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Abstract

The development of data-efficient and explainable machine learning models is important for the
enhancement of the safety and reliability of autonomous driving systems. Visual perception,
a core component of autonomous vehicles, relies heavily on deep neural networks to interpret
complex and dynamic environments. However, traditional deep neural networks often require
extensive labeled datasets to achieve high accuracy, posing challenges in scenarios where data
collection is limited or expensive. Additionally, the inherent opacity of these models hinders
comprehension of their decision-making processes, raising concerns about safety and trust. This
dissertation addresses these challenges by proposing methods that enhance data efficiency and
explainability within the context of visual perception for autonomous vehicles.

This research introduces several contributions aimed at improving the performance and inter-
pretability of deep neural networks in autonomous driving applications. One of the primary
contributions is a guided learning framework that enhances model training by using targeted
feedback from visualizations of the networks attention. Moreover, novel neural network archi-
tectures was developed for the estimation of geometric features from monocular images. These
architectures incorporate in its loss functions 3D object models and environmental geometric
constraints to enhance the accuracy of keypoint localization to make predictions that are con-
sistent with the physical structure of the objects being observed and providing a robust solution
even in scenarios with limited training data.

Furthermore, the dissertation investigates the integration of uncertainty estimation within neu-
ral network architectures. A dedicated neural network was designed to predict the uncertainty
of 2D and 3D keypoint coordinates, offering a probabilistic measure of confidence in each pre-
diction. Additionally, the dissertation presents a processing pipeline for estimating the pose of
surrounding vehicles using monocular images. This pipeline integrates the Unscented Transform
algorithm to propagate uncertainties from 2D and 3D keypoint estimations, providing a measure
of the overall uncertainty in vehicle pose estimations.

The proposed methods were evaluated in two real-world scenarios. The first scenario involved a
docking maneuver to a charging station using an electric city bus. In this application, the system
successfully estimate the pose of the bus relative to the charging station, enabling precise docking
with an error margin of less than 30 cm from a distance of over 30 meters. The second scenario
focuses on the pose estimation of surrounding vehicles in a city environment. The used dataset
is an ApolloCar3D that provides images of an urban environment to test the pose estimation
capabilities of the developed models. The proposed method achieved state-of-the-art results on
the aforementioned dataset.

The methods and their experimental evaluation presented in this dissertation validates research
theses: Firstly, architectures that extract and visualise meaningful intermediate features can
enhance learning by augmenting existing datasets. Secondly, they accurately describe the un-
certainty of the produced geometric features. Thirdly, utilising available 3D models of observed
objects facilitates the learning of geometric features from 2D images without exact labeling, and
significantly improves the detection accuracy of these features. Lastly, knowledge of geometric
constraints from known object models helps reduce false feature detection and increases the
precision of feature localization.



Streszczenie

Rozwój modeli uczenia maszynowego, które są i wydajne w kontekście danych uczących i łatwe
w interpretacji, jest ważny dla zwiększenia bezpieczeństwa i niezawodności autonomicznych po-
jazdów. Moduły percepcji wizualnej w pojazdach autonomicznych w celu interpretacji złożonych
i dynamicznych środowisk wykorzystują w dużej mierze głębokie sieci neuronowe, które często
wymagają obszernych zbiorów danych, aby osiągnąć wysoką dokładność. Stanowi to wyzwanie w
scenariuszach, w których gromadzenie danych jest problematyczne lub kosztowne. Dodatkowo,
brak transparentności tych modeli utrudnia zrozumienie ich procesów decyzyjnych, budząc obawy
o bezpieczeństwo i wiarygodność. Niniejsza rozprawa doktorska odnosi się do tych wyzwań, pro-
ponując metody, które zwiększają efektywność wykorzystania danych uczących i wyjaśnialność
decyzji w kontekście percepcji wizualnej dla pojazdów autonomicznych.

Badania te wprowadzają kilka rozwiązań mających na celu poprawę wydajności i możliwości in-
terpretacji głębokich sieci neuronowych w zastosowaniach związanych z autonomicznymi pojaz-
dami. Jednym z głównych wkładów jest metoda sterowanego uczenia sieci, która usprawnia tre-
ning modelu poprzez wykorzystanie informacji zwrotnej z algorytmu wizualizującego uwagę sieci.
Ponadto opracowano nowe architektury sieci neuronowych do szacowania cech geometrycznych z
obrazów monokularnych. Architektury te uwzględniają w funkcjach kosztu modele 3D obiektów
i ograniczenia geometryczne środowiska w celu zwiększenia dokładności lokalizacji punktów klu-
czowych, zapewniając predykcje zgodne z fizyczną strukturą obserwowanych obiektów i stabilne
rozwiązanie nawet w scenariuszach z ograniczoną ilością danych treningowych.

Ponadto rozprawa bada metody szacowania niepewności predykcji poprzez sieci neuronowe.
Dedykowana sieć neuronowa została zaprojektowana do estymacji niepewności współrzędnych
punktów kluczowych 2D i 3D, oferując probabilistyczną miarę niepewności każdej predykcji.
Dodatkowo, przedstawiony został potok przetwarzania do szacowania pozycji otaczających po-
jazdów przy użyciu obrazów monokularnych. Potok ten integruje algorytm Unscented Transform
w celu propagacji niepewności estymowanych punktów kluczowych 2D i 3D, w celu uzyskania
niepewności estymowanej pozycji pojazdu.

Proponowane metody zostały zweryfikowane na dwóch scenariuszach. Pierwszy scenariusz obej-
mował manewr dokowania do stacji ładowania przy użyciu elektrycznego autobusu miejskiego.
W tej aplikacji system z powodzeniem szacował pozycję autobusu względem stacji ładowania,
umożliwiając precyzyjne dokowanie z marginesem błędu mniejszym niż 30 cm z odległości po-
nad 30 metrów. Drugi scenariusz koncentruje się na estymacji pozycji otaczających pojazdów w
środowisku miejskim. Dokładność szacowanej pozycji pojazdów została zweryfikowana wykorzy-
stując zbiór danych ApolloCar3D, który zawiera obrazy pochodzące ze środowiska miejskiego.
Zaproponowana metoda osiągnęła wyniki state of the art na wyżej wymienionym zbiorze danych.

Metody i ich eksperymentalna ewaluacja przedstawione w niniejszej rozprawie potwierdzają tezy
badawcze: Po pierwsze, architektury, które ekstrahują i wizualizują interpretowalne cechy, mogą
usprawnić trening sieci poprzez rozszerzenie istniejących zbiorów danych. Po drugie, sieci neu-
ronowe są w stanie opisać niepewność wytworzonych cech geometrycznych. Po trzecie, wykorzy-
stanie dostępnych modeli 3D obserwowanych obiektów ułatwia trening sieci do estymacji cech
geometrycznych z obrazów 2D bez dokładnego etykietowania i znacznie poprawia dokładność wy-
krywania tych cech. Wreszcie, znajomość ograniczeń geometrycznych ze znanych modeli obiektów
pomaga zmniejszyć liczbę fałszywych detekcji cech i zwiększa precyzję ich lokalizacji.
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Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles represent a revolutionary development in transportation technology that
has the potential to transform the way we travel and live. These vehicles can navigate with-
out human intervention and offer numerous benefits such as increased safety, reduced traffic
congestion, and improved accessibility [69].

Several companies are at the forefront of autonomous vehicle development, each bringing unique
innovations. Tesla, Inc. is a pioneering automotive company known for its electric vehicles.
Founded in 2003 by Elon Musk among others, Tesla has revolutionised the industry with products
such as Model S, and Model 3, pushing the boundaries of sustainable transportation. Google’s
Waymo, originally a project within Google, has become an independent company. In 2021, they
launched a robot taxi service in San Francisco. General Motors also plays a significant role in
this field through Cruise Automation, which was founded in 2013 and later acquired by General
Motors in 2016. Cruise focuses on developing autonomous driving technology for the Chevrolet
Bolt, employing Light Detection and Ranging (LiDAR) sensors from Velodyne. In January 2020,
Cruise unveiled the Origin, a fully autonomous car with no steering wheel or pedals, designed
for its ride-sharing service and capable of Level 5 autonomous driving. The Origin will have a
modular design with two rows of seats facing each other, a lifespan of one million miles, and a
hybrid sensor assembly called Owl that combines both cameras and radar [92]. TIER IV, an
innovator in open-source autonomous driving technology, has launched the L4 RIDE initiative
in Japan, aimed at addressing driver shortages and promoting regional development through
autonomous bus services. After securing Level 4 certification in Greater Tokyo in October 2023
and conducting proof of concept tests in several locations, TIER IV is now focused on achiev-
ing nationwide commercialization of these technologies [98]. Concurrently, Mercedes-Benz has
marked a breakthrough by becoming the first international automaker to receive approval for
Level 4 automated driving tests on urban roads and highways in Beijing, aiming to integrate
these vehicles into regular traffic for a range of complex maneuvers without human intervention.

1



Introduction 2

These developments represent a substantial push towards the integration of highly automated ve-
hicles into everyday traffic scenarios, enhancing the safety and efficiency of urban transportation
systems [64].

A core system in all autonomous cars is the perception system [110]. This is a network of sensors
and software designed to emulate human sensory and cognitive functions for driving. This system
typically integrates various types of sensors, each serving a distinct purpose. The primary
sensors are cameras, which capture detailed visual information, such as traffic signals, road
signs, cars, and pedestrians. LiDAR sensors provide 3D mapping capabilities, generating high-
resolution point clouds of the cars surroundings. These are essential for understanding complex
environments and detecting obstacles. Radio Detection and Ranging (RADAR) complements
these by offering robust performance in adverse weather conditions and measuring the speed and
distance of objects with high precision. Additionally, ultrasonic sensors are employed for close-
range detection tasks, like parking assistance. The data generated by these sensors is fed into the
cars central processing unit, where algorithms analyse and interpret the information. This allows
the vehicle to make informed decisions about navigation, obstacle avoidance, and speed control.
The integration of diverse sensors composing a perception system allows the construction of safe
and reliable autonomous vehicles.

Modules of autonomous vehicle perception systems based solely on cameras offer several advan-
tages, primarily due to their simplicity and cost-effectiveness compared to setups that require
multiple types of sensors. Moreover, being passive sensors, cameras do not interfere with other
systems [120]. Cameras can capture detailed visual information similar to the human eye, pro-
viding necessary data for a wide range of tasks such as object detection, traffic sign recognition,
and pose estimation. These visual systems can leverage advancements in computer vision and
deep learning to interpret complex scenes and make informed driving decisions. Furthermore,
the reliance on cameras reduces hardware costs and simplifies the integration and maintenance
of the system, making it more accessible and potentially accelerating broader adoption. Despite
some challenges in low-light and adverse weather conditions, ongoing improvements in camera
technology and image processing algorithms continue to enhance their reliability, underscoring
their potential as a primary or supplementary technology in autonomous driving systems.

One of the possible applications of camera-based systems in autonomous driving technology is
the estimation of the pose of surrounding objects and vehicles. These systems determine the
position, orientation, and velocity of other vehicles relative to the autonomous car. Accurate
pose estimation allows the autonomous vehicle to anticipate the future movements of nearby
cars, which is required for making informed decisions about maneuvers such as changing lanes
or maintaining safe distances. These camera-based systems employ computer vision algorithms,
often based on deep learning, to interpret single or multiple consecutive frames and predict the
vehicle’s position and orientation relative to the camera. As camera resolution and processing
capabilities continue to improve, the effectiveness of camera-only systems in pose estimation also
enhances, making them a viable solution for understanding dynamic driving environments [31].

The estimation of 3D information from 2D images represents a well-known problem in computer
vision, particularly challenging due to its inherently ill-constrained nature [33]. When translating
data from a single two-dimensional image into three-dimensional estimations, the lack of depth
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information makes the task underdetermined without additional data or constraints. This implies
that multiple possible 3D configurations can result in the same 2D image, leading to ambiguities
in depth perception and object recognition [33].

While there has been significant progress in the development of autonomous vehicles, numer-
ous challenges remain to be addressed. One of the most significant challenges is ensuring the
safety and reliability of these vehicles in different environments and situations. This requires
the development of algorithms that can explain the decisions made by neural networks and
measure the confidence of their predictions. In the context of autonomous driving, explainable
machine learning (ML) offers insights into the decision-making processes of Articial Intelligence
(AI) models. The principal benefit of integrating explainability into ML systems is the capacity
to interpret and justify the actions and decisions made by autonomous vehicles. This can be
used to ensure that the models not only perform optimally but also adhere to safety regula-
tions and ethical standards. Moreover, explainable machine learning enables the assessment and
management of uncertainty, which is an important element in maintaining robust autonomous
systems where unexpected environmental variables frequently occur. Furthermore, explainable
machine learning approaches can offer adaptability through self-evolving mechanisms that learn
from new, unforeseen situations, thereby enhancing the safety and reliability of autonomous
systems. This adaptability is critical, especially in scenarios where conventional deep learning
methods may misinterpret unfamiliar scenes with high confidence, potentially leading to disas-
trous consequences. Thus, explainable models in autonomous driving not only need to provide
high performance metrics like accuracy and F1 score but also to provide reliable explainability
and safety mechanisms [90] [4].

Another challenge is the strong dependence of deep learning models on large training datasets.
The algorithms proposed in the field of computer vision are often overfitted to achieve the best
results on a given test set. The computer vision benchmarks allow a fair comparison of different
algorithms but typically represent only a small proportion of the cases occurring in the real
world. When attempting to apply them in robotics, in an application-specific environment,
there is a significant drop in the quality of the model when the input data originates from target
use cases. A common practice to cope with the aforementioned problems is fine-tuning a base
model pretrained on benchmark datasets using data from the target environment. Conducting
experiments and gathering training data using a robot or a vehicle is often costly and logistically
challenging. Furthermore, access to the target work environment (e.g. public roads, production
plants) is usually constrained. This severely limits the possibility of collecting the requisite
amount of training data for a given task.

In conclusion, explainable machine learning algorithms are essential in ensuring the high accu-
racy of autonomous driving systems. Transparency is crucial for enhancing safety and fostering
trustworthiness. Furthermore in order to scale up the implementation of these methods for au-
tonomous cars, it is also necessary to reduce the cost of collecting and labelling training data.
This PhD thesis aims to contribute to this research by proposing innovative solutions that can
balance the trade-off between accuracy and interpretability to improve the transparency and
trustworthiness of autonomous driving systems.
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1.2 Problem statement

The training of neural networks with limited datasets presents a significant challenge, primarily
due to the risk of overfitting. When a neural network is trained on a small amount of data,
it may learn to perform exceptionally well on its training examples but fail to generalise to
new, unseen data. This lack of generalisation can severely hinder the model’s practicality and
reliability when deployed in real-world scenarios. To cope with such problems, researchers often
resort to techniques such as data augmentation, transfer learning, or synthetic data generation
to artificially enlarge the training dataset and help improve the model’s robustness and accuracy.
Nevertheless, these methods can only partially mitigate the limitations posed by small datasets.
Consequently, there is a continued need to identify innovative ways to train effective models with
limited data, which remains an area of intensive research in the field of machine learning [5].

One potential solution to this problem may be the extraction and visualisation of meaningful
intermediate features generated by neural networks. The aforementioned features provide insight
into the internal workings of the neural network, demonstrating how the model processes and
transforms input data through various stages of abstraction. This capability not only enhances
the understanding of the learning and decision-making processes of these models but also opens
up new possibilities for improving the learning process itself. For example, the visualisation of
these features enables researchers to identify which aspects of the data are being emphasised or
ignored, thereby facilitating targeted adjustments to the model architecture or training process.
Furthermore, the ability to extract intermediate features has significant implications for data
augmentation. The generation of new data based on visualisations of internal network states
allows for the expansion of the training dataset, thereby providing the model with more accurate
examples for learning. This is particularly advantageous in contexts where data is scarce or
costly to obtain.

Measuring the score or confidence of neural network predictions is another important challenge,
as it directly impacts decision-making processes and system reliability. Typically, neural networks
output probabilities or raw scores that may not directly correlate with the actual likelihood of
correctness. This issue is of particular significance in high-risk domains such as healthcare and
autonomous driving, where the cost of incorrect predictions can be extremely high [90].

Furthermore, neural networks, particularly deep learning models, may exhibit an excessive de-
gree of confidence in their predictions, even when they are erroneous. This phenomenon of
overconfidence can be attributed to the training procedure, which typically defines labels as
discrete categories and does not represent confidence in the training data. Consequently, the
development of methodologies for the accurate estimation of the confidence of neural network
predictions and the assurance that these estimates align with the true values is important for
ensuring the trustworthiness and safety of AI systems [75].

The second considered task is an estimation of the pose of surrounding objects and vehicles.
This task is approached using a monocular camera and is divided into two distinct scenarios.
The first involves estimating the pose of known object with predefined dimensions and shape
and the viewpoints are limited. The second scenario deals with the estimation of vehicles whose
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shapes can vary widely and are not known beforehand. This requires the pose estimation system
to adapt to a broader range of object geometries and to operate effectively even when detailed
prior information is not available.

The pose estimation using a monocular camera presents a number of unique challenges, the
most significant of which is the lack of depth information that is more readily available in
systems that utilise multiple cameras or depth sensors. A monocular setup, which relies on a
single camera, must infer the three-dimensional position and orientation of objects from two-
dimensional images. This depth ambiguity can give rise to significant complexities in accurately
determining the distance of objects from the camera, as well as their spatial orientation.

The estimation of pose in monocular vision is contingent upon the interpretation of visual cues
within the image, including shadows, texture, perspective, and scaling, in order to infer depth.
While these cues can provide valuable information, they often require the use of complex and
computationally intensive algorithms in order to be interpreted effectively. In some scenarios, it
is possible to use a known 3D model of the object under consideration, but often these data are
not known and must be inferred from the input images. Furthermore, the precision of monocular
pose estimation may be diminished in conditions of poor lighting or environments with minimal
texture or other helpful visual features. Consequently, while the simplicity and lower cost of
monocular camera systems are advantageous, these benefits come with significant challenges
that must be addressed to ensure reliable and accurate pose estimation [120].

Algorithms that solves the Perspective-n-Point (PnP) problem, which are employed to estimate
the pose of an object based on a set of 3D-to-2D point correspondences, are confronted with a
number of challenges that can impact their performance and accuracy. One significant challenge
is the sensitivity to noisy data. In practical situations, the 2D points identified in images may
be affected by several factors, including inadequate lighting, occlusions, and imperfections in the
feature detection techniques employed. The inaccuracies in the 2D points can result in significant
errors in the computed pose, thereby rendering the solution less reliable.

Furthermore, the efficacy of PnP algorithms is inherently dependent on the quality of the initial
guess, particularly in the context of non-linear optimisation-based methodologies. In the absence
of a sufficiently accurate initial estimate, these algorithms tend to converge on local minimum,
resulting in inaccurate pose estimations. This requirement constrains their efficacy in fully
automated systems where the provision of initial estimates by humans is impractical.

Furthermore, the robustness of these algorithms is limited in cases where the number of point
correspondences is minimal or when the points are collinear or coplanar. This makes the pose
estimation problem underdetermined. In such circumstances, the algorithms encounter difficul-
ties in identifying a unique and accurate solution, which can result in unstable or ambiguous
pose estimations. This underscores the necessity for the development of robust methodologies
that can effectively cope with a wide range of scenarios and conditions.

Pose estimation leverages geometric correspondences and the properties of camera projection
geometry, setting it apart from other tasks like image classification or object detection. While
data-driven methods have been successful in the latter areas, incorporating model-driven strate-
gies into pose estimation can lead to enhanced performance. This integration of data-driven and
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model-driven approaches offers a promising hybrid strategy, which can combine the reliability
of empirical data with the precision of geometric modeling, thereby improving the accuracy and
robustness of pose estimation systems.

The technique of learning from geometric priors is a specialised method within the domains
of machine learning and computer vision. It involves the incorporation of known geometric
constraints or characteristics, such as the shape, size, and spatial relationships of objects, into
the learning process. This approach is useful in tasks where the geometry of the objects or
environment plays an important role, especially in the contexts of 3D reconstruction and pose
estimation.

In human pose estimation, the knowledge of the human body’s structure enables the prediction
of more realistic body poses and the avoidance of physically impossible configurations. Similarly,
in the context of pose estimation for autonomous driving, knowledge of the geometry of cars and
other road infrastructure objects can enhance the accuracy of the predictions made.

In the context of training datasets preparation, geometric priors can be applied for the recon-
struction of three-dimensional features, such as shape, dimensions, and the position of a given
point in three-dimensional space. The extraction of such information from 2D images frequently
necessitates the deployment of extensive and precise manual labelling, a process that is both
time-consuming and susceptible to errors and inconsistencies. Nevertheless, the availability of
accurate three-dimensional models of observed objects offers new possibilities for the preparation
of datasets and the training of machine learning algorithms. The 3D models contain detailed
geometric information that can be projected onto 2D planes, simulating various perspectives. By
leveraging these projections, a rich set of training data can be generated that inherently contains
geometric constraints, thereby reducing the dependency on exact labelling.

Despite the advantages, several challenges must be addressed when applying geometric priors
and 3D models in training dataset preparation. One significant challenge is the computational
complexity involved in processing and projecting 3D models onto 2D planes. This task neces-
sitates the utilisation of substantial computational resources and the deployment of efficient
algorithms to oversee and manipulate voluminous datasets, which can be resource-intensive and
time-consuming. Furthermore, ensuring the alignment and calibration of 3D models with real-
world 2D images represents a significant challenge. In order for the projections to be effective
for training purposes, it is necessary for them to accurately represent the observed objects un-
der a variety of conditions. This requires the use of precise calibration techniques and robust
alignment algorithms.

The incorporation of geometric priors into machine learning models enables the leveraging of hu-
man understanding of physical and spatial relationships, thereby enhancing the efficiency of the
models, reducing the necessity for extensive datasets, and frequently improving performance in
tasks where geometry is a key factor. This integration of geometric knowledge with learning algo-
rithms represents a potent blend of model-based and data-driven approaches, frequently resulting
in enhanced predictive performance and reduced cost of training datasets preparation [87], [105].

Based on the above considerations, it is possible to formulate a research thesis consisting of four
parts:
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• Deep learning architectures that allow us to extract and visualise meaningful intermediate
features make it possible to guide learning by augmenting the existing data sets.

• Deep learning architectures allow us to describe the uncertainty of the geometric features
produced by the network.

• Using the available 3D models of observed objects makes it possible to learn geometric
features from 2D images of these objects without exact labelling, and improves geometric
feature detection from 2D images of these objects.

• The knowledge of the geometric constraints stemming from known object models allows a
deep learning architecture to decrease the number of falsely detected features and increases
the accuracy of feature location.

1.3 Content of the thesis

The following chapters (2-5) discuss tasks related to visual perception. When integrated into a
single processing pipeline, these submodules will allow for the creation of a module to describe
the environment of an autonomous car using just a single camera with uncertainty assessment
trained using limited datasets.

Chapter 2 introduces a method for visualising the object detection network’s spatial areas of
interest. This method facilitates a more comprehensive understanding and optimisation of the
model, by highlighting which regions within an image the network prioritises. Furthermore,
the chapter outlines a guided learning procedure that enhances the network’s performance in
scenarios where training data is limited, by refining the training process based on specific feedback
from the aforementioned visualisation method.

Chapter 3 addresses the challenge of estimating key points in an image. Three novel network
architectures, designed with the specific objective of estimating points at electric bus charging
stations, are presented. A novel loss function is introduced, which facilitates the training of the
network. Furthermore, the chapter presents a method for estimating the uncertainty of network
predictions.

Chapter 4 presents a neural network architecture for estimating 3D coordinates of characteristic
points from a single image, trained using a reprojection loss function. A novel methodology
for the automated acquisition of ground truth 3D keypoint locations from a dataset comprising
images, 2D keypoint labels, and vehicle Computer-aided Design (CAD) models is presented.
Finally, two neural network architectures for encoding and estimating the shape of cars are
presented.

Chapter 5 outlines a pipeline for car pose estimation, starting with the 2D keypoint detection
on images using a neural network presented in Chapter 3 and estimating corresponding 3D co-
ordinates using an algorithm presented in Chapter 4. The pose estimation is conducted through
a custom PnP algorithm, which leverages the 2D-3D point correspondences. Furthermore, the
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pipeline incorporates an uncertainty estimation mechanism, which propagates the uncertain-
ties from the detected 2D keypoints and the estimated 3D points to provide a measure of the
uncertainty associated with the pose estimates.

Chapter 6 demonstrates the practical applications of the techniques outlined in Chapters 2 to
5, illustrating their effectiveness through case studies and real-world deployments. An ablation
study is also included, which is a methodical assessment of the effects of different components of
the proposed methods. This emphasises both the singular and combined effects of these compo-
nents on the overall system performance. Furthermore, this chapter presents a comprehensive
comparison of the findings with the existing state-of-the-art (SOTA) technologies, demonstrat-
ing the advancements and enhancements introduced by the proposed methods to the domain of
perception systems for autonomous vehicles.

Chapter 7 provides a summary of the dissertation and includes a section on conclusions, which
outlines the contributions made to the field of machine learning in autonomous driving and
highlights fragments where the particular research theses are proven. Furthermore, this chapter
outlines prospective directions for future research.

1.4 Projects and publications

The research presented in this thesis, conducted from 09.2018 to 12.2020, was made possible by
financial support from the project: "Advanced Driver Assistance System (ADAS) for precision
maneuvers with single-body and articulated urban buses" funded by the National Centre for
Research and Development, where the author worked as a Research Assistant.

Some of the results presented in this dissertation have been previously published in the following
journal articles:

• T.Nowak, M. R. Nowicki, P. Skrzypczyński, Vision-based positioning of electric buses for
assisted docking to charging stations, International Journal of Applied Mathematics and
Computer Science, vol. 32, no. 4, p. 583-599, 2022, IF2022:1.79

Selected results have been also presented during the following conferences:

• T.Nowak, M. R. Nowicki, K. Ćwian, P. Skrzypczyński, How to Improve Object Detection
in a Driver Assistance System Applying Explainable Deep Learning, 2019 IEEE Intelli-
gent Vehicles Symposium, 30th IEEE Intelligent Vehicles Symposium, 9-12.06.2019, Paris,
France, p. 226-231

• T.Nowak, M. R. Nowicki, K. Ćwian, P. Skrzypczyński, Leveraging Object Recognition in
Reliable Vehicle Localization from Monocular Images, Automation 2020: Towards Industry
of the Future: Proceedings of Automation 2020, Automation 2020, 18-20.03.2020, Warsaw,
Poland, p. 195-204



Introduction 9

• T.Nowak, P. Skrzypczyński, Geometry-Aware Keypoint Network: Accurate Prediction of
Point Features in Challenging Scenario, Proceedings of the 17th Conference on Computer
Science and Intelligence Systems, 17th Conference on Computer Science and Intelligence
Systems FedCSIS 2022, 4-7.09.2022, Sofia, Bulgaria, pp. 191-200

• T.Nowak, Accurate Camera Pose Estimation from Learned Point Features: A Case Study,
Proceedings of the 3rd Polish Conference on Artificial Intelligence PP-RAI’2022, 3rd Polish
Conference on Artificial Intelligence PP-RAI’2022, 25-27.04.2022, Gdynia, Poland, p. 98-
102

• T.Nowak, P. Skrzypczyński, A New Approach to Learning of 3D Characteristic Points for
Vehicle Pose Estimation, Progress in Polish Artificial Intelligence Research 4, 4th Polish
Conference on Artificial Intelligence PP-RAI’2023, 24-26.04.2023, Łódź, Poland, p. 389-394

• T.Nowak, P. Skrzypczyński, A Neural Network Architecture for Accurate 4D Vehicle Pose
Estimation from Monocular Images with Uncertainty Assessment, Neural Information Pro-
cessing: 30th International Conference, ICONIP 2023, Changsha, China, November 2023,
2023, Proceedings, Part VIII, 30th International Conference on Neural Information Pro-
cessing, ICONIP 2023, 20-23.11.2023, Changsha, China, p. 396-412

• T.Nowak, P. Skrzypczyński, Precision Vehicle Pose Estimation with Uncertainty-aware
Neural Network, Walking Robots into Real World, 27th International Conference on Climb-
ing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR
2024, 4-6.9.2024, Kaiserslautern, Germany, p. 22-33





Chapter 2

Object detection

2.1 Introduction

Object detection is an important task in the context of autonomous driving, enabling vehicles
to perceive and understand their surroundings in real-time [39]. This technology involves the
identification and localisation of objects within the vehicle’s environment, including pedestrians,
other vehicles, traffic signs, and obstacles. Advanced deep learning models, such as convolutional
neural networks (CNNs), are employed to process data from cameras in order to accurately and
rapidly detect objects. The accurate detection of objects is of essential importance for the safe
navigation of autonomous vehicles. Such vehicles must be able to avoid collisions, adhere to
traffic regulations, and provide a smooth and secure driving experience.

Despite their efficacy in detecting objects in the real world, traditional object detection neural
networks employed in autonomous vehicles are often undermined by a lack of transparency in the
decision-making processes. In the context of autonomous driving, where safety and reliability
are of high importance, the interpretability of these networks becomes a critical issue [90]. An
essential aspect of understanding the functionality of an object detection network is the capacity
to identify the rationale behind its decisions. This enables the diagnosis of errors, enhance-
ment of system reliability, and the safeguarding of passengers and pedestrians. To address this
issue, interpretable networks are developed, incorporating features that allow users to compre-
hend the reasoning behind each decision [124]. This includes techniques for visualising feature
maps, attention mechanisms, or layer activations, which provide insight into the focus of the
network when making decisions. Nevertheless, the development of interpretable object detection
networks presents its own set of challenges, particularly in balancing computational complexity
with interpretability.

Another challenge for object detection in autonomous driving is the dependence on large, anno-
tated datasets [27], [58], [91]. In the field of machine learning, particularly in object detection,
this traditional reliance has been a cornerstone of developing accurate models. However, in many
real-world applications, including those in specialised fields or emerging areas of technology, ac-
cess to such comprehensive datasets can often be limited. The limited availability of data can

11
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result in models that are either overfitted or not sufficiently trained to handle the variability
and unpredictability of real-world scenarios. Consequently, there is an increasing demand for
methodologies capable of effectively using limited data to train models that are both accurate
and generalisable. This constraint necessitates the development of alternative training strategies
that can effectively work with smaller or less detailed datasets while still maintaining high per-
formance. One potential solution to the aforementioned challenges is guided learning [28]. This
approach is increasingly recognised as useful in the training of object detection networks, espe-
cially when the available training datasets are limited or do not comprehensively represent the
environment in which the network is expected to function. Guided learning involves incorporat-
ing additional training examples, which may be synthetically generated or selectively curated,
to aid the network in achieving better generalisation and reducing the risk of overfitting. In
autonomous driving, the diversity and unpredictability of scenarios can be considerable. Guided
learning can help train object detection models on a broader range of situations, including those
that are less common or more complex, which might not be adequately represented in the initial
dataset. The process of guided learning typically involves analysing the networks performance
on a validation set and identifying specific weaknesses or biases in its detection capabilities. In
the next step, improving the network’s performance leverages incorporating carefully selected
examples into the training set, which emphasise the challenging conditions. This addresses the
identified weaknesses directly [20].

The problem addressed in this chapter involves the development of a neural network designed
for the practical problem of detecting electric city bus charging stations. This network is a
component of an ADAS aimed at aiding drivers to dock their vehicles at charging stations. A
significant challenge is the lack of publicly available datasets that include images concerning
charging stations, which are required for training robust detection models.

Moreover, the datasets currently accessible have been gathered in environments that differ from
the target operational settings where the ADAS will be deployed. This discrepancy introduces
additional complexities in adapting the neural network to perform effectively in real-world condi-
tions where it is expected to function. Therefore, the development and validation of this network
must consider these limitations, necessitating innovative approaches to overcome the absence of
directly applicable training data. This situation underscores the need for a tailored solution
that can learn from limited and non-representative data while maintaining high performance in
diverse and specific deployment environments.

A distinctive feature of the proposed approach is the integration of advanced visualisation tech-
niques. These techniques are not merely interpretive tools; they play an instrumental role in the
model training process. By identifying and highlighting objects that are frequently misclassified
or overlooked by the object detector, this method provides an invaluable feedback mechanism.
This feedback enables the model to be improved in a targeted manner, with a particular focus
on addressing its weaknesses and enhancing its accuracy and reliability in an iterative process.
This chapter aims to effectively bridge the theoretical aspects of machine learning with their
practical applications in the field of autonomous driving. It provides a detailed examination of
the proposed methodology, covering the fundamental principles, the implementation steps, and
the innovative use of visualization techniques. This investigation aims to contribute to the field
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of autonomous vehicle technology, particularly in the development of robust and interpretable
object detection systems that can be trained effectively with limited training data.

In this chapter, the following contributions to the field of guided learning applications for object
detection are presented:

• A method for continuous visualization of Faster R-CNN’s spatial areas of interests

• A guided learning procedure that improves performance when the training data is scarce

2.2 Related work

The evolution of object detection models using convolutional neural networks can be broadly cat-
egorised into one-stage and two-stage detectors. Each of these categories has its unique attributes
and advancements. One-stage detectors, exemplified by models such as YOLO [83] [84] [85] [104],
are known for their speed and efficiency. YOLO represents a pioneering model in this category,
integrating the detection process into a single network, thereby enabling the model to predict
object classes and locations in a single evaluation. In contrast, CenterNet [21] takes a different
approach by representing objects as points rather than bounding boxes. Two-stage detectors,
such as Fast R-CNN [29] and Faster R-CNN [86], represent another approach. These models
divide the detection process into two stages. Initially, they generate region proposals, and sub-
sequently, they classify and refine these proposals. This method, while generally slower than
one-stage detectors, tends to offer higher accuracy and has been instrumental in pushing the
boundaries of object detection performance. In more recent times, transformer-based detec-
tors such as SWIN [59] and ViT [19] have emerged, integrating the transformer architecture,
originally designed for natural language processing [100], into visual object detection.

Few-shot object detection (FSOD) [5] is an emerging area in computer vision that addresses
the challenge of detecting objects from a limited number of examples. Traditional object detec-
tion models require large annotated datasets to enable effective training. However, this is not
always a viable option due to the associated costs and efforts involved in data collection and
annotation. FSOD aims to overcome this limitation by adapting models to recognise new ob-
jects from only a few training samples. A significant contribution to this field is the adaptation
of meta-learning techniques, which prepare a model to learn quickly from limited data during
the training phase. Techniques such as model-agnostic meta-learning (MAML) [118] have been
particularly influential, as they allow the model to fine-tune effectively from minimal examples.
Another approach involves the use of feature-reuse strategies, whereby a pre-trained model on
a large dataset is adapted to new classes with minimal examples. This is achieved through the
utilisation of transfer learning, which serves to reduce the necessity for extensive retraining [117].
These methodologies have led to the enhancement of deep learning models in terms of efficiency
and adaptability to diverse real-world scenarios, where data scarcity is a common issue.

Object detection models also have applications in the field of autonomous driving. For example,
the SqueezeDet model [112] features a fully convolutional network structure that integrates the
computation of bounding boxes and class probabilities into a single forward pass, significantly



Object detection 14

improving speed and model compactness while maintaining high accuracy on benchmarks such
as KITTI [27].

The YOLOv4-5D model [12] demonstrates how changes to the network architecture, such as
incorporating deformable convolution and an optimised network pruning algorithm, can improve
detection accuracy while achieving real-time performance metrics on vehicular computing plat-
forms. This model is particularly notable for improving the accuracy of detection of small objects
through improvements in feature fusion.

A slightly different scenario is presented in [42], where vehicles are detected from traffic surveil-
lance camera video. The challenges associated with different scales and occlusions have led to the
development of multi-scale detection methods. These methods integrate additional prediction
layers into conventional frameworks such as Yolo-v3, using techniques such as spatial pyramid
pooling to improve the robustness and accuracy of vehicle detection under challenging conditions.

Neural networks have demonstrated remarkable performance in the domain of object detection.
However, for their broader application in the autonomous driving field, it is essential to de-
velop methods that enhance the interpretability of their decisions. Early efforts to visualise
the activation of convolutional neural networks included the introduction of the deconvolution
concept, as outlined in the work of Zeiler [121]. This was followed by an approach influenced
by automated image captioning techniques, which were used for generating textual explanations
within the realm of autonomous driving [9]. More recently, the study by Kim and Canny [40]
investigated visual attention maps, akin to those utilised in this chapter, to pinpoint image areas
that directly affected the steering decisions made by a CNN-controlled vehicle. Furthermore,
research in a similar vein to ours [81] has demonstrated how to identify errors in object detection
performed by neural networks through a comparative analysis of pairs of similar images. Kim
Jung Uk [41] proposed a Spatial Relation Reasoning (SRR) framework that employs a Graph
Convolutional Network to identify spatially related groups of meaningful image regions. In their
paper, Wu et al. [114] present a method for integrating top-down grammar models with bottom-
up convolutional networks for the purpose of learning two-stage object detection models that are
qualitatively interpretable.

2.3 Proposed solution

2.3.1 Attention visualization

To enhance the performance of the Faster R-CNN in object detection, it is suggested to acquire
insights into which areas of the image (and consequently, into which visible object types) receive
the most focus during the detection phase. The hypothesis is that by identifying potential
discrepancies with the targeted object, appropriate negative examples can be introduced into
the training process to boost overall accuracy. Furthermore, the objective is to minimise the
occurrence of false positives in detection, as any incorrect identification could be costly.
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Figure 2.1: Processing pipeline of the Faster R-CNN consisting of feature extractor (Inception
Resnet v2) generating feature maps that are used at all processing steps. The proposed
modification takes the feature maps and modified weights P̄ to obtain the attention heat map.

The grayed boxes represent standard CNN-based componnets

The conventional Faster R-CNN framework was adapted to enable the generation of network
attention maps, which are represented as pseudo-color heat maps, highlighted by red lines in
Fig. 2.1. Consider a tensor Xa,b,c as a three-dimensional structure with dimensions a, b, and c.
Within the standard Faster R-CNN architecture, specifically in the Region Proposal Network
(RPN) segment, a conventional CNN produces feature maps M512,w,h, where the depth is 512,
and the other two dimensions corresponds to the image’s dimensions (w, h). These maps are
subsequently multiplied by a weight vector P512,24, resulting in the creation of anchors A24,w,h.

A24,w,h = P512,24M512,w,h. (2.1)

The anchors A24,w,h represent the scores for various scales and aspect ratios of the bounding
boxes around objects. Half of these anchors (12) are allocated to background scoring, while the
remaining half assess the objects.

The goal of generating heat maps is to identify adjusted weights, R512,1, that enable the creation
of a unified heat map Hw,h that does not depend on the object’s scale and aspect ratio, utilising
the feature maps M512,w,h. This process is described through the following equation:

Hw,h = R512,1M512,w,h. (2.2)

The weights R512,1 are derived from the weights P512,24. that are utilised for anchor generation.
This calculation proceeds under the premise that only the anchors pertaining to objects are taken
into account, and the dimensionality is further diminished by identifying the highest weight
(impact) for a given feature across all scales or aspect ratios. During this procedure, the j-th
component of the weights R512,1 is determined using the following equation:

R512,1(j) = max
i=1,2,...,12

P512,24(j, i), (2.3)

where P512,24(j, i) stands for the weight that is multiplied by the j-th feature contributing to
the i-th anchor. Consequently, an attention heat map was produced that highlights areas likely
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to contain one of the recognised categories using "warmer" colours, whereas "cooler" colours in-
dicate pixels likely associated with the neutral background (Fig. 2.2). In a network that has
been adequately trained, these warmer areas accurately represent the object’s actual location.
It should be noted, however, that elevated temperatures may also be observed in zones where
objects, despite being entirely distinct, share similar local characteristics as perceived by the
network. This mechanism provides a visual examination of the specific areas the network priori-
tises, allowing for the identification of objects that are frequently confused, even in the absence
of visible false positives (i.e. bounding boxes) in the images. The results of experiments are
presented in section 6.3.1.

Figure 2.2: An example of an attention heatmap. "Warmer" colours highlight areas likely
to contain one of the recognised categories, whereas "cooler" colours indicate pixels likely

associated with the neutral background

2.3.2 Guided learning

Attention heat maps are an invaluable way to identify and address the factors that are hindering
the system’s optimal performance. By leveraging this additional insight, the training process
can be guided in a more deliberate manner, enriching the dataset with essential examples to
enhance system accuracy and efficiency.

The training methodology was developed in several stages, beginning with the creation of a
preliminary base model. The initial model underwent training with a dataset that was both
limited in size and lacking in diversity, setting the stage for the initial learning phase.

The Faster R-CNN loss function combines a classification loss and a regression loss, represented
as follows:
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LFRCNN =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λFRCNN

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ), (2.4)

where pi is the predicted probability of the i-th anchor being an object, and p∗i is the ground-
truth label (1 if the anchor is positive, 0 if negative). The classification loss, Lcls, is typically
the log loss for binary classification:

Lcls = − (p∗i log(pi) + (1− p∗i ) log(1− pi)) (2.5)

The regression loss, Lreg, involves the bounding box regression targets ti and their ground-truth
counterparts t∗i , using a Huber Loss Lδ:

Lreg = Lδ(ti − t∗i ), (2.6)

The Huber Loss Lδ function is defined as:

Lδ(x) =

 1
2x

2 if |x| < 1

δ · (|x| − 1
2δ) otherwise,

(2.7)

In this formulation, Ncls and Nreg are normalising factors for the classification and regression
losses, respectively. The parameter λFRCNN balances the relative weight of the regression loss
against the classification loss. The Huber Loss δ parameter was equal to 1.

In the subsequent stage of training, the focus shifted to analysing how the network allocated
its attention to images sourced from the precise locations where the model was expected to
function. The use of images specific to these locations proved to be pivotal, offering a glimpse
into the environmental contexts the model would face in real-world scenarios. By visualising
the network’s focus, valuable insights into the elements within the input images that captured
the model’s attention was gained. It was also important to identify the elements that the
model either ignored or misinterpreted. This process not only revealed the model’s current
interpretative biases but also identified areas for improvement, guiding further refinements in
the training regimen. By adjusting the approach based on these observations, the aim was to
rectify misinterpretations and fill in the gaps in the model’s understanding, thereby advancing
toward a more accurate and reliable object detection system tailored to its intended operational
environment.

Utilising the insights obtained from visualising where the network focuses its attention, the
causes of the wrong detections were understood. These wrong detections were mostly due to
objects having similar lower-level features as the target object, but appearing more often in the
training data. As the countermeasure to this problem, the training set was expanded by adding
a selection of negative samples, chosen to target and rectify the deficiencies uncovered during
the preliminary training phase. These additional samples were sourced from publicly accessible
online resources, ensuring the augmentation process remained both cost-effective and efficient.
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With the dataset thus enriched, a subsequent round of training was embarked upon. This phase
initiated with the foundational base model, which had been established in the initial phase of
training, acting as the starting point. This iterative process of refining the initial model through
the incorporation of selected negative examples and subjecting it to further training progressively
enhances the model’s precision and resilience. The Block diagram of the processing pipeline is
shown in Fig. 2.3.

Figure 2.3: A block diagram of the pipeline for attention maps based guided learning.

This gradual training strategy, which transitions from an elementary model trained on a con-
strained dataset to a more sophisticated one refined with data augmented by insights derived
from attention visualization, exemplifies an approach to cultivating robust machine learning
models under conditions of limited data availability. It embodies the principle of adaptive learn-
ing, whereby the model is not only informed by the data it is trained on but also by an ongoing
analysis of its performance and by the changing demands of the environment it is designed to
operate within. This approach ensures that the model continually evolves and adapts, enhancing
its capability to perform its designated tasks with increasing accuracy and reliability. The results
of guided learning experiments are presented in section 6.3.2.



Chapter 3

Estimation of 2D characteristic
points

3.1 Introduction

One of the fundamental tasks in the field of computer vision is keypoint estimation. This process
involves the identification and localisation of specific points of interest within an image. These
keypoints are typically defined as salient, easily identifiable locations in the image, such as human
body joints [18], corners, or other distinct features [93]. In 2D keypoint estimation, the objective
is to determine the coordinates of these points on a two-dimensional image plane. This process
is important for understanding the structure and geometry of objects within the image, forming
the basis for more complex image analysis and interpretation tasks.

In the context of autonomous driving, 2D keypoint estimation plays an important role as it
underpins a variety of applications that are necessary for ensuring the safe and efficient operation
of autonomous vehicles. For instance, keypoint estimation is integral to the processes of lane
detection, where keypoints on lane markings help maintain the vehicle’s trajectory [45]. Similarly,
in the context of object tracking and pedestrian detection, the identification of keypoints on
moving objects enables the vehicle to monitor and predict their movements [62].

Nowadays, 2D kepoint estimation is primarily solved with neural networks. A significant amount
of research focuses on the estimation of keypoints on the human body, known as human pose
estimation [125]. CNNs are effective for this task due to their ability to learn hierarchical
features and spatial relationships within images. A common technique is heatmap regression,
where CNNs predict heatmaps indicating the probability of keypoint locations.

Despite its significance, 2D keypoint estimation faces a number of challenges. One of the primary
issues that must be addressed is the loss of spatial resolution that occurs during the image
processing stage. As images pass through layers of a convolutional or transformer neural network,
the loss of spatial resolution can result in the obscuration or loss of finer details, which are
necessary for accurate keypoint detection. This loss of resolution can have a significant impact

19
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on the accuracy of the keypoints detected, potentially leading to errors in subsequent tasks such
as pose estimation.

A further challenge is the selection of appropriate, well-defined characteristic points. The efficacy
of keypoint estimation is highly dependent on the capacity to identify points that are not only
distinctive and stable across disparate views but also relevant to a specific task. In autonomous
driving, where environmental conditions and viewpoints can vary significantly, the selection of
such characteristic points becomes even more challenging. The keypoints must be robust to
changes in lighting, weather conditions, car type, and other external factors, ensuring consistent
performance regardless of the external environment.

Another challenge, especially important in autonomous driving, is the estimation of uncertainty
associated with the prediction. The essence of this task in keypoint predictions lies in its ability
to estimate the covariance matrix of the predicted coordinates. In the dynamic and often unpre-
dictable environments where autonomous vehicles operate, the clarity and accuracy of keypoint
detection can be affected by numerous factors, including occlusions, variable lighting, and di-
verse weather conditions. In such scenarios, the ability to quantify the uncertainty of keypoint
predictions empowers the vehicle’s decision-making systems to evaluate the reliability of the
information being processed. It is not merely a technical necessity but a safety imperative to
understand and quantify the uncertainty in these predictions. Furthermore, this feature of uncer-
tainty measurement serves as a feedback mechanism for the continuous learning and adaptation
of the system [88]. By identifying areas where uncertainty is significant, a direction for further
model refinement and data collection is provided, thus the overall robustness of the perception
system is enhanced.

In addition to uncertainty estimation, the interpretability of 2D keypoint predictions represents
an important factor. It is of great importance that autonomous driving systems are able to
provide an explanation as to why a particular prediction has been made. This is essential
for the trust and validation of the system. Interpretability ensures transparency in the decision-
making process, thereby facilitating better diagnostics, error analysis, and system improvements.
Moreover, it plays an important role in the regulatory and ethical aspects, providing clarity and
justification for the vehicle’s actions, which is essential for the wider acceptance and trust in
autonomous driving technologies [46].

Geometric reasoning uses knowledge of 3D object dimensions, obtained either through predefined
models or learned characteristics, to improve the accuracy of estimating 2D keypoints. The
application of predefined models is limited to objects with standard dimensions, such as traffic
infrastructure elements such as signs and lights. In the majority of cases, the objects in question
possess custom shapes or the number of possible 3D models is exceedingly large, such as in
the case of different vehicle models. In such instances, the approach that has gained increasing
interest in recent years is to utilise a neural network-based reconstruction of the 3D model of
the considered object from images [109], [111].

Geometric reasoning plays a significant role in enhancing the accuracy and reliability of 2D
keypoint estimation. These approaches facilitate a more in-depth understanding of the spatial
relationships and physical dimensions of objects within the environment, which are important for
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the safe navigation of vehicles. One of the primary benefits of geometric reasoning is its capacity
to provide context to the keypoints. By comprehending the geometric interrelationships between
disparate keypoints, the system is better positioned to anticipate their positions in disparate
scenarios, thereby enhancing the resilience of the detection process [38].

In this research, the problem of 2D semantic keypoints estimation from monocular camera images
is explored under two specific scenarios. The first focuses on a docking maneuver involving an
electric city bus approaching a charging station, where the geometry of the charging station
is predefined and the viewpoints from which the bus approaches are restricted, providing a
relatively controlled setting for the estimation process. The challenge here involves the precise
localisation of keypoints on the charging station to guide the docking maneuver effectively.

The second scenario considers the estimation of the pose of surrounding vehicles in an urban
environment. This situation presents a greater level of complexity due to the diverse shapes and
geometries of vehicles. Moreover, an environment is dynamically changing with the common
presence of occlusions making this less predictable setting.

The keypoints that are estimated are used to compute the pose of an object relative to the
camera using an algorithm solving Perspective-n-Point problem. This step is integral for making
navigation decisions in autonomous driving applications, such as trajectory adjustment or precise
alignment with a charging station. The challenge extends beyond accurate keypoint detection
to ensuring that these keypoints are reliably positioned for effective pose estimation across a
variety of operational contexts.

This chapter presents the following contributions to the field of 2D keypoint estimation:

• New neural network architectures designed for estimation of keypoints on the road infras-
tructure objects

• A new loss function that leverages knowledge about the 3D object model applied in the
vehicle points estimation

• A postprocessing procedure that refines keypoint predictions based on the 3D object model

3.2 Related work

The topic of keypoint detection is frequently discussed in the literature, with main applications
in human pose estimation. The developments in this field can be divided into two predominant
approaches: regression-based and heatmap-based methods. Each approach offers distinctive
advantages and has been adapted to address specific challenges in keypoint detection tasks.
Regression-based keypoint detection entails the direct prediction of the numerical coordinates of
keypoints from images [97]. This method simplifies the processing pipeline by eliminating inter-
mediate steps such as heatmap generation, thus potentially increasing computational efficiency.
Regression-based methods for human pose estimation have historically been less accurate than
heatmap-based approaches due to their inability to effectively utilise structural pose informa-
tion. In [94], Sun described an approach that utilises a reparameterised pose representation that
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Figure 3.1: Architecture of the HRNet. Source: [107]

focuses on bones rather than joints. The approach leverages the structure of joint connections
to establish a compositional loss function, which captures the long-range interactions within
the pose. The regression-based approach described in [63] employs a Transformer network to
directly regress keypoint coordinates from image data. This method incorporates an attention
mechanism to improve feature alignment and is the first regression-based model to rival the
performance of heatmap-based approaches, as demonstrated on datasets such as MS-COCO [57]
and MPII [2].

Conversely, heatmap-based approaches result in the generation of spatial heