
Poznan University of Technology

PhD Dissertation

Restricted Boltzmann Machine

as a binary image descriptors processor

and its application in a mobile robot

for scene recognition

Ograniczona maszyna Boltzmanna jako procesor binarnych

deskryptorów obrazu oraz jej aplikacja w robocie mobilnym

do celów przetwarzania wizji

Author:

Szymon Sobczak, MSc

Supervisors:

Dariusz Pazderski, PhD, DSc

Rafał Kapela, PhD

30/05/2023

who has been a constant source of joy and motivation.

and to my daughter, Jagna,

for her patience and encouragement,

particularly my wife, Milena,

unwavering support and understanding,

to my family for their

Furthermore, I extend my heartfelt appreciation

and for his invaluable assistance and advice.

for inspiring me to conduct this research

I would also like to acknowledge Rafał Kapela, PhD,

and throughout the writing of this dissertation.

and support during my PhD studies

for his guidance, patience,

I am deeply grateful to Dariusz Pazderski, PhD, DSc,

finishing this work would not have been possible.

my sincere gratitude to those without whom

First, I would like to express

Contents

1 Introduction 5

1.1 Machine vision . 5

1.2 Neural networks . 6

1.2.1 Basic concepts of neural networks 6

1.2.2 Neural networks in vision 12

1.2.3 Neural networks in robotics 14

1.2.4 Deep neural networks complexity 16

1.3 Research problems and proposed solutions 17

1.4 Dissertation scope and structure 19

2 Image feature engineering 21

2.1 Convolutional layers . 22

2.2 Unsupervised feature extractors and autoencoders 26

2.3 Energy-based models . 27

2.4 Feature descriptors . 31

2.4.1 Binary descriptors . 31

2.4.2 Local Binary Pattern 32

2.4.3 Real-valued feature descriptors 35

2.4.4 Feature descriptors aggregation 36

2.5 Enhanced Local Binary Pattern - colour LBP8 38

3 Restricted Boltzmann Machine 43

3.1 Overview of an RBM . 43

3.2 Training an RBM . 52

3.3 Deep Boltzmann Machines . 59

4 Image processing and classification with binary descriptors

and Restricted Boltzmann Machines 61

4.1 The RBM and the CLBP - author’s implementation 62

4.2 The RBM as a binary descriptors processor and aggregator,

CD feature space . 64

4.3 The RBM as a binary descriptors processor, hidden layer fea-

ture space . 68

4.4 RBMs for visual data comparison 74

iii

CONTENTS

4.5 RBMs for input data denoising 78

5 Experimental research 81

5.1 Image classification with RBM’s hidden units as a feature space 88
5.1.1 LBP8-RBM - MNIST dataset experiments 88
5.1.2 Colour Local Binary Pattern 95
5.1.3 CLBP-RBM - CIFAR-10, STL-10, Concrete Cracks ex-

periments . 96
5.2 CLBP-RBM for visual data comparison 106
5.3 CLBP-RBM for visual input denoising 109

5.3.1 Binary vectors denoising 109
5.3.2 Adversarial attack . 113
5.3.3 Overall distortion sensitivity of CLBP-RBM prepro-

cessing . 114
5.4 Image classification with Contrastive Divergence as a feature

space . 123
5.4.1 Binary descriptors aggregation 123
5.4.2 CD as an entry for CNN 124

6 Mobile robot application 127

6.1 Application goals
and experimental setup . 127

6.2 The architecture of the application 129
6.3 Mobile robot kinematics . 133

6.3.1 Indentification of mobile robot parameters 134
6.4 RBM for robot rotation angle detection 135
6.5 CLBP-RBM preprocessing for a CNN in mobile robot vision

system . 137

7 Conclusions 157

Appendix A RBM and CLBP implementation details 161

Appendix B Training convolutional neural networks 165

Appendix C Robot’s angle deviation measurement with a ded-

icated vision system 167

iv

List of Figures

1.1 Diagram of an artificial neuron. 7
1.2 Diagram of a Multi-Layer Perceptron. 8
1.3 Diagram of two layers of a Multi-Layer Perceptron. 9
1.4 Example a of non-linear classification problem with its repre-

sentation in other spaces (polar and given by the MLP), the
classes are marked by two colours, the blue line in the model
coordinates shows how the last neuron separates the (h1, h2)
surface. The second hidden layer of the MLP is not necessary
but allows the projection of the hidden space onto 2D surface. 10

1.5 Simplified diagram of a CNN neural network. 13
1.6 ImageNet top-5 accuracy of some common CNN architectures

versus their sizes [19, 33, 34, 35, 36, 37, 38, 58, 59, 60]. 16
1.7 Simplified diagram of a CNN neural network with unsuper-

vised preprocessing. 18

2.1 Simplified diagram of a typical image classification pipeline. . 21
2.2 Simplified diagram of a convolution operator on an image (bias

and activation function are omitted for simplifying the diagram). 23
2.3 Simplified diagram of a convolution operator with multiple

filters on a multi-channels input. 24
2.4 Simplified diagram of an Autoencoder. 27
2.5 Simplified diagram of a Hopfield network. 28
2.6 Theoretical graph of energy function versus states in a Hop-

field network. 30
2.7 Sampling patterns for two example LBP configurations. Green

is a centre pixel, yellow denotes neighbouring pixels taken for
computing the descriptor, blue pixels are omitted by the de-
scriptor. 33

2.8 Two bits descriptor distribution for a single colours pair. . . . 39
2.9 Colour LBP descriptor. 40
2.10 Example colours with their 8 bits colour descriptors (white

rectangles), and RGB hex codes. 40

v

LIST OF FIGURES

3.1 Simplified diagram of a Boltzmann Machine. Stochastic dy-
namics is skipped for simplicity. 44

3.2 Simplified diagram of a Restricted Boltzmann Machine. 46
3.3 Simplified diagram of an unrolled Restricted Boltzmann Ma-

chine. 46
3.4 Energy value of a Restricted Boltzmann Machine during its

state’s updates, normalised to its maximum value. 52
3.5 Stacking multiple RBMs, DBN/DBM model. 59

4.1 Image classification with preprocessing with an RBM and Con-
trastive Divergence feature space. Binary descriptors are gath-
ered from keypoints and CD is averaged for m prior given
regions of an image. 67

4.2 Image classification with preprocessing with an RBM and a
Contrastive Divergence feature space. Binary descriptors are
gathered densely. 68

4.3 Image feature extraction with binary descriptors and RBM
hidden space. 69

4.4 Hiperpolic tangent and sigmoid activation functions depend-
ing on the β scaling factor. 70

4.5 Image feature extraction with binary descriptors and RBM
hidden space with kernel size equal to 2. 71

4.6 Image classification with preprocessing with RBM hidden space
as feature extractor. Binary descriptors are gathered densely. . 72

4.7 Image feature extraction with binary descriptors and mutliple
RBM layers. 74

4.8 Flattening a histogram by adjusting an m vector (compare
various x-scales in both figures). 76

4.9 Pattern reconstruction in an RBM. 80

5.1 RBM response time depending on its parameter and size of an
input image with a squared shape. 86

5.2 RBM Response time in milliseconds depending on the size of
an input image with a squared shape and number of hidden
units. 87

5.3 Results of experiments on MNIST dataset, a reference network
without LBP-RBM achieves accuracy ≈ 0.91− 0.92. 89

5.4 RBM hyper-parameters tuning on MNIST dataset. 90
5.5 Validation learning curves with and without RBM preprocess-

ing layer on MNIST dataset. Figure 5.5h contains training
curves to emphasize the overfitting. 94

vi

LIST OF FIGURES

5.6 Accuracy on CIFAR-10 dataset depending on the type of de-
scriptor used in preprocessing, "CLBP_2" refers to CLBP
without 2 intensity bits. 96

5.7 Image classification pipeline for CIFAR-10, STL-10 and Con-
crete Cracks datasets, HS-CNN architecture enhanced with
Dropout and GAP. 96

5.8 RBM performance versus its hyper-parameters. Results are
relative to the lowest accuracy and to the highest processing
time. 98

5.9 RBM’s hidden space features representation in an untrained
model. 99

5.10 RBM’s hidden space features representation in a trained model. 99
5.11 Learning curves with and without the CLBP-RBM preprocess-

ing layer on the STL-10 dataset. Dashed lines denote results
on training subset, solid lines on validation subset. 102

5.12 Evaluation of deep neural network performance depending on
the number of training samples with and without the CLBP-
RBM preprocessing on CIFAR-10 dataset. 104

5.13 Evaluation of deep neural network performance on all cat-
egories depending on the number of training samples with
and without the CLBP-RBM preprocessing on Concrete Crack
dataset. 105

5.14 Histograms for P (v) taken from different datasets, cumulative
difference denotes the sum of differences between a given bin
to a reference bin from the first to the current bin. 108

5.15 Examples of noised images with different noise factors. 111
5.16 Validation learning curves for a denoising experiment, "GS"

denotes number of Gibbs steps performed for reconstruction. . 112
5.17 Examples of an image with (5.17b) and without (5.17a) added

adversarial attack noise. 113
5.18 Decrease of accuracy on the testing dataset versus epsilon in

adversarial attacks. 114
5.19 Difference in decrease of accuracy in networks with and with-

out the CLBP-RBM preprocessing depending on different Gauss
noise parameters. 120

5.20 Difference in decrease of accuracy in networks with and with-
out the CLBP-RBM preprocessing depending on different ISO
noise parameters. 120

5.21 Decrease of accuracy in networks with and without the CLBP-
RBM preprocessing depending on different distortion param-
eters, blue lines denote the difference in decrease of accuracy. . 121

vii

LIST OF FIGURES

5.22 Comparison of the processing time and the number of parame-
ters between the RBM+CNN and some commonly known deep
neural architectures. 126

6.1 Hardware used for the mobile robot application. 128
6.2 General diagram of the experimental application. 129
6.3 Architecture of the robot’s program. 131
6.4 Screenshot from the receiver application. Coordinates are

shown in centimetres, "O" stands for θ. 132
6.5 Diagram of a mobile robot in its local coordinates. 133
6.6 JetBot’s wheel velocity estimation. 135
6.7 Mobile robot error on performing one rotation with the use

of CLBP-RBM and angle estimation. Negative value of the
deviation denotes that the robot performed less than one ro-
tation, positive value denotes more than one rotation. The
error from visual feedback should be interpreted as random
while the errors from angle estimation are systematic. 137

6.8 Training curves on validation dataset for the mobile robot ob-
ject classification experiment. 140

6.9 Robot orientation task diagram, the robot should be posi-
tioned along the yellow line, β is a localisation error. 142

6.10 Mobile robot angle deviation while positioning along an axis
of a given object, 80 measurements for each category were
conducted. 144

6.11 Histograms for P (v) obtained from different datasets. 154
6.12 Training curves on the validation dataset for the mobile robot

objects classification experiment with the use of different pre-
trained RBMs. 155

viii

List of Tables

2.1 Example 3×3 patterns and their LBP8 output. 35

2.2 Average response times of different descriptors for a single key-
point, times are relative to the slowest descriptor (SIFT). . . . 36

3.1 Possible scenarios of a single hidden unit energy value change
during RBM state changes . 51

5.1 Example images from different datasets used for experiments. 84

5.2 Time in milliseconds of LBP8/CLBP response depending on
the size of an input image with a squared shape. 86

5.3 Accuracy achieved by neural network with different number of
convolutional layers with and without RBM preprocessing on
MNIST dataset. 90

5.4 Example outputs of RBM feature extractor. The left image
in each row is an input image, the images on the right are
outputs from each of 24 hidden units of an RBM. 93

5.5 Accuracy improvements achieved by different types of network
backbones with the CLBP-RBM preprocessing. 101

5.6 Accuracy reduction versus number of CNN layers reduction in
"custom" backbone. 101

5.7 Evaluation of recognition pipeline generalisation ability met-
rics for each classified category on the testing dataset for con-
crete crack detection. 105

5.8 Chi-Squared distances (defined by (4.18)) between datasets
measured with the use of an RBM’s probabilities histograms,
the diagonal results denote the distance between the reference
set of images and another set from the same training dataset. 107

5.9 Reconstruction results. 110

5.10 Example patterns used for reconstruction, the original and
with added random noise. 110

ix

LIST OF TABLES

5.11 Example noised images with parameters used for the exper-
iments ("cs" refers to colour shift in ISO noise, "i" refers to
intensity). Images were generated with the use of Albumen-
tations library [191] and the parameters of distortions refer to
its settings. 117

5.12 Accuracy improvement of the CLBP-RBM preprocessing method
for different types of noises. 119

5.13 Decrease of accuracy in networks with and without the CLBP-
RBM preprocessing depending on different Gauss noise param-
eters, results are presented as "RBM/RAW". 119

5.14 Decrease of accuracy in a network with and without the CLBP-
RBM preprocessing depending on different ISO noise param-
eters, results are presented as "RBM/RAW". 119

5.15 Example images distorted with Gaussian noise and predic-
tions from network with and without CLPB-RBM preprocess-
ing. Green text denotes predictions with preprocessing, red
without, predicted probability is given in parentheses. 122

5.16 The evaluation of a CD-based KNN matching procedure, re-
sults are presented as "accuracy/mean Average Precision", the
first row denotes "number of images for RBM training/num-
ber of images for KNN training", the best result is highlighted
with a bold font. 123

5.17 The evaluation of the accuracy of CD-RBM as an entry for DNN125

5.18 The evaluation of network accuracy with RBM preprocessing
and without it, "BD" refers to a binary descriptors layer. . . . 125

5.19 Validation accuracy depending on the size of the input image
for an RBM with 10 hidden neurons and a CLBP descriptor
as an input. 125

6.1 Objects chosen for robot classification system experiments. . . 139

6.2 Evaluation of recognition pipeline generalisation ability met-
rics for each classified category on testing dataset. 139

6.3 Example screenshots from robot prediction, coordinates of the
robot not displayed for the clarity of view. 141

6.4 Example recognition maps computed by mobile robot. Red
dots denote camera, blue dots - AC, green dots - book. The
bigger and brighter the dots the greater the certainty of oc-
currence. 146

x

LIST OF TABLES

6.5 Example recognition maps computed by mobile robot. Red
dots denote camera, blue dots - AC, green dots - book. The
bigger and brighter the dots the greater the certainty of oc-
currence. 147

6.6 Example recognition maps computed by mobile robot. Red
dots denote camera, blue dots - AC, green dots - book. The
bigger and brighter the dots the greater the certainty of oc-
currence. 148

6.7 Example recognition maps computed by mobile robot. Blue
dots denote closed door, green dots - open door. The bigger
and brighter the dots the greater the certainty of occurrence. . 149

6.8 Example recognition maps computed by mobile robot. Blue
dots denote closed door, green dots - open door. The bigger
and brighter the dots the greater the certainty of occurrence. . 150

6.9 Example recognition maps computed by mobile robot. Blue
dots denote closed door, green dots - open door. The bigger
and brighter the dots the greater the certainty of occurrence. . 151

6.10 Example images from different datasets used for experiments. 153
6.11 Chi-Squared distances (defined in (4.18)) between the JetBot

training datasets measured with the use of RBM’s probabili-
ties histograms, the diagonal results denote the distance be-
tween the reference set of images and another set from the
same training dataset. 155

xi

LIST OF TABLES

xii

ACRONYMS

AI Aritificial Intelligence

CD Contrastive Divergence

CLBP Colour Local Binary Pattern

CNN Convolutional Neural Network

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DL Deep Learning

GPU Graphic Processing Unit

LBP Local Binary Pattern

LBP8 8 bits Local Binary Pattern

RBM Restricted Boltzmann Machine

VAE Variational Autoencoder

MLP Multi-Layer Perceptron

MRF Markov Random Field

SVM Support-Vector Machine

xiii

Notation

xiv

NOTATION

a, b, c, A,B,C - scalars
a, b, c - vectors

a = [a1 a2 . . . an] - n elements of a vector

A,B,C -
matrixes, A = [a1 a2 . . . an]
denotes a matrix with ai vectors being rows

A,B,C -
tensors, A = [A1 A2 . . . An]
denotes a 3D tensor with Ai matrixes being channels

α, β, γ - functions, or coefficients
A,B,Γ - transformation with the use of set of functions (α, β, γ)
A,B,C - sets

N - a natural numbers set
N+ - a positive natural numbers set ({N \ 0})
R - a real numbers set
A
b - a vector space with b elements from A set

A
n×m - a space of matrices of size n×m with elements from A space

A
d1×d2×...×dn - a space of n-dimensional tensors

ai - an i-th element from a vector
ai,j - an element from A matrix, i-th row, j-th column

ai,j,k -
an element from 3D A tensor,
i-th row, j-th column, k-th channel

Ai,: - an i− th row of A matrix
A:,j - a j − th column of A matrix
A:,:,c - a c-th channel of a 3D A tensor
Ai,j,: - all channels of a 3D A tensor at i-th row, j-th column

A,B, C - datasets

xv

Notation

Xd1×d2×···×dn
∼U -

randomly generated numbers with uniform distribution
with respect to d1 × d2 × ...× dn dimensionality

Xd1×d2×···×dn
∼N -

randomly generated numbers with normal distribution
with respect to d1 × d2 × ...× dn dimensionality

{0, 1}d1×d2×···×dn -
a set of binary numbers
with respect to d1 × d2 × ...× dn dimensionality

⌊x⌋ - floor operation (max{m ∈ Z|m ≤ x})
⌊x⌉ - round to a nearest integer (⌊x+ 1

2
⌋)

at = (at1, a
t
2, · · · , a

t
n) - for dynamic systems: a state of a vector at time t

Ep[x] - an expected value of x over p distribution

⟨x⟩p - an average expectation of x over p distribution: 1
n

n∑
i=1

(Ep[xn])

xvi

Abstract

Abstract

In recent years we have observed a dynamic growth of vision systems and

artificial intelligence in science and many areas of industry. Due to compu-

tationally efficient resources, access to large quantities of data, and progress

in science, it is possible to train very complex neural networks, that are ca-

pable of solving many image recognition problems, and whose effectiveness

is comparable to human perception. However, the fact that solving complex

classification problems often requires very large recognition systems has led

to a focus on increasing the complexity of networks or enlarging their size,

which in turn increases the complexity of recognition systems. Most of the

currently used devices can handle those tasks, but it is not always possible

to have access to efficient processing systems, which implies that large neural

networks are not always applicable, especially in small devices, when price,

size, and power consumption are the priorities. Another concern with com-

plex neural architectures is that they require a large amount of training data,

however accessing labelled training data is a frequent problem and may be

expensive, time-consuming, and error-prone.

This dissertation presents a novel approach to visual data preprocessing

that is focused on mitigating these difficulties. The proposed method intro-

duces an additional stage of processing before the data is passed to a clas-

sification neural network. The classifier in this case may be a deep neural

network which peforms an additional high-level feature extraction, or a shal-

low network that utilises the previously extracted features directly. This stage

is composed of two layers, the first transforms an RGB image data to its

binary feature representation, the second is a small and fast neural network

that utilises the binary data to obtain its most important features, which can

be then used for classification. The output of the second layer is a real-valued

tensor representing feature vectors for each image pixel, that can be directly

passed as input of a regular neural network. An additional novelty is an im-

proved local binary descriptor, which embeds colour information in its feature

vector, instead of having only a code of the shape of a given part of an image.

The main advantage of this approach is that the neural layer can be trained

in a fully unsupervised manner, also its processing time is short in compari-

son to widely known neural feature transformers. The experiments performed

in this dissertation demonstrate that adding these layers may be successfully

applied to increase the overall accuracy of a neural network or decrease the

size of a neural network without losing its quality.

Furthermore, the preprocessing proposed in this study tackles other com-

mon image processing problems. The experiments show its robustness in

terms of input data denoising, and likewise introduces a special metrics that

1

Abstract

can be used for comparing images, or measuring the similarity between image

datasets to test if a given neural network can be used for transform learning.

The mentioned techniques tend to decrease the overall complexity of neural

structures, hence their potential use is in embedded devices. Robotics is one

of the areas that utilise these and vision in robots is an important part of their

control systems and the size, cost, and power consumption of processing units

are significant factors in design. Therefore, a part of this study focuses on an

application of the proposed method in a mobile robot equipped with a single

camera and a relatively low efficient processing unit. Experiments performed

with this application demonstrate that the previously presented and analysed

method can be successfully applied in a real device, thus the suitability of using

the preprocessing layer in embedded systems is experimentally proved.

2

Streszczenie

Streszczenie

W ostatnich latach obserwujemy bardzo dynamiczny rozwój systemów wizyj-

nych i sztucznej inteligencji w różnych obszarach przemysłu, nauki i rozrywki.

Wysoce wydajne zasoby sprzętowe, dostęp do dużej ilości danych oraz postęp

badań w obszarze nowoczesnych technik identyfikacji i modelowania, przetwa-

rzania danych i informatyki spowodowały, że możliwe jest stosowane bardzo

złożonych sieci neuronowych w charakterze uniwersalnych aproksymatorów.

W efekcie, takie architektury mogą rozwiązywać wiele problemów klasyfikacji

obrazów, a ich efektywność jest zbliżona do ludzkiej percepcji. W ogólności,

rozwiązywanie złożonych problemów klasyfikacji często wymaga bardzo skom-

pilowanych systemów rozpoznawania. Badania w obszarze klasyfikacji obra-

zów skupiają się więc głównie na zwiększaniu złożoności sieci neuronowych

lub bazują na wcześniej zdefiniowanych architekturach wymagających oblicze-

niowo. Większość obecnie używanych urządzeń może obsłużyć takie zadania,

jednak dostęp do wydajnych jednostek obliczeniowych w niektórych przypad-

kach bywa ograniczony, przez co nie zawsze skomplikowane sieci neuronowe

mogą być stosowane. Problem ten szczególnie dotyczy małych urządzeń gdzie

ich rozmiar, cena i zużycie energii jest priorytetem. Dodatkowym problemem

złożonych architektur jest to, że wymagają one bardzo dużych ilości oznaczo-

nych danych trenujących, a dostęp do nich często jest trudny oraz może być

kosztowny, czasochłonny i podatny na błędy.

Ta rozprawa doktorska przedstawia oryginalne podejście do wstępnego prze-

twarzania danych wizyjnych, którego celem jest zwiększenie efektywności roz-

poznawania obrazów przy zachowaniu ograniczonego zapotrzebowania na moc

obliczeniową. Zaproponowana metoda wprowadza dodatkową fazę przetwarza-

nia bezpośrednio przed klasyfikującą siecią neuronową i proponuje etapy prze-

twarzania realizowane przez dwie warstwy. Pierwsza z nich przetwarza obraz

RGB do jego reprezentacji w postaci wyekstrahowanych binarnych cech, druga

jest niewielką siecią neuronową, która przetwarza binarne dane tak aby wydo-

być z nich najważniejszych informacje i zależności między nimi, które można

użyć dalej do klasyfikacji. Wyjście z drugiej warstwy jest tensorem wartości

rzeczywistych, reprezentującą wektory cech dla każdego piksela. Tensor ten

może być przekazany bezpośrednio do klasyfikującej sieci neuronowej. Kla-

syfikatorem w tym przypadku może być głęboka sieć neuronowa dodatkowo

ekstrachująca cechy obrazu na wyższym poziomie abstrakcji lub płytka sieć

neuornowa realizująca predyckję na wcześniej wydobytych cechach. Dodatko-

wym oryginalnym rozwiązywaniem jest ulepszony lokalny deskryptor binarny,

który w swoim wektorze cech koduje nie tylko kształt danej część obrazu, ale

również informacje o jego kolorze.

Główną zaletą takiego rozwiązywania, jest to że warstwa neuronowa jest

trenowana w całkowicie nienadzorowany sposób, a także czas przetwarzania

3

Streszczenie

przez nią danych jest niski w porównaniu do innych znanych neuronowych de-

tektorów cech. Wyniki badań eksperymentalnych prowadzonych w ramach tej

pracy wskazują, że dodanie proponowanych warstw przetwarzania może być

z powodzeniem zastosowane w celu zwiększania jakości rozpoznawania przez

sieci neuronowe, a także do zmniejszenia ich rozmiarów bez utraty jakości.

Zaproponowana metoda może być również użyta do rozwiązania innych

powszechnie znanych problemów przetwarzania obrazu. Eksperymenty wska-

zują na celowość jej stosowania w przypadku odszumiania danych wejścio-

wych. Wprowadza ona także specjalną metrykę, która może być zastosowana

do porównywania obrazów, lub szacowania podobieństwa zestawów obrazów w

celu testowania czy sieć neuronowa o danych parametrach może być użyta do

rozwiązania innego problemu klasyfikacji bez konieczności dodatkowej opty-

malizacji wag.

Jednym z celów badań prowadzonych w ramach tej rozprawy jest dąże-

nie do zmniejszenia ogólnej złożoności struktur neuronowych, przez co ich

potencjalny obszar zastosowań to systemy wbudowane. Robotyka jest jedną z

dziedzin która na nich bazuje, ponieważ wizja w systemach sterowania stanowi

często ich istotną część. Ponadto czas, rozmiar i koszt jednostek obliczenio-

wych jest znaczącym czynnikiem w projektowaniu urządzeń przemysłowych

z integrowanymi systemami rozpoznawania obrazu. W związku z tym, część

pracy skupia się na aplikacji zaproponowanej metody w podsystemie percepcji

kołowego robota mobilnego wyposażonego w jedną kamerę i relatywnie nisko

wydajną jednostkę obliczeniową. Wykonane testy wskazują, że przedstawiony

i przeanalizowany schemat przetwarzania danych wizyjnych może być skutecz-

nie zastosowany w rzeczywistym urządzeniu. Pozwoliło to na eksperymentalne

potwierdzenie słuszności użycia technik opracowanych w niniejszej rozprawie

dla pewnej klasy systemów wbudowanych.

4

1
INTRODUCTION

1.1 MACHINE VISION

The way machines may see and interpret the world has fascinated scientists
for decades. Starting in the early 1960s, the first attempts to investigate how
images can be processed by a computer and also how the brain processes
visual signals were made. The optimism related to the possibilities of AI
in vision was then high in many areas including robotics, but the limited
resources and computing power at the time disappointed those expectations
quickly, and the progress of machine vision in real applications was hindered.
Nevertheless, the many forms of research done many years ago have cre-
ated a very solid mathematical background for the robust image processing
techniques we know today. Now computer vision is highly connected to arti-
ficial intelligence, but the first challenges were mostly related to digital signal
processing. A single image is now often represented by a three-dimensional
matrix (respectively height × width × channels), which implies the possi-
bility of applying any linear algebra or other discrete transformation to an
image to amplify or suppress desired information. That is, computer vision is
nothing else than the adoption of the commonly known mathematical meth-
ods to an image, thus image processing becomes de facto a transformation
of an input matrix to its desirable form.

The significant progress in electronic technology has resulted in cameras
being almost everywhere in our surrounding environment, so the usability of
computer vision is almost unlimited. Even devices considered today as low-
performance may perform some basic image processing to obtain relevant
visual information. As a consequence, many of the methods used in vision
systems can be easily applicable in robotics or other automatic systems with
visual control feedback to support their perception. As computer vision gen-
erally focuses on interpreting the world based on images, machines may simi-
larly perceive their surrounding. There is a variety of tasks in robotics where
image processing may help, and its usability depends on particular applica-

5

Neural networks 1.2

tion requirements. Thus, it is important to mention that focusing on com-
puter vision as a general tool may result in more efficient robotics systems.
Nevertheless, the most important challenges are classification, segmentation,
and object detection. A correctly recognised scene leads to enriching the
robot perceiving loops in much crucial information about the environment it
is located in, hence it can execute more precise actions. Visual perception
can provide essential information in context of robot localisation, decision
making and modelling of the environment. Therefore, computer vision in
robotics has been the subject of research for many years [1, 2, 3, 4, 5, 6, 7].

Many computer vision problems are close to being solved, which means
that their processing ability is at the human perception level [8]. However,
this field is still a considerable area of interest for science, because there
are many other difficulties. Mostly, as this dissertation focuses on, they
are related to data availability and the computing power required for them
which will be described in more detail in the following sections. Firstly,
however, a general concept of neural networks will be introduced as they
are the fundamental techniques to address most computer vision challenges.
Secondly the main problems consider in this thesis will be discussed.

1.2 NEURAL NETWORKS

1.2.1 Basic concepts of neural networks

Every artificial neural network is composed of its elementary units - artificial
neurons. They were introduced in 1943 by McCulloch and Pitts in [9], where
an untrainable mathematical model representing the functionality of a bio-
logical neuron was described. Then the model was modified, by introducing
training rules and minor modifications of the processing formula, but the
basic idea remained unchanged and the artificial neuron that is known and
widely used today is schematically shown in Figure 1.1.

6

Neural networks 1.2

Figure 1.1: Diagram of an artificial neuron.

Formally, one neuron processes n scalar inputs (or a vector
x = [x1 x2 . . . xn]

⊺), and generates only one output, which can be described
as follows:

y = ϕ(b+
n∑

i=1

wixi

︸ ︷︷ ︸
≜ψ

), (1.1)

where ϕ is a non-linear activation function, wi is the weight of the neuron
related to the input xi, b is a bias, ψ is a linear combination of inputs and
weights with added bias. Therefore all the parameters in a single neuron form
a vector - w of size n+ 1 - w = [b w1 w2 . . . wn]

⊺. The usability of a single
neuron is very limited, but many neurons may form a more complex model
by the use of outputs of some neurons as inputs for others. There are many
topologies of such connections, but it is sufficient to limit the considerations
to Multi-Layer Perceptron (MLP) to present the principles of neural networks
because it is a standard in the AI nowadays and some other architectures,
even recurrent ones can be reinterpreted as similar to an MLP. This is also an
important model for this study, thus it has been chosen as a representative
example of neural network architecture.
An MLP is a deterministic model composed of some number of layers - m,
where each layer composes of a number of neurons - [n1 n2 . . . nm]

⊺, an input
signal propagates from the input to the output layer, and the neurons are fully
connected (every output from the previous layer is connected to every input
in next layer). The layers between input and output are referred to as hidden

layers, schematically this is shown in Figure 1.2, x = [x1 x2 . . . xn]
⊺ - denotes

an input signal, y = [y1 y2 . . . yn]
⊺ is an output signal, hi = [h1 h2 . . . hn]

⊺

are intermediate hidden signals. For further discussion - h is generalised to
all units in the network, and h1 is denoted also as input, and hm as output,

7

Neural networks 1.2

so h1 ≜ x and hm ≜ y. For the sake of clarity, it is worth mentioning that
the terminology "MLP" may be ambiguous because one can understand that
as a multilayer network composed of "perceptrons" [10], but a perceptron
output is binary because applying a Heaviside function as ϕ. However, this
is not a feature of an MLP, which can utilise any activation function.

inference
error

propagation

Figure 1.2: Diagram of a Multi-Layer Perceptron.

Now, one can define the number of parameters of a single i-th layer in
an MLP:

Ni = ni︸︷︷︸
no. units in layer

× (ni−1 + 1)︸ ︷︷ ︸
no. units in previous layer

. (1.2)

The number of all parameters in the network is then equal to N =
m∑
i=2

Ni.

This parameter may be very large, especially for high dimensional input and
many hidden layers.

The non-linearity between the layers is important because otherwise, the
hidden layers would not be necessary. To exemplify, consider two linear layers
of an MLP, as shown in Figure 1.3.

8

Neural networks 1.2

Figure 1.3: Diagram of two layers of a Multi-Layer Perceptron.

The first hidden layer processes an input x = [x1 x2 . . . xm]
⊺ composed

of n neurons, where each of them has its own weights vi = [vi,1 vi,2 . . . vi,m]
⊺

and performs the following linear transformation:

hi = vi
⊺x, (1.3)

hence the hidden layer vector has the following form:

h =




h1
h2
...

hn


 =




v⊤
1 x

v⊤
2 x
...

v⊤
nx


 =




v⊤
1

v⊤
2
...

v⊤
n


x. (1.4)

Consider the transformation function of the linear unit from the next
layer, with weights vector w = [w1 w2 · · · wn]:

f = w⊺h = w⊤




v⊤
1

v⊤
2
...

v⊤
n


x = w̃⊤x, (1.5)

As a result, all the weights in the analysed layers could be replaced with
w̃ = [w̃1 w̃2 . . . w̃m] being a linear combination of w and all vi. For hi
being a neuron with a non-linear activation function this is not possible and
all the layers process the signals with more abstract meaning. With the use
of non-linearity, an MLP may solve many complex problems, therefore those
linearly separable are rather trivial.

9

Neural networks 1.2

Example 1 (XOR classification problem). The most commonly known ex-
ample of a simple non-linear case is an XOR problem [11] - a linear unit
cannot perform the function determined by the following set of data:

S = (X ∈ {0, 1}2, Ŷ ∈ {0, 1}) = {([0 0], 0), ([0 1], 1), ([1 0], 1), ([1 1], 0)},

where S is a training dataset split into X - a set of input signals and Ŷ - a
set of desired outputs.

Example 2 (Circle pattern classification problem). Another good example
of how hidden layers increase the level of abstraction (inspired by [11]) is a
classification of a circle pattern in Cartesian coordinates. It is not possible
to separate it with a single neuron. However, intuitively we can transform
the coordinates to be polar, and then the radius determines to which class a
given example belongs. In the area of neural networks, we can train an MLP
to recognise it. To make it more concrete, an MLP with two hidden layers
(g and h) was experimentally trained. The results are shown in Figure 1.4,
which illustrates how a neural network processes the data with non-linearities
to be separable linearly in the last layer.

Figure 1.4: Example a of non-linear classification problem with its represen-
tation in other spaces (polar and given by the MLP), the classes are marked
by two colours, the blue line in the model coordinates shows how the last
neuron separates the (h1, h2) surface. The second hidden layer of the MLP is
not necessary but allows the projection of the hidden space onto 2D surface.

