artificial intelligence. However, its practical applicability remains limited, espe-
cially in such a demanding problem as tactile perception. It is due to challenging
optimization and interpretation of obtained results, especially in the clustering
assignment, where the model needs to provide explicit information about the
grouping criteria. The specific domain of application of unsupervised learning is
medical assignments, like emotion recognition using electroencephalography [43]
or finding patterns in medical data analysis to predict seizures [44]. Gesture
recognition is a related category where these methods found an application. In
[45], the authors proposed a trajectory segmentation method for surgical ap-
plications that detects critical trajectory points that define relevant segments.
In [46], a robotic assistant recognizes the gestures of a surgeon.

In robotics, place recognition is a typical application of unsupervised learn-
ing [47, 48, 49, 50]. In [51], the authors tackled a related problem of in-sequence
condition changes using CNN-based descriptors and unsupervised learning meth-
ods. In this work [52], authors reviewed numerous research articles to determine
the number of so-called perceptual dimensions, i.e., the number of dimensions
in which humans can perceive the structure. They concluded that there are five
fundamental dimensions of tactile perception – macro and fine roughness, warm-
ness/coldness, hardness/softness, and friction (moistness/dryness, stickiness/s-
lipperiness). In the following dissertation, these categories describe clusters
created by the unsupervised learning method in the tactile recognition assign-
ment. Commonly, unsupervised learning methods serve as feature extractors,
especially in the haptic adjectives classification that describes some physical
properties of objects. In [53], the authors presented their research on tactile
understanding and haptic perception using unsupervised feature learning meth-
ods. In this follow-up work [54], they proposed a method for predicting the
so-called perceptual distribution of a haptic adjective based on dictionaries of
these features. The term perceptual distribution relates to the human-like un-
derstanding of tactile sensations perceived gradually and not restricted to any
predefined set like in, e.g., binary classification. The work [55] proposes a similar
approach to the one presented in the following Chapter, where the authors pro-
posed an interactive method for classifying previously unseen objects. In their
experiments, a robot grasps an object and categorizes it as novel or unseen
using a so-called One-Class Support Vector Machine (SVM). Then, it creates
local tactile representations for new instances and learns a new unsupervised
model. After that, the process starts over with another object. However, this
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method requires guided exploratory robot grasping based on the custom-made
pressure sensor. At the same time, the approach proposed in this Chapter relies
purely on non-guided touching episodes and corresponding force measurements
gathered using the low-cost sensor.

2.3 Proposed solution

Most state-of-the-art recognition systems basis on artificial neural networks and
need substantial data volume for appropriate training in a given task. How-
ever, creating a dataset could comprise a troublesome problem in robotics, as
it requires a real-world robot to be involved and manual labeling in the case of
supervised learning, which is a tedious and labor-intensive process. Typically
such experiments appear to be time-consuming and hard to design due to the
limitations of a robotic platform. In the wide range of recognition tasks, one
approach to such data is to build a predictive model that works in an unsu-
pervised or semi-supervised manner. Typically, such approaches are part of an
explainable artificial intelligence domain and primarily focus on a data repre-
sentation analysis [56]. However, a lack of interpretability in robotics might be
a troublesome issue. However, to the author’s knowledge, such solutions still
need to be explored in the robotics community. The problem of supervised
haptic recognition might be solved using numerous robotics simulation toolk-
its. Generating a large amount of data in the simulation and mixing it with a
small portion of the real-world samples would be a recipe for a valid dataset
for the neural network that needs to operate in the real world. However, such
a case must urgently cover the reality gap. No currently available simulation
environment would fully resemble the real world.

This Chapter investigates multiple data-driven approaches for a material
recognition task from raw sensory feedback, including force sensors and inertial
units. It consists of two thematically divided sections, each with a different
approach to the recognition task. Firstly, it presents the supervised learning
model for stiffness regression, which uses simulated and real-world data samples.
The main focus was on different types of RNNs with feed-forward modules
(convolutional or Fully Connected (FC)) that served mainly as input feature
encoders or final layers. The Chapter investigates the problem of the so-called
reality gap in the robotic perception system. The simulated environment served
as a data generator for data-hungry recognition methods.

Additionally, the Chapter presents results obtained from the experiments
on Exploratory Data Analysis (EDA) on haptic signals from different robotics
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assignments using unsupervised learning methods. Typically, that kind of data
analysis does not have any clear goal and aims to find the relationship between
data samples, discover clusters, and any new insights that will help to improve
data understanding. In machine learning, one of the core concepts in the EDA
is the clustering assignment that enables finding groupings in data. Experi-
ments in the following Chapter focused on finding the best clustering algorithm
for haptic signals obtained from touching different materials or objects. All
datasets involved in investigations were primarily designed for supervised tasks,
containing actual labels for each sample. The central presumption was that the
expected number of classes discovered in the data was the number of authentic
classes. Due to this, one could compare different clustering strategies based on
metrics that require true labels: clustering accuracy, normalized mutual infor-
mation, and purity.

2.4 Supervised stiffness estimation

2.4.1 Problem formulation

Let f : MIMU 7→ K be a stiffness estimation function that maps elements from
the domain of IMU measurements MIMU to the positive real-valued counter-
domain of the material stiffness K. IMU measurement M ∈ MIMU = R2×6 is
defined by vectors of linear accelerations an and angular velocities ωn organized
row-wise in the matrix M , where the n-th row is [axn

, ayn
, aznωxn

, ωyn
, ωzn ], and

n = {1, 2} because the setup consists of two IMUs attached to two fingers of
the gripper used in the experimental section. The set K : {k ∈ R+} is defined
as scalar stiffness parameters of squeezed objects expressed in N

m . Given the
definitions above, the following elements of the work are:

• three estimation methods f ′
conv, f

′
lstm, f ′

bilstm, where each f ′ : MIMU 7→ K
approximates the function f using a different deep neural network archi-
tecture;

• two datasets Dreal,Dsim that consist of real-world and simulated data
samples of pairs d : (M,k), where M ∈ MIMU and k ∈ K;

2.4.2 Real-world dataset

The Yale OpenHand shown in Fig. 2.1 is the under-actuated, two-finger soft
gripper with joints in the form of urethane elements to assure the elasticity
of fingers. The real-world model was 3D printed and driven by hobby servos
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capable of generating a force up to 10N. Fingertips of the hand had mounted
IMUs, which measurements m served to estimate grasped objects’ stiffness k.
The following Chapter investigates how the embodied intelligence of such a soft
gripper could be utilized alongside the artificial intelligence system to predict
a squeezed object’s real-world stiffness coefficient k. The following paragraph
presents the process of creating the dataset Dreal.

Figure 2.1: The real-world scenario involved the 2-finger Yale OpenHand gripper [9].
A sufficient number of training samples for the learning process had to be ensured.
This gripper model was prepared in the MuJoCo simulator as depicted in a). In b),
real fingers consist of three plastic blocks with flexible parts made of urethane. In c),
there are presented examples of sponges, exposing different stiffness, used in our real-
world experiments.

Table 2.1: Stiffness coefficients were computed for five different objects using the
presented procedure.

Object Stiffness [N/m]
Wire sponge 909
Hard sponge 1020
Polish sponge 735
Soft sponge 380
Squash ball 1353

First, a coefficient k was estimated for real-world objects in the Dreal. The
robot had a 3D-printed plastic bar mounted at the flange and pressed objects
with the desired force using the Dynamic Force Control mode to obtain ground-
truth values. In that mode, the manipulator accurately measured the displace-
ment under specific forces. Thus, k was computed according to the Eq. 2.1,
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where f1 and f2 are forces in Z-axis while pressing an object with a tool and
|d1 − d2| is the relative distance that corresponds to the deformations under f1

and f2 respectively. The chosen objects express nonlinear behavior in their stiff-
ness model (e.g., the greater robot compresses the sponge, the less deformation
it adds). However, objects did not reflect nonlinear effects in the specified range
of exerted forces. Therefore, the estimated stiffness is considered homogeneous
for the entire object. Tab. 2.1 contains different stiffness coefficients k ∈ K
measured experimentally for each object.

k =
|f1 − f2|
|d1 − d2|

∈ K (2.1)

Afterward, the Yale OpenHand was used to perform the squeezing motion
of each object and 500 IMU signals m ∈ MIMU registered during motions
were collected. Each signal m in Dreal consists of 12 sensor readings. Each of
them was 200 time-steps long. In Dreal, each object is equally represented by
100 samples and split into two subsets – 200 train and 300 test samples for the
sim-to-real experiments. Both subsets in all the experiments remain unchanged.
The following claim was made to address the physical interpretation of obtained
parameters k taking as input measurements m: The motion of gripper fingers
registered while squeezing different objects would significantly vary, as shown
in Fig. 2.2. One can observe that depending on the object’s stiffness, the mag-
nitude, and oscillations of both - angular velocity ω and linear accelerations a

were significantly different from each other, i.e., in the range of values or an os-
cillation rate. Taking that phenomenon into account, this Chapter puts forward
the thesis that it is possible to distinguish between different stiffness parameters
in the space of IMU signals registered during the squeezing of these objects.

Figure 2.2: Comparison between exemplary samples from the real-world dataset while
squeezing objects with different stiffness values with a soft gripper. Values |a1|, |a2|,
|ω1| and ω2| refer to magnitudes of accelerations and angular velocities registered by
two IMUs and are expressed in m

s2
and rad

s
respectively.

The number of samples, as well as distinct objects, remained limited. The
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root cause was the soft gripper’s time-consuming data-gathering process and
hardware limitations. In that situation, the number of different labels was
insufficient to perform a successful regression without overfitting. In fact, with
such a low diversity of accessible objects, a regression task would inevitably turn
into a classification undesired in the stiffness estimation. A second dataset was
based on the simulation to overcome that problem, where more training samples
could be generated. Stiffness coefficients were adjusted to meet measured values.

2.4.3 Simulated dataset

Data-driven models frequently suffer from the limited ability to generalize to
new domains outside their training dataset. However, the rising popularity
of deep learning algorithms in the robotics community led to a significantly
increased need for data. The state-of-the-art approach is to perform experiments
in simulation and use the gathered data to feed neural networks. In a wide range
of robotics applications, researchers can choose from many available physics
simulators. In our case, the MuJoCo physics simulator was selected due to its
efficient implementation regarding soft object modeling, which is troublesome in
other simulators, e.g., in the PyBullet [57] or Gazebo [58]. Fig. 2.3 presents the
simulated soft-robotic gripper. Tendons connect fingers and are pulled by the
actuator, which simulates the pneumatic cylinder. The simulation model basis
on the 3-finger real gripper [1], but with one finger removed. As it is depicted
in Fig. 2.3a, the Dsim consists of samples when the gripper squeezed and released
objects of three shapes - a ball, a box, and a cylinder, all with a variable k. For
the elastic deformations simulation of the gripper, each geometrical block of
each finger was connected to others by three hinges. In this setup, ranges of
each joint in a roll, pitch, and yaw axes could be adjustable, as was depicted in
Fig. 2.3b. Finally, each behaves similarly to the elastic finger.

For clarity, a stiffness parameter k, in Dsim was defined the same way as
the MuJoCo simulator – as the stiffness of a spring attached to a CoG of a
geometrical block and its surface. The experimental section always assumes
that the object is homogeneous.

The collection of data proceeded accordingly. Firstly, the object appears
between fingers, and the actuators start to close the gripper and squeeze it.
Then, in half a duration of a squeeze episode, the gripper opened up. While
this process, an object was embraced by fingers that adapted to its shape. A
stiffness coefficient k was expressed in N

m and varied among episodes to equally
cover the range (from 300 to 1400N

m ), which fits the real-world data range.
Masses of gripper parts were adapted to meet real-world values. Similar to ob-
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Figure 2.3: Soft-robotic gripper in the MuJoCo environment: a) the gripper squeezes
and releases objects in three shapes - a ball, a box, and a cylinder, all with a variable
stiffness parameter; b) each geometrical block of each finger is connected to others by
three hinges. In this setup, one can easily adjust the ranges of each joint in roll, pitch,
and yaw axes.

jects’ mechanical impedance, their dampings, stiffness of all joints and springs
in a system. Two IMUs were placed on a MuJoCo’s element called site and
located in the 3/4 of the length of each finger on the outside surface. The first
from two simulation datasets resembled the real-world data and consisted of
5000 training-validation samples from squeezing the box object. Its purpose
was to enrich real-world data. The second simulation dataset consisted of three
shapes: boxes, cylinders, and spheres. It counted 3999 training-validation sam-
ples, which gave 1333 samples per object. It served to verify whether any of the
neural networks f ′ can avoid overfitting to any particular shape. Additionally,
the model’s generalization abilities were investigated using three test datasets –
133 samples for each object.

2.4.4 Recurrent neural network architecture

In Section 5.1 on the experimental evaluation, the main task of proposed neural
networks was to approximate the stiffness estimation function f from fixed-
length sequences m ∈ MIMU of accelerations and angular velocities measured
by IMUs. This research proposes to test three types of neural networks –
the CNN f ′

conv based entirely on 1D convolutional blocks, the CNN-LSTM
f ′
lstm with forwarding Long-Short Term Memory (LSTM) units [59], and the

CNN-Bi-LSTM f ′
bilstm with Bidirectional Long-Short Term Memory (Bi-LSTM)
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units [60]. In both recurrent models, the recurrent unit appears after the convo-
lutional block. A FC layer named the Regression Block is at each model’s end.
Fig. 2.4 Presents the scheme of proposed neural network architectures used in
the following work.

Figure 2.4: The Feature Extractor produces features using 1D convolutions. In the
f ′
lstm and the f ′

bilstm, the Recurrent Block process these features to find relevant con-
nections for the stiffness estimation. Finally, the Regression Block outputs a stiffness
coefficient k ∈ K.

Feature Extractor This module is responsible for extracting features from
the raw signals while maintaining its output in the time domain. The input
signal was a standardized sensor reading of 200 m samples consisting of 2 × 6

measurements. Hence, data could be further processed recurrently or passed to
the Regression Block directly. The Feature Extractor consisted of 3 consecutive
1D convolution layers with strides equal to 2. The number of filters in the layers
of the CNN was 128, 256, 512, while in the CNN-LSTM and CNN-Bi-LSTM
models, the last convolutional block was reduced to 256 filters and replaced by
the recurrent block of the same size.

Recurrent Block It processed high dimensional time series from the Fea-
ture Extractor in a recurrent manner using LSTM or Bi-LSTM in f ′

lstm and
f ′
bilstm respectively. A resulting, fixed-length vector representing an entire sen-

sor reading maps the input from the time domain to the feature space. Each
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recurrent cell consists of 128 units, as it was shown in Fig. 2.5. In the CNN-
LSTM, both LSTM cells are organized in two sequential layers processing an
input signal from the beginning to the end. Output features from that layer fed
the Regression Block.

Figure 2.5: The core idea behind the Bi-LSTM used in the CNN-Bi-LSTM is as follows
– to prevent losing a context by the cell, process a sequence from the beginning to
the end, do the same in the reversed direction, and concatenate both passes. Input xi

refers to the i-th feature vector the convolutional block returns.

Regression Block It was the last global module used in tested architectures.
It was responsible for a final estimation of a stiffness coefficient k. Using a FC
layers is necessary because extracted features and time dependencies between
them are critical ingredients in the regression process, but they are not the
answer itself. Finally, it is necessary to transform obtained features into a
stiffness coefficient k, made by the stacked FC layers. The number of units in
each layer remained unchanged for all tested architectures and was 512, 256,
128, 64, 1.

2.4.5 Discussion on chosen methods

The proposed models for stiffness estimation based on time series of accelerations
and angular velocities from the IMU mounted to the gripper consist of a Feature
Extractor, Recurrent Block, and Regression Block. The first model uses only
the Feature Extractor and the Regression Block, which is a pure CNN based on
1D convolutions with FC layers at the top. The second model adds an LSTM
cell as a Recurrent Block to the pure CNN model, and the third model utilizes
a Bi-LSTM as a Recurrent Block.

The pure CNN model has the advantage of being relatively simple to im-
plement and train, and it can capture the local features of the time series well.
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However, it may struggle with capturing the long-term dependencies between
the data points, which can be important in stiffness estimation. The CNN-
LSTM model can capture both local and global features by using the LSTM as
a Recurrent Block. It can handle long-term dependencies and is more suitable
for time series data than the pure CNN. However, it may be more complex to
implement and computationally expensive. Finally, the bidirectional CNN-Bi-
LSTM model has the added benefit of using a bidirectional LSTM that can
capture information from both past and future time steps. This makes it suit-
able for modeling complex temporal dependencies and potentially results in
even higher accuracy in stiffness estimation. However, it is the most complex
model of the three and may require more computational resources to train and
evaluate.

