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Abstract

Parallel applications need to change even now by redesigning algorithms and data
structures, respectively, to take advantage of the recent improvements in the energy
efficiency of heterogeneous computing hardware, including multicore processors and
GPU accelerators. Over the next few years, one of the biggest challenges for exascale
computing will be the ability of parallel applications to fully exploit data locality,
which will, in turn, be required to achieve the expected performance and energy
efficiency. The future highly parallel applications will have to deal with deep memory
hierarchies taking into account the energy cost in moving data off-chip. Therefore,
they will have to apply new coordinated scheduling approaches to balance energy-
aware resource utilization and minimise work starvation during runtime.

Stencil computations as a relevant class of applications occur in many HPC codes
on block-structured grids for modelling various physical phenomena, e.g. computa-
tional fluid dynamics, geometric modelling, solving partial differential equations or
image and video processing. As computing time and memory usage grow linearly
with the number of array elements in stencil computations, our research targets
highly parallel implementations of stencil codes together with task scheduling and
optimisation techniques taking into consideration the energy cost and data local-
ity. During our experimental studies we have proved that recent changes introduced
in heterogeneous computing hardware resulted in different performance and energy
characteristics that are critical for highly efficient scalable stencil computations.

To the best of our knowledge, none of the previous research considered an energy-
aware distribution of the stencil workload on heterogeneous computing resources
with the time constraint. Moreover, none of them tried to minimise the energy con-
sumption of intra-node and inter-node communications that significantly influence
energy savings.

In this thesis a topology-aware scheduling model is formulated and presented
for efficient stencil computations executions taking into account different intra-node
and inter-node communication links among heterogeneous processors. An innovative
analytical and methodological approach is described for modelling and predicting
energy usage and execution time for reference stencil patterns on single and multi-
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node heterogeneous HPC architectures. New heuristic algorithms for simultaneously
minimising energy usage and runtime of small and large scale stencil computations
are presented. The proposed energy-aware resource management method considers
complex hardware HPC architectures, including different and heterogeneous com-
puting setups and communication topologies. A new Tabu Search algorithm is de-
scribed for solving the problem and results of computational experiments comparing
its performance vs simpler heuristics are presented. A flexible and generic schedul-
ing model and heuristics algorithms are developed that can be easily extended or
adapted in existing stencil application frameworks.



Streszczenie

Obecnie istniejące aplikacje równoległe muszą ewoluować poprzez przeprojektowanie
algorytmów i struktur danych, aby wykorzystać ostatnie udoskonalenia w wyda-
jności energetycznej heterogenicznych architektur komputerowych, włączając wielo-
rdzeniowe procesory i akceleratory GPU. W kolejnych latach jednym z największych
wyzwań dla obliczeń exascale będzie osiągniecie zdolności aplikacji równoległych
do pełnego wykorzystania lokalności danych, która będzie wymagana, aby uzyskać
oczekiwaną wydajność obliczeniową i efektywność energetyczną. Opracowywane w
przyszłości aplikacje równoległe będą musiały zmierzyć się z wielopoziomowymi hi-
erarchiami pamięci, uwzględniając koszt energetyczny niezbędny do komunikowa-
nia się i przenoszenia danych poza układ scalony. W związku z tym będą musi-
ały być opracowane i zastosowane nowe skoordynowane metody szeregowania, aby
zrównoważyć zużycie energii zasobów oraz zminimalizować zagłodzenie procesów
podczas ich wykonywania.

Obliczenia stencilowe stanowią ważną klasą aplikacji, które pojawiają się w
wielu kodach HPC wykonywanych na blokowych siatkach strukturalnych używanych
do modelowania różnych zjawisk fizycznych, przykładowo obliczeniowa mechanika
płynów, geometria obliczeniowa, rozwiązywanie równań różniczkowych cząstkowych
lub modyfikacja zdjęć i wideo. Ze względu na to, że czas przetwarzania i zużycie
pamięci rośnie liniowo wraz z liczbą elementów siatki, nasze badania skupiają się na
równoległych implementacjach obliczeń stencilowych razem z szeregowaniem zadań
i technikami optymalizacji biorącymi pod uwagę koszt energetyczny i lokalność
danych. Podczas naszych badań udowodniliśmy, że ostatnie zmiany wprowadzone
w heterogenicznych architekturach komputerowych doprowadziły do tego, że różne
cechy wydajnościowe i energetyczne są krytyczne dla efektywnych i skalowalnych
obliczeń stencilowych.

Według stanu wiedzy, żadne z dotychczasowych badań nie uwzględniało tak
szczegółowej analizy zużycia energii przy dystrybucji obliczeń stencilowych na het-
erogenicznych zasobach z ograniczeniami czasu wykonania. Dla wybranych referen-
cyjnych obliczeń stencilowych dotychczasowe badania nie próbowały minimalizować
zużycia energii na komunikacje wewnątrz węzła, jak również jak i między węzłami
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obliczeń w odniesieniu do różnych topologii ich połączeń, co jak zostało wykazane
w rozprawie znacząco może wpływać na oszczędność energii w szczególności w przy-
padku większych obliczeń.

W niniejszej rozprawie sformułowano i zaprezentowano model szeregowania dla
efektywnych obliczeń stencilowych. Topologia uwzględnia różne połączenia komu-
nikacyjne w ramach węzła, jak i pomiędzy węzłami dla heterogenicznych proce-
sorów. Opisano innowacyjne, analityczne oraz metodologiczne podejście modelowa-
nia i przewidywania zużycia energii i czasu wykonania dla referencyjnych obliczeń
stencilowych na pojedynczych, jak i wielu węzłach dla heterogenicznych architektur
HPC. Przebadano i zaprezentowano nowe heurystyczne algorytmy dla równoczes-
nej minimalizacji zużycia energii i czasu wykonania dla małych oraz dużych zadań
obliczeń stencilowych. Zaproponowano metodę zarządzania zadaniami, uwzględ-
niającą zużycie energii, która bierze pod uwagę złożone sprzętowe architektury
HPC, wliczając w to różne konfiguracje sprzętowe oraz topologie sieciowe na bazie
rzeczywistych największych instalacji superkomputerowych. Opisano nowy algo-
rytm przeszukiwania tabu w celu rozwiązania problemu i przedstawiono wyniki
eksperymentów obliczeniowych, uwzględniając jego wydajność w porównaniu do
prostych heurystyk. Opracowano elastyczny i generyczny model szeregowania oraz
algorytmy heurystyczne, które mogą być łatwo rozszerzane albo zaadaptowane w
istniejących platformach programistycznych dla obliczeń stencilowych.



Contents

Abstract 1

Streszczenie 3

1 Introduction 9
1.1 Motivation for energy-aware stencil computations . . . . . . . . . 9
1.2 Goals and scope of the thesis . . . . . . . . . . . . . . . . . 10
1.3 Contributions presented in this thesis . . . . . . . . . . . . . . 11
1.4 Structure of the dissertation . . . . . . . . . . . . . . . . . . 12

2 High Performance Computing 13
2.1 Architecture overview. . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Processing Units . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Intra-node communication . . . . . . . . . . . . . . . 16
2.1.3 Inter-node communication. . . . . . . . . . . . . . . . 19
2.1.4 Fat-tree network topology . . . . . . . . . . . . . . . . 19
2.1.5 Torus network topology. . . . . . . . . . . . . . . . . 21
2.1.6 Dragonfly network topology . . . . . . . . . . . . . . . 23

2.2 Parallel application programming and execution environments for
stencil computations . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Multi-node parallel programming environments. . . . . . . 26
2.2.2 Domain Specific Languages for stencil computations . . . . 29

2.3 Selected tools . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Performance measurement . . . . . . . . . . . . . . . 30
2.3.2 Energy measurement . . . . . . . . . . . . . . . . . . 30

3 Stencil computations 33
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Performance optimisation methods . . . . . . . . . . . . . . . 35

3.2.1 Single processing unit . . . . . . . . . . . . . . . . . 37
3.2.2 Multiple processing units . . . . . . . . . . . . . . . . 37



6 Contents

3.3 Performance models . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Roofline model . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Cache Aware Roofline model . . . . . . . . . . . . . . 42

3.4 Methods to optimise energy consumption . . . . . . . . . . . . 44
3.5 Energy models. . . . . . . . . . . . . . . . . . . . . . . . 45

4 Basic notions in the theory of algorithms and computational
complexity 49
4.1 Computational complexity. . . . . . . . . . . . . . . . . . . 49
4.2 Linear programming . . . . . . . . . . . . . . . . . . . . . 52
4.3 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Multiplicity . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Adjacency and incidence . . . . . . . . . . . . . . . . 54
4.3.4 Maximum degree and maximum multiplicity . . . . . . . . 54
4.3.5 Edge colouring . . . . . . . . . . . . . . . . . . . . 54

5 Energy-aware resource management of stencil computations 57
5.1 Designation of the parameters . . . . . . . . . . . . . . . . . 57
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . 63
5.3 Performance and energy model . . . . . . . . . . . . . . . . . 65
5.4 Time measurement . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Code analysis . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Hardware performance counters . . . . . . . . . . . . . 69
5.4.3 Instrumentation . . . . . . . . . . . . . . . . . . . . 70

5.5 Energy measurement . . . . . . . . . . . . . . . . . . . . . 71

6 Solution methods 73
6.1 Exact method . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Heuristic algorithms . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Load Balancing . . . . . . . . . . . . . . . . . . . . 77
6.2.2 Degree Minimisation . . . . . . . . . . . . . . . . . . 77
6.2.3 Multicut Minimisation . . . . . . . . . . . . . . . . . 78
6.2.4 Neighbours Accumulation . . . . . . . . . . . . . . . . 79

6.3 Computational experiments . . . . . . . . . . . . . . . . . . 80
6.3.1 Simulation setup. . . . . . . . . . . . . . . . . . . . 80
6.3.2 Simulation results . . . . . . . . . . . . . . . . . . . 81
6.3.3 Verification of energy model . . . . . . . . . . . . . . . 88

7 Task Movement algorithm 91
7.1 Single-node setup and new requirements . . . . . . . . . . . . . 91
7.2 Algorithm for multiple-node setup . . . . . . . . . . . . . . . 92
7.3 Computational experiments . . . . . . . . . . . . . . . . . . 95

7.3.1 Simulation setup. . . . . . . . . . . . . . . . . . . . 95



Contents 7

7.3.2 Simulation results . . . . . . . . . . . . . . . . . . . 98

8 Conclusions 103

Bibliography 105

A Software and data repository 117





Chapter 1

Introduction

1.1 Motivation for energy-aware stencil
computations

The performance of high-end supercomputers reached the exascale through the ad-
vent of core counts in billions. However, in the upcoming exascale computing era, it
is crucial to focus not only on the performance but also the scalability of fine-grained
parallel applications, data locality and energy-aware scheduling within the parallel
code. Parallel applications need to change even now by redesigning algorithms and
data structures, respectively, to take advantage of the recent improvements in the
energy efficiency of heterogeneous computing hardware, including multicore proces-
sors and GPU accelerators. Over the next few years, one of the biggest challenges for
exascale will be the ability of parallel applications to fully exploit locality, which will,
in turn, be required to achieve the expected performance and energy efficiency. The
future highly parallel applications will have to deal with deep memory hierarchies
taking into account the energy cost in moving data off-chip. Therefore, they will
have to apply new coordinated scheduling approaches to balance energy-aware re-
source utilization and minimise work starvation during runtime. As new constraints
and limits on memory bandwidth and energy will play a key role in High Perfor-
mance Computing (HPC) in the future, more sophisticated and dynamic scheduling
techniques will be needed and applied within the parallel code.

Stencil computations as a relevant class of applications occur in many HPC codes
on block-structured grids for modelling various physical phenomena, e.g. computa-
tional fluid dynamics, geometric modelling, solving partial differential equations or
image and video processing [14, 22, 23, 85, 24]. As computing time and memory
usage grow linearly with the number of array elements in stencil computations, our
research targets highly parallel implementations of stencil codes together with task
scheduling and optimisation techniques taking into consideration the energy cost and
data locality [58, 68, 19, 11, 96]. During our experimental studies we have proved
that recent changes introduced in heterogeneous computing hardware resulted in
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different performance and energy characteristics that are critical for highly efficient
and scalable stencil computations [25]. As shown in [73, 99], the overall performance
of stencil computations is memory-bound. One should note that many existing HPC
architectures mainly focus on floating-point performance [91]. However, only a par-
tial and limited usage of the floating-point units in a given computing architecture
is possible today and may reduce energy costs without performance degradation.
Moreover, many latest improvements introduced in dynamic power management
policies at the hardware level, e.g., dynamic voltage and frequency scaling (DVFS)
or even switching off an entire unit block of a chip (clock gating) can lead to a sig-
nificant reduction in the energy required for memory-bound workloads. Advanced
dynamic power management policies give new opportunities for scheduling tasks
within the fine-grained parallel code as users are able to control the utilisation of
various functional units in heterogeneous computing hardware, e.g., turn on and off
dynamically individual cores, change the frequency of small processing and commu-
nication units on-demand or even put portions of cache memory at specific sleep
states during runtime.

All aforementioned problems and challenges regarding energy-aware stencil com-
putations are addressed in this thesis.

1.2 Goals and scope of the thesis
The main thesis of this research is the following:

It is possible to develop and verify models experimentally for efficient distribution
of the stencil workload on many heterogeneous processors and connected nodes. It
can be demonstrated in practice how to efficiently explore the relationship between
task scheduling algorithms and energy constraints based on a relevant and important
class of stencil computations in supercomputing systems with different communica-
tion and network topologies.

To achieve this objective, the analysis and development of energy and perfor-
mance models are required for the state-of-the-art mutli- and many-core supercom-
puting architectures. First of all, we need to identify and evaluate all the key char-
acteristics that impact the performance and energy usage of a stencil computation
running on a particular, often heterogenous, computational processing unit. Based
on these characteristics we can define a models which minimises the energy usage
within a specified computation’s deadline of the stencil workload on heterogeneous
architectures. Since the problem is computationally intractable, an energy-aware
Integer Linear Programming (ILP) formulation can be proposed for finding optimal
schedules, but only for relatively simple setups and instances.

In practice, stencil computations are distributed on the large blocks obtained
from the decomposition of the computational domain. The computational domain
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is a Cartesian grid on which the stencil computations are defined. The optimisation
space shows that the best strategy depends not only on load balancing the problem
size between the processing units, the processing units specification, and the stencils
employed but also on detailed mapping of the communication dependencies of the
blocks to the communication topology of respective processing units.

Previous work has yet to attempt to account for the time and energy simultane-
ously in the context of the distribution of stencil computations between processing
units. Thus, the new heuristics that schedule example workloads in real-time are
developed, including the communication overhead in the distribution process were
proposed. The proposed methods and algorithms have been tested experimentally
using multi- and many-core architectures and published in some scientific papers
during the research.

1.3 Contributions presented in this thesis
This thesis presents the following key contributions:

• Formulation and presentation of a topology-aware scheduling model for effi-
cient stencil computations executions taking into account different intra-node
and inter-node communication links among heterogeneous processors;

• An innovative analytical and methodological approach for modelling and pre-
dicting energy usage and runtime for reference stencil patterns on single and
multi-node heterogeneous HPC architectures;

• Development and experimental analysis of new heuristic algorithms for simul-
taneously minimising energy usage and runtime of small and large-scale sten-
cil computations. The proposed energy-aware resource management method
considers complex hardware HPC architectures, including different and het-
erogeneous single and many-node computing setups as well as communication
topologies;

• Design of a new Tabu Search algorithm called Task Movement (TM) for effi-
cient solving the given problem;
• Collected results and comprehensive studies of computational experiments

comparing TM algorithm performance vs simpler heuristics;

• Development of a flexible and generic scheduling model and heuristics algo-
rithms that can be easily extended or adapted in existing stencil application
frameworks adopted in real supercomputing systems;

• Introduction of a set of practical recommendations for application developers
and users interested in highly scalable and parallel stencil-based computations.
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1.4 Structure of the dissertation
The present thesis is organised as follows:

Chapter 2 introduces the architecture of the state-of-the-art supercomputers
based on clusters. We also describe the programming models used to parallelise
the applications and tools to measure different metrics connected to performance
and energy usage.

Chapter 3 presents the stencil definition and different methods to optimise stencil
computations on single and multiple processing units. The performance and energy
models are also described.

Chapter 4 recalls basic notions in the computational complexity of combinatorial
problems. We provide three examples of linear programs: the integer linear program
(ILP), the mixed-integer linear program (MIP) and the binary program (BIP). We
also present basic graph theory definitions and depict an edge-colouring problem.

Chapter 5 describes computational experiments that enabled us to discover the
critical parameters that impact stencil computations’ performance and energy usage.
We formulate our problem and define the performance and energy model.

Chapter 6 introduces a method based on ILP to obtain the optimal solution
for the formulated problem. We also present the heuristics with two objectives: to
minimise the energy usage and load balance of the tasks to meet the deadline. We
provide simulation results for the ILP model on a small problem instance.

Chapter 7 presents our implementation of a new Tabu Search inspired algorithm
called Task Movement (TM). The simulation experiments include two real-world
simulation grids to demonstrate that it is possible to reduce energy usage and im-
prove the overall performance of stencil computations in multi-node HPC setups
with different network and communication topologies.

Chapter 8 summarises the research and presents conclusions.
Appendix A provides a dedicated repository to share our algorithms and problem

instances with guidelines for running and comparing computational experiments.



Chapter 2

High Performance Computing

This chapter describes the main motivations behind developing energy-saving hard-
ware and software methods to meet the required power budget in HPC. It presents
the architecture of the state-of-the-art supercomputers based on clusters, including
the processing units, communication between them and network topology. The last
sections describe the programming models used to parallelise applications on super-
computers as well as present tools used to measure different metrics connected to
the performance and energy usage.

2.1 Architecture overview
High Performance Computing (HPC) has a number of definitions. It may refer
to running an application on a dedicated HPC machine or a computing cluster.
Generally, HPC aims to get the application running as fast as possible. Primarily,
it is useful when the problem is memory demanding and does not fit the memory of
a single computer but also when the problem is complex and requires considerable
computational power. HPC is utilised in many different areas, such as earth and
life sciences, bioinformatics, manufacturing, oil and gas, aerospace and defence,
financial services, cyber security or education [84]. In other words, HPC is used
when the problem has to be computed in less time, e.g., a model of a new car is
tested and designed virtually with more flexible and agile techniques than building
an expensive physical prototype. Another example is to complete a specific task
before a deadline, e.g., to predict tomorrow’s weather today. Finally, HPC may be
used to perform a high number of operations where the task has to be scaled, e.g., a
service provider requires more computational power to handle changing workloads
generated dynamically by end-users.

In the history of HPC, different types of computing systems were designed, e.g.,
vector computers as an answer to the emergence of computational science, Symmet-
ric Multiprocessing systems (SMP) where the processors distributed between differ-
ent machines are connected to a single shared memory or cluster systems where a
group of tightly connected machines are controlled by a single scheduling software.
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The Top500 list contains the fastest systems in the world called supercomputers.
According to this list, more than 98% of the supercomputing systems are clusters
[110]. The state-of-the-art benchmark used to test the performance of the super-
computers is called Linpack [31]. Linpack is a software package that solves a dense
linear system using double-precision calculations. However, this benchmark does
not reflect the real-world applications with different workload types. Other bench-
marks are under development to address this issue. One example is a data-intensive
benchmark called Graph500 [72] that includes three so-called kernels. The first ker-
nel constructs a weighted, undirected graph that subsequent kernels cannot modify.
The second kernel performs a breadth-first search of the graph whereas the third
one performs single-source shortest path computations. Another example is so-called
proxy-applications proposed here [101]. The main goal of these applications is to
represent different types of workloads that reflect real-world usage scenarios. One
of the proxy applications is Compressible Navier Stokes (CNS) equations with con-
stant viscosity and thermal conductivity that are discretised as stencil computations
defined on a Cartesian grid. The Green500 list includes the most power-efficient su-
percomputers [106]. The top spot on a release from June 2021 of this list holds
MN-3 at Preferred Networks, which delivers 29.7 GFLOP per Watt (GFLOP/W)
with a performance equal to 1.8 PFLOP/s. Today, one of the main goals of many
HPC communities is to develop a supercomputer that will reach one Exa FLoating-
point OPeration per second (EFLOP/s) of the performance by the year 2020 within
20MW of the power budget [55], but some of the authors think that the year 2024
is more realistic [56]. The primary obstacle to achieving this goal is power con-
sumption. In order to reach the exascale performance, the system should be able
to sustain 50 GFLOP/W, thus the power consumption of the MN-3 supercomputer
should be reduced by a factor 2x. According to the Green 500 list, 13 of the top
15 supercomputers are heterogeneous systems that utilise CPUs and GPUs. Au-
thors in [56] suggest that only these types of systems are able to reach the exascale
performance.

There are many different techniques in a hardware design process to improve
power consumption, including a well-known process called technology scaling [51].
In this technique the size of the transistors is reduced, and thus the energy usage is
decreased linearly. However, the energy cost of moving data still remains constant
independently of the transistor size, see Table 2.1.

Table 2.1: Energy consumption of processing unit components

Year Process size Frequency DFMA 64b read from 8Kb SRAM Wire energy

[nm] [GHz] [pJ] [pJ] [fj/bit/mm]

2010 40 1.6 50 14 240

2017 10 2.5 8.7 2.4 150

Other hardware design efforts to improve the energy efficiency for HPC include:
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• packaging multiple chip modules on the same silicon;

• 3D stacking of memory and chip;

• power management strategies to dynamically allocate a power supply to the
portions of the hardware;

• malleable memory systems to enable the construction of a hierarchy of scratch
pads that reside simultaneously with the hardware caches;

• memory models with a relaxed consistency model to facilitate greater memory
parallelism and reduce the data movement;

• non-volatile memory.