10

Neural networks 1.2

Currently, the most common non-linearity is the Rectified Linear Unit
(ReLU) [12] (ϕReLU(x) = max(0, x)), or some of its variations [13], but ear-
lier it was sigmoid or hyperbolic tangent function. The reason why these
have been superseded by ReLU is mostly related to the vanishing gradient
problem [14], which means that during the training phase gradients become
very low in the first layers after propagation from the top layers, moreover
ReLU can be computed much faster.

MLP is a deterministic model and signals in a single layer propagate
synchronously, each layer performs a non-linear transformation of an input
that can be defined by a vector:

hi = [ϕ(ψ1) ϕ(ψ2) . . . ϕ(ψni
)]⊺

= [ϕ(hi−1,θi1) ϕ(hi−1,θi2) . . . ϕ(hi−1,θin)]
⊺

= f i(θi,hi−1),

(1.6)

where θi denotes all the parameters in an i-th layer, θij is a vector of pa-
rameters of a j-th neuron in an i-th layer, ψj is a total input to a given
neuron j as described in (1.1) and f i(·) is a transformation function of an
i-th layer. Finally, one can define the entire MLP architecture as a non-linear
transformation of an input defined by the following equation.

y = fm(θm, fm−1(θm−1, fm−2(. . . (f2(θ2,x))))) = f(θ, x), (1.7)

where θ denotes all the parameters in the network. The major challenge in
the AI field is obviously to adjust all the weights to solve a given problem.
For given sets of signals X = [x1 x2 . . . xn]

⊺, Ŷ = [ŷ1 ŷ2 . . . ŷn]
⊺, we want

y = f(θ,x) (model output) to follow given ŷ which is the desired output.
This can be considered as an optimisation problem for determining θ for
any given set of input and output signals. Having defined the number of
parameters and knowing the high dimensionality of the f function, one can
conclude that determining θ may be not possible analytically in many cases,
thus it has to be computed algorithmically. The optimisation algorithm
defines a loss function e(ŷ,y) describing a distance between ŷ and y, and then
iteratively changes the parameters minimising the e function until satisfying
some initially defined conditions (for example the value of e less than some
threshold, or the number of iterations bigger than some threshold). The
general formula is defined as follows:

θt+1 = θt + ∆θt︸︷︷︸
depends on e(ŷ,y)

. (1.8)

The process of adjusting θ may be performed with the use of a gradient
descent method, which in short, for given loss value - e computed in one step,

11

Neural networks 1.2

takes advantage of a gradient ∂e
∂θ

, and tends to minimise its value. Currently,
it is often done with a backpropagation algorithm, popularised by Hinton,
however discovered independently by several groups of scientists [15, 16, 17,
18]. This technique propagates the error backward from the output layer
to the first hidden layer, thus with the use of chain rule one can define a
gradient for every single weight in the model - ∂e

∂θijk
[18] and the formula of

updating is given as:

∆θtijk = −η
∂et

∂θtijk
, (1.9)

where i,j,k refer to an i-th layer, j-th neuron, and k-th weight, η is a small
positive scalar value that scales the update term. The entire procedure is
called learning or training, and if Ŷ is prior given (by human labour) it is
called supervised learning, otherwise unsupervised learning (Ŷ - is automati-
cally inferred).

In general, neural networks may solve different types of problems; how-
ever, this study focuses mostly on classification problems. In this case, y

from (1.7) takes a form of vector y = [y1 y2 . . . yn], where each yi denotes
how likely a given input belongs to each from n categories. Usually, the
output is transformed to a more useful form - ỹ, such as ∀iỹi ∈ [0; 1] and∑

i ỹi = 1 which is a result of applying a softmax function [11] after the last
layer in a network: ∀iỹi =

eyi∑
j e

yj .

1.2.2 Neural networks in vision

Visual recognition methods changed significantly in 2012, when Krizhevsky,
Hinton and Sutskever revealed a deep neural network - AlexNet [19] that out-
performed all previously known models in the ImageNet Large Scale Visual

Recognition Challenge [20]. It was a very complex task for image classifica-
tion systems, because of the large amount of data being classified (more than
1.2 million) and number of classes (1000). AlexNet achieved 15.3% top-5 er-
ror, which was more than 10 percentage points better than its competitors. It
utilised Convolutional Neural Network (CNN) as a base architecture. Convo-
lutional layers are explained in more detail in the next chapter, but in short,
a CNN-based classification is composed of many convolutional layers used as
a feature detector and several fully connected layers (MLP) used as a feature
classifier which is schematically presented in Figure 1.5.

12

Neural networks 1.2

MLP

Input
Image

Output

Convolutional
Layers

MLP

Figure 1.5: Simplified diagram of a CNN neural network.

CNNs are still used in many neural models for image processing, and
they are usually very complex. One entire field in science that among others
focuses on these is named deep learning (DL); this term de facto has no strict
definition, but broadly speaking, its modern interpretation refers to artificial
neural networks composed of many hidden layers. The main concepts of
DL are given by LeCun, Bengio and Hinton in [21] - a highly influential
article describing how these models work, and why their recognition ability
is substantial.

In fact, CNNs were known before 2012, and the article that presented
this type of network for handwritten digit recognition from 1989 published
by LeCun [23] is considered a precursor of CNNs. These networks were
also applied in other vision tasks at the time, for example for face recog-
nition [24]. However, AlexNet was a milestone in the entire area of deep
learning. Not only because of the first use of CNN in large scale datasets
but also of some novelties, among others the heavy use of a graphic process-
ing unit (GPU) in training a large deep neural network. Although it was
not the first attempt to employ GPU for CNN [25, 26], the previous results
were obtained for much smaller models, AlexNet also used two GPUs for
distributed training. In the next decade, CNNs and training them on GPUs
became a standard in artificial intelligence, and parts of AlexNet architecture
have been successfully applied in various machine vision tasks such as object
detection [27], region segmentation [28], human pose estimation [29], video
classification [30], object tracking [31], and image upscaling [32]. The main
reason that it was achievable is that CNN and its particular implementation
- AlexNet is a robust image feature transformer that can be used in a variety
of scenarios; however, the classification results on the ImageNet dataset have
been being consequently improved, among others the most important models
that outperformed AlexNet were GoogleNet [33], InceptionV3 [34], VGG [35],
ResNet[36], DenseNet [37], EfficientNet [38]. Although they differ in terms
of their architectures, they share the same feature extraction idea, which is
a CNN. This resulted in artificial intelligence becoming an inseparable part
of modern society, and many major companies like Facebook, Google, Mi-

13

Neural networks 1.2

crosoft, IBM, Yahoo! Twitter, and Adobe invest significant resources for
research and developments in this area of industry [21]. Furthermore as DL
has some special hardware requirements we can observe many changes in
chip development to support the computations needed for it. Nvidia, Intel,
Apple, and Qualcomm develop their processors to take deep learning needs
into account. Hence, we can say, we are witnessing a revolution in industry
and economy which is a result of research in artificial intelligence. Moreover,
DL has also a big impact on a variety of fields of science, since its modali-
ties are miscellaneous, it is applicable to different types of scientific problems
and as explained in [22] there is considerable growth in the adoption of DL
techniques as a research tool.

In fact, a number of recent works prove that convolutional layers are not
necessary to achieve good performance [39, 40], but CNN-based networks are
still the most commonly used models in computer vision systems and this
study focuses mainly on these.

1.2.3 Neural networks in robotics

In today’s world, robotics plays an important role in almost every part of our
life. Manipulators, mobile robots, and autonomous vehicles support us in in-
dustry, medicine, the military, and some of our daily duties. We notice that
progress in robotics tends to result in robots behaving more like humans or at
least having some similar properties in terms of recognition and interaction
with an environment. This implies that neural networks are highly important
for robots, notably in their vision which this dissertation relates; however,
AI has many other use cases for robots like perception, decision-making,
high-level control, or updating of controller parameters. Nevertheless, AI
in robotics does not solve any control problems itself, it should be regarded
mostly as a tool that may assist in better environment understanding and
supporting their control loops.

For a brief historical background, it is worth mentioning that AI in gen-
eral was applied to robotics problems even before the 1970s, the first signif-
icant achievement was Shakey Robot [41] which was a mobile robot being
able to perceive the environment, reason, and solve some relatively complex
task using the first AI algorithms, however without utilising neural networks.
The implementation of neural networks for control is known since the 1980s
when in [42] described how AI may support in control of robot manipula-
tor. Later some researchers in the 1990s described similar and other use
cases [43, 44, 45]. An important study was presented in 1989 [46] wherein
the authors proposed the use of a neural network for mobile vehicle image

14

Neural networks 1.2

recognition. The network usability then was obviously very limited when
compared to more recent achievements; however, still very impressive taking
the computing power and knowledge of AI at that time into account. More-
over, it introduced the idea of neural vision processing in robotics which is
the field that this study focuses on.
The significant progress in artificial intelligence and computing power of
robots processing units has resulted in fewer limitations in the usability of
neural networks, and one can find many studies showing example applica-
tions of neural models in almost any field related to robotics, such as robotic
grasping [47, 48], path planning and navigation for mobile robots [49, 50],
sensor data processing [51, 52], obstacle detection and avoidance [53, 54],
road detection [55, 56]. As one may imagine there is a variety of others since
AI performs best in many other areas that robots use, for example, scene
classification, object localisation, audio recognition, and processing, etc., so
any particular application depends only on the task requirements. Thus one
can conclude that as robotics relies on the theoretical principles provided by
the research on AI, there is a need to work on strict neural network problems
to provide more efficient tools for robotics.

The property that distinguishes robotics from others fields of industry is
that it the available resources are often limited and the robotic systems have
to meet real-time capability requirements. The limitations are as a result
of the size of robots, their power consumption requirements, and the price
in some cases. Therefore, in robotics the size and speed of neural networks
become more significant, and it is highly important to make them as fast
as possible to perform any given task. Another difficulty is data availability
as previously mentioned, but in robotics this problem arises more frequently
because as the robots often work in restricted environments. Thus, the data
they process is limited, and may also be problematic to be known prior. It
implies that supervised learning in this case may be difficult and expensive
because of data labelling. Hence, the goal, in this case, is to make use of
unlabelled data provided by robot and limit the amount of labelled data
needed for efficient training.
Considering this scenario, one can ask if a robot that has been adapted to
work in a particular environment can be moved to another one and perform
the recognition task with a similar accuracy. This is a complex problem
as standard neural networks do not provide a metrics that would inform if
transfer learning is possible, which means whether or not the transferred part
of a network is a good feature extractor for a different recognition problem.

This study addresses these difficulties. Foremost, it presents an original
preprocessing technique that permits the limitation of the size of a network,
enabling better recognition efficiency when the unlabelled data is available,

15

Neural networks 1.2

but labelled data is limited, and finally, it provides a metrics to compare the
distribution of a training dataset to new data, without retaining the original
data.

1.2.4 Deep neural networks complexity

In general, a major concern related to CNN-based models and large neural
networks is that they are composed of many parameters which increases their
possibilities to accurately approximate even highly nonlinear functions, but
also makes them computationally demanding. The comparison between size
and accuracy of some representative CNN models is shown in Figure 1.6, but
before an analysis of the results, it is important to mention that some of the
models outperform human recognition ability, which is at level of 95% [57].
It indicates the importance of applying DL techniques in image processing
tasks.

Figure 1.6: ImageNet top-5 accuracy of some common CNN architectures
versus their sizes [19, 33, 34, 35, 36, 37, 38, 58, 59, 60].

The first observation is that the number of parameters and floating point
operations is very large for every model, so all the architectures that achieve
good performance on the ImageNet dataset are very resource-consuming.
This is obviously something that can be expected because complex tasks re-
quire many parameters in the model to be solved. However, this leads to
a problem with computing power needed for training and inference. Some
models like SqueezeNet [58] or Mobilenet [59] are designed to be relatively
small and still achieve a good accuracy, but their overall performance is worse

16

Research problems and proposed solutions 1.3

than their bigger competitors. EfficientNet model [38] tackles the scalabil-
ity task, and is also one of the best models currently available, but still
the dependency between size and accuracy is clear as it is for other models
shown in this comparison. Therefore, a versatile method that could increase
the performance of a particular model without significant increase of its size
would be useful for many reasons, especially for its application in systems
with limited resources. Another concern with large neural models is that
they need large quantities of training data to achieve a good performance
[61] which may be problematic, particularly when the model has to be learnt
from scratch and no transfer learning [62] can be applied. The models men-
tioned earlier were trained on a large and precisely labelled images set - the
ImageNet, but for many practical scenarios, the process of preparing a train-
ing set has to be performed on other images. The data is usually available
or can be easily gathered, the problem is with labelling it. For supervised
learning which is used to train the above-mentioned neural network, the data
has to be categorised by humans, which is time-consuming, error-prone and
relatively expensive. This is why there is a need to make use of unlabelled
data.

1.3 RESEARCH PROBLEMS AND PROPOSED SO-

LUTIONS

As mentioned previously, neural networks that achieve state-of-the-art re-
sults in many commonly known problems are composed of many parameters
and require many floating point operations to compute the output. This can
be an advantage, as having a large number of training samples and compu-
tationally efficient processing units causes that they are applicable in many
scenarios. However, these conditions are often not met, especially in systems
with limited resources. There are many such systems, especially embedded
platforms, that have restricted computing efficiency because the size, price,
and power consumption are significant factors when designing the systems.
Robotics and particularly mobile robots are the parts of the industry that
utilise this type of systems, therefore there is a considerable need to reduce
the resources needed to solve a given classification problem.

The second important concern in image recognition in robotics is data
availability. In general, mobile robots are able to gather image data, but
they cannot make use of them without labelling by human, thus the research
on unsupervised learning methods that do not require lots of computing
power is highly important.

Based on the aforementioned problem, the research presented in this dis-

17

Research problems and proposed solutions 1.3

sertation focus on solving two major problems:

• reducing the number of parameters in an image classification network
while satisfying the accuracy requirements,

• using unlabelled data to increase the accuracy of CNN networks when
labelled data is limited.

As will be shown in the following chapters, these two problems are related,
since there is a possibility to preprocess the data in an unsupervised way to
have more abstract features in the input. So both of the research problems
can be solved by the same approach.

The author of this study proposed a novel structure of image process-
ing that introduces an additional stage of processing before the CNN, as
presented in Figure 1.7.

MLP

Input
Image

Output

Convolutional
Layers

MLP

Unsupervised
preprocessing

Figure 1.7: Simplified diagram of a CNN neural network with unsupervised
preprocessing.

The preprocessing composes of two layers, the first is a transformation
to a binary space that describes some basic features of an image, and the
second is a neural network that processes these descriptors to obtain the
most important features and transforms them into a more abstract space.
Additionally, the neural network is a recurrent model that can learn the
probability distribution an input data. Taking this into consideration, it is
possible to define two additional important abilities that solve other image
processing problems:

• reconstruction of input data if it is corrupted or affected by noise,

• comparison of given images dataset to the one that has been used for
training - a measure of similarity of visual data.

Another problem, related directly to binary image descriptors will be
raised in the following chapters. In short, these are relatively good feature
extractors but there are not many effective methods that would process them
for classification purposes especially when the number of descriptors from an

18

Dissertation scope and structure 1.4

image may vary. This dissertation shows that binary descriptors may be
aggregated for classification purposes with the use of the same recurrent
neural network; however, the rest of the pipeline changes as the output of
aggregation is more an expanded feature vector that represents the entire
image rather than the image processed to another space.

Another unique achievement in this study is a novel binary feature de-
scriptor that enhances the commonly known approach by additional bits that
represent the colour of a given part of an image.

The implementation of the novel descriptor is prepared by the author
as well as an implementation of the previously mentioned recurrent neural
network.

Finally it is possible to formulate the following thesis statements:

• it is possible to increase generalisation ability of a neural network with
the use of the novel unsupervised preprocessing method based on binary
descriptors and a recurrent neural network,

• this preprocessing may be applied to reduce the complexity of a classi-
fication neural network without a significant decrease in accuracy, thus
minimising required computing resources,

• applying the proposed preprocessing may result in less image-distortion
sensitivity of a classification neural network,

• this preprocessing may provide an additional metrics allowing to mea-
sure a distance between image datasets.

It is not possible to verify the above-mentioned statements analytically as
the structures of neural networks are too complex, hence commonly known
statistical methods will be employed to show the potential usability of the
proposed method and to compare with models not utilising it.

1.4 DISSERTATION SCOPE AND STRUCTURE

The dissertation focuses on neural networks in machine vision and their gen-
eral usability in computer science. However, the main areas of utilisation
of the proposed solutions are systems where the computing power or data
availability is limited. Chapter 1 has presented a general overview of current
knowledge in this field and also has presented some basic concepts of neural
networks for a better understanding of the models being described in the
next part.

19

Dissertation scope and structure 1.4

Chapter 2 explains the most commonly known and used image feature ex-
tractors, which are the essential part of the proposed approach in this study.
This chapter describes the trainable neural extractors and also feature de-
scriptors that are formally transformations with prior given parameters. An
important section is 2.5, which presents a novel approach to include colour
information to a feature shape descriptor. Chapter 3 is devoted to the Re-
stricted Boltzmann Machine as it is a base for all the considerations in this
research. Chapter 3 presents the general concepts of this model, including
the training and use cases for more complex architectures.

At the beginning of Chapter 4, there is a brief explanation of how the novel
feature descriptor and the Restricted Boltzmann Machine were implemented,
to achieve the best performance and flexibility for experiments. Chapter 4
presents also the detailed method of how RBM and binary descriptors can
be used in terms of image processing. It describes all the techniques from a
formal point of view in order to implement them in any programming tool.
Additionally, it presents all the parameters that have to be set/adjusted in
order to achieve the best performance. Chapter 5 is a presentation of the
results of the tests that have been performed during the research. It shows
experimental proof of the suitability of applying the methods described in
Chapter 4. Chapter 6 describes a practical application of the previously pre-
sented methods. As the study focuses on some problems that highly relate
to robotics, the application is implemented to be an example of mobile robot
perception. Chapter 6 shows the details of image processing pipelines imple-
mentation as well as the results achieved when compared to an architecture
without the proposed preprocessing. Chapter 7 contains the conclusions from
the research and experiments.

20

2
IMAGE FEATURE ENGINEERING

Image classification in its general form composes of two stages. The first
is an extraction of visual features, the second is a classification of them, a
diagram is presented in Figure 2.1.

Input
Image OutputFeatures

extractor
Features

classificator

Figure 2.1: Simplified diagram of a typical image classification pipeline.

There are many ways to obtain the most important information from
images. The feature extraction is a transformation of their raw pixel repre-
sentation to a space that can be separated by a classifier. Raw pixel data
is easily recognisable by humans because of how the brain works, but for
the conventional machine learning algorithms like MLP or Supported Vector
Machines (SVM) [63] the raw data is too complex and often its dimension-
ality is too big. In other words, the feature extraction is amplifying only the
information from an image that are needed for classification and suppressing
the irrelevant ones. For decades, feature engineering was a very complex
task because it required careful engineering and excellent knowledge of the
data domain [21]. It was usually composed of the detection of some basic
features like edges, blobs, corners, lines, etc., because the high-level features
like shapes or dependencies between the lower level features were hard or
impossible to detect. Nevertheless, deep learning changed significantly the
dominant approach to image classification because feature extraction has be-
come a trainable process. That is a fundamental reason why DL models are
important tools as they can learn how to process an image to extract the
features. However, as mentioned before it requires a lot of training data and
computing power.

21

Convolutional layers 2.1

2.1 CONVOLUTIONAL LAYERS

The convolutional layer is an essential feature extractor in most commonly
used DL architectures. The way it works is inspired by the receptive fields
in animal brain [64]. It can be conveniently described in a mathematical
language using the convolution/splot operator denoted by ∗ symbol, in the
continuous domain it can be defined by:

(h ∗ g)(t) ≜

∫ ∞

−∞

h(τ)g(t− τ)dτ, (2.1)

In the discrete domain the splot can be represented by a sum operation. In
addition, assuming that h = [h1 h2 . . . hn]

⊺, g = [g1 g2 . . . gn]
⊺ ∈ R

n are
vectors one can consider the following:

(h ∗ g)n ≜
m∑

i=1

hign−i. (2.2)

Formula (2.2) is the core of CNN layers, h in this case is called filter or kernel,
and g is an input image. A single CNN layer is built of many filters, where
each filter is specifically parametrised to be reactive on some particular pat-
tern. Taking into account the two dimensional image nature, a convolutional
filter is a matrix of size m× n:

W =




w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n


 , (2.3)

where the wi,j is a single weight in a filter. The feature type that is being
amplified by the particular filter depends on the dependencies between the
weights. For an abstract example, a 3× 3 kernel could learn to be a vertical
edge detector and have a form similar to a Sobel filter [65]:

W =



+1 +2 +1
0 0 0
−1 −2 −1


 . (2.4)

From a mathematical point of view, an output of a single convolution
filter in a single place of an input image, is a sum of bias b and element-wise
product of a filter weights and processed part of an image followed by an
activation function.

o = ϕ(I,W , b) = φ

((
m∑

j=1

n∑

k=1

wj,k · ij,k

)
+ b

)
, ϕ : Rm×n → R, (2.5)

22

Convolutional layers 2.1

where φ is a non-linear activation function, wj,k denotes filter weights, b is a
filter bias, ij,k denotes an element from input matrix - I. It is a basic equation
of an artificial neuron (1.1) with regard to a 2D space, but convolutional
layers in image processing are built in a particular way that enables the
feature extraction. This operation moves through the input and detects the
features in the entire image by analogy to (2.2). The visualisation of this
process for a two-dimensional filter is shown in the Figure 2.2.

X +

Figure 2.2: Simplified diagram of a convolution operator on an image (bias
and activation function are omitted for simplifying the diagram).

Taking the image and filter indices into account based on (2.2) a single
value of an output is given by the following equation:

op,q = φ

(
m∑

j=1

(
n∑

k=1

wj,k · iy,x

)
+ b

)
, (2.6)

where j is a row number, the k is a column number, y = (j + p− m−1
2

), and
x = (k + q − n−1

2
), op,q is an element from output matrix O.

A convolution may be computed across multiple channels and multiple fil-
ters may be applied on one input, then a single filter is a tensor - F ∈ R

n×m×c,
where c is a number of channels, input is a tensor - P ∈ R

w×h×c, and all
the filters are 4D tensor C ∈ R

n×m×c×f , with f filters. The output of the
convolution layer is a sum of products from each channels as schematically
shown in Figure 2.3.

23

Convolutional layers 2.1

X

+

X

X

+

Figure 2.3: Simplified diagram of a convolution operator with multiple filters
on a multi-channels input.

The output tensor - O ∈ R
ĥ×ŵ×f in images processing is called a feature

map, and ŵ, ĥ denote its width and height, the final equation with regard to
all the parameters is as follows:

op,q,f = φ

(
c∑

j=1

(
m∑

k=1

(
n∑

l=1

wk,l,j,f · ix,y,j) + bf

)))
, (2.7)

where z refers to the input channel number, f to the filter number.
Despite CNN differing from MLP in terms of the connections between layers,
there are also many similarities, such as a feed-forward structure and neu-
rons equations, thus the process of adjusting the weights is performed with
backpropagation [23].

Based on the previous equation, one can define a number of parameters
in one convolutional layer:

Nparams = (n ·m · c+ 1) · f, (2.8)

and the number of floating point operations to compute an output from a
single conventional layer:

FLOPs = 2 · (n ·m · c+ 1) · f︸ ︷︷ ︸
Nparams

·
(w − n−1

2
+ Px)

Sx︸ ︷︷ ︸
ŵ

·
(h− m−1

2
+ Py)

Sy︸ ︷︷ ︸
ĥ︸ ︷︷ ︸

output size

, (2.9)

24

Convolutional layers 2.2

when Sx, Sy denote strides - the number of skipped pixels when the kernel
moves through the input data in both directions, and Px, Py are borders
padding. The 2 factor is because each parameter has to be multiplied by the
input and then summed up. Usually the parameters are chosen as: m = n,
P ≜ Px = Py =

n−1
2

, S ≜ Sx = Sy,
hence (2.9) can be simplified to the following form:

FLOPs = 2 · (m2 · c+ 1) · f ·
w · h

S2
, (2.10)

Example (AlexNet complexity). For a representative example: the first con-
volutional layer in AlexNet has 96 receptive fields of size 11× 11, the size of
input is 227 × 227 × 3, and the stride is 4, thus the number of parameters
in this layer is 34944, but the number of floating point operations in this
layer is 0.224 · 109. For the second layer m × n = 5 × 5, f = 256, S = 2, so
Nparams = 614656 and FLOPs ≃ 0.93 · 109. This exemplifies the computa-
tional complexity of conventional layers. In fact, all the multiplications can
be performed in parallel because they are independent, and it is relatively
easy to accelerate them on a GPU, however, the computing efficiency needed
for the entire convolution is large and can be problematic in some systems.

Knowing the basic concepts of convolutions, and taking into account that
one filter functioning as one feature detector, we can consider a fundamental
concept of deep learning. Each convolution layer learns to represent more
abstract features than the previous one, so the more convolutional layers, the
more the level of abstraction. As the level of abstraction increases the fea-
ture map matrix typically becomes wider (more channels) although smaller.
Adding more channels is a result of using more filters in deeper layers, de-
creasing the size of the feature map is performed with the use of pooling [66],
however using stride for convolutional layers may reduce the size too. Based
on this, the first layers in CNN represent basic image features, like edges,
corners, etc., then the level of abstraction increases and the network later
may represent more compound shapes.

Based on that, the hypothesis in this study is that feeding the first layers
with already preprocessed data, that represents more complex information
than the raw pixel data may result in reducing a number of convolutional
layers in the network without losing its accuracy or actually increasing accu-
racy when there is a possibility to learn the preprocessing layer on unlabelled
data.

25

Unsupervised feature extractors and autoencoders 2.2

2.2 UNSUPERVISED FEATURE EXTRACTORS AND

AUTOENCODERS

Many commonly known methods tackle unsupervised data processing. Some
such as clustering [67], data transformations [68, 69], regression [70] or any
sort of structured prediction [71] are based on relatively simple techniques
which can be efficient for some tasks. However, these methods have not
been applied successfully in large scale data classification. One of the major
disadvantages is that they do not have a standardised measure that would
describe how well a model fits the data, and also their level of abstraction
in data representation is rather low. On the other hand, there exist more
complex approaches based on neural networks that have similar capabilities
but can be larger and trainable in an unsupervised manner. One of the most
commonly used models for this task is an autoencoder [72, 73]. A basic form
of an autoencoder is presented in Figure 2.4. The architecture is similar to
MLP, it is built from an input - x ∈ R

n, output - y ∈ R
n, and at least one

hidden layer - h ∈ R
m called sometimes latent space, the sizes of input and

output signals are the same, although larger than the size of latent space
(n > m). As an autoencoder is de-facto a standard feed-forward neural
network, a backpropagation algorithm may be applied in order to train the
parameters as given in (1.8) and (1.9). The loss function can be defined by
e(y,x), so the output follows the input during the learning process. Thus
h vector is simultaneously an image of input x and a preimage of output y.
In other words, an autoencoder is composed of two parts: encoder (x 7→ h)
and decoder (h 7→ y). The number of hidden layers between the input and
the latent space is usually the same as between latent space and output,
although it is not a strict constraint and unsymmetrical autoencoders exist
too [74, 75]. There are many ways to build an autoencoder architecture,
but for image processing purposes they may be composed of convolutional
layers [76].

26

Energy-based models 2.3

decoder

encoder

Figure 2.4: Simplified diagram of an Autoencoder.

The main ability of an autoencoder is that it can learn how to represent
the high-dimensional data by a space with lower dimensionality and how to
reconstruct the input data if it is broken. Nevertheless, an autoencoder is
a deterministic model and its generalisation ability is highly limited to data
that have been used for training. The major improvement to an autoencoder
that tackles this problem is a Variational Autoencoder (VAE) [77], formally
a generative model that generalises the autoencoder idea by learning how to
generate new data. The way the VAE improves the generalisation ability of
an autoencoder is the use of probabilistic distribution to describe the data.
In general, VAEs are one of the most important achievements in artificial
intelligence, notably in image processing [78]. There exist many variations
of VAEs [79], For classification purposes it can be used to pretrain the first
convolutional layers, however, VAEs are composed of a large number of pa-
rameters, from 8 to 40 million [80], which makes them quite complex, thus
it is again a problem in systems with limited resources.

2.3 ENERGY-BASED MODELS

Another good example of a neural network that is able to learn in an un-
supervised manner is a Hopfield model [81]; it is a recurrent neural network
that serves as an auto-associative memory, which means it can learn certain
patterns from an input data. In contrast to previously discussed architec-
tures it is a dynamic model, thus there is a time t associated to network states
updates. The network associates some states of its units based on an input

27

Energy-based models 2.3

at time t = 0, then at time t = t + Ts (where t denotes the sample number
and ts denotes sampling time), then changes them dynamically depending
on what was computed previously.

Figure 2.5: Simplified diagram of a Hopfield network.

A simplified form of a Hopfield network is shown in Figure 2.5. It is
composed of an input vector x̃

t = [x̃t1 x̃
t
2 . . . x̃tn]

⊺ and an output vector
yt = [yt1 y

t
2 . . . ytn]

⊺, and t denotes a discrete time. The recurrence is done
by using delayed the output yt−1 as an additional input, so the vector being
processed by the network is xt = (x̃t,yt−1) = [xt1 x

t
2 . . . xtn]

⊺. In the basic
form of Hopfield network the units are bipolar, so they may have two of
possible values {−1,+1}. The state of the output yt is computed with the
following formula:

yi = φ̃

(
n∑

j=1

wi,jxj − bi

)

︸ ︷︷ ︸
≜ψi

, (2.11)

where bi is a bias of particular neuron, and φ̃ is an activation function:

φ̃(x) =

{
+1 if x ≥ 0

−1 otherwise
, (2.12)

28

Energy-based models 2.3

and the weights matrix W is:

W =




0 w1,2 w1,3 · · · w1,n

w2,1 0 w2,3 · · · w2,n

w3,1 w3,2 0 · · · w3,n

...
...

...
. . .

...
wn,1 wn,2 wn,3 · · · 0



. (2.13)

Such a matrix is symmetric (∀i,jwi,j = wj,i), and since ∀iwi,i = 0 there are no
connections between output and input of the same neurons. These weights
are trained with the use of Hebbian rule [82].

The Hopfield network is an energy-based model [83], which means that
it has a special scalar value associated with its joints configuration called
energy. This quantity changes during updates of the units and the network’s
dynamic tends to decrease it. This is in general a feature of a dynamic system
in which there can be considered a stability problem. The energy value in a
Hopfield network is a deterministic equation and is given as follows:

E = −
1

2

∑

i,j

wi,jxjxi −
∑

i

xibi. (2.14)

Based on this, we can prove that the energy will never increase during the
neuron state changes. Consider the following equation for a single unit i
energy:

Ei ≜ −
1

2

∑

j

wi,jxjxi − xibi. (2.15)

The energy change at time t+ 1 can be defined as follows:

∆Et+1
i = Et+1

i − Et
i

=

(
−
1

2

∑

j

wi,jxjx
t+1
i − xt+1

i bi

)
−

(
−
1

2

∑

j

wi,jxjx
t
i − xtibi

)

= −
∑

j

(
wi,jxj(x

t+1
i − xti)

)
− bi

(
xt+1
i − xti

)

= −
(
xt+1
i − xti

)
︸ ︷︷ ︸

∆xi

(
∑

j

wi,jxj − bi

)

︸ ︷︷ ︸
ψi

.

(2.16)

29

Energy-based models 2.3

Based on that and according to (2.11) and (2.12) one can write:

(xti = −1 ∧ xt+1
i = 1) =⇒ ψi ≥ 0

(xti = 1 ∧ xt+1
i = −1) =⇒ ψi < 0

xt+1
i > xti =⇒ (∆xi > 0 ∧ ψi ≥ 0) (neuron enables)

xt+1
i < xti =⇒ (∆xi < 0 ∧ ψi < 0) (neuron disables)

xt+1
i = xti =⇒ ∆xi = 0

∴ ∆Ei = −(+)(+) ∨∆Ei = −(−)(−) ∨∆Ei = 0 =⇒ Et+1
i ≤ Et

i . (2.17)

As a result, (2.16) and (2.17) present a formal proof that the energy cannot
increase during the state updates in a Hopfield network. This is important
to understand because of the further considerations in this dissertation. No
possibility to increase the energy implies no possibility to leave the local
energetic minimum, which is the major problem of a standard Hopfield net-
work and results in its limited usability. Schematically it is illustrated in
Figure 2.6. Nevertheless, these models were successfully applied to solve
many machine learning problems, such as image processing [84, 85], or some
numerical computing difficulties [86, 87, 88, 89], also some recent works show
its potentially enhanced usability by introducing new learning rules and a
new energy function [90].

energy

local minimum
global mininum

states

local minimum

initial state

initial state

initial state
initial state

Figure 2.6: Theoretical graph of energy function versus states in a Hopfield
network.

A modification to a deterministic Hopfield network is a Boltzmann Ma-
chine (BM) [91]. It shares similar concepts, however, by introducing hidden
nodes and using stochastic dynamics in the state updates the model does
not suffer from tending to local minima. However, BMs in general have
serious practical problems with training when their dimensionality increases
[92]. As a result, their usability is also limited, but by introducing the restric-
tion that removes the intra-layer connections these concerns may be resolved.
The model without connections between neurons in visible layers and without

30

Feature descriptors 2.4

connections in hidden layers is called Restricted Boltzmann Machine (RBM)
[93]. The RBM is a crucial model in this study, so its architecture and its
properties will be discussed in detail in the next chapter.