2.5 Unsupervised haptic recognition

2.5.1 Problem formulation

Let the fe : S 7→ Z be the encoding function that inputs raw time signals from
the multidimensional domain S : {s ∈ Rn} (e.g., 3-axis forces). Then transforms
them to the latent space Z, and fd : Z 7→ S be a decoding function that maps
these features to the original domain again. Let the clustering problem be a
grouping of n points, such that si ∈ Sn

i=1 into p clusters, where each cluster
is associated with a centroid uj , where j = 1, 2, ..., p. Given the theoretical
formulation above following could be introduced:

• the baseline of learning-based algorithms for clustering unlabeled data
using evaluation metrics presented in subsection 2.5.4. If the input data
was a time signal, fe for baseline methods was a well-known dimensionality
reduction method Truncated Singular Value Decomposition (SVD);

• the author’s implementation1 that follows [5]. It uses a gradient descent,
a mean-square error loss function lMSE , and divergence loss lKL to cluster
incoming data into a predefined number of bins. The presented method
can work on raw signals without fd and fe. However, optionally, we
can also use the latent representation, which approximates the encoding-
decoding function x̂i = fd(fe(xi)) to represent signals in the latent space,
and in that space, do the clustering. That method and baseline algo-
rithms are described further in subsection 2.5.5. The distance between

1https://github.com/mbed92/haptic-unsupervised
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raw signals or latent vectors in the Z and centroids u in the form of an
auxiliary Student’s t-distribution used to calculate the Kullback - Leibler
(KL) divergence loss lKL that minimizes these distances during a training
phase;

• the Dtouch dataset of pairs dtouch : (s, c) consists of real-world 3D force
readings gathered while touching different materials using a robotic ma-
nipulator associated with one of ten semantic classes. That dataset was
created by the author of the following thesis together with other authors
of [61]. It is worth noting that, in the following experiments, there was
no train/validation/test split because in unsupervised learning, we do not
have access to labels, so there was no clear definition of how that split
would look like. Additionally, real-world datasets typically suffer from a
limited number of samples due to time and hardware constraints, as was
the case here. Therefore, the author of the following dissertation resigned
from splitting the dataset and focused on analyzing the results from all
available samples;

• the BioTac Grasp Stability Dataset V2 (BiGS V2) [62] dataset Dbiotac of
pairs dbiotac : [(s, c)] that consists of electrodes readings gathered at the
same time from the BioTac sensors mounted on a hand-like gripper while
grasping one of 51 classes of objects. That dataset is a follow-up work
of [2] that extends the previously used BiGS dataset. Consistent with the
Touching dataset, there was no train/validation/test split;

2.5.2 Touching dataset

Fig. 2.6a presents the 3-axis optical force sensor OptoForce used to create the
Touching dataset. This sensor has a diameter of 32 mm, weighs 30 g, and its
shapes resemble a human fingertip. It can measure forces by utilizing optical
principles. In the central part of the sensor, there is an infrared emitter with
four receivers. The semi-spherical rubber internal surface is layered with a
mirroring substance. Hence, reflections of infrared rays are highly dependent on
the deformation of this hemisphere. Force measurements have three dimensions,
and the sensor’s precision reaches 6.25mN. The OptoForce sensor has a nominal
force capacity of 100N on the Z-axis and 50N on the X and Y-axis, and it can be
overloaded on each axis by 200%. Again, we used the collaborative robot UR3
to gather dataset samples. It can estimate forces and measure torques in joints,
enabling us to perform touching movements by pressing with a maximum force
of 25N on the Z-axis of the robot’s base coordinate system. The overall setup
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is shown in Fig. 2.6b.

(a) Touching Styrofoam. (b) Overview of the setup.

Figure 2.6: The Figure presents robots and sensors used to create the touching
datasets. The dataset focused on touching a variety of materials was created us-
ing a UR3 robot (Fig. 2.6b) with an OptoForce sensor mounted on the top of the
end-effector that is visible in Fig. 2.6a.

The Touching dataset consists of 1293 labeled signals. Each sample consists
of a 3-axis signal of forces recorded while touching the material with a length of
190 samples. The dataset includes ten classes of popular materials varying in
thickness, stiffness, and texture. Items included are everyday objects, such as
plane cardboard, corrugated cardboard, rubber, leather, linen bag, plastic plate,
metal sheet, sponge, styrofoam, and a plastic bag. Sensors in experiments mea-
sure forces directly, allowing not only for the classification of materials but also
to work on the regression, i.e., estimation of physical parameters of the mate-
rial. Using other sensors used for material classification from the contact, such
as accelerometers [63] or microphones [64], there is no possibility of estimating
such parameters.

2.5.3 BioTac Grasp Stability Dataset V2 (BiGS V2)

This dataset is an extended version of BiGS [2] (used and described in other
experiments of the following thesis regarding multi-modal fusion 4.4.2). The
dataset follows the same structure as the original one and includes signals from
it but adds 10 new classes, yielding possible benefits in any learning-based ap-
proach, especially unsupervised learning. That version consists of 5831 raw
electrode readings recorded while grasping 51 different objects’ categories. Each
data sample is a measurement from three BioTac sensors mounted on a hand-like
gripper. Three sensors on fingers are used to grasp objects, and each sensor re-
turns a signal from 24 electrodes, giving 72 measurements per grasping episode.
More information available in [62] and the corresponding repository2.

2https://github.com/3dperceptionlab/biotacsp-stability-set-v2
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2.5.4 Evaluation metrics

Clustering accuracy In the unsupervised setup, the accuracy might be ob-
tained by solving a linear sum assignment problem [65] using a cost matrix D of
a bipartite graph. The k× k matrix D includes assignments of each supervised
class into unsupervised clusters. The metric achieves 100% when all categories
are separate clusters. In all algorithms to calculate the metric, the expected
number of clusters was preset to the number of classes used at the training
phase. However, it does not mean that the model will categorize data into the
same number of clusters.

Mutual information The following metric [66] shows the similarity between
two clustering strategies in terms of the amount of surprise (or, in other words,
uncertainty) in the results and mutual dependence between two random vari-
ables. It is typically used to evaluate the clustering quality or identify the most
relevant features in a dataset. The non-normalized score ranges from zero to
infinity, where higher values indicate more pure clusters. However, in the ex-
periments, the normalized score was used. Similarly to clustering accuracy, it
expects actual labels. Thus, it could be used with the desired number of clusters
equal to the valid number of classes in the dataset.

Purity It shows to what degree each set contains one type (class) of samples
– how pure clusters are. Each group is assigned to the class most frequent in the
cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned samples and dividing by the number of samples.
Bad clustering has purity values close to 0. A perfect clustering has a purity
of 1. High purity is easy to achieve when the number of clusters is significant
- in particular, purity is 1 if each sample gets its cluster. Thus, we cannot use
purity to trade off the clustering quality against the number of groups.

2.5.5 Adapted methods

Embedding clustering Deep Embeddings Clustering (DEC) [5] is a rela-
tively new method that uses deep learning to learn feature representations of
data, which are then used for clustering. This approach has several advantages
over classical clustering algorithms from the Scikit-learn package. DEC can learn
complex non-linear relationships in the data, whereas classical algorithms are
limited to linear relationships. DEC allows deep embedding clustering, which
produces more accurate and meaningful cluster assignments. Moreover, it is
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computationally efficient. It can handle large datasets and does not require
extensive hyperparameter tuning, which can be time-consuming with classical
algorithms. Overall, DEC is a powerful and efficient method for clustering data
with many advantages over classical ones.

Ward The Ward algorithm is a hierarchical clustering method used to group
objects based on their distance from one another. It works by iterative merging
clusters to minimize the distance between the combined sets. This distance
is typically measured using the Euclidean distance, the straight-line distance
between two points. The algorithm continues to merge clusters until all objects
are a single cluster. The result is a hierarchical tree or dendrogram that can be
used to visualize the groupings of the entities.

Spectral It groups data points based on the eigenvectors and eigenvalues of
a similarity matrix constructed based on the distance-based similarity between
data points [67]. Eigenvectors and eigenvalues create a new feature space in
which we look for clusters using other algorithms. The K-Means method was
the final clustering strategy for these embeddings in the following experiments.
However, it can be computationally expensive and sensitive to the choice of sim-
ilarity measure. In the following experiments, the Spectral Clustering method is
an improvement of the K-Means method with more sophisticated data prepro-
cessing – eigendecomposition reduces the number of features in the input data
while preserving differences between data samples.

K-Means One of the most popular clustering algorithms used nowadays [68].
It scales well to large datasets and has been used across an extensive range of
application areas in many fields. K stands for the number of disjoint clusters in
the data we expect. Means refer to so-called centroids - the cluster centers we
want to find. Finding sets is an iterative process of calculating distances from
all data points to (initially random) centroids, classifying each sample based
on the closest distance, and then recomputing centroids’ positions by taking
the mean of each created group. Generally, K-Means is a good starting point
for clustering analysis because of its simplicity and speed (linear complexity).
However, it is fragile to initial random choice of the centroids, and cluster shapes
are considered elliptical, which is probably not valid in real-world data.

Gaussian Mixture Model (GMM) It is a probabilistic model that assumes
that the data points follow a mixture of several multivariate normal distribu-
tions, each representing a cluster. The parameters of the GMM, such as the
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mean, covariance, and mixing coefficients of the Gaussian distributions, are es-
timated from the data using the Expectation-Maximization (EM) algorithm.
The EM algorithm iteratively improves the estimates of the parameters until
convergence, at which the data points belong to clusters based on the prob-
abilities of each Gaussian distribution. The EM method is flexible and can
handle non-spherical sets. Still, it can be sensitive to the initialization of the
parameters.

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
The method [69] uses a hierarchical approach to identify clusters in large datasets.
It starts by constructing an in-memory data structure called the Clustering
Feature tree, which stores the feature vectors of the data points and summary
statistics about the feature vectors. The Clustering Feature tree is constructed
iteratively by inserting the feature vectors into the tree and merging similar
nodes. Once we have the Clustering Feature tree, the clusters are identified
by cutting the tree at a specific height, which determines the granularity of
the groups. BIRCH is efficient and can handle large datasets, but it is sensi-
tive to the choice of parameters, such as the maximum number of nodes in the
Clustering Feature tree and the threshold for merging nodes.

Agglomerative A hierarchical clustering method works by splitting (top-
down) or merging (bottom-up) data into groups and clustering by revealing
a hierarchy presented originally in [70]. The following experiments utilized the
bottom-up approach. This method starts by treating each data point as a sep-
arate cluster, then iteratively merges the most similar clusters together based
on the average distance between their points. It reveals the hierarchy in the
data by a so-called dendrogram that can be cut at different heights to form a
desired number of clusters. Unlike other algorithms, it allows for the explo-
ration of clusters at different levels of granularity. It is insensitive to the type
of similarity measure used, but it brings a significant computational burden.

2.5.6 Discussion on chosen methods

DEC seems to be the best candidate for the specified task that has shown great
potential in discovering meaningful structures in complex data such as images,
text, and time series. Compared to other traditional clustering algorithms,
DEC leverages the representation learning capabilities of deep neural networks
to learn feature representations in an unsupervised manner automatically. Ef-
ficient representation learning lets the model identify underlying patterns and
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structures that may not be immediately apparent in the raw input data. Addi-
tionally, DEC is known to be more scalable and efficient than other methods,
especially when dealing with high-dimensional data. Traditional methods rely
on assumptions that could be unsuitable for such a complex task as unsuper-
vised haptic recognition. GMM assumes that the data follows the Gaussian
distribution, which might not be accurate in real-world problems. Hierarchi-
cal algorithms like BIRCH, Ward, and Agglomerative clustering are sensitive
to noise and outliers and may produce inconsistent results for datasets with
high variability or irregularities. K-Means assumes that clusters are spherical
and equally sized, which makes it inefficient in capturing complex and irregular
shapes, as might be the case in haptic datasets. Finally, Spectral clustering
may not be effective in identifying clusters with varying densities, as it relies
on graph partitioning techniques that may need to handle such scenarios more
effectively. DEC appears to overcome all the limitations of traditional methods.
However, all methods tackle the clustering problem differently, and a thorough
evaluation of the performance of all methods is necessary to ensure the best
choice for the specific task.
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Chapter 3

Terrain recognition

This chapter and the corresponding results in Part III incorporate ma-
terial from the following publications.

• (© 2021 IEEE) M. Bednarek, M. Łysakowski and J. Bednarek, M.
R. Nowicki, K. Walas (2021) "Fast Haptic Terrain Classification
for Legged Robots Using Transformer". In: European Conference
on Mobile Robots (ECMR)

• (© 2022 ELSEVIER) M. Bednarek, M. R. Nowicki, K. Walas
(2022) "HAPTR2: Improved Haptic Transformer for Legged
Robots’ Terrain Classification". In: Robots and Autonomous Sys-
tems – Selected papers from the 10th European Conference on
Mobile Robots

3.1 Introduction

The mobility of legged robots is a vital factor that gives them an advantage
over wheeled platforms, which struggle to function in human-made domains
with non-flat areas. Autonomously traversing kilometer-scale, natural environ-
ments demand excellent walking capabilities, i.e., agility, robustness, and low-
computational demand to avoid battery draining [71]. They must fulfill a broad
spectrum of mission-specific requests, including natural caves exploration, ur-
ban environments inspection (e.g., sewers), or search and rescue tasks. One of
the challenges of the real-world operation of legged robots is negotiating the
unknown and unexplored terrain where the robot has to adapt its gait to the
changing environmental circumstances. Planning and predicting the system’s
behavior in many scenarios is possible. However, there are cases when the robot
has to react to unanticipated environmental measurements [72]. In [73], authors
presented such an adaptive behavior describing a robot’s movement as a terrain
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function.
The following Chapter predominantly concentrates on the terrain classifica-

tion with haptic contact, a well-researched topic with most solutions focusing
on F/T signals from the sensors mounted on the feet [74, 56, 75, 61]. These
methods focus on obtaining the best results in accuracy measured on the regis-
tered dataset. However, the accuracy metric is only a part of the whole picture.
A method should not achieve satisfactory classification only but also a short in-
ference period. Moreover, computations should also be completed with limited
processing resources as an autonomous walking robot has multiple nodes that
must operate simultaneously to achieve desired outcomes in real-life challenges.
Additionally, the following chapter argues that kinesthetic sensing, defined as
sensing the position of a robot’s limbs, leads to successful haptic perception.
Typically, a sensor used to measure inertia in robotics is an IMU commonly
mounted in a base of a walking machine. However, that placement is valid for
kinesthesia because all haptic sensations, slopes, and terrain types must influ-
ence that sensor’s readings.

Figure 3.1: (© 2021 ELSEVIER) In the picture, the ANYmal robot collects haptic
F/T measurements with its compliant feet when walking on diverse terrains. Terrain
classification is paramount for gait adaptation to ensure stability. Moreover, there is
a need to achieve a short inference period with resource-constrained processing units.
Therefore, the transformer-based HAPTR and HAPTR2 methods were proposed.

The following Chapter presents the deep learning model called HAPTR with
further extensions (HAPTR2). Provided tests include a thorough evaluation of
the HAPTR model targeting previously omitted aspects like inference time and
the method’s robustness. This work contains a baseline in the results obtained
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with three adapted methods ranging from classical machine learning approaches
to the CNN. Moreover, the chapter provides results from other state-of-the-art
solutions whenever possible and compares the accuracy on two publicly available
datasets. Finally, an ablation study was employed to tackle the problem of the
robustness of the proposed perception system.

Therefore, the contribution presented in the following chapter comprises four
items. Firstly, the work focuses primarily on transformer-based deep learning
models for terrain classification – HAPTR and HAPTR2. The lightweight im-
plementation focused on short inference times and robustness against changes
in input signals. Secondly, the research was conducted towards the MAL as a
way to increase the robustness of terrain classification in real-world scenarios.
Then, the experiments include a benchmark of terrain classification systems
from the perspective of autonomy requirements. It includes the comparison of
accuracy, inference time, and robustness against data degradation. Eventually,
a transparent evaluation of the proposed and several adapted methods was in-
cluded based on two publicly available terrain classification datasets to create a
baseline for further works to compare and overcome the proposed solution. All
the code and datasets to reproduce the results are available online 1 publicly.

3.2 Related work

3.2.1 Terrain recognition for legged robots

In [76], authors introduced one of the first contemporary approaches to terrain
recognition for walking robots, where they tackled the problem of blindly as-
sessing terrain properties using only currents from motors and contact forces
of quadrupedal robot legs. Then, the AdaBoost [77] algorithm processed ex-
tracted features from input signals, which revealed that a Ground Reaction
Force (GRF) is one of the essential properties describing a terrain under a mov-
ing leg. In [78], authors proposed classifying terrain samples on tiny robots,
where they directly measured a GRF from the designed miniature array of sen-
sors. Direct measurements of the robot and ground substrate interaction were
also described in [79]. A quadruped robot adjusted a Center of Gravity (CoG)
based on a terrain class to accommodate terrain properties changes. The step
further in using terrain classification is to allow the robot to adapt its gate to
changing traction conditions [80]. Predicting the risk of collapse of the struc-
tures negotiated by the legged machine [81] is even further extension. Most

1https://github.com/mbed92/haptic_transformer
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of the research focuses on different types of hard materials, but there are also
soft substrates in the dataset used in the following work. In [82], the authors
explicitly mentioned soft ground and provided the method of in situ measuring
the terrain parameters. This work [83] and its further extension [84] presents
a more analytical approach for the robots dealing with soft materials and gait
adaptation. Terrain classification with other modalities like vision [85] or acous-
tic sensors [86] is feasible yet less accurate than direct force measurements. For
terrain classification, the fusion of three different modalities, vision, depth, and
touch, was described in [87].

Moreover, tactile data allowed for self-supervised visual terrain learning
in [88]. In [74], authors analyzed tactile signals from impact motions of the
quadrupedal robot’s leg to classify different soil characteristics. In [61], authors
proposed a RNN with convolutional blocks that achieved state-of-the-art re-
sults in the terrain recognition task. However, that method was able to work
with fixed-length input data only. In [75], the masking mechanism for CNNs
was proposed to manage variable-length signals. In [56], authors also used raw
and variable-length data recorded during walking sessions on different robots.
Due to the semi-supervised machine learning approach, their terrain classifica-
tion method achieved better performance than frequency-domain classifiers and
required fewer annotations.

3.2.2 Time series classification

Time-series data mining has become an emerging field over the past decades due
to the increased availability of temporal data [89]. We can approach the problem
by looking at the signal properties. Authors of [90] compared several similar-
ity measures in the distance-based Time Series Classification (TSC), showing
that no individual distance measure is significantly better than the Dynamic
Time Warping (DTW) [91]. In the following experiments, a popular K Nearest
Neighbour (KNN) classifier uses this distance measure to work on time-domain
signals (KNN-DTW), which the community considers a stable baseline in the
field. However, authors of [90] also proved that using a heterogeneous Elastic
Ensemble (EE) will outperform the DTW even though any of the individual
parts of EE were not achieving higher accuracy than DTW. Authors of the Col-
lective of Transformation-Based Ensembles (COTE) algorithm [92] used such an
ensemble of classifiers based on various feature spaces. The follow-up work – Hi-
erarchical Voting (HIVE) (HIVE-COTE) [93] leveraged the performance by the
hierarchical voting system, which resulted in superior performance among other
algorithms. The HIVE-COTE is considered a state-of-the-art method for TSC.

43



Still, it exhibits a very high time-complexity due to many algorithms in an en-
semble of classifiers. To illustrate that phenomenon, one of them – the Shapelet
Transform [94] achieves the time complexity O(n2l4), which makes HIVE-COTE
impractical in many real-time scenarios [89]. Authors of [95] presented the Bag-
of-SFA Smbols (BOSS) algorithm, which extracts words from input signals and
learns to classify them in that space by measuring the frequency appearing of
each word in a time series. An alternative method was presented in [96], where
the decision tree forest partitions the data under chosen distance measure.

Recently, learning-based approaches started to play a significant role in
the TSC. In the range of state-of-the-art methods, the RNNs with convolu-
tional blocks, or Convolutional Neural Network (CNN)s, play a prominent role.
In [97], authors proposed the InceptionTime classifier based on the Inception-
v4 [98] architecture that achieved cutting-edge scalability with decreased train-
ing time. A similar approach, called the Random Convolutional Kernel Trans-
form (ROCKET), was proposed in [99]. The authors showed that their model
achieves state-of-the-art accuracy while maintaining a relatively short training
time. It was possible by using multiple convolution kernels instead of stacking an
ensemble of classifiers. In [100], authors presented the Temporal Convolutional
Network (TCN) as a convolutional alternative for RNNs with a comprehensive
comparison to the state-of-the-art recurrent models.

Despite the undeniable success of transformers [101] in natural language
processing [102], image recognition [103] or object detection [104], no prior works
used transformers in the terrain classification in the real-world scenario with a
walking robot.

3.3 Proposed solution

Mobile robots’ popularity stems from their design, enabling them to inter-
act with the environment in a plethora of outdoor and unpredictable scenar-
ios [105]. Because of their versatility, resistance to environmental changes, and
adaptive behavior, more and more companies consider them for commercial
usage [106, 107, 108, 109]. Therefore, in many industrial applications, ter-
rain recognition is a significant challenge. Walking robots can perceive their
surroundings using various tactile-based or vision-based methods. However,
vision-based methods exhibit limited applicability, as they are highly vulnera-
ble to lighting conditions, fog, snow, dust, occlusions, low-texture surfaces, and
other outcomes that might appear when a walking machine enters some haz-
ardous area. One can observe that the focus of the robotics community turned
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mostly into tactile-based methods that utilize F/T sensors [74, 110], IMU [56],
and proprioception [87, 111].

The novel terrain classification method presented in this Chapter was pri-
marily designed for fast and robust inference on a legged robot using raw sensory
signals. The HAPTR basis on the popular transformer architecture presented
in [101] and [103] formerly. The extensive experiments scope included an ac-
curacy comparison on the Poznan University of Technology ANYmal dataset
(PUTAny) [18] involving four different data-driven methods in multiple setups.
Then, to verify our claims about the HAPTR, there was added the section about
cross-validation on another state-of-the-art Queensland Civil and Administra-
tive Tribunal dataset (QCAT) [112], which presents the comparison against re-
sults presented in [56]. Moreover, the work presents the novel MAL as a solution
that increases the robustness of predictions against environmental impacts that
might occur during a legged robot’s operation. In all experiments, the HAPTR
achieved classification accuracy on the same level as the best models included
in the comparison, having over 30×less learnable parameters and maintaining
a short inference time. Finally, ablation studies on the MAL were included by
deeply investigating its influence on the perception system’s robustness.

3.4 Terrain classification using Transformers

3.4.1 Problem formulation

Let the f : S 7→ C be the haptic classification function that assigns a discrete-
valued class from the counter-domain C to the raw, multidimensional signal
sample from the set S. The set S : {s ∈ Rn} consists of n-dimensional sensory
signals from the available robot’s equipment, such as F/T sensors, or the IMU
mounted in its base. Typically, in the research software, the number n is called
the number of axes of the input signal. The set C = {0, 1, 2, ..., c} is integers,
where c is the total number of terrain classes expected in the dataset. Addition-
ally, let the fmod : S 7→ W be the modality weighting function that associates
each multi-modal time series s with a set of modality weights for each time step.
The set W : {w ∈ Rm×tmax} includes floating-point numbers that correspond to
the notion of importance of input modalities, where m is the total number of
modalities, and tmax is the time-length of an input signal. For the purposes of
the dissertation, let’s define modalities as a set of axes associated with signal
referring to the homogeneous physical value, e.g., 3-axis F/T signals come from
2 different modalities. However, forces and torques might not be considered
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different modalities in the strictly physical sense, as they come from the same
sensor for the sake of conciseness. The function fmod would associate to the
F/T signal set of two weights for each time step, where weights at time t are
defined as wt = {wF , wT }.

Given the problem formulation above, the following components of this work
could be introduced:

• an extensive comparison of classification methods in multiple experiments
subsumed here under the common definition of f ′ : S 7→ C for the sake of
clarity, which approximate the function f using deep neural networks or
machine learning approaches;

• an attention module fmod in the form of a differentiable layer that increases
the robustness of a function f ′ against input data deterioration;

3.4.2 Terrain datasets

Poznan University of Technology ANYmal dataset (PUTAny) The
following dataset is the set S : {R6} of 3-axis force and 3-axis torque data sam-
ples, where the ANYmal [6] robot was continuously walking on different real-
world terrain samples with no additional exploratory moves. It had mounted
F/T sensors on all feet. However, the dataset consists of samples representing
signals from one foot only, so there was no information regarding which foot the
signal was recorded from. Fig. 3.2 presents the map created with eight different
terrain types. This dataset is the follow-up work of [75], but with the number
of terrain classes c = 8 (previously six) and with several other improvements.
Firstly, the robot had compliant, sensorized feet. Moreover, available terrains
included also slopes to add samples at some inclination. Finally, all-terrain
samples created a single walking area. The dataset is publicly available 2.

During the walking session, the ANYmal robot shown in Fig. 3.1 had sen-
sorized, compliant feet [113] that consist of flat contact surfaces with a range of
motion 50◦ for the pitch and 30◦ for the roll axis. The robot traversed flat sur-
faces and a ramp requiring the feet to adapt to the terrain type and shape. F/T
sensors placed inside the feet were custom-made and can sense up to 1000 N in
the Z direction (along the robot’s leg), 400 N in the ground surface, and up to
10 Nm of torque in each axis at a frequency 400 Hz. In the dataset F/T, signals
were cropped to tmax = 160 registered during the instant of contact.

In the following chapter, eight different terrains were used (Fig. 3.3): carpet,
artificial grass, rubber, sand, foam, rocks, ceramic tiles, and Polivinyl Chloride

2https://drive.google.com/file/d/1QP-a1Y78LaKVN_mLt91b_10T_5YDyVD_/view
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Figure 3.2: (© 2021 ELSEVIER) The map with eight terrain classes and a slope was
used to register the PUTAny dataset. The ground truth map for data labeling was
registered with a 3D laser scanner (SURPHASER 100HSX), while the walking robot’s
pose was determined with the OptiTrack system. Colors correspond to different classes:
red – rubber, green – carpet, blue – PVC, black – artificial grass, yellow – ceramic
tiles, brown – sand, dark blue – rocks, grey – foam.

(PVC). One can observe that the adaptive foot slopes differ depending on the
terrain type, properties, and shape. The robot performed a statically stable gait
with only one leg in a flight phase at a time. After a flight phase, all feet were
on the ground. Then, a flight phase started all over again with a different leg.

Figure 3.3: (© 2021 ELSEVIER) Terrain types included in the dataset: carpet (a),
artificial grass (b), rubber (c), sand (d), foam (e), rocks (f), ceramic tiles (g), PVC (h).
Each terrain gave unique F/T feedback enabling the classification of these samples.

The dataset consists of recorded terrain samples divided into 3443 training,
1148 validation, and 1148 test subsets. Each signal contains 160 3-axis force and
3-axis torque measurements. The dataset comes from the continuous walking
session, which is why it consists of an uneven number of samples registered for
different classes (Fig. 3.4 presents their distribution). In the dataset, there is
no difference between samples for each foot. All samples have equal tmax.

Queensland Civil and Administrative Tribunal dataset (QCAT) An-
other state-of-the-art dataset was employed to measure the performance of
HAPTR models – the QCAT dataset. It consists of recordings from multiple
walking sessions of the quadrupedal, self-configurable robot called DyRET [114].
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Figure 3.4: (© 2021 ELSEVIER) The distribution of terrain samples for the PUTAny
dataset.

Raw signals come from the IMU mounted in its base and 3-axis forces from
spherical sensors mounted at the tips of the robot’s legs. DyRET [114] is a
four-legged robot with a dynamic morphology, designed to adapt the lengths of
its limbs to different terrains. The kinematic chain of its leg was composed of
two rotational joints intended for locomotion, and two, slow-changing prismatic
joints for elongating and shortening the leg. It had the Xsens MTI-30 IMU
mounted in its base consisting of a 3-axis gyroscope, a 3-axis accelerometer,
and a 3-axis magnetometer. Each foot has the 3-axis force sensor Optoforce
OMD-20-SH-80N.

The QCAT dataset consists of 2880 force and IMU samples – 6 terrains × 10
trials × 6 speeds × 8 steps. Each force and IMU time series had n = 22 axes – 4
× 3-axis force sensor and 2 × 3-axis angular velocities/linear accelerations, and
4-axis quaternion representing base’s orientation. In the experimental section
with the attention module, those axes created two modalities representing data
from homogeneous classes of sensors – force and IMU separately. Each signal
had tmax = 662. Similar to the PUTAny dataset, it does not differentiate feet
or evaluate performance for each foot separately. The QCAT dataset is publicly
available 3.

3.4.3 Adapted methods included in the comparison

Convolutional neural network with recurrent modules (CNN-RNN)
In [75], authors tackled the problem of a terrain classification for the legged

3https://data.csiro.au/collection/csiro:46885v2

48

https://data.csiro.au/collection/csiro:46885v2


robots. In their experiments, they verified two deep learning models (RNN and
CNN), a well-established SVM [115] as a baseline, and the FC network working
on Fast Fourier Transform (FFT) features extracted from raw signals. They
compared all of the mentioned models on the fixed-length and variable-length
time series. Both deep learning models and CNN performed better than the
traditional SVM method. However, this does not necessarily imply that they
are faultless. Long sequences of F/T signals caused a well-known problem of
gradient vanishing in the RNN, resulting in significantly deteriorating classifi-
cation accuracy. CNN was free of this shortcoming, but using 1D convolutional
layers forces working only on fixed-length input signals. Eventually, the feature-
engineering solution based on CNN required calculating the descriptors of input
signals, thus, not achieving satisfactory accuracy. The most recent version of
this model described in [18] is the composition of all three components described
before – RNN, CNN, and the MLP at the top. RNN and CNN components
process variable-length data. When it comes to the RNN, it is a natural conse-
quence of the recurrence, but CNN uses an additional masking mechanism. It
pads variable-length input signals with zeros to match the fixed length. This
model achieved the highest accuracy among all tested methods.

Dynamic Time Warping K Nearest Neighbors (KNN-DTW) The
KNN-DTW [90] was a baseline in the experimental section about the terrain
classification. It is a well-established, distance-based classifier that uses the
DTW algorithm to measure the similarity between query signals (input time
series) to the database of signals created during the training. While classifying,
it determines the three closest matches (k=3) to the query signal by matching
a training sample to the whole database. A training sample is then classified if
the majority (at least 2) of matched sequences from the database represent the
same terrain class. The experimental section includes results gathered using an
efficient implementation of the KNN-DTW in Python available in Sktime [116]
library.

Random Convolutional Kernel Transform (ROCKET) The authors of
the ROCKET algorithm proposed a method for the TSC that works with a
low computational burden while being invariant to the representation of the
input features (e.g., a shape or a frequency) because it uses a single, general
mechanism – a convolution. Firstly, some significant number of random convo-
lutional kernels transform input time series into a feature space. The authors
claim that these features – in combination – capture relevant information for
the TSC. Finally, any classifier might use them for training. However, the au-
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thors recommend linear classifiers (e.g., a logistic or Ridge) because they can
utilize a small fraction of information from all input features. Unlike artificial
neural networks, kernels’ weights are not learnable but randomized. Hence, the
computational cost of training is low. The initial design was to work primarily
with univariate signals. In the experimental section, each axis of F/T signal was
transformed separately to a feature space using 10000 random kernels. Once in
a feature space, different information channels were concatenated to form one
feature sequence passed to the final classifier.

Temporal Convolutional Network (TCN) In [100] authors proposed a
general, convolutional-based framework called the Temporal Convolutional Net-
work for time series processing. It fits the requirements established in this work
and handles longer sequences than recurrent neural networks. The TCN consists
of multiple 1D fully-convolutional layers, where all subsequent hidden layers are
in the same length as previous ones. It keeps the output of the TCN the same
length as the input. The casual convolution is a mechanism added to keep the
past time samples away from the current ones, so there is no leakage from the
future into the past. The more time steps are in the input signal, the more com-
plexity it adds to the TCN. To overcome this shortcoming, the authors proposed
to use dilated convolutions with the exponential receptive field in the consecu-
tive layers. This procedure allows handling significantly longer sequences while
achieving a relatively low computational burden. The TCN does not contain
any form of memory or recurrence while providing state-of-the-art results. The
original TCN returns a features sequence, which does not apply to the task of
terrain classification. Therefore, the adapted model includes the Multi-Layer
Perceptron (MLP) layer at the top to predict terrain classes. In the experimen-
tal section there were evaluated several configurations of the TCN that differ
when it comes to the number of convolution levels (LE), hidden units per each
level (HI), and the number of hidden neurons in the (MLP):

• Light - LE=4, HI=8, MLP=128,

• Base - LE=8, HI=16, MLP=256,

• Large - LE=16, HI=25, MLP=256.

The authors of [100] shared the implementation of their TCN, which was a
basis for the experimental verification in the following work.
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3.4.4 Contributed methods based on transformers

The following section presents two methods in chronological order, as
they appeared in the publications of the author of this thesis. They work
under the same principles. However, the second one was the follow-up
work that included an improved version of the HAPTR with the MAL.

Haptic Transformer HAPTR The most recent peak in popularity of trans-
formers, specifically their application to computer vision problems [104], was a
foundation under consideration of this approach for terrain classification. No
previous methods utilized transformer architecture to process multi-modal, raw
sensory feedback to classify terrains. However, when writing this dissertation, it
became apparent that other research groups were at the same time working on
the same subject but in different research domains. The time series transformer
appeared, e.g., in [117] – the submission of this article took place one month
after the author’s initial HAPTR article [118], which indicates the high priority
in the research community of the issue addressed. The HAPTR [118] comprises
the first proposition to tackle the problem using such an architecture. It uses a
self-attention mechanism instead of convolutions to classify the terrain. As the
authors of [119] point out, the usage of multi-head attention modules improves
the accuracy and generalization ability of the method by turning the training to
domain-specific knowledge instead of data-specific (as is the case using convo-
lutions), which would be beneficial in the robotic application. Similar to Vision
Transformer (ViT) used in [103], the HAPTR uses a learnable linear projection
layer to map a signal s ∈ R6 (e.g., a 3-axis force and 3-axis torque) into a se-
quence of the same length tmax in feature space of 16 axes. In the following
work, samples of that sequence are called patches. Then, positional encoding
(PE) is added to every patch to retain position information and passed to the
Transformer Encoder Layer. Eventually, every vector is reduced in dimension-
ality before the final classification with the MLP. The implementation of the
HAPTR is based primarily on PyTorch modules, especially TransformerEncoder
and TransformerEncoderLayer.

For the HAPTR, there were evaluated variants with a different number of
encoder’s layers (L) and attention heads (H). Models are referred as:

• Light - L=2, H=4,

• Base - L=4, H=8,

• Large - L=8, H=8.
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Improved Haptic Transformer with the MAL The HAPTR is the first
attempt to tackle the problem of terrain classification using a transformer-based
neural network. With a piece of domain knowledge about the problem itself,
the HAPTR evolved to an improved version called the HAPTR2 as presented
in Fig. 3.5.

Figure 3.5: (© 2022 ELSEVIER) Improved HAPTR is the follow-up model based
on [118] with MAL.

The main novelty of the presented method is the MAL, which basis on the
Multi-Head Attention mechanism introduced in the [101]. In [119], the au-
thors show that the composition of the attention mechanism with convolutional
layers is complementary and generally beneficial. The former behaves like a
low-pass filter due to the weighting mechanism presented in the Eq. 3.1, which
flattens the feature maps. On the other hand, the convolutions are prone to cap-
ture high-frequency features and focus on data-specific knowledge (e.g., spikes,
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slopes, mean and variance changes). This phenomenon suggests that using the
multi-head attention mechanism would improve the robustness of the robotic
system, which might undergo a plethora of data-degradation scenarios in the real
world. The MAL implements the fmod : S 7→ W function and assigns impor-
tance weights w to the input modalities at each time step t. Firstly, input time
series s is split according to its modalities (i.e., 3-axis force and 3-axis torque
signals measured at the robot feet are separate modalities) and passed to 1D
convolutional layers, which creates flattened representations of the multi-axes,
modality signal representations of the same length tmax as inputs. Learnable
linear layers process and shape each modality representation to so-called queries
(Q), keys (K), and values (V) for the dot product attention layer. There are as
many queries as input samples. Then, each sample is weighted between existing
modalities and scaled by the factor of (1/

√
dk), where dk is the dimensionality

of multiplied queries and keys. Therefore, the Eq. 3.1 describes activation of
the MAL layer:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3.1)

The keys are formed of a matrix with size dk × dk. Rows represent a d− th

modality with d = 1, 2, ..., dk. Therefore, the closer the query is to the cor-
responding key, the higher weight is associated with that modality. MAL can
work with any number of user-defined modalities, but in the scenario with forces
and torques, they are two separate modalities. The dk is equal to 2, and keys
are composed of the 2 × 2 matrix. Finally, a softmax is applied on the scaled
dot-product to obtain a probability distribution. Fig. 3.6 presents the infor-
mation flow of MAL. Typically in transformer models, the self-attention layer
delivers weights between all time steps, e.g., in Natural Language Processing, to
reveal the contextual associations between the first and other words in the sen-
tence. Nevertheless, in the following work, the attention layer discovers weights
between time steps and entire modalities rather than between all pairs of time
steps in the input signal.

Apart from the MAL, a complete list of changes introduced in HAPTR2 in
comparison to the initial version includes:

• used an improved learning rate scheduling [120],

• an output from the MAL was concatenated with original input signals by
channels axis,

• an average pooling layer replaced a mean operation before an MLP clas-
sification layer,
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Figure 3.6: (© 2022 ELSEVIER) The visual explanation of the MAL used in the
experiments. It was used to increase the robustness of the HAPTR model.
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• included a batch normalization layer in the final MLP classification layer.

3.4.5 Discussion on chosen methods

The section discusses terrain classification using haptic signals and proposes
four adapted methods for further experimentation: CNN-RNN, KNN-DTW,
ROCKET, and TCN. CNN-RNN leverages the power of convolutional and re-
current neural networks to learn spatiotemporal features from high-dimensional
haptic signals efficiently. This combination has shown great potential in similar
tasks. However, one of the main challenges might be overfitting and a lack of
interpretability of learned features. Moreover, they have limited usability when
the sequence is variable-sized (however, that aspect was not considered in this
study). A distance-based method such as KNN-DTW can show potential in
handling time series and are generally easy to implement. On the other hand,
they are computationally expensive, especially for large datasets, which can
exclude them from real-world applications for terrain classification. ROCKET
was implemented to be fast and straightforward. However, because of using
convolutional kernels ROCKET will suffer from the same limitations. Finally,
TCN appears to be a perfect choice for terrain classification of haptic signals as
it leverages the advantages of CNN with the lack of disadvantages of recurrent
modules of RNN. However, it might require careful hyperparameter tuning and
a large amount of training data to avoid overfitting.

In the following experiments, there was presented HAPTR – a CNN model
with attention layers that will possibly overcome the limitations of other meth-
ods by selectively focusing on the most informative parts of the input. Attention
mechanisms allow the model to learn to selectively attend to specific parts of the
input data based on their relevance to the task at hand. This selective focus can
help to reduce noise and irrelevant information and improve the model’s ability
to classify complex data such as haptic signals. Additionally, by focusing on the
most informative parts of the input, the attention mechanism can help to over-
come limitations such as overfitting and improve the interpretability of learned
features. In the following thesis, the author proposed to use additionally the
Modality Attention Layer (MAL) that pushes further the ability to select rele-
vant channels of the multi-dimensional signals and increase the interpretability
of decisions made by the model.
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Chapter 4

Robust multi-modal fusion

The following Chapter and the corresponding results in Part 7 basis on
the following publication of the author of this thesis.

• M. Bednarek, P. Kicki, K. Walas (2020) "On Robustness of Multi-
Modal Fusion – Robotics Perspective". In: Electronics Journal

4.1 Introduction

The multi-modal information fusion remains crucial in a wide range of robotic
applications that require understanding various physical properties, like the tex-
ture of an object, its color, softness, and more. Due to the complex behav-
ior needed to complete such a task, a coalescence of visual and haptic stimuli
might be beneficial in, e.g., dexterous manipulation of rods. In the classical
work [121], the authors observed relations between information from different
human senses, which caused a multi-sensory illusion further called the McGurk
effect. In robotics, various probabilistic models based on Bayesian inference
are distinctive to multi-modal data fusion. However, commonplace methods
might not be adequate due to many available multi-modal and multi-relational
datasets. Deep learning methods typically manage such extensive size datasets
with great success; however, everything comes with a price, which in this ex-
ample is learning data contamination, biases, and a lack of explainability. In
recent years, there has been a lot of research on efficient data fusion using
machine learning, especially using deep neural networks [122]. Nevertheless,
researchers focused on the improvements in the accuracy of their models and
paid almost no attention to their robustness to non-nominal conditions, which
are ubiquitous in robotics tasks.
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Figure 4.1: Fig. presents a general setup in conducted experiments. Different modal-
ities subjected to different data degradation procedures were fed into the tested
learning-based methods to evaluate their performance and robustness.

The multimodal fusion in dexterous manipulation [123, 124] nowadays is
an emerging field. However, the development of the field for such complicated
robotic applications very often depends more on advances in sensors, such as
skin-like measurement devices [125, 126, 29] than fusion algorithms themselves.
The emphasis on research of multi-modal systems in the field of robotics is
especially visible in areas like image segmentation [127, 128, 129], 3D recon-
struction [130] and a tactile understanding [4].

From the robotics perspective, the robustness of the multi-modal perception
system against data corruption is of paramount importance. It can be achieved
by finding interchangeable and complementary portions of information from
different modalities in the input data stream. However, researchers mainly
concentrated on establishing a benchmark in solved tasks rather than exploiting
this complementarity. In state-of-the-art, there are very few examples of works
where authors consider such interchangeability of modalities in the context of
robustness, typical for real-life scenarios, noises, and sensor faults.

Multi-modal machine learning constitutes a scientific field of growing inter-
est that brings many challenges. In [122], the authors have listed open questions
that should find answers to advance state-of-the-art development. Firstly, how
to represent the data (representation)? Then, how do we map knowledge from
one modality to another (translation)? How do we find dependencies between
heterogeneous modalities (alignment)? How do we join the multi-modal data
stream together (fusion)? Finally, how to successfully transfer knowledge from
training a model on one modality to another (co-learning)? Many data fusion
techniques, such as the Kalman filter, Bayesian inference, and early fusion, can
be found in the literature. Unfortunately, each solution is somewhat limited
to low-dimensional or homogeneous data. Therefore, the proposed compari-
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son does not cover them and focuses on the most flexible model-independent
methods that can work with any data type.

The following chapter investigates state-of-the-art data fusion methods based
on artificial neural networks in robotics-oriented tasks. In the experiments,
multiple scenarios were employed, like grasp outcome classification, haptic and
visual fusion, haptic-only signals fusion, and multiple scenarios where the input
modalities were subjected to noises.

4.2 Related work

4.2.1 Data fusion approaches

In the review [122], the authors separated the multi-modal fusion methods into
subfields – model agnostic and model-based. In the following work, experiments
focused on the model agnostic methods because, typically, they are more general
and widespread among roboticists. In the experimental section, chosen deep
learning methods consist of three major categories of data fusion – early (data-
level), intermediate (feature-level), and late (decision-level) [131]. Additionally,
at least two of them might also be combined into one hybrid fusion method [122].
In [132], the authors systematically divided different sensor fusion methods.

Early fusion Generally, this type of fusion is based on combining information
from different modalities at the very beginning of processing, e.g., by concate-
nating input time series (if possible). This method enables the deep learning
model to understand low-level interactions between modalities and capture them
together to produce meaningful features for further layers. However, a signifi-
cant limitation exists for such approaches, i.e., when input signals or low-level
features from initial layers do not fit each other because they are heterogeneous.
For example, it is not obvious how to incorporate 2D images with a 1D time
series into one feature space. It would be possible to concatenate both modal-
ities by flattening the 2D image into a 1D vector. However, it would cause a
loss of information about each pixel’s position and significantly decrease that
modality’s information gain. For that reason, an early fusion approach was not
incorporated in the experimental section, as it generally does not apply to all
data types in the comparison.

Feature-level fusion Combining different data representations at some high
level of abstraction is a common practice in machine learning for data fusion.
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This technique allows for combining heterogeneous data from different modali-
ties and lets the predictive model process joint representation. Among others,
that type of fusion is popular in robotics-related areas such as object recogni-
tion [133] and scene recognition [134]. In [135], authors proposed a method for
multi-modal data fusion applied to motion planning. In [124], authors employed
an early multi-modal fusion for the contact-rich manipulation task. Their com-
pelling results were appreciated, and the authors received the best paper award
at the International Conference on Robotics and Automation (2019). The au-
thors of [136] proposed another method of feature-level fusion, where instead
of concatenation, they fused only some random parts of feature vectors from
different modalities. Alternative intermediate fusion approach [137, 138] use
so-called Tensor Fusion Networks, which often appear in multi-modal sentiment
analysis literature. However, to the best of the author’s knowledge, they were
not used in robotic applications yet. This type of deep learning model suffers
from low computational efficiency; however, the follow-up work on the LMF
model in [139] further addressed this problem. The authors exploited a tensor
decomposition to reduce the number of model parameters.

Late fusion Generally, late fusion methods manage to work with any data
type, similar to feature-level fusion methods. They do not combine information
but only the outputs of separate models used to process different modalities. The
work [140] presents an outstanding review of late fusion techniques. Authors
of [141, 142, 143] showed a typical plan of a late fusion. In [142, 143], the authors
presented the late fusion method to process RGB-D data in object detection
and discovery. The work [141] showed the method to combine images and point
clouds for the semantic segmentation of the urban environment for autonomous
vehicles. In [144], the authors proposed a late fusion deep learning model, which
took into account the influence of a data deterioration on the model’s decision
and used a noisy-or operation to integrate these decisions. The experimental
section of the following work also investigates the robustness of fusion methods.

Hybrid fusion This is an alternative approach to data fusion to the ones
previously presented. It integrates information from different modalities at two
or more levels. Authors of [127, 128] presented methods of such approaches for
robust semantic segmentation in the outdoor environment for autonomous nav-
igation. The authors proposed a convoluted mixture of deep experts that uses
importance weights determined by a specialized gating network. This module,
in turn, uses a feature-level representation of all modalities. The Mixture of
Experts (MoE) can choose which modality should influence final segmentation
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more based on these weights.

4.2.2 Fusion robustness

Multi-modal and robotics-related literature very rarely considers fusion robust-
ness. However, the author of the following thesis finds this problem urgent to
solve regarding deploying an autonomous robot to the real world. Only several
papers [136, 144, 145, 146, 147, 148] took into account the non-nominal condi-
tions of a multi-modal fusion and provided some analysis of fusion robustness to
data corruption. Such degradation could occur due to sensor noise, failure, or
unexpected conditions like e.g., electromagnetic influence of motors used in in-
dustrial areas. The method presented in [127] can potentially take into account
mentioned data degradation and express its beliefs in terms of the weighted
model’s decisions. However, the authors of this work did not elaborate more on
that matter. Although one can find literature on the robustness of multi-modal
fusion methods in robotics, it is noticeable that this area does not have any
comprehensive and collaborative benchmark of fusion principles.

4.3 Proposed solution

Typically, robots operating in the real world have at their disposal multiple
onboard sensors like cameras, F/T measurement devices, LiDARs, IMUs, and
others. They all play a significant role in robotic perception tasks, including
haptic perception or scene reconstruction. However, they also produce a vital
piece of information that needs to be efficiently processed to exhibit to ensure
robustness against disturbances. As the volume and dimensionality of sensory-
feedback increase, it might be troublesome to manually design a multi-modal
data fusion system that can handle heterogeneous data. Recently, multi-modal
machine learning became an emerging field with research focused mainly on an-
alyzing vision and audio information. Although, from the robotics perspective,
haptic sensations experienced from interaction with an environment are essen-
tial. The following experiments focused on four learning-based fusion methods
and three datasets containing haptic signals, images, and robots’ poses. Tests
related to grasp outcome classification, texture recognition, and – most chal-
lenging – a multi-label haptic adjectives classification based on haptic and vi-
sual data. Conducted experiments were focused not only on the verification of
the performance of each method but mainly on their robustness against data
degradation. Such degradation of sensory feedback might occur when the robot
interacts with its environment. Additionally, the data augmentation technique
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was validated to increase the robustness of data fusion methods.

4.4 Multi-modal fusion from the robotics perspec-

tive

4.4.1 Problem formulation

The following section investigated three types of recognition problems present
in the literature.

Binary classification of a grasp outcome Let the fbinary : S 7→ C be a
grasp outcome prediction function that assigns a Boolean value representing
the predicted grasp outcome. It is based on sensory feedback from the set
S : {s ∈ R3×n}, where 3 × n represents axes of the input data stream created
with three tactile sensors mounted on a gripper.

Multi-class classification of textures Let the fsingle : S 7→ C be a grasp
outcome prediction function that assigns a discrete value from the class counter-
domain C to a sensory measurement from the set S : {s ∈ R1} of signals regis-
tered while the unconstrained motion of a haptic sensor on a variety of surfaces.

Multi-label classification of haptic adjectives Let fmulti : S 7→ H be a
multi-label haptic classification function that assigns a subset of haptic adjec-
tives from the set of strings H = {h1, h2, ..., hm} to a signal sample from the
sensory domain S : {s ∈ R2×n}, where 2× n is a number of axes of the sensory
feedback from two distinct sensors. Haptic adjectives assigned to each sample
are not mutually exclusive, and each example might have an undefined number
of haptic adjectives ranging from 1 to m. In this task, the sensory domain S
contains heterogeneous data composed of RGB images of household objects with
associated 2 × 19-axes sensory feedback from the tactile sensor’s electrodes.

Given the problem formulations above, the following components could be
introduced:

• an implementation and thorough comparison of four different deep learn-
ing methods for the fusion of multi-dimensional signals, including non-
heterogeneous data – Late, MoE, Mid and LMF, that approximate func-
tions fbinary, fsingle, and fmulti in respective tasks;

• research on the impact of the data deterioration and leading modalities
on the predictions of each model in the aforementioned tasks;
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4.4.2 Multi-modal datasets

BioTac Grasp Stability Dataset (BiGS) This is a dataset that consists
of 2000 samples of sensory feedback from the BioTac [29] for the grasp-stability
prediction. Haptic signals come from grasping three objects: a ball, a box, and
a cylinder. Each was associated with the registered outcome – a success or a
failure. The authors of the following dataset used three bio-inspired BioTac
sensors mounted on the fingers of a gripper and a F/T sensor mounted on the
wrist to gather tactile sensory feedback. The experimental section of the follow-
ing work shows the results of grasp outcomes based on the gripper’s positions,
orientation, and registered force signals. Each motion had a constant length
by using the Fourier method to crop them. Eventually, each signal consisted of
multi-dimensional time series with a length equal to 1053 time steps. Positions
were 3-axis vectors, while orientation was 4-axis quaternion readings, and force
readings were composed of 3-axis series. The training dataset for the cross-
validation included 3197 signals from each modality, while the test set 801 such
samples. All samples were independent of each other.

Penn Haptic Texture Toolkit (HaTT) The toolkit [3] consists of 100
different textures photographed and presented as RGB images. Each photo had
associated normal force, acceleration, and position signals registered while the
unconstrained motion of an impedance-type haptic device SensAble Phantom
Omni [37]. Tab. 4.1 presents classes chosen for the experiments.

Table 4.1: Textures from the HaTT chosen for the experiments.

ABS Plastic Aluminum Foil Aluminum Square Artificial Grass Athletic Shirt

Binder Blanket Book Brick 1 Brick 2

Signals in the HaTT dataset register the motion of a haptic device’s tool-tip
on different surfaces for 10 seconds. The experimental section utilizes nor-
mal forces, acceleration, and velocity signals as input modalities. To combine
3-axis signals into a single axis, the authors of the dataset used the method
DFT321 [149]. Hence, the experiments involve this flattened representation.
The authors motivated the dimensionality reduction because humans cannot
sense the direction of high-frequency vibrations [150]. The training dataset had
8000 signals, while the test set included 2000. All signals were fixed-length
(200 time-steps each), while the number of samples inside each class remained
balanced.
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Penn Haptic Adjective Corpus 2 (PHAC-2) The experimental section
regarding this dataset investigates the problem of multi-label classification of
haptic adjectives. The authors of [151] proposed an initial version of the PHAC-2
dataset, which has been updated in [4]. The following dataset includes 53 ob-
jects photographed from 8 different views. Each photo received a corresponding
haptic signal from squeezing an object with two BioTac sensors mounted on a
gripper. Moreover, every example corresponds with several haptic adjectives
used as labels. In the dataset, there were 24 haptic adjectives in total. Fig. 4.2
presents the histogram of classes of the balanced dataset.

Figure 4.2: Occurrences of each adjective in the PHAC-2.

In the experimental section, one had to ensure that the adjectives distribu-
tion remained fixed among train and test subsets. The iterative stratification
method [152] enabled us to avoid over/under-representing haptic adjectives in
the train/test subsets. The such imbalance would lead to a significant decrease
in the prediction performance and misleading results. Hence one can find this
procedure of paramount importance. An RBG image with the spatial resolution
of 224 × 224 with two raw signals from 19-electrode arrays from both BioTac
sensors represented one input sample. All time series remained fixed-length with
67 values each. Eventually, 265 data samples were in the training dataset, while
159 appeared in the test set.

4.4.3 Fusion methods

The literature review shows several model-agnostic data fusion techniques, but
the experimental analysis incorporates four of them, as it was shown in Fig. 4.3.
Due to the simplicity and popularity of late and intermediate fusion, they in-
evitably appeared in the benchmark. The Mixture of Experts (MoE) [127] was
another candidate for the experimental section. The proposed architecture was
similar to the late fusion one, but it also can determine modality importance
based on latent representations. The Low-Rank Multimodal Fusion (LMF) is
a novelty in robotics, which appeared in the experimental analysis because of
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promising results in other areas, such as sentiment analysis. All of the chosen
methods work on embeddings in the feature space. An encoder was a back-
bone for all models that transformed input signals into a 10-dimensional latent
space. Each fusion method obtained N latent vectors L1, L2, . . . , LN fed to
selected network architectures. Methods to data fusion examined in the exper-
imental validation were presented schematically in Fig. 4.3 and described in
detail below.

Late Fusion Generally, that method’s core operation principle is to process
each input modality separately and combine predictions at the very end, assum-
ing they are equally important. In [132], authors described this merging process
at the decision level. According to Dasarathy’s fusion classification [153], this
approach is called the Decision In-Decision Out (DEI-DEO). Each latent vector
was processed separately using neural networks in the experimental section. The
overview shown in Fig. 4.3 illustrates these networks as arrows. This type of
architecture was proposed to obtain predictions for each modality p1, p2, . . . , pN

in the form of logits. Next, these logits were summed up and transformed into
class probabilities using a softmax function.

Mixture of Experts (MoE) This method works according to the same prin-
ciple as the Late Fusion, but it can also determine input modalities’ importance
weights through the gating network. That judgment was encoded in a vector
w representing weights, such that

∑N
i=1 wi = 1. In contrast to the Late Fusion,

corresponding weights influence predictions from modalities by multiplication.
At the top, an MLP takes all latent vectors and produces final predictions w.
That architecture potentially facilitated a neural network to learn reactions to
the input data degradation by assigning lower weights to the degraded modali-
ties. On the other hand, if the data deterioration did not occur during a training
phase, there was a possibility that the MoE would put too much emphasis on
the modality affected by some noise during testing, which might result in false
predictions.

Intermediate Fusion (Mid) The fusion of information carried by individual
modalities happened by concatenating their representations in the latent space.
This shared representation was processed further to obtain a prediction based on
common features. Authors of [132] presented a merging process at the feature
level. According to Dasarathy’s classification, this approach is the Feature In-
Feature Out (FIFO). That method lets a fusion model draw information from
all modalities in the latent space and process them freely. The Mid method
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would also be able to gain some robustness to the data degradation during the
training, as it could learn to reduce the impact of degraded modalities. However,
in contrast to MoE, its robustness and decisions were not interpretable at any
stage of calculations.

Low-Rank Multimodal Fusion (LMF) This tensor-based approach for
multi-modal fusion primarily focuses on revealing interactions between features
extracted from different modalities. This technique aims to create some high-
dimensional tensor-based representation by taking outer products over the uni-
modal latent vectors L1, L2, . . . , LN . Then that representation linearly maps
to the low-dimensional space using learned weights and biases. Fusion meth-
ods based on outer products typically suffer from computational inefficiency as
tensor weights with the number of multiplications scale exponentially as the
number of modalities. Nevertheless, the technique proposed by the authors
of [139] does not use a high-dimensional weight tensor directly with the tensor
representation of the data. The authors proposed decomposing tensor weights
into N sets of modality-specific factors to improve the method’s efficiency. Such
decomposition significantly reduced the number of computations, as it lets to
map from feature space to predictions directly. Moreover, it does not require
any more explicitly creating any high-dimensional tensors.

Figure 4.3: Multi-modal fusion architectures used in experiments. From left: Late
Fusion (Late), Mixture of Experts (MoE), Intermediate Fusion (Mid), Low-Rank Mul-
timodal Fusion (LMF). Arrows represent transformations with neural networks, while
Li, pi, wi denotes latent vectors, predictions, and trainable weight associated with i-th
modality.

4.4.4 Discussion on chosen methods

The four fusion methods presented in the following section have their advantages
and disadvantages. Late Fusion is a relatively simple-to-implement method that
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does not require complex architectures and allows each modality to be processed
independently. However, it assumes that all modalities are equally important,
which may not be true in many scenarios. On the other hand, MoE gains an
additional degree of freedom when learning the importance of each modality
and adjusting its predictions accordingly. Still, it may assign too much weight
to noisy or irrelevant modalities, leading to incorrect predictions. Mid allows
the fusion model to draw information from all modalities in the latent space,
which can improve robustness to data degradation during training. However,
similar to MoE, its decisions are not interpretable again. Finally, LMF aims
to reveal interactions between features extracted from different modalities, but
it suffers from computational inefficiency. The proposed decomposition in [139]
significantly reduces the number of computations, but it still requires mapping
from feature space to predictions directly. Thus, the choice of the fusion method
should depend on the specific application’s requirements and characteristics of
the input modalities.

All models in the experimental section share a comparable number of learn-
able parameters. As datasets in the following experiments contained two het-
erogeneous types of data, i.e., time series and images, 1D convolutional layers
(Conv1D) followed by the LSTM units processed time-series, while the FC at
the top returned final predictions. Similarly, images were processed using 2D
convolutional layers (Conv2D) with a few FC layers on top.

Similar neural network architectures were used for the BiGS and HaTT
datasets to produce latent vectors – 3 × Conv1D layers with 64 filters of size 5
× 5 with stride equal to 2, followed by the LSTM layer with 32 units, and 2 FC
layers with 128 and 10 neurons respectively. However, in the case of the BiGS
dataset, for Mid, Late, and the MoE, the number of units in the last FC layer
was changed to 2, as it was a binary classification. In the case of the MoE (for
the BiGS and HaTT), the number of convolutional layers filters was reduced.
This architecture uses an additional layer to produce wi. This network for all
datasets had the same architecture, namely, 3 × FC layers with 128, 64, and
N units, where N is the number of modalities. Similarly, in the Mid fusion
to process the concatenated latent vectors into the predictions, but in the last
layer, the number of units was equal to the number of classes.

In the experiments regarding the PHAC-2 dataset containing time series and
images, heterogeneous data samples had to be processed together. Models used
for time series had similar architecture as for BiGS and HaTT datasets, however
with 24 neurons in the last FC layer and 2 × Conv1D layers for all methods
except the LMF. While processing images, the neural network had 2× Conv2D
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layers with 64 filters of size 5×5, stride 2, followed by 2 × FC layers with 128
and 24 neurons. Again, except the LMF, which had 10 neurons in the final
layer.

The code used in the experimental section to create the following comparison
is available online 1. It contains additional implementation details of fusion
methods and the architectures of neural networks used in the experiments.

1https://bitbucket.org/m_bed/sense-switch/
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Part III

Experimental verification
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Chapter 5

Material recognition

5.1 Supervised stiffness estimation

The main focus of this section is to introduce the results from the experiments
on supervised stiffness estimation, which will be the subject of the subsequent
section. I encourage readers to refer to the section 2.4 for formulating this topic.

5.1.1 Comparison of architectures

The experimental section contains the results of three types of neural networks
tested using simulated signals to choose the best one for further experiments.
Experiments on the performance of compared models focused on Mean Absolute
Error (MAE) defined as:

MAE(ytrue, ypred) =
1

n

n∑
i=1

|ytruei − ypredi | (5.1)

Where ytrue represents the true labels, ypred represents the predicted labels,
n represents the number of samples in the dataset, and |·| denotes the abso-
lute value. The second evaluation metric was Mean Absolute Percentage Error
(MAPE) defined as:

MAPE(ytrue, ypred) =
100%

n

n∑
i=1

∣∣∣∣ytruei − ypredi

ytruei

∣∣∣∣ (5.2)

Tab. 5.1 presents values of MAE and MAPE from the cross-validation. The
objective of the comparison was to evaluate the performance of the proposed
algorithms and choose the best-performing method for further experiments on
shape generalization and to close the reality gap.
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Table 5.1: Comparison of three architectures according to MAE/MAPE metrics.

CNN CNN-LSTM CNN-Bi-LSTM
k-fold MAE MAPE MAE MAPE MAE MAPE

I 19,1 2,4 6,2 0,8 6,2 0,8
II 11,8 1,6 5,4 0,7 5,4 0,7
III 15,1 2,2 7,8 1,1 7,8 1,1
IV 14,6 1,9 6,7 0,9 6,7 0,9
V 18,1 2,1 6,2 1,0 6,2 1,0

MEAN 15,7 2,0 6,8 0,9 6,5 0,9
SD 2,9 0,3 0,9 0,2 0,7 0,1

The experiments showed the performance of three types of neural networks
in a stiffness parameter estimation based on inertial and sensory feedback. We
were able to choose the best one for further analysis. Initially, experiments re-
stricted all models to using only the simulation dataset without any real-world
data samples. Tab. 5.1 shows results from the cross-validation procedure on
the simulation dataset to verify the consistency of the dataset and to find the
best-performing model. The mean results of the MAE/MAPE show the advan-
tage of LSTM models in the stiffness estimation using raw inertial recordings.
Firstly, the CNN-Bi-LSTM is more accurate in its predictions than CNN, re-
sulting in MAE of 6, 5N

m and MAPE of 0, 9%, which means the improvement
over 9, 5N

m and 1, 1% achieved by the CNN. Secondly, the resilience of the learn-
ing process also improved, and reduced deviations of errors obtained between
cross-validation folds prove that statement. For CNN a standard deviation of
results is 2, 9N

m MAE and 0, 3% MAPE, while the CNN-Bi-LSTM reduced these
metrics to 0, 9N

m and 0, 2% respectively. Although the results for both recurrent
models appear on the same level, the CNN-Bi-LSTM exhibited a slightly better
performance resulting in a smaller MAE. It means a lower absolute error on
average. Finally, any further experiments utilized that architecture.

5.1.2 Shape generalization

The experimental section includes more experiments concerning the simulation-
only datasets to verify the capability of the CNN-Bi-LSTM in the stiffness esti-
mation. They started from the cross-validation for chosen model and reported
the MAE/MAPE for three different datasets in Tab. 5.2. Each test dataset
consists of sensor readings from squeezing episodes of only one object to report
outcomes on the shape-dependent regression.

The generalization capability of the CNN-Bi-LSTM and verification of its
performance on different types of objects need some additional experiments.
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Table 5.2: Results from experiments on the shape-invariant estimation of the stiffness
parameter using CNN-Bi-LSTM.

k - fold
Dataset

Ball Box Cylinder
MAE MAPE MAE MAPE MAE MAPE

I 20,3 2,0 24,1 1,8 15,6 1,8
II 29,6 2,6 12,9 1,6 15,8 1,9
III 27,1 2,0 22,8 1,8 16,0 1,9
IV 21,8 2,1 17,7 16,6 18,4 1,9
V 19,3 2,0 24,4 1,5 20,8 1,9

MEAN 23,6 2,1 20,4 4,7 17,3 1,9
SD 4,5 0,3 5,0 6,7 2,2 0,0

Figure 5.1: The box plot presents stiffness estimation performance metrics
MAE/MAPE obtained on real-world test dataset. The number of real-world data
samples included in the training dataset increases while the test error decreases. Boxes
represent successive experiments and consist of the five-number summary of the result
(from the bottom of each box): minimum, first quartile, median, third quartile, and
maximum value.
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Tab. 5.2 presents the MAE/MAPE from testing the network on three separate
datasets, each of which includes only one shape of an object while training all
at once. The results show that the model performed well in the shape-invariant
stiffness parameter prediction and generalized to different shapes. The cylinder-
shaped instances apparently let the Bi-LSTM achieve the lowest error than other
shapes of 17, 3N

m MAE and 1, 9% MAPE. However, box objects gave smaller
values of MAE (20, 4N

m ) than ball-shaped objects (23, 6N
m ), while looking at the

MAPE, the situation was the opposite, and some larger error was observed for
boxes (4, 7% / 2, 1%). The model was inaccurate more often while predicting
large stiffness values for boxes that resulted in the increased relative metric
MAPE. For spherical shapes, the estimation quality decreased to small values
that gave increased absolute measure (MAE).

5.1.3 Closing the reality gap

Table 5.3: The table presents performance metrics MAE/MAPE for best epochs from
each of the cross-validation turns. Injecting even a small number of real-world sensor
readings into the training resulted in a significant improvement in performance.

Experiment
Name

k - fold MEAN
I II III IV V MAE MAPEMAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

sim + noise 281,3 37,7 275,0 38,5 275,6 38,4 282,7 37,6 256,6 37,9 274,2 ± 10,4 38,0 ± 0,4
sim + 50 real 190,6 23,1 216,1 27,1 187,8 26,4 151,8 21,6 200,7 27,7 189,4 ± 23,8 25,2 ± 2,7
sim + 100 real 134,6 20,6 108,3 17,6 134,9 19,6 126,8 18,6 126,6 18,3 126,2 ± 10,8 18,9 ± 1,2
sim + 150 real 89,3 12,9 85,9 13,7 92,7 13,2 73,9 11,0 79,9 10,2 84,3 ± 7,5 12,2 ± 1,5
sim + 200 real 66,9 9,1 49,3 7,0 82,6 10,9 67,4 8,4 56,6 8,0 64,6 ± 12,6 8,7 ± 1,5

In the haptic recognition of physical parameters, data from the physics sim-
ulator seemed to resemble the real-world IMU readings only to some extent.
Although the results from sim + noise tests were significantly worse than any
of the sim + real trail, the mean MAPE 38% suggests that the correspondence
between the simulation-only and real-world signals exists. Another important
note is that MAE/MAPE values from each fold in the sim + noise trial remained
near to each other. The model’s result was similar for the entire dataset, as it
was equally balanced in the stiffness parameters range. However, we cannot con-
sider the reality gap problem to be solved yet, because the greatest improvement
appeared in the experiments with the real-world sensor readings in the train-
ing dataset. In Fig. 5.1, one can observe the decreasing value of MAE/MAPE
metrics as the number of real data samples are added to the training dataset.
The experimental section does not include the results from the training on the
real-world data only, as they would be incomparable with other experiments
due to the low variability of the stiffness coefficient. Additionally, the number
of data samples would be too low to assess a fair comparison in a real-world sce-
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nario. The lowest MAE/MAPE obtained in experiments on closing the reality
gap were achieved for sim + 200 real trial and were equal to 64, 6N

m and 8, 7%.
However, in the sim + 50 real experiment, the added number of real samples
comprised only 1, 2% of the entire training dataset, but it gave the largest im-
provement among all experiments. The improvement was 84, 8N

m and 12, 8% of
the MAE/MAPE.

5.2 Unsupervised haptic recognition

The main focus of this section is to introduce the results from the experiments
on unsupervised haptic recognition. I encourage readers to refer to the section
2.5 for formulating this topic.

5.2.1 Clustering of force measurements from the Touching
dataset

The following experiments compare unsupervised learning methods in the clus-
tering assignment of 3-axis force readings. These were gathered in equally
distributed episodes of touching different materials lying on the hard surface.
Fig. 5.2 shows the benchmark of different models tested on the Touching dataset.
One can observe that DEC methods outperformed other, more classical ap-
proaches, showing almost 60% of clustering accuracy, 0.7 normalized mutual
information score, and 0.65 purity. Only a slight improvement was observed
for the DEC variant that clustered embeddings produced by the autoencoder.
These were improvements achieved: 2.7%, 0.3%, and 3.1% accordingly.

Classical machine learning methods for the clustering task did not meet
any requirements of real-world deployment, achieving clustering accuracy below
20%, while one of them - the Agglomerative Clustering method, was less than
10%. It means these methods are unsuitable for real-world time series from
our experiments. Time dependencies, high signal noise typical for robotic ap-
plications, and a relatively small dataset prevent them from being useful for the
clustering task.

However, one can observe that force measurements in the Touching dataset
might not correctly describe touched material because they all lay on a hard
surface. Hence, thin fabrics, like, e.g., linen bags, could take on the properties
of the ground and become hard to recognize without supervision. On the other
hand, hard materials, like fabric or plastic, might be difficult to differentiate
based only on force measurements. That is why the Touching dataset was
challenging. More experiments on unsupervised haptic recognition were needed

73



Figure 5.2: Evaluation metrics obtained for the clustering assignment of the Touching
dataset.

using another dataset - preferably the one that isolates touched objects from
the ground and ensures measurements from different directions to gain more
insight into the object’s physics.

5.2.2 Experiment design importance - BioTac dataset

More experiments were needed to verify the usefulness of unsupervised learning
methods in haptic recognition. Fig. 5.3 shows the comparison of chosen methods
for clustering haptic measurements from the BioTac sensors. Again, both DEC
variants outperformed classical approaches by a large margin in all performance
metrics, which proves that classical methods are not the proper choice for such
a task.

However, all metrics of both DEC methods significantly improved compared
to the experiments conducted on the Touching dataset. For the DEC clustering
latent vectors from the autoencoder, the mutual information score achieved
over 0.9, which means that the proposed clusters are statistically similar to the
proper labels. That result is impressive, considering that there were 51 different
classes in the dataset. Similarly, the purity score exceeding 0.8 shows that
predicted clusters are homogeneous and mainly contain one object type each.
Finally, the clustering accuracy of 79% shows that DEC clustering strategies of
the unsupervised haptic recognition task are suitable for robotics applications
demanding such a functionality. This accuracy score is calculated by finding the
optimal assignment of predicted labels to clusters using the Hungarian algorithm
and then computing the ratio of correctly assigned labels to the total number
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of samples. Unsupervised accuracy does not require the notion of classes as
in supervised learning, and can achieve 100% when all samples from each true
label fall into separate clusters.

Figure 5.3: BiGS V2 consists of sensor measurements collected at a single time step,
allowing DEC to operate on raw data without any encoding. This Fig. displays eval-
uation metrics for the benchmark methods in the clustering assignment.

Again, similarly to the experiments using the Touching dataset, DEC variant
clustering latent vectors achieved slightly better results than the one working
on raw measurements, exceeding its mutual information score, purity, and clus-
tering accuracy by 0.5, 0.1, and 1.3%, respectively.

5.3 Discovering tactile dimensions - silhouette test

A human’s sense of touch might carry complex information about the touched
surface - not only about its hardness but also the type of texture, shape, or
temperature. These factors might be categorized into tactile dimensions that
comprise the psycho-physical perception of the world. In [52], authors conducted
extensive experiments that yielded a definition of these categories: macro, fine
roughness, warmness/coldness, hardness/softness, and friction. In the following
experiments, the objective was to find the optimal number of clusters - if tactile
dimensions exist, the optimal number of revealed sets would equal the number of
dimensions. Thus, the experiment would prove or refute the thesis posed by the
authors of [52]. Typically, we use silhouette analysis to find the optimal number
of clusters in the clustering assignment. The technique involves calculating
the silhouette coefficient (see 2.5.4) for each cluster sample, which measures
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how closely it matches its cluster compared to other groups. The silhouette
coefficient ranges from -1 to 1, with a high value indicating that the example is
well-matched to its cluster and a low value indicating that the sample is poorly
matched and may be better suited to a different set.

Previous tests showed that only the DEC was suitable for the silhouette
analysis on the BiGS V2 dataset. However, that method required different
numbers of expected clusters before the training, so it started from scratch
for every trial. These experiments involved DEC variant working on latent
vectors. Tab. 5.4 presents silhouette scores obtained after consecutive training
procedures. The highest score achieved model grouping data samples into three
groups.

Num. of clusters
II III IV V VI VII

Silhouette score 0.467 0.475 0.406 0.301 0.300 0.264

Table 5.4: Silhouette score for the DEC for different numbers of clusters.

Fig. 5.4 visualizes embeddings using T-SNE and silhouette scores for every
sample in the dataset. The model trained to group data into three clusters
achieved the highest result. BioTac sensor is one of the most sophisticated
haptic sensors on the market. However, compared to the human’s fingertip,
its 24 sensing electrodes might be too sparsely placed to recognize an object’s
macro and roughness properly, so the clustering strategy is based on other tactile
dimensions – warmness, hardness, and friction. That result partially proves the
existence of tactile dimensions.
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Figure 5.4: Silhouette test for every sample in the BiGS V2 dataset next to the
visualization of embeddings using the T-SNE method.
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Chapter 6

Terrain classification

6.1 Terrain classification using Transformers

The main focus of this section is to introduce the results from the experiments
on terrain classification for walking robots. I encourage readers to refer to the
section 3.4 for formulating this topic.

6.1.1 Real-life requirements for the terrain classification

In the vast majority of the research articles, overall accuracy is the state-of-
the-art metric describing the performance of the supervised terrain recognition
algorithm. However, when the distribution of classes in the dataset is not uni-
form, this measure will be skewed in favor of over-represented categories.

In the real world, an autonomous robot has to deal with numerous terrain
types that naturally occur with different frequencies and want to acquire a
reliable performance in all the considered terrains. To verify that classification
algorithms are robust enough to operate in the real world, the experimental
section presents a criterion of minimal accuracy Accmin:

Accmin = min
i
(Acci), (6.1)

where Acci is the accuracy for an i-th terrain type. The goal of the Accmin

measure is to capture the classifier’s performance on the most challenging terrain
type.

The accuracy metric represents the system’s ability to recognize the terrain
but does not capture if it is viable to be deployed and used on a real legged
robot. This chapter argues that the classification method must have a low
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computational burden and fast inference time for the robot to adapt its gait in
real-time and prevent any possible damage. As each walking robot is different,
the overriding assumption is that an inference time below 10 ms would satisfy
these needs and be estimated based on the typical frequency of the control
loops of the legs reaching hundreds of times per second. The neural network
size should be as small as possible as a genuine autonomous robot needs GPU
capabilities for a range of other tasks, e.g., object detection or segmentation.
Apart from the general accuracy, we should also consider the accuracy of the
most challenging terrain, model size, and inference time to determine the best
classification method for the terrain classification task.

6.1.2 Accuracy evaluation on the Poznan University of
Technology ANYmal dataset

In this section, to compare the HAPTR with the public results, the PUTAny
dataset was split into train/test subsets. The test data came from a different run
than the samples used for training. Tab. 6.1 presents the results obtained by the
classical algorithms (KNN-DTW, ROCKET), classical deep learning solution
(TCN), transformer-based approaches (HAPTR, HAPTR2), and the state-of-
the-art CNN-RNN.

Table 6.1: (© 2022 ELSEVIER) The accuracy comparison measured on the test set
of the PUTAny dataset.

Method Variant Acc [%] Accmin [%]
KNN-DTW - 74.0 54.4 (PVC)
ROCKET - 84.9 47.3 (PVC)

TCN
Light 84.5 68.7 (Art. grass)
Base 86.9 65.1 (Art. grass)
Large 87.5 72.3 (Art. grass)

HAPTR
Light 83.3 56.6 (Art. grass)
Base 90.3 80.7 (Art. grass)
Large 91.7 74.7 (Art. grass)

HAPTR2
Light 91.7 80.7 (Art. grass)
Base 92.2 81.9 (Art. grass)
Large 92.7 81.9 (Art. grass)

CNN-RNN [18] 93.0 86.7 (Art. grass)

The results achieved on the test set indicate that deep learning methods
(TCN, HAPTR, HAPTR2, CNN-RNN) generally achieve better accuracy than
any of the classical approaches (KNN-DTW, ROCKET). The most fundamen-
tal and universal KNN-DTW method performed the worst – 74%, while the
ROCKET classifier improved its result to 84.9%. The overall satisfactory accu-
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racy of the ROCKET came with a poor ability to perform on the most challeng-
ing terrain (PVC) of 47.3, which might be inadequate to complete the necessary
gait adaptation. Among the deep learning methods, the different variants of the
HAPTR outperformed the classical approach (TCN). Similarly, the improved
HAPTR2 exceeded the result of the HAPTR. For all of these methods, we re-
ported that increasing a network’s size improved its accuracy and also improved
Accmin. Nevertheless, neither of the presented solutions could overcome the
state-of-the-art CNN-RNN solution that reported the best accuracy of 93.0%

with the best Accmin = 86.7%.

This comparison shows the model’s accuracy without cross-validation (CV)
as opposed to comparable works of [18] and [56]. The following experiments
required an independent test set to truly measure the performance of a network
in a setup resembling a real-world operation. Reporting results from cross-
validation can still provide valuable information, such as the variance of the
performance estimates. However, it may give a less accurate estimate of the
model’s performance on new data. The accuracy comparison comes from an
experiment using n-fold CV, and the test accuracy originates from using an in-
dependent testing sequence to verify this claim. All analyzed methods achieved
accuracy lower by several percentage points using testing sequence than n-fold
CV. Most notably, even the best-performing CNN-RNN reported 94.1% when
using CV [18] while we were only able to obtain 93.0% on the independent
testing sequence.

6.1.3 Accuracy depending on the model size

Typically, the most extensive predictive models achieve the best performance on
the chosen dataset. They are often too large to be trained or used in practical
scenarios, thus being considered a dedicated solution for a particular dataset.
Therefore, the applied deep learning community is currently more interested
in efficiently formulating artificial neural networks and proving that these ar-
chitectures are more capable than their predecessors with the same number
of parameters in the case of EfficientNetV2 [154]. Fig. 6.1 presents a similar
analysis with the accuracy presented in a function of the number of learnable
parameters. The KNN-DTW was omitted in this analysis as it is a non-learnable
method.

In Fig. 6.1, one can notice that the CNN-RNN achieved the highest accuracy,
but it came with a price of its substantial number of learnable parameters. This
method would not fit the restricted computational resources of a mobile robot
setup. Still, it appears to be more efficient than the classical TCN approach
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Figure 6.1: (© 2022 ELSEVIER) The accuracy as a function of a number of param-
eters reveals the efficiency of the applied method. Notice that the axis of parameters
is in the logarithmic scale. In this context, HAPTR2 significantly outperforms other
algorithms.

or even less efficient ROCKET. Both transformer-based solutions, HAPTR and
HAPTR2, require an order of magnitude fewer parameters to achieve perfor-
mance similar to CNN-RNN. The HAPTR2 contains more learnable parameters
than the HAPTR, as it contains an additional attention mechanism but achieves
significantly better results than the HAPTR. The introduction of such a module
improved an internal representation of the input signal, which enabled better
classification. Therefore, it is reasonable to use the family of attention-based
solutions together with convolutional layers whenever the efficiency of the meth-
ods is the primary factor. Typically, convolution as a mathematical operation
preserves high-frequency features, such as peaks in time series. However, the
softmax function inside attention modules flattens the resulting representation
and behaves more like a low-frequency filter [119]. Its output becomes comple-
mentary with a convolution operation. The combination of both layers together
yielded better robustness and classification accuracy.

6.1.4 Inference time evaluation

The number of learnable parameters determines the ability to deploy networks
in resource-constrained environments. Still, it might be challenging to compare
networks properly as it depends on the chosen hardware setup. The network’s
size also impacts the training time, which we might consider irrelevant, as we
trained them offline. The remaining aspect of a chosen model size is inference
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time. An inference time determines the real-world viability of the proposed
solution, as having a prolonged processing time might be unacceptable from the
perspective of the control that has been done based on this result. The Tab. 6.2
presents the processing times on CPU (Intel i7-9750H @ 2.600GHz) and GPU
(NVIDIA GeForce GTX 1660 Ti Mobile) for all of the considered methods.

Table 6.2: (© 2022 ELSEVIER) Inference time for a single sample for evaluated
terrain classification algorithms.

Method Variant CPU [ms] GPU [ms]
KNN-DTW 1619.86± 11.11 –
ROCKET 180.62± 13.05 –

TCN
Light 1.37± 0.29 1.86± 0.05
Base 2.97± 0.24 3.37± 0.04
Large 16.82± 0.91 6.43± 0.06

HAPTR
Light 1.43± 0.09 1.61± 0.15
Base 2.91± 0.22 2.73± 0.06
Large 5.60± 0.59 4.87± 0.15

HAPTR2
Light 1.38± 0.03 1.53± 0.11
Base 2.25± 0.05 2.13± 0.05
Large 3.99± 0.09 3.39± 0.05

CNN-RNN [18] 11.68± 0.83 30.60± 5.30

Initially, let us consider a mobile robot equipped with a powerful CPU but no
GPU. Fig. 6.2 presents results of the accuracy comparison as a function of mean
inference times. In such a case, the KNN-DTW method performed poorly, and it
took over 1600 ms to reach the desired classification result. This inference time
was obtained for a selected size of training samples but would even increase
if we added more signals, making this approach slow and unscalable for any
real-world deployment. Nevertheless, the other non-deep learning ROCKET
showed results in 180 ms, which is too long to implement any reaction-based
behavior based on the obtained results. Deep-learning-based methods exhibited
significantly lower inference times. The HAPTR2 reported the shortest CPU
inference time. But it is also worth noting that the HAPTR in all variants and
the TCN in Light and Base variants meet the previously stated requirement
of 10 ms terrain classification time. In this comparison, the state-of-the-art
CNN-RNN solution did not meet our criteria, exceeding the set threshold for
the inference time, thus making it not suitable for a real-time operation.

Tab. 6.3 shows the results for a robot equipped with a CPU, and the trade-off
between accuracy and inference time on a GPU. Classical methods (KNN-DTW
and ROCKET) did not appear in the plot, as their implementations were not
GPU-friendly. One can observe similar trends for deep-learning solutions to the
processing performed on a CPU. Surprisingly, no acceleration was observed in
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Figure 6.2: (© 2022 ELSEVIER) The accuracy of deep learning models as a function
of a mean inference time on CPU. Notice that the axis of an inference time is in a
logarithmic scale.

most cases when using a GPU. In the experiments, we defined the inference time
as the total time needed for calculations and related tasks. It includes the time of
transmitting data between the main memory and GPU’s memory. This overhead
is present in all the measurements of inference time included in the comparison.
The reduced time is visible only for the TCN in Large that decreased below
the accepted threshold. Much to the surprise, the inference time of the CNN-
RNN increased on the GPU. The possible explanation would be insufficient
optimization of the RNN model on this particular GPU architecture. Another
probable reason would be sequential processing in recurrent units, which cannot
fully utilize a GPU computational power – GPUs were designed primarily for
parallel processing. Eventually, the HAPTR2 appeared to be the most efficient
method based on the accuracy and the inference time on a CPU or GPU.

6.1.5 The choice and analysis of the best solution

Based on the results presented in the previous subsections, it becomes evident
that the choice of the terrain classification method should not be based solely
on its accuracy result. The decision on this topic should also be dictated by
factors important to the real-world deployment, such as minimal classification
accuracy on the most challenging terrain, model size, and its inference time on
the target hardware. Overall, the chapter indicates that the HAPTR2 family
provides the best efficiency and is regarded as the best choice for the trade-off
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Figure 6.3: (© 2022 ELSEVIER) The accuracy as a function of a mean inference time
on GPU. The axis of time is in the logarithmic scale.

between the accuracy and remaining requirements. Therefore, for further anal-
ysis, HAPTR2Light was chosen. Consequently, Fig. 6.4 presents the confusion
matrix of this approach to provide more insight into observed performance.

The class that caused the lowest Accmin for all tested deep learning models
was artificial grass. One can observe that it was most often misinterpreted as
the rubber – in 9.6% of predictions. Moreover, rubber was the most common
mistake for a carpet, as the system was wrong in 5.2% of cases. One can
assume that it is due to the designed terrain – a carpet sample was put on one
slope, while squares of artificial grass lay close to the slope’s beginning and end
while rubber was on the second slope. That confirms that terrain recognition is
more challenging in non-flat areas. There is still room for further improvements,
i.e., data augmentation targeting these cases or utilization of orientation sensors
to incorporate information about the inclination to predictions. However, the
highest classification error among all classes was made for the PVC terrain
incorrectly recognized as sand in 10.5% of predictions of that class. The root
cause was that both of them were neighboring each other. Hence the sand
particles were present in the PVC terrain, which misled the perception system.
One can observe that a confusion matrix is related to the similarity between
terrain and their placement on the map, which might be an informative cue in
a localization task [18].
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Figure 6.4: (© 2022 ELSEVIER) The confusion matrix presents the per-class accuracy
obtained with the HAPTR2Light.
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6.1.6 Robust robotic perception

The robot operating in the real-world environment must adapt to the changing
conditions that cannot be predicted and thus trained before the deployment.
To achieve the desired generalization ability and robustness, the HAPTR2Light

model included the novel MAL. The MAL is responsible for dynamic adaptation
of the weights of sensing modalities. This section contains the best-performing
model’s evaluation with and without this module to show its influence on pre-
dictions. Notably, not all modalities are equivalent. HAPTR2Light trained ex-
clusively on torques achieved 88% accuracy in the test, while trained on forces
only resulted in 60.0%. This experiment showed that torques are leading modal-
ity in the PUTany dataset. Nevertheless, experiments utilizing both modalities
achieved the highest performance.

Table 6.3: (© 2022 ELSEVIER) Classification accuracy of the HAPTR2Light models
trained with and without the additional modality attention module.

HAPTR2Light Acc [%] Accmin [%]
with MAL 91.7 80.7 (Art. grass)

without MAL 91.3 76.0 (Art. grass)

Firstly, as the MAL can work as a standalone module, its influence was ver-
ified on the overall accuracy performance. Tab. 6.3 presents the results of the
HAPTR2Light model obtained on the PUTAny test dataset with and without
the MAL. One can observe a minor improvement in the general classification ac-
curacy (0.4%) due to the input modality weighting. However, the Accmin metric
was higher by 4.7% when the architecture included the MAL. That indicates
that the model is more suited when training data is unbalanced.

Legged robots operate in diverse environments that can influence their sen-
sory measurements. In most cases, operation in a novel surrounding results in
inferior performance to the samples familiar to the system. The goal is to design
a system that can operate despite these changes. The experiments evaluated the
performance of the HAPTR in two simulated scenarios. Initially, the robot’s
payload was modified, changing the forces and torque distribution. Then, a
sensory failure was simulated that might occur when a mobile robot traverses
harsh terrain. We mimicked these cases by adding a particular type of noise to
an already normalized measurement input determined to have zero mean and
a unit standard deviation. The real-world effects occurring when the robot in-
spects the mine tunnels equipped with conveyor belts explain using a uniform
noise in this experiment. The robot experiences noise from electrical equipment
and motors, which were the root of the noise on the analogue sensors.
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Figure 6.5: (© 2022 ELSEVIER) The simulation of the payload changes in the
PUTAny test dataset and its influence on the performance of HAPTRLight.

The payload change scenario simulates an additional increase in mass by
adding a bias to forces. Each step consists of a stance and a flight. An as-
sumption is that a robot’s leg swings from 60 to 15 degrees from the normal
to the ground during the stance to simulate the payload changes. In the fol-
lowing procedure, a simulated payload vector acts along the gravity vector and
has an increased length, influencing the network predictions more. However, it
is crucial to note that payload changes would also influence the torques. Re-
gardless, the author of the following thesis did not find any effective method to
simulate this effect. Hence torques stood unchanged. Firstly, the deep learning
model fit to original data, but its weights stayed frozen during the simulation.
Then, the simulated payload was added to the input force signal from 0.0 to 2.0.
These values correspond to the robot’s weight growing from an initial weight
to three times the original weight. Such substantial change is unrealistic but
demonstrates the generalization capabilities of the network. Fig. 6.5 presents
accuracy depending on the simulated increase in mass. In this simulation, the
HAPTR2Light with MAL achieved higher accuracy on the PUTAny dataset in a
complete range of artificial payloads. Moreover, for an unexpected 3× change in
weight, one can observe the drop in the accuracy by approximately 7.5% when
MAL is not used.

The simulated case of a sensory failure introduced a uniformly distributed
noise from a range of 0.0 to 0.25 to sensor measurements. Like the previ-
ous scenario, the experiment investigated performance on the PUTAny dataset
measuring the accuracy at different noise levels. Fig. 6.6 shows the accuracy
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Figure 6.6: (© 2022 ELSEVIER) HAPTR2Light accuracy on the PUTAny test dataset,
in which a uniform noise with an increasing range was added to one input modality
(a force or a torque) to simulate a sensor failure.

obtained for the data degradation scenario. As one can observe, a significant
improvement in the model’s robustness can be noticed for both input modal-
ities, achieving over 10% of accuracy improvement for the highest noise levels
when it used the MAL. Moreover, the HAPTR was more robust to the changes
in the force measurements proving that the torque measurements might have a
higher impact on the final performance of the network.

6.1.7 Comparison to the state-of-the-art

The terrain classification algorithms for walking robots are mostly incomparable
due to the different terrain types and hardware platforms. Nevertheless, it
is changing due to the emergence of public datasets that facilitate impartial
comparisons between methods. The results achieved were compared to the
most recent method [56]. In that article, the authors evaluated RNNs+FC on
the PUTAny dataset and their QCAT (made publicly available). The following
experiments assessed the HAPTR2Light using the same evaluation procedure
on both of these datasets using their cross-validation steps with the same data
splits. Fig. 6.4 presents the obtained results.

The HAPTR2Light outperformed RNNs+FC on both datasets with an accu-
racy margin of 0.64% for PUTAny and 0.73% for QCAT datasets. The results
showed similar standard deviations, thus proving that most methods would
work similarly in the real-world environment. The HAPTR2Light is significantly
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Table 6.4: (© 2022 ELSEVIER) Classification accuracy of the proposed HAPTR2Light

and state-of-the-art RNNs+FC measured on the QCAT and PUTAny datasets with
the 10-fold cross-validation providing mean, standard deviation (SD), and min and
max values for each fold. The best results are bolded.

Dataset Mean [%] SD [%] Min [%] Max [%]
HAPTR2Light PUTany 93.85 0.82 92.68 95.29
RNNs+FC [56] 93.20 0.89 92.06 95.39
HAPTR2Light QCAT 97.33 1.21 95.49 98.96
RNNs+FC [56] 96.60 0.89 95.49 98.61

smaller comparing the number of parameters and is more suitable for deploy-
ing on a real robot than RNNs+FC. Using the implementation shared by the
authors of [56], the RNNs+FC consists of 395106 trainable variables with recur-
rent units. In contrast, the HAPTR2Light had only 12568 in total, which is over
30 times less. Moreover, an inference time was measured equal to 130.44 ms on
a GPU and 38.44 ms on a CPU for the RNNs+FC. Similar to [18], the inference
on a GPU took longer than on a CPU. GPUs are preferable processing units
only when we process large batches of data. The experiments focused on the
real-time robotics perspective, which prefers the inference of a single sample to
reduce the delay between the measurement and the processed result.
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Chapter 7

Robust multi-modal fusion

7.1 Multi-modal fusion from the robotics perspec-

tive

The primary objective of this section is to present the outcomes of the experi-
ments conducted on robust multi-modal fusion with an emphasis on the robotics
perspective of the problem. The following section will delve into this topic in
more detail, and I urge readers to refer to 4.4 for a comprehensive discussion on
the methodology and materials used.

7.1.1 Comparison of fusion methods

The first stage of experiments shows the performance of fusion methods on
the BiGS dataset in the grasp outcome classification – a success or a failure.
Input modalities include gripper positions, orientations, and 3-axis forces from
a wrist-mounted F/T sensor. Tab. 7.1 presents the final results with mean
accuracy [%] with its standard deviation among the consecutive folds. The best-
performing models of Late (I-fold), MoE (III), Mid (II), and LMF (I) appeared
in the assessment of their robustness against data degradation and influence of
input data augmentation. The fact that the average results in subsequent folds
were very similar means that differences in data distributions across folds were
negligible.
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Table 7.1: The classification accuracy comparison of four fusion methods performed
on the BioTac Grasp Stability Dataset (BiGS) dataset.

I II III IV V Mean

Late 88.9 88.1 87.9 88.5 88.1 88.3 ± 0.4

MoE 89.0 88.3 89.1 87.6 88.4 88.5 ± 0.6

Mid 88.1 89.9 89.0 87.8 88.6 88.7 ± 0.8

LMF 89.6 88.4 88.0 88.4 88.9 88.7 ± 0.6

Cross-validation on the HaTT dataset was another experiment step. Results
in the form of the classification accuracy [%] were reported in Tab. 7.2. In
the following scenario, there appeared time-series—a squashed 1-dimensional
representation of acceleration and velocity, together with a normal force acting
on a haptic device’s tool-tip. For the next experiments, the II-fold models were
chosen for the Late, MoE, LMF methods, and the III-fold model for the Mid
fusion approach.

Table 7.2: The classification accuracy comparison of four fusion methods performed
on the HaTT dataset.

I II III IV V Mean

Late 79.5 80.8 79.4 78.3 79.5 79.5 ± 0.9

MoE 77.9 78.9 74.3 76.6 73.4 76.2 ± 2.3

Mid 78.9 75.4 79.8 78.3 76.6 77.8 ± 1.8

LMF 78.1 80.9 78.9 78.3 79.5 79.1 ± 1.1

The PHAC-2 dataset took part in the multi-label classification of haptic
adjectives. Similarly, as in the [4], a performance metric was the Area Under
Curve (AUC) – an area under the Receiver Operating Characteristic (ROC),
which is a typical performance metric used in the literature about the multi-label
classification. It measures how well the predictive model can distinguish between
classes (haptic adjectives). Moreover, it considers correspondences between a
sensitivity/specificity ratio to multiple values of a decision threshold. Generally,
AUC-ROC is a metric that gives an overall evaluation of performance, taking
into account all potential classification thresholds. A common interpretation of
AUC-ROC is the likelihood of the model ranking a random positive instance
higher than a random negative instance. In the AUC-ROC metric, a value
of 1.0 refers to an excellent classification ability, 0 means that the model is
always wrong, while 0.5 means that the model has no discrimination capacity.
Tab. 7.3 presents the AUC-ROC metric achieved by fusion methods. Further
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experiments include the V-fold Late and MoE, I-fold Mid, and the IV-fold LMF
model.

Table 7.3: The comparison of four fusion methods did on the PHAC-2 dataset. All
values represent the AUC-ROC results.

I II III IV V Mean

Late 0.923 0.924 0.922 0.923 0.925 0.923 ± 0.001

MoE 0.923 0.919 0.919 0.923 0.927 0.922 ± 0.003

Mid 0.929 0.922 0.922 0.927 0.925 0.925 ± 0.003

LMF 0.896 0.898 0.902 0.908 0.900 0.901 ± 0.005

The important note is that the primary target of the experiments was to
examine methods of homo and heterogeneous signals collection. Different sets of
modalities were used from each dataset, and no modality was repeated between
datasets even though, e.g., in the BiGS and PHAC-2, there were used the same
BioTacs tactile sensors.

The mean accuracy of all methods tested on the BiGS dataset was around
88%, with insignificant differences between folds. Nevertheless, the most ef-
ficient fusion method in the grasp classification task was the LMF due to a
decreased standard deviation among folds than the second method - the Mid.
Tests on the HaTT exhibited a slight increase of a mean results variance among
different approaches and standard deviations among folds compared to BiGS
results. The best method for texture recognition was the Late fusion, which
achieved a mean test accuracy of 79.5% between folds, additionally the least
standard deviation equal to 0.9%. In the multi-label classification of haptic ad-
jectives based on visual and haptic data, the Late, MoE, and the Mid fusion
methods were extremely close to each other in terms of a mean AUC-ROC met-
ric, achieving a result of 0.92. The LMF performance was marginally below the
other.

The results from 5-fold cross-validation and tests on separate subsets on
all tested datasets showed that data used in experiments were consistent, and
there were no significant outliers among folds. That finding made it possible
to perform reliable experiments and ensure a fair comparison. Mean values
of metrics among different fusion methods may suggest that the type of data
fusion affects the efficiency only to a limited extent. When all modalities are
available and free of noise, it appears that more important was a reliable data
preparation (e.g., ensuring a balanced distribution between classes in the train
and test subsets, as well as between folds) for the training procedure than the
fusion algorithm itself. The best-performing methods are marked with a bold
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font in Tab. 7.1, 7.2, and 7.3. Tested neural networks were trained end-to-end
and functioned moderately well, exhibiting a great capacity to learn from large
(BiGS, HaTT) and small (PHAC-2) datasets. Additional tests were conducted
on the impact of each modality on predictions and verifying the robustness of
each method against data deterioration.

7.1.2 Data degradation robustness

The research carried out in the following section brought conclusions on the
capabilities of each fusion method to translate knowledge from one modality
into another and revealed that often one leading modality exists. Each dataset
has a modality of vital importance for the final results. To make this dependency
visible, Fig. 7.1–7.3 present the results in the form of heat maps. Heat maps
present changes in performance caused by the deterioration of the quality of one
or more input modalities. In the following experiments, fusion methods were
tested in scenarios described below, and each row in heat maps corresponds to
one of the scenarios:

1. N—a Gaussian Noise N added to selected modalities with a 0 mean and
0.7 standard deviation;

2. U—a uniform noise U added to selected modalities that vary in the range
(−0.5 to 0.5);

3. 0—setting zeros in place of selected modalities, what simulated a deacti-
vated/broken sensor;

4. RN—replacing selected modalities with Gaussian noise N , with the same
parameters as N from the previous scenario;

5. RU—replacing selected modalities with uniform noise U , with the same
parameters as U from the previous scenario.

No fixed level of noise can be considered universally unacceptable for a nor-
malized input signal, as it depends on various factors, such as the nature of
the signal, the complexity of the classifier, the performance criteria, and the
tolerance level of the application. Suppose we want to determine what it means
for the noise level to be significant for the chosen classifier. In that case, it is
necessary to perform experiments and analyze the classifier’s performance under
different noise levels. Because of that, the following experiments build upon a
work of [95], where the authors conducted such experiments on the relevance
of noise to the time series classification on the synthetic Cylinder-Bell-Funnel
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dataset [155]. The authors examined the effects of Gaussian noise added to the
input signal. Their results showed that the first significant drop in the clas-
sification accuracy of their baseline method happened for the Gaussian noise,
with a standard deviation increasing from 0.6 to 0.7, which can be considered
significant. Thus in the following experiments, the level of 0.7 was also set. In
addition, unlike Gaussian noise, due to the equal probability of values across the
range for homogeneous noise, its range has been reduced relative to the stan-
dard deviation of Gaussian noise. Albeit, this change relies only on the author’s
estimates and, to the best of the author’s knowledge, has yet to be considered
in the literature.

Each heat map column was annotated by a number that specified affected
modalities (e.g., by the added uniform noise). For each dataset, fusion methods
were tested using three input modalities numbered as follows:

1. BiGS—1 : gripper positions, 2 : gripper spatial orientations, 3 : 3-axis force;

2. HaTT—1 : normal force, 2 : squashed acceleration, 3 : squashed velocity;

3. PHAC-2—1 : images, 2 : raw electrodes from the 1st sensor, 3 : raw elec-
trodes from the 2nd sensor.

Figure 7.1 shows heatmaps of accuracy results of selected fusion methods
tested on the BiGS dataset. Heat maps enabled the inspection of knowledge
alignment and translation of each method. In these tests, the best models from
Tab. 7.1 were used.

Figure 7.1: Heat maps present results obtained by chosen models from the first stage
of experiments on degraded data from the BiGS dataset. Classification accuracy is
in [%]. Each row corresponds to a different data degradation scenario. Columns are
annotated by the indexes of affected modalities.

In Fig. 7.2, heat maps are generated for tests on the HaTT dataset. The
influence of each modality on the final prediction is visible, and not every method
can manage data degradation. Moreover, acceleration (2nd modality) plays a
leading role. It resulted in a significant deterioration of classification accuracy
when noisy or faded. On the other hand, removing other modalities from the
input data stream did not affect the final accuracy.
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Figure 7.2: Heat maps include the accuracy [%] of a texture classification achieved
while testing different fusion methods on degraded data from the HaTT dataset. Lead-
ing modality played a dominant role, which resulted in a decreased quality in case of
its degradation.

Fig. 7.3 reports the AUC-ROC metric for the multi-label classification of
haptic adjectives. Similarly, as in the experiments on the HaTT dataset, the
leading modality is also visible. However, its correlations with other modalities
played an even more dominant role in the final performance of the methods. By
inspecting heat maps, one can observe that the most meaningful correlations
for predictions are between images (1st) and raw electrode signals (second and
third). On the other hand, noised interactions between both electrodes’ time
series only slightly influenced the classification accuracy.

Figure 7.3: The AUC-ROC was reported for the multi-label classification task using
the PHAC-2 dataset. The leading modality is visible, but the correlations between
modalities also affect predictions.

All experiments on robustness revealed the existence of a leading modality,
which means that one modality always played a dominant role in the discrimi-
nation between classes. Fig. 7.1 presents that for the BiGS dataset, MoE and
LMF fusion methods exhibited significantly decreased performance when modal-
ity no. 3, which was a 3-axis force signal in combination with other modalities,
was replaced by the uniform noise, and this is a leading modality in the BiGS
dataset. The LMF and MoE were also sensitive to the uniform noise added that
affected the force signal. However, the described phenomenon did not occur for
other fusion methods – the Late and Mid. They appeared relatively robust for
data degradation scenarios, exhibiting no more than 10% of a drop in the accu-
racy when the leading modality was noised, zeroed, or replaced by noise. In the
case of MoE, the class discrimination dropped to 16.1% and 29.5%. It happens
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because the gating network increased the importance of a leading modality for
prediction. After all, it played a dominant role in providing data.

Replacing the signal with other modalities with the noise emphasized the
correlation of these signals, which caused prediction errors. However, MoE ex-
hibited robustness for data degradation scenarios. It appeared to be sensitive
mainly to the correlations between the force signal and two other modalities
– hand positions and orientations. Similarities between modalities in the MoE
were essential for the grasp outcome classification, not the leading modality it-
self. The LMF method achieved close results while testing. When the uniform
noise replaced the force signal, the method was more prone to mistakes, and the
interactions between modalities appeared meaningless. Additionally, the LMF
was sensitive to scenarios that replaced the leading modality with noise and its
combinations with other modalities and the noise added to the signals. This
could be observed in the LMF heat-map in Fig. 7.1 looking at the results (36.8%,
35.1%, and 33.5%) in the U -row. The described phenomenon occurs because
LMF is a tensor-based method that highly relies on outer products between uni-
modal representations inside networks. Thus the highest emphasis was put on
inter-modality interactions. When finding these interactions were difficult/not
possible, the LMF struggled to find a correct prediction for the grasp outcome
evaluation task. One can observe that the type of noise introduced to the input
data played a significant role in the prediction performance because the pre-
sented findings did not repeat for a Gaussian Noise. To explain that effect, one
can speculate that during the training phase, in signals, there was already some
noise present similar to the normal level, which resulted in higher robustness for
such a data degradation. The achieved robustness was truly substantial, and it
appears that a balance between the importance of modalities was paramount.
Nevertheless, verifying that relevance is very challenging and involves many
experiments.

Another dataset involved in experiments was the HaTT, and results gath-
ered during that trial were reported in Fig. 7.2. Contrary to the BiGS dataset,
one can observe that the second modality (an acceleration) caused a significant
drop in the accuracy for all tested data degradation scenarios and fusion meth-
ods by inspecting heat maps. Hence, we consider acceleration to be a leading
modality from the proposed set of input modalities. In the texture classification
task based on haptic signals, all methods exhibited a similar performance and
sensitivity to different disturbances. A lack of a legitimate acceleration signal
(zeroing or replacing with a noise) always caused a decreased performance to
the level of 5% for all tested methods, which suggests that in the proposed set
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of modalities, the domination of acceleration was tremendous. The rest of the
signals did not provide meaningful information about the process under investi-
gation. The late fusion and LMF heat-maps evaluation gave similar results for
all data degradation scenarios. However, the MoE and Mid differ in terms of
managing the added noise – MoE exhibited sensitivity to the appearance of the
noise component in the leading modality. However, the Mid was fragile for the
same phenomenon, but with the uniform noise added.

Fig. 7.3 shows the results of the multi-label classification of haptic adjec-
tives performed on the PHAC-2 dataset. The biggest drop in the performance
metric occurred for columns missing the first modality—an image (a leading
modality). In the MoE, the fact that the lack of images was able to cause a
total failure of the classifier achieving the result of 0 (which means that the
modal was always wrong) again indicates that the gating network during train-
ing put too much emphasis on the dominant modality. Considering that every
result below 0.5 level means that the classifier is often wrong than right on av-
erage. The Late, MoE, and Mid methods behaved similarly across all scenarios
– the accuracy without a leading modality significantly decreased. The LMF
functioned slightly differently, achieving relatively good results when a noise
replaced the imaging modality, which is visible in the first column of the LMF
heat map. However, it performed worst when other modalities were replaced by
a noise/zeroed. Although it should be noted that it does not achieve 0 AUC-
ROC as it happened in the case of MoE and Mid. Additionally, sometimes one
can observe an improvement in the classification performance achieved when
one modality was noised/faded. This phenomenon was reported, e.g., for the
Mid when the second modality (raw electrode signal) was zeroed or replaced by
a uniform noise. Comparing to Tab. 7.3 the improvement was 3%.

7.1.3 Data augmentation vs. leading modality

Generated heat maps from the previous stage of experiments revealed that ev-
ery dataset contains one leading modality that had the biggest impact on the
prediction. In the following experiments, 33% of randomly selected training
samples of leading modalities in the training dataset were noised or faded. Half
of the augmented examples were faded, and the other half noised with the 0
mean Gaussian Noise with a standard deviation of 0.7. This value should be
related to the fact that the standard deviation of the data confines to 1 through
data standardization. Again, The best models from previous experiments were
re-trained on the same folds. Tab. 7.4 – 7.6 presents performance of methods
used in the following experiments.
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Firstly, fusion models were re-trained on the augmented training dataset
and tested on the same versions of the test datasets. This experiment inspected
the impact of the data degradation on the performance of test sets without it.
An accuracy [%] and AUC-ROC values [-] were presented in Tab. 7.4.

Table 7.4: Outcomes of multi-modal fusion methods obtained for models trained on
datasets containing noised/zeroed inputs from the leading modality, but tested on the
dataset without such samples.

Late MoE Mid LMF

BiGS [%] 88.26 88.89 88.64 89.39

HaTT [%] 78.15 75.8 75.1 76.95

PHAC-2 [-] 0.92 0.93 0.93 0.91

Secondly, they were evaluated on test datasets with the same proportion
of noised samples of the leading modality without zeroed samples. Tab. 7.5
reports results obtained during that trial.

Table 7.5: Tab. shows results obtained for models trained on datasets containing
noised/zeroed inputs from the leading modality and a noised leading modality channel
during tests.

Late MoE Mid LMF

BiGS [%] 88.14 88.64 88.51 89.26

HaTT [%] 65.85 69.95 65.3 68.3

PHAC-2 [-] 0.88 0.86 0.88 0.84

Finally, the experiments assessed the influence of zeroed leading modalities
on fusion methods in the last stage. Tab. 7.6 contains accuracy and AUC-ROC
metric results gathered on the test dataset with zeroed leading modality.

Table 7.6: Results obtained for models trained on datasets containing noised/zeroed
inputs from the leading modality and a zeroed leading modality during tests.

Late MoE Mid LMF

BiGS [%] 85.77 88.76 86.27 89.01

HaTT [%] 54.85 57.05 53.95 53.25

PHAC-2 [-] 0.23 0.24 0.21 0.61

The data augmentation procedure increased robustness on noised and miss-
ing modalities for the BiGS. All methods gave similar results as during the
tests on the data without any degradation applied on a leading modality. The
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proposed data augmentation procedure is sufficient to ensure robustness on
noised/missing samples for the proposed input modalities.

However, the above statement is not always true, which is visible in results
obtained for the HaTT dataset, when the mean decrease of accuracy was from
6% to 13% when comparing Tab. 7.4 to Tab. 7.5 and from 18% to 24% between
Tab. 7.4 and 7.6. The results proved the same conclusions as before – the
leading modality in the HaTT dataset possessed so much information meaningful
for the discrimination between textures, and other modalities played only a
supporting role for that task. Nevertheless, data augmentation still brought
a significant improvement in results compared to data degradation scenarios
shown in Tab. 7.2. In both tested variants, the best-performing method was
the MoE, which indicates that the gating network learned to refuse predictions
based on a degraded leading modality.

In the multi-label classification task on the PHAC-2, the Late, Mid, and
MoE methods failed to assign haptic adjectives when the vision was missing.
However, the LMF was able to find intra- and inter-modality interactions that
led to the surprisingly good result of 0.61 AUC-ROC. It indicates that the LMF
was the only method capable of assigning correct haptic adjectives more often
than making mistakes. In tests involving noise-only samples, methods achieved
similar results, and the performance metric dropped only by 4–6%.
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Part IV

Conclusions
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Chapter 8

Material recognition

8.1 Stiffness estimation using inertial sensors

Soft robotics solutions often take inspiration from nature, where animals exploit
their flexibility to adapt to the environment, i.e., a soft-bodied octopus utilizes
its tentacles to grab various objects that might have complex shapes. Such
an approach’s key feature incorporates embodied intelligence to execute a task.
However, such a method leads to troublesome control strategies and difficulties
in haptic perception because there is no feedback from the soft machine, as the
idea of soft robotics primarily concerns mechanical design.

The following dissertation proposes to use contact feedback from a soft-
gripper in the stiffness estimation task using IMU. Firstly, such an approach
captures a typical inertial response of soft fingers from grasping objects of differ-
ent shapes and physical parameters. Secondly, the object’s physical parameters
using data from IMU sensors is possible and beneficial due to the low cost of
setup and no further need for sophisticated equipment. The deep learning so-
lution solves the problem of grasped object stiffness estimation in soft robotics,
introducing a novel approach that associates embodied and artificial intelligence.
Their combination leads to a system robust to unforeseen and changing external
conditions. While currently used methods of stiffness assessment exploit tech-
niques of measurement or direct estimation, the method proposed in the disser-
tation characterizes the discovery of knowledge and causal relationships related
to the characteristics of a given object and its physical features. Research on
discovering knowledge acquired by neural networks may result in diagnosing
the intuition behind humans’ natural behavior in manipulating objects. It is
likely that similar solutions, based on low-cost sensors and deep learning, may
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be successfully applied for robotic manipulation in everyday scenarios. In this
work, there was published data and the implementation of neural networks used
in the experiments. The author believes that it will inspire other researchers
to delve into the research area of soft grippers and perception of the physical
world based on tactile data in robotics.

8.2 Unsupervised haptic recognition

Although the DEC method outperformed other methods included in the bench-
mark, there is a need to mention the troubles when learning these models.
Firstly, they express a high fragility on hyper-parameters, especially the batch
size, which caused the learning process to collapse very early when parameter
values were too high. A batch size of 256 prevents the model from learning,
while a significant reduction to 16 leads to the presented results. The proba-
ble cause is the tendency of the clustering strategy to get stuck in the sharp
minimum found very early in the training phase. The numerical proof for that
was introduced in the following work [156]. The same applies to the learning
rate, but the explanation is more straightforward and well-known - a too-large
learning rate would cause the model to update its weights with a too-large step
resulting in a deterioration of the training quality.

Moreover, experiments show that the Touching dataset was improperly de-
signed for the considered task. As stated before, such a system’s training pro-
cedure might be fragile and sensitive to the hyper-parameters choice. Any ad-
ditional noise introduced in the input signals might destroy the learning curve.
The situation in which different signals exhibit some false features, like, e.g., the
high hardness of the soft object, because the sensor sensed the hard ground be-
neath them, might influence the training. That phenomenon caused poor results
in these experiments.

The following benchmark also presented results from other clustering meth-
ods. The conclusion is equal for all of them - they do not apply to such a task.
As haptic signals are transmitted through touch, they also might be ambiguous
(different objects might feel the same). It is hard to interpret what it means to be
"similar" because of their multi-dimensionality and complexity. Moreover, they
might depend on the interaction type: different pressure applied when touching,
velocity, slippage, or temperature. All these factors significantly complicate the
clustering process and exceed the abilities of the classical methods.

Latent representations are commonly used in robotics to represent high-
dimensional signals in a lower-dimensional space, making it easier for algorithms
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to process and understand. Additionally, using latent representation can help
models generalize their knowledge and perform tasks in new environments with-
out needing to be explicitly trained. Experiments in the chapter 5.2 show a slight
improvement in the clustering performance between DEC methods working on
raw data and latent vectors. On the other hand, using a SVD to preprocess
signals for the classical approaches did not let them achieve comparable results.

Additionally, silhouette tests suggest that the optimal number of clusters is
three. Considering that these experiments were targeted to prove or refute the
existence of five tactile dimensions, one could summarize that they denied them,
as there should be five of them as well. However, under the skin of a human’s
fingertip, an estimated 3000 touch receptors ensure deep and precise haptic
sensing. On the other hand, even such an advanced touch sensor as BioTac has
only 24 electrodes that measure temperature and tactile feedback. The BiGS
V2 dataset included recordings from three such sensors, which results in 72
electrodes sensing the object at each grip. Even that might be insufficient to
fully recreate the sense of touch in how humans perceive it. Presumably, sparse
electrodes do not allow for adequate recognition of the macro and roughness
of touched objects. However, there is no evidence that the rest of the tactile
dimensions, i.e., temperature, hardness, and friction, cannot be sensed using
these sensors. To conclude, the silhouette test partially proved the existence of
tactile dimensions.

However, there is still room for improvement of sensors and algorithms to
ensure accurate and robust haptic perception for a high-level understanding of
touched objects and dexterous manipulation. This topic had an exploratory
nature. The obtained results are an excellent starting point for further devel-
opment during post-doctoral research.
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Chapter 9

Terrain recognition

9.1 State of the art Haptic Transformer

Terrain classification is one of the most prevalent features of the robotic percep-
tion system of a walking machine. The proper recognition enables a successful
gait adaptation and lets the robot avoid terrains that are too hazardous to
traverse. However, such a system cannot be too computationally exhaustive
because a typical onboard computer has limited resources.

The HAPTR and HAPTR2 are novel methods for terrain classification with
transformer neural networks. The attention was put on the real-world applica-
bility and compared our approach with multiple data-driven methods, including
adapted non-deep learning (KNN-DTW, ROCKET) and deep learning models
(TCN, CNN-RNN). The presented comparison took into account the accuracy
of each method, the number of learnable parameters, and the inference time.
Tests revealed that the HAPTR2 provides the best trade-off between the accu-
racy and the number of parameters directly impacting inference time. Moreover,
the inference time of state-of-the-art CNN-RNN takes too long to be applied
on a real robot proving the need for broader evaluation than direct accuracy
measurement.

9.2 Improved robustness of a perception system

Additionally, the following work focused on the robustness of robotic perception
systems and introduced the MAL in HAPTR2. By assigning weights to entire
modalities (F/T, inertial sensor readings) using the dot product attention layer,
the model self-attended to relevant parts of an input data stream. It resulted
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in increased robustness of the perception system against payload changes and
deterioration of signal quality. However, the MAL was implemented as a univer-
sal, standalone module that could assign weights to any user-defined modalities,
creating new opportunities for future research. Afterward, to establish a fair
comparison with the current state of the art, the HAPTR2 was examined us-
ing the QCAT dataset. The results showed that the HAPTR2 outperformed
the complex RNNs+FC approach [56] considering accuracy and inference time
performance while having over 30× less learnable parameters.

Eventually, the findings from the following dissertation were also reflected
in the most up-to-date literature on the topic and fit in with existing trends
in time series recognition. The usage of convolutions together with attention
modules was justified in the theoretical work [119], while similar ideas regarding
transformers for time-series present concurrent study presented in [117].
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Chapter 10

Robust multi-modal fusion

10.1 Heterogeneous data fusion

Typically, the more complex assignment required from the robot, the more so-
phisticated its perception system. For example, a robot that must detect an
object in the scene and apply a specified control strategy for a pick-and-place
task might require data from multiple modalities sequentially – visual detection
and haptic manipulation. However, looking at both parts of the mentioned task,
each can be split into more steps. A visual approach might utilize RGB images,
point clouds, multispectral images, or thermal images. Haptic manipulation
would need to process F/T signals, inertial feedback, or highly sophisticated
sensory feedback from modern haptic sensors such as GelSight or BioTac. One
can observe that using many modalities at once might be troublesome, as the
data often is not homogeneous, thus requiring different methods to process them.
The experimental verification focused on three tasks: a grasp outcome predic-
tion, texture recognition, and multi-label classification of haptic adjectives.

The following work compares four state-of-the-art fusion methods with fur-
ther analysis of obtained outcomes. It analyzes the existence and influence of
the performance of so-called leading modalities. In the experiments, one modal-
ity always had a superior impact on obtained results. Because of that fact, the
quality of selected methods decreased when that modality was noised or zeroed,
and deep neural networks were prone to overfit these modalities.
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10.2 Data degradation robustness

The experiments examined fusion methods in possible scenarios of input data
degradation that might occur in real life, e.g., a sensor turn-off or measure-
ment noise. Finally, the influence of the data augmentation technique on the
predictive capabilities of tested methods was tested and again evaluated their
robustness on noise added to the leading modality and its zeroing. To build
reliable autonomous systems, we must focus more on the robustness of our
data fusion methods introducing adaptive behavior in the data deterioration
scenario. A solution for such a problem would be the MAL presented in the
following dissertation built on top of attention modules.
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Chapter 11

Final remarks

11.1 Note from the author

Throughout my Ph.D., I have significantly contributed to robotics and artificial
intelligence, aiming at haptic perception for manipulators and walking robots.
My research’s most important scientific achievements include the publication of
datasets and the implementation of novel neural networks that enable embod-
ied and artificial intelligence to estimate the stiffness of materials using inertial
sensors. This connection was a novelty in soft robotics because the field pri-
marily focused on machines’ mechanical design, not the algorithms themselves.
Additionally, I have proved tactile dimensions in haptic data using novel and
open-source datasets, which constitutes a sound introduction to the further de-
velopment of touch recognition systems in an unsupervised manner, which is
still a heavily underestimated topic in the literature. I have also introduced
a novel deep learning method for the terrain classification of a walking robot,
which uses attention layers to improve performance compared to traditional
methods and other deep learning models. The proposed method utilizes inter
and intra-modalities relationships to push further the accuracy of the classi-
fier and improve its robustness against the noise. Weights produced by the
attention layer might directly indicate the importance of the modalities of the
multi-dimensional signal, improving the method’s interpretability. Finally, I
have thoroughly evaluated noise types and other degradation scenarios in time
series classification using deep neural networks. This contribution is a crucial
step toward developing more robust and accurate models, and my research im-
proved the existing state of the art. These achievements would be incomplete if
I did not embed them among existing solutions to the problems raised. In this
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way, my work’s scientific value can support other researchers in their work.

However, in addition to the work presented here, I have also contributed to
the field through presentations of my work and that of my colleagues at the
Institute of Robotics and Machine Intelligence, both locally and globally. I was
a co-author of the work "What am I touching? Learning to classify terrain via
haptic sensing" [75] at the prestigious International Conference on Robotics and
Automation held in Montreal (ICRA, 2019) and "Robotic touch: Classification
of materials for manipulation and walking" [61] at the International Conference
on Soft Robotics held in Seoul (RoboSoft, 2019). Furthermore, throughout my
Ph.D., I have worked as a researcher in multiple scientific projects in the field
of robotics at the national and international levels, including

• subTerranean Haptic INvestiGator (THING, Horizon 2020): This project
aimed to improve a perception system for robotic exploration of subter-
ranean environments. I contributed to the design and implementation of
the terrain classification methods, as well as the analysis of the data.

• Robotic tEchnologies for the Manipulation of cOmplex DeformablE Linear
objects (REMODEL, Horizon 2020): This project focused on developing
novel robotic technologies to manipulate deformable linear objects, such
as cables and wires. I worked on algorithms utilizing prototypes of novel
haptic sensors.

• Perception and control in a robotic task manipulation of flexible objects
(LIDER program by The National Centre for Research and Development
in Poland): This project aimed to improve the perception and control
of manipulators in tasks involving flexible objects. I contributed to the
development and testing of the algorithms and the analysis of the results.

I also did an internship at the École Polytechnique Fédérale de Lausanne
(EPFL), where I was a part of the prominent Biorobotics Laboratory (BioRob)
and worked on haptic classification using a quadrupedal robot. Collaborating
with researchers from various countries and universities, including Eidgenössis-
che Technische Hochschule Zürich (ETH), EPFL, the University of Edinburgh,
and Oxford University, has provided me with unique experiences and invaluable
opportunities for growth and development in my research skills.

Overall, my Ph.D. experience has provided me with diverse and challenging
research opportunities and valuable collaborations with leading researchers in
the field. These experiences have prepared me well for a successful robotics
research and development career.
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11.2 List of publications

When writing the following thesis, I authored and co-authored 15 scientific
articles on robotics at international conferences and in scientific journals. My
publications reached 60 citations according to the Scopus database, reaching an
h-index equal to 5 and 96 citations according to Google Scholar, yielding an
h-index equal to 6.

1. HAPTR2: Improved Haptic Transformer for Legged Robots’ Terrain Clas-
sification – M. Bednarek, M. R. Nowicki, K. Walas, Robotics and Au-
tonomous Systems – Selected papers from the 10th European Conference
on Mobile Robots, 2022 (IF 2022: 3.7)

2. Fast Haptic Terrain Classification for Legged Robots Using Transformer –
M. Bednarek, M. Łysakowski, J. Bednarek, M. R. Nowicki, and K. Walas,
European Conference on Mobile Robots, 2021

3. Tell me, what do you see? - interpretable classification of wiring harness
branches with deep neural networks - P. Kicki, M. Bednarek, P. Lembicz,
G. Mierzwiak, A. Szymko, M. Kraft, & K. Walas, Sensors Journal, 2021
(IF 2021: 3.847)

4. Gaining a Sense of Touch Object Stiffness Estimation Using a Soft Gripper
and Neural Networks – M. Bednarek, P. Kicki, J. Bednarek, K. Walas,
Electronics Journal, 2021 (IF 2021: 2.690)

5. On Robustness of Multi-Modal Fusion—Robotics Perspective – M. Bednarek,
P. Kicki, K. Walas, Electronics Journal, 2020 (IF 2021: 2.690)

6. Comparative Assessment of Reinforcement Learning Algorithms in the
Task of Robotic Manipulation of Deformable Linear Objects – M. Bednarek,
K. Walas, International Conference on Robotics and Automation Engi-
neering (ICRAE), Singapore 2019

7. Robotic Manipulation of Elongated and Elastic Objects, P. Kicki, M.
Bednarek, K. Walas, Signal Processing: Algorithms, Architectures, Ar-
rangements, and Applications, Poznan 2019

8. What am I touching? Learning to classify terrain via haptic sensing – J.
Bednarek, M. Bednarek, L. Wellhausen, M. Hutter, K. Walas, Interna-
tional Conference on Robotics and Automation (ICRA), Montreal 2019
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9. Robotic Touch: Classification of Materials for Manipulation and Walking,
J. Bednarek, M. Bednarek, P. Kicki, K. Walas, International Conference
on Soft Robotics, Seoul 2019

10. Measuring Bending Angle and Hallucinating Shape of Elongated Deformable
Objects – P. Kicki, M. Bednarek, K. Walas, Humanoids, Beijing 2019

11. Spatial Transformations in Deep Neural Networks – M. Bednarek, K.
Walas, Signal Processing: Algorithms, Architectures, Arrangements, and
Applications, Poznan 2018

12. Simulated Local Deformation & Focal Length Optimisation for Improved
Template- Based Non-Rigid Object 3D Reconstruction – M. Bednarek, K.
Walas, Signal Processing: Algorithms, Architectures, Arrangements, and
Applications, Poznan 2018

13. Methods of Enriching the Flow of Information in The Real-Time Se-
mantic Segmentation Using Deep Neural Networks – J. Bednarek, K.
Piaskowski, M. Bednarek, Signal Processing: Algorithms, Architectures,
Arrangements, and Applications, Poznan 2018

14. Local Descriptors Robust to Out-of-Plane Rotations – M. Bednarek, K.
Walas, Signal Processing: Algorithms, Architectures, Arrangements, and
Applications, Poznan 2017

15. Comparison of Visual Descriptors for 3D Reconstruction of Non-Rigid Pla-
nar Surfaces – M. Bednarek, International Conference on Image Processing
& Communications, Bydgoszcz 2017
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