All the efforts in the hardware are tightly connected and could naturally impact the
energy efficiency improvements in the software layer.

The following sections describe different hardware components utilised in HPC
heterogeneous cluster systems.

2.1.1 Processing Units
The architecture of the GPU is significantly different from the CPU, see Figure 2.1.

Figure 2.1: Architecture of the CPU (left) and the GPU (right)

GPUs have been developed mainly to render frames that are displayed on a
computer screen. However, developing programmable processors called shaders fa-
cilitated the implementation of the first algorithms not connected to the graphics
rendering. Next, different shaders were merged into unified shaders and enabled
General-Purpose Computing on Graphics Processing Units (GPGPU). This unifi-
cation led to the development of a Compute Unified Device Architecture (CUDA)
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programming model [74]. CUDA is an extension of the C++ language that allows for
access to the GPU resources. Whereas CPUs have been developed to execute differ-
ent workload types from the very beginning, GPUs have been focused on rendering.
This has implications for performance and energy efficiency. Typically, the GPU can
execute more operations per second than the CPU, and each GPU operation requires
less energy than the CPU operation. For example, Nvidia Tesla K20m GPU has a
peak performance 7x higher than Intel Xeon E5-2670 CPU and 5.76x more memory
bandwidth. Nvidia GPU consumes 6x less energy per operation than Intel CPU [26].
However, it is harder to program GPUs as they require a fine-grained parallelisation
of the algorithm. Tesla K20m has 2496 cores distributed between 13 Streaming
Multiprocessors (SM), whereas Xeon E5-2670 has eight cores. Tesla K20m cores are
combined in vectors of 32 called warps and each SM has six warps. Nvidia GPU has
L1 and L2 caches that are much smaller than CPU caches. Moreover, Nvidia GPU
has a scratchpad cache called a shared memory that must be manually programmed.
The slowest memory on the GPU is GDDR5. The computation latency is hidden
by multi-threading. On the other hand, the CPU is focused on the performance of
a single core and has larger caches that reduce the memory access latency. It has
complex control units that improve the throughput of instructions, for example, a
branch prediction unit that reduces stalls in the pipeline. Intel Xeon E5-2670 has
three large caches (L1, L2 and L3) that reduce the memory access latency. The
CPU also has vector instructions called Single Instruction Multiple Data (SIMD).
Intel Xeon E5-2670 supports three different vector extensions such as MMX, SSE
and AVX. The AVX vector extension has a width of 256 bits and can execute the
eight 32 bit values at a time.

The newest GPU architectures significantly increase the theoretical computa-
tional power and energy efficiency of double-precision operations. Tesla K20m based
on the Kepler architecture provides 1.175 TFLOP/s, whereas a newer Pascal GPU
Tesla P100 (PCI version) achieves 4.76 TFLOP/s. The power efficiency increased
more than three times from 5.2 GFLOP/W to 18.68 GLFOP/W. This significant in-
crease resulted from a two-generation upgrade where Nvidia skipped Maxwell Tesla
cards. The newer Volta architecture with Tesla V100 GPU (PCI version) reaches
7.014 TFLOP/s of the performance and executes 28 GFLOP/W, which represents
approximately 50% increase in power efficiency compared to Tesla P100. Volta GPU
was introduced only one year after Tesla P100.

2.1.2 Intra-node communication
As described in the previous section, the data on the CPU and GPU have to be
moved through a complex memory hierarchy. Several processing units (PUs) can be
installed in a single compute node to distribute the computations and execute them
efficiently. A configuration where multiple processing units are connected to shared
memory is called a shared memory system. The PU transmits the data by writing to
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any address in the memory, and other PUs can read from it. Currently, three main
types of memory buses may be distinguished for the intra-node communication. For
the first CPU-CPU communication type, Intel CPUs utilise Quick Path Interconnect
(QPI). QPI in version 1.1 enables connecting up to four CPUs. Each Intel CPU
socket may be connected to two QPI links. The QPI link runs at 8.0 Giga Transfer
per second (GT/s) in a single direction where each transfer moves two bytes of data
[86]. Thus a single QPI link provides 32 GB/s of bandwidth.

Figure 2.2: Two CPUs connected with two QPI links

Figure 2.3: Four CPUs connected with four QPI links

Figures 2.2 and 2.3 show the 2xCPU and 4xCPU node configurations. The
2xCPU configuration with two QPI links enables 64GB/s of inter socket communi-
cation. However, for the 4xCPU configuration there is no direct connection between
CPUs on a diagonal. Thus, CPUs on a diagonal must first move data through the
neighbouring CPU and then to the target CPU.

The second intra-node GPU-GPU communication type may be conducted in two
different ways. The Nvidia GPUDirect Peer-to-Peer (P2P) technology enables di-
rect communication between GPUs connected to the same Peripheral Component
Interconnect Express (PCI Express) Root Complex (RC). PCI Express is a memory
bus that connects the CPU with other external components such as GPUs. Typ-
ically, Intel CPU has a single PCI Express Root Complex. RC defines a separate
hierarchy domain for PCI Express. This hierarchy may be composed of switch com-
ponents and PCI Express endpoints, see Figure 2.4. Switch aggregates PCI Express
endpoints and allows more devices to be attached to a single RC. Figure 2.5 shows
connections between four GPUs. Each GPU is attached to the exact RC and com-
municates using P2P. P2P enables direct access to the GDDR memory of another
GPU without going through the CPU’s main memory RAM. Figure 2.6 presents the
communication between two GPUs connected to different CPUs. Each CPU has a
separate RC, and the communication goes through the CPU’s main memory. This
communication has significantly lower bandwidth than the P2P connection [69].
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Figure 2.4: Root complex with a PIC Express topology

Figure 2.5: Root complex with four GPUs

The third intra-node communication type is between the CPU and the GPU.
This communication is done through the PCI Express bus for the GPU based on
the Kepler architecture. The PCI Express in version 3.0 with 16 lanes enables
moving the data with a bandwidth of 16 GB/s.

For newer architectures such as Pascal and Volta Nvidia introduced NVLink [34].
NVLink enables point-to-point connection between the CPU and the GPU as well
as solely between GPUs. Tesla P100 GPU is released in two different variants. The
first one, similarly to the Kepler architecture, uses a PCI Express 3.0 bus to connect
the GPU to the CPU, while the second one utilises the NVLink bus to enable the
connection between the CPU and the GPU. The total bandwidth of NVLink in
version 1.0 with four lanes implemented in Tesla P100 is equal to 80 GB/s whereas
Tesla V100 utilises NVLink in version 2.0 with six lanes, which provides a total
bandwidth equal to 150 GB/s. The NVLink bus also enables connecting of up to
four GPUs, see Figure 2.7.

Figure 2.6: Two GPUs connected to two separate CPUs



2.1 Architecture overview 19

Figure 2.7: NVLink connetcing four GPUs

2.1.3 Inter-node communication
This section describes the communication between computing nodes in an HPC
cluster over a network where each PU can transmit data to every other PU by
sending and receiving messages. Such configurations are called distributed memory
systems. Today, many supercomputers have a hybrid configuration where several
PUs are installed in each node and act as a shared memory system, whereas a
network is used to connect these nodes. Contemporary HPC clusters utilise different
network topologies to connect a large number of nodes such as trees, toroidal meshes
and dragonflies.

The advent of large and low-diameter network topologies installed in the most
powerful supercomputers impacts the overall performance of many large and highly
parallel computations. In the upcoming powerful HPC installations, the critical
performance criterion related to minimising costs due to data transmission will play
an increasingly vital role. Typically, inter-node communication using a specific
network topology for the interconnection of many nodes is usually much slower than
intra-node communication. However, parallel applications use conventional read and
write operations on memory that processors share within the same node. Therefore,
this section describes all the relevant parameters extracted from real HPC network
topologies that can be used during the performance optimisation of stencil parallel
computations.

We have focused our research on three major network topologies, namely fat-
tree, dragonfly and torus, see Table 2.2. They have been selected as they are already
adopted in modern multi-node HPC systems listed in [110]. To better understand
inter-node and intra-node communication routines, let us present the main charac-
teristics of fat-tree, dragonfly and torus network topologies.

2.1.4 Fat-tree network topology
The fat-tree topology is an example of a tree network in which the computing nodes
are connected to a bottom layer of the tree, see Figure 2.8. Each switch has the
same number of links going down to its children and going up to its parent. The
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Table 2.2: Top500 list from November 2021 of most powerful multi-node HPC systems
ranked according to the High-Performance Linpack (HPL) and High Performance Conjugate
Gradients (HPCG) benchmarks.

HPL HPCG
Rmax System/ Interconnect

Processor Cores Topology
Power

[PFlop/s] Location architecture [MW]

1 1 442
Fugaku Tofu

A64FX 48C
7 630 848

Torus
29.9

Japan interconnect D

2 2 148
Summit Dual-rail Mellanox IBM Power9+ 2 414 592 Fat 10.1

USA EDR Infiniband Nvidia GV100 tree

3 4 94
Sierra Dual-rail Mellanox IBM Power9+

1 572 480
Fat

7.4
USA EDR Infiniband Nvidia GV100 tree

4 16 93
Sunway

NRCPC
Sunway

10 649 600
Fat

15.3
China SW26010 tree

5 3 70.9
Perlmutter

Slingshot-10
AMD EPYC 7763

761 856
Fat

2.6
USA Nvidia A100 tree

6 5 63.4
Selene

HDR Infiniband
AMD EPYC 7742

555 520
Fat

2.6
USA Nvidia A100 tree

20 15 21
Piz Daint Cray Aries Intel Xeon E5

387 872 Dragonfly 2.4
Switzerland interconnect Nvidia Tesla P100

Figure 2.8: Fat-tree network topology

tree gets "fatter" towards the root of the tree, and the switch in the root has the
most links compared to other switches.

Typically, it consists of two or three switch levels [79, 62, 48, 113]. In Sum-
mit, one of the most powerful HPC systems today, the fat-tree network topology is
composed of Dual-rail Mellanox IB EDR 100G with a node injection bandwidth of
23 GB/s. The interconnect is a three-level tree implemented by a switch to con-
nect nodes within each cabinet (first level) and other switches (second and third
levels) connecting cabinets. Each IBM POWER9 CPU is directly connected to a
network interface card (NIC) using the PCIe Gen4 x8 shared slot. The bandwidth
between the CPU and NIC is around 16GB/s, whereas each port on NIC provides
12.5GB/s of bandwidth. The multi-node Summit system contains 4608 nodes. Each
node has two IBM POWER9 CPUs and six Nvidia Volta V100 GPUs. 512GB of
DDR4 RAM is available for CPUs and 96GB of HBM2 memory for GPUs. Each
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Figure 2.9: Fat-tree network topology implemented in the IBM Power 9+
Summit multi-node HPC system.

CPU with three GPUs composes a group that is connected with NVLink2. The
bandwidth between GPUs or between the GPU and the CPU is about 50GB/s in
a single direction, see Figure 2.9. The bandwidth between CPUs is 64GB/s. The
aggregated bandwidth of eight DDR4 RAM modules is 170.64GB/s, and the ag-
gregated bandwidth of HBM2 is 900GB/s. The POWER9 processor has been built
around IBM’s SIMD Multi-Core (SMC). The processor provides 22 SMCs clocked
at 3.07GHz with separate 32kB L1 data and instruction caches. Pairs of SMCs
share a 512kB L2 cache and a 10MB L3 cache. SMCs support Simultaneous Multi-
Threading (SMT) up to a level of four, meaning that each physical core supports up
to four hardware threads. These threads share the physical core’s L1 instruction and
data caches. The peak performance of a single processor is up to 540.5 GFLOP/s
in double precision. The latest GPU Volta architecture with Tesla V100 reaches 7.8
TFLOP/s of performance in double precision and executes 28 GFLOP/W, which
represents approximately 50% increase in power efficiency compared to Tesla P100.
Each V100 contains 80 streaming multiprocessors (SMs), 16 GB of high-bandwidth
memory (HBM2), and a 6 MB L2 cache available to SMs. The GigaThread Engine
distributes work among SMs, and eight 512-bit memory controllers control 16 GB
of HBM2 memory.

2.1.5 Torus network topology
The toroidal mesh, also called a torus interconnect, is another example of a network
topology used in supercomputers. Each node in a cluster is connected to the adjacent
ones in this topology. The signal is routed directly from one node to the other with no
need for switches. There are torus networks with different dimensions. In a 1D torus,
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Figure 2.10: Torus network topology with different dimensions

the nodes are connected to two nearest neighbours, and the communication may be
applied to two directions. In a 2D torus, the nodes are placed on a rectangular mesh
with each node connected to four nearest neighbours. The nodes on the mesh edges
are connected to the nodes on the opposite edges. In a 3D torus, the communication
takes place in six different directions. Thus, the node can be connected to six other
nodes, see Figure 2.10.

The torus topology is a k-ary n-cube network with N = k ∗ n nodes arranged in
an n-dimensional grid having k nodes in each dimension. Each node of the torus net-
work is connected to 2 ∗n other nodes. A torus network node can be identified with
a unique n-digit radix k address. Network designers determine the properties of the
torus network primarily by torus dimensionality (i.e., the number of dimensions, and
the number of nodes in each dimension) and link bandwidth. With a high number
of torus dimensions per node and limited link bandwidth, the serialisation delay of
the packet becomes a significant overhead. Likewise, the network diameter increases
with a limited number of torus dimensions and a higher link bandwidth, increasing
the end-to-end packet latency. Therefore, when designing a torus network, one must
find the right balance of dimensions and channel bandwidth to achieve high perfor-
mance for the target workloads. Since each torus node is connected to its neighbours
via dedicated links, torus networks typically have high throughput for traffic pat-
terns involving nearest-neighbour communication. The torus network concept has
been used extensively in the Blue Gene machine and was successfully implemented
by Fujitsu in the K-computer machine (6D torus). The torus topology network is
implemented in the Post K-computer called Fugaku. Any Fugaku compute node
may contain four Core Memory Groups (CMG). Each CMG has 12 computing cores
and one assistant core based on the Armv8.2-A series processor, which is clocked
at 3GHz connected to 8GB of HBM2 memory. Each core has 512-bit wide SIMD
(Single Instruction, Multiple Data) and can execute two FMA instructions (Fused
Multiply–Add). The performance of the compute node is over 2.7 TFLOP/s in
double precision according to [3]. The aggregated bandwidth of four HBM2 mem-
ory modules is 1024GB/s. The torus network topology called TofuD interconnect
contains six coordinate axes: X, Y, Z, A, B, and C. There are two possible config-
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urations in a rack. The rack contains eight shelves, and each shelf has 48 CPUs.
The configuration of the processors in the shelf is 1x1x4x2x3x2 (XxYxZxAxBxC).
The top or bottom half of the rack (four shelves) has the following configuration:
2x2x4x2x3x2. The compute node has six network interfaces where the bandwidth
of each one is 6.8GB/s; see Figure 2.11.

Figure 2.11: Torus network topology implemented in K-computer and Post-K
supercomputer.

2.1.6 Dragonfly network topology
A dragonfly topology is a hierarchical network with three levels: routers, groups,
and systems [53]. The routers inside each group can have any topology, i.e., fat-tree
or 3D torus. The recommendation in [53] is a flattened butterfly [52]. Several groups
are connected using all-to-all links, i.e., each group has at least one link directly to
each other, see Figure 2.12. This topology focuses on reducing the number of long
links and network diameter.

The concept of the dragonfly network topology, a two-level directly connected
network, is a good candidate for exascale architectures because of its low diameter
and reduced latency, as presented in [71]. Over the last few years, it has been im-
proved in the form of the Slim Fly network topology [112]. The dragonfly topology
has been successfully implemented in the Piz-Daint supercomputer and is used to
link all compute nodes. Currently, the 5320 multi-node HPC system is connected by
the Aries interconnect [6]. Each Piz-Daint compute node contains a single 2.6GHz,
12-core Intel E5-2690v3 Haswell series processor with 64GB of DDR4 RAM [5] and
Nvidia Tesla P100 GPU with 16GB of HBM2 RAM where GPU is connected by a
PCIe 3.0 x16 bus. The peak performance of a single processor is 499 GFLOP/s in
double precision. Tesla P100 GPU reaches 4.67 TFLOP/s of performance in double
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Figure 2.12: Dragonfly network topology

precision. Four compute nodes are connected to each Aries router in this topology
and form a compute blade. A chassis has 16 compute blades where three (up to
four chassis) form a cabinet, and two cabinets make up a group. The interconnect
consists of all-to-all connections among all compute blades in a chassis called the
rank 1 network. Compute nodes are connected to the corresponding nodes in dif-
ferent chassis within the group called the rank 2 network. They form 2D all-to-all
connections among all nodes in a group. All-to-all connections link groups called
the rank 3 network. Minimal routes between any two nodes in a group are two hops.
The non-minimal route requires up to four hops, as presented in Figure 2.13.

The performance and energy usage of network topologies mainly depend on the
number of intermediate hops that a message has to go through in order to reach
the target node. These hops influence the latency and bandwidth of the connection
links. Hops can represent a switch in a fat-tree topology or a network adapter in
a torus topology. Another parameter that influences the efficiency of topologies is
congestion which consists of heavy traffic that blocks any number of internal paths
within an interconnection network. Typically, the congestion results from contention
where several packets from different input ports concurrently request access to the
same output port. Only a single packet can be sent while the other packets wait in
a queue until the output port becomes available. When the contention persists, the
queues are filled up and block the packets coming from the source switches. This
congestion may eventually be spread across various paths. As a result, the average
latency may be increased, and the network throughput may be decreased. Many
different techniques are proposed to address increased latency, for example, con-
gestion management in a fat-tree topology based on an Infiniband interconnection
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Figure 2.13: Dragonfly network topology implemented in Cray XC50 Piz-Daint
multi-node HPC system.

technology [32].

2.2 Parallel application programming and
execution environments for stencil
computations

The current generations of most powerful HPC systems are already hierarchical in
interconnection, communication, memory architecture, cache level, coherency, and
non-uniform access. Future generations of exascale HPC machines will feature even
more complex hierarchies. However, over the last decades, general-purpose HPC
systems have supported various parallel programming environments. Application
developers have been provided with parallel programming environments as an ab-
straction layer necessary to obtain the required level of concurrency and parallelism.
In general, it can be achieved by decomposing stencil computations by expressing
all the critical requirements related to data locality within the source code. The
decomposition process itself can be done in three different ways:

• application profiling, using appropriate software analysis and optimisation
tools to detect some regularities in the stencil software source code (data-
parallel model)
• identifying procedures that meet specific functionalities in the stencil source

code. Then, identified functionalities form a set of smaller entities (tasks) that
can be scheduled and executed in parallel on multi-node computing resources
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(task-parallel model)
• automatic parallelisation, scheduling and tuning during the stencil code com-

pilation process without the developer’s intervention in the code.

Stencil code developers used to delegate scheduling and management functions to
the underlying software layer, which automatically guaranteed the acceptable per-
formance efficiency and portability of the code. However, many manual changes
supported by various optimisation techniques before and during the execution are
still required within the stencil source code. The main reason is the increased mem-
ory and communication hierarchies in HPC systems, as discussed in the previous
section. System architectures at exascale are unlikely to guarantee a massively par-
allel application of complete coherence in cache access. Naturally, it will directly
impact model changes in parallel programming environments, taking into account
the physical location of data in the microprocessor architecture.

2.2.1 Multi-node parallel programming environments
To hide the underlying complexity of heterogeneous multi-node HPC systems for
efficient stencil code execution in a parallel mode is a challenging task. The decom-
position approach based on automatic parallelisation is limited in practice. Many
automatic tuning options have been optimised for a specific processor microarchitec-
ture. Thus, the software performance portability from one specific hardware archi-
tecture to another is also naturally restricted. Nevertheless, aiming at pre-exascale
and exascale multi-node HPC systems, application developers must carefully select
application decomposition techniques. Additionally, they should consider various
scheduling attributes related not only to heterogeneous computing parts, see for
instance [78], but also to the hierarchical memory allocation, data placement, data
movement, and communication. There are some promising research activities in this
area, for example, recent successful experiments using a compiler-based autotuning
framework for the geometric multigrid linear solvers presented in [9]. From the per-
spective of parallel stencil code synchronisation in many existing multi-node HPC
systems, we can still distinguish two major programming models and corresponding
execution environments:

• The Message Passing model provides developers with a distributed memory
structure assuming that only the local memory cache is directly accessible to
the task (process). Communication with other tasks (processes) is carried out
by data exchange in messages. The primary and commonly accepted standard
in high-performance computing is the Message Passing Interface (MPI), the
standard for message exchange among multiple tasks (processes) developed
back in the 1990s [41]. It is now most commonly accepted and supported by
hardware vendors on multi-node HPC installations together with various valu-
able extensions [44], e.g., support for distributed computing systems [1], The
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MPI standard in version 3.0 includes neighbourhood collectives as sparse com-
munication patterns such as 3D Cartesian neighbourhoods that occur in stencil
computations to improve performance and portability of applications [45]. It
may replace the traditional point-to-point communications typically utilised
in many implementations of stencil computations. It is still an open question
if the message passing is the correct paradigm for all systems. However, some
authors suggest that this may not be true, especially for hierarchical HPC
systems [83, 70, 61]. Basic MPI ignores the fact that today’s computational
nodes contain multi- and many-core processors that reside on a shared mem-
ory within a node. Furthermore, as the energy cost of moving data across the
interconnect is substantially higher than the cost of intra-chip communication,
one can expect that more emphasis will be put on shared memory program-
ming models [91]. Although some MPI libraries and execution environments
employ shared caches within a node to improve communication time, these
optimisations are usually hidden from the application programmer.
• The Shared Memory model provides an entire address space in the mem-

ory. Thus, developers at the level of APIs can quickly scale the data size
necessary to perform calculations. A widely accepted standard is Open Multi-
Processing (OpenMP), a standard for programming applications that allows
creating computer simulations for computing nodes with shared memory [20].
The OpenMP standard enables developing performance portable applications
that would run on multi-core CPUs. The application that employs it is easy to
maintain and debug as it can still run as a valid serial code. Another relevant
parallel programming paradigm is called Partitioned Global Address Space
(PGAS) [30]. Unlike the OpenMP programming environment, in the PGAS
paradigm all variables in a specific local memory area are private for a given
thread. Consequently, developers can mark the memory space as shared for
other threads to read or modify. They can consider the hierarchical memory
structure on a heterogeneous computing node. Then, they can optimise the
application performance accordingly by taking into account data locality as it
was demonstrated, for instance, in [18].

Additionally, we have observed the emergence of new hybrid programming and exe-
cution environments in multi-node HPC systems. They can use the increasing multi-
node computing power by effective combination of MPI mechanisms (for program-
ming data exchange between computing nodes in a multi-node computing setup)
with OpenMP directives (for programming shared memory). Additionally, many
existing heterogeneous computing nodes in HPC systems locally support one of the
following environments:

• CUDA - a high-level programming environment based on the C programming
language that is an integral part of the universal architecture of multi-core
processors (most commonly used for accelerators and graphics cards)
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• Open Computing Language (OpenCL) - a high-level programming environ-
ment based on the C programming language supporting the development of
applications operating on heterogeneous computing nodes consisting of CPU
and GPU units
• OpenACC, SYCL and C ++ AMP - programming environments are extend-

ing the CUDA and OpenCL environments with appropriate improvements in
programming interfaces. It helps developers analyse and optimise the parallel
code on various accelerated computing nodes

Many exascale supercomputers will probably be capable of running and support-
ing various software stacks based on the hybrid MPI+X model [10]. In this case,
X denotes one of the above-mentioned parallel programming environments opti-
mised for the specific hardware architecture within a specific computing node [2].
Therefore, the hybrid MPI combinations with CUDA, OpenCL, and OpenACC are
promising for stencil computations. Considering specific configurations of powerful
HPC systems and typical operations in stencil-based computer simulations, some
software frameworks are worth considering. For example, an exciting solution is the
hybrid programming and runtime environment called StarPU, which supports job
scheduling on multi-node GPU-based HPC systems [8]. Another solution named
StarSS provides a unified execution model for heterogeneous jobs supporting dif-
ferent scheduling algorithms. It supports essential load balancing and data man-
agement mechanisms for processors connected to multiple GPUs [80]. Some useful
extensions to StarSs were proposed as OmpSs in the form of OpenMP-like pragmas,
and it can also incorporate the use of OpenCL or CUDA kernels. OmpSs supports
different scheduling strategies and offers an advanced runtime system to schedule
tasks efficiently as demonstrated in [81].

The CUDA programming model has been selected in this thesis as a more mature
standard for Nvidia GPUs. CUDA is an extension of the C++ language that enables
access to GPU resources. A function executed on the GPU is called a kernel. A
thread computes the work described in the kernel. The CUDA programming model
defines a particular thread hierarchy where threads are grouped into blocks, and each
block is executed on SM. A group of blocks forms a one-, two- or three-dimensional
grid.

In the basic MPI model adding new cores significantly increases the commu-
nication load, relatively to the local work size on a per rank basis. The hybrid
MPI+OpenMP approach has been utilised in this thesis to address the communica-
tion load and to implement and run stencil computations on CPUs efficiently. By
finally adding the GPU, the hybrid MPI+OpenMP+CUDA programming has been
selected as a good model to benchmark stencil computations described in Section
3.2.2 for an HPC heterogeneous cluster with both CPUs and GPUs taking advantage
of the distributed memory inter-node parallelism and the shared memory intra-node
parallelism.
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2.2.2 Domain Specific Languages for stencil
computations

Many research efforts have been dedicated to developing, deploying, and testing
multi-node HPC systems characteristic for parallel high-level domain-specific pro-
gramming environments called Domain-Specific Languages (DSLs). One of the basic
assumptions for DSL environments is to hide the complexity of underlying multiple
heterogeneous computing nodes for stencil computations as much as possible. Today,
there are many DSL frameworks available for stencil computations, e.g., Mint [100],
Physis [67] or recently released YASK [116] and PSkel [78]. In practice, many stencil
problem sizes become significantly larger than the fast-memory capacity available
on a many-core processors node. Thus, the sequential time-step algorithms create
an overwhelming number of misses from the fast-memory shared cache, considerably
degrading performance. The new multi-level temporal tiling approach for efficient
HPC stencil computation is demonstrated in [115].

DSL aims to eliminate many disadvantages offered by software frameworks, par-
ticularly those using the most popular hybrid MPI + X model described in the
previous subsection. In the context of the considered scheduling problem for stencil
computations, it is worth mentioning our contribution to the development of a DSL
framework called CaKernel. It enabled efficient execution of stencil computations on
more complex heterogeneous architectures, as presented in [13]. Further improve-
ments of the CaKernel framework resulted in an extended DSL called Chemora op-
timised for solving systems of Partial Differential Equations (PDEs), which targets
modern HPC architectures [14]. Chemora was based on Cactus that sees prominent
usage in the computational relativistic astrophysics community [88].

Additionally, we have developed a high-level stencil framework implemented for
the EULerian or LAGrangian model (EULAG)[82]. EULAG is an anelastic model
for simulating low Mach number flows under gravity. It was executed efficiently
using the hybrid MPI + X environment on heterogeneous multi-node HPC systems,
as we demonstrated in [24]. We provided various task scheduling methods using
the hybrid MPI + X environment. The proposed DSL framework for stencils was
written with C++ templates and provided a portable code with no need for ad-
ditional dependencies. The C++ templates with the static domain decomposition
allowed a compiler to efficiently optimize the prepared stencil code. The proposed
flexible domain decomposition scheme with the subdomain partition to fit the mem-
ory hierarchy supported load balancing between an arbitrary number of CPUs and
GPUs.
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2.3 Selected tools
This section presents tools used to measure different metrics connected to the per-
formance and energy usage of the application.

2.3.1 Performance measurement
To obtain performance metrics for the considered stencil computations running con-
currently on CPUs and GPUs, two tools have been used: Intel Advisor [107] and
Nvidia Profiler [109], respectively. Intel Advisor allows to quickly generate reports
and find hot spots in the application code, for example, loops that occupy a sig-
nificant part of the execution time. These reports are called Surveys as they add
minimal overhead to execution time and require no modification in the application
code. Different parameters can be collected for each loop: the number of executed
FLOPs, the number of bytes moved between the CPU and the memory hierarchy
(including L1, L2, LLC and DRAM), arithmetic intensity I, the number of FLOP
per iteration, the number of bytes moved per iteration, the number of iterations,
and utilisation of vectorisation. This report is called "Find trip counts and FLOPS"
and adds significant overhead to the execution time (typically ten times longer than
execution time).

The second tool, Nvidia Profiler, displays a timeline activity of the GPU together
with the CPU and provides the analysis of data flow through memory buses. It is
instrumental in verifying the time spent on the communication between the CPU
and the GPU as well as the data locality on the GPU. These two tools have been
essential to collect metrics needed to prepare and verify the performance model of
the stencil computations on both CPUs and GPUs.

2.3.2 Energy measurement
The precise measurement of energy consumption of HPC resources and applica-
tion is a significant challenge in preparing an energy model that can be used for
energy-aware scheduling. The need for fine-grained energy measurements caused
the manufacturers of PUs to implement different software interfaces to measure the
energy consumption. The Running Average Power Limit (RAPL) [43] is an Intel API
written in a C language, which allows measuring the energy usage and controlling
the power budget of the different components of Intel CPUs such as socket, core,
uncore (only for desktop), and DRAM (only for the server solutions). This API sup-
ports Intel processors starting from the Sandy Bridge architecture which appeared
in 2011. The measurement frequency of this API is equal to 1000Hz. The default
granularity of the energy measurement is equal to 15.3uJ. On multi-core CPUs, the
frequency switching implicitly changes an operating voltage. The voltage is opti-
mised by the hardware based on several factors. All processor cores that execute
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some workload share the same frequency and voltage. The multiple frequency and
voltage pairs while executing the code are called P-states. The idle cores switch to
low-power idle states called C-states. At the higher levels of C-states power saving
actions are taken, such as flushing the caches, stopping the clocks, and reducing the
voltage to zero. These hardware optimisations reduce energy usage and are taken
into account during the measurements.

Nvidia provides the Nvidia Management Library (NVML) API [108] for its
GPUs. This interface supports GPUs starting from the Fermi architecture and
can only be utilised in the server solutions. The NVML interface allows users to
manage the power states of GPU and measure the power usage of the whole board
in mW. Measurement frequency can be controlled. Both APIs are used during the
computational experiments described in Section 5.1.





Chapter 3

Stencil computations

This chapter gives a brief introduction to stencil computations. The stencil defini-
tion is provided with examples of two stencil computations representing the three-
dimensional data access patterns. Different methods to optimise the performance
of stencil computations on single and multiple processing units as well as different
domain distribution algorithms are characterised. The last sections describe state
of the art across performance and energy models.

3.1 Definition
A stencil computation is defined on a multi-dimensional structural grid where each
point on a grid is updated with a strict pattern. The pattern defines which neigh-
bouring points are used during a stencil computation. LetDt be the three-dimensional
grid characterized by the (i, j, k) indices for a time step t. The currently updated
point is defined as Dt+1(i, j, k) whereas the neighbouring point is represented as
Dt(i + α, j + β, k + γ). The α, β, γ ∈ I values describe the shift in each direction
from the currently updated position where I is a set of integral values. A single
update of the whole grid is called a time step. In this study the focus is on an ex-
plicit method where a current time step t+ 1 is updated by using values of the grid
points from a previous time step t. Figure 3.1 shows an example of a seven-point

Figure 3.1: Seven-point stencil

stencil where the values of the six neighbouring points are accessed and applied to
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the value of the currently updated point. This stencil is represented by the following
equation:

Dt+1(i, j, k) = θ ∗ (Dt(i, j, k) +Dt(i+ 1, j, k) +Dt(i− 1, j, k) +Dt(i, j + 1, k)+
Dt+1(i, j − 1, k) +Dt(i, j, k + 1) +Dt(i, j, k − 1))

(3.1)

A destination grid Dt+1 for a time step t+ 1 is updated with a stencil that loads the
seven values from the source gird Dt for a time step t. The values are fetched from
the six directions i+1, i−1, j+1, j−1, k+1, k−1 as well as the middle point and
multiplied by a constant θ. Another example is a twenty-seven point stencil shown
in Figure 3.2.

Figure 3.2: Twenty-seven point stencil

This stencil involves neighbouring points from all directions, including the edge,
corner and face points; see the equation below:

Dt+1(i, j, k) = θ ∗ (Dt(i, j, k)+
Dt(i− 1, j − 1, k − 1) +Dt(i− 1, j − 1, k) +Dt(i− 1, j − 1, k + 1)+

Dt(i, j − 1, k − 1) +Dt(i, j − 1, k) +Dt(i, j − 1, k + 1)+
Dt(i+ 1, j − 1, k − 1) +Dt(i+ 1, j − 1, k) +Dt(i+ 1, j − 1, k + 1)+

Dt(i− 1, j, k − 1) +Dt(i− 1, j, k) +Dt(i− 1, j, k + 1)+
Dt(i, j, k − 1) +Dt(i, j, k) +Dt(i, j, k + 1)+

Dt(i+ 1, j, k − 1) +Dt(i+ 1, j, k) +Dt(i+ 1, j, k + 1)+
Dt(i− 1, j + 1, k − 1) +Dt(i− 1, j + 1, k) +Dt(i− 1, j + 1, k + 1)+

Dt(i, j + 1, k − 1) +Dt(i, j + 1, k) +Dt(i, j + 1, k + 1)+
Dt(i+ 1, j + 1, k − 1) +Dt(i+ 1, j + 1, k) +Dt(i+ 1, j + 1, k + 1))

(3.2)

Similarly to the seven-point stencil, all the values are summed up and multiplied
by a constant θ. Both stencil types are utilized in this dissertation as they are the
important examples of 3D stencils. The seven-point stencil is used as the state-
of-the-art benchmark [28] for the performance of stencil computations whereas the
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twenty-seven point stencil is a good representative of the data demanding access
pattern [29]. Stencil computations may be further divided into two categories de-
pending on the spatial position of the updated point within the grid: the inner
computations and the boundary computations, see Figure 3.3.

Figure 3.3: The example 3D grid where the red colour shows the interior and
the yellow colour shows boundaries

The inner computations have the uniform pattern across the grid and are applied
to the interior of the grid, whereas the boundary computations are applied at the
boundaries of the grid and may have a different specialised pattern for each boundary
depending on the application in which the stencil computation is used, for example,
the Dirichlet or Neumann boundary conditions [33].

In this work, the focus is on the stencil computations applied to the inner area of
the grid. These stencils are widely utilised in different applications and have a uni-
form stencil pattern across a grid. Moreover, for a particular grid much larger than
the capacity of the available memory of a single processing unit, the computations
of stencils defined on an inner area typically require significantly more computing
power than the stencils defined on the boundaries.

3.2 Performance optimisation methods
In general, the considered stencil computations perform global sweeps through data
structures typically much larger than the capacity of the available data caches within
processing units. Additionally, accessing data in the main memory within the hard-
ware is not fast enough, and there is often a bottleneck between the local cache
and the main memory. Therefore, many researchers have already tried to exploit
data locality in stencil computations by performing operations on cache-sized blocks
of data after domain decomposition [90] after time decomposition [35] or proposed
cache-aware optimisation algorithms on many-core modern processors [73]. Some
of the authors assume that within a single time step there are only stencil compu-
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tations [35]. This assumption allows for application of the optimisation technique
called temporal parallelisation.

In this study, the focus is on a workflow of the application, e.g., the computa-
tional fluid dynamics (CFD) simulations, where different types of computations are
mixed within a single time step, such as the implicit methods, reductions, point-
wise calculations, and stencil computations. Therefore, it is not possible to utilise
temporal parallelisation.

Some frameworks try to ease the implementation of stencil calculations on mul-
tiple processing units. A user develops a single stencil code in a framework’s specific
language which then, during a compilation phase, is translated to a target comput-
ing architecture. The frameworks distribute the computations to employ multiple
processors. The distribution involves the decomposition of the Cartesian grid into
overlapping blocks. The overlap, called the halo region, is needed to update a de-
composed block on borders correctly. A single processing unit updates each block.
The minimal size of the overlap depends on a stencil pattern. For example, Physis
[67] uniformly decomposes a global domain over all the accelerators as instructed
by a user-controllable parameter. The user has to determine which decomposition
provides the best performance experimentally. The Physis framework focuses only
on the GPU architecture. Similarly, a Chemora framework utilises a simple decom-
position method by a uniform partition where each CPU and GPU receives blocks of
the same size [14]. On the other hand, authors in [78] present a new method that al-
lows programmers to partition the data contiguously between the central processing
unit and accelerators within a single computing node. In contrast to our approach,
their method does not allow finding an optimal distribution of the domain between
heterogeneous computing architectures in terms of time and energy costs. What is
more, there is a lack of advanced analyses of stencil optimisations and performance
modelling connecting specific properties, such as communication and data locality,
together with architectural time and energy costs. In order to balance the grid
points between heterogeneous processing units, our approaches take into account
different speeds of the processing units. Moreover, the data dependencies between
grid points based on the stencil pattern require data exchange between the process-
ing units. The communication of these data through different communication buses
may have a significant performance cost. Thus, while assigning grid points to pro-
cessing units one has to not only balance the computational load but also carefully
distribute the data to minimise the communication cost.

The following two sections describe the applied parallelisation methods of stencil
computations on single and multiple processing units. The primary purpose of de-
signing and implementing these new methods is two-fold: to provide a good reference
to validate the solution quality developed vs optimal one in the model described in
Section 6.1 and to determine all the parameters required by time and energy models
described in Section 5.3.
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3.2.1 Single processing unit
The well-known 2.5D blocking method is employed [73] to implement stencil com-
putations on both CPU and GPU architectures. This optimisation method with
a manually tuned procedure ensures good performance and avoids additional over-
heads imposed by the parallelisation frameworks. It is essential for the acquisition
of the selected metrics for the performance and energy models described in Section
5.1. The three-dimensional grid Dt is divided in a (i, j) plane and computations
are streamed through the third dimension k. The obtained column represents the
data with the size of the layer equal to dimixdimj. The algorithm requires storing
the 2R+ 1 layers simultaneously, where R is a radius defined as the number of gird
points accessed by the stencil in the k dimension. For example, the seven-point
stencil mentioned in Section 3.1 has R equal to 1, and thus the number of layers is
equal to 3. The stencil computation is based on intelligent placement of the layers
in the buffer, representing the processing unit’s registers and cache. The size of the
buffer is equal to the number of layers. First, the 2R+ 1 layers are loaded from the
main memory to the buffer. Then, for each iteration through the k dimension the
computation is as follows (see Figure 3.4):

1. perform the stencil computation at the position 1 in the buffer;
2. move the computed value from the position 1 to the position 0 in the buffer;
3. store the value at the position 0 in the main memory;
4. move the value from the position 2 to the position 1 in the buffer;
5. load the value from the main memory to the position 2 in the buffer.

This method allows reducing the memory requirements as only 2R + 1 layers are
needed simultaneously instead of the whole column. It is beneficial for the existing
GPUs where the cache size is relatively small compared to CPUs.

Figure 3.4: The generic view of the 2.5D blocking method

3.2.2 Multiple processing units
There are many different decomposition strategies available. Some use an MPI-all
parallelisation scheme with a uniform partition where each core of the CPU maps to
a single MPI process with no utilisation of the shared memory on a compute node.
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This scheme is straightforward to implement and run as it requires no knowledge
about the Non-Uniform Access Memory (NUMA) topology of the underlying hard-
ware [59]. On the other hand, the number of MPI messages required to exchange
is a multiple of the cores, leading to substantial communication overhead. Another
choice is a strategy that assigns a single MPI process to the whole computing node.
It decomposes the obtained block for a specified number of processors (CPUs) and
accelerators (GPUs) on the node and minimises the number of MPI processes, hence
the communication overhead, as described in [114]. The drawback of this method is
that the inner part of the block is only decomposed in one dimension. Therefore, it
is not flexible in balancing the load between the accelerators and processors on the
node. Another strategy performs a uniform decomposition where both CPU and
GPU are mapped to a single MPI process. In this case, the subdomain boundaries
are updated and communicated by the CPU, whereas the GPU handles the inner
points. In this approach, the CPU serves as a management entity and does not
execute any computations; consequently, this strategy uses CPUs inefficiently.

In this thesis, the main idea behind the parallelisation of stencil computations
between the processing units is based on data decomposition, where each processing
unit updates the fixed part of the grid called a block [24]. As stencil computations
generally require neighbour points to update a point, the boundaries of the blocks
have to be communicated between processing units. The communicated boundaries
are saved in a designated buffer called the halo region, see Figure 3.5.

Figure 3.5: Subgrid with the halo region

The scheme can partition the domain into non-uniform blocks for the arbitrary
number of processors and accelerators in all three dimensions. This scheme en-
ables computing on different cluster configurations of CPUs and GPUs within the
computing node. According to achieved results presented in [24], our approach can
efficiently decompose the domain on the CPU-only clusters including the NUMA
machines, architectures with global shared memory, on the GPU-only clusters with
fat nodes containing one GPU per single CPU core as well as on the hybrid clusters
with powerful CPUs and GPUs. In order to efficiently utilise the data locality, the
OpenMP and MPI models are employed for the intra-node and inter-node commu-
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nication, respectively. Each CPU and GPU has assigned separate MPI processes to
the selected cores. The GPU parallelisation is done using the CUDA programming
model, whereas the CPU parallelisation employs the OpenMP model.

The partitioning mechanism is performed before the compilation of the code for
a target computing architecture. Thus, the obtained decomposition is static during
computations. The static decomposition allows the compiler to optimise the code for
stencil loops by utilising various techniques, such as loop unrolling and vectorisation.
Once the block for each processor is obtained, it is further decomposed to the optimal
size for the cache blocking and receiving the optimal size for the given processor. All
the details of the block decomposition are described in the previous Section 3.2.1.

The load balancing procedure is critical to find a suitable partition of the compu-
tational domain between the heterogeneous computing resources. Another essential
assumption is to finish all the computations before a specific deadline. The paral-
lelisation method of stencil computations on multiple processing units to measure
selected metrics is further described in Section 5.1.

3.3 Performance models
Performance models for modern heterogeneous processing units using sophisticated
memory hierarchies should be as efficient and straightforward as possible to explore
the properties of advanced hardware units. One of the commonly used performance
models is the Roofline model which allows developers to analyse and predict applica-
tion performance based on a processing unit computation and memory capabilities
[111]. In a nutshell, the application is modelled as a ratio of arithmetic operations
to the number of bytes sent through the memory hierarchy. The performance of a
basic von Neumann architecture that contains two levels of memory hierarchy can be
predicted with the Roofline model. However, the model can be extended to support
a more complex memory hierarchy with multi-level caches [98].

It is essential to determine metrics for the Roofline model correctly. The work
in [76] proposed to use the Hardware Performance Counters [7] to find a number
of floating-point operations executed and a number of bytes moved by the given
application. However, the authors showed that such methodology is not precise for
the latest generations of processing units. Another interesting work that utilised
the Roofline model was presented in [17]. The authors estimated the performance
of applications based on the scheduling of a computation directed acyclic graph
(DAG) on a model of a microarchitecture and extracted from it the data concerning
utilisation of the resources. First, the source code and characteristics that describe
the properties of the target architecture are the input parameters. Then, there is an
intermediate step of compiling the code to the LLVM intermediate representation
(IR) [60]. The nodes of computation DAG are the instructions of the LLVM IR,
including both computations and memory instructions. Finally, they execute the
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IR of the application in the modified LLVM interpreter to build a schedule of the
nodes in the computation DAG. The performance estimation provides the execution
procedure. The advantage of this approach is that it considers the capacity of the
caches and the size of input data to determine the application performance. The
main disadvantage is a lack of accounting for the vectorisation and the fact that
each generated roof for each type of the nodes is specific to the given application
and its input.

The following two sections describe the Roofline model and its extension in more
detail relevant for our research. These models are enhanced to support the stencil
computations, see Section 5.3.

3.3.1 Roofline model
The Roofline model assumes a relatively simple paradigm of the two-level memory
hierarchy where data come from the slow memory (i.e. DRAM), see Figure 3.6.

Figure 3.6: Architecture with a two-level memory hierarchy

DRAM is the slowest data path utilised in many existing processing units that
limit the amount of data sent in a given time bs. This data path is the first con-
straint called roof that limits the application performance. The other one is the
applicable peak performance Pmax of the processing unit that fetches data from the
fast memory (i.e. the L1 cache). The type of roof that constrains the application
performance is selected according to the value of a computational intensity I. The
computational intensity is the work W per byte transferred QMEM over the slowest
utilised data path. It is assumed that the work is defined as the number of floating-
point operations. The W and QMEM values are measured for the given application,
whereas Pmax and bs are obtained from the processing unit, see equations below:

I = W/Q (3.3)
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P = min(Pmax, I ∗ bs) (3.4)

The P variable represents a modelled performance by selecting which element
of the processing unit is constraining the overall performance. In other words, it
denotes whether the application is compute-bound or memory-bound, see Figure
3.7.

Figure 3.7: The Roofline model

If the application has a computational intensity below 2, it is memory-bound.
Otherwise, it is compute-bound. Figure 3.8 shows the placement of the four well
know computations on the Roofline graph:

• daxpy is α ∗ x+ y,

• dgemv is y = α ∗ A ∗ x+ β ∗ y,

• dgemm is C = α ∗ A ∗B + β ∗ C,

• FFT is Fast Fourier Transform,

where α and β are the scalars, x and y are vectors, A, B and C are matrices.
Based on this graph, one can see that the FFT and dgemm computations are

compute-bound, whereas the daxpy and dgemv computations are memory-bound.
The model compromises the following assumptions:

• the effective bandwidth can be determined with software benchmarks;

• the data transfer and computations perfectly overlap;

• the data path to the main memory is only modelled while all other memories,
e.g., caches, are infinitely fast;

• the bandwidth of the slowest data path can be utilised up to 100%.



42 3 Stencil computations

Figure 3.8: Four different computation types on the Roofline model diagram

3.3.2 Cache Aware Roofline model
The Roofline model accounts for only the slowest data path, whereas all other mem-
ory levels are assumed to be infinitely fast. The consequence of this approach is that
it is hard to predict the computational intensity for a given application, see Figure
3.9.

Figure 3.9: Roofline model of an example application

This figure shows the measurements of a seven-point stencil with different input
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grid sizes on Intel Xeon E5-2697v3 CPU. One can notice that by increasing the grid
size, both the computational intensity and the overall performance decrease. This
is because the number of bytes moved from the slowest memory (DRAM) increases
faster than the number of executed floating-point operations. One can expect that
all the data used are cached for a small input size with a low number of grid points.
With the increasing number of grid points, the data sets can not fit within the caches
and must be fetched from DRAM. In order to verify expectations, distribution of
data in the high-level caches must be carefully explored.

The Roofline model is extended to include the number of bytes Q moved through
the memory to higher cache levels [47], see Figure 3.10.

Figure 3.10: Cache aware Roofline model

For example, the calculation of the bytes transferred for the CPU with three
levels of caches is the following:

Q = QL1 +QL2 +QL3 +QDRAM (3.5)

Figure 3.11 presents measurements of the Spherical Harmonics dwarf using the
same input as in Figure 3.9.

The computational intensity is the same regardless of the number of fields used
or the test case type. As all levels of memory are used, it is necessary to add the
Roofline that represents each level. As shown in the example, the code performance
exceeds the limit of DRAM and reaches the limit of the L2 cache. Including all
data movement in the measurements allows for more straightforward performance
prediction in a particular application code.

In order to prepare the Roofline model, two specific quantities are needed: W and
Q. Section 5.1 describes different methodologies on how to obtain these quantities
and addresses some of the limitations of the model. These new methodologies have
been specifically developed and tested for the purpose of this study.
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Figure 3.11: Cache-aware Roofline model of an example application

3.4 Methods to optimise energy
consumption

There are many different approaches to improving energy efficiency of heterogeneous
systems, including the commonly used dynamic voltage/frequency scaling (DVFS).
Generally, in this approach the clock frequency is adjusted to reduce the supply
voltage, and thus the power saving is achieved. For example, the authors proposed
a technique to reduce energy usage by using multiple GPUs with each CPU instead
of using a single CPU-GPU pair [16]. In this case, the CPU only manages the
work of GPUs, and its frequency is reduced to save the energy further. Another
approach is to adjust the CPU-GPU work distribution in order to improve energy
efficiency. For instance, authors in [64] in the first step try to balance the load
between the CPU and the GPU, so both processing units finish the computations
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approximately at the same time. In the next step, they reduce the frequency of GPU
components and the voltage of the CPU to achieve more significant energy savings
with low-performance degradation. An interesting approach was developed in [63].
It is based on a linear programming model to distribute a workload between the
CPU and the GPU using the profiled performance and the energy usage of the High
Performance Linpack benchmark (see Section 2.1). Unlike our work, they do not take
into account the communication cost. The other technique is based on a dynamic
resource allocation of the processing units. A new method to predict the number
of required cores of a processing unit to employ the power gating for the rest of the
cores was proposed in [103]. The method constantly checks if the idle time is long
enough to reduce the switching penalty. Another interesting technique is to apply
application-specific optimisations. One example method to optimise the energy
usage of stencil computations was introduced here [117]. The authors assumed that
stencil computations might also be parallelised over time. This specific technique
is called time tiling. This technique may be used only in stencil applications where
there are no other computations within a single time step. This procedure changes a
performance-limiting factor from memory-bound to compute-bound computations.
The authors focused on minimising the off-chip memory accesses of a single CPU
by improving the cache hit rate. Similarly, another research presented in [66] also
focused on reducing the energy usage of stencil computations through temporal
parallelisation. The authors analysed the influence of code optimisations on the
arithmetic intensity of stencil computations and related it with the energy usage. A
set of improvements to the energy usage by avoiding to use CPUs to communicate the
data between distributed GPUs was presented in [75]. The proposed optimisation
was achieved by employing dynamic parallelism of the GPU to handle the data
transfer. It was demonstrated that after applying this optimisation the performance
is slightly worse, whereas the performance per Watt increased significantly (up to
10%).

To the best of our knowledge, none of the previous research considered an energy-
aware distribution of the stencil workload on heterogeneous computing resources
with the time constraint. Moreover, none of them tried to minimise the energy con-
sumption of intra-node and inter-node communications that significantly influence
energy savings. These relevant assumptions have been considered in the conducted
research.

3.5 Energy models
Recently, the Roofline model has been extended to take into account the energy
consumption in GPUs [21]. In the new model, the authors have assumed that
each operation has a fixed energy cost and a fixed data movement cost while the
constant energy cost is linear in time. The constant power depends on the hardware
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and an algorithm and includes static and leakage power management. However, the
proposed model does not include dynamic power management. The dynamic power
is affected by gate capacitance, supply voltage and operating frequency. DVFS
changes the runtime supply voltage and the operating frequency, and it influences
the dynamic power [40]. The authors assumed that the time per work (arithmetic)
operation and the time per memory operation are estimated with the hardware peak
throughput values, whereas the energy cost is estimated using a linear regression
based on real experiments. Another set of extensions to the Roofline model has
been proposed in [42] to model the energy on a dual multi-core CPU with the
three-level cache hierarchy. In this approach, the dynamic power management was
modelled as a second-degree polynomial, based on real benchmark data, and it
scales linearly with the number of active cores up to the saturation point. The
authors assumed that the dynamic power depends quadratically on the frequency.
At the saturation point, the energy to solution grows with the number of used
cores, which is proportional to the dynamic power, while the time to solution stays
constant. Another example is an energy model presented in [104] to evaluate the
cost of parallel algorithms for the GPU. Based on the energy model, the authors
proposed a new method for energy scalability to ease the selection of the optimal
number of blocks. In our work, two examples of architectures, CPUs and GPUs, are
provided, see Section 5.3. However, our model can be utilised with other computing
architectures, such as Intel Xeon Phi or ARM.

In our opinion, the energy can be modelled similarly to modelling the perfor-
mance using the Roofline model. The Roofline energy model is also based on the
notion of useful work and the number of moved bytes Q through the slowest data
path. As for the Roofline model, the work is represented by the number of floating-
point operations (FLOP) being executed W . This model assumes that calculating
every FLOP and sending any single byte of memory cost some energy. Moreover,
during the execution of the code the processing unit also uses some power.

Figure 3.12: Roofline model of energy
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The following equation is used to calculate the energy cost of application execu-
tion on a single processing unit:

E = W ∗ eflop +Q ∗ emop + T ∗ P0 (3.6)

where eflop is the energy cost per FLOP , emop is energy cost per single byte
moved (MOP - memory operation) and P0 is the constant power drawn (see Figure
3.12). The constant power is based on a so called P-state of the processing unit and
the number of cores used. The variables eflop, emop and P0 are approximated with
a linear regression. For the energy usage measurements, some hardware vendors
expose API. For example, the RAPL interface is exposed for Intel CPUs, whereas
Nvidia shares the NVML interface, see Section 2.3.2. The above presented model is
extended for stencil computations in Section 5.3.





Chapter 4

Basic notions in the theory of
algorithms and computational

complexity

In this chapter, basic notions in the computational complexity of combinatorial prob-
lems are recalled due to [12, 36] where more details about the respective topics may
be found. The description of three classes of combinatorial problems is presented.
Two groups of algorithms based on computational complexity are described. This
chapter also describes three examples of linear programs: ILP, MIP and BIP. The
last section presents basic definitions from the graph theory and depicts an edge
colouring problem.

4.1 Computational complexity
In general, combinatorial problems may be divided into three classes: search, deci-
sion and optimisation ones. These problems are defined by the finite or enumerative
number of objects and parameters of an integer type. The combinatorial search
problem for a given instance of the considered problem finds its feasible solution,
otherwise no solution can be found. An example of the search problem is the eight
queen problem [65]. In this problem, eight queens are placed on a chessboard in a way
that any two queens can not be in the same row, column or diagonal. The decision
problem provides only an answer with yes or no for a stated question. For instance,
does the given graph contain the Hamiltonian cycle? The optimisation problems,
together with the decision problems, are the subclasses of the search problems. The
optimisation problem is formulated to minimise or maximise the objective function.
The optimisation problem finds an optimal solution, otherwise no solution can be
found. This problem may be formulated as the decision or search problem, but it
can not be done in the opposite way. For example, the decision problem asks if
there exists a solution with the objective value less than or equal to a given value
in the case of the minimisation (larger or equal in the case of maximisation). For
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some problems, the solution to the search problem may be equal to the solution of
the optimisation problem, as the only feasible solution is the optimal solution.

Let π define the decision problem with a finite set of parameters. The values
assigned to these parameters are called an instance which is denoted by I. Dπ

depicts the set of all instances for the problem π. The size of the instance I is
denoted by N(I). The instance I can be encoded by a finite string of symbols x(I)
where the symbols belong to the alphabet σ. It is assumed that the encoding is not
represented by a string of 1 and is not redundant.

The algorithm A is a list of elementary steps, which solves the problem π for all
its specific instances I ∈ Dπ. A function of computational complexity ηA(n) of the
algorithm A that solves the problem π with a size N(I) = n is a measure of the
maximum number of elementary steps needed to solve the instance I of this size.

Definition 1 If for a given ηA(n) there exists a constant value c > 0 that ηA(n) ≤
c∗f(N(I)) for all I ∈ Dπ then O(f(N(I)) is a computational complexity of algorithm
A.

The algorithm can be further divided to two groups based on the computational
complexity: polynomial and exponential. The polynomial algorithm is an algorithm
with the computational complexity equal to O(f(n)) where f is a polynomial func-
tion f(n) = a0 + . . . + ak−1 ∗ nk−1 + ak ∗ nk and n = N(I). Any other algorithm
where the computational complexity can not be defined as above is called exponen-
tial. The algorithm for which the polynomial algorithms are not known, or even the
algorithm does not exist, is called intractable. In order to determine whether to use
exact or heuristic algorithms, it must be known if the problem is intractable or not.
The abstract model of the computing system is introduced to describe the classes
of computational complexity. A well-known example is the Deterministic Turing
Machine (DTM) which simulates a real computer system. An algorithm with a
polynomial computational complexity on DTM is executed in polynomial time on
any other realistic system. The Non-Deterministic Turing Machine (NDTM) repre-
sents the non-deterministic model where the number of executed instructions at a
time is unbounded. The problem π with the polynomial complexity on NDTM is
solved in O(2p(N(I))) on DTM where p is a polynomial function and I ∈ Dπ.

The definition of DTM and NDTM allows introducing the classes of compu-
tational complexity. The problem that is solved in the polynomial-time on DTM
belongs to the P class (Polynomial). An NP class represents the problem where
there is an algorithm that solves it in a polynomial time on NDTM. The well-known
problem is that P = NP is still open; however, most scientists expect P 6= NP . A
polynomial transformation is introduced to define the next class of computational
complexity.

Definition 2 The polynomial transformation of the problem π2 to the problem π1

(π2 ∝ π1) is called a function f : Dπ2 → Dπ1 that fulfils the following conditions:



4.1 Computational complexity 51

• for any instance I2 ∈ Dπ2 the answer is "yes" if and only if the answer for
f(I2) ∈ Dπ1 is "yes",
• the execution time of the function f on DTM for any instance I2 ∈ Dπ2 is
upper bounded by a polynomial g(N(I2)).

Definition 3 Decision problem π1 is NP-complete if it fulfils the following condi-
tions:

• π1 ∈ NP ,
• π2 ∝ π1 for each π2 ∈ NP .

It follows from the above definition that in order to prove NP-completeness of
problem π1 we have to first construct a polynomial-time algorithm on NDTM and
prove that all problems from NP transform polynomially to π1. The last class of
the computational complexity is strongly NP-complete. The definition of a pseudo-
polynomial algorithm is introduced to describe this class:

Definition 4 The pseudo-polynomial algorithm is an algorithm where the function
of computational complexity is upper-bounded by a polynomial depending on the in-
stance size N(I) and the maximum value of any problem parameter Max(I).

The strongly NP-complete class represents the decision problems that can not be
solved in pseudo-polynomial for P 6= NP .

Definition 5 Let πp define a subproblem of decision problem π obtained by con-
straining Dπ to instances Max(I) ≤ p(N(I)) where p is polynomial. The decision
problem π is strongly NP-complete if it belongs to NP, and there exists a polynomial
p where πp is NP-complete.

A polynomial p that the subproblem πp is NP-complete should be found to prove
that the problem belongs to the strong NP-complete class. To simplify this proof
one may utilise a pseudo-polynomial transformation:

Definition 6 The pseudo-polynomial transformation of a problem π2 to a problem
π1 is a function f : Dπ2 → Dπ1 where:

• for any instance I2 ∈ Dπ2 the answer is "yes" if and only if for f(I2) ∈ Dπ1

the answer is also "yes",
• execution time of the function f computed on DTM is upper-bounded by the
following polynomials: g1(Max(I2)) and g2(N(I2)) for I2 ∈ Dπ2,
• there exists a polynomial p2 where for each I2 ∈ Dπ2 such that: Max(f(I2)) ≤
p2(Max(I2, N(I2))).

The problem π1 is strongly NP-complete when there exists a pseudo-polynomial
transformation of π2 to π1 and both π2 is strongly NP-complete and π1 ∈ NP .
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Definition 7 A polynomial Turing transformation of a search problem π2 to a
search problem π1 is an algorithm A that solves the problem π2 on DTM in a poly-
nomial time and uses some hypothetical polynomial-time procedure S solving the
problem π1 on DTM.

A search problem π1 belongs to the NP-hard class if any other NP-hard problem π2

may be transformed to π1 using the polynomial Turing transformation π2 ∝ π1.

Definition 8 Let πp define a subproblem of a problem π obtained by constraining
Dπ to instances Max(I) ≤ p(N(I)) where p is polynomial. The decision problem π

is strongly NP-hard if it belongs to NP, and there exists a polynomial p where πp is
NP-hard.

An optimisation version of a problem belongs to the NP-hard class if its search
version is NP-hard or its decision version is NP-complete. Therefore, the optimisa-
tion version of a problem is at least as complex as the search version, and the search
version of the same problem is at least as complex as the decision version. The
decision and search versions of a problem are not computationally harder than the
optimisation version. However, the existence of the polynomial-time algorithm for
the decision or search version of a problem does not determine the computational
complexity of the optimisation version. Thus, to solve the NP-hard problem in a
reasonable time one needs to develop heuristic algorithms at the expense of not
finding the optimal solution.

4.2 Linear programming
This section provides a short overview of linear programming, and more details can
be found in e.g., [38, 95, 89]. Before defining the linear program (LP), the basic
concepts from linear algebra are introduced. A function F is a linear function with
the following form:

F (x1, x2, . . . , xn) = a1x1 + a2x2 + . . .+ anxn =
n∑
i=1

aixi (4.1)

where x1, x2, . . . , xn are variables and a1, a2, . . . , an are some real numbers called
coefficients. A linear equality is a following linear function F :

F (x1, x2, . . . , xn) = b (4.2)

where b is a real number. Similarly, the linear inequalities are defined as:

F (x1, x2, . . . , xn) ≤ b (4.3)

F (x1, x2, . . . , xn) ≥ b (4.4)
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The above linear equation and linear inequalities are called the linear constraints.
The linear programming is defined with a minimisation or maximisation of a linear
function subject to the set of the linear constrains. In a standard form the linear
program is expressed as:

maximise/minimise
n∑
j=1

cjxj (4.5)

n∑
j=1

aijxj ≤ bi for i = 1, 2, . . . ,m (4.6)

xj ≥ 0 for j = 1, 2, . . . ,m (4.7)

where the result of the objective function is minimised or maximised subject to the
n+m constraints and all variables are real numbers. The compact form of the linear
program is as follows:

maximise/minimisecTx (4.8)

Ax ≤ b (4.9)

x ≥ 0 (4.10)

where cT is a row vector with n constants, x is a column vector with n variables, b
is a vector with m constants and A is a matrix with n columns and m rows. The set
of the x variables that satisfies all constraints is called a feasible solution; otherwise
it is called an infeasible solution. An optimal solution is a maximum or a minimum
value of the objective function for all feasible solutions for the maximisation or
minimisation problem, respectively. The linear program is proved to be solved in
a polynomial time [50]. However, in this study ILP is employed for which the
polynomial time algorithm does not exist, assuming P 6= NP . In ILP the x variables
are integral for all j = 1, 2, . . . , n, x ∈ Z. If x ∈ Zp ×Rn−p for p ∈ 1, . . . , n− 1 then
it is called MIP. A special case where x ∈ {0, 1}n is called binary program (BIP).

4.3 Graph theory

4.3.1 Basic definitions
This section introduces some basic definitions from the graph theory [15]. An undi-
rected graph G is an ordered pair G = (V,E), where V is a finite set of elements
called vertices, whereas E is a finite set of unordered pairs of vertices called edges.
The cardinality of the set of vertices V is denoted by the symbol n = |V | and called
the order of graph G. The cardinality of the set of edges E is denoted by m = |E|
and called the size of graph G. A directed graph GD is an ordered pair G = (V,ED)
consisting of a finite set of elements called vertices V and a finite set of ordered
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pairs of usually distinct vertices of GD called directed edges ED. An edge uv join
the vertices u and v. In a directed graph, the edges in ED are assumed to be ordered
pairs and are described as (u, v) ∈ ED. An ordered pair (u, v) is an edge directed
from u to v.

4.3.2 Multiplicity
Two edges {uv}, {st} ∈ E are parallel if {u, v} = {s, t}. The multiplicity of an edge
{uv} ∈ E is the number of edges parallel to uv:

µuv = |{st ∈ E : {uv} = {st}}| (4.11)

4.3.3 Adjacency and incidence
Two edges {uv}, {st} ∈ E are adjacent if {u, v} ∩ {s, t} 6= ∅ and edge {uv} ∈ E is
called incident to its both end vertices u and v. The set of edges incident at a vertex
u is denoted by δG(u):

δG(u) = |{e ∈ E : {e} ∩ {u} 6= ∅}| (4.12)

The number of edges incident to a vertex u is the degree of this vertex in G and will
be denoted by degG(u). For U ⊆ V , the set of all edges with exactly one endpoint
in U is denoted by δ(U). For a vertex u ∈ V in a directed graph GD = (V,ED)
we define δ+

GD(u) : {(v, w) ∈ ED : v = u} as the set of edges leaving the vertex u
and δ−GD(u) : {(v, w) ∈ ED : w = u} as the set of edges entering the vertex u. The
vertices u and v are called adjacent if {u, v} ∈ E.

4.3.4 Maximum degree and maximum multiplicity
The maximum degree and maximum multiplicity of a graph are defined as

∆G = maxdegG(v)
v∈V

(4.13)

µG = maxµG(e)
e∈E

(4.14)

A graph with µ(G) = 1 that contains no parallel edges is called simple. Graphs with
maximum multiplicity of at least 2 are called multigraphs and denoted by M .

4.3.5 Edge colouring
Edge colouring of a graph G = (V,E) is a map c : E → C which assigns to each edge
e ∈ E a colour c(e) ∈ C such that no two adjacent edges receive the same colour.
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The minimal cardinality of the colour set C for which such a mapping exists is called
the chromatic index of the graph and denoted by χ′(G). The edge colouring problem
is proved to be an NP-complete problem[46]. To prove the NP-completeness, the
edge colouring problem is restricted to a decision problem whether the chromatic
index of a cubic graph is equal to three or four. A graph where all vertices have
a degree equal to three is called a cubic graph. The authors utilise a polynomial
transformation from the known NP-complete problem 3-SAT (3 boolean satisfiabil-
ity). 3-SAT problem is represented in a conjunctive normal form where each clause
is limited to three literals. However, there are strong lower and upper bounds for
the chromatic index. From the definition of edge colouring, the lower bound form
the chromatic index is ∆(G) ≥ χ′(G). The upper bound for the chromatic index
proved by Vizing [102] is χ′(G) ≥ ∆(G) + 1. The chromatic index is determined by
the degree of the graph and can take only two values: ∆(G) or ∆(G) + 1. Still, the
calculation of the chromatic index of a graph remains the NP-hard problem. Thus,
there exist different suboptimal approaches that try to address this problem. One of
the well-known methods is Vizing’s algorithm that never uses more than χ′(G) + 1
colours. The edge colouring problem is utilised in the problem formulation described
in Section 5.2.





Chapter 5

Energy-aware resource management of
stencil computations

In this chapter, we describe computational experiments that enabled us to discover
the critical parameters that impact the performance and energy usage of stencil
computations. We formulate our problem and define the performance and energy
model. We also present a method based on ILP to obtain the optimal solution for
the formulated problem.

5.1 Designation of the parameters
We have run several computational experiments to discover critical parameters that
have a relevant impact on the performance and energy usage of a stencil task running
on a particular processing unit. Thanks to the dynamic power management policies
introduced on PUs, both the frequency and the number of cores have been controlled
during our performance tests. The RAPL and NVML interfaces are used during the
computational experiments. The RAPL interface provides the ability to monitor
and control the power on the CPU socket and DRAM, whereas the NVML interface
allows the management of the power states of the GPU. On multi-core CPUs, the
frequency switching implicitly changes an operating voltage. The voltage is opti-
mised by the hardware based on several factors. All processor cores that execute
some workload share the same frequency and voltage. The multiple frequency and
voltage pairs while executing code are called P-states. The idle cores switch to low-
power idle states called C-states. At the higher levels of C-states power save actions
are taken such as flush of the caches, stop of the clocks and reduction of the voltage
to zero.

Figure 5.1 shows the performance of a seven-point stencil on eight core Intel
Xeon E5 CPU and Kepler K20m GPU using different P-states. In case of the CPU
the maximum performance can be reached with four to six cores depending on the
frequency used. For the GPU all available cores execute workload and the maximum
performance is achieved with the 705 MHz clock. The stencil computations are a
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Figure 5.1: Performance of a seven-point stencil: left - the CPU, right - the
GPU

Table 5.1: Properties of the modern architectures. The GPU bandwidth with Error Correcting
Code (ECC) switched on/off.

Platform
CPU GPU

Xeon E5-2670@2.60GHz Kepler K20m

Peak perf. 173 Gflop/s 1168 Gflop/s

Bandwidth 30 GB/s 143/173 GB/s

Ratio 5.76 8.17/6.75

class of memory-bound problems as the stencil’s theoretical flop to byte ratio, which
is typically less than 0.5, is significantly lower than that of the current computing
architectures, see Table 5.1. In practice, the flop to byte ratio can be even lower due
to a blocking overhead, as each stencil has to be divided to separate blocks to be
effectively computed. The sizes of the blocks were carefully selected to fit in a cache
hierarchy of the target PU and to minimise the memory bandwidth pressure. Due
to the memory bottleneck, the performance saturation is reached with a reduced
number of cores. The four cores clocked at the turbo frequency are needed to
saturate the memory bandwidth, whereas for the higher number of cores the lower
frequency is needed, see Figure 5.2. The comparison of Figures 5.1 and 5.2 shows
that there is a strong relationship between the memory bandwidth and the stencil
performance.

Figure 5.3 shows an influence of the P-states on energy usage for a seven-point
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Figure 5.2: Memory bandwidth benchmark on: left - the CPU, right - the
GPU
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Figure 5.3: Energy usage of a seven-point stencil on the CPU

stencil. The lowest energy usage is reached with four cores clocked at 1.6 GHz. From
four to eight cores, the difference in the energy usage is only 4% for the optimal
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frequencies; thus, to save energy while increasing the number of cores the frequency
should be minimised. The lowest energy usage is reached not with the maximum
performance of 1278 MLUP/s, but with the lower performance of 1107 MLUP/s.
This is contrary to expectations that computations with the highest performance
are most energy-efficient. The power consumption of the modern CPU consists of
two parts: static and dynamic power. The static power is referred to as a leakage
power where the power is lost due to a current that finds its way to the ground.
This process happens regardless of the operating frequency, and it depends entirely
on the voltage.

Pstatic = m ∗ Vcc (5.1)

The m value is a constant coefficient, and Vcc is the CPU voltage. The dynamic
power involves two additional terms: one referred to as a short-circuit energy, and
the other one is called transition energy:

Ptransition = α ∗ C ∗ f/2 ∗ V B
cc (5.2)

Pshort−circut = α ∗ Eshort−circut ∗ f (5.3)

Pdynamic = Pshot−circut + Ptransition (5.4)

where α is the activity parameter that depends on the instruction mix and overall
instruction per cycle (IPC) utilization, the C parameter is dependent on the layout
of the chip, the f parameter is a current frequency, while the Eshort−circut parameter
is the power consumed per short-circuit event.

Figure 5.4 presents the power consumption of a seven-point stencil. Based on
Eq. 5.4 the theoretical relation of P ∼ V B is not reflected in the figure as the power
consumption changes linearly with the increasing voltage. Furthermore, the power
consumption of the three most essential CPU components was checked, including
package (PKG), cores (PP0) and DRAM. The PKG component includes power con-
sumption of the whole processor die, whereas PP0 only contains power consumption
of the cores.

Figure 5.5 shows that for the 1.2GHz clock, 60% of the power consumes DRAM,
whereas for the 2.6GHz clock form 50% to 60% of the power consumes PKG. The
power consumption of PP0 changes linearly with the increasing number of cores.

Figure 5.6 depicts power consumption based on the lowest energy usage for each
P-state. In our case, data movement consumes most of the power, as the PKG
part also includes power consumption of the caches. Figure 5.7 presents that the
computation of a seven-point stencil on the GPU is 10x more energy and performance
efficient than on the CPU.

To summarise the analysis, the maximum performance can be achieved with
fewer cores than available. Secondly, it is more important to reduce the frequency
than the number of cores used to minimise energy usage. What is more, in the case
of the CPU, DRAM may use up to 60% of the energy. Thus, the data movement
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consumes most of the power. Finally, the lowest energy usage may be reached with
not the maximum performance.

5.2 Problem formulation
As showed in the previous section that the data locality has the most substantial
influence on energy usage, it has encouraged us to focus our research on a stencil
workload scheduling using heterogeneous computing architectures to minimise the
energy usage while meeting the computation deadline.

In general, the stencil problem that we consider is defined on a structural grid
which consists of grid cells defined in three dimensions. A single update of the
whole grid is called a timestep. Each cell in the grid is updated with a strict pat-
tern that defines which neighbouring cells are used during a stencil computation,
see Figure 5.8. We have assumed that the stencil communication pattern is static.
This assumption was based on our experience with many real stencil simulations in
HPC setups, where the number of parallel processes defined in the initial mapping
of parallel stencil processes onto heterogeneous processors remains constant during
their execution. In our approach we have focused on an explicit method where a

Figure 5.8: seven-point reference stencil communication pattern.

present timestep is updated by values of the grid cells from a previous timestep. We
have distinguished two main classes of unrelated processors commonly used in HPC
setups: CPU and GPU processors, as it was proposed in [26]. We have assumed
that the same stencil computation may have different runtime values executing on
heterogeneous and unrelated processors. The block decomposition of the structural
grid updated by the stencil forms the workload of tasks with the communication
dependencies. Each task represents a single block of the decomposed grid. The grid
is decomposed on equally sized blocks. A given task may be processed by a single
processor at a time, and each processor may execute several tasks. The communi-
cation is executed in parallel between different pairs of processors. However, each
processor can initiate a single communication link with another processor at a given
time. As a result, we must employ several communication rounds to exchange all
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data. Naturally, the number of communication rounds directly influences the overall
communication time. The communication and the computation are done in parallel.
Typically, in stencil computation implementations, a lot of the effort is put into the
parallel exchange of the grid cells between processors and the computations on the
processors.

Based on the assumptions mentioned above, we formulate our problem as a
complete directed graph K = (V P , EP ) of m unrelated processors and a directed
graph G = (V T , ET ) of n dependent tasks. The problem is to minimise the energy
usage by mapping a graph G on a graphK for a given deadline td under the following
assumptions:

1. ts < td, where ts is the total execution time of stencil computations,
2. max(teTu,Pi,La

) ∗ dTu < ts for each Tu ∈ VT , for each Pi ∈ VP and for selected
La ∈ L,

3. dTu ∗QTu,Pi
< rPi

for each Tu mapped on processor Pi,
4. z ∗ GCD( ∀

(Pi,Pj)∈EP
tc(Pi,Pj)) ∗ C(Tu,Tv) < td, where z is the number of commu-

nication rounds (colours), GCD is the greatest common divisor, tc(Pi,Pj) is the
communication time and C(Tu,Tv) is the number of grid cells to communicate.

The scheduling model assumes a fully connected network of heterogeneous pro-
cessors with different communication topologies. The directed graph K = (V P , EP )
represents a network topology with two types of communication links: intra-node
and inter-node. It is described by the following parameters:

1. V P the set of processors
2. Pi the processor i
3. P idle

Pi
the power usage in an idle state when no computations are executed

4. rPi
the processor memory size

5. EP the set of edges
6. (Pi, Pj) the communication link (edge) between processors Pi and Pj
7. tc(Pi,Pj) the communication time between processors Pi and Pj.

Each processor Pi is characterised by the following parameters:

1. C = {c1, c2, . . . , ch} the set of available cores
2. F = {f1, f2, . . . , fg} the set of available frequencies
3. L = {(f, c) : f ∈ F ∧ c ∈ C} the set of states where La ∈ L is a selected state
4. bPi,La the sustained bandwidth to the processor memory in bytes per second
5. P perf

Pi,La
the performance in the floating-point operations (double precision) per

second.
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Tasks are represented by the directed graph G = (V T , ET ), where V T denotes the
set of tasks and ET represents the set of edges. Each edge (Tu, Tv) ∈ ET defines the
communication between the tasks Tu, Tv ∈ V T . Graph G = (V T , ET ) is described
by the following parameters:

1. V T the set of tasks
2. Tu the task u
3. dTu the number of grid cells to process
4. ET the set of edges
5. (Tu, Tv) the edge between vertices Tu and Tv
6. C(Tu,Tv) the number of grid cells to communicate.

Each task Tu is described by the following parameters in relation to processor
Pi:

1. WTu,Pi
the number of arithmetic operations in double precision per grid cell

2. QTu,Pi
the number of required bytes to update a grid cell

3. teTu,Pi,La
= max(OTu/P

perf
Pi,La

;BTu,Pi
/bPi,La) the time to execute the single stencil

task Tu, where OTu,Pi
is the number of arithmetic operations to update the

stencil task Tu and BTu,Pi
is the number of bytes to update the stencil task Tu,

see (5.8)
4. P 0

Tu,Pi,La
the constant power usage

5. eeTu,Pi,La
the energy usage to execute the single stencil task Tu, see (5.9)

6. tc(Tu,Tv),(Pi,Pj) the exchange time of moving task data between processors
7. ec(Tu,Tv),(Pi,Pj) the energy cost of moving task data between processors.

A more detailed description of the parameters mentioned above is presented in
our previous work [26]. The objective is to determine a schedule such that the total
energy cost is minimised and deadline td is not exceeded, defined as follows:

min
∑

Pi∈V P

(eeTu,Tp,La
∗ APi

+ tidlePi
∗ P idle

Pi
) + ec (5.5)

where ts ≤ td, APi
is the number of stencil tasks assigned to the processor Pi and

tidlePi
is the idle time where the processor Pi does not execute any computations.

5.3 Performance and energy model
A detailed analysis of the performance and energy usage of stencil computations on
two unrelated processing units resulted in the following formulation of the perfor-
mance model.
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Computation time tcTu,Pi,La
of task Tu on processor Pi with state La is estimated

as follows:

OTu,Pi
= WTu,Pi

∗ dTu (5.6)

BTu,Pi
= QTu,Pi

∗ dTu (5.7)

teTu,Pi,La
= max(OTu/P

perf
Pi,La

;BTu,Pi
/bPi,La) (5.8)

where Ou,p is the number of arithmetic operations executed and Bu,p is the number
of bytes transferred.

The energy model assumes that each arithmetic operation and memory operation
consumes some energy:

eeTu,Pi,La
= eopTu,Pi,La

∗OTu,Pi
+ ebyteTu,Pi,La

∗BTu,Pi
+ P 0

Tu,Pi,La
∗ teTu,Pi,La

(5.9)

Variables eopTu,Pi,La
, ebyteTu,Pi,La

approximate the energy usage of stencil operations.
For simplicity, it is assumed that arithmetic operations, i.e., additions, multiplica-
tions, subtractions and divisions, consume the same amount of energy. Additionally,
the energy usage also depends on an instruction set used; thus, the CPU implemen-
tation of the stencil computation uses vector extensions for the highest performance.
P 0
Tu,Pi,La

is a constant power consumed by the processor Pi based on the state La.

5.4 Time measurement
This section aims to present a procedure to obtain stencil parameters on different
processing units, including CPUs and GPUs. The benchmarking data collected dur-
ing the preparation of the performance model and the energy model serves as the
ground truth to validate the model. In order to prepare the model, two specific
quantities are needed: W and Q. The following sections describe different method-
ologies on how to obtain these quantities. These methodologies have been specifically
developed and tested for the purpose of this study.

5.4.1 Code analysis

The WTu,Pi
and QTu,Pi

quantities can be obtained from analysing the source
code of the seven-point stencil computation applied to the grid of a size 2563, see
Algorithm 1.

The analysis can be conducted based on the assumption of efficiency of the
underlying memory hierarchy. The worst case assumes that none of the data can be
cached during the execution of the stencil statement in lines 5 and 6. The best-case
scenario assumes the infinitely large cache where all data can be cached. Firstly,
the analysis is provided for the CPU. For the worst case (WC), where a single
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Algorithm 1 Seven-point stencil
1: procedure Seven-point stencil

Input: A grid Dt and a constant θ.
Output: A grid Dt+1.

2: for k =, ..., 256 do
3: for j =, ..., 256 do
4: for i =, ..., 256 do
5: Dt+1(i, j, k) = θ ∗ (Dt(i, j, k) +Dt(i+ 1, j, k) +Dt(i− 1, j, k)+
6: Dt(i, j + 1, k) +Dt(i, j − 1, k) +Dt(i, j, k + 1) +Dt(i, j, k − 1))
7: end for
8: end for
9: end for

10: end procedure

grid cell is processed, seven FLOPs are executed, eight words are loaded, and one
word is stored. There are two types of operations: a single multiplication and six
additions. Each word is the size of eight bytes as the double-precision computations
are typically employed in scientific applications. seven words are loaded on the right-
hand side of the statement, whereas on the left-hand side, a single word is loaded
before storing the result. In cache-coherent architectures like Intel CPUs, each store
to the memory is preceded by a cache line load from memory. It is so called write
allocate, see Figure 5.9.

Figure 5.9: Write allocate in Intel CPUs

For the best case (BC), seven FLOPs are executed, one word is loaded and
one word is stored. The write allocate can be omitted with the streaming stores.
However, they are not always appropriate, as they omit cache if the following com-
putations reuse the results of the computations. In summary, WTu,Pi

and QTu,Pi
for

an update of a single grid cell are equal to:

WWC
Tu,PCP U

= 7 FLOP (5.10)
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WBC
Tu,PCP U

= 7 FLOP (5.11)

QWC
Tu,PCP U

= 9 ∗ 8 = 72 Bytes (5.12)

QBC
Tu,PCP U

= 2 ∗ 8 = 16 Bytes (5.13)

where WC means the task with the worst-case estimation and BC is the task with
the best-case estimation. In the case of the GPU, the same methodology applies,
and the only difference is for the worst-case scenario where there is no write allocate:

WWC
Tu,PGP U

= 7 FLOP (5.14)

WBC
Tu,PGP U

= 7 FLOP (5.15)

QWC
Tu,PGP U

= 8 ∗ 8 = 64 Bytes (5.16)

QBC
Tu,PGP U

= 2 ∗ 8 = 16 Bytes (5.17)

Next, as described in Section 5.3, the performance and bandwidth have to be
designated to calculate the execution time. The performance is calculated based on
the specification of the processor, whereas the bandwidth is measured by using a
benchmark. In the analysis, the following processing units are used:

• CPU Intel Sandy Bridge Xeon E5-2670@2.6GHz
• GPU Nvidia Kepler K20m@705MHz.

The Intel Xeon E5-2670 CPU has eight cores clocked at 2.6 GHz where each core
is able to compute two double-precision operations per cycle. The resulting per-
formance is 166 GFLOP/s. However, this performance is limited by the load and
store throughput of the AVX extensions, which are able to execute 1 AVX load
and 1/2 AVX store per cycle. Thus, instead of calculating 8 FLOP per cycle, it
requires three cycles per 8 FLOP. With this limitation, the performance is equal to
55.3 GFLOP/s. The Likwid tool is used [97] to measure bandwidth. The bandwidth
with the CPU clocked at 2.6 GHz is equal to 30 GB/s. Nvidia K20m GPU includes
13 SMX multiprocessors clocked at 705 MHz where each has 64 DP units capable of
executing two double-precision operations per cycle. The performance of this GPU
is equal to 1170 GFLOP/s. The bandwidth measured with a benchmark is equal to
173 GB/s with Error Correcting Code (ECC) off. The execution time on CPU and
GPU processors using the developed performance model for a stencil task Tu with
the number of grid cells dTu equal to 2563 is presented in Table 5.2.

As shown in Table 5.2, the CPU can achieve 5.4% and 24.3% of its peak per-
formance for the worst- and best-case scenarios, respectively. The GPU can reach
1.6% and 6.47% of its peak performance for the worst- and best-case scenarios, re-
spectively. The code analysis methods allow estimation of the parameters needed to
calculate the execution time of the stencil computation without the need to access
and execute the code on the processing unit. The disadvantage of this method is
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Table 5.2: Execution time for the CPU and GPU architectures based on the code analysis.

Parameter
WC BC

PCP U PGP U PCP U PGP U

OTU ,Pi
[MFLOP] 112 112 112 112

BTU ,Pi
[MB] 1152 1024 256 256

teTu,Pi,La
[ms]

max(1.98, 37.5)= max(0.09, 5.78)= max(1.98, 8.33)= max(0.09, 1.45)=

37.5 5.78 8.33 1.48

the lowest precision comparing the methods described in the following two sections.

5.4.2 Hardware performance counters
In this section another method utilizing Hardware Performance Counters is used
to depict the WTu,Pi

and QTu,Pi
quantities. Modern architectures include hardware

support to monitor microprocessor activity. For example, Intel developed Intel Per-
formance Monitoring Unit (PMU) that enables measuring different traits such as
instruction retired, elapsed core clock ticks, L2/L3 cache hits and misses, as well
as core and uncore events. Different open-source tools enable access to Hardware
Performance Counters such as Intel Performance Counter Monitor (PCM), Likwid
or perf. In this study, the Likwid tool is used as it supports CPUs from two main
vendors: Intel and AMD, and because it does not need the root privileges to read
the performance counters values. In order to measure the seven-point stencil imple-
mented with a method described in Section 3.2.1, the wrapper functions must be
added to the source code. Likwid has a marker API that measures selected regions
of the code.

After the seven-point stencil function is wrapped with Likwid marker API calls,
the Likwid tool is used.

For this example, different compilers with the following flags are used to check
the differences in measured quantities:

• gcc 4.8.5 with “-O2 -march-core-avx2” or “-O3 -march-core-avx2”;
• gcc 5.4 with “-O2 -march-core-avx2” or “-O3 -march-core-avx2”;
• icc 16.0.3 with “-O2 -xCORE-AVX2” or “-O3 -xCORE-AVX2”.

The processing unit used in the tests is Intel Xeon E5-2697 v3 with 14 cores
clocked at 2.6 GHz with DDR4 clocked at 2133 MHz based on the Haswell architec-
ture. This processing unit has a vector size equal to 256 bits (AVX2) and can fit 4
double-precision values at once.

Table 5.3 shows the obtained WTu,Pi
for different compilers and flags.

Both versions of GCC for the O2 flags give the number AVX instructions equal
to 0. The assembly code shows that GCC for this flag multiply-adds scalar double-
precision values (vfmadd213sd). GCC with O3 flag and ICC multiply-adds vector/-
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Table 5.3: WTu,Pi for different compilers and flags on the CPU.

Compiler flag gcc 4.8.5 gcc 5.4 icc 16.0.4

O2 [MFLOP] 0 0 142.24

O3 [MFLOP] 142.24 142.24 142.24

packed double-precision values (vfmadd231pd). This example shows the importance
of selecting appropriate compilation flags.

Only the AVX instructions are measured because there are no Hardware Perfor-
mance Events for other floating-point operations on the Haswell platforms. This is
the first issue with this method of obtaining the number of floating-point operations
WTu,Pi

. The second issue is that the measurements for FLOP are overcounted up
to 35% [105]. In the case of Intel CPU, to obtain the more precise results of WTu,Pi

the instrumentation is needed.
Table 5.4 shows the obtained Q for different compilers and flags.

Table 5.4: QTu,Pi for different compilers and flags on the CPU.

Compiler flag gcc 4.8.5 gcc 5.4 icc 16.0.4

O2 [MB] 640 640 512/640

O3 [MB] 640 640 512/640

For GCC, regardless of the used flags, QTu,Pi
is equal to 640 GB. ICC by default

uses a heuristic to determine whether the write allocate is needed, and for the seven-
point stencil routine QTu,Pi

equals 512GB. When a heuristic is explicitly switched off
through compiler flags, QTu,Pi

equals 640 GB. With the use of Hardware Performance
Counters, this method allows estimating the amount of data moved through the
memory hierarchy with a reasonable precision. However, it is not precise or even
does not allow estimating the number of executed floating-point operations. The last
method presented in the next section is most precise among the already described
methods.

5.4.3 Instrumentation
Instrumentation must be used to address the problem of counting the number of
FLOPs in Hardware Performance Counters for Intel CPU. For this purpose, Intel
Software Development Emulator (SDE) is used. SDE is a user-level function that
emulates instructions of the Intel64 instruction set. This tool enables generating
histograms of instructions executed, their length and category. For example, the
number of scalar and vector instructions may be counted.

Table 5.5 presents the generated histogram for ICC compiler. Every floating-
point instruction given in the histogram must be decoded. In this example, the
VFMADD213PD_YMMqq_YMMqq_MEMqq instruction is executed 250M times
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Table 5.5: Generated histogram for ICC compiler.

Instruction No.

VFMADD213PD_YMMqq_YMMqq_MEMqq 250000000

VMOVSD_XMMdq_MEMq 10

VMOVUPD_MEMqq_YMMqq 250000000

VMOVUPD_YMMqq_MEMqq 250000000

where P is a packed instruction (vector), D is a double-precision data type, YMM
is a register of a length equal to 256 bits, and FMADD is fused multiply-add (two
floating-point operations), thusWTu,Pi

equals 112 MFLOP. Both GCC versions with
O2 flag produces histogram with the VFMADD213SD_XMMdq_XMMq_MEMq
instruction. In this case, the instruction is a scalar with a register size equal to 128
bits that use fused multiply-add. QTu,Pi

also equals 112 GFLOP. The instrumenta-
tion allows counting the floating-point operations of any type.

The instrumentation that involves the actual execution of the code with careful
tracking of the execution of each instruction is the most precise method to esti-
mate the number of the executed floating-point operations. However, this method
significantly slows down the execution time of the measured code even up to 30x
times.

5.5 Energy measurement
The coefficients eopTu,Pi,La

, ebyteTu,Pi,La
and P 0

Tu,Pi,La
are approximated with a linear regres-

sion. Table 5.6 shows estimated values of the energy cost for the double-precision
floating-point operation and the transfer of a single byte of data. For the CPU and
GPU, the cost to transfer a single byte of data is 5.2x and 6x more expensive than
the floating-point operation, respectively. What is more, both floating-point and
memory operations are 5x more expensive on the CPU than on the GPU. Figure
5.10 shows that the constant power grows linearly with the increasing number of
cores using different P-states.

Table 5.6: Energy coefficients for the CPU and GPU architectures.

Platform
PCP U PGP U

Xeon E5-2670@2.60GHz Kepler K20m

eop
Tu,Pi,La

[pJ] 327 54

ebyte
Tu,Pi,La

[pJ] 1700 324

The energy usage of the seven-point stencil shown in Algorithm 1 can be cal-
culated based on both parameters depicted in Section 5.4 and the approximated
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Figure 5.10: Constant power P0: left - the CPU, right - the GPU

energy coefficients, see the equations below:

ee,WC
Tu,PCP U ,La

= 327 pJ

FLOP
∗112MFLOP+1700 pJ

Byte
∗1152MB+89W∗37.5ms = 5.33J

(5.18)
ee,BCTu,PCP U ,La

= 327 pJ

FLOP
∗112MFLOP+1700 pJ

Byte
∗256MB+89W ∗8.33ms = 1.21J

(5.19)
ee,WC
Tu,PGP U ,La

= 54 pJ

FLOP
∗112MFLOP+324 pJ

Byte
∗1024MB+74W ∗5.78ms = 0.766J

(5.20)
ee,BCTu,PGP U ,La

= 54 pJ

FLOP
∗112MFLOP+324 pJ

Byte
∗256MB+74W ∗1.48ms = 0.199J

(5.21)
The equations show the energy usage of the GPU is 6x to 7x lower than for the
CPU.



Chapter 6

Solution methods

In this chapter, we introduce an exact method based on ILP to obtain the optimal
solution for the formulated problem. We also present the heuristics with two ob-
jectives: to minimise the energy usage and load balance of the tasks to meet the
deadline. We describe various computational experiments and simulation results for
the ILP model on relatively small problem instances.

6.1 Exact method
Let us present a method based on ILP to obtain optimal solutions to the energy
minimisation problem. In particular, this method is developed to have a reference
for more advanced heuristics described in Section 6.2. Our method was inspired by
the model proposed in [49]. The idea is to decompose the scheduling problem to
two parallel subproblems. At first, the tasks are mapped to processors to minimise
the maximum number of grid cells placed on each processor. Secondly, the number
of communication rounds is minimised by employing an edge colouring model. The
communication is executed in parallel between different pairs of processors in sten-
cil computations. However, each processor can initiate a single communication link
with another processor at a time. As a result, we have to employ several communi-
cation rounds to exchange all data. The number of communication rounds directly
influences the communication time te, as each round costs some time. The reason
for selecting the ILP solution is that the edge colouring problem is NP-hard [46]
and [37]. For the task scheduling model, the set of edges is mapped to processors,
where each edge (Tu, Tv) may be mapped to a single processor Pi or placed between
two different processors Pi and Pj. In the first case, both endpoints Tu and Tv are
mapped to Pi. In the second case, Tu is mapped to Pi and Tv to Pj or Tu is mapped
to Pj and Tv to Pi. For each edge the slots (Pi, Pj) ∈ EP are provided and it is
required that each edge be assigned to exactly one slot. If edge (Tu, Tv) is assigned
to slot (Pi, Pj) then it starts in Pi and ends in Pj. If Pi = Pj then (Tu, Tv) lies
completely on Pi and is intra-processor, in all other cases it is inter-processor. The
edge colouring model is used to minimise the number of communication rounds. If
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the graph G = (V T , ET ) of tasks is mapped to the complete graph K = (V P , EP )
of m processors to form a new multigraph M , then each edge in M receives at least
as many colours as its multiplicity demands and incident edges do not receive the
same colour. Moreover, an edge can only receive a colour that is used.

Variables. For the integer programming model we introduce the following vari-
ables:

• (Edge to slot x(Tu,Tv),(Pi,Pj)) The binary variable for all (Tu, Tv) ∈ ET and
(Pi, Pj) ∈ EP equals 1 if and only if edge (Tu, Tv) is mapped to slot (Pi, Pj),
and 0 otherwise
• (Edge to colour y(Pi,Pj),c) For all (Pi, Pj) ∈ K and c ∈ C, where C = {0, ...,∆(G)+
µ(G)− 1}, the binary variable equals 1 if edge (Pi, Pj) receives colour c in M ,
and 0 otherwise. The simplest choice for the number of potential colours
to a colour multigraph is |E|. However, we can choose a smaller set based
on [92, 102] that for any multigraph G = (V,E) the chromatic index is
χ′(G) ≤ ∆(G) + µ(G)
• (Colour is used zc) For all c ∈ C the binary variable equals to 1 if a colour c

is used in the edge colouring of M and 0 otherwise
• (Number of grid cells gPi

) This integer variable depicts for each processor Pi
the number of allocated grid cells
• (Processor idle time tidlePi

) This variable for each processor Pi with the state La
represents the idle time
• (Total execution time ts) This variable indicates how much time it takes to

finish the whole workload
• (Energy used for communication ec) This variable represents the total energy

used for the inter-processor communication.

Constraints. The model employs several types of constraints:

• (Map edge to single slot) Each edge (Tu, Tv) ∈ ET must be mapped to exactly
one slot ∑

(Pi,Pj)∈EP

x(Tu,Tv),(Pi,Pj) = 1 (6.1)

• (Restrict slots) Mapping edge (Tu, Tv) to slot (Pi, Pj) restricts the slots to
which edges in δ((Tu, Tv)) can be mapped. Edges in δ+(Tu) must start in Pi
and edges in δ−(Tu) must end there. Likewise, edges in δ+(Tv) must start in
Pj and edges in δ−(Tv) must end there:

∑
k∈P

x(Tu,Tv),(Pi,Pj) −
∑
k∈P

xf,(Pi,Pj) = 0 (6.2)

∑
k∈P

x(Tu,Tv),(Pi,Pj) −
∑
k∈P

xf,(Pj ,Pi) = 0 (6.3)
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∑
k∈P

x(Tu,Tv),(Pj ,Pi) −
∑
k∈P

xf,(Pi,Pj) = 0 (6.4)

∑
k∈P

x(Tu,Tv),(Pj ,Pi) −
∑
k∈P

xf,(Pj ,Pi) = 0 (6.5)

These constraints are for all Pi ∈ V P and (Tu, Tv) ∈ ET , where f ∈ δ+(Tu)
is for (6.2), f ∈ δ−(Tu) is for (6.3), f ∈ δ+(Tv) is for (6.4), f ∈ δ−(Tv) is for
(6.5),
• (Control the number of grid cells) This constraint controls the number of the

grid cells allocated for each Pi ∈ V P . The sum of grid cells mapped to processor
Pi is given by

∑
(Tu,Tv)∈ET

∑
j∈V P

(dTu/degTu∗x(Tu,Tv),(Pi,Pj)+dTv/degTv ∗x(Tu,Tv),(Pj ,Pi)) ≤ cPi
(6.6)

for all Pi ∈ V P

• (Number of colours not less than multiplicity) This constraint requires that
each edge in M receive at least as many colours as its multiplicity demands.
Each edge models time required to exchange single grid cell between processors
Pi and Pj:∑
(Tu,Tv)∈ET

(x(Tu,Tv),(Pi,Pj)∗tc(Pi,Pj)∗C(Tu,Tv)+x(Tu,Tv),(Pj ,Pi)∗tc(Pj ,Pi)∗C(Tu,Tv)) ≤ y(Pi,Pj),c
c∈C

(6.7)
• (Incident edges receive different colours) This requires that incident edges not

receive the same colour in the edge colouring of M and that an edge can only
receive a colour that is used:

∑
Pj 6=Pi,PJ∈V P

y(Pi,Pj),c ≤ zc (6.8)

• (Restrict memory capacity for each processor) This constraint restricts the
number of grid cells allocated for each processor Pi:

gPi
≤ rPi

(6.9)

• (Control energy used for communication) The sum of energy used for the inter-
processor communication is depicted as

∑
(Tu,Tv)∈ET

∑
Pi 6=Pj ,(Pi,Pj)∈EP

x(Tu,Tv),(Pi,Pj) ∗ C(Tu,Tv) ∗ ec(Pi,Pj) ≤ ec (6.10)

• (Control execution time) These two constraints calculate the total execution
time ts using the maximum value from the computation and the communica-
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tion time. As described in Section 5.2 the computation and the communication
are done in parallel:

teTu,Pi,La
∗ cPi

≤ ts (6.11)∑
c∈C

zc ≤ ts (6.12)

• (Control processor’s idle time) This constraint controls the idle time for all
Pi ∈ V P :

ts − tcTu,Pi,La
∗ cPi

≤ tidlePi
(6.13)

• (Deadline) This inequality restricts the execution time:

ts ≤ td (6.14)

Table 6.1: Number of variables and constraints that formulate the ILP problem.

ILP

x variables |E × P × P|

y variables |C × P × P|

z variables |C|

x constraints |E|

y constraints |P × P|

z constraints |P|

Table 6.1 shows the number of variables and constraints that formulate the ILP
model.

Optimisation objective. Finally, the objective of the model is to minimise the
energy cost: ∑

Pi∈V P

(eeTu,Pi,La
∗ gPi

+ tidlePi
∗ P idle

Pi
) + ec (6.15)

6.2 Heuristic algorithms
In this section, we introduce new heuristics taking into account the relevance of
energy efficiency issues in the next generation of the high-end supercomputers. In
our approach we consider energy-aware stencil workload scheduling on heterogeneous
architectures with two following objectives:

• minimise the energy usage;
• load balance of the tasks to meet the deadline.
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6.2.1 Load Balancing
First strategy focuses on balancing the load between processors and does not consider
the communication dependencies. These heuristics are usually relatively fast and
straightforward as they act online on the workload.

The algorithm distributes tasks to processors while keeping the maximal load
small and not exceeding the deadline. This strategy is called Load Balancing, see
Algorithm 2. We start with processor p0 and assign tasks to this processor until its
size is at least wV ∗ ri/

∑
p∈P

rp. Then we move to the next processor and repeat the

procedure. The limit wV ∗ ri/
∑
p∈P

rp stems from the fact that in perfect balancing of
tasks there is one processor that has this many grid cells. This limit is a modification
of a limit wV /|P | for a homogeneous processor, as we consider the speed rp of each
processor. The time complexity of the algorithm is O

(
|V |

)
to assign all tasks to

processors. The algorithm is sensitive to the order in which the tasks and processors
are selected.

Algorithm 2 Load Balancing
1: procedure LoadBalancing

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for i = 0, ..., |P| − 1 do
3: Set s = 0
4: while s ≤ wV ∗ ri/

∑
p∈P

rp do

5: Remove the first task u from T
6: Set m(u) = pi and s = s+ wu
7: end while
8: end for
9: end procedure

6.2.2 Degree Minimisation
Algorithms described in this section attempt to include communication overhead in
the scheduling process. They try to find such a schedule that the resulting multi-
graph yields a small chromatic index. Since finding that the chromatic index is an
NP-complete problem [46], the algorithms employ different approximation methods
to minimise it.

In this algorithm task, u with the lowest number of unmapped edges is assigned
to the current processor p. Based on the equations χ′(G) ≤ ∆(G) + µ(G) and
χ′(G) ≤ b3 ∗∆(G)/2c the chromatic index χ′(G) of any multigraph G depends on
the max degree. Thus, when task u is assigned to processor p, then each incident
edge to this task not mapped to p increases the current degree of p by one. The
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neighbours of the task u that are mapped to another processor k 6= p also increase
the degree of p, but they are not considered in this algorithm. Therefore, the array
deg(u) is used to keep the number of unmapped edges for each task u. It is the
number by which the degree of processor p would increase if the task u was mapped
to it. If two tasks have the same number of unmapped edges, then the task with
the smallest computational load is selected. In other words, it is the number of
additional grid points by which computational load on the processor p would exceed
the perfect load wV ∗ ri/

∑
p∈P

rp if the task u was mapped to p. The running time

of Algorithm 3 is O
(
|V 2|

)
. The time needed to find the task with the smallest

computational load takes O
(
|V |

)
, whereas the while loop is executed O

(
|V |

)
times.

Algorithm 3 Degree Minimisation
1: procedure Degree Minimisation

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for u ∈ T do
3: deg(u) = degG(u)
4: end for
5: for i = 0, ..., |P| − 1 do
6: Set s = 0
7: while s ≤ wV ∗ ri/

∑
p∈P

rp do

8: Find u′ = argmin{deg(u) : u ∈ T }.
9: . If there are multiple tasks that attain this

10: . minimum pick the one with smallest computational load.
11: Remove task u′ from set T
12: Set m(u′) = pi and s = s+ wu′
13: for v ∈ N(u′) ∩ T do
14: deg(v) = deg(v)− µu′v
15: end for
16: end while
17: end for
18: end procedure

6.2.3 Multicut Minimisation
This algorithm estimates the chromatic index for a multigraph based on the complete
number of edges |E|. The previous Algorithm 3 is modified to obtain a minimal
multicut, see Algorithm 4. The task u with the smallest number of unscheduled
neighbours is found to be mapped on the current processor p. In line three the
deg(u) is initialised with the number of unscheduled neighbours. Each scheduled
task u′ decreases the deg(v) for each unscheduled neighbour v of u′. The time
complexity of the algorithm is equal to O

(
|V 2|

)
.
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Algorithm 4 Multicut Minimisation
1: procedure Multicut Minimisation

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for u ∈ T do
3: deg(u) = |N(u) ∩ T |
4: end for
5: for i = 0, ..., |P| − 1 do
6: Set s = 0
7: while s ≤ wV ∗ ri/

∑
p∈P

rp do

8: Find u′ = argmin{deg(u) : u ∈ T }.
9: Remove task u′ from set T

10: Set m(u′) = pi and s = s+ wu′
11: for v ∈ N(u′) ∩ T do
12: deg(v) = deg(v)− 1
13: end for
14: end while
15: end for
16: end procedure

6.2.4 Neighbours Accumulation

In this algorithm the unmapped task u with the highest number of neighbours on
the currently selected processor p is chosen, see Algorithm 5. This policy tries to
yield most of the communication edges of the grid graph intra-processor. The array
N records the number of neighbours which the task u has on the processor p. In line
10 the task with the most neighbours on the processor p is selected. However, at the
end of the inner while loop (line 12), when the processor p is almost full, a different
strategy is employed. The task u connected to the subgraph mapped to p with a
minimum number of neighbours not on p is selected. The load factor f ∈ [0, 1] is
introduced to recognise when the processor is almost full. While s ≤ f ∗wV ∗ri/

∑
p∈P

rp

the tasks with the maximum number of neighbours on the current processor p are
selected, whereas s ≥ f ∗ wV ∗ ri/

∑
p∈P

rp the tasks with the minimum number of
neighbours not on p are picked. When no unmapped task is adjacent to the tasks
currently mapped to p, the task with the maximum degree is preferred. Additionally,
for the strategy defined in line 12, the task with the minimum degree among the
unmapped ones is selected. To find the task in lines 10 and 12 takes O

(
|V |

)
time.

The while loops are executed |V | times, thus the whole algorithm runs in time
O
(
|V 2|

)
.



80 6 Solution methods

Algorithm 5 Neighbours Accumulation
1: procedure Neighbours Accumulation

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: Set i = 0
3: while T 6= ∅ and i ≤ |P| do
4: for u ∈ T do
5: N(u) = 0
6: end for
7: Set s = 0
8: while s ≤ wV ∗ ri/

∑
p∈P

rp and T 6= ∅ do

9: if s ≤ f ∗ wV ∗ ri/
∑
p∈P

rp then

10: Find u′ = argmax{N(u) : u ∈ T }.
11: else
12: Find u′ = argmin{degG(u)−N(u) : u ∈ T , N(u)}.
13: end if
14: . If there are multiple tasks that attain this
15: . minimum pick the one with smallest computational load.
16: Remove task u′ from set T
17: Set m(u′) = pi and s = s+ wu′
18: For each v ∈ T that is adjacent to u′ set N(v) = N(v) + 1
19: end while
20: end while
21: end procedure

6.3 Computational experiments

6.3.1 Simulation setup
For the purpose of computational experiments a new simulator has been designed
and implemented to validate our models and calculate the total execution time,
energy usage and the number of communication rounds (colours). The simulator is
initialised with the following data:

1. a text file with a workload dependency graph
2. a text file with processor topology
3. the type of scheduling strategy used: ILP or heuristic.

The simulation instances include two different real-world simulation grids. These
grids are related to the weather simulations problems. The connection topology of
points on each grid is defined by a 3D seven-point stencil depicted in Figure 3.1.

Table 6.2 outlines the properties of the test instances. The first grid called
Cuboid (Figure 6.1) was used to simulate decaying turbulence of a homogeneous
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incompressible fluid, whereas the second grid called Sphere (Figure 6.2) was used as
a benchmark for the atmospheric circulation models. The connections in the hori-
zontal direction for the Sphere grid are periodical. Figure 6.3 shows the example of
the decomposed Cuboid grid with the connection dependencies. Each number rep-
resents the block identifier that is later mapped to a specific processor. The grids
are mapped to a single node with three different configurations of the processors:
CPU-CPU, CPU-GPU and 2xCPU-2xGPU to analyse the quality of the ILP model
and the heuristics. The simulated CPU is Intel Xeon E5-2670 Sandy Bridge eight
core processor, and the GPU is Nvidia Kepler K20m. Figure 6.4 presents the node
topology with four processors. The CPU and GPU frequencies are set to default val-
ues in all algorithms. The GPU operates at 705MHz of the core clock and 2600MHz
of the memory clock, where the CPU operates at 2.6GHz of the core clock. The pa-
rameters used in all test runs are shown in Table 6.3. The values of the parameters
are obtained based on the methodology described in Sections 5.1 and 5.3.

Table 6.2: Properties of the simulated grids.

Name #Blocks #Edges Block size Grid size

Cuboid 128 608 262144 512x256x256

Sphere 128 704 262144 512x256x256

Figure 6.1: Cuboid Figure 6.2: Sphere
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2
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Figure 6.3: Graph of stencil tasks with the connection dependencies

6.3.2 Simulation results
First, we show the results for the ILP model, see Tables 6.4 and 6.5, where the first
column presents the configurations used. Each configuration is simulated with differ-
ent deadlines. The deadline is provided as an input parameter. We reduce its value
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CPU0 CPU1

GPU1GPU0

Figure 6.4: Graph of processors

Table 6.3: Parameters setup.

Parameter CPU GPU

tep,k 1 ∗ 10−9s 1 ∗ 10−9s

ee
p,k 1.36 ∗ 10−7J 1.36 ∗ 10−7J

tcu,p,l 8.33 ∗ 10−10s 1.06 ∗ 10−10s

ec
u,p,l 2.9 ∗ 10−8J 5.5 ∗ 10−9J

P idle
p 10W 30W

P0u,p,l 90W 74W

to the point where the ILP model cannot generate a feasible solution. The subse-
quent columns provide the number of colours used in a multigraph, the total energy
consumed, the energy used for computations, the energy used for communication,
and the time elapsed. The number of colours used in the graph colouring provides
information about the number of communication rounds employed. As the results
show, the decreasing deadlines improve the computation times; however, they in-
crease the energy usage. This is especially true for the heterogeneous configurations
where the energy usage grows up to 7x from the extended deadline to the shortest
one. A shorter deadline forces usage of the next processing unit and, as a result,
it requires more energy to communicate. For example, for the 2xCPU -2xGPU con-
figuration 88% of energy is consumed by the communication. For this reason, it is
crucial to efficiently distribute the stencil tasks to reduce the number of communi-
cation rounds between the processing units. However, as we can see, it is beneficial
to use the heterogeneous configurations; as we switch from the CPU -CPU configu-
ration to the 2xCPU -2xGPU configuration, both the computation time and energy
costs decrease by 87% and 57%, respectively, for the Cuboid grid. Similarly, the
computation time for the Sphere grid decreases by 87%, whereas the energy usage
decreases by 42%. Higher energy usage for the Sphere grid is caused by the periodic
connections of tasks on the I and J boundaries. For single-node configurations we
can notice that the maximum computation time tcu,p,l among the processing units is
a bottleneck for the total execution time tt. Still, we can expect that the limiting
factor will be the communication time for the multi-node configurations.

The quality of all the four heuristics described in Section 6.2 is presented. The
obtained results are presented in Tables 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11, where
Algorithm 1 is tested with four different sorting orders of the tasks: random (RD),



Table 6.4: ILP on Cuboid with all configurations.

Arch. td[ms] #Col. E[J] ec[%] ee[%] tt[ms]

CPU-
CPU

27,90 0 3,76 100 0 27,90

26,97 20 4,86 77 23 26,81

14,00 32 5,27 66 34 13,95

CPU-
GPU

3,58 0 0,48 100 0 3,58

3,46 20 1,70 35 65 3,44

3,34 28 2,23 30 70 3,33

3,22 34 2,65 29 71 3,22

2xCPU-
2xGPU

3,58 0 0,62 100 0 3,58

3,46 20 1,73 36 64 3,44

3,34 28 2,16 28 72 3,33

3,22 32 2,26 21 79 1,79

Table 6.5: ILP on Sphere with all configurations.

Arch. td[ms] #Col. E[J] ec[%] ee[%] tt[ms]

CPU-
CPU

26,97 30 5,41 69 31 26,81

25,92 40 5,94 63 37 25,28

25,02 48 6,37 58 42 24,41

24,13 56 6,78 54 46 22,67

14,00 64 7,05 49 51 13,95

CPU-
GPU

3,60 0 0,48 100 0 3,58

3,46 30 2,26 26 74 3,44

3,35 38 2,79 24 76 3,33

3,23 46 3,32 23 77 3,22

2xCPU-
2xGPU

3,58 0 0,62 100 0 3,58

3,46 30 2,28 27 73 3,44

3,34 38 2,72 22 78 3,33

3,22 46 3,16 19 81 3,22

3,11 54 3,60 16 84 3,11

2,99 56 3,69 16 84 2,91

2,66 64 4,05 12 88 1,79



Table 6.6: Heuristics on Cuboid with the CPU-CPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 1224 306 20,53/289,49% 13,95/0,00%

Alg_1-IJK 256 64 7,05/33,81% 13,95/0,00%

Alg_1-JIK 256 64 7,05/33,81% 13,95/0,00%

Alg_1-KIJ 256 64 7,05/33,81% 13,95/0,00%

Alg_2 256 64 7,05/33,81% 13,95/0,00%

Alg_3 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,1 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,2 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,3 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,4 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,5 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,6 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,7 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,8 256 64 7,05/33,81% 13,95/0,00%

Alg_4-0,9 256 64 7,05/33,81% 13,95/0,00%

Alg_4-1.0 256 64 7,05/33,81% 13,95/0,00%

Table 6.7: Heuristics on Cuboid with the CPU-GPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 504 126 7,85/195,85% 3,48/8,32%

Alg_1-IJK 192 48 3,51/32,29% 3,48/8,32%

Alg_1-JIK 160 40 3,06/15,52% 3,48/8,32%

Alg_1-KIJ 160 40 3,06/15,52% 3,48/8,32%

Alg_2 192 48 3,51/32,29% 3,48/8,32%

Alg_3 192 48 3,51/32,29% 3,48/8,32%

Alg_4-0,1 224 56 3,96/49,07% 3,48/8,32%

Alg_4-0,2 200 50 3,62/36,49% 3,48/8,32%

Alg_4-0,3 200 50 3,62/36,49% 3,48/8,32%

Alg_4-0,4 200 50 3,62/36,49% 3,48/8,32%

Alg_4-0,5 200 50 3,62/36,49% 3,48/8,32%

Alg_4-0,6 200 50 3,62/36,49% 3,48/8,32%

Alg_4-0,7 192 48 3,51/32,29% 3,48/8,32%

Alg_4-0,8 192 48 3,51/32,29% 3,48/8,32%

Alg_4-0,9 176 44 3,29/23,90% 3,48/8,32%

Alg_4-1.0 160 40 3,06/15,52% 3,48/8,32%



Table 6.8: Heuristics on Cuboid with the 2xCPU-2xGPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 520 318 22,00/870,23% 1,74/-2,68%

Alg_1-IJK 576 128 8,86/290,69% 1,74/-2,68%

Alg_1-JIK 480 112 7,52/231,75% 1,74/-2,68%

Alg_1-KIJ 480 112 7,52/231,75% 1,74/-2,68%

Alg_2 576 128 8,86/290,69% 1,74/-2,68%

Alg_3 576 128 8,86/290,69% 1,74/-2,68%

Alg_4-0,1 568 116 8,75/285,77% 1,74/-2,68%

Alg_4-0,2 504 92 7,85/246,48% 1,74/-2,68%

Alg_4-0,3 584 124 8,97/295,60% 1,74/-2,68%

Alg_4-0,4 480 100 7,52/231,75% 1,74/-2,68%

Alg_4-0,5 480 100 7,52/231,75% 1,74/-2,68%

Alg_4-0,6 480 100 7,52/231,75% 1,74/-2,68%

Alg_4-0,7 472 98 7,41/226,84% 1,74/-2,68%

Alg_4-0,8 456 92 7,19/217,01% 1,74/-2,68%

Alg_4-0,9 432 84 6,85/202,28% 1,74/-2,68%

Alg_4-1.0 432 84 6,85/202,28% 1,74/-2,68%

Table 6.9: Heuristics on Sphere with the CPU-CPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 1408 352 23,09/227,39% 13,95/0,00%

Alg_1-IJK 256 64 7,05/0,00% 13,95/0,00%

Alg_1-JIK 256 64 7,05/0,00% 13,95/0,00%

Alg_1-KIJ 512 128 10,62/50,53% 13,95/0,00%

Alg_2 256 64 7,05/0,00% 13,95/0,00%

Alg_3 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,1 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,2 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,3 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,4 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,5 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,6 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,7 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,8 256 64 7,05/0,00% 13,95/0,00%

Alg_4-0,9 256 64 7,05/0,00% 13,95/0,00%

Alg_4-1.0 256 64 7,05/0,00% 13,95/0,00%



Table 6.10: Heuristics on Sphere with the CPU-GPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 576 144 9,53/186,63% 3,48/8,32%

Alg_1-IJK 256 64 4,40/32,50% 3,48/8,32%

Alg_1-JIK 192 48 3,51/5,70% 3,48/8,32%

Alg_1-KIJ 320 80 5,29/59,31% 3,48/8,32%

Alg_2 256 64 4,40/32,50% 3,48/8,32%

Alg_3 256 64 4,40/32,50% 3,48/8,32%

Alg_4-0,1 296 74 4,96/49,25% 3,48/8,32%

Alg_4-0,2 304 76 5,07/52,61% 3,48/8,32%

Alg_4-0,3 304 76 5,07/52,61% 3,48/8,32%

Alg_4-0,4 312 78 5,18/55,96% 3,48/8,32%

Alg_4-0,5 320 80 5,29/59,31% 3,48/8,32%

Alg_4-0,6 328 82 5,40/62,66% 3,48/8,32%

Alg_4-0,7 336 84 5,51/66,01% 3,48/8,32%

Alg_4-0,8 336 84 5,51/66,01% 3,48/8,32%

Alg_4-0,9 320 80 5,29/59,31% 3,48/8,32%

Alg_4-1.0 320 80 5,29/59,31% 3,48/8,32%

Table 6.11: Heuristics on Sphere with the 2xCPU-2xGPU configuration.

Algorithm #Edg. #Col. E[J]/gap tt[ms]/gap

Alg_1-RD 1664 350 24,01/492,79% 1,74/-2,68%

Alg_1-IJK 704 160 10,64/162,77% 1,74/-2,68%

Alg_1-JIK 704 160 10,64/162,77% 1,74/-2,68%

Alg_1-KIJ 800 760 11,98/195,77% 1,74/-2,68%

Alg_2 704 160 10,64/162,77% 1,74/-2,68%

Alg_3 704 160 10,64/162,77% 1,74/-2,68%

Alg_4-0.1 744 164 11,20/176,52% 1,74/-2,68%

Alg_4-0,2 728 158 10,97/171,02% 1,74/-2,68%

Alg_4-0,3 712 152 10,75/165,52% 1,74/-2,68%

Alg_4-0,4 712 156 10,75/165,52% 1,74/-2,68%

Alg_4-0,5 720 158 10,86/168,27% 1,74/-2,68%

Alg_4-0,6 720 158 10,86/168,27% 1,74/-2,68%

Alg_4-0,7 704 158 10,64/162,77% 1,74/-2,68%

Alg_4-0,8 704 158 10,64/162,77% 1,74/-2,68%

Alg_4-0,9 672 144 10,19/151,77% 1,74/-2,68%

Alg_4-1,0 672 144 10,19/151,77% 1,74/-2,68%
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IJK indices, JIK indices and KIJ indices. The grid indices can order the tasks
depending on their location within the grid. This order may influence the number
of edges mapped between different processors.

For Algorithm 4, the first column in Tables contains the value of the load factor
f , which depicts when the processor is almost full. This algorithm is tested with
different values of this parameter. The second to last columns show the number
of edges in the returned scheduling, the number of colours used in the obtained
multigraph and the objective values for the energy and time. The gap is defined
as a difference between the optimal solution o′ and the solution o∗ returned by the
algorithm:

gap(o∗, o′) = (o∗ − o′)/o′ (6.16)

The optimal solution with the shortest deadline is selected as a base for the com-
parison. In other words, the results are compared to the feasible solution with the
lowest possible computational time and minimal energy obtained by the ILP model.
Tables from 6.6 to 6.11 show that the time tt is all the same. All heuristics are based
on the idea of load balancing, where the computations of the tasks are well balanced
between processors. For each grid configuration the final schedule obtains the same
computation time. The communication time between heuristics is different, as the
obtained schedules provide a different number of communication rounds. The com-
munication time is shorter than the computation time, and both are done in parallel.
As a result, the communication time does not influence the time tt. However, the
number of communication rounds strongly influences energy consumption. Tables
6.6 and 6.9 show that almost all heuristics except for Alg_1 -RD are able to schedule
stencil tasks with a near-optimal solution for homogeneous hardware configurations
with two processors. What is more, the results show that the heuristics that target
the balanced load provide good solutions for simple configurations with two pro-
cessors. The Load Balancing algorithm Alg_1 produces an efficient distribution
depending on the sorting order of the input tasks. The order based on JIK indices
minimises the number of communication rounds for both grids with two proces-
sors. It is beneficial to use the heuristics that take into account the communication
penalty with four processors. The algorithm Alg_4 provides good schedules for
the four processors as it tries to yield most of the communication edges of the task
graph intra-processor. The quality of the schedule depends on the load factor which
determines when to switch the mapping from the task with the most neighbours on
the current processor to the task with a minimum number of neighbours, not on the
current processor. Let us take as an example the 5x4x5 grid with 100 blocks dis-
tributed on a node with a single CPU and two GPUs where the 3D Laplacian stencil
is employed. Figure 6.5a shows the schedule from Alg_1 with the best performing
JIK order. The blocks are distributed horizontally according to the JIK order.
Figure 6.5b shows the output from Alg_4 with the load factor equal to 0.9. The
blocks scheduled to the CPU are distributed vertically within the computational
grid, whereas those scheduled to GPUs are distributed horizontally. Alg_4 and the
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Figure 6.5: Comparison of schedule between Alg_1 and Alg_4 . The colours
represent the scheduling of blocks to the processors: red - GPU00, blue -
GPU01 and green - CPU00. Left - output from Alg_1 , right - output from
Alg_4 .

rest of the algorithms (Alg_2 and Alg_3 ) are able to mix the spatial distribution of
the blocks. The energy cost is 4.65J and 4.43J for Alg_1 and Alg_4 , respectively.
5% of the energy is saved by reducing the number of communication rounds.

The presented heuristics may be applied to the distribution of stencil computa-
tions between the processing units defined on the Cartesian grids. These grids may
be 2D or 3D with or without periodic boundaries.

Table 6.12: The average execution time (us) of the investigated ILP model and heuristics
for the 2xCPU-2xGPU configuration.

ILP Alg1 Alg2 Alg3 Alg4

Cuboid 3118× 106 32 78 52 55

Sphere 281 836× 106 33 98 57 65

Table 6.12 shows the average execution time of the investigated ILP model and
heuristics for the 2xCPU-2xGPU configuration with previously described grid se-
tups. As one can notice, the time to find the optimal solutions is seven orders of
magnitude larger than the time of heuristics.

6.3.3 Verification of energy model
This section contains the experimental comparison of the energy usage model used in
the simulator with the real measurements. Figures 6.6 and 6.7 present the compar-
ison of energy usage between the proposed model and the real measurements. The
results are obtained for the Intel Xeon processor and the Nvidia K20m accelerator,
respectively, for the seven-point stencil defined on the grid with 2563 points. Table
6.13 contains the energy usage for all examined heuristics and the ILP model for
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the 2xCPU-2xGPU configuration of processors defined on the Cube grid presented
in Section 6.3.1. Table 6.14 summarizes their accuracy.
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Figure 6.6: Comparison of accuracy (%) between the proposed model and the
real measurements on the Intel Xeon E5-2670@2.6GHz processor.
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Figure 6.7: Comparison of accuracy (%) between the proposed model and the
real measurements on the Nvidia K20m accelerator.

Table 6.13: Energy usage (J) of the proposed model and the real measurements for the
investigated ILP model and heuristics.

ILP Alg1 Alg2 Alg3 Alg4

Ereal 2,29 7,23 8,56 6,56 8,56

Emodel 2,27 7,53 8,86 6,86 8,86



90 6 Solution methods

Table 6.14: Comparison of accuracy (%) between the proposed model and the real measure-
ments for the investigated ILP model and heuristics.

ILP Alg1 Alg2 Alg3 Alg4

Emodel/Ereal 99 104 103 105 103

As can be observed, the accuracy of the presented model is high and visibly
exceeds 90%. The results suggest that applying the time and energy models while
verifying different scheduling policies does not deteriorate overall results. This con-
cludes that the described environment can be used to simulate the heterogeneous
computer system.



Chapter 7

Task Movement algorithm

The considered scheduling problem, as a generalisation of the NP-hard problem con-
sidered in [26], needs to be solved within an acceptable time frame using efficient
heuristics. In previous section, we discussed results achieved by simple heuristics,
namely Load Balancing (LB), Degree Minimisation (DM), Multicut Minimisation
(MM) and Neighbours Accumulation (NA), to minimise the energy usage within a
given deadline of parallel stencil computations. However, all the developed heuris-
tics focused only on a single computing node with heterogeneous processors. In
this section, however, which is built upon the results and conclusions from initial
research experiments, further research is presented which has led to the develop-
ment and experimental verification of a new algorithm Task Movement (TM) [27]
to solve the stencil scheduling problem efficiently in more complicated and real-
istic multi-node HPC setups. Thus, to create the topology-aware TM algorithm,
relevant additional parameters have been taken into account to deal with commu-
nication topology among heterogeneous processors linked together at the inter-node
and intra-node levels. Finally, in this section, we present obtained simulation re-
sults by TM for large problem instances, crated out of high-end supercomputers real
setups, and demonstrate its performance achievements.

7.1 Single-node setup and new
requirements

To better understand our new TM algorithm, it is essential first to remind all the
task and processor parameters in our model that have been used by the proposed
heuristics optimised for single-node setups:

• tePi,La
the computation time for the single grid cell;

• C = {c1, c2, . . . , ch} the set of available cores;
• F = {f1, f2, . . . , fg} the set of available frequencies;
• L = {(f, c) : f ∈ F ∧ c ∈ C} the set of states, where La ∈ L is a selected state;



92 7 Task Movement algorithm

• bPi,La the sustained bandwidth to the main memory in bytes per second;
• P perf

Pi,La
the performance in the floating-point operations per second;

• dTu the number of grid cells to process;
• WTu,Pi

the number of arithmetic operations per grid cell;
• QTu,Pi

the number of required bytes to update a grid cell;
• teTu,Pi,La

= max(OTu,Pi
/PPi,La ;BTu,Pi

/bPi,La) where OTu,Pi
is the number of

arithmetic operations to update the stencil task Tu and BTu,Pi
is the num-

ber of bytes to update the stencil task Tu;
• deg(Tu) the degree of task Tu;
• N(Tu) the number of neighbours of task Tu.

The above parameters characterise the task graph and processor speed. However,
they do not describe the communication topology among heterogeneous processors
linked together at the inter-node and intra-node levels. Therefore, during extensive
research studies, we proposed a new heuristic algorithm taking into account different
network and communication topologies to better predict both the runtime and the
energy usage. A set of commonly used metaheuristic optimisation algorithms and
techniques can be considered to produce good solutions in a reasonable time, namely:
Tabu Search (TS) [39], Genetic Algorithms (GA) [93] and Simulated Annealing (SA)
[54]. However, based on our initial computational studies, we have selected and
focused on TS to solve the stencil scheduling problem efficiently in a new, multi-
node setup.

7.2 Algorithm for multiple-node setup
In our new approach, TM can search the solution space efficiently beyond local
optimality, and it stops after reaching the predefined number of iterations. In TM,
three types of neighbourhood movements are defined:

1. The task Tu that is already assigned to processor Pi is picked and moved to
another processor Pj, where i! = j.

2. The two tasks Tu, Tv ∈ V T that are assigned to different processors Pi and Pj
are picked . The tasks are swapped, where Tu is mapped to processor Pj and
Tv is mapped to processor Pi.

3. The edge (Tu, Tv) ∈ ET is picked, where Tu is assigned to processor Pi and
Tv is assigned to processor Pj (i = j is allowed). The task Tu is moved to
processor Pi′ and the task Tv is moved to processor Pj′ , where i! = i′ and
j! = j′.

Each neighbourhood movement is a conjunction of two types of attributes: remove
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task Tu from processor Pi and add task Tu to processor Pi. The movement is tabu
only if all of its attributes are tabu active. The attribute is tabu active when
it is placed in a tabu list. Checking whether an attribute is tabu active can be
efficiently implemented and thus can reduce the necessary time to verify if the move
is tabu. The conjunction of the attributes provides flexibility for choosing new
movements. The first type of movement consists of two attributes: task addition
and removal to/from processor Pj. There are four attributes in the second and
third neighbourhood movement types: two task additions and two task removals.
The number of iterations called tabu tenures w, specifies how long the attribute is
tabu active. The number of tenures can be different depending on the attribute
type. We assumed in TM that for the task addition the number of tab tenures is
larger than for the task removal. It is easier to remove the task from the solution
and satisfy the deadline requirement than add it. If there is no improvement of the
current solution, the aspiration criteria are applied for the moves that start from a
certain distance from the current objective function values. The distance is updated
according to the improved speed of the solution. Consequently, movements that
generate worse solutions are also accepted in our approach.

Algorithm 6 Task Movement
1: procedure Task Movement
2: Determine the objective function value z0 of s0.
3: Set T (Tu, Pi) = 0 for all (Tu, Pi) ∈ V T × V P .
4: Set z∗ = z0 and s∗ = s0.
5: for k = 1, ..., K do
6: Set zk =∞.
7: for (Tu, Pi) ∈ V T × V P do
8: if (Tu, Pi) > k then
9: Continue with the next pair.

10: end if
11: Set s = sk−1 and s(Tu) = Pi.
12: if s is infeasible then
13: Continue with the next pair.
14: end if
15: Determine the objective function value z of s.
16: if z < zk then
17: Set zk = z, sk = s, Tu,k = u and Pi,k = Pi.
18: end if
19: end for
20: if zk < z∗ then
21: Set z∗ = zk, s∗ = sk and T (Tu,i, sk−1(Tu,k)) = k + r.
22: end if
23: end for
24: Return s∗.
25: end procedure



94 7 Task Movement algorithm

Figure 6 shows the algorithm for the first type of movement where task Tu is moved
to another processor Pj. The algorithm starts with initial solution s0, deadline td,
tabu list length w, and iteration limit K. To obtain both initial solution s0 ∈ S and
deadline td the following main steps are performed:

1. Generate an initial set of solutions S using the LB, DM, MM and NA heuristics.
2. Calculate stencil execution times for all the obtained solutions S.
3. Select the shortest schedule and use it as an initial deadline td.
4. Run the TM algorithm with each generated solution s0 ∈ S and find a schedule

in which the total energy cost is minimized and the deadline td is not exceeded.

Note that TM may find a schedule with a shorter execution time than the ini-
tial deadline. Thus, we consider two objectives by reducing the energy cost and
total execution time during the optimisation process in TM. Approximation of the
chromatic index of the graph χ′(G) has to be calculated to determine the objective
function value (Equation 5.5) of the initial solution s0. In order to speed up the ap-
proximation calculations of the chromatic index the inequality χ′(G) ≤ ∆(G)+µ(G)
proposed in [92] was adopted, respectively.

The following new parameters need to be estimated and aggregated from the net-
work topology and communication descriptions to apply TM for scheduling stencil
computations with more realistic multi-node HPC setups:

• if tasks Tu and Tv are executed on different processors Pi, Pj ∈ P , they cause
the time tc(Tu,Tv),(Pi,Pj) and the energy ec(Tu,Tv),(Pi,Pj) penalty required to exchange
the grid cells between the processors Pi and Pj. If both tasks are scheduled
on the same processor, then the communication time and the communication
energy are equal to zero;
• tc(Tu,Tv),(Pi,Pj) the communication time depends on a communication type in-

tranode or internode. If it is an internode communication the communication
time increases with the average number of hops that a packet has to travel to
reach a destination processor;
• ec(Tu,Tv),(Pi,Pj) the energy cost is calculated based on the physical distance be-

tween processors and a connection type;
• the total communication time and the total communication energy to exchange

all data are represented by tc and ec, respectively;
• ts the total execution time indicates how much time it takes to finish the whole

workload;
• td the execution deadline denotes the time by which all tasks have to be fin-

ished.

The energy usage of the schedule depends on the number of inter-node commu-
nications. Let us take as an example the 8x8x4 grid with the 256 tasks distributed
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Figure 7.1: Comparison of two example schedules and communication topolo-
gies generated by (a) MM and (b) TM algorithms for a seven-point stencil.

on two nodes (each with two CPUs and six GPUs) where the seven-point stencil
is employed. Figure 7.1 shows example schedules generated by MM and TM, re-
spectively. All the communication links between two processors are represented as
a single edge to simplify the schedules. In the case of TM, CPUs are not utilised in
the computations. MM and TM have 11 and 3 inter-node edges, respectively.

7.3 Computational experiments

7.3.1 Simulation setup
The problem instances were based and extracted from the real-world simulation grid
used in many stencil computations, mainly numerical weather prediction (NWP)
and corresponding climate models. The connection topology of points on a grid
was defined by a seven-point stencil as depicted in Figure 5.8. Table 7.1 outlines
the properties of the test instances. The grid called Cuboid was used to simulate
decaying turbulence of a homogeneous incompressible fluid.

Let us first show the example of the decomposed Cuboid grid with connection
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Table 7.1: The simulated 3D dimensional structural grid and its properties for the reference
stencil-based simulations.

Name #Blocks #Edges dTu CTu,Tv Grid size

Cuboid 8 192 46 592 64x64x64 32x32 1024x1024x1024

6

4

7

5

2

0

3

1

Figure 7.2: The example graph of stencil tasks with the connection depen-
dencies.

dependencies in Figure 7.2. Each number represents the block identity that was
later mapped to a specific processor. The considered grids were mapped to three
different network topologies and corresponding configurations as described in Section
2.1.3 to analyse the quality of TM and simpler heuristics. All the parameters used
in our experimental studies are shown in Tables 7.2, 7.3 and 7.4. The parameter
values were obtained according to our methodology proposed in [26, 57]. Some
extensions were naturally needed to calculate the execution time, energy usage,
and communication rounds for the considered multi-node supercomputer setups and
three different network topologies.

To compare three different multi-node HPC systems with different network topolo-
gies, we assumed that the overall simulated performance of each system was around
0.38 Pflop/s. Consequently, we used a different number of processors in each sim-
ulated multi-node HPC system. Table 7.2 presents three configurations of single-
nodes used in the top supercomputers today. Each node consists of heterogeneous
processor setups with different performance and power usage. As we can see, Nvidia
Tesla V100 GPU is the highest performing parallel processor. Similarly, the best
performance ratio to Thermal Design Power (TDP) is offered by Nivida Tesla V100
GPU, whereas the best ratio of the memory bandwidth to TDP is provided by ARM
A64FX CPU. Arm A64FX CPU also has the highest memory bandwidth among the
simulated processors. Additionally, Table 7.3 shows the intra-node and inter-node
communication times and energy requirements to calculate a single stencil task.
These parameters were estimated based on the technical specifications of the re-



Table 7.2: Multi-node powerful HPC systems with different processors used in experimental
studies.

Summit Piz-Daint Fugaku

Node 2xCPU+6xGPU CPU+GPU CPU

Processor
IBM Nvidia Intel Nvidia ARM

Power9 Tesla V100 E5-2690v3 Tesla P100 A64FX

#Cores 22 5120 12 3584 48

Frequency [GHz] 3.07 1.3 2.6 1.19 3

Performance
540.5 7800 499 4670 2700

[Gflop/s]

Memory bandwidth
170 900 170 732 1024

[GB/s]

Memory size
256 16 64 16 32

[GB]

Thermal Design Power (TDP) [W] 190 250 140 250 160

Table 7.3: Estimations of intra-node and inter-node communication time and energy usage
in different and powerful HPC systems.

Summit Piz-Daint Fugaku

Node 2xCPU+6xGPU CPU+GPU CPU

Processor
IBM Nvidia Intel Nvidia ARM

Power9 Tesla V100 E5-2690v3 Tesla P100 A64FX

CPU-CPU GPU-GPU

Intra-node 4.77 ∗ 10−7 6.10 ∗ 10−7 CPU-GPU -

tc(Tu,Tv),(Pi,Pj ) [s] CPU-GPU 1.93 ∗ 10−6

6.10 ∗ 10−7

1.22 ∗ 10−6

Dragonfly

7.48 ∗ 10−7
Inter-node 1.53 ∗ 10−5 (rank 1)

tc(Tu,Tv),(Pi,Pj ) [s] 1.74 ∗ 10−5 (rank 2)

1.95 ∗ 10−5 (rank 3)

Intra-node
3.28 ∗ 10−5 3.28 ∗ 10−5 3.28 ∗ 10−5

ec
(Tu,Tv),(Pi,Pj ) [J]

Fat-tree Dragonfly Torus

Inter-node 3.28 ∗ 10−2 (lvl 1) 3.28 ∗ 10−2 (rank 1) 3.28 ∗ 10−2∗

ec
(Tu,Tv),(Pi,Pj ) [J] 6.56 ∗ 10−2 (lvl 2) 6.56 ∗ 10−2 (rank 2) distance
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spective top supercomputers, namely Summit and Piz-Daint. Note that each node
in the Summit supercomputer has eight GPUs. Thus, there is much potential to
utilise intra-node communications. According to our observation, the intra-node
communication time could be even an order of magnitude lower than the inter-node
communication time. The difference is even higher between the intra-node and
inter-node energy usage to communicate the data. The intra-node energy usage to
communicate the data is three orders of magnitude lower than the inter-node energy
usage.

In the case of fat-tree network topology, we simulated two network levels where in
the first network level (lvl 1) two nodes were connected, and in the second level (lvl
2) each pair of nodes was connected. Similarly, in the dragonfly network topology
we had two ranks. In rank 1, the eight nodes were connected, and in rank 2, the
groups of eight nodes were connected. In the case of Fugaku, as this supercomputer
was in the development phase during the preparation of these experiments, all the
needed parameters were estimated based on detailed descriptions discussed in [4].
The energy cost for the inter-node communication was based on the placement of
nodes in the network level or rank. For the torus network we have assumed that the
energy cost depends on the physical distance between nodes in the network topology.
In this case, communication energy usage depends on so-called hops which measure
a distance. In our experiments we simulate the torus network with 141 nodes in
the 2x2x3x2x3x2 configuration, see Section 2.1.5. Each node is directly connected
to ten other nodes. However, it can simultaneously communicate data to six other
nodes. To reach any node in this topology, we need a maximum of two hops so
that the distance may be equal to one or two. We assumed that the energy needed
to exchange data between nodes was the same in all network topologies for the
corresponding network levels.

Finally, Table 7.4 presents the execution time, energy, and power usage of a
single stencil task on each processor type used in our simulation experiments. As we
can see in ARM A64FX, the execution time needed to process a single stencil task is
the lowest among the considered processors. In comparison, Nvidia Tesla V100 has
the lowest energy usage. Still, the ARM A64FX processor has lower energy usage
than IBM Power9+ and Intel CPUs.

7.3.2 Simulation results
Simulation results comparing the quality of TM with simpler heuristics, introduced
in previous section and in our work [26], are presented in Tables 7.5, 7.6 and 7.7.
Each Table has six columns, where the second column depicts the number of three
types of edges found in a schedule: all, intra-node and inter-node. Note that the
number of intra-node edges does not include the edges with both tasks assigned to
the same processor. The third column shows the number of processors utilised in
stencil computations. The fourth column displays the summary energy cost (es).



Table 7.4: The estimated execution time, energy consumption, and power usage of each
processor type used in simulation studies.

Summit Piz-Daint Fugaku

Node 2xCPU+6xGPU CPU+GPU CPU

Processor
IBM Nvidia Intel Nvidia ARM

Power9 Tesla V100 E5-2690v3 Tesla P100 A64FX

WTu,Pi
6 6 6 6 6

QTu,Pi
16 16 24 16 16

teTu,Pi,Lu
[s] 1.14 ∗ 10−5 2.17 ∗ 10−6 1.14 ∗ 10−5 2.67 ∗ 10−6 1.91 ∗ 10−6

ee
Tu,Pi,La

[J] 5.53 ∗ 10−4 5.05 ∗ 10−5 4.41 ∗ 10−4 8.42 ∗ 10−5 9.32 ∗ 10−5

P 0
Tu,Pi,La

[W] 70 70 90 70 50

P idle
Pi

[W] 10 30 10 30 5

#Processors 64 148 141

Simulated
0.38 Pflop/s

performance

Table 7.5: Energy and performance achieved by TM and other heuristics for the reference
grid cuboid stencil computations on the fat-tree network topology.

Heuristic #Edges #Processors es[J] td[s] ts[s]

Load 61 630 64 387

-

2.616 ∗ 10−4

Balancing 550 16 0.456 ∗ 10−4

random 61 080 48 2.616 ∗ 10−4

Load 32 448 64 139

1.776 ∗ 10−4

1.776 ∗ 10−4

Balancing 7 080 16 0.456 ∗ 10−4

25 368 48 1.776 ∗ 10−4

Degree 29 302 64 124

1.776 ∗ 10−4

1.776 ∗ 10−4

Minimisation 6 718 16 0.456 ∗ 10−4

22 584 48 1.776 ∗ 10−4

Multicut 28 482 64 144

1.776 ∗ 10−4

1.728 ∗ 10−4

Minimisation 5 370 16 0.456 ∗ 10−4

23 112 48 1.728 ∗ 10−4

Neighbours 32 448 64 140

1.776 ∗ 10−4

1.776 ∗ 10−4

Accumulation 7 080 16 0.456 ∗ 10−4

25 368 48 1.776 ∗ 10−4

Task 22 728 64 104

1.776 ∗ 10−4

1.650 ∗ 10−4

Movement 4 896 0 1.650 ∗ 10−4

17 832 44 1.560 ∗ 10−4
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Table 7.6: Energy and performance achieved by TM and other heuristics for the reference
grid cuboid stencil computations on the dragonfly network topology.

Heuristic #Edges #Processors es[J] td[s] ts[s]

Load 1 024 284 148 485

-

25.986 ∗ 10−4

balancing 456 69 0.342 ∗ 10−4

random 1 023 828 69 25.986 ∗ 10−4

Load 654 934 148 257

19.500 ∗ 10−4

19.500 ∗ 10−4

Balancing 2 242 69 0.342 ∗ 10−4

652 692 69 19.500 ∗ 10−4

Degree 584 790 148 241

19.500 ∗ 10−4

19.500 ∗ 10−4

Minimisation 4 788 69 0.342 ∗ 10−4

580 002 69 19.500 ∗ 10−4

Multicut 582 810 148 245

19.500 ∗ 10−4

18.798 ∗ 10−4

Minimisation 4 788 69 0.342 ∗ 10−4

578 022 69 18.798 ∗ 10−4

Neighbours 654 934 148 257

19.500 ∗ 10−4

19.500 ∗ 10−4

Accumulation 2 242 69 0.342 ∗ 10−4

652 692 69 19.500 ∗ 10−4

Task 423 532 148 173

19.500 ∗ 10−4

17.735 ∗ 10−4

Movement 4 864 18 1.710 ∗ 10−4

418 668 57 17.735 ∗ 10−4

The last two columns present the deadline (td) and the total execution time (ts) of
stencil computations. The total execution time contains the number of communica-
tion rounds (#colors) needed to exchange all data between processors, including the
intra-node and inter-node communications in a reference multi-node HPC system.
The stencil computations utilised in the experimental simulations were run for 1000
iterations. The execution deadline for TM was set to the shortest time achieved
among simpler heuristics.

According to the obtained results, the number of communication rounds signif-
icantly affects the execution time and energy usage. Communication among pro-
cessors takes more time than the execution of stencil tasks. Table 7.5 shows the
obtained simulation results with the fat-tree network topology based on the Sum-
mit supercomputer. The Summit supercomputer has eight processors in each node,
so called fat-nodes, and to reach the theoretical performance of 0.38 Pflop we only
needed 64 processors in eight nodes). In our tests, TM reduced the number of all
edges in the schedule from 28482 to 22728, whereas the number of inter-node edges
was decreased by 23% compared to the MM heuristic. The number of communica-
tion rounds was also reduced from 1728 to 1596; thus, both the energy usage and
the execution time were decreased by 14.1% and 4.5%, respectively, compared to
the MM heuristic.



Table 7.7: Energy and performance achieved by TM and other heuristics for the reference
grid cuboid stencil computations on the torus network topology.

Heuristic #Edges #Processors es[J] td[s] ts[s]

Load 38 360 141 347

-

0.728 ∗ 10−4

balancing 0.152 ∗ 10−4

random 0.728 ∗ 10−4

Load 25 984 141 185

0.700 ∗ 10−4

0.574 ∗ 10−4

Balancing 0.152 ∗ 10−4

0.574 ∗ 10−4

Degree 24 878 141 191

0.700 ∗ 10−4

0.616 ∗ 10−4

Minimisation 0.152 ∗ 10−4

0.616 ∗ 10−4

Multicut 25 984 141 198

0.700 ∗ 10−4

0.574 ∗ 10−4

Minimisation 0.152 ∗ 10−4

0.574 ∗ 10−4

Neighbours 23 408 141 181

0.700 ∗ 10−4

0.574 ∗ 10−4

Accumulation 0.152 ∗ 10−4

0.574 ∗ 10−4

Task 24 584 114 165

0.700 ∗ 10−4

0.700 ∗ 10−4

Movement 0.304 ∗ 10−4

0.700 ∗ 10−4
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Figure 7.3: The average total execution time ts and average summary energy
cost es for the fat-tree, dragonfly and torus network topologies achieved by the
TM algorithm.
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Table 7.6 presents results for the Piz-Daint supercomputer with the dragonfly
network topology. The number of communication rounds increased 10.9x times
compared to the fat-tree network topology. The length of the communication round
between all simulated topologies was normalised to 1x10−7s. The time needed to
exchange the task data between nodes depended on the network rank or level and
was up to 16x times larger on the dragonfly network topology than on the fat-tree
network topology, see Table 7.3. For the dragonfly topology, TM reduced the energy
cost by 28.2% and the execution time by 5.6% compared to the DM heuristic. The
TM algorithm utilised only 78 processors among 148 available processors to minimise
the energy usage, where 57 processors were GPUs and 18 were CPUs. The total
number of edges was also decreased by 27.6% compared to the DM heuristic. The last
simulated topology in our studies was the torus network implemented in the Fugaku
supercomputer. In this case, TM reduced the number of edges by 16.9%, and the
energy cost was reduced by 18.4%, respectively. One should note that the proposed
TM algorithm successfully balanced both the communication and computation time.

Among all three major network topologies used in our simulation studies, our
TM algorithm achieved 2.66x better performance for the torus network topology
compared to the fat-tree, see Figure 7.3. However, on the second criterion - energy
cost es - the obtained results indicated fat-tree as 1.83x better than the torus net-
work topology. Consequently, we demonstrated and verified experimentally in our
research how important topology-aware scheduling and task management aspects
are to optimize the performance of stencil simulations in multi-node supercomput-
ing systems.



Chapter 8

Conclusions

The primary objective of this thesis was to demonstrate that it is possible to reduce
energy usage and improve the overall performance of stencil computations in a com-
plex multi-node HPC setup. The presented research focused on three low-diameter
network topologies commonly used in existing, powerful pre-exascale and exascale
HPC systems.

The research contributions of this thesis can be stated as follows:

• We developed and tested experimentally the new TM algorithm to minimise
both energy usage and runtime of large scale stencil computations taking into
account complex fat-tree, dragonfly, and torus communication topologies and
their characteristics for intra-node and inter-node setups.
• We also demonstrated experimentally how the selected communication links

affect the overall performance of reference stencil computations in large-scale
parallel executions.
• We showed that our new TM algorithm significantly reduces both the energy

usage and the referenced stencil performance compared to previous simpler
heuristics.

This work has practical applications to deal with efficient distribution of ad-
vanced stencil code executed in heterogeneous multi-node supercomputers. Based
on the obtained results and simulation studies of seven-point reference stencil, we
argue that the proposed scheduling model and TM algorithm can be easily extended
or adapted in existing stencil application frameworks executed on any multi-node
HPC setup. Our generic approach was successfully applied to all three major net-
work topologies used in powerful HPC systems today. Moreover, our simulation
analysis revealed key benefits behind fat-tree and a new, promising torus network
topology. Consequently, application developers can quickly adapt and tailor the
proposed simulation methodology to evaluate the efficiency of any multi-node com-
puting systems in light of particular parallel stencil requirements, not only based on
commonly used HPL or HPCG benchmarks.

In our future work we plan to compare the proposed scheduling model and sim-
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ulation studies based on estimated parameters with real stencil-based computing
experiments using full-scale supercomputers. We also plan to design application
performance models for stencils within advanced simulator environments, such as
DCworms or CODES. The presented simulation studies are useful for designing ex-
tensions in high-level stencil DSL frameworks, particularly Chemora. Moreover, the
released open source software and scheduling data structures are generic, so they
can also be adopted by external developers for various stencil patterns and corre-
sponding scheduling procedures in other stencil environments, e.g. YASK or PSkel.
Finally, we plan to run additional performance tests to model and predict both the
energy usage and runtime for other stencil patterns and applications on constantly
changing multi-node HPC architectures.
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Appendix A

Software and data repository

To support the computational reproducibility of presented results and stencil bench-
marks we have created a dedicated repository to share our data structures, algo-
rithms, and problem instances together with guidelines for running and compar-
ing computational experiments in [94]. To implement TM, we have adopted the
KOALA graph partitioning software. KOALA is a basic set of C++ templates sup-
porting various required functionalities in the fields of algorithmic graph theory and
network problems in discrete optimisation. Many well-established libraries are sup-
porting a variety of different graph partitioning schemes, particularly Metis and its
extended versions [87] or SCOTCH [77]. However, the KOALA enables both easy
implementation and computation of relevant properties of the multigraph, such as
maximum degree and maximum number of parallel edges. KOALA also supports
the *.graphml file format, which is the commonly adopted standard representation
used for the graph data exchange.

We provided readers and stencil application developers with open access to all
the experimental data for better understanding of the proposed TS algorithm. Our
software together with reference research data enable researchers to easily run, check
and reuse our experimental data stencil structures, algorithms and problem instances
for further comparisons and improvements. Using our reference software repository,
one can adopt the scheduling model and reuse any of the heuristic methods, including
TM. One can easily link our libraries with existing parallel execution environments
for efficient stencil code executions on multi-node supercomputers.
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