2.4 FEATURE DESCRIPTORS

2.4.1 Binary descriptors

Binary descriptors were widely utilised before the convolutional feature ex-
tractors were applied to image processing problems. The theory behind them
is relatively simple, and can be generalised for any kind of descriptor type.
Let P ∈ A

h×w×c be an input image such as A = {0, 1, 2, . . . , N}. This im-
age is composed of pixels p(i,j,:), where i, j denote coordinates in an image
(i ∈ {N+ : i ≤ h}), j ∈ {N+ : j ≤ w}). For a common implementation of
an image N = 255 because of 8-bits image representation, and c = 1 for a
greyscale image or c = 3 for an RGB image. A binary descriptor - b is a
vector of k bits: b ∈ B

k, where B = {0, 1}. A descriptor transformation is a
non-linear function ζ, that processes a matrix of pixels into a binary string:

ζ : Ad×d×c → B
k. (2.18)

Formally, a descriptor defines only the ζ function and the size d of the its
input matrix being a subtensor of P. Instead of using d, it is more convenient
to use l = d−1

2
, which defines the number of pixels neighbouring the centre

pixel p(i,j). The image subtensor is denoted then by P(i,j)∼l ∈ A
d×d×c and

defined as follows:

P(i,j)∼l ≜




pi−l,j−l,: . . . pi−l,j+l,:
...

. . . · · · . .
. ...

pi,j−l,: . . . pi,j,: . . . pi,j+l,:
... . .

. ...
. . .

...
pi+l,j−l,: · · · pi+l,j+l,:



, (2.19)

and ∀i,jp(i,j) ∈ A
c, so finally one can write that the descriptor provides the

following transformation:
ζ : P(i,j)∼l 7→ b. (2.20)

The size of the descriptor is constant for one type of descriptor (sometimes
parametrisable), although it varies for different types of descriptors. The
intuitive approach to understanding vector b is that every single bit in it
denotes some part of the particular feature in an image, and the relation

31

Feature descriptors 2.4

between these bits denotes a particular feature taken from the given part or
the images. There are two approaches to gathering the descriptors from the
image to make the feature extraction. The first is to take it densely, using
every single pixel in the input image as a centre pixel of the transformation
or using a grid to skip some pixels. The second approach is to use keypoints.
A keypoint is a region in the image, that represents some special features,
regarded by the processing algorithm as an interesting region. The keypoints
selection may be done automatically [94], or even the binary descriptors can
be used to decide if a region of a given image is interesting or not (by analysis
of the relations between the bits).

If the image transformation is done densely the output size is constant
⌊h
s
⌋ × ⌊w

s
⌋, assuming s is a stride size of the same meaning as in the case

of convolutions. For descriptors taken with keypoints the output size varies
depending on a number of detected keypoints, that in fact reduces the out-
put dimensionality to have only important descriptors but it may result in
problems with further processing since most of the commonly used classifiers
require constant size of an input.

There are many types of binary descriptors that perform the ζ(·) func-
tion in different ways. Among others the most popular ones are Fast Retina
Keypoint (FREAK) [95], Local Binary Pattern (LBP) [96], Binary Robust
Invariant Scalable Keypoint (BRISK) [97], Features From Accelerated Seg-
ment Test (FAST) [98], Binary Robust Independent Elementary Features
(BRIEF) [99], Oriented Fast and Rotated Brief (ORB) [100]. The binary de-
scriptors played important role in machine vision tasks, only to mention some
of them it was image classification [101, 102], object detection [103, 104, 105]
or panorama stitching [106].

2.4.2 Local Binary Pattern

Local Binary Pattern is one of the simplest binary descriptors. In [107] it
has been shown that LBP can be an efficient tool in a preprocessing layer.
Such a descriptor constitutes a key element of the method proposed in this
thesis. In this section details of this type of descriptor will be discussed.
The theoretical background of the LBP is simple, it performs a number of
comparisons between the centre pixel and its neighbouring pixels, where the
input image is in greyscale. The size of a neighbourhood - l is the parameter
that defines the sampling pattern size and as a result the size of the output
binary string - k, the notion for naming the descriptor including its size in this
study is LBPk. The sampling pattern is a circle, hence the neighbourhood
can be defined by a radius - r (in pixels), and the pixels being used for
computing the output vector are obtained by checking if the circle intersects

32

Feature descriptors 2.4

a given pixel. An example of two configurations of LBP is presented in Figure
2.7.

r=1
r=2.25

LBP8 LBP16

l=1 l=2

Figure 2.7: Sampling patterns for two example LBP configurations. Green
is a centre pixel, yellow denotes neighbouring pixels taken for computing the
descriptor, blue pixels are omitted by the descriptor.

From this Figure one can easily conclude that the l for P(i,j)∼l can be
defined as:

l = ⌊r⌋. (2.21)

Then, a single bit of a binary vector b = ζLBP (P(i,j)∼l)) = [b1 b2 . . . bk]
⊺, is:

bx = α(pi,j − pλ(x,i,j)), (2.22)

where α is defined as follows:

α(s) =

{
1 for s > 0

0 for s ≤ 0
, (2.23)

and λ(x, i, j) defines the coordinates of neighbouring pixel for a comparison
with centre pixels (λ : N3 → N

2). Hence this may be an ambiguous parameter
of an LBP, the implementation used in this study takes the top-left corner of
the neighbourhood (y = i− l, z = j− l) for x = 0, then the next neighbouring

33

Feature descriptors 2.4

pixels are chosen clockwise, therefore for example for LBP8:

λ(x, i, j) =





[i− 1 j − 1] for x = 0

[i− 1 j + 0] for x = 1

[i− 1 j + 1] for x = 2

[i+ 0 j + 1] for x = 3

[i+ 1 j + 1] for x = 4

[i+ 1 j + 0] for x = 5

[i+ 1 j − 1] for x = 6

[i+ 0 j − 1] for x = 7

(2.24)

or in a more compact form:

λ(x, i, j) =

[
i+

⌊
cos

(
(x− 5)

2π

8

)⌉
j +

⌊
sin

(
(x− 5)

2π

8

)⌉]
. (2.25)

Some of the use cases may convert the b vector to an integer value - v with
the following formula:

v =
k∑

i=1

(bi · 2i−1), (2.26)

but for the case of processing the descriptor by a neural network, this is
not very useful, despite reducing the output dimensionality, it does not treat
changes of every bit equally. In other words, converting b to v causes some
bits to affect the output more than others.

To demonstrate the sensitivity on particular features one can consider
the simplest LBP8 descriptor for which the image subregion is defined by
the following matrix:

P(i,j)∼1 =



pi−1,j−1 pi−1,j pi−1,j+1

pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1


 , (2.27)

Then the b vector is defined as follows:

ζLBP8(P(i,j)∼1) = [α(pi,j − pi−1,j−1) α(pi,j − pi−1,j+0)

α(pi,j − pi−1,j+1) α(pi,j − pi+0,j+1)

α(pi,j − pi+1,j+1) α(pi,j − pi+1,j+0)

α(pi,j − pi+1,j−1) α(pi,j − pi+0,j−1)]
⊺

(2.28)

Hence, after LBP8 transformation, b is an 8-bits vector where each bit
denotes a comparison result of the centre pixel with different neighbouring

34

Feature descriptors 2.4

pixel. The visualisation of some trivial 3×3 patterns and their LBP8 outputs
is shown in Table 2.1 where we can observe how the particular bit of the
output vector changes depending on the feature that is being processed.
LBP8 can code 28 types of patterns, which is a relatively low number, but
for practical purposes, this may be enough because those vectors represent
much more abstract features than raw pixel representation, which is also
usually an 8-bits number.

pattern 1 pattern 2 pattern 3 pattern 4 pattern 5
corner horizontal line vertical line point flat region

vi
su

al
is

at
io

n

b [11101011] [11101110] [10111011] [11111111] [00000000]

Table 2.1: Example 3×3 patterns and their LBP8 output.

Local Binary Pattern is a basic image region descriptor, but this simplicity
can be seen as a significant advantage. It can be implemented as a very fast
image transformation. It is worth noticing that all the pixels can be processed
in parallel, so the use of GPU or CPU multithreading will result in decreasing
the time of processing. LBP descriptor has been successfully utilised in some
image processing problems, among others it achieved a good performance in
facial recognition [108, 109].

2.4.3 Real-valued feature descriptors

As an alternative to binary descriptors, we can discuss feature extractors that
use real-valued feature vectors, like Scale Invariant Features (SIFT) [110],
Speed Up Robust Features (SURF) [111], Histogram of Oriented Gradient
[112]. They can be formalised by: b ∈ R

k, and then the remainder of the
equations remain the same as it was for binary descriptors. The real-valued
descriptors are mentioned because of their general importance in machine

35

Feature descriptors 2.4

vision [113, 114, 115, 116, 117], but they will not be analysed in this disser-
tation, since they do not meet the condition of our preprocessing layer, where
the intermediate stage of processing is binary. The second reason is that they
are slower and more memory-consuming. To store one feature, real-valued
descriptor needs 32 times more memory than in the case of binary vectors
(assuming they are kept as float type). To illustrate this issue in more detail,
a simple experiment was performed, which measured the averaged execution
time of ζ(·) for some common binary and real-valued descriptors. The re-
sults are shown in Table 2.2, we notice that all the real-valued descriptors are
slower, this is because the ζ(·) function for binary transformers relies mostly
on comparisons while others rely on gradients. Thus, as the dissertation fo-
cuses on the speed of processing, the binary vectors are the better choice.
For clarification, the time of response may depend on the parameters of a
given descriptor, but for the experiments, they were set as default, hence the
general dependency showing binary ones as faster should be clear enough.

real-valued binary
descriptor

type
SIFT SURF HOG BRIEF FREAK BRISK LBP8

time 1 0.48 0.53 0.05 0.32 0.33 0.0003

Table 2.2: Average response times of different descriptors for a single key-
point, times are relative to the slowest descriptor (SIFT).

2.4.4 Feature descriptors aggregation

As mentioned before, for classification purposes the output size of the feature
descriptor layer varies depending on how many keypoints have been found,
the output can be regarded as a matrix of size Nv×k, where variable Nv is the
number of located keypoints, so to pass the descriptors to a classifier like SVM
or MLP, some form of aggregation is needed. To define the aggregation one
can assume that this is a process of reducing output matrix dimensionality to
be constant independently on the input image and number of keypoints. This
is important in terms of the considerations in this study since the discussed
classification architectures rely on constant input size and aggregation is
required.

For real-valued descriptors, there are many commonly known aggregation
techniques. Among others, the most popular one is Bag of Words (BoW)
[118] encoding, however, the BoW method has some limitations, because it
requires the data sample to fit the codebook, which is done with k-means

clustering, typically with large k (≈ 10K-1M). Furthermore, it requires ap-

36

Feature descriptors 2.4

proximate nearest neighbour methods to fit the codebook [119]. Then having
the constant number - kc of the feature vector it is possible to form a his-
togram of those features occurrences. As a result, the image is represented
by a histogram. The nature of a feature descriptor when each value may
denote something completely different does not allow the use of histogram
binning, thus the number of bins in the histogram has the same size as the
codebook - kc and is very sparse [107]. Some extensions to this algorithm
have been properties, such as, VLAD [120] or Fisher Vector Encoding [121].
They use first (VLAD) or second-order (Fisher) differences with the code-
words. Unfortunately, the usability of BoW methods is limited to real-valued
feature vectors. The limitation is mainly related to the algorithm of gener-
ating the codebook that relies on k-means that uses Euclidean distances to
compare the vectors, which is not applicable to binary vectors. Comparing
binary vectors is usually performed with Hamming distance [122], but av-
eraging multiple binary vectors produces a non-binary vector for which the
Hamming distance cannot be used [107].

Another method is to create a histogram directly from the extracted
features by converting the binary strings to v values as shown in (2.26).
Then the binary vectors become a single integer value, and the histogram
representation can be formed by counting the occurrences of all possible
integers. It is easy to count the maximum v value and so the number of
bins in the histogram is 2k, so there is a clear limitation of this method for
feature descriptors that utilise large binary strings. For example, FREAK
and BRISK use k = 512 which makes this method impossible to apply -
we still cannot use binning and the theoretical histogram for these cases
would be 2512. On the other hand, the LBP descriptor can have a very small
feature vector. For example, the use of LBP8 will result in having 28 = 256
bins, which is a very small number, easily processed and stored in memory.
In [108] it was shown how to successfully apply this to facial recognition
problems, however, the authors expanded the histogram so that it became a
concatenation of histograms from different regions.

Although some techniques can be applied for the aggregation of feature
vectors, all of them have a number of limitations, principally in terms of
binary descriptors. This has been also approached in this study, a neural
network that processes the binary pattern can be used to either aggregate the
binary strings gathered from keypoints or for densely gathered descriptors to
create a histogram where the binning is applicable, so its size is configurable.
However, the histogram is used only for image comparison, not for image
classification. For classification purposes, one may use another ability of the
neural network which aggregates the descriptors and allows utilising it by a
classifier by computing their averaged distance to a training dataset, which

37

Enhanced Local Binary Pattern - colour LBP8 2.5

is a novel method proposed by the author and will be discussed in detail in
the following chapters.

2.5 ENHANCED LOCAL BINARY PATTERN - COLOUR

LBP8

Converting an image from its 3 channels representation (mostly RGB or
YUV) to one greyscale channel results in the loss of the information regard-
ing the colour. The conversion may be done in several ways, but the most
common is computing the average of the RGB channels Pgrey =

⌊
R+G+B

3

⌉
,

or taking the weighted average Pgrey = ⌊0.299R + 0587G + 0.114B⌉ that is
formally the Y channel from YUV format.

Objects being classified by recognition systems are mainly defined by
their shapes, not by their colours, however, colours in vision also play an
important role. As a practical example, we do not need to know the colour
of object if we desire to distinguish between an animal and a vehicle, but to
distinguish the animal species the colour may be very useful, especially as in
image processing the size context may be unknown. For example, ImageNet
contains more than 10 types of snakes that have similar shapes but differ in
colours. The authors of [123] showed that the accuracy of CNN drops by
3% on ImageNet when the input images are converted to greyscale. That is
why there is a great need to take the colours into account when the features
are being extracted. In this research, it has been addressed by enhancing
a regular greyscale descriptor by colour information.

Another concern, for example in the LBP descriptor, is that the intensity
of greyscale pixels is also lost, so the processing does not have the information
regarding the brightness of a region, only the shape is coded. Intuitively, we
can define that to recognise an object correctly we need to have information
about its shape and colour, but as the shape is more important, the colour
may be defined approximately.

It has been demonstrated previously that the LBP8 codes the shapes in
eight bits. The author proposed a novel method to enhance this descriptor
by adding additional eight bits to take the colour and brightness into ac-
count. The idea is to use comparison between all of three possible pairs of
colours(RG, BR, GB) of the centre pixel p(i,j). For a single pair C0 −C1 we
can define 2 bits vector dC0,C1 = [b0 b1] that describes the colour dependency
and is computed as follows.

b0 ≜ (C1 > C2),

b1 ≜ (C2 > (C1 + T)) ∨ ((C1 < (C2 + T)) ∧ (C1 > C2)) . (2.29)

38

Enhanced Local Binary Pattern - colour LBP8 2.5

To illustrate the idea, we can show a distribution of a single colour pair with
an assumption that the values of both colours are distributed uniformally as
in Figure 2.8. This assumption can be taken for an unknown image dataset
and the neural network should learn to a particular distribution based on the
output from the descriptor.

X

X

T

T

Figure 2.8: Two bits descriptor distribution for a single colours pair.

The value of T is a threshold and should be computed to equalise the
occurrences of each possible d value over all the possible colour pairs, thus
the areas of each figure given by the particular descriptor value is the same:

1

2
X2 =

1

4
max(C) ∴ X =

√
2

2
max(C)

T = max(C)−X ∴ T =
2−
√
2

2
max(C)

(2.30)

Assuming C ∈ {N : C ≤ 255}, T = 73. By using the 3 comparisons
between all the possible pairs we can define a 6 bits vector that describes the
dependency between the colours. To describe the brightness of the centre
pixel the simplest solution is binary shifting, thus we can add another 2 bits
- dI = [b0 b1] to the descriptor:

b0 = Pgrey ≫ 7

b1 = Pgrey ≫ 6, (2.31)

39

Enhanced Local Binary Pattern - colour LBP8 2.5

and finally the 16 bits enhanced Local Binary Pattern descriptor (called
further as CLBP) can be defined by concatenating all of these as shown in
Figure 2.9.

LBP8[8 bits] dRG[2 bits] dBR[2 bits] dGB[2 bits] dI[2 bits]

Figure 2.9: Colour LBP descriptor.

The first part of the CLBP is a regular LBP8 binary vector, the second is
a vector representing the colour. Some example colours with their associated
codes are shown in Figure 2.10. The dependency between the colour and its
code can be easily recognised. For example first 6 bits in a red colour is coded
to [100100], while in a green colour these bits are [010010], because of using
the intensity descriptor in the last two bits we can also distinguish between
the brightness of these colours (dim green has [01001000] code, while bright
green has [01001001] code).

Figure 2.10: Example colours with their 8 bits colour descriptors (white
rectangles), and RGB hex codes.

The colours could be coded by binary shifting, but this would cause losing

40

Enhanced Local Binary Pattern - colour LBP8 2.5

the dependency between the colours, for example, very dim green #002200
would have same code as code very dim red #220000 or blue #000022. In
the proposed solution these colours have still different descriptors because of
the comparisons between the channels. Another idea is to perform an LBP8
operation on each of 3 image channels and then concatenate the outputs, but
it results in a larger - 24 bits descriptor and represents the shapes in each
channel, not the overall feature and its colour. As a result, the CLBP is the
basic example of a descriptor that was previously declared as a desired feature
extractor, which means its binary vector contains the image region shape
and the approximate colour. It will be used in the preprocessing pipeline in
a further part of this study, and the suitability of this idea will be shown in
experiments.
It is worth mentioning that these additional eight bits describing the colour
could be potentially added to another type of binary descriptors. However,
as mentioned previously LBP8 is considered as the most robust in terms of
what this dissertation focuses on, thus the modifications of other descriptors
may be investigated in a further research.

41

Enhanced Local Binary Pattern - colour LBP8 2.5

42

3
RESTRICTED BOLTZMANN

MACHINE

The Boltzmann Machine and the Restricted Boltzmann Machine were ini-
tially mentioned in the previous chapter as an improvement to a Hopfield
Network, and formally both can be classified as a Hopfield network variation.
The improvement was achieved by changing the paradigm from deterministic
to stochastic and by introducing hidden units which results in a possibility
to leave local energetic minima. This chapter focuses on explaining how they
work in terms of unsupervised learning and data processing. It also provides
a short explanation of how the RBM is implemented for research purposes.

3.1 OVERVIEW OF AN RBM

The model used in this study is an RBM, but for historical reasons, it is
worth beginning the analysis with a short introduction of the BM as it was
invented first, and the RBM is technically only an improvement on the BM
that resolves some training problems.

The BM was popularised in the 1980’s by Hinton and Sejnowski and in
general, it differs from a Hopfield Network mainly in two factors:

• the BM has hidden units while Hopfield network composes only from
visible units,

• the BM is a probabilistic model while Hopfield network is a determin-
istic model.

Schematically, the BM can be presented as in Figure 3.1. The weights be-
tween the nodes in the BM do not generate the output value directly, but
describe the probability with which the output reaches a value of 1. That
makes the entire dynamics of this model to be stochastic. The visible units
denote those neurons that can be directly observed and where the input is

43

Overview of an RBM 3.1

loaded, the hidden units have a similar meaning to the latent space in an
autoencoder as they are a representation of input in another space. The
energy function remains the same as it was for a Hopfield Network, however
it expands to the form of two types of units:

E = −1

2

∑

i,j

wijxjxi −
∑

i

xibi

= −
(
∑

i,j∈V V

wijvjvi +
∑

i,j∈HH

wijhjhi +
∑

i,j∈V H

wijvjhi

)

−
(
∑

i

vibvi +
∑

i

hibhi

)
,

(3.1)

where V V , HH, V H denote respectively the connections between visible-
visible, hidden-hidden, visible-hidden units. However, because of the stochas-
tic dynamics, BMs can leave the local energy minima which was the major
concern of Hopfield Networks.

hidden layer

visible layer

Figure 3.1: Simplified diagram of a Boltzmann Machine. Stochastic dynamics
is skipped for simplicity.

As mentioned earlier, BMs are not very useful for practical problems,
especially where their dimensionality is large. Thus, there was a need to
train them efficiently. RBMs solve this problem. The RBM was invented by
Smolensky in 1986 as a simplification of the BM, however the efficient training
algorithm was not avaiable until 2002, when Hinton invented a very fast
training method, this algorithm will be discussed in detail after introduction
to the entire structure of an RBM.

44

Overview of an RBM 3.1

The importance of RBMs in machine learning is high, they were proven
to be effective in many complex problems such as feature extraction [124],
dimensionality reduction [125], classification [126], or collaborative filter-
ing [127]. Despite today’s CNNs outperforming RBMs in image processing,
this study shows that there is still a research gap where RBMs may play an
important role. This is because of some interesting properties that RBMs
have, and other models do not. These properties are explained in this chapter
and their usability in machine vision is presented in the next chapter, how-
ever among others, the most essential ones are that an RBM can be trained
in a fully unsupervised manner, it can detect inherent patterns in training
data [128, 129, 130], and then reconstruct them or assign a probability of
occurrence to a given input. In this research, an RBM is used as a neural
network that processes the binary input which is a binary feature descriptor,
and this chapter focuses only on these RBM properties that are needed for
this processing task.

Foremost, the restriction that distincts RBMs from BMs should be clari-
fied, it is nothing else than just an elimination of intra-layer connections, so
by analogy to Figure 3.1, there are no blue and green connections. It can
be schematically shown as in Figure 3.2 and to emphasise the dynamics, an
unrolled version of an RBM is shown in Figure 3.3. Based on that, we can
define some parameters and signals in this model:

• Rv - number of visible units, defined by the size of input and: ,

• Rh - number of hidden units, a hyperparameter defined by user,

• W - weights matrix: W ∈ R
Rh×Rv ,

• a = [a1 a2 . . . aRv
]⊺ - biases vector in visible layer: a ∈ R

Rv ,

• b = [b1 b2 . . . bRh
]⊺ - biases vector in hidden layer: b ∈ R

Rh ,

• v = [v1 v2 . . . vRv
]⊺ - visible units v ∈ {0, 1}Rv ,

• h = [h1 h2 . . . hRh
]⊺ - hidden units h ∈ {0, 1}Rh .

An RBM is defined then, by total number of parameters = Rv ·Rh+Rv+Rh.
Considering the only two possible states - 0 or 1 of each unit from v, h and
the independence between each unit in intra-layer as well as the dependence
only on the previous states we can also claim that RBM dynamics is an
example of Bernoulli’s process.

45

Overview of an RBM 3.1

Figure 3.2: Simplified diagram of a Restricted Boltzmann Machine.

Figure 3.3: Simplified diagram of an unrolled Restricted Boltzmann Machine.

As an RBM is a variation of a Hopfield Network it is a recurrent neural
network. The recurrence is performed by computing the hidden and visible
states alternately, thus output from a current step becomes an input to the
next step. The first step in that process is to update hidden units with
given visible units values (input). The conditional probability that the given
hidden neuron value is equal to 1 is given as follows:

P (hj = 1 | v) = σ

(
bj +

Rv∑

i=1

wijvi

)

︸ ︷︷ ︸
≜ψhj

, (3.2)

where σ (·) is a sigmoid function:

σ (x) =
1

1 + e−x
. (3.3)

This activation function causes the probability of a neuron being enabled
is higher for ψhj > 0 and being disabled for ψhj < 0 at current time step.
Technically, the neuron state activation can be implemented by comparing

46

Overview of an RBM 3.1

the probability value with a number taken from a uniform distribution with
the use of the following equation:

hj = P (hj = 1 | v) > X∼U . (3.4)

The next step is to update the visible units based on the output from
previously computed hidden states, this is done analogously:

P (vi = 1 | h) = σ

(
ai +

Rh∑

j=1

wi,jhj

)

︸ ︷︷ ︸
≜ψvi

, (3.5)

vi = P (vi = 1 | h) > X∼U . (3.6)

Both steps can be simplified to a matrix notation to obtain the probabilities
of entire visible and hidden vectors.

ph = [P (h1 = 1 | v) P (h2 = 1 | v) ... P (hRh
= 1 | v)]⊺ = b+Wv,

h = ph > XRh

∼U ,

pv = [P (v1 = 1 | h) P (v2 = 1 | h) ... P (vRv
= 1 | h)]⊺ = a+W ⊺h,

v = pv > XRv

∼U . (3.7)

After the second step, the generated vector v called reconstruction should be
similar to the one that initialised the first iteration. Then the process can
be repeated with the reconstruction used as an input vector to compute the
next hidden vector. The entire process for v given as input is presented as
Algorithm 1.

Algorithm 1 RBM data processing

step← 0;
while step < number of steps do
ph ← σ(Wv + a);
h← ph > XRh

∼U ;
pv ← σ(W ⊺h+ b);
v ← pv > XRv

∼U ;
step← step+ 1;

end while

There are several important things to note. The first is that (3.2) and (3.5)
are the standard neuron equations with a sigmoid activation function describ-
ing the probability of a neuron being active, and with the use of (3.7) these

47

Overview of an RBM 3.1

are easily implementable in modern libraries supporting matrix arithmetic.
The second is that the matrix W is shared between the steps, this is one
of the differences between RBMs (undirected graphs) and autoencoders (di-
rected graphs) where the weights input− latent, and latent− output differ.
The third is that as a result of using the stochastic dynamics each update
of the states may result in different outputs, which makes an RBM a gen-
erative model, which means that RBM can generate new data from a given
input by learning the probability distribution of the training data. The last
is that each update of units depends only on the previous steps, and due to
this property, an RBM meets the condition of being a Markov Random Field
(MRF) [131, 132], also each iteration can be regarded as a Gibbs sampling
which is an algorithm for producing samples from joint probability distribu-
tion [133].

The energy function for an RBM is defined the same way as it was for a
BM in (3.1), but due to the restrictions it is simplified to the following form:

E (v,h) = −
Rv∑

i=1

aivi −
Rh∑

j=1

bjhj −
Rv∑

i=1

Rh∑

j=1

hjwijvi. (3.8)

Equivalently, in the matrix notation one can write:

E (v,h) = −a⊺v − b⊺h− h⊺Wv (3.9)

An RBM also has another interesting property, that with the use of energy
it is possible to compute the probability of occurrence given v,h pair, and
it is defined with the following formula:

P (v,h) =
1

Z
e−E(v,h), (3.10)

where:

Z =
2(Rv)−1∑

i=0

2(Rh)−1∑

j=0

(e−E(vi,hj)) (3.11)

and:

vi = [(v1 = i≫ Rv − 1 ∧ 1) (v2 = i≫ Rv − 2 ∧ 1) · · · (v0 = i≫ 1 ∧ 1)],

hi = [(h1 = j ≫ Rh − 1 ∧ 1) (h2 = j ≫ Rh − 2 ∧ 1) · · · (h0 = j ≫ 1 ∧ 1)].

Z is called a partition function sums e−E(v,h) over all possible v, h config-
urations to scale the sum of all possible P (v,h) to 1. That makes it quite
complex, and the partition is not trackable for high-dimensional RBMs and

48

Overview of an RBM 3.1

has to be estimated [134, 135]. It is also possible to define the conditional
probability of a configuration of the visible units, given a configuration of the
hidden units:

P (v | h) =
Rv∏

i=1

P (vi | h) . (3.12)

and analogously for the hidden units, given visible units:

P (h | v) =
Rh∏

j=1

P (hj | v) , (3.13)

both equations satisfy the requirement of the Markov Random Field of being
independent on history.

Sometimes there may be a need to directly compute the marginal proba-
bility P (v). This is intuitively simple because it is a sum of all probabilities
over possible h values:

P (v) =
2Rh−1∑

j=0

(P (v,hj)), (3.14)

However, it can be simplified with the use of free energy - the energy of a
given visible vector that it would need to have in order to have the same
probability as all the possible configurations (vi,h) [136]:

e−F (v) =
2Rh−1∑

j=0

(e−E(v,hj)), (3.15)

where F (v) can be defined with the following formula[136]:

F (v) = −
Rv∑

i=1

viai −
Rh∑

j=1

log(1 + eψhj). (3.16)

Finally, it is possible to compute the marginal probability of a given v vector
with the use of free energy:

P (v) =
1

Z
e−F (v). (3.17)

This equation is highly important in the context of the considerations in
this dissertation because with the use of it we can compute the probability
that a given binary vector given as v occurred in the dataset that was used

49

Overview of an RBM 3.1

for training. Other models (even the recurrent ones) do not have metrics like
that one defined in (3.17), which leads to the conclusion that RBMs may be
used not only as a regular network to detect some patterns but also to infer
the similarity of a given input to those that were seen during the training
phase. The possibility of using matrix arithmetic, makes this process very
simple and relatively computationally inexpensive.

Although RBM provides a method of computing the conditional prob-
ability, as mentioned earlier, the Z partition function can be problematic
since the computational complexity increases exponentially as the dimen-
sionality of an RBM increases. However, on the other hand, its value has
to be computed only once for particular RBM parameters. Also, sometimes
its computation may be omitted, for example, if there is no need to know
the P (v) directly just need to compare two probabilities of occurrences of
two patterns (v0 and v1). This can be computed with the use of their free
energy, the formal explanation is presented as follows:

κ ≜
P (v0)

P (v1)
=

1
Z
e−F (v0)

1
Z
e−F (v1)

= eF (v1)−F (v0)

∴ F (v1) > F (v0) =⇒ κ > 1 =⇒ P (v0) > P (v1),

F (v1) < F (v0) =⇒ κ < 1 =⇒ P (v0) < P (v1)

(3.18)

This is a use case when there is a need to compare two binary patterns in
order to know which one occurred in a training dataset more frequently and
it is clearly observable that the higher free energy of vk denotes the lower
probability of vk.

50

Overview of an RBM 3.1

It was previously mentioned that due to the use of stochastic dynamics
in RBM, the energy does not stick unconditionally in local energy minima.
The energy for a single hidden unit at time t can be represented by:

Et
j ≜ −

(
∑

i

aivi + bjh
t
j + htj

∑

i

wijvi

)
(3.19)

Computing a change of energy in subsequent steps we have

∆E = Et+1 − Et

∆E =
∑

i

aivi + bjh
t
j + htj

∑

i

wijvi −
∑

i

aivi − bjht+1
j − ht+1

j

∑

i

wijvi

∆E = bjh
t
j − bjht+1

j + htj
∑

i

wijvi − ht+1
j

∑

i

wijvi, (3.20)

Finally, ∆E can be represented by:

∆E =
(
htj − ht+1

j

)
︸ ︷︷ ︸

−∆hj

(
bj +

∑

i

wijvi

)

︸ ︷︷ ︸
ψhj

. (3.21)

htj = 0, ht+1
j = 1 =⇒ −∆hj < 0 htj = 1, ht+1

j = 0 =⇒ −∆hj > 0

ψhj > 0 ψhj < 0 ψhj > 0 ψhj < 0
P (ht+1

j = 1) > 1
2

P (ht+1
j = 1) < 1

2
P (ht+1

j = 0) < 1
2

P (ht+1
j = 0) > 1

2

∆Ej < 0 ∆Ej > 0 ∆Ej > 0 ∆Ej < 0
P (∆Ej < 0) > 1

2
, P (∆Ej > 0) = 1− P (∆Ej < 0), P (∆Ej > 0) < 1

2

Table 3.1: Possible scenarios of a single hidden unit energy value change
during RBM state changes

The energy change depends on two terms, the first is a difference of
hidden units in the current and the next steps, the second is an activation
function argument. For those, it is possible to analyse the energy change
possibilities for all possible scenarios as shown in Table 3.1 (except for ht+1

j =
htj when energy does not change, so it is just omitted). The energy may
increase during the state updates, but the possibility of that is lower than
the possibility of decreasing the energy and these events are complementary.
That is how RBMs work, they tend to decrease the energy, however increasing
its value is still possible because of stochastic dynamics.

51

Training an RBM 3.2

The above-mentioned energy changes can be demonstrated by a simple
experiment that compares how it behaves during the unit’s updates when the
stochastic algorithm is used and when it is not (unit is ON when P ≥ 1

2
). The

results of such an experiment are shown in Figure 3.4, it is observed that when
stochastic dynamics is enabled the energy increases in some steps, but in an
average sense, it decreases. When the stochastic dynamics is disabled the
energy never increases, but it quickly reaches a local minimum that cannot
be left over.

Figure 3.4: Energy value of a Restricted Boltzmann Machine during its
state’s updates, normalised to its maximum value.

3.2 TRAINING AN RBM

As explained, the RBM is a model that learns how to represent a given
training dataset - S = {s1, s2, . . . , sl} with an unknown probability distribu-
tion - q in some other (latent) space. The learning processes maximises the
likelihood over S, which is also minimising the Kullback-Leibler Divergence,
defined for two distributions p - model distribution and q - data distribution

52

Training an RBM 3.2

in the following way:

DKL(p ∥ q) =
∑

si∈S

p(si) log

(
p(si)

q(si)

)
. (3.22)

Based on this formula, RBM training can be approached generally as an
MRF. From a practical point of view, a learning algorithm is a set of rules
that adjusts a set of parameters, denoted here in a general case as θ, and
during this process, the values of θ should tend to minimise the distance
between the q distribution and p for a given θ. The likelihood - L over S
dataset for the given θ can be formulated as follows:

L(θt | S)) =
∏

i

P (si | θ). (3.23)

Maximising the likelihood is the same as maximising the log-likelihood [133]
which is more convenient to use as it leads to replacing the product of prob-
abilities with the sum:

logL(θt | S)) = log
∏

i

P (si | θ) =
∑

i

logP (si | θ). (3.24)

Just for clarification, this is possible because the log(x) is a monotonically
increasing function, thus the log-likelihood is monotonically the same as like-
lihood:

P (x | θ1) > P (x | θ2)⇔ logP (x | θ1) > logP (x | θ2). (3.25)

Training these types of models is relatively complicated. The first tech-
niques were described in [137], the authors there gave a good theoretical
background of how Boltzmann Machines should be trained, however, the
practical implementation was problematic [133].
Since finding the optimal θ is not possible analytically it has to be performed
by an iterative method given as θt+1 = θt + ∆θt, which was introduced for
MLP in (1.8). It will not ensure that θ will be optimal for a given S, but
the training algorithm should lead to finding parameters for which the model
represented by the neural network is sufficient for a certain task. The goal is
de facto to find the ∆θt, and for a model maximising the likelihood of (3.23),
it can be done with a gradient ascent method. In particular, one can write
the optimisation formula as follows:

θt+1 = θt + η
∂(logL(θt | S))

∂θt︸ ︷︷ ︸
gradient ascent term

− λ
||θt||2
2︸ ︷︷ ︸

stability term

+ µ∆θt−1

︸ ︷︷ ︸
momentum term

︸ ︷︷ ︸
∆θt

. (3.26)

53

Training an RBM 3.2

This formula can be considered as an identification/adaptation rule, similar
as in identification, control theory, optimisation. The gradient ascent term
is related to the maximising likelihood (ML) - and is an essential part of the
algorithm, η is a learning rate. The other two terms are used to make the
training process more effective. The weight decay term is used to penalise
large weights, and λ is a weight decay coefficient. The momentum term is
used to accelerate the learning process, thus the ∆θt−1 is sometimes called
velocity because it increases as the weight change increases, so having this
term in an optimisation formula allows to decrease a number of iterations
(however the acceleration may depend on the shape of an objective function
[136]), µ is a momentum coefficient. These parameters affect the stability of
a training process.

Formal proofs for some of the following equations are given in [133], so
the derivations are shortened for the sake of brevity.
For a particular case of ML learning which is an RBM, S is split into
V = {v1, v2, . . . , vl} and H = {h1, h2, . . . , hl} for visible and
hidden variables, then:

lnL(θ | v)) = lnP (v | θ) = ln
1

Z

∑

h

e−E(v,h)

= ln
∑

h

e−E(v,h) − ln
∑

v,h

e−E(v,h)
(3.27)

Hence, the gradient can then be computed with the following equation:

∂(logL(θ | v))
∂θ

(3.27)
=

∂

∂θ

(
log
∑

h

e−E(v,h)

)
− ∂

∂θ

(
log
∑

v,h

e−E(v,h)

)

=
1∑

h e
−E(v,h)

∑

h

e−E(v,h)∂E(v,h)

∂θ
+

1∑
v,h e

−E(v,h)

∑

v,h

e−E(v,h)∂E(v,h)

∂θ

= −
∑

h

P (h | v)∂E(v,h)
∂θ

+
∑

v,h

P (h,v)
∂E(v,h)

∂θ

∵ p(h | h) = p(v,h)

p(v)
=

1
Z
e−E(v,h)

1
Z

∑
h

e−E(v,h)
=

e−E(v,h)

∑
h

e−E(v,h)
(3.28)

For an RBM, one needs to define update formulas for W , a and b, to find
the derivative for a particular weight wij of any given single training sample

54

Training an RBM 3.2

vx ∈ V the following formula can be used[133]:

∂(lnL(θ | vx))
∂wij

= −
∑

h

P (h | vx)
∂E(vx,h)

∂wij
+
∑

v,h

P (h,vx)
∂E(vx,h)

∂wij

= P (hj = 1 | vx)vxi −
∑

v

P (vx)P (hj = 1 | vx)vxi

For all the training examples from a set V :

1

l

∑

vx∈V

∂(lnL(θ | vx))
∂wij

=
1

l

∑

vx∈V

[
EP (h|vx)[vihj]− EP (h,vx)[vihj]

]

= ⟨vihj⟩P (h|vx)q(vx)
− ⟨vihj⟩P (h,vx)

,

q(v) denotes the empirical distribution and ⟨·⟩ denotes an average expectation
with respect to the given probability distribution.

The above analysis leads to the following rule:

∑

vx∈V

∂(lnL(θ | vx))
∂wij

∝ ⟨vihj⟩data − ⟨vihj⟩model (3.29)

Applying the partial derivatives on log-likelihood for biases ai, bj results in
the following formulas:

∂(lnL(θ | vx))
∂ai

= vi −
∑

v

P (vx)vi (3.30)

∂(lnL(θ | vx))
∂bj

= P (hj = 1 | vx)−
∑

v

P (vx)P (hj = 1 | vx) (3.31)

Finally, having formulated the gradients, one can conclude that comput-
ing them is computationally expensive as it involves the Z constant and the
complexity increases exponentially as the θ increases so the gradient terms
have to be approximated [138]. The approximation may be obtained by run-
ning a Gibbs sampling to obtain the model distribution, however, it is still
a complex problem because it requires running a Markov chain for a large
number of iterations to ensure convergence. As a result, an efficient training
algorithm can not be yielded this way. That is why RBMs were not very
useful until 2002 when Hinton formulated an interesting simplification of ap-
proximation of gradient, and called it Contrastive Divergence (CD) [139]. CD

55

Training an RBM 3.2

was de facto invented for training product of experts [140] but an RBM can
be regarded as a product of experts [133] so CD is also applicable RBMs. To
explain briefly a mathematical motivation, the CD learning approximately
follows the following gradient [138]:

CDk

(3.22)
= DKL(p0 ∥ q)−DKL(pk ∥ q), (3.32)

where k is a small number of Gibbs steps used to approximate the gradient.
Hinton showed that k = 1 is sufficient to ensure effective learning, hence
the needed statistics can be obtained after running one step to compute the
first reconstruction, and the last needed equation can be formulated in the
following way:

∂(lnL(θ | vx))
∂wij

≈ ⟨vihj⟩data − ⟨vihj⟩reconstruction (3.33)

This approach significantly reduces the complexity of the learning model
because one needs only to compute the first reconstruction and all of the
needed statistics can be obtained in parallel since computing the ∆θi is
independent for every i. Many practical tips of how to apply CD, and how
to train an RBM including choosing good η, λ, µ, and initialising θ are given
in [136].
Despite the high speed of CD, it may still have some practical difficulties
in terms of memory usage. The default approach is to make an update of
weights after all the samples from a training dataset have been processed
and the statistics from them have been obtained. If one has a lot of training
examples (which is a frequent case for unsupervised learning) the memory
needed to store all of them may be large, therefore batch learning [141] may
be used. For this type of training, the set V = [v1 v2 . . . vl] is split into a
number of batches V = [V1 V2 . . . Vbn], where each batch contains a number
of training samples Vx = [v1 v2 . . . vbs], so bn denotes the number of batches,
and bs denotes size of a single batch (the last batch may be smaller if l is
not divisible by bn). Then an update of the parameters is performed after
processing each Vx. All the information presented here is presented as in
Algorithm 2.

It is also possible to train an RBM in a fully supervised manner. Then
formally, the input v becomes de facto a vector containing concatenated
input and output.
Let X = [x1 x2 ... xl] be a set of input vectors, and Y = [y1 y2 ... yl] be
a vector of one-hot encoded labels, corresponding to the X set. Then the
training set V = [[x1 y1] [x2 y2] . . . [xl yl]]. In the prediction phase, having
the input x, one needs to compose v by concatenation x with a vector of the

56

Training an RBM 3.2

same length as it was for y but containing all zeros. Then the one Gibbs step
has to be run, and the reconstructed v should contain the predicted label at
the place of y.

57

Training an RBM 3.2

Algorithm 2 RBM training with Contrastive Divergence, Ne denotes the
number of training epochs

epoch ← 0;
W ← XRh×Rv

∼N (µ = 0, σ2 = 0.1);
a← [0, 0, ..., 0];
b← [0, 0, ..., 0];
W velocity ← 0 ·W ;
avelocity ← a;
bvelocity ← b;
while epoch < Ne do

batch ← 1;
while batch ≤ bn do
v ← X∼ Vbatch;
ph ← σ(Wv + b);
pwstats ← (v⊺ph)/bs;
phstats ← 1

bs

∑bs

i=1 phi;

pvstats ← 1
bs

∑bs

i=1 vi;
step ← 0;
while step < k do
h← ph > XRh

∼U ;
pv ← σ(W ⊺h+ a);
v ← pv > XRv

∼U ;
ph ← σ(Wv + b);
step ← step+ 1;

end while
nwstats ← (v⊺ph)/bs;
nhstats ← 1

bs

∑bs

i=1 phi;

nvstats ← 1
bs

∑bs

i=1 vi;

W velocity ← µ ·W velocity + η · (pwstats − pwstats)− λ ||W ||2

2
;

avelocity ← µ · avelocity + η · (pvstats − pvstats);
bvelocity ← µ · bvelocity + η · (phstats − phstats);
W ←W +W velocity;
a← a+ bvelocity;
b← b+ bvelocity;
batch ← batch + 1;

end while
epoch ← epoch + 1;

end while

58

Deep Boltzmann Machines 3.3

3.3 DEEP BOLTZMANN MACHINES

Another interesting property of Restricted Boltzmann Machines is that they
can be stacked, which conceptually means the same as adding more layers to
an MLP, so having more layers results in the possibility of representing the
data in a more abstract manner. There are two types of models that contain
RBMs but have more than two layers. The first is a Deep Belief Network
(DBN) [142], the second is a Deep Boltzmann Machine (DBM) [143]. They
share similar ideas of learning, however differ in the connection types between
the layers.

RBM1

RBM2

RBM3

Figure 3.5: Stacking multiple RBMs, DBN/DBM model.

Figure 3.5 presents how the RBMs are stacked to form a DBN or DBM.
The topology for both is rather simple, the signal propagates from the very
bottom RBM to the higher ones, the key is that the output from one RBM
(h in this case) becomes an input to the next RBM - v. That is why the
middle layers in Figure 3.5 have two symbols for their units (vij and hkl).
The obvious question is how these models can be trained, and the answer is
surprisingly simple. They can be trained in a greedy layer-wise way, which
means the learning starts from RBM1 in an unsupervised manner (Con-
trastive Divergence), then after the first machine is trained its parameters
are no longer changed. Having RBM1 trained, one can commence training
RBM2 which is done with the use signal propagated by RBM1. The process

59

Deep Boltzmann Machines 3.3

is repeated until the last RBM is trained. This type of training is sometimes
described as wake-sleep algorithm, and unsurprisingly has been invented by
Geoffrey Hinton [144], and some improvements to the training algorithm of
DBM has been proposed in [145]. The last RBM can be also trained with
supervision by the inclusion of labels to its visible layer (this was explained
in the training section).

The difference between a DBN and a DBM is that in a DBN only the
top two layers form an RBM which is an undirected model, whereas the
lower layers form a directed generative model, in DBM all the connections
are undirected. Therefore DBM may propagate the signal with top-down
feedback, that may be useful to deal with an ambiguous input [143].

Despite that DBNs are not commonly used, their importance in AI and
impact on image processing cannot be overrated. In short, before DBNs
have introduced, deep neural networks were very hard to train because of
previously mentioned vanishing gradient problem. DBNs do not have that
problem because of the use of different training rules, so the level of abstrac-
tion might be much higher. This is important not only because of the use
of DBn themselves, but taking into account that RBMs can be reinterpreted
as a two-layer MLP, the entire DBN can be reinterpreted as a multilayer
MLP. So, for many years RBM training was used to initialise weights of
multilayer neural networks, that could then be fine-tunned with the use of
backpropagation without factoring-in the vanishing gradient problem. They
were successfully applied in many machine learning problems, some of the
most improvement of such can be found in [146, 147, 148].
This method of pretraining deep neural networks has since been superseded,
because as recent research has shown, the use of ReLU and dropout [149] is
sufficient to train complex models by backpropagation only [150].

60

4
IMAGE PROCESSING AND

CLASSIFICATION WITH BINARY

DESCRIPTORS AND RESTRICTED

BOLTZMANN MACHINES

The previous chapters introduced the basic concepts of neural networks and
image processing in terms of classification. They also raised some difficulties
related to them. As tools that may potentially mitigate those difficulties,
local binary descriptors and an RBM have been shown as a method that
can learn in an unsupervised manner. Before revealing these techniques it is
worth explaining the conceptual background. What is a binary descriptor?
It can be said this is a representation of some unique feature in a binary
vector space. No matter what the size of this space is, the significance is
that each bit in this space has a special meaning, for example, some bits
may denote a bright left corner while other may denote a dark dot pattern,
so combining all this information one can form an abstract description of a
processed feature. Then, going to their usability for classification, one can
say that a specific number of given features in some region of an image may
point to some specific category that the processed image belongs to. This
is due to the fact that a description of an object is easier to understand by
machine than a raw pixel representation of an image.

The data representation in some abstract spaces has been described when
an MLP has been presented, so the conclusion is that providing more com-
plex data to a classifier leads to a better performance because it is similar to
adding more hidden layers, which would have to be trained in a supervised
manner, thus their capacity would be larger resulting in more data being
needed to train them effectively. Nevertheless, processing the descriptors is
not an easy task for machine learning, after a binary descriptor transforma-
tion there are a lot of binary descriptors that may be futile in themselves. One
obvious approach to preprocess data is to perform dense binary descriptors

61

The RBM and the CLBP - author’s implementation 4.1

and classify the vectors directly by a CNN. However, such a simple method
may not be effective enough, which can be shown in this thesis. Instead, the
author of this research proposes a pipeline where the descriptors are followed
by a layer of RBMs.

It has been explained what kind of neural network an RBM is, essentially,
it can learn a distribution of descriptors given in a training dataset. Hence
the latent space of an RBM provides even more abstract information than
the binary description layer itself. The hidden space is not necessarily easily
understood by humans, but one may correctly assume that it should be easier
for a machine, as a neural network uses it to reproduce the input or even
generate new samples. Other abilities of an RBM are important for this
case too. First, they can be used for an aggregation of the descriptors if
their dimensionality varies. Second, they are able to reconstruct the input
data to be similar to the training examples. Third, the ability to compute the
probability of an occurrence of a given descriptor in the training dataset may
result in the possibility of providing a special metrics denoting a similarity
between given visual data (image or set of images) and the reference data
(training data).

4.1 THE RBM AND THE CLBP - AUTHOR’S IMPLE-

MENTATION

At present, Restricted Boltzmann Machines are not frequently applied to
common machine learning problems, thus most of the modern libraries that
support neural networks do not have an RBM implementation. Even if they
do, like Scikit [151] does, they are not sufficient for the research purposes
of this dissertation, due to not supporting GPUs and relatively hard mod-
ification of the code inside. Therefore, the implementation of an RBM has
been prepared for the purposes of this study. The introduction to the RBM
showed that all the computations may be done with basic matrix arithmetic,
so it is relatively easy to implement. It is required that the application is
portable and works on GPUs and CPUs in case of GPUs not being accessible
on some devices. This allows running training on a more powerful machine
and inference on a target device.
Python was chosen from among the various programming languages. Python
is practically slower than other compilable languages, but the goal is to use
the optimised libraries for the array computations, so the speed is not a con-
cern in this context as the crucial operations are fast enough. Also, Python
is widely known for its simplicity and is supported by many libraries. As a
consequence, it is easy to implement other functionalities like files manage-

62

The RBM and the CLBP - author’s implementation 4.1

ment or image preprocessing. For Python, one of the most commonly known
and widely-used libraries for matrix arithmetic is NumPy [152]. Its API is
very straightforward, therefore the CPU implementation of an RBM is writ-
ten with the use of this library. The GPU implementation is supported by
TensorFlow [153]. It is de facto a large library for many AI purposes, but
from version 2.4 it also supports some subset of NumPy operations (API is
called TensorFlow NumPy), thus the basic matrix arithmetic can be easily
moved from CPU to GPU. The same functionality should be also achievable
with the use of PyTorch [154] or JAX [155]. The only cases that the pro-
grammer has to care about are the types promotion and copying between
the CPU and GPU memories (it is time consuming so the number of these
copying has to be limited). This approach has also another advantage, it
allows using directly the data processed by an RBM in other python libraries
which is important because as mentioned RBM is used only for preprocessing
and its output has to be easily forwarded to other modules.
The final implementation supports the following functionalities:

• batch training with CD,

• saving/loading RBM parameters as binary ".npz" files,

• inference on any device supporting Numpy (CPU) or TensorFlow Numpy
(GPU),

• computing energy, free energy, conditional and marginal probability of
given input,

• reconstruction of an input.

As introduced previously, this research uses RBMs as binary descriptor
processors, especially the CLBP. Since the CLBP is a novelty proposed in
this dissertation, there is no public implementation of it, so there was a need
to create one. It is written with the use of the Python programming language
but with the support of GPUs for the same reason as the implementation of
an RBM. However, the application of a CLBP is more complicated since it
takes advantage of many non-linear transformations on an image and they
have to be performed in parallel to ensure short processing time, and this
is not possible with NumPy. Despite this, these requirements may be met
with the use of Numba [156], a Python library that enables using parallel
computing on GPUs by writing one’s own function definitions. The imple-
mentation is fully parametrisable so flexible in terms of further experiments
and supports the following functionalities:

63

The RBM as a binary descriptors processor and aggregator,CD feature space 4.2

• configurable input size,

• configurable colour mode (RGB/greyscale),

• configurable stride and kernel size (if descriptors are concatenated),

• multistage processing with RBMs (for DBNs).

More code specific details of the implementations of the CLBP and RBM
are descriptors in Apeendix A.

4.2 THE RBM AS A BINARY DESCRIPTORS PRO-

CESSOR AND AGGREGATOR,

CD FEATURE SPACE

The motivation for using an RBM for binary descriptors aggregation comes
from the concept of Contrastive Divergence. Intuitively, we can treat this
gradient approximation as a metrics that describes the distance between the
input vector and the trained model. The meaning of this is rather abstract,
but it is easy to imagine that if an RBM attempts to reconstruct the input
vector to a form similar to that being observable during the training, a CD
is a metrics of how close the reconstruction is to the input. Therefore we
can treat CD as a type of transformation that provides an abstract space
describing all the descriptors.

Understanding this, one can define a formula describing the method. Let
P ∈ A

h×w×c be an input image, P(i,j)∼l be a subtensor of P as explained
in (2.27), and B ∈ {0, 1}n×k be a features matrix, where n is a number
of processed features, and k the length of binary descriptor. The binary
description:

Z : P 7→ B (4.1)

can describe the image transformation in two ways as explained earlier. The
first is a dense method that gathers the features for every pixel in the image,
or using a stride s1 to obtain a grid pattern, in this case, the dimensionality
of a grid is ⌊ h

s1
⌉ × ⌊ w

s1
⌉ and will be referred to as ĥ× ŵ. The dimensionality

of the output is then n = ĥ · ŵ (padding is omitted for simplicity), and the
output is computed as follows:

∀i∈{s1,2·s1,...,h−s1,h},j∈{s1,2·s1,...,w−s1,w}Bx,: = ζ(P(i,j)∼l), (4.2)

where x = ⌊ j
s1
+ w · i

s1
⌉.

64

The RBM as a binary descriptors processor and aggregator,CD feature space 4.2

The second method uses only specific keypoints to compute the features
matrix, so for p = (p1, p2, . . . , pl) being a set of keypoints, that ∀ipi ∈ N

2
+,

the binary features vectors can be computed as follows:

∀1≤x≤nBx,: = ζ(P(px)). (4.3)

Both methods generate similar matrices but in the second method, a value
of n varies depending on a number of detected keypoints. The idea of using
CD from a RBM in case of variable n is to compute a CD value after first
reconstruction and use it for further classification, the result of this is referred
as C ∈ R

Rh×Rv :

C =
1

n

(
n∑

i=1

γ1(Bi,:)

)
, (4.4)

where γk(·) denotes a result of a Contrastive Divergence from a single binary
vector after k steps for reconstruction (for simplicity: γ(·) ≜ γ1(·)). To
recall the part of the Contrastive Divergence algorithm we can consider the
following formula:

Algorithm 3 Contrastive Divergence for an input vector - v

ph ← σ(Wv + b);
h← ph > XRh

∼U ;
pv ← σ(W ⊺h+ a);
ṽ ← pv > XRv

∼U ;
p̃h ← σ(Wṽ + b);
γ(v)← v⊺ph − ṽ

⊺
p̃h;

CD obtained for all descriptors is defined as Γ(·) as follows:

Γ(V = [v1 v2 . . . vm]) = [γ(v1) γ(v2) . . . γ(vm)] (4.5)

The C matrix may be stacked to a vector c of size Rv · Rh. Due to the
average one can obtain a vector of constant size even with a variable value of
n, however averaging the features from an entire image may be not efficient
for complex input data, so this method may be expanded to describe prior
defined regions from an image, then the feature space becomes a matrix:

C⋆ = [c1 c2 . . . cm], ∀ici ∈ R
Rh·Rv ,

where m is a constant number of selected regions, and each ci vector repre-
sents a feature from a given region of an image, then:

Γ : {0, 1}n×k → R
m×(Rh·Rv).

65

The RBM as a binary descriptors processor and aggregator,CD feature space 4.2

For the region selection one can employ a Selective Search algorithm [157],
which is used to infer regions of interest based on image colour distribution.
After all these operations C⋆ may be processed by a final classifier, the
approach based on keypoints and averaging results in a feature space of
relatively low dimensionality that potentially should be easy to classify. Thus
the proposal is to use a k nearest neighbours procedure (KNN), which is a
very fast classification method. A simplified pipeline of the processing in this
case is shown in Figure 4.1.

66

The RBM as a binary descriptors processor and aggregator,CD feature space 4.2

Architecture 1 (CD-KNN). Processing data with CD feature space ag-
gregation, Selective Search as region selection, and K nearest neighbors as a
final classifier.

Figure 4.1: Image classification with preprocessing with an RBM and Con-
trastive Divergence feature space. Binary descriptors are gathered from key-
points and CD is averaged for m prior given regions of an image.

On the other hand, when descriptors are taken from constant points of
the image, the features space may not represent regions of interest properly,
hence, they have to be inferred by other processing blocks. This is due to
the 2D nature of objects being recognised, the transformation of an image
to a vector of descriptors may derange the context of the shapes of objects.
Therefore, the author of this study proposed another solution which uses
a CNN after expansion to a CD space, the CD then becomes a 3D tensor
(or vector of matrixes for better understanding its form) of a more abstract
meaning:

C = [C1 C2 . . . CRh·Rv
], ∀iCi ∈ R

ĥ×ŵ.

The Ci matrix is obtained as th i-th element from Contrastive Divergence
feature vector. The tensor C has the same form as the input to a regular
convolution layer, and similar meaning because the composition of feature
values is the same as the composition of pixels in a raw image. So we can
replace the input to a CNN, which by default is P, with C = Γ(Z(P)). A
schematic of the entire processing pipeline is shown in Fig 4.2.

67

The RBM as a binary descriptors processor, hidden layer feature space 4.3

Architecture 2 (CD-CNN). Processing data with a CD feature space on
densely gathered descriptors and a CNN-MLP as a final classifier.

Figure 4.2: Image classification with preprocessing with an RBM and a Con-
trastive Divergence feature space. Binary descriptors are gathered densely.

This architecture is the author’s contribution and introduces two addi-
tional stages of processing when compared to a regular CNN. However, it
does not make the entire architecture much more complex since the binary
descriptors layer and RBM layer can be made computationally efficient and
most of the computing resources are needed for the CNN and MLP. The fact,
that this preprocessing does not require training with supervision makes it
useful in the case of using unlabelled data for training. The main advantage
of this approach is that C has a more abstract meaning than P so the CNN
can process features that are more complex than the raw representation of
an image. Usually, these features are detected in further convolutional layers
that have to be trained on labelled data, due to the use of the proposed
preprocessing the process of supervised learning features detection may be
limited by reducing the number of training samples or number of convolu-
tional layers.

4.3 THE RBM AS A BINARY DESCRIPTORS PRO-

CESSOR, HIDDEN LAYER FEATURE SPACE

The previous section introduced a preprocessing method proposed by the au-
thor that enhances an input to a CNN with the use of binary descriptors and
a Restricted Boltzmann Machine. The presented feature space was computed
based on Contrastive Divergence. This value describes the distance between
the input vector and a reconstruction vector given by an RBM which in-
tuitively provides a good abstract space of an image that can be further
processed. However, there is also another possibility of computing abstract

68

The RBM as a binary descriptors processor, hidden layer feature space 4.3

features from an image with a similar pipeline. One can view an RBM as
an autoencoder and then its hidden layer can be regarded as a complex rep-
resentation of an input being a binary descriptor. In other words, an RBM
can be trained on a set of binary vectors as it was for the CD feature space,
but then the structure of an RBM can be reinterpreted as a single-layer feed-
forward neural network, in which the values of hidden units can be further
processed by a CNN. The motivation is the same as it was in the case of the
CD feature space, so the idea of unsupervised training of the preprocessing
layer to enrich the input signal remains the same, but the computations are
simplified.
First, an input to an RBM layer is a binary description B = Z(P) and all
the descriptors are taken densely, thus the dimensionality of B is ĥ · ŵ × k,
but for further consideration to make its composition similar to an input im-
age, B can be reinterpreted as a tensor B ∈ {0, 1}ĥ×ŵ×k, in such a case the
i-th bit of a binary descriptor becomes a part of i-th channel in this tensor.
Then, RBMs process B channel-wise which means that each binary vector is
processed separately by a single RBM, but the weights of the RBM are the
same for every part of an image. Figure 4.3 presents a visualisation of this
process.

Figure 4.3: Image feature extraction with binary descriptors and RBM hid-
den space.

In this case, ĥ ·ŵ matrix multiplications have to be performed to compute
the hidden state of RBMs, however, as the weights are shared between RBMs
the entire operation can be reinterpreted as a single matrix multiplication
performed on B matrix, hence:

C = Γ(B) = φ(WB + b) (4.6)

69

The RBM as a binary descriptors processor, hidden layer feature space 4.3

then C of size ĥ · ŵ ×Rh has to be reshaped to a ĥ× ŵ ×Rh shape.

Remark (An RBM’s output scaling). An important point to note is that the
sigmoid activation function of an RBM does not have to be used in (4.6) to
define φ(·) since the RBM is reinterpreted as a regular feed-forward network.
Its hidden space does not have to represent the probability of its activation as
[0; 1], it can be scaled with a hyperbolic tangent function to [−1; 1] or ReLU
to [0;∞) or even identity to (−∞;∞). The activation function here has a
different meaning than it was in the case of the MLP, as discussed earlier.
The weights in the RBM are not changed after they have been trained with
the Contrastive Divergence algorithm, so during training a CNN, gradients
do not propagate to them, thus choosing φ(·) is more like scaling the input to
a CNN. Also, the total input to an activation can be scaled with a β factor:

C = φ(β · (WB + b)), (4.7)

which results in a different wider (β < 1) or narrower (β > 1) slope for a
hyperbolic tangent and sigmoid functions as presented in Fig 4.4; β affects
these two functions in a similar way since these are closely related (tanh(x) =
2σ(2x)−1). For ReLU and identity functions this procedure is not necessary
since the scaling factor may be achieved in further layers.

tanh sigmoid

Figure 4.4: Hiperpolic tangent and sigmoid activation functions depending
on the β scaling factor.

After the image is transformed and reshaped to the B tensor, the input to
an RBM layer can be formed in a more complex manner. Binary vectors may
be concatenated to create a wider context for an RBM, which may infer more
complex features from a binary input. To do this one may use a kernel of size
ks. A kernel here has a similar meaning to a filter in convolutional layers,

70

The RBM as a binary descriptors processor, hidden layer feature space 4.3

it is designed to take descriptors from some region of an image rather than
a single descriptor. Fig 4.5 presents a simple example of how many binary
vectors shape an input to an RBM in the case of ks = 2. These kernels are
obtained densely, however a grid pattern with a stride may also be used, the
stride size here will be referred to as s2.

Figure 4.5: Image feature extraction with binary descriptors and RBM hid-
den space with kernel size equal to 2.

The dimensionality of an input matrix to an RBM layer changes to
ĥ·ŵ
s22
× k2s · k, as the input vector to a single RBM enhances from {0, 1}k to

{0, 1}k2s ·k. The dimensionality of C changes to ĥ
s2
× ŵ

s2
×Rh. The new input,

formed from B will be referred to as B̃, the transformation will be referred
to as H(·), and has the following form:

B̃ = H(B) =




B1,1,: . . . B1,ks,: . . . Bks,1,: . . . Bks,ks,:

B1,1+s2,: . . . B1,ks+s2,: . . . Bks,1+s2,: . . . Bks,ks+s2,:

...
...

...
. . .

...
. . .

...
B1,ŵ−ks,: . . . B1,ŵ,: . . . Bks,ŵ−ks,: . . . Bks,ŵ,:

B1+s2,1,: . . . B1+s2,ks,: . . . Bks+s2,1+s2,: . . . Bks+s2,ks+s2,:

...
...

...
. . .

...
. . .

...
B
ĥ−ks,ŵ−ks,:

. . . B
ĥ−ks,ŵ,:

. . . B
ĥ,ŵ−ks,:

. . . B
ĥ,ŵ,:




.

(4.8)

71

The RBM as a binary descriptors processor, hidden layer feature space 4.3

To exemplify, for ks = 2 and s2 = 1 it takes the following form:

B̃ =




B1,1,: B1,2,: B2,1,: B2,2,:

B1,2,: B1,3,: B2,2,: B2,3,:

...
...

...
...

B1,ŵ−1,: B1,ŵ,: B2,ŵ−1,: B2,ŵ,:

B2,1,: B2,2,: B3,1,: B3,2,:

...
...

...
...

B
ĥ−1,ŵ−1,: B

ĥ−1,ŵ,: B
ĥ,ŵ−1,: B

ĥ,ŵ,:




. (4.9)

The RBM layer performs the same computation as earlier:

C = φ(β · (WB̃ + b)).

Based on that, one may conclude that the kernels are similar to receptive
fields in convolutions. They are designed to process larger regions from an
image, therefore the hidden space of RBMs represent a wider context, but
their usability may depend on a binary vector space. As the size of the input
vector to a single RBM increases by k2s factor, for long descriptors ks > 1
may result in an inefficient RBM layer, also longer descriptors usually use
a larger neighbourhood to compute the output, so the context of a larger
region is embedded in a descriptor. Therefore this method is designed for
short descriptors like LBP8s or CLBPs. The entire processing pipeline is
shown in Figure 4.6

Architecture 3 (HS-CNN). Processing data with RBM hidden space (HS)
as features and CNN and MLP as a final classifier.

Figure 4.6: Image classification with preprocessing with RBM hidden space
as feature extractor. Binary descriptors are gathered densely.

In Section 3.3 the possibility of stacking multiple RBMs was introduced,
which results in a higher abstraction level. This can also be applied in the

72

The RBM as a binary descriptors processor, hidden layer feature space 4.3

case of the proposed processing. The idea of using more layers of RBMs is
the same as in the case of the DBN, applying this to the processing pipeline
changes the Γ(·) function to the following form:

Γ(B) = Γr(Γr−1(. . . (Γ2(Γ1(B))))), (4.10)

where r is the number of RBM layers. However, only Γr(·) can have the form
of (4.6) as others (Γi∈{1,2,·,r−1}) have to perform the regular RBM equations
to provide a binary input to the additional layers. As a result, all the RBM
layers can be formalised in the following way:

C0 = B,

∀i∈{1,2,...,r−1}Ci = Γi(Ci−1) = σ(W iCi−1 + bi) > X∼U ,

C = Γ(B) = Γr(Cr−1) = φ(β · (W rCr−1 + br)), (4.11)

where W i, bi denote parameters of an RBM in the i-th RBM layer, and Γr(·)
differs from Γi(·) in activation function as mentioned earlier. This results in
the form of a DBN between binary vectors and convolutional layers. However,
all the RBM layers may be independent of the previous ones, which means
the input can be formed with the use of kernels as it was in the case of forming
the input from the binary descriptors layer. So for each RBM one may use
the H(·) transformation, and finally one can write the following equation:

C0 = B,

∀i∈{0,1,...,r−1}C̃i = Hi(Ci),

∀i∈{1,2,...,r−1}Ci = Γi(C̃i−1) = σ(W iC̃i−1 + bi) > X∼U ,

C = Γ(B) = Γr(C̃r−1) = φ(β · (W rC̃r−1 + br)). (4.12)

For each layer, there is a different Hi(·) since its parameters (stride and
kernels size) may differ. Therefore to define the dimensionality of the output
tensors and the intermediate matrixes, one needs to define the parameters
set. Let s = [s1 s2 . . . sr] be a set of strides, and k = [k1 k2 . . . kr] be a set
of kernel sizes. Then the dimensionality of the output tensor C is:

ĥ
r∏
i=1

si

× ĥ
r∏
i=1

si

×Rhr ,

and it is independent of k, but the intermediate matrixes are, for the x-th
RBMs the output dimension is defined in the following way:

ĥ · ŵ
x∏
i=1

s2i

× k2x ·Rhx−1 .

73

RBMs for visual data comparison 4.4

A simplified visualisation of the entire process is shown in Figure 4.7.

Figure 4.7: Image feature extraction with binary descriptors and mutliple
RBM layers.

It cannot be predefined what the number of RBM layers should be and
what is the best set of k, s parameters. However, the visual data is processed
similarly to when convolutional layers transform the raw pixels. This means
that each layer should have a higher level of abstraction and may detect the
features from a wider context. Thus the meaning of kernel size and stride is
close to these parameters in convolutions. The idea of stacking RBM layers
in this way to create a feature extractor is also known and was introduced
in [158], however binary descriptors were not used there (real-valued - Gaus-
sian visible units were used in the first layer). It will be shown later that
adding this layer improves the generalisation ability of a convolutional neural
network, also the following sections describe additional advantages of using
the proposed type of preprocessing.

4.4 RBMS FOR VISUAL DATA COMPARISON

The previous sections in this chapter introduced how binary descriptors and
Restricted Boltzmann Machines can be utilised as a feature extractor. The
preprocessing method presented needs a training phase for an RBM, this is
not very demanding as the training examples do not have to be labelled, but
it is still a process that has to be performed offline and needs some time and
data. Here, arises the question of whether an RBM that has been trained on
a dataset can be transformed into another machine learning problem. The
idea of transfer learning [62] is commonly known and widely used, and one
can claim that this is an example of reusing a feature extractor. However, to
make it usable one needs to ensure that the data that is used for classification
is similar to the data that has been used for training. The similarity is
hard to define, but we can treat it intuitively: feature extractor layers may
be reused if the features being detected in the training and classification
dataset are related, so if the distributions of particular features are similar

74

RBMs for visual data comparison 4.4

then the extractor should work well. There is no common measure that can be
utilised for this purpose, however, for large scale recognition it is probably not
necessary. For example, feature extractor learnt on ImageNet are versatile
since this dataset has a large number of different objects containing many
different features. Thus, reusing a part of classifier trained on ImageNet
for other tasks should result in correctly detected features because they were
probably similarly distributed in training (but there may be some redundancy
since ImageNet may be a more demanding task than others). However, this
is still the case when the data that is being recognised presents objects in a
similar context such as animals, vehicles, people, buildings etc. We should not
expect a good classification performance based on ImageNet for example in
texture recognition, hence the problem with measuring data similarity arises
again. This leads to the conclusion that despite transfer learning being a
very efficient tool to mitigate the difficulties with a lack of data or lack of
computing resources (to train big models) it is not clear for a given task if
the feature extractor can be moved to another problem, especially for smaller
networks and datasets. In contrast to an RBM, regular convolutional neural
networks do not provide anything that could indicate if the image features
are detected correctly without analysing their output by an expert.

A Restricted Boltzmann Machine may be used to compute the marginal
probability of input data as given in (3.17). The P (v) value defines the
probability of occurrence of a given v in the dataset. Therefore, with the
use of many input signals from a dataset one can compute a vector of their
probabilities and compare this to other one (reference vector of probabili-
ties). To formalise it, let Λ(·) be a transformation that computes a vector of
probabilities (l) from a given dataset - V :

l ≜ Λ(V = [v1 v2 . . . vn]) = [P (v1) P (v2) . . . P (vn)] ∈ R
n

∀i∈{1,2,...,n}vi ∈ {0, 1}Rv .

(4.13)

With the use of l one may create a histogram of these probabilities. Due
to the real-valued nature of probability, the histogram r ≜ M(l) can be
binned to have a constant size - rs (r ∈ N

rs). To perform the binning, bin
margins have to be defined m = [m0 m1 . . . mrs−1 mrs], where m0 = 0
and mrs = max(l), then the histogram can be created with the use of the
following formula:

∀i∈{1,2,...,rs}ri =
n∑

x=1

((lx > mi−1) ∧ (lx < mi). (4.14)

75

RBMs for visual data comparison 4.4

The number of bins has to be defined by the user; one way to do this
is to use Scott’s Rule [159]. Then to obtain the most important part of the
histogram one may use an Interquartile Range (IQR). The default values
for m vectors is to compute them in this way: ∀i∈{1,2,...,rs}mi =

i
rs
·max(l).

However, in the case of P (v) this may result in a large disproportionality,
for example most of the probabilities may be accumulated in one bin while
others may be empty. To avoid this, the histogram may be flattened to have
same height of bins as presented in 4.8.

Figure 4.8: Flattening a histogram by adjusting an m vector (compare var-
ious x-scales in both figures).

Assuming an RBM has been already trained on a training dataset Xtrain,
one may extract a smaller subset - Zref being its representative subset (ran-
dom samples from different categories). The shapes of M(Λ(Xtrain)) and
M(Λ(Zref)) should be similar because the samples from both contain similar
features, hence similar binary vectors.

Then rref = M(Λ(Zref)) is a reference histogram for a given RBM and
to compare new data Xtest with Xref, one has to create a histogram in the
same way. A subset Ztest can be also used if Xtest is large. After that,
data comparison is just a comparison of rtest = M(Λ(Ztest)) and rref. To
compute rtest one has to use the same m vector that has been used for
the reference histogram, which implies that although the procedure is quite
computationally expensive it does not cause any difficulties as it has to be
computed only once for a given RBM. Finally, rref and m are the parameters
that describe the data that an RBM has been trained on.

76

RBMs for visual data comparison 4.4

The problematic part of this algorithm may be a partition function (de-
fined in (3.11), in which an exact value of Z is impossible to compute for
high dimensional RBMs. However, this can be mitigated by modifying Λ(·)
function to have the following form:

Λ(V) = [Z · P (v1) Z · P (v2) . . . Z · P (vn)], (4.15)

and taking the marginal probability function into account one can write:

Λ(V) = [e−F (v1) e−F (v2) . . . e−F (vn)], (4.16)

where F (·) refers to a free energy function as shown in (3.16). Thus, finally
Z is not necessary as its value is the same for the given parameters of an
RBM (W , a, b). As a result, after the parameters have been optimised, the
partition function value does not change. However, as Z · P (v) may be very
large, for practical reasons to avoid overflow one may have to use a scaling
factor in Λ(·) to have the following form:

λ(v) ≜
e−F (v)

G
,

Λ(V) = [λ(v1) λ(v2) . . . λ(vn)], (4.17)

where G is a constant large enough. After the definition of all the compu-
tations needed for rref and rtest there is a need to define a function that
measures the similarity of these histograms. A standard approach is to use
Chi-Squared (χ2) distance [180] given as:

χ2(p, q) =
1

2

rs∑

i=1

(pi − qi)2
(pi + qi)

. (4.18)

This formula will be used in further experiments, however, other equations
that measure the distance between two vectors could be also employed.

77

RBMs for input data denoising 4.5

4.5 RBMS FOR INPUT DATA DENOISING

Images being processed by classification systems may come from different
sources and can be gathered from different environmental conditions, thus
they may be often noised or broken. The noise may have variety of forms,
which is not always known prior and denoising the image without knowing
the type of noise may be difficult. A theoretical form of the image data
distributed by noise can be shown as follows:

P̃ = P+Y(P) +N,

where P is an original image, P̃ is a noised image, Y(·) is a function that
generates a noise depending on the original image, and N is a bias. In real
systems P̃ is a correlated noise that may come from a processing pipeline,
and Ñ may come from partially broken sensors or electronic noise or unusual
lighting conditions. A good review of existing techniques that tackle denois-
ing problems in both cases is given in [160]. The authors described many
methods, including neural ones, and stated that CNN based models achieve
the best quality of denoising.

This dissertation focuses on data classification quality, so the form of an
original image before being noised is not necessarily needed to be known, the
only thing one wants to achieve in this case is to reduce the impact of noise
on a classification result, which is important because as stated in [161] even
simple noise may affect overall network accuracy. It would be reasonable to
reconstruct the original image before passing it to the classification pipeline,
however, this results in an additional stage of processing and this is not desir-
able especially in real-time systems, since the noise nature is not known prior
and complex denoising methods are relatively resources consuming. There-
fore, as typical denoising methods focus on computing a tensor being a close
form of P, for classification purposes in the case of RBM preprocessing, the
pipeline needs to generate Γ(Z(P̃)) as close as possible to Γ(Z(P)). Finally,
the conclusion is that there is no need to reconstruct the original image, and
this problem is beyond the scope of this study.
It is not possible to change the Z(·) function since binary descriptors are pre-
defined and they do not modify the noised input to be similar to the original,
however some features of binary descriptors may be successfully applied to
tackle denoising [162] as they may generate the same output that differ to a
small degree, so the first stage of reducing the impact of noise is applied in
this stage. Then the core of the denoising can be implemented by modifying
the Γ(·) function in order to reconstruct binary patterns if they represent
unusual features. If the image is partially broken, for example if some pixels

78

RBMs for input data denoising 4.5

come from a broken sensor then N ̸= 0, or if some preprocessing generates
some noise then Y(P) ̸= 0, in both cases the binary descriptors will have
insignificantly different values than the descriptors that have been used in
the learning phase, they would be statistical outliers when compared to the
training set of descriptors. In other words, in an RBM, they would generate
high energy, hence low probability. Thus one can use the recurrent nature
of an RBM to lower the energy of an input vector and obtain a binary de-
scriptor closer to a training dataset. As explained, the generated B matrix
does not change, but in this case it will denote a signal with unknown noise,
which the RBM will reduce. Consider (4.6), an RBM performs a single affine
transformation followed by a non-linear activation function, so the RBM be-
comes de facto a feed-forward network. Taking advantage of the recurrent
nature of an RBM it is possible to redefine Γ(·) to be a stochastic denoising
function in the following way:

H ≜ σ(WB + b) > X∼ URh×Rv ,

E(B) = B̄ ≜ σ(W ⊺H + a) > X∼ URv×Rh ,

Γ(B) = φ(WB̄ + b), (4.19)

B̄ in this case is a denoised matrix of binary descriptors and E(·) is a denois-
ing function, also as can be observed the noised pattern intialises a Markov
chain to have a denoised pattern as the output. This equation is simplified to
one Gibbs step, however, similarly to Algorithm 1 there may be more steps
of reconstruction which can be visualised as shown in Figure 4.9, where it
is shown how an RBM may regenerate a noised vector to be a local attrac-
tor. Local attractor in this case means a configuration of an RBM’s joints
in a local energy minimum. The last reconstruction is then a reconstructed
vector.

It is worth mentioning that this introduces an additional stage of pro-
cessing which results in some additional latency, but despite this the overall
preprocessing time should be still relatively short when compaerd to a CNN
network which the preprocessing is followed by. The great advantage of this
approach is that the denoising is not another module in the classification
pipeline but just a feature that an RBM provides without any additional
effort, so it can be enabled or disabled on demand after a training phase.

79

RBMs for input data denoising 4.5

pattern from
a training set - attractor

pattern from
noised pixels

reconstruction 1 reconstruction 2 -
attractor

latent space

Figure 4.9: Pattern reconstruction in an RBM.

80

5
EXPERIMENTAL RESEARCH

This chapter focuses on the empirical validation of the image processing
methods that have been described in an earlier part of this dissertation. The
major modification to a classical CNN pipeline proposed in this study is to
use a preprocessing technique composed of a binary description layer and
an RBM layer. Therefore, the experiments were mostly focused on testing
how these layers affect some important indicators of classification quality.
Experiments are split into four main sections. The first relates to image
classification with an RBM’s hidden units as feature space, the second to
visual data comparison, the third to denoising the RBM’s input, the last sec-
tion relates to binary patterns aggregation and CD feature space. These are
based on the three novel classification architectures proposed by the author
in Chapter 4:

• CD-KNN - feature extractor based on contrastive divergence and de-
scriptors aggregation (see Figure 4.1),

• CD-CNN - feature extractor based on contrastive divergence (see Fig-
ure 4.2),

• HS-CNN - feature extractor based on an RBM’s hidden space (see
Figure 4.6).

All the experiments were conducted with the use of the implementation
of an RBM that was described in 4.1. This was used for training and for
inference. For basic image processing, OpenCV library [163] was used. Ten-
sorFlow [153] was used as a tool for artificial intelligence purposes. Most of
the code was implemented in Python, however, some parts of experiments
were conducted with modules written in C++ and with CUDA [164] for GPU
accelerated processing. Some basic matrix arithmetic operations were imple-
mented with the use of NumPy [152]. Binary descriptors were implemented
in OpenCV, except LBP since it has no implementation in this library and
CLBP since it is a novel form of binary descriptor, thus these two had their

81

Experimental research

own implementation. The results were also partially presented by the author
in [107, 165, 166].

The following datasets were used as images to train and test classifiers:

• Caltech101 [167]: dataset consisting of 9146 images split into 101 cat-
egories. Images are RGB and of different size. Numbers of images
per category are unbalanced (40 to 800) and present different natural
objects, like animals, faces, vehicles, devices etc.

• MNIST [168]: dataset consisting of 60000 images labelled and split
into 10 categories. Images are Greyscale of size 28x28 and present
handwritten digits.

• CIFAR10 [169]: dataset consisting of 60000 images labelled and split
into 10 categories. Images are RGB of size 32x32 and present different
animals and vehicles.

• STL-10 [170]: dataset prepared for unsupervised learning purposes. It
consists of 10 categories each containing 500 images for training and
800 for validation. It also contains 100000 unlabelled images that can
be used for unsupervised pretraining. Dataset is inspired by CIFAR-
10, and samples are taken from ImageNet set. Images are RGB of size
96x96 and present similar objects to CIFAR-10.

• Indoor Scene [171] Dataset containing images presenting scenes from
different indoor rooms. Images are RGB of different size.

• DTD [172]: dataset containing images presenting different textures.
Samples are split into 47 categories, where each category contains 120
RGB images of different size.

• Concrete Cracks [173]: dataset containing images presenting concrete,
split into 2 categories, the first contains samples with cracked concrete,
the second samples with not-cracked concrete.

All the categories differ in some way. For example, MNIST is a dataset
commonly considered as entry-level in image recognition, because the task
to recognise the digits is relatively simple and even simple classifiers can
achieve high performance on it and complex classifiers achieve accuracy close
to 100%. However, it is a good example to test and improve new classification
methods. CIFAR-10 is a well-prepared dataset because of the high number
of samples per category but the size of the images is low, so learning features
that can separate the classes may be challenging. Caltech101 presents objects

82

Experimental research

in a relatively clear context, they are aligned and not occluded which makes
them easy to classify by neural classifiers, however, the number of images
per category is not balanced and the number of classes is relatively high.
STL-10, because of its categories composition it is a good case for testing an
unsupervised learning method as this dissertation focuses on. Indoor Scene
was chosen because of the nature of the objects it presents, it contains real
world images, but they differ from other datasets in terms of what is visible
in the scene. DTD was chosen because it contains artificial textures while
others show real objects, so DTD is a dataset that differs the from others
the most. Concrete Cracks is a dataset containing more real case in terms of
robotics, for example inspection mobile robots may be trained to recognise
such defects in concrete. Some examples of images from all those datasets
are shown in Table 5.1.

83

Experimental research

MNIST

CIFAR-10

Caltech101

STL-10

Indoor Scene

DTD

Concrete Crack

Table 5.1: Example images from different datasets used for experiments.

84

Experimental research

Experiment 1 (CLBP / RBM implementation speed). This experi-
ment was designed to test the speed of the author’s implementation of CLBP
and RBM.

Before starting the analysis of binary descriptors and RBM capabilities
in the context of image recognition it is worth investigating how fast their
implementations work. Section 4.1 described details of how an RBM and
a CLBP could be coded in python with the use of a GPU. It is clear that
the time of response may depend on the size of an input image and other
parameters. In the case of an RBM those parameters are the number of
visible units and hidden units, for a CLBP one may investigate how fast it
works when compared to a standard LBP8. The results of experiments with
the speed are shown in Table 5.2 for a CLBP and in Figure 5.1 and 5.2 for
an RBM. The conclusions are clear, the CLBP was not significantly slower
than the LBP8, except for the largest tested size. The processing times were
low, for all the resolutions they were not higher than 1ms, which made this
layer very fast and applicable in real-time systems. The implementation of
an RBM used in this research is also fast enough for lower resolutions and we
could expect that the response time allowed applying it in real-time image
processing systems, however for high resolutions, the times were relatively
high. Thus the size of an input image may be chosen as a trade-off between
speed and quality but it will be highly dependent on the particular task. The
speed may depend on the internal implementation of matrix multiplications,
as mentioned in section 4.1 the code written for the purposes of this research
uses TensorFlow, it was designed for smaller resolutions as the used datasets
are composed of images of lower resolution, for larger inputs it would be
worth investigating other libraries. The second conclusion from analysing
Figure 5.2 is that the response time of an RBM does not depend significantly
on the number of hidden units, so this parameter may be adjusted to achieve
the best classification accuracy. The number of visible units affects the speed
more, this parameter is determined directly by the binary descriptors layer,
and should be adjusted to achieve the best accuracy to response time ratio.

Result of experiment 1. The implementation of CLBP and RBM prepared
by the author provides short response times of these modules potentially al-
lowing their use in systems with real-time capabilities.

85

Experimental research

Figure 5.1: RBM response time depending on its parameter and size of an
input image with a squared shape.

input image size
32 48 64 96 128 196 256 384 512

LBP8 0.4 0.4 0.4 0.5 0.45 0.45 0.5 0.6 0.6
CLBP 0.4 0.4 0.4 0.5 0.45 0.45 0.5 0.7 0.95

Table 5.2: Time in milliseconds of LBP8/CLBP response depending on the
size of an input image with a squared shape.

86

Figure 5.2: RBM Response time in milliseconds depending on the size of an
input image with a squared shape and number of hidden units.

Image classification with RBM’s hidden units as a feature space 5.1

5.1 IMAGE CLASSIFICATION WITH RBM’S HIDDEN

UNITS AS A FEATURE SPACE

5.1.1 LBP8-RBM - MNIST dataset experiments

Experiment 2 (HS-CNN architecture basic capabilities). This experi-
ment was designed to test how well this architecture performed when compared
to widely known classifier on MNIST dataset.

MNIST is a dataset often used to experimentally confirm the effective-
ness of novel classification approaches. Sometimes, it is even referred to as a
"Hello World" project in terms of image processing, which means it is a set
of images that should be used to test if a given processing architecture works
at all. Therefore it was used for validation of the efficiency of a LBP-RBM
as a feature detector layer. The idea behind this experiment was to validate
how a linear classifier could distinguish data from this extractor when com-
pared to raw data. As the data in MNIST is composed of greyscale images
of size 28x28 it is easy to train a neuron of input size equal to 784, which
in experiments achieved a 92% accuracy and is a reference for this experi-
ment. The results achieved by an LBP-RBM feature extractor followed by
a similar classifier are shown in Figure 5.3. The experiment also included
different parameters of an RBM: the number of stacked RBMs and an ac-
tivation function. The networks were trained until the convergence, usually
around 100 epochs, with the kernel size for the RBM set to 4. As can be
observed, the network that achieved the best accuracy was composed of one
RBM layer and used a hiperbolic tangent as an activation function. However,
the most significant conclusion is that for the most of the RBM configura-
tions, networks with preprocessing were trained with a higher accuracy than
those without. Therefore it was experimentally confirmed that the proposed
preprocessing can be applied as an image feature extractor.
Other parameters in an RBM that were adjusted: the number of hidden
units, and the β scaling factor for the hiperbolic tangent. To infer the best
ones, a dense grid searching could be performed, and the results of this are
shown in Figure 5.4. The best set of parameters in this experiment were: the
number of hidden units equal to 24, and β equal to 0.2. A number of other
trends can be observed, setting β equal to 0.2 results in the highest accuracy
for all numbers of hidden units, and increasing the number of hidden units
resulted in a higher accuracy as long as it did not exceed 24.
It would be also possible to perform a more complex hyper-parameter tuning
that took more possibilities of parameter configuration into account such as
random search or Bayesian optimisation [174], and this could result in better

88

Image classification with RBM’s hidden units as a feature space 5.1

generalisation ability, however in the case of MNIST the purpose was to make
the dependencies between some of the RBM’s parameters clear.
Finally, for a tuned set of parameters the impact of RBM preprocessing
was compared using different numbers of convolutional layers. The accuracy
achieved by all the networks are shown in Table 5.3, and the learning curves
are shown in Figure 5.5. Networks with RBM preprocessing achieved a better
final accuracy, and usually converged faster. However with 3 convolutional
layers, adding the preprocessing resulted in overfitting (validation loss started
increasing while training loss remained decreasing), but this should not be
considered as a problem since it can be solved by an early stopping or just
by reducing the number of convolutional layers to 2.

Result of experiment 2. HS-CNN architecture could be successfully ap-
plied for MNIST dataset classification and provided better generalisation abil-
ity than regular architectures for small number of convolutional layers.

Figure 5.3: Results of experiments on MNIST dataset, a reference network
without LBP-RBM achieves accuracy ≈ 0.91− 0.92.

89

Image classification with RBM’s hidden units as a feature space 5.1

Figure 5.4: RBM hyper-parameters tuning on MNIST dataset.

no. convolutional layers
0 1 2 3

RBM preprocessing 0.9575 0.9843 0.9916 0.9934
RAW pixels 0.9206 0.9732 0.9885 0.9915

Table 5.3: Accuracy achieved by neural network with different number of con-
volutional layers with and without RBM preprocessing on MNIST dataset.

Experiment 3 (Visualisation of learnt RBM’s hidden space). This
experiment was designed to visualise how RBM transformed images to its
hidden feature space.

For a trained RBM it is possible to visualise how it processes the image.
In many cases with deep neural classifiers we can observe how the filters
are learnt, meaning we know which features particular filters react to [19].
In the case of an RBM this is not useful since it does not process the raw
pixel data, moreover the binary vectors that are not easily recognisable by a
human. Instead, we can visualise the outputs from an RBM’s hidden units
for a given input image. Some examples are shown in Table 5.4. These
outputs were generated with an RBM trained with a set of parameters that
were previously determined as the best. It does not have to be obvious what

90

Image classification with RBM’s hidden units as a feature space 5.1

a particular output means, however, we can observe some clear relationships
between an input and latent space features. For example the third hidden
unit (first row, third column) reacted on the bottom and left edges, while the
fifth hidden unit (first row, fifth column) reacted on the top and right edges,
the sixth unit (first row, sixth column) enabled on the falling diagonal lines
while the 11th unit behaved similarly but for rising diagonal lines, the 18th
unit (third row, second column) was sensitive to everything which was not
an edge. Thus, when the data was passed to a final classifier it had a more
abstract meaning than raw pixels that denote only the intensity of a region
in an image.
Finally, we can conclude that these experiments showed that LBP-RBM
preprocessing can be successfully applied to an image classification problem.

Result of experiment 3. RBM’s hidden space could be visualised and inter-
preted in a relatively straightforward manner, and the dependencies between
image features and RBM’s unit’s response could be observed.

91

Image classification with RBM’s hidden units as a feature space 5.1

92

Image classification with RBM’s hidden units as a feature space 5.1

Table 5.4: Example outputs of RBM feature extractor. The left image in
each row is an input image, the images on the right are outputs from each
of 24 hidden units of an RBM.

93

(a) Accuracy - 0 convolutional layers (b) Loss - 0 convolutional layers

(c) Accuracy - 1 convolutional layer (d) Loss - 1 convolutional layer

(e) Accuracy - 2 convolutional layers (f) Loss - 2 convolutional layers

(g) Accuracy - 3 convolutional layers (h) Loss - 3 convolutional layers

Figure 5.5: Validation learning curves with and without RBM preprocessing
layer on MNIST dataset. Figure 5.5h contains training curves to emphasize
the overfitting.

Image classification with RBM’s hidden units as a feature space 5.1

5.1.2 Colour Local Binary Pattern

Experiment 4 (CLBP usability validation). This experiment was de-
signed to validate how CLBP descriptor affected the classification ability in
the HS-CNN architecture.

The previous experiments were designed to use a regular LBP8 descriptor
since the MNIST dataset is composed of greyscale images only. To validate
how the proposed preprocessing works with colourful images the CIFAR-10
dataset was used. The dataset is composed of relatively simple categories,
however, their size is low, which makes the classification task non-trivial. The
first experiment was focused on verifying how adding the colour descriptor
bits affected the network generalisation ability, thus the results were just a
comparisons of curves for LBP8 and CLBP descriptors. Additionally, another
descriptor referred to as "CLBP_2" was added, which was formed similarly
to a CLBP, but it did not include the additional 2 bits that denote the
simplified intensity of a centre pixel. The results of this experiment are
shown in Figure 5.6. The trends are clear, the CLBP achieved significantly
higher accuracy than the LBP8 (4 percentage points on validation set after
the optimisation convergence), and the CLBP also performed better than
CLBP_2. This implies that the proposition of an enhancement of the LBP
descriptor may lead to a better classification accuracy when used in the
proposed pipeline.

Result of experiment 4. CLBP descriptor could be used in HS-CNN

architecture and provided better generalisation ability than a regular LBP.

95

Image classification with RBM’s hidden units as a feature space 5.1

Figure 5.6: Accuracy on CIFAR-10 dataset depending on the type of descrip-
tor used in preprocessing, "CLBP_2" refers to CLBP without 2 intensity
bits.

5.1.3 CLBP-RBM - CIFAR-10, STL-10, Concrete Cracks experi-
ments

The experiments described in the previous sections indicated the validity of
the assumption that the CLBP-RBM preprocessing may be applied to image
recognition and that the novel CLBP descriptor provides better classifica-
tion quality than a regular LBP. The experiments described in this section
aimed to confirm the effectiveness of the proposed method in more complex
problems and to generalise the conclusions based on more datasets. A neural
model composed of layers as in Figure 5.7 was created for the classification
task. This also introduced two additional stages of processing to HS-CNN
architecture, first was a Global Average Pooling (GAP) [182] which optimised
the learning processes to generate feature maps that represented a particular
input category, the second was a Dropout [149] that prevented overfitting.

MLP
Input
Image

Output
CNN

backbone

GAP
CLBP -
RBM

Dropout

Figure 5.7: Image classification pipeline for CIFAR-10, STL-10 and Concrete
Cracks datasets, HS-CNN architecture enhanced with Dropout and GAP.

96

Image classification with RBM’s hidden units as a feature space 5.1

Experiment 5 (RBM hyper-parameters optimisation for CLBP de-
scriptor). This experiment aimed to adjust the number of RBM hidden units
and kernel size for the best performance based on the STL-10 dataset.

To begin with, the important part of the experiment was to set hyper-
parameters of an RBM, in fact, it was done earlier for MNIST, however the
optimality of some parameters may differ in case of preprocessing another
descriptors (LBP8 for MNIST, CLBP for STL-10). The number of RBM
layers and the type of activation function were valid because the extraction
principles were the same, but the best number of hidden units could differ
as the descriptor sizes differed. Also as the input images differed in size the
best kernel size also had to be obtained, this was set to 2 for MNIST since
the images were very small. These experiments were intended to represent a
real use case, so processing time also had to be taken into account. Therefore
to adjust the number of hidden units and the kernel size, as a criterion of
optimality the following formula was used:

o ≜
accuracy

processing time
, (5.1)

where accuracy and processing time values were relative to the lowest achieved
accuracy and the highest measured processing time. The experiments were
conducted on the STL-10 dataset. RBMs were trained over 30 epochs in
each experiment on unlabelled data, then the backbone was trained with an
RMSProp optimisation algorithm until reaching convergence. The results
are shown in Figure 5.8. One can observe that the best o was achievable
with the use of kernel size equal to 2, and the number of hidden units to 48,
thus those values were used for the rest of the experiments.

Result of experiment 5. RBM achieved the best performance for kernel
size equal to 2 and the number of hidden units equal to 48.

97

Image classification with RBM’s hidden units as a feature space 5.1

Figure 5.8: RBM performance versus its hyper-parameters. Results are rel-
ative to the lowest accuracy and to the highest processing time.

Experiment 6 (RBM latent space visualisation for CLBP input).
This experiment aimed to visualise RBM’s hidden space when processing
CLPB input based on trained on the STL-10.

Once the parameters were adjusted, the main experiment that was de-
signed to investigate the impact of adding the CLBP-RBM layer was con-
ducted. For a visualisation of how an RBM processes colour images a similar
experiment to that of the MNIST experiment was conducted, so an example
image was processed by an RBM and the features from each hidden unit are
shown as an image, however in this case it is worth analysing what the same
features look like before an RBM was trained. The features in an untrained
RBM are shown in Figure 5.9 and in a trained RBM in Figure 5.10. Both
images illustrate the hidden features of each channel. The features generated
by an untrained RBM were without any relation to the input image, thus
were not useful in terms of further processing, which was in contrast to the
trained RBM response where we can observe how some hidden features were
related to the particular input features. Some of the visible connections are
highlighted. For example, the blue rectangles mark vertical lines in the in-

98

Image classification with RBM’s hidden units as a feature space 5.1

put image and the filter that reacted on these. The filter marked with green
colour reacted on vertical and horizontal lines. Red rectangles mark regions
containing red colour and the filter reactive to that. Similarly, yellow regions
mark filters reactions to green colour.

Result of experiment 6. RBM hidden space sensitivity to colour and shape
of features was observable.

Figure 5.9: RBM’s hidden space features representation in an untrained
model.

Figure 5.10: RBM’s hidden space features representation in a trained model.

99

Image classification with RBM’s hidden units as a feature space 5.1

Experiment 7 (HS-CNN generalisation ability validation). This ex-
periment aimed at testing HS-CNN architecture classification performance
on the STL-10 dataset. This was the most important experiment in terms of
large scale image classification in this study.

After these initial experiments, the final tests that related to the ex-
act classification performance in the proposed processing pipeline were con-
ducted. Three commonly known deep learning architectures were chosen
as CNN backbones: VGG, DenseNet and ResNet, they differ in terms of
complexity and internal connections, thus they were good examples to make
general conclusions. Also, as these CNNs are relatively complex networks,
another small network was added, it was composed of six convolutional lay-
ers followed by max pooling, which will be referred to as "custom". The
training details related to CNN are described in Apeendix B. The results
achieved by those networks are shown in Table 5.5, where we can observe
how the accuracy changed when the CLBP-RBM was used and when it was
not. The table also contains the number of parameters in those networks and
their processing time. Based on those numbers one may conclude that the
preprocessing layer improved the accuracy in any case independently of the
size of the network, and also for each type of backbone the processing time
of the CLBP-RBM was relatively short when compared to the rest of the
network. This implies that adding a small preprocessing network may result
in increasing the final network accuracy without significantly decreasing the
network speed.

This is one of the most important results in this dissertation, since the
research is based primarily on the theorem that unsupervised trained RBMs
introduce an additional level of abstraction, without being very complex.
Based on that assumption it was possible to perform another experiment, one
may claim that the CLBP-RBM layer may replace some number of conven-
tional layers, subsequently, a deep neural network with preprocessing should
achieve greater accuracy when the number of convolutional layers is reduced
when compared to a network without it. Thus the experiment was based on
validation how reducing number of convolutional layers affects the accuracy
of classification model. Table 5.6 contains the results, the impact of the pre-
processing is clearly observable, a model containing the CLBP-RBM layer
may be shrunk with a smaller decrease in performance than a model without
this layer. Figure 5.11 illustrates the learning curves gathered during the
CNN training phases, one may notice the overfitting, which was probably
caused by the relatively low number of training samples for a relatively com-
plex network, however this effect was less noticeably visible in models with
preprocessing, and also the "custom" network had not been significantly

100

Image classification with RBM’s hidden units as a feature space 5.1

overfitted. Therefore for the experiments in the next sections this type of
backbone would be used.

Result of experiment 7. HS-CNN pipeline achieved greater accuracy for
various CNN backbones than a network without the CLBP-RBM preprocess-
ing.

backbone type
custom VGG ResNet DenseNet

Accuracy
improvement

2.6% 2.9% 4.7% 7.5%

Number
of parameters

2.76M 16M 27.7M 7M

Backbone processing time -
CLBP-RBM relative

15x 22x 135x 300x

Table 5.5: Accuracy improvements achieved by different types of network
backbones with the CLBP-RBM preprocessing.

no. convolutional layers reduction
1 2 3 4

CLBP-RBM 2.50% 5.00% 19.00% 25.00%
no preprocessing 4.10% 10.00% 25.00% 37.00%

Table 5.6: Accuracy reduction versus number of CNN layers reduction in
"custom" backbone.

101

(a) Accuracy - "custom" backbone (b) Loss - "custom" backbone

(c) Accuracy - VGG backbone (d) Loss - VGG backbone

(e) Accuracy - ResNet backbone (f) Loss - ResNet backbone

(g) Accuracy - DenseNet backbone (h) Loss - DenseNet backbone

Figure 5.11: Learning curves with and without the CLBP-RBM preprocess-
ing layer on the STL-10 dataset. Dashed lines denote results on training
subset, solid lines on validation subset.

Image classification with RBM’s hidden units as a feature space 5.1

Experiment 8 (HS-CNN generalisation depending on the number
of training samples). This experiment was designed to validate how the
size of a training dataset affected the HS-CNN classification accuracy when
compared to a network without the CLBP-RBM.

STL-10 is a dataset composed for testing unsupervised learning meth-
ods because of the large disproportionality between the training dataset and
the testing dataset, whereas CIFAR-10 is a dataset that can be successfully
used for CNNs that are trained with supervision. Thus the last experiment
in this section validated how the number of training samples affected the
final accuracy in the case of training a CNN with and without the CLBP-
RBM preprocessing. The idea of the experiment was simple, the initial num-
ber of training images was 50000, and the number of testing images was
10000. The "custom" network was trained on this set to verify the accu-
racy, and then the size of the training set was decreased to be respectively
75%, 50%, 25%, 10%, 5%, 1% of the initial size, the tested metrics was verified
and compared for the networks with and without preprocessing. The results
are shown in Figure 5.12. The first important thing to note is that when all
training samples from CIFAR-10 were used for training a CNN, the prepro-
cessing did not affect the final accuracy and both types of networks achieved
similar results. This was because this dataset is well composed, the number
of images per each category is well balanced and diversified, so even a simple
deep neural network did not need any preprocessing to learn to categorise
these images. However, if the size of the training dataset was decreased the
impact of the CLBP-RBM preprocessing became more significant. One can
observe that the accuracy decreased when the number of training images
decreased, but this was not surprising. It was claimed at the beginning of
this dissertation that deep neural networks need a large number of training
samples in order to tune properly their parameters. However, this exper-
iment was designed to show the importance of the CLBP-RBM layer and
it is clearly observable in the results. The decrease in accuracy was lower
for each of the tested sizes of the training set, and the difference between
the generalisation ability was higher as the size decreased. Therefore one
can conclude that adding the CLBP-RBM layer may result in increasing the
accuracy ability of a neural network when the availability of training data is
limited, and it does not affect this metrics when the dataset is balanced and
well prepared.

Result of experiment 8. HS-CNN needed fewer training samples than a
network without the CLBP-RBM to achieve the same accuracy.

103

Image classification with RBM’s hidden units as a feature space 5.1

Figure 5.12: Evaluation of deep neural network performance depending on
the number of training samples with and without the CLBP-RBM prepro-
cessing on CIFAR-10 dataset.

Experiment 9 (HS-CNN for concrete crack detection). This experi-
ment was designed to validate how the proposed preprocessing method affected
generalisation ability in concrete cracks detection task.

The previous experiments based on some widely used datasets showed
that the proposed preprocessing method improves classification accuracy in
some scenarios. Therefore, this test aimed to verify how this can be moved
to a more realistic case. A good example is the Concrete Crack detection,
which may be performed by a mobile robot and other climbing machines.
It turn out that this type of classification task is a common challenge in
robotics and various applications of robots to support remote/autonomous
inspection of building structures, road surfaces, etc. are reported in the lit-
erature [183, 184, 185, 186, 187]. The previously mentioned dataset [173]
contains images of concrete split into two categories: with ("crack") and
without cracks ("concrete"). However, to simulate more realistic scenario,
another class was added. The additional category ("others") was built from
images from the Caltech101, DTD, Indoor Scene datasets and was composed
of images that did not present any concrete. The dataset was balanced and
contained 38k samples for training, 10k samples for validation and 12k for
testing. The three-category classifier can be applied in real device to detect
if camera is processing frames from concrete, cracked concrete or a different
scene. The results of evaluation on the testing for both networks are shown

104

Image classification with RBM’s hidden units as a feature space 5.2

in Table 5.7, the accuracy versus percentage of training data is shown in
Figure 5.13. We can notice, that for each of the testing metrics there was
an improvement when the CLBP-RBM layer was applied, which implies that
this type of classification architecture may be employed to solve real image
recognition problems, which for example can be encountered in some robotic
applications.

Crack No crack Others
RBM RAW RBM RAW RBM RAW

Accuracy (A) 0.996 0.986 0.991 0.989 0.992 0.978
Precision (P) 0.997 0.998 0.997 0.995 0.977 0.942
Recall (R) 0.991 0.960 0.978 0.971 0.999 0.996

Specificity (S) 0.999 0.999 0.998 0.999 0.987 0.967
∑

{A,P,R,S}

(RBM−RAW)

4
0.001 0.00275 0.0178

Table 5.7: Evaluation of recognition pipeline generalisation ability metrics for
each classified category on the testing dataset for concrete crack detection.

Figure 5.13: Evaluation of deep neural network performance on all categories
depending on the number of training samples with and without the CLBP-
RBM preprocessing on Concrete Crack dataset.

Result of experiment 9. The HS-CNN architecture achieved higher ef-
ficiency metrics than the network without preprocessing on Concrete Crack
dataset.

105

CLBP-RBM for visual data comparison 5.2

5.2 CLBP-RBM FOR VISUAL DATA COMPARISON

Experiment 10 (Visual data comparison with the CLBP-RBM).
This experiment was designed to validate the proposed method for visual data
comparison.

In section 4.4 presented the novel idea of how an RBM can be used to
compare visual data that can be an input to a conventional neural network.
The similarity of the data can be very subjective in terms of what one can
expect of the metrics that is the output of the comparison. For neural network
purposes such metrics should inform how close a given images dataset is to
another, particularly to one that has been used to train a preprocessing layer.
This section describes an experiment that took advantage of an RBM for such
a comparison. Three RBMs were trained on STL-10, Indoor Scene and DTD
datasets, then for each one, two other datasets were used to validate the
similarity metrics. For humans, the DTD differs from the other two in terms
of the objects it presents, the images in it are artificial or are taken with
a close shot from a textured objects. The other two present real objects,
thus intuitively they should be similar for a neural network. Therefore one
may expect that the proposed metrics should be lower for Indoor Scene and
STL-10 comparison while higher for a comparison with the DTD. The results
of this experiment are shown in Figure 5.14 and Table 5.8. For each of three
RBMs histograms were generated with the use of a subset of each dataset.
The reference histograms were flattened, and there were only 10 bins for the
sake of better readability. A fourth histogram for each RBM generated from
another subset of the training set was added, referred to with the suffix "2".
One may observe that for each case the distances to these sets of images were
the lowest, which was not surprising because they present the most similar
visual features, however, it confirmed experimentally that the assumption
of using this type of similarity measure was valid. The more important
conclusions are made when analysing the distances to other datasets. For
an RBM trained on STL-10 data the distance to Indoor Scene dataset was
significantly lower than to DTD, analogically, RBM trained on Indoor Scene
showed to be closer to STL-10 than to Indoor Scene. Finally an RBM trained
on DTD revealed high distance to both other datasets. All these findings lead
to the conclusion, that the proposed method for analysing the similarity of
datasets is effective because the achieved results are close to the expectations
in the context of what is similar for humans.

Result of experiment 10. CLBP-RBM based histograms of probabilities
can be used to compare the similarity of image datasets.

106

CLBP-RBM for visual data comparison 5.2

Data STL Data Scene Data DTD
RBM STL 0.0015 0.0193 0.0601
RBM Scene 0.0054 0.0001 0.0339
RBM DTD 0.0349 0.0264 0.0004

Table 5.8: Chi-Squared distances (defined by (4.18)) between datasets mea-
sured with the use of an RBM’s probabilities histograms, the diagonal results
denote the distance between the reference set of images and another set from
the same training dataset.

107

Figure 5.14: Histograms for P (v) taken from different datasets, cumulative
difference denotes the sum of differences between a given bin to a reference
bin from the first to the current bin.

CLBP-RBM for visual input denoising 5.3

5.3 CLBP-RBM FOR VISUAL INPUT DENOISING

5.3.1 Binary vectors denoising

Experiment 11 (Binary descriptors denoising with RBMs). This ex-
periment was designed to validate if RBMs can be used to reconstruct binary
vectors being image descriptors.

The idea of using the CLBP-RBM layer for denoising an input to a CNN
was presented in Section 4.5 where it was explained how the recurrent nature
of an RBM can be used to reconstruct a binary features vector. This section
focuses on testing the proposed approach. Since a CLBP can be considered a
non-linear non-invertible map, it is not possible to make a reconstruction and
visualisation of a raw input image, however, it is possible to reconstruct a
binary string. Therefore, the first step in investigating this denoising solution
was choosing the best number of recurrence iterations in an RBM. To do that,
an RBM was trained on the STL-10 dataset, since in that instance the time
of response was not crucial, the kernel size was set to 4. Then, to have a
noised dataset, 50 samples for a CLBP input were generated from the STL-
10 dataset, and n number of their pixels were randomly noised with the use
of the following formula:

∀x∈{1,2,3}pi,j,x = 255 if X∼N > 0.5 else pi,j,x,

where i, j are the coordinates of the randomly chosen pixel to noise and
pi,j,: ∈ {0, 1, . . . , 255}. Some examples are presented in Table 5.10, where
we can observe how the distortion affected the images being an input to the
CLBP. For a kernel size equal to 4 the number of bits in the CLBP was equal
to 256. To measure the similarity of descriptors Hamming distance [122] was
used, and a metrics to measure the reconstruction ability was defined by this
formula:

o ≜ D(ζ(P), ζ(P̃))
︸ ︷︷ ︸

original−noised distance

− D(ζ(P), ϵ(ζ(P̃)))
︸ ︷︷ ︸

original−denoised distance

, (5.2)

where D(·) denotes a Hamming distance function, P̃ is a noised image gen-
erated from P, ζ(·) - CLBP transformation, ϵ(·) RBM denoising function.
Formally the o metrics informs as to how well an RBM reconstructed the
original pattern, an ideal case is when the second term equals 0, the first
term was bigger than zero in all the test cases. The comparisons were car-
ried out 100 times on each of 50 samples, the o values were averaged, and
the results are presented in Table 5.9. One may observe that the metrics
increased as the noise factor increased due to characteristics of the first term

109

CLBP-RBM for visual input denoising 5.3

in (5.2). This then indicates the validity of applying the metric, but the
values may be compared only within the same noise factor. In conclusion,
the ideal number of Gibbs steps for reconstruction was 1 for all the tested
scenarios as the o value was lowest for this number for each noise factor,
hence it would be used for further experiments.

noised pixels
1 2 3 4

Gibbs Steps

1 1.24 7.46 13.6 19.2
2 -0.7 5.5 11.23 16.713
3 -1.77 4.21 10.04 15.44
4 -2.47 3.38 9.28 14.96

Table 5.9: Reconstruction results.

Nr original n=1 n=2 n=3 n=4

1

2

3

Table 5.10: Example patterns used for reconstruction, the original and with
added random noise.

After the parameters of an RBM were defined, an experiment that relied
on applying the reconstruction phase for classification purposes was con-
ducted. The idea was relatively simple, an RBM was trained on the STL-10
dataset in the same manner as in previous experiments. Then a CNN was
trained on a training dataset without any noise, but the validation phase
was performed with the use of distorted images. In the first experiment the
distortion had a similar nature to as it was in the case of testing the best

110

CLBP-RBM for visual input denoising 5.3

number of Gibbs steps, so some number of pixels in the image were randomly
noised. The noise factor was defined as a ratio between the number of noised
pixels and the number of all pixels in the image. Examples of images with
this type of distortion are presented in Figure 5.15. The experiments were
conducted for 4 different noise factors (0, 0.025, 0.050, 0.075), as a result
learning curves were presented for all these cases, as in Figure 5.16. We can
analyse how an RBM learnt the data when denoising was enabled and when
it was not, and also compare to results without the CLBP-RBM prepro-
cessing. The first finding is that enabling the denoising did not negatively
affect the classification accuracy even if there was no noise added. Then,
when the noise factor was small (2.5% noised pixels) reconstructing the bi-
nary patterns did not improve the generalisation ability, however, removing
the CLBP-RBM layer reduced it significantly. For bigger noise factors, the
difference between the denoising enabled and disabled was clearly observable
as well as the accuracy reduction when there was no preprocessing layer.
In conclusion, running the reconstruction method in the CLBP-RBM may
be advantageous when the classification images are expected to be noised
and not disadvantageous when they are not. The only negative aspect is
the recurrence causing an RBM stage to be slower, approximately 2.5 times,
however it is probably not a major concern since the time of response was
for most cases lower than 5 ms, which made this fast enough even when the
denoising was enabled.

Result of experiment 11. The CLBP-RBM can be used for binary vectors
reconstruction.

noise=0 noise=0.025 noise=0.050 noise=0.075

Figure 5.15: Examples of noised images with different noise factors.

111

(a) Accuracy - noise factor = 0. (b) Loss - noise factor = 0.

(c) Accuracy - noise factor = 0.025. (d) Loss - noise factor = 0.025.

(e) Accuracy - noise factor = 0.050. (f) Loss - noise factor = 0.050.

(g) Accuracy - noise factor = 0.075. (h) Loss - noise factor = 0.075.

Figure 5.16: Validation learning curves for a denoising experiment, "GS"
denotes number of Gibbs steps performed for reconstruction.

CLBP-RBM for visual input denoising 5.3

5.3.2 Adversarial attack

Experiment 12 (Adversarial attack sensitivity of the HS-CNN model).
This experiment was designed to validate if reconstruction of binary vectors
results in better generalisation ability for gradient based noise.

Another type of noise that may be applied to an image and cause a
lowering of the generalisation ability is the fast gradient sign method referred
to also as adversarial attack [188]. This type of distortion is interesting
due to it being unobservable by humans, which means that human is not
able to recognise whether a picture was noised or not but a classification
neural network may fail during processing such sample and predict an invalid
category. The example of such a case is presented in Figure 5.17, where it
can be observed how the distortion affects the prediction. Technically this
method is defined by the following equation:

P̃ = P+ ϵ · (∇PJ(θ,P, y)), (5.3)

where ϵ is a noise factor. The noise is then generated based on the gradient
propagated over the model with the use of output from the original image.
This makes this technique applicable only with a knowledge of the model, in
contrast to the previous technique.

(a) Prediction - "dog" - 99%. (b) Prediction - "cat" 92%.

Figure 5.17: Examples of an image with (5.17b) and without (5.17a) added
adversarial attack noise.

Intuitively, the CLBP-RBM may be insusceptible to this type of image
perturbation for the same reason as it was in the case of random noise. The

113

CLBP-RBM for visual input denoising 5.3

preprocessing layer can make a reconstruction of an input, so the distortion
may be removed or at least lowered. The basic experiment to validate this
hypothesis was comparison of how adding the CLBP-RBM layer affected the
generalisation ability of a neural network when input images were noised with
adversarial attack. It was performed for different values of ϵ, and the results
are shown in Figure 5.18. The noise affected both networks, however, the
model with a preprocessing layer was significantly less prone to this type of
perturbation. This shows that the CLBP-RBM layer is a good solution for
deep neural networks that have to handle noised data, especially since the
same type of denoising can be applied for different types of noise.

Result of experiment 12. Adding the CLPB-RBM preprocessing to a CNN
network resulted in better generalisation ability when input images were per-
turbed with a gradient based noise.

Figure 5.18: Decrease of accuracy on the testing dataset versus epsilon in
adversarial attacks.

5.3.3 Overall distortion sensitivity of CLBP-RBM preprocessing

Experiment 13 (Dissertation sensitivity of the CLBP-RBM prepro-
cessing layer). This experiment was conducted to verify how the proposed
preprocessing method affects classification accuracy for different types of dis-
tortion.

Experiments described in this section were conducted to validate the gen-
eralisation ability of the CLBP-RBM method for input images distorted

114

CLBP-RBM for visual input denoising 5.3

with different types of image perturbation. As previously shown, adding
the CLBP-RBM layer may improve the overall recognition accuracy of CNN
classifiers when the input images are perturbed. To investigate the basic
abilities of denoising by the CLBP-RBM layer a simple random noise was
applied to the input images, then the more complex adversarial distortion
was tested. However, in a wider context, robust image processing systems
should be insensitive to many types of distortion as their occurrence is a
condition not known prior in many cases. Especially, applications that sup-
port control loops such as vision systems in robots and industrial machines
should be not vulnerable to noise not to cause invalid control signals. How-
ever, many sorts of perturbation can be easily simulated with mathematical
models [189, 190], thus validation of the sensitivity is relatively easy. This
section presents the results of testing the sensitivity of the following types of
perturbations that may occur in common processing systems:

• Gaussian noise,

• ISO noise,

• JPEG compression noise,

• Gaussian blur,

• optical distortion (barrel and pincushion),

• multiplicative noise.

The Gaussian noise may occur in standard image processing pipelines due
to poor illumination, unusual thermal conditions, or may propagate from
electronic circuits and has a stochastic nature. This can be formalised by
modeling the probability density function as a normal distribution with, µ
denoting a mean and σ denoting a standard deviation. The ISO noise is
also stochastic and mainly caused by a too-sensitive camera, it can be mod-
eled by transforming an image to an HSV colourspace and adding noise with
a Poisson distribution to a hue channel and normally distributed noise to
a saturation channel. The JPEG noise is deterministic and occurs in the
encode-decode process of compression as it is a lossy compression. In prac-
tice, it may happen in image transmission systems. The Gaussian blur is a
deterministic distortion that can be used to simulate camera defocusing or
motion and so unsharp objects. Mathematically it can be achieved by con-
volving an image with a squared kernel of normally distributed weights. The
optical distortion is a geometrical transformation that simulates distortion
caused by the shape of a camera lens. The multiplicative noise is stochastic

115

CLBP-RBM for visual input denoising 5.3

and refers to a type of stochastic noise that gets multiplied into the input
image. This may propagate from different sources, it can be either caused by
a partially broken sensor or electronic circuits distorting the signals. Some
example images with applied noise are presented in Table 5.11. As pre-
viously mentioned, modern classification pipelines should be insensitive to
these types of perturbation as they may occur independently in a variety of
scenarios, especially in systems with limited computing resources where the
hardware image pre-processing is not complex, and hence does not handle
the distortions itself.

116

CLBP-RBM for visual input denoising 5.3

original image

Gaussian noise ISO noise
σ = 100, µ = 0 σ = 50, µ = 100 cs=0.1, i=0.3 cs=0.3, i=0.5

JPEG noise Gaussian blur
quality=20 quality=10 kernel 3× 3 kernel 7× 7

optical distortion multiplicative noise
distortion=-40 distortion=40 multiplier=2 multiplier=3

Table 5.11: Example noised images with parameters used for the experiments
("cs" refers to colour shift in ISO noise, "i" refers to intensity). Images were
generated with the use of Albumentations library [191] and the parameters
of distortions refer to its settings.

The experiments were conducted with the use of the STL-10 dataset and
are focused on comparing the classification accuracy of pipelines with and

117

CLBP-RBM for visual input denoising 5.3

without the CLBP-RBM preprocessing. The distortions were applied to test-
ing images with the use of the Albumentations library [191] and the further
values of parameters refer to settings is this library. As networks without
the additional layer achieved lower accuracy, the results of experiments show
only the decrease of accuracy in both cases in the following way:

d =
accuracy without distortion− accuracy with distortion

accuracy without distortion
.

For each type of perturbation and each set of parameters, d was computed for
the architecture with and without the preprocessing. Results are presented in
Tables 5.13, 5.14 and Figures 5.20, 5.19, 5.21. These show the dependencies
between d and the values of parameters of noises. For the clarity of view,
three-dimensional graphs present only the difference between the decrease in
accuracy for the network with and without the CLBP-RBM layer. To verify
the overall quality of distorted image classification, d values were averaged
for each type of distortion, and a new metrics that presents how much the
CLBP-RBM layer improves the accuracy was computed:

o =
dRAW − dRBM

dRBM + dRAW

.

Values of o obtained for the considered cases are presented in Table 5.12. We
can conclude that the adding the preprocessing reduces the decrease of accu-
racy in most cases, hence this model is less noise sensitive than a similar one
without the CLBP-RBM layer. The only exception is a compression noise
where the network processing raw images were almost completely insensitive
to this type of perturbation. The compression noise introduces additional re-
gional quantization to the signal. As a result, the binary descriptors become
highly sensitive to this type of distortion because detecting local features
in a compressed image becomes challenging The other conclusion is that
the highest improvement achieved with the preprocessing was for the opti-
cal distortion, however mostly for "barrel" perturbation. For the Gaussian
noise the decrease of accuracy was significant only when the mean param-
eter was different from zero, for its higher values, the network utilising the
CLBP-RBM preprocessing was less sensitive to the noise. To visualise this
dependency, some examples are shown in Table 5.15. One may generalise
the conclusion for other types of perturbations that the use of the proposed
denoising method resulted in lower noise sensitivity and this effect is more
distinct for higher parameters of the distortion.

Result of experiment 13. The HS-CNN network was less sensitive on
different types of perturbation except JPEG compression noise when compared
to the network without preprocessing.

118

CLBP-RBM for visual input denoising 5.3

Gaussian
noise

ISO
noise

Optical
distortion

Gaussian
blur

Compression
noise

Multi-
plicative
noise

o 0.378 0.043 0.85 0.35 -0.83 0.274

Table 5.12: Accuracy improvement of the CLBP-RBM preprocessing method
for different types of noises.

mean
-100 -50 0 50 100

st
d

10 0.119/0.279 0.017/0.088 0/0 0.019/0.023 0.09/0.153
25 0.118/0.281 0.022/0.088 0/0.001 0.016/0.023 0.087/0.155
50 0.116/0.281 0.018/0.09 0/0 0.015/0.022 0.089/0.155
75 0.122/0.283 0.023/0.091 0/0 0.017/0.024 0.086/0.155
100 0.117/0.284 0.015/0.093 0.004/0.004 0.018/0.023 0.093/0.157
125 0.12/0.287 0.023/0.091 0.002/0.005 0.021/0.026 0.092/0.158
150 0.112/0.288 0.021/0.095 0.01/0.006 0.026/0.026 0.095/0.157
200 0.119/0.289 0.024/0.1 0.009/0.003 0.027/0.029 0.1/0.163

Table 5.13: Decrease of accuracy in networks with and without the CLBP-
RBM preprocessing depending on different Gauss noise parameters, results
are presented as "RBM/RAW".

colour shift
0.3 0.4 0.5 0.6 0.7

in
te

n
si

ty

0.1 0/0 0/0 0/0 0/0 0.003/0.001
0.2 0/0 0.006/0 0/0 0.005/0.004 0.004/0.004
0.3 0.007/0 0/0.003 0.009/0.006 0.006/0.009 0.016/0.016
0.4 0.007/0.006 0.006/0.005 0.009/0.016 0.019/0.018 0.021/0.024
0.5 0.008/0.007 0.01/0.018 0.021/0.024 0.026/0.03 0.037/0.032
0.6 0.019/0.014 0.022/0.026 0.024/0.032 0.04/0.036 0.043/0.04
0.7 0.022/0.024 0.035/0.037 0.029/0.038 0.045/0.04 0.042/0.046
0.8 0.033/0.036 0.043/0.048 0.034/0.048 0.055/0.055 0.051/0.056
0.9 0.036/0.045 0.047/0.05 0.052/0.058 0.053/0.062 0.047/0.053
1 0.045/0.061 0.055/0.06 0.06/0.067 0.057/0.068 0.057/0.057

Table 5.14: Decrease of accuracy in a network with and without the CLBP-
RBM preprocessing depending on different ISO noise parameters, results are
presented as "RBM/RAW".

119

CLBP-RBM for visual input denoising 5.3

Figure 5.19: Difference in decrease of accuracy in networks with and without
the CLBP-RBM preprocessing depending on different Gauss noise parame-
ters.

Figure 5.20: Difference in decrease of accuracy in networks with and without
the CLBP-RBM preprocessing depending on different ISO noise parameters.

120

CLBP-RBM for visual input denoising 5.3

(a) Optical distortion. (b) Gaussian blur.

(c) Compression noise. (d) Multiplicative noise.

Figure 5.21: Decrease of accuracy in networks with and without the CLBP-
RBM preprocessing depending on different distortion parameters, blue lines
denote the difference in decrease of accuracy.

121

CLBP-RBM for visual input denoising 5.3

original mean = -100 mean = -50 mean = 50 mean = 100

truck(0.99)
truck(0.98)

truck(0.97)
ship(0.54)

truck(0.98)
truck(0.93)

truck(0.99)
truck(0.86)

truck(0.76)
ship(0.73)

bird(0.86)
bird(0.79)

bird(0.75)
car(0.85)

bird(0.84)
bird(0.50)

bird(0.79)
bird(0.38)

bird(0.50)
deer(0.40)

car(0.99)
car(0.92)

airplane(0.85)
truck(0.90)

airplane(0.97)
truck(0.94)

car(0.92)
airplane(0.67)

car(0.92)
airplane(0.94)

cat(0.88)
cat(0.68)

cat(0.42)
deer(0.40)

cat(0.88)
cat(0.84)

cat(0.82)
deer(0.50)

cat(0.69)
deer(0.64)

airplane(0.70)
airplane(0.99)

bird(0.32)
bird(0.62)

airplane(0.65)
airplane(0.89)

airplane(0.71)
airplane(0.99)

bird(0.49)
airplane(0.98)

Table 5.15: Example images distorted with Gaussian noise and predictions
from network with and without CLPB-RBM preprocessing. Green text de-
notes predictions with preprocessing, red without, predicted probability is
given in parentheses.

122

Image classification with Contrastive Divergence as a feature space 5.4

5.4 IMAGE CLASSIFICATION WITH CONTRASTIVE

DIVERGENCE AS A FEATURE SPACE

5.4.1 Binary descriptors aggregation

Experiment 14 (Image classification with CD-KNN architecture).
This experiment was designed to validate the classification ability of CD-

KNN architecture.

The experiments described in this section relate to CD feature space and
binary descriptors aggregation which were described in section 4.2. Cal-
tech101 was used as an image dataset, and samples from it were split to
make use of unsupervised learning, thus a predefined number of images have
been used to optimise RBM parameters, and a subset of them to train a
KNN classifier. The processing pipeline is shown in Figure 4.1. The first
experiment was to validate which type of binary descriptor performed best
in this classification architecture. Results for four types of descriptors are
shown in Table 5.16, where LBP16 refers to an LBP descriptor with a radius
equal to 2.25.

100/30 100/50 200/30 200/50
BRISK 0.598;0.603 0.605;0.613 0.604;0.603 0.604;0.612
FREAK 0.613;0.575 0.618;0.580 0.614;0.571 0.618;0.574
LBP8 0.583;0.560 0.606;0.594 0.591;0.583 0.592;0.574
LBP16 0.581;0.550 0.581;0.551 0.582;0.554 0.584;0.558

Table 5.16: The evaluation of a CD-based KNN matching procedure, results
are presented as "accuracy/mean Average Precision", the first row denotes
"number of images for RBM training/number of images for KNN training",
the best result is highlighted with a bold font.

The classification quality was similar for different types of descriptors.
BRISK achieved the best performance, however, LBP8 worked well in this
case, since its accuracy was close to BRISK, however LBP8 was much faster
(see Table 2.2).

Result of experiment 14. CD-KNN architecture can be used for classi-
fication purposes and achieved the greatest accuracy for BRISK descriptor.

123

Image classification with Contrastive Divergence as a feature space 5.4

5.4.2 CD as an entry for CNN

Experiment 15 (Image classification with CD-CNN architecture).
This experiment was designed to validate classification ability of CD-CNN

architecture.

Another method presented in 4.2 was to use CD features as an entry to
a Convolutional Neural Network. To validate the capabilities of applying
this method for image classification similar experiments were conducted as
in the case of aggregation. The first experiment was conducted to validate
what type of descriptor worked best in this type of pipeline. This case also
took the colour into account. This was done in CLBP as described in 2.5
and with LBP8_rgb which was a 24-bits descriptor formed by concatenating
three LBP8 descriptors each for one colour channel. The results are shown
in Table 5.17.
Another experiment showed how adding a CD features layer affected the
overall classification accuracy, the additional preprocessing was turned on
and off as were the descriptor layers, and the results are shown in Table 5.18.
Figure 5.22 presents a comparison of the processing performance between the
proposed preprocessing method and some other commonly known deep neu-
ral network architectures. Additionally, an experiment that compares how
modifying the size of an input image affected the network performance was
conducted. The results in Table 5.19 show that with the use of the prepro-
cessing it is possible to reduce the network complexity by changing the input
size without decreasing the generalisation ability significantly, which may be
a interesting property when applied in systems with limited computing re-
sources.
The final conclusion is that the proposed method can be successfully applied
for an image classification problem, and the complexity of the network can
be made relatively low due to the initial preprocessing. However, this type
of processing should be considered weaker when compared to the approach
using hidden space for feature extraction, this is mainly because CD space is
bigger than latent space, hence there are more parameters of CNN that have
to be optimised. On the other hand, CD feature space has an interesting
property of descriptors aggregation. The lack of efficient was indicated in
Section 2.4.4 as potential weakness of binary descriptor in general.

Result of experiment 15. CD-CNN architecture can be used for classifi-
cation purposes and achieved the greatest accuracy for an LBP8 descriptor.

124

Image classification with Contrastive Divergence as a feature space 5.4

descriptor validation accuracy validation top5 training accuracy
LBP8 0.68 0.82 0.99
LBP16 0.65 0.87 0.98

LBP8_rgb 0.42 0.70 0.81
CLBP 0.72 0.85 0.99
BRISK 0.51 0.72 0.98

Table 5.17: The evaluation of the accuracy of CD-RBM as an entry for DNN

BD type BD + RBM BD None (greyscale) None (RGB)
LBP8 0.68 0.63 0.54 0.62
CLBP 0.72 0.65 0.54 0.62

Table 5.18: The evaluation of network accuracy with RBM preprocessing
and without it, "BD" refers to a binary descriptors layer.

size of image accuracy time reduction [%]
256x256 0.74 0
181x181 0.73 50
128x128 0.71 70
90x90 0.72 77
63x63 0.66 84
44x44 0.68 85

Table 5.19: Validation accuracy depending on the size of the input image for
an RBM with 10 hidden neurons and a CLBP descriptor as an input.

125

Image classification with Contrastive Divergence as a feature space 5.4

Figure 5.22: Comparison of the processing time and the number of parame-
ters between the RBM+CNN and some commonly known deep neural archi-
tectures.

126

6
MOBILE ROBOT APPLICATION

The previous chapters introduced and described in detail all the concepts
related to the CLBP-RBM preprocessing. It has also been stated that this
may be potentially applied in robotics as it addresses some of the commonly
known concerns in systems with limited resources or data availability. This
chapter presents an exemplification of applying the proposed preprocessing
in a mobile robot.

6.1 APPLICATION GOALS

AND EXPERIMENTAL SETUP

The application implements a basic visual perception module and it is focused
on validating whether or not the preprocessing proposed in the previous
part of this dissertation may be successfully transferred to an embedded
system, and how it can improve the ability of the robot to interact with the
environment. The application under consideration is not designed to support
a complex navigation/control problem since this is beyond the scope of this
study. Instead, it can be seen as an exemplification of a perception module
based on the CLBP-RBM layer, which can be further utilised for integration
with control loops.

Before starting an analysis of the application it is worth defining the
hardware requirements. As the implementations of a CLBP and an RBM
are focused for working on GPUs to utilise their highly parallel nature, the
system should be equipped with such a computational unit. However, it does
not have to be very efficient which meets the potential requirement of running
the application on small, inexpensive devices. The obvious need is also access
to at least one video sensor, and a WiFi module to allow faster development
and testing. A computing unit in this case will be utilised to detect objects
around the robot and to set the desired position of the robot based on visual
feedback. Hence, the physical parameters of a robot are not significant as
they do not affect the classification procedure. Taking these requirements

127

Application goals and experimental setup 6.2

into account, one may consider the JetBot [192] development kit as a good
solution. This is based on the Jetson Nano module [193]. It provides an easy
method of building a small two-wheeled mobile robot that can be supervised
by the Jetson Nano, which runs the Linux operating system, offering a high-
level of versatility to the programming of the robot. Figure 6.1 presents the
robot and the board, the hardware details of Jetson Nano are as follows:

• CPU - qaud-core ARM A57, 1.43GHz,

• GPU - 128-core Maxwell Architecture with 2GB VRAM,

• RAM - 4GB 64-bit,

• Camera Interface - 2x MIPI CSI-2,

• Peripherals - HDMI, 4x USB, Ethernet,

• Mechanical - 69mm x 45mm.

JetBot provides main electro-mechanical and electronic components, that
can be directly connected to the board:

• batteries supply module,

• camera - Sony IMX219,

• small OLED display for debugging,

• Bluetooth and WiFi module,

• two DC motors with gears,

• wheels and cover.

(a) NVIDIA Jestson Nano. (b) JetBot Nano.

Figure 6.1: Hardware used for the mobile robot application.

128

The architecture of the application 6.2

6.2 THE ARCHITECTURE OF THE APPLICATION

From a very general point of view, the application can be split into two mod-
ules. The first is the program that runs on the robot. The second is a simple
program that connects with the robot, gathers the results and passes some
control commands, it can be run on any device running Linux, Windows,
or macOS, it will be referred to as receiver since it plays rather a passive
role. Both are written in python, they use ZeroMQ [194] for communication
purposes which has been chosen because of its simplicity and high perfor-
mance. The receiver app utilises OpenCV for some basic image processing
purposes and tkinter [195] to provide a graphical user interface. Tkinter has
been chosen because it is cross-platform and easy to use. It allows users
to observe what the robot camera input in real-time and also to run some
control commands for motion and for recognition. Analogously, the robot
program gathers and sends the images from the camera to the receiver, en-
ables the prediction process on demand and sends results. The bottleneck
for the communication in real-time is frames passing. Sending raw data may
cause delays as a single frame is relatively big (1̃.17MB for 640×480 RGB im-
age) and there may be obstacles between the robot and the receiver app that
may slow down wireless communication. Hence, the robot decodes frames
with JPG compression, and the receiver does encoding which allows send-
ing 640×480 frames with a speed of 30FPS. A very general diagram of the
application is shown in Figure 6.2.

results
presentation

[video frames,
predictions,

object maps,
robot coordinates]

ROBOT

ZMQ
CLIENT

CPU
HOST

ZMQ

SERVER[steering commands,
predictions commands,

object maps]

motion

<-TCP->

vision

user
input

Figure 6.2: General diagram of the experimental application.

The robot application is relatively complex, since it needs to communi-
cate with the receiver, support basic motion control tasks, gather data from
the camera sensor, and process the video with a neural network. Therefore

129

The architecture of the application 6.2

the program is implemented as a multithreaded process to provide the high-
est possible performance. The simplified architecture of this is schematically
shown in Figure 6.3. From a practical point of view, the most important as-
pect is that one thread is responsible for capturing camera frames and sending
them compressed to the receiver, another one performs an estimation of the
robot position, the main thread does the processing with CLBP-RBM and
neural network and performs some actions based on data gathered from the
other threads. The receiver application is significantly less complex, however
to work in real-time it is also split into two threads. The first one receives and
sends the data, and the second presents the image frames and predictions re-
ceived from the robot. An example screenshot from the application working
is shown in Figure 6.4. We can observe that this is split into two parts. The
first, shows video frames with the actual prediction at the top (red rectangle)
and coordinates of the robot (yellow rectangle). The second shows buttons
for sending user input, robot controls (green rectangle), advanced recognition
requests (pink rectangle), and saving frames (blue rectangle).

130

The architecture of the application 6.2

capture frame

compress frame

receive message

messages
queue

set motors speed

estimate robot
position

robot
coordinates

video
framepredictions

video processing
method

request robot
movement

video processing
(CLBP-RBM +

CNN)

prepare and send
data

camera
thread

robot
thread

main
thread

shared
data

Figure 6.3: Architecture of the robot’s program.

131

The architecture of the application 6.2

Figure 6.4: Screenshot from the receiver application. Coordinates are shown
in centimetres, "O" stands for θ.

Here, it is worth mentioning, that besides the visualisation purposes, the
application was designed to automatically save the frames that are currently
processed by the robot. This is useful for training a robot’s neural network.
In short, it is possible to enable automatic frames saving, run some random
robot’s motion and then the saved frames may be utilised to train an RBM
in an unsupervised fashion. A subset of them may then be manually labelled
and used to train a CNN. This is formally the main concept of applying
CLBP-RBM in mobile robots because it is possible to train the preprocessing
without significant effort from an engineer and train a CNN with the limited
amount of data needed to provide good generalisation ability.

132

Mobile robot kinematics 6.3

6.3 MOBILE ROBOT KINEMATICS

Despite the considered application not focusing on planning the robot’s mo-
tion, an estimation of the robot’s position may be useful for interpretation
of the gathered data. The equations of a mobile robot’s kinematics are com-
monly known [196], and can also be applied for this case.
The robot moves in planar coordinates x, y with an orientation angle θ, as-
suming it starts its motion at point x0, y0, θ0 it is possible to determine its
position xt, yt, θt, at time t. The geometric parameters needed to estimate
the position are only robot width - w, and wheel diameter d. The velocities
known at each time t are the wheels’ angular velocities ωtl for the left wheel,
ωtr for the right wheel, which can be further transformed to the robot’s angu-
lar velocity θ̇t, and linear velocity vt, which can be split into velocities along
Ox, Oy axes - vtx , vty , this is visualised in Figure 6.5.

w=2b

d=
2r

Figure 6.5: Diagram of a mobile robot in its local coordinates.

For such a defined case, one can write the following matrix-vector equation
to determine robot velocities:

[

vt
θ̇t

]

=

[

r
2

r
2

r
2b
− r

2b

] [

ωtl

ωtr

]

, (6.1)

taking into account that vtx = cos(θt) and vty = sin(θt) and rewriting to a

133

Mobile robot kinematics 6.3

system of equations, one can write:

θ̇t =
d

w
(ωtr − ωtl)

vtx =
r

2
· cos(θt) · (ωtr + ωtl)

vty =
r

2
· sin(θt) · (ωtr + ωtl), (6.2)

and finally, it possible to write the equations for robot coordinates:

θt = θ0 +
d

w

∫ t

0

(ωτr − ωτl)dτ

xt = x0 +
r

2

∫ t

0

cos(θτ) · (ωτr + ωτl)dτ

yt = y0 +
r

2

∫ t

0

sin(θτ) · (ωτr + ωτl)dτ. (6.3)

The last step needed for an implementation is a discretisation of these equa-
tions:

θt = θ0 +
d

w

t
∑

τ=0

(ωτr − ωτl) · dτ

xt = x0 +
r

2

t
∑

τ=0

cos(θτ) · (ωτr + ωτl) · dτ

yt = y0 +
r

2

t
∑

τ=0

sin(θτ) · (ωτr + ωτl) · dτ, (6.4)

where dτ is a sampling step.

6.3.1 Indentification of mobile robot parameters

The geometric parameters of the robot used for experiments are: w = 0.12m
and d = 0.0365m, the only concern is to determine kinematic control: ωtx , ωty .
One of the commonly used methods to do that is to use encoders, which allows
measuring wheel angle and therefore its angular velocity by differentiation.
However, the robot used in experiments was not equipped with encoders,
so the method to estimate wheels’ velocities was based on motors’ control
inputs. The idea is relatively simple, we can control robot motor speed in
open-loop by setting a normalised PWM value (k ∈ ⟨−1; 1⟩) to its power
amplifier. We we can experimentally identify characteristics ω(k), which

134

RBM for robot rotation angle detection 6.4

describes the steady state velocity for a given PWM input determined by k.
The results of the experiment are shown in Figure 6.6. The dependency is
clearly linear which makes the estimation simpler. For k ∈ (−0.075; 0.075) a
dead-zone is detected - the robot does not move. Moreover, there is a slightly
different characteristic for negative x values than for positive x values, hence
the estimated velocity of wheels can be written as follows:

ω(k) =











51.39k + 1.87 for k ≤ −0.075

51.32k − 2.03 for k ≥ 0.075

0 for k ∈ (−0.075; 0.075)

(6.5)

Figure 6.6: JetBot’s wheel velocity estimation.

6.4 RBM FOR ROBOT ROTATION ANGLE DETEC-

TION

Experiment 16 (Mobile robot rotational movement based
on CLBP-RBM probabilities histogram visual feedback). This ex-
periment was designed to verify if the mobile robot could perform a single

135

RBM for robot rotation angle detection 6.4

rotational movement based on CLBP-RBM visual feedback only. This ver-
ified the hypothesis that the comparison of probabilities histograms may be
used to measure the similarly between set of images in a real environment.

The application focused mainly on detecting objects in the robot’s envi-
ronment. Basic usability was to set up the robot orientation in such a way
to be positioned along a desired object’s axis. The high-level algorithm to
perform this task will be explained later in detail, however, it was expected
that the robot would perform a single rotation to infer the best angle when
the visibility of a given object is the highest. It would not be possible with-
out θt estimation, however, CLBP-RBM could provide a method allowing
the detection of a full rotation. The idea is not very complex: since CLBP-
RBM provides a method for measuring the similarity between two frames,
it is possible to detect if during the rotational motion a robot processes the
same (or very similar) frames as at the beginning. In the beginning, the
vision system gathers statistics from an environment and remembers its his-
togram as a reference, then during a rotational motion robot stops when the
currently processed histogram is similar to the reference, which means if the
distance between these histograms is less than an average distance to frames
in a reference environment.
The experiment to validate if this technique can be used for the desired task
was focused on testing how well the robot performed a single rotation when
compared to a method that relied on robot kinematics (6.4), and a velocities
estimation (6.5). For measurements, a dedicated vision system which allowed
the measurement the angle deviation of a robot’s axis from the desired axis
was used. This method is explained in detail in the appendix C, in short, it
allowed automatic measurement of the angle by using special markers on the
robot and on the ground and taking photos of particular configurations. This
technique provided sufficient precision for that task and was convenient to
use because of its portability and speed for a large number of testing points.
The experiments were conducted for four rotational velocities and different
lighting conditions. The results are shown in Figure 6.7. For the case of
CLBP-RBM, the angle deviations were negative or positive, which meant
the robot had performed more than one full rotation or less, in the case
of angle estimation, errors were negative, so the robot performed less than
one rotation. The errors did not vary significantly for different ω, however
they were lower for the CLBP-RBM method when compared to the angle
estimation method. In conclusion, the proposed method of applying CLBP-
RBM for indicating the stop point for the robot performing a single rotation
was sufficient to be used for other experiments that relied on localising ob-
jects around the robot. It is not a technique that would allow setting an

136

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

orientation of the robot precisely, however, it showed that the proposed pre-
processing may have been useful for practical reasons in this dissertation as
small orientation errors are acceptable in terms of testing the robot’s visual
perception.

Result of experiment 16. With the help of histograms comparison, the
mobile robot could perform a single rotational movement with higher accuracy
than based on wheels velocities estimation.

Figure 6.7: Mobile robot error on performing one rotation with the use of
CLBP-RBM and angle estimation. Negative value of the deviation denotes
that the robot performed less than one rotation, positive value denotes more
than one rotation. The error from visual feedback should be interpreted as
random while the errors from angle estimation are systematic.

6.5 CLBP-RBM PREPROCESSING FOR A CNN IN

MOBILE ROBOT VISION SYSTEM

Experiment 17 (Objects classification by the mobile robot with
HS-CNN processing pipeline.). This experiment was designed to verify
if the previously discussed classification pipeline could be successfully applied

137

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

in the robot’s object recognition system and how it performed when compared
to a raw pixel input.

To test the recognition capabilities, three objects were chosen that robot
could categorise based on the camera input. They were:

• a mini air conditioner,

• a book,

• a camera,

and are shown in Table 6.1. It is worth noticing that these objects were
random and were not associated with a specific task defined for the robot.
Instead, they were analysed in this study as generalised examples of clas-
sification cases. These were selected to be relatively complex in terms of
recognition problem because did not have outstanding visual features when
compared to the environment used. The environment for the experiments
was a regular house room.

An RBM was trained based on the images gathered by the robot cam-
era, which was no burdensome as it was automatised by the application
described earlier. After collecting a number of frames - around 20000 in that
case, some of them were labelled into four categories (three objects plus a
negative category) - around 500 per category. The RBM was trained on all
the images, then a simple CNN network was trained on the labelled samples.
As the system has some limitations in terms of performance the network has
been designed to be small to ensure the real-time response of the recognition
system. In spite of this small CNN size, with the use of CLBP-RBM prepro-
cessing it was possible to achieve 97% of accuracy. The time of processing
on the target device was lower than 14ms which ensured real-time processing
even for cameras working in 60 frames per second mode. This is achievable
also by the network optimisation performed in TensorRT [197], such an op-
timised network resulted in faster responses without losing the precision of
the computations, it is also worth mentioning that the model responses were
the same on the JetBot as on the PC where it was being trained.

To show the advantage of using CLBP-RBM preprocessing in that case,
the same model was trained on raw pixel data, and the results are summarised
in Table 6.2 to show the efficiency on testing dataset and in Figure 6.8 to show
the training process on validation dataset. The evaluation metrics with the
preprocessing are significantly better which leads to the conclusion that the
proposed method may have helped in terms of classification accuracy. The
main reason of the improvement was that the number of training samples was

138

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

relatively small, and as was proven in the previous chapter, the CLPB-RBM
preprocessing played an important role in this case.

The simplest capability of the recognition system was to report what the
robot camera observed at that time. The predictions were sent in real time
to the user interface; the example screenshots of the application are shown in
Table 6.3. The system, in general, classified input images properly as there
were not many incorrectly recognised frames. However, it is worth mention-
ing that the neural network was trained to focus only on the centre of the
image because the camera view was wide, hence analysing the entire frame
would have confused the model with such small objects being recognised.

Result of experiment 17. The HS-CNN architecture was successfully ap-
plied in the mobile robot, achieved real-time processing speed, and performed
better than a CNN with raw pixel input.

Mini Air Conditioner (AC) Book Camera

Table 6.1: Objects chosen for robot classification system experiments.

AC Book Camera Negative
RBM RAW RBM RAW RBM RAW RBM RAW

Accuracy (A) 0.993 0.974 0.983 0.964 0.996 0.976 0.976 0.922
Precision (P) 0.991 0.934 0.943 0.931 0.991 0.936 0.975 0.890
Recall (R) 0.983 0.966 0.991 0.923 0.991 0.991 0.936 0.801

Specificity (S) 0.997 0.978 0.980 0.977 0.997 0.961 0.991 0.965
∑

{A,P,R,S}

(RBM−RAW)

4
0.028 0.025 0.028 0.075

Table 6.2: Evaluation of recognition pipeline generalisation ability metrics
for each classified category on testing dataset.

139

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

(a) Accuracy (b) Loss

Figure 6.8: Training curves on validation dataset for the mobile robot object
classification experiment.

140

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.3: Example screenshots from robot prediction, coordinates of the
robot not displayed for the clarity of view.

141

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Experiment 18 (Mobile robot positioning along a given object based
on visual feedback). This experiment was designed to validate if the robot
may position along an object being recognised by the classification system.

Another experiment related to the considered classification pipeline was
to recognise where a given object was localised around the robot and to set its
position along axis of the detected object. This was mentioned in the previous
section. The algorithm could base only on the vision system as because of
the CLBP-RBM preprocessing it was possible to make a single rotation to
infer where there was the highest probability of occurrence of a given object
and then to turn back to it. A simple schematic of this task is shown in
Figure 6.9. A pseudocode for this process is shown in the Algorithm 4.

starting position

object

Figure 6.9: Robot orientation task diagram, the robot should be positioned
along the yellow line, β is a localisation error.

To validate the accuracy of the orientation system, tests were carried out
which measured the angle deviation from the object axis after the positioning
command had been sent to the robot. The robot and the objects were spaced
out in random positions in the environment and at random angles. The
experiments have been performed also in different lighting conditions. The
results are presented separately for each of the three objects as shown in
Figure 6.10. A precision of less than 0.1 radians may be considered as high,
however there is no baseline method that could be used to compare the
accuracy. From a practical point of view, we can claim that for all the
conducted tests, the robot was positioned correctly to have the desired object
in the camera field of view.

Result of experiment 18. The mobile robot could be positioned along a
given desired object based on only the visual feedback.

142

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Algorithm 4 Orientation of mobile robot along an axis of a given object
based on vision system.

1: procedure get_point_statistics()
2: referenceDescriptors ← [];
3: for step in [-1, -1, 1, 1, 1, 1, -1, -1] do
4: frame ← camera.get_frame();
5: referenceDescriptors.append(predictor.get_descriptors(frame));
6: if step = -1 then
7: robot.step_clockwise();
8: else
9: robot.step_counterclockwise();

10: end if
11: end for
12: referenceHistogram← predictor.get_histogram(referenceDescriptors);
13: frame ← camera.get_frame();
14: histogram ← predictor.get_histogram(frame);
15: threshold ← predictor.get_distance(referenceHistogram, histogram);
16: return referenceHistogram, T
17: end procedure
18:

19: procedure predict_around()
20: referenceHistogram, threshold = get_point_statistics()
21: maximumPrediction ← 0;
22: bestHistogram ← 0;
23: robot.run_clockwise();
24: while True do
25: frame ← camera.get_frame();
26: histogram ← predictor.get_histogram(frame);
27: d ← predictor.get_distance(referenceHistogram, histogram);
28: if d < threshold then
29: break;
30: end if
31: probability, label ← predictor.predict(frame);
32: if label = "positive" and probability > maximumPrediction then
33: bestHistogram ← histogram;
34: maximumPrediction ← probability;
35: end if
36: step ← step + 1;
37: end while
38: return bestHistogram, threshold
39: end procedure

143

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

40:

41: bestHistogram, threshold = predict_around()
42: while True do
43: frame ← camera.get_frame();
44: histogram ← predictor.get_histogram(frame);
45: d ← predictor.get_distance(bestHistogram, histogram);
46: if d < threshold then
47: probability, label ← predictor.predict(frame);
48: if label = "positive" then
49: break;
50: end if
51: end if
52: end while

Figure 6.10: Mobile robot angle deviation while positioning along an axis of
a given object, 80 measurements for each category were conducted.

144

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Experiment 19 (Generating objects localisation map in the mo-
bile robot recognition system). This experiment was designed to test the
capability of orientation of the mobile robot along objects around it.

Another experiment that was performed with the use of the previously
mentioned capabilities was to find angle of localisation of different types of
objects around the robot. This was achieved by executing a single circular
motion as described in Section 6.4 and gathering the predictions. After this
was finished the coordinates of the detected objects were sent to the user
interface in a polar coordinate system. However, in that case, there was no
method to estimate the distance to an object so only the angles and their
probabilities were used to visualise the detections. In spite of that, in a more
general scenario where a distance sensor was available, the orientation maps
created by a robot would be more precise. Some of the examples are shown
in Tables 6.4, 6.5, 6.6, which include images of the robot’s and the objects’
positions and the visualisation of the detections.

A similar validation procedure was performed to consider applying the vi-
sion system to a real device. To simulate a more realistic scenario where the
classification pipeline may assist the robot in motion planning, the model was
trained to recognise closed and open doors that are the objects that occur of-
ten in real indoor environments. The results are shown in Tables 6.7, 6.8, 6.9.
Both experiments shown that the entire pipeline that has been discussed the-
oretically may be successfully applied in a real device

Result of experiment 19. The recognition system was able to generate
maps of estimated position of objects around the robot.

145

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.4: Example recognition maps computed by mobile robot. Red dots
denote camera, blue dots - AC, green dots - book. The bigger and brighter
the dots the greater the certainty of occurrence.

146

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.5: Example recognition maps computed by mobile robot. Red dots
denote camera, blue dots - AC, green dots - book. The bigger and brighter
the dots the greater the certainty of occurrence.

147

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.6: Example recognition maps computed by mobile robot. Red dots
denote camera, blue dots - AC, green dots - book. The bigger and brighter
the dots the greater the certainty of occurrence.

148

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.7: Example recognition maps computed by mobile robot. Blue dots
denote closed door, green dots - open door. The bigger and brighter the dots
the greater the certainty of occurrence.

149

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.8: Example recognition maps computed by mobile robot. Blue dots
denote closed door, green dots - open door. The bigger and brighter the dots
the greater the certainty of occurrence.

150

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

Table 6.9: Example recognition maps computed by mobile robot. Blue dots
denote closed door, green dots - open door. The bigger and brighter the dots
the greater the certainty of occurrence.

Experiment 20 (Histogram based datasets comparison in the mo-
bile robot’s recognition system). This experiment was designed to verify
if the datasets similarity metrics could be applied for images gathered by the
robot.

The last experiment aimed validating if the proposed idea of using CLBP-
RBM to measure the distance between datasets could be used in the robot’s
application, and how that distance affected the overall CNN network perfor-
mance in terms of transfer learning. Similar to the experiment described in
Section 5.2, three datasets were created. The first was composed of images
from regular house rooms (as for previous tests), the second was composed of
frames gathered in a garden, and the third contained frames from a summer

151

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

house. Some example images from these sets are shown in Table 6.10. Intu-
itively, the first and the third are similar as they contain objects of similar
semantic meaning (furniture, wall, doors, windows etc.) while the second
differs significantly from as it is composed mostly of sky, trees, grass, plants,
etc. Therefore, one can expect that the distance between the dataset from
house to summer house is smaller than the distance to images from the gar-
den. The results of the measurements based on the histograms comparisons
are shown in Figure 6.11 and the Chi-Squared distances are summarised in
Table 6.11. They verify the intuitive hypothesis of the similarity between
datasets, one may conclude that the distance to images gathered from the
garden is significantly higher than the other two which is observable in the
histograms as well as in the Chi-Squared metric. The final test based on this
was to validate how those RBMs would perform in the object recognition
case, thus a CNN was trained with the use of CLBP-RBM preprocessing and
three RBMs as a neural network in the preprocessing layer. Learning curves
are shown in Figure 6.12. The conclusions are clear, the best accuracy was
achieved by the RBM trained on the images from a house (same environment
as for classification samples). However, the RBM that was close to it in terms
of histograms distance worked well too while the RBMs trained on images
from a garden achieved the worst performance. Therefore this showed exper-
imentally the connection between the proposed metrics of similarity and the
final accuracy of the CNN classification pipeline.

Result of experiment 20. The datasets similarity metrics was applicable
in mobile robot system and could be used to validate whether a given RBM
could be transferred to a different problem or it had to be retrained.

152

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

house

summer house

garden

Table 6.10: Example images from different datasets used for experiments.

153

Figure 6.11: Histograms for P (v) obtained from different datasets.

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

DataHouse DataGarden DataSummerHouse
RBMHouse 0.0010 0.1271 0.0063
RBMGarden 0.0649 0.0005 0.0410

RBMSummerHouse 0.0107 0.1583 0.0008

Table 6.11: Chi-Squared distances (defined in (4.18)) between the JetBot
training datasets measured with the use of RBM’s probabilities histograms,
the diagonal results denote the distance between the reference set of images
and another set from the same training dataset.

(a) Accuracy (b) Loss

Figure 6.12: Training curves on the validation dataset for the mobile robot
objects classification experiment with the use of different pretrained RBMs.

155

CLBP-RBM preprocessing for a CNN in mobile robot vision system 6.5

156

7
CONCLUSIONS

This dissertation presents a novel method for using Restricted Boltzmann
Machines (RBMs) to process local image binary descriptors, with the goal of
improving the performance of image recognition tasks. The motivation for
addressing that was mostly because of the gap in science in these descrip-
tors’ usability in modern classification methods. In short, local descriptors
are robust unsupervised feature extractors but there were no efficient meth-
ods proposed in the literature that could utilise them for image recognition,
the performance of known methods is rather not even comparable to cur-
rent deep learning methods. The author argues that RBM can provide the
high-level abstract meaning of a given image based on binary descriptors,
which a deep neural network can further process for classification purposes.
Furthermore, RBMs can be trained in an unsupervised manner, allowing the
entire preprocessing to be also an unsupervised module in a classification
pipeline. Intuitively, another disadvantage of descriptors is that they have
a very general form of extracting the features, therefore they do not focus
on the shapes that may be significant for a given set of samples. Processing
them with an RBM focuses on dependencies between extracted features in a
particular dataset, this model is capable of learning a distribution of training
samples, hence it can amplify the significant features while suppressing the
others. This type of data preprocessing is a unique method proposed by the
author, also because of the lack of known RBM implementation that would
meet this study requirements, it has been written from scratch.

There are many types of binary descriptors, however all of them share
similar ideas and differ mostly in terms of how they code local image fea-
tures. The author identified the colour Local Binary Pattern (CLBP) as the
most efficient descriptor for the proposed preprocessing, as it provides infor-
mation about the color of a given feature by comparing color pairs in the
RGB color space. The enhancement is adding information about the colour
of a given feature, which is achieved by comparisons of colour pairs from
RGB colourspace. This is also a unique achievement of this study, and the

157

Conclusions

implementation of CLBP has been prepared by the author. Both the RBM
and CLBP are written in Python and are fully parallel which allows running
them in a highly efficient manner.

Processing binary patterns with RBM has been proposed mainly for im-
age classification, however, the author of this study has shown other less
obvious benefits of this method that stem from the fact RBM is not simply
a model reinterpretable to a feed-forward network but has other capabilities
as well.
The first is denoising of the input to a deep neural network, which is achiev-
able because of the recurrent nature of RBM and the ability of data recon-
struction. This is not a direct reconstruction of an image since it is firstly
processed by a non-invertible descriptors transformation but it is the re-
construction of binary patterns which leads to better tolerance of a neural
network to input distortion.
The second is a novel metrics of visual datasets comparisons, that can be
used to measure a set of images (or two images). The author suggested that
this may help in verifying whether an RBM trained on a set of images can be
reused for other problems. Technically, this it is achievable based on another
ability of an RBM, computing the probability of occurrence of a given input
in the training dataset.

The author emphasised the two major concerns that may occur in mod-
ern image classification systems, the first is the lack of labelled data, and the
second is the lack of processing units efficient enough to solve a given recogni-
tion problem. As suggested in this study both can be mitigated with the use
of the proposed preprocessing method because of the unsupervised nature of
the training and the simplicity. Finally, it implies its potential usability in
robotics as this branch of technical science is especially vulnerable to these
problems. Therefore, part of this dissertation is focused on transferring the
results of the research on general datasets to a real device as an example of
particular usage of this method. It is a mobile robot that has been running
an efficient, fully parallel application written by the author. The application
allows running the image processing pipeline together with a simple control
loop and communication with a user interface running on a remote computer.

The classification methods proposed in this dissertation did not aim to
outperform state-of-the-art deep neural classifiers in terms of overall accu-
racy, they focus on mitigating the previously mentioned practical problems.
Therefore the experiments were mostly based on comparisons of how adding
the CLBP-RBM preprocessing layer affects the generalisation ability of CNN.
The analysis performed in Chapter 5 leads to the conclusion, that the pre-
processing may improve the classification accuracy in some scenarios. Above
all, they are most significant when the amount of labelled data is small or

158

Conclusions

when the CNN is relatively simple. Otherwise, for a large amount of well-
structured data and very deep neural classifiers adding the CLBP-RBM layer
does not affect the classification accuracy. This is because such cases do not
suffer from the above-mentioned practical problems with insufficient number
of training samples. However, the experiments showed that the preprocessing
may result in a smaller CNN needed to solve a given problem with a given
accuracy, hence there may be benefits in terms of network size optimisation.
Other experiments also showed that the proposed novel binary descriptor -
CLBP works best for the analysed problems and that its implementation is
fast enough to claim that it does not affect the overall image processing time
significantly. Likewise, the implementation of an RBM is also robust, espe-
cially when the number of its parameters is not large, so the CLBP-RBM
layer may be potentially added to a classification pipeline without increasing
the overall time of computing.
The mentioned ability to denoising the input data has been also experimen-
tally confirmed. A number of distortions methods were tested, for most of
them a network with CLBP-RBM layer achieved a better generalisation abil-
ity. The only exception was the compression noise where for very low quality
of images using the network with CLBP-RBM preprocessing resulted in a
higher decrease of accuracy.
The comparisons of image sets with the use of RBM were tested on three
datasets and the hypothesis of their similarity has been verified. This means
that the metrics for all the pairs of datasets were as expected, and the images
being similar for humans were also similar in terms of this measurement.
The final experiments related to a mobile robot showed that moving the en-
tire solution to an embedded device is possible and may provide a highly
efficient real-time processing solution for visual perception. The robot was
able to recognise different types of objects in less than 15 milliseconds. It
has been also demonstrated that the same type of classifier operating on
raw pixel data performs worse in terms of accuracy and with the use of a
dedicated client-server application, it is relatively easy to gather images and
train the neural networks without much human effort.

Processing binary descriptors with Restricted Boltzmann Machine has
been proven effective in different scenarios and applicable to a variety of im-
age processing problems. However, it is a very wide topic, thus there are
many other areas where CLBP-RBM can be potentially used. The author
limited the research to images classification, nevertheless, other tasks, such
as object detection, key-points detection, pose estimation, segmentation, and
many others that rely on convolutional feature extractors may benefit from
the preprocessing as well since they share similar ideas in of terms how they
process the input image. Likewise, a mobile robot is not the only field of

159

Conclusions

robotics and embedded systems that may utilise this type of preprocessing
in terms of classification. Other cases, like manipulators, car cameras, drones,
and humanoid robots are prone to the mentioned problems as well. There-
fore, including an unsupervised module in their image processing pipeline
that provides significant gains may result in improving their overall per-
formance. Hence, the theoretical background given by the author may be
further investigated in order to find other practical applications.

160

A
RBM AND CLBP

IMPLEMENTATION DETAILS

The experimental research in this dissertation base primarily on the novel
CLBP descriptor and Restricted Boltzmann Machine. In section 4.1, their
implementations are described from a high-level point of view, however, some
technical details are worth discussing.

The implementation of the CLBP descriptor is based on parallel comput-
ing with the use of CUDA [164] and NUMBA [156] as a Python library to
translate a script into fast machine code. Thus the crucial part of the CLBP
is a kernel that computes the output for entire input image, the code of such
a kernel is presented in Listing A.1.

The RBM is written also in Python, however the parallel computing is
performed with the use of TensorFlow [153]. The training procedure is in-
dependent on training the furthe CNN layers and reproducible with Algo-
rithm 2. The output of such algorithm are parameters of an RBM (weights,
biases of visual units and biases of hidden units), they may be stored in
binary file (.npz) and reused later for inference with CNN. To provide the
best possible performance a trained RBM may be embedded in CNN model
as a regular TensorFlow layer, the code that reads RBM parameters from
a file and implements RBM inference with optional descriptors denoising is
presented in Listing A.2.

161

Listing A.1: Parallel computing of the CLBP descriptor.

image - an input matrix of size (W x H x 3)

output - an output matrix of size (W x H x 16)

@cuda.jit

def compute_CLBP(image, output):

for CLBP these parameters are fixed

neighorhood = 1

no_bits = 8

y, x = cuda.grid(2)

skip computations for x,y being outside of the image

if x >= image.shape[1] or y >= image.shape[0]:

return

zero padding

if x < neighorhood or y < neighorhood \

or x + neighorhood >= image.shape[1] \

or y + neighorhood >= image.shape[0]:

output[y, x] = 0

return

compute value of centre pixel in grayscale

centre_pix = int((image[y, x, 0] + image[y, x, 1] + image[y, x, 2]) / 3)

LBP8 part

a = 2 * np.pi * 1 / no_bits

for b in range(no_bits):

cord_X = int(r * round(np.cos((b - 5) * a)))

cord_Y = int(-r * round(np.sin((b - 5) * a)))

neighboring_pix = 0

for channel in range(3):

neighboring_pix += image[cord_Y, cord_X, channel]

neighboring_pix = int(neighboring_pix / 3)

output[y, x, b] = (centre_pix > neighboring_pix)

colours part

T = 73

for pair_nr in range(3):

if pair_nr == 0:

c0, c1 = 2, 1

elif pair_nr == 1:

c0, c1 = 0, 2

else:

c0, c1 = 1, 0

output[y, x, 8] = image[y, x, c0] > image[y, x, c1]

output[y, x, 9] = (image[y, x, c1] > (image[y, x, c0] + T)) \

or ((image[y, x, c0] < image[y, x, c1] + T) \

and (image[y, x, c0] > image[y, x, c1]))

intensity part

output[y, x, 14] = (int(centre_pix) >> 7) & 1

output[y, x, 15] = (int(centre_pix) >> 6) & 1

Listing A.2: Reusing RBM trained model as TensorFlow layer.

class RBMModule(tf.keras.layers.Layer):

def __init__(self, beta=0.2):

super(RBMModule, self).__init__(name="RBMEmbeded")

self.beta = beta

read data from .npz file

data = np.load("RBM.npz")

self.weights = tf.cast(tf.convert_to_tensor(data["weights"]), tf.float32)

self.h_biases = tf.cast(tf.convert_to_tensor(data["h_biases"]), tf.float32)

self.v_biases = tf.cast(tf.convert_to_tensor(data["v_biases"]), tf.float32)

reshape to match batch size dimension

self.weights = tf.reshape(self.weights, (1, *self.weights.shape))

self.v_biases = tf.reshape(self.v_biases, (1, *self.v_biases.shape))

self.h_biases = tf.reshape(self.h_biases, (1, *self.h_biases.shape))

def call(self, v, no_gibbs_steps=0):

cast from CLBP binary output

v = tf.cast(v, tf.float32)

perform denoising when no_gibbs_steps > 0

for step in range(no_gibbs_steps):

ph = tf.matmul(v, self.weights)

ph = tf.add(ph, self.h_biases)

ph = tf.sigmoid(ph)

h = ph > tf.random.uniform(tf.shape(ph), 0, 1)

h = tf.cast(h, tf.float32)

pv = tf.matmul(h, tf.transpose(self.weights, perm=[0, 2, 1]))

pv = tf.add(pv, self.v_biases)

pv = tf.sigmoid(pv)

v = pv > tf.random.uniform(tf.shape(pv), 0, 1)

v = tf.cast(v, tf.float32)

perform denoising when no_gibbs_steps > 0

ph = tf.add(tf.matmul(v, self.weights), self.h_biases)

ph = tf.tanh(tf.multiply(ph, self.beta))

reshape to a three-dimensional matrix w.r.t batch size

with the assumption that image is square,

otherwise the shape would have to be infered outside this function

output_width_height = int(np.sqrt(pv.shape[1]))

output_shape = (-1, output_width_height, output_width_height, pv.shape[2])

pv = tf.reshape(pv, output_shape)

return pv

RBM and CLBP implementation details

164

B

TRAINING CONVOLUTIONAL

NEURAL NETWORKS

Training a convolutional neural network was an inseparable part of the most
of the experiments conducted in this thesis. This procedure was entirely
implemented in TensorFlow with the help of OpenCV for some image pro-
cessing operations. From a high-level point of view it was performed similarly
to commonly known methods, thus it can be easily reproducible, however to
present the training in more detail the simplified algorithm is schematically
shown in Figure B.1.

The training procedure took advantage of batches to fit into memory
and online data augmentation to prevent overfitting. After each training
epoch the data was distorted to create a different input for the next learning
iterations. The augmentation was performed with the use of Albumentations
and OpenCV libraries [163, 191] and utlised the following methods: Gaussian
noise, Gaussian blur, compression noise, rotation, horizontal flipping, random
cropping, random channel amplification (RGB or HSV). As an optimisation
algorithm RMSProp [198] was used.

An output from a training procedure was a SavedModel [153] which is
the format recommended by TensorFlow. It can be also easily converted to
a TensorRT [197] model which can provide a better performance on GPU,
on NVIDIA Jetson Nano. This conversion reduced inference time by 50%.

165

Training convolutional neural networks

START

read data
into RAM[1]

training
data

validation
data

split data
into training and

validation set

split data
into batches

split data
into batches

perform
a single training

iteration on batch

NO
end

of epoch?[2]
evaluation

augmentation

MET

stop
condition[3]

STOP

Figure B.1: Diagram of training convolutional neural networks,
[1] - if dataset does not fit in RAM it is stored on disk and read into memory
in batches,
[2] - all batches from training dataset have been used,
[3] - the number of epochs exceeded a predefined limit or validation loss does
not decrease for a predefined number of epoch.

166

C
ROBOT’S ANGLE DEVIATION

MEASUREMENT WITH

A DEDICATED VISION SYSTEM

In some of the experiments with the mobile robot, the orientation of the robot
had to be measured. To make the method portable and allow gathering the
statistics in a fast and simple way, a dedicated vision system that permits
measuring an angular deviation from the desired position was prepared. The
robot was equipped with its own marker - a thin red rod being an extension
of its longer axis, and another marker - a yellow thin line was placed on the
ground on the desired position of the robot. For such markers, it is possible to
calculate the angle between the yellow line and the red marker (θ) by finding
two points on each line. To demonstrate, the idea is presented schematically
in Figure C.1.

Figure C.1: Angle deviation estimation.

167

Robot’s angle deviation measurement with a dedicated vision system

It is easy to observe that:

θ = θr + θy

= atan

(

wr

hr

)

+ atan

(

wy

hy

)

= atan

(

xr1 − xr0
yr1 − yr0

)

+ atan

(

xy1 − xy0
yy1 − yy0

)

Algorithmically, a detection of [xr0 , xr1 , yr0 , yr1 , xy0 , xy1 , yy0 , yy1] is rela-
tively simple. The algorithm relies first on red/yellow colour separation,
which is performed by transforming an input image to HSV colourspace and
them using the following masks:

red = [H[0 : 5] S[50 : 255] V [20 : 255]] ∨ [H[175 : 180] S[50 : 255] V [20 : 255]]

yellow = [H[22 : 45] S[93 : 255] V [0 : 255]]

Then on the red/yellow images, a Hough transformation [199] is performed
to detect lines, that can be further used to infer needed points. In fact, to
compute θ any points from the detected lines can be chosen, but to make the
method more precise, marginal points from each of the two lines should be
taken. A simplified algorithm is presented in Figure C.2, and results from
intermediate steps in Table C.1 and some example results in Table C.2.

168

Robot’s angle deviation measurement with a dedicated vision system

input image

contrast
stretching

RGB -> HSV
conversion

red mask yellow mask

lines detection

marginal points
detection

marginal points
detection

lines detection

theta
computing

theta
computing

+

Figure C.2: Angle deviation algorithm.

169

Robot’s angle deviation measurement with a dedicated vision system

input image contrast stretchnig

red colour mask yellow colour mask

lines detection angle detection

Table C.1: Intermediate results from angle deviation estimation.

170

Robot’s angle deviation measurement with a dedicated vision system

Table C.2: Angle deviation estimation results.

171

Robot’s angle deviation measurement with a dedicated vision system

172

Bibliography

[1] R. Murphy, “An Introduction to Artificial Intelligence”, Pearson Educa-
tion, 2012.

[2] M. A. Srinivasa, D. Kuffner, J. C. Bo, J. M. Banks, “Robot Motion
Planning and Control”, Cambridge University Press, 2010.

[3] J. K. Aggarwal, Q. Cai, “Computer Vision: A Modern Approach”, Pear-
son Education, 2012.

[4] R. Mur-Artal, J. D. Tardos, “ORB-SLAM: A Versatile and Accurate
Monocular SLAM System”, IEEE Transactions on Robotics, 2015.

[5] D. Fox, W. Burgard, H. Durrant-Whyte, S. Thrun, “Markov localiza-
tion for mobile robots in dynamic environments”, Artificial Intelligence
Journal, 1997.

[6] A. Y. Ng, M. I. Jordan, Y. Weiss, “On spectral clustering: Analysis
and an algorithm”, Advances in Neural Information Processing Systems,
2002.

[7] J. Z. Leibo, Y. W. Teh, D. M. Gavrila, “Multi-view traffic sign recogni-
tion”, Proceedings of the IEEE International Conference on Computer
Vision, 2015.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge”, arXiv:1409.0575,
2014.

[9] W. McCulloch, W. Pitts, “A logical calculus of the ideas immanent in
nervous activity”, The bulletin of mathematical biophysics, 1943

[10] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain”, Biology, 1958.

[11] I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, MIT Press,
2016.

173

BIBLIOGRAPHY

[12] X. Glorot, A. Bordes, Y. Bengio, “Deep Sparse Rectifier Neural Net-
works”, Journal of Machine Learning Research, 2010.

[13] C. E. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, “Activation
Functions: Comparison of Trends in Practice and Research for Deep
Learning”, arXiv:1811.03378, 2018.

[14] Y. Bengio, P. Simard, P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult”, IEEE Transactions on Neural Net-
works, 1994.

[15] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences”, PhD thesis, Harvard University, (1974).

[16] D. Parker, “Learning Logic Report TR–47”, MIT Press, 1985.

[17] Y. LeCun “Une procédure d’apprentissage pour Réseau à seuil as-
symétrique in Cognitiva 85 a la Frontière de l’Intelligence Artificielle”,
des Sciences de la Connaissance et des Neurosciences [in French], 1985.

[18] D. Rumelhart, G. Hinton, R. Williams, “Learning internal representa-
tion by error propagation”, Learning Internal Representations by Error
Propagation, 1986.

[19] A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, Neural Information Processing
Systems, 2012.

[20] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database”. In 2009 IEEE conference on
computer vision and pattern recognition, (pp. 248–255), 2009.

[21] Y. LeCun, Y. Bengio, G. Hinton, “Deep Learning”, Nature, 2015.

[22] S. Bianchini, M. Müller, P. Pelletier, “Deep Learning in Science”,
arXiv:2009.01575, 2020.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, L. D. Jackel, “Backpropagation Applied to Handwritten Zip
Code Recognition”, AT&T Bell Laboratories, 1989.

[24] B. Kwolek, “Face Detection Using Convolutional Neural Networks and
Gabor Filters”, Lecture Notes in Computer Science, pp. 551-556, 2005.

174

BIBLIOGRAPHY

[25] K. Chellapilla, S. Puri, P. Simard, “High Performance Convolutional
Neural Networks for Document Processing”, Tenth International Work-
shop on Frontiers in Handwriting Recognition, 2006.

[26] D. Cireşan, U. Meier, L. Gambardella, J. Schmidhuber, “Deep, big, sim-
ple neural nets for handwritten digit recognition”, Neural computation,
pp. 3207-3220, 2010.

[27] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation”, Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[28] J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for se-
mantic segmentation”, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 3431–3440, 2015.

[29] A. Toshev and C. Szegedy. “Deeppose: Human pose estimation via deep
neural networks”, Computer Vision and Pattern Recognition (CVPR),
pp 1653–1660, 2014.

[30] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-
Fei, “Large-scale video classification with convolutional neural networks”,
Computer Vision and Pattern Recognition (CVPR), 2014.

[31] N. Wang. D.Y. Yeung, “Learning a deep compact image representation
for visual tracking”, Advances in Neural Information Processing Systems,
pp 809–817, 2013.

[32] C. Dong, C. Loy, K. He, X. Tang, “Learning a deep convolutional net-
work for image super-resolution”, In Computer Vision–ECCV 2014, pp
184–199, 2014.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, “Going Deeper with Convolutions”,
aarXiv:1409.4842, 2014.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision”,
https://arxiv.org/abs/1512.00567, 2015.

[35] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, International Conference on Learning
Representations, 2014.

175

BIBLIOGRAPHY

[36] H. Kaiming , X. Zhang, R. Shaoqing, S. Jian, Deep Residual Learning
for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[37] G. Huang, Z. Liu, L. van der Maaten, K. Weinberger, “Densely Con-
nected Convolutional Networks”, IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[38] M. Tan, Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convo-
lutional Neural Networks”, arXiv:1905.11946, 2019.

[39] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, D. Keysers, J. Uszkoreit, M. Lucic, A. Doso-
vitskiy, “MLP-Mixer: An all-MLP Architecture for Vision”, ArXiv,
abs/2105.01601, 2021.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszko-
reit, Houlsby N., “An image is worth 16x16 words: Transformers for
image recognition at scale”, ICLR, 2016.

[41] N. J. Nillson, “Shakey the robot”, 1984.

[42] H. Miyamoto, M. Kawato, T. Setoyama, R. Suzuki. “Feedback-error-
learning neural network for trajectory control of a robotic manipulator”,
Neural Networks, pp. 251-265, 1988.

[43] C. Lin, C. Lee, “Neural-network-based fuzzy logic control and decision
system”, IEEE Transactions on Computers, pp. 1320–1336, 1991.

[44] W. Miller, P. Werbos, R. Sutton, “Neural networks for control”, MIT
Press, 1995.

[45] F. Lewis, S. Jagannathan, A. Yesildirak, “Neural network control of
robot manipulators and non-linear systems”, CRC Press, 1998.

[46] D. Pomerleau, “ALVINN, an autonomous land vehicle in a neural net-
work”, Advances in Neural Information Processing Systems, 1989.

[47] S. Joshi, S. Kumra, F. Sahin, “Robotic Grasping using Deep Reinforce-
ment Learning”, arXiv:2007.04499, 2020.

[48] S. Ainetter, F. Fraundorfer, “End-to-end Trainable Deep Neural Network
for Robotic Grasp Detection and Semantic Segmentation from RGB”,
https://arxiv.org/abs/2107.5287, 2021.

176

BIBLIOGRAPHY

[49] Y Jinglun, S. Yuancheng, L. Yifan, “The Path Planning of Mobile Robot
by Neural Networks and Hierarchical Reinforcement Learning”, Front
Neurorobot, 2020.

[50] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, M. Ardani,
“Deep Reinforcement learning for real autonomous mobile robot naviga-
tion in indoor environments”, arXiv:2005.13857, 2020.

[51] K. Kolanowski, A. Świetlicka, R. Kapela, J. Pochmara, A. Rybarczyk,
“Multisensor data fusion using Elman neural networks”, Applied Mathe-
matics and Computation, pp. 236-244, 2018.

[52] R. Kapela, A. Świetlicka, K. Kolanowski, J. Pochmara, A. Rybarczyk,
“A set of dynamic artificial neural networks for robot sensor failure detec-
tion”, 2017 11th International Workshop on Robot Motion and Control
(RoMoCo) , pp. 199-204, 2017.

[53] L. Canglong, Z. Bin, W. Chunyang, Z. Yongting, F. Shun, L. Haochen,
“CNN-Based Vision Model for Obstacle Avoidance of Mobile Robot”,
MATEC Web of Conferences, 2017.

[54] P. Wenzel, T. Schön, L. Leal-Taixé, D. Cremers, “Vision-Based Mo-
bile Robotics Obstacle Avoidance With Deep Reinforcement Learning”,
arXiv:2103.04727. 2021.

[55] T. Almeida, B Lourençoa, V. Santosab, “Road Detection based on simul-
taneous Deep Learning Approaches”, Robotics and Autonomous Systems,
2020.

[56] A. Narayan, E. Tuci, F. Labrosse, M. Alkilabi, “Road detection using
convolutional neural networks”, Proceedings of the 14th European Con-
ference on Artificial Life ECAL 2017, 2017.

[57] Md. Z. Alom, M. T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M.
S. Nasrin, B. C. Van Esesn, A. A. S. Awwal, V. K. Asari, “The His-
tory Began from AlexNet: A Comprehensive Survey on Deep Learning
Approaches”, arXiv:1803.01164, 2018.

[58] F. N. Iandola, S. Han., M. W. Moskewicz., K. Ashraf, W. J. Dally, K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and <0.5MB model size”, arXiv:1602.07360, 2016.

[59] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, A. Hartwig, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”, arXiv:1704.04861, 2017.

177

BIBLIOGRAPHY

[60] S. Bianco., R. Cadene, L. Celona, P. Napoletano, “Benchmark
Analysis of Representative Deep Neural Network Architectures”,
arXiv:1810.00736, 2018.

[61] Md. Z. Alom, M. Tarek, C. Yakopcic, S. Westberg, “A State-of-the-Art
Survey on Deep Learning Theory and Architectures”, Electronics, 2019.

[62] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, “A
Comprehensive Survey on Transfer Learning”, arXiv:1911.02685, 2019.

[63] C. Cortes, V. Vapnik, “Support-Vector Networks”, Machine Learning,
pp 273-297, 1995.

[64] D.H. Hubel, N.T. Wiesel, “Receptive fields and functional architecture
of monkey striate cortex”, The Journal of Physiology. pp 215-243, 1968.

[65] I. Sobel, G. Feldman, “A 3x3 Isotropic Gradient Operator for Image Pro-
cessing” Pattern Classification and Scene Analysis, pp. 271-272, 1973.

[66] D. Scherer, A. Müller, S. Behnke, “Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition”, Artificial Neural
Networks, 2010.

[67] A. K. Jain, R. C. Dubes, “Algorithms for clustering data,” New Jersey:
Prentice-Hall, 1988.

[68] K. Pearson, “On lines and planes of closest fit to systems of points in
space.” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, pp. 559-–572, 1901.

[69] G. H. Golub, C. F. Van Loan. “Matrix Computation”. Johns Hopkins
Univ. Press, Baltimore, 1996.

[70] K. U. Gulden, G. Nese, “A Study on Multiple Linear Regression Anal-
ysis”, Procedia - Social and Behavioral Sciences, 2013, Vol. 106, pp.
234–240.

[71] G.BakIr, B. Taskar, T. Hofmann, B. Scholkopf, A. Smola, S. Vish-
wanathan, “Predicting Structured Data”, MIT Press, 2007.

[72] P. Baldi, K. Hornik “Neural Networks and Principal Component Analy-
sis: Learning from Examples Without Local Minima”, Neural Networks,
1989, pp. 53–58.

178

BIBLIOGRAPHY

[73] D. Bank, N. Koenigstein, R. Giryes, “Autoencoders”, arXiv:2003.05991,
2020.

[74] Y. Sun, H. Mao, Q. Guo, Z. Yi1, “Learning a good representation
with unsymmetrical auto-encoder”, Neural Computing and Applications,
2016.

[75] A. Majumdar, A. Tripath, “Asymmetric stacked autoencoder”, 2017 In-
ternational Joint Conference on Neural Networks (IJCNN), 2020.

[76] Y. Zhang, “A Better Autoencoder for Image: Convolutional Autoen-
coder”, Computer Science, 2018.

[77] P. Kingma, M. Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
conference, 2014.

[78] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, R. Girshick, “Masked Autoen-
coders Are Scalable Vision Learners”, 2021.

[79] L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, X. Alameda-
Pineda, “Dynamical Variational Autoencoders: A Comprehensive Re-
view”, Foundations and Trends in Machine Learning, Vol. 15, No. 1-2,
pp. 1-175, 2021.

[80] A. Asperti, D. Evangelista, E. L. Piccolomini, “A survey on Variational
Autoencoders from a GreenAI perspective,” Computer Science, Vol. 2,
Issue 4, 2021.

[81] J. J. Hopfield, J. J. Tank, “Computing with neural circuits: A model”
Science, pp. 624-–633, 1986.

[82] D.O. Hebb, “The Organization of Behavior”, , 1945.

[83] Y. Lecun, S. Chopra, R. Hadsell, “A Tutorial on Energy-Based Learn-
ing”, Structured Data MIT Press, 2006.

[84] G. Pajares, M. Guijarro, A. Ribeiro, “A hopfield neural network for com-
bining classifiers applied to textured images.” Neural Networks, 2010.

[85] C. Hillar, R. Mehta, K. Koepsell. “A hopfield recurrent neural network
trained on natural images performs state-of-the-art image compression.”
In 2014 IEEE International Conference on Image Processing (ICIP), pp
4092-– 4096, 2014.

179

BIBLIOGRAPHY

[86] U. P. Wen, M.K. Lan, H. S. Shih. “A review of hopfield neural networks
for solving mathematical programming problems”. European Journal of
Operational Research, pp 675—687, 2009.

[87] K. Smith, M. Palaniswami, M. Krishnamoorthy, “Neural techniques for
combinatorial optimization with applications.” IEEE Transactions on
Neural Networks, pp 1301-–1318, 1998.

[88] K. Tirdad, A. Sadeghian, “Hopfield neural networks as pseudo random
number generators.”, In 2010 Annual Meeting of the North American
Fuzzy Information Processing Society, pp 1—6, 2010.

[89] S. M. Hameed, L. M. M. Ali, “Utilizing hopfield neural network for
pseudo-random number generator”. In 2018 IEEE/ACS 15th Interna-
tional Conference on Computer Systems and Applications (AICCSA),
pp 1—5, 2018.

[90] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler,
T. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, V. Greiff, D.
Kreil, M. Kopp, G. Klambauer, J. Brandstetter, S. Hochreiter, “Hopfield
Networks is All You Need”, arXiv:2008.02217, 2021.

[91] D. Ackley, G. Hinton, T. Sejnowski, “A Learning Algorithm for Boltz-
mann Machines” Cognitive Science, pp. 147–169, 1985.

[92] G. Hinton, “Boltzmann Machines” Computer Science, pp. 147–169, 2007.

[93] P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory”, MIT Press, 1986.

[94] K. Mikolajczyk, C. Schmid, “An affine invariant interest point detector”,
European conference on computer vision (ECCV), pp. 128–142, 2002.

[95] A. Alahi, R. Ortiz, P. Vandergheynst, “Freak: Fast retina keypoint”,
Computer vision and pattern recognition (CVPR), pp=510–517, 2012.

[96] T. Ojala, M. Pietikäinen, T. Maenpaa, “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns”,
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no.
7, pp. 971–987, 2002.

[97] S. Leutenegger, M. Chli, R. Siegwart, “BRISK: Binary robust invari-
ant scalable keypoints”, International conference on computer vision
(ICCV), pp. 2548–2555, 2011.

180

BIBLIOGRAPHY

[98] E. Rosten, T. Drummond, “Machine learning for high-speed corner de-
tection”, Computer Vision–ECCV 2006. Springer, pp. 430–443, 2006.

[99] M. Calonder, V. Lepetit, C. Strecha, P. Fua, “BRIEF: Binary robust
independent elementary features”, European conference on computer vi-
sion (ECCV), pp. 778–792, 2010.

[100] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “ORB: An efficient
alternative to SIFT or SURF”, International conference on computer
vision (ICCV), pp. 2564–2571, 2011.

[101] K. Grauman, T. Darrell, “The pyramid match kernel: Discriminative
classification with sets of image features”, Proc. ICCV, 2005.

[102] J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid. “Local features and
kernels for classification of texture and object categories: A comprehen-
sive study.”, Int’l J. Computer Vision, pp. 213–238, 2007.

[103] R. Fergus, P. Perona, and A. Zisserman. “Object class recognition by
unsupervised scale-invariant learning”, CVPR, 2003

[104] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”,
Int’l J. Computer Vision, pp. 91–110, 2004.

[105] M. Vidal-Naquet, S. Ullman, “Object recognition with informative fea-
tures and linear classification”. Proc. ICCV, 2003.

[106] M. Brown, D. G. Lowe, “Automatic panoramic image stitching using
invariant features”, Int’l J. Computer Vision, pp. 59–73, 2007.

[107] S. Sobczak, R. Kapela, K, McGuiness, A. Swietlicka, D. Pazderski, N.
O’Connor, “Restricted Boltzmann Machine as an Aggregation Technique
for Binary Descriptors” Visual Computer, 2019.

[108] R. Abdur, H. Najmul, W. Tanzillah, A. Shafiul, “Face Recognition us-
ing Local Binary Patterns (LBP).” Global Journal of Computer Science
and Technology Graphics & Vision, 2013.

[109] S. Moore, R. Bowden, “Local binary patterns for multi-view facial ex-
pression recognition”, Computer Vision and Image Understanding, pp.
541-558, 2011.

[110] D. G. Lowe, “Object recognition from local scale-invariant features”,
International conference on computer vision (ICCV), Vol. 2, pp. 1150–
1157, 1999.

181

BIBLIOGRAPHY

[111] H. Bay, T. Tuytelaars, L. Van Gool, “SURF: Speeded up robust fea-
tures”, European conference on computer vision (ECCV), pp. 404–417,
2006.

[112] N. Dalal, B. Triggs, “Histograms of oriented gradients for human de-
tection, Computer Vision and Pattern Recognition (CVPR), Vol. 1, pp.
886–893, 2005.

[113] S. Beril, U. Cem, “Urban Area and Building Detection Using SIFT
Keypoints and Graph Theory”, IEEE Transactions on Geoscience and
Remote Sensing., 2009.

[114] S. Se, D. G. Lowe, J. Little, “Vision-based mobile robot localization
and mapping using scale-invariant features”, Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2001.

[115] N. Dalal, B. Triggs, “Histograms of Oriented Gradients for Human De-
tection”, 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), pp. 886-893, 2005.

[116] R. Kapela, P. Śniatała, A. Turkot, A. Rybarczyk, A. Pożarycki, P.
Rydzewski, M. Wyczałek, A. Błoch, “Asphalt surfaced pavement cracks
detection based on histograms of oriented gradients”, 2015 22nd In-
ternational Conference Mixed Design of Integrated Circuits & Systems
(MIXDES), pp 579–584. 2016

[117] K. Horak, J. Klecka, O. Bostik, D. Davidek, “Classification of SURF
image features by selected machine learning algorithms”, 2017 40th In-
ternational Conference on Telecommunications and Signal Processing
(TSP), pp. 636-641, 2017.

[118] J. Sivic, A. Zisserman, “Video Google: A Text Retrieval Approach
to Object Matching in Videos”, International Conference on Computer
Vision (ICCV), Vol. "2", pp. 1470–1477", 2003.

[119] J. Philbin, O. Chum, M. Isard J. Sivic, A. Zisserman, “Object retrieval
with large vocabularies and fast spatial matching”, Computer Vision and
Pattern Recognition (CVPR), 2007.

[120] Hervé J, M. Douze, C. Schmid, P. Pérez, “Aggregating local descrip-
tors into a compact image representation” Computer Vision and Pattern
Recognition (CVPR), pp. 3304–3311, 2010.

182

BIBLIOGRAPHY

[121] F. Perronnin, C. Dance, “Fisher kernels on visual vocabularies for image
categorization”, Computer Vision and Pattern Recognition (CVPR), pp.
1–8, 2007.

[122] R. W. Hamming, “Error detecting and error correcting codes”, Bell
System Tech. J., pp 147-160, 1950.

[123] C. Ken, S. Karen, V. Andrea, Z. Andrew, “Return of the devil in the
details: delving deep into convolutional nets”, In: Proceedings of BMVC,
2014.

[124] Y. Bengio, “Learning deep architectures for AI”, Foundations and
Trends in Machine Learning, pp 1—127, 2009.

[125] G. Hinton, R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks”, Science 313(5786), pp. 504—507, 2006.

[126] S. Nie, Z. Wang. Q. Ji, “A generative restricted Boltzmann machine
based method for high-dimensional motion data modeling”, Computer
Vision and Image Understanding, 2015.

[127] R. Salakhutdinov, A. Mnih, G. Hinton, “Restricted boltzmann ma-
chines for collaborative filtering”, Ghahramani, Z., ed.: ICML Volume
227 of ACM International Conference Proceeding Series., pp. 791-–798,
2007.

[128] K. Shimagaki, M. Weigt, “Selection of sequence motifs and generative
Hopfield-Potts models for protein families,” Physical Review, Vol. 100,
Issue 3, 2019.

[129] A. Decelle, S. Hwang, J. Rocchi, D. Tantari, “Inverse problems for
structured datasets using parallel TAP equations and restricted Boltz-
mann machines,” Scientific Reports, Vol. 11, 2021.

[130] C. A. S. Assis, A. C. M. Pereira, E. G. Carrano, R. Ramos, W. Dias,
“Restricted Boltzmann Machines for the Prediction of Trends in Finan-
cial Time Series,” International Joint Conference on Neural Networks
(IJCNN), pp. 1-8, 2018.

[131] R. Kindermann, J. L. Snell, “Markov Random Fields and Their Appli-
cations”, American Mathematical Society, 1980.

[132] D. Koller, N. Friedman. “Probabilistic Graphical Models: Principles
and Techniques”, MIT Press, 2009.

183

BIBLIOGRAPHY

[133] A. Fisher, C. Igel, “An Introduction to Restricted Boltzmann Ma-
chines”, Progress in Pattern Recognition, Image Analysis, Computer Vi-
sion, and Applications, pp. 14–36, 2012.

[134] O. Krause, A. Fisher, C. Igel, “Algorithms for estimating the partition
function of restricted Boltzmann machines”, Artificial Intelligence, 2019.

[135] F. Mazzanti, E. Romero, “Efficient Evaluation of the Partition Function
of RBMs with Annealed Importance Sampling”, arXiv:2007.11926, 2020.

[136] G. Hinton “A Practical Guide to Training Restricted Boltzmann Ma-
chines”, Technical Report UTML TR 2010-003, University of Toronto,
2010.

[137] D. Ackley, G. Hinton, T. Sejnowski, “A learning algorithm for boltz-
mann machines”, Cognitive Science, pp. 147–169, 1985.

[138] G. Hinton, M. A. Carreira-Perpiñán, “On Contrastive Divergence
Learning”, Computer Science, 2005.

[139] G. Hinton, “Training Products of Experts by Minimizing Contrastive
Divergence”, Neural Computation, 2002.

[140] G. Hinton, “Products of Experts”, ICANN, 1999.

[141] L. Bottou, “On-line learning and stochastic approximations”, On-line
Learning in Neural Networks, 1998.

[142] G. Hinton, S. Osindero, Y. Teh, “A fast learning algorithm for deep
belief nets”, Neural Computation, 2006.

[143] G. Hinton, R. Salakhutdinov, “Deep Boltzmann Machines”, Proceedings
of the Twelfth International Conference on Artificial Intelligence and
Statistics, pp. 449–455, 2009.

[144] G. Hinton, P. Dayan, B. Frey, R. Neal, "The wake-sleep algorithm for
unsupervised neural networks", Science, pp. 1158-1161, 1995.

[145] R. Salakhutdinov, H. Larochelle, “Efficient Learning of Deep Boltz-
mann Machines”, Journal of Machine Learning Research - Proceedings
Track, pp. 693-700, 2010.

[146] G. Taylor, G. Hinton, S. Roweis, “Modeling Human Motion Using Bi-
nary Latent Variables”, Advances in neural information processing sys-
tems, pp. 1345-–1352, 2007.

184

BIBLIOGRAPHY

[147] A. Mohamed, G. Dahl, G. Hinton, “Deep belief networks for phone
recognition”, In Nips workshop on deep learning for speech recognition
and related applications, 2009.

[148] A. Mohamed, G. Dahl, G. Hinton, “Acoustic modeling using deep belief
networks”. IEEE transactions on audio, speech, and language processing,
2011.

[149] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdi-
nov, “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”, Journal of Machine Learning Research, 2012.

[150] B. Ghojogh, A. Ghodsi, F. Karray, M. Crowley, “Restricted Boltz-
mann Machine and Deep Belief Network: Tutorial and Survey”,
arXiv:2107.12521, 2021.

[151] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al., “Scikit-
learn: Machine Learning in Python”, Journal of Machine Learning Re-
search, 2011.

[152] C.R. Harris, K.J. Millman, S.J van der Walt, et al., “Array program-
ming with NumPy”, Nature, 2020.

[153] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, et al., “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems”,
https://www.tensorflow.org, 2015.

[154] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et
al, “ PyTorch: An Imperative Style, High-Performance Deep Learning
Library”, Curran Associates, Inc., 2019.

[155] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D.
Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,
Q. Zhang, “JAX: composable transformations of Python+NumPy pro-
grams”, http://github.com/google/jax, 2018.

[156] S. K. Lam, A. Pitrou, S. Seibert, “Numba: A llvm-based python jit
compiler.”, In Proceedings of the Second Workshop on the LLVM Com-
piler Infrastructure in HPC, 2015.

[157] J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders, “Selective Search
for Object Recognition”, International Journal of Computer Vision, pp.
154–171, 2013.

185

BIBLIOGRAPHY

[158] H. Lee, R. Grosse, R. Ranganath, A. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions”, roceedings of the 26th Annual International Conference on Ma-
chine Learning, 2009.

[159] D. Scott, “On optimal and data-based histograms”, Biometrika, pp.
605–610, 1979.

[160] L. Fan, F, Zhang, H. Fan, C. Zhang, “Brief review of image denois-
ing techniques”, Visual Computing for Industry, Biomedicine, and Art
volume, 2019.

[161] S. Dodge, L. Karam, “Understanding How Image Quality Affects Deep
Neural Networks”, arXiv:1604.04004, 2016

[162] G. Kylberg, I. M. Sintorm, “Evaluation of noise robustness for local
binary pattern descriptors in texture classification”, EURASIP Journal
on Image and Video Processing, 2013.

[163] G. Bradski , “The OpenCV Library”, Dr. Dobb’s Journal of Software
Tools, 2000

[164] P. Vingelmann, F.H.P Fitzek, “CUDA, release: 10.2.89”,
https://developer.nvidia.com/cuda-toolkit, 2020,

[165] S. Sobczak, R. Kapela,“Restricted Boltzmann Machine as Image Pre-
processing Method for Deep Neural Classifier” 2019 First International
Conference on Societal Automation (SA), 2019.

[166] S. Sobczak, R. Kapela,“Hybrid Restricted Boltzmann Machine– Con-
volutional Neural Network Model for Image Recognition” IEEE Access,
2022.

[167] L. Fei-Fei, R. Fergus P. Perona, “Learning generative visual models
from few training examples: an incremental Bayesian approach tested
on 101 object categories”, CVPR 2004, Workshop on Generative-Model
Based Vision, 2004.

[168] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning
applied to document recognition.”, Proceedings of the IEEE, 1998.

[169] A. Krizhevsky, V. Nair, G. Hinton, “CIFAR-10 (Canadian Institute for
Advanced Research)”, http://www.cs.toronto.edu/ kriz/cifar.html, 2009.

186

BIBLIOGRAPHY

[170] A. Coates, H. Lee, Y. Andrew, “An Analysis of Single Layer Networks
in Unsupervised Feature Learning”, AISTATS, 2011.

[171] A. Quattoni, A. Torralba, “Recognizing Indoor Scenes” IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2009.

[172] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, “Describ-
ing Textures in the Wild”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[173] C. F. Özgenel, A. Gönenç Sorguç, “Performance Comparison of Pre-
trained Convolutional Neural Networks on Crack Detection in Build-
ings”, ISARC, 2018

[174] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, “Algorithms for Hyper-
Parameter Optimization”, Advances in Neural Information Processing
Systems, 2011.

[175] M.A. Ranzato, C. Poultney, S. Chopra, Y. Lecun, “Efficient Learning
of Sparse Representations with an Energy-Based Model”, Neural Infor-
mation Processing Systems Journal, 2006.

[176] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, M. Mar-
tina, “An Updated Survey of Efficient Hardware Architectures for Ac-
celerating Deep Convolutional Neural Networks”, Future Internet, Vol.
12, Issue 113, 2020.

[177] X. Hu, L. Chu, J. Pei, L. Weiqing, B. Jiang, “Model complexity of deep
learning: a survey”, Knowledge and Information Systems, Vol. 63, pp.
2585–2619, 2021.

[178] A. Shaeiri, R, Nobahari, M. H. Rohban, "Towards Deep Learning Mod-
els Resistant to Large Perturbations", arXiv, 2003.13370, 2020.

[179] A. Decelle, C. Furtlehner, “Restricted Boltzmann Machine, recent ad-
vances and mean-field theory”, https://arxiv.org/abs/2011.11307, 2020

[180] O. Pele, M. Werman, “The Quadratic-Chi Histogram Distance Family”,
European Conference on Computer Vision, 2010.

[181] V. Srinivasan, Y. Han, S. Ong, “Image reconstruction by a Hofield
neural network”, Image and Vision Computing, 1993.

[182] M. Lin, Q. Chen, S. Yan, “Network In Network”, Computer Science,
2014.

187

BIBLIOGRAPHY

[183] P. Dutkiewicz, K. Kozłowski, W. Wróblewski, “Inspection robot SA-
FARI - construction and control”, Bulletin of the Polish Academy of
Sciences. Technical Sciences, 2004.

[184] L. Yang, B. Li, G. Yang, Y. Chang, Z. Liu, B. Jiang, J. Xiaol, “Deep
Neural Network based Visual Inspection with 3D Metric Measurement of
Concrete Defects using Wall-climbing Robot”, International Conference
on Intelligent Robots and Systems (IROS), 2019.

[185] L. Yang, B. Li, G. Yang, Y. Chang, Z. Liu, B. Jiang, J. Xiaol “Auto-
mated wall-climbing robot for concrete construction inspection”, Journal
of Field Robotics, 2022.

[186] R. S. Lim, H. M. La, W. Sheng, “A Robotic Crack Inspection and
Mapping System for Bridge Deck Maintenance”, EEE Transactions on
Automation Science and Engineering, 2014.

[187] J. Oh, G. Jang, S. Oh, J. Lee, B. Yi, Y. S. Moon, J. S. Lee, Y. Choi,
“Bridge inspection robot system with machine vision”, Automation in
Construction, 2009.

[188] I. J. Goodfellow, J. Shlens, C. Szegedy, “Explaining and Harnessing
Adversarial Examples”, arXiv:1412.6572, 2015.

[189] A. K. Boyat, B. K. Joshi, “A review paper: noise models in digital im-
age processing”, Signal & Image Processing : An International Journal
(SIPIJ), 2015.

[190] M. M. P. Petrou, C. Petrou, “Image Processing: The Fundamentals”,
WILEY, 2010.

[191] https://albumentations.ai/docs/

[192] https://jetbot.org/master/

[193] https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[194] https://zeromq.org/get-started/

[195] https://docs.python.org/3/library/tkinter.html

[196] R. Siegwart, I. R. Nourbakhsh, “Introduction to Autonomous Mobile
Robots, Second Edition”, MIT Press, 2011.

[197] https://docs.nvidia.com/deeplearning/tensorrt/index.html

188

BIBLIOGRAPHY

[198] T. Tieleman, G. Hinton, “Divide the Gradient by a Running Average
of Its Recent Magnitude”, Neural Networks for Machine Learning, 2012.

[199] R.O. Duda, P. E. Hart, “Use of the Hough Transformation to Detect
Lines and Curves in Pictures”, Comm. ACM, 1972.

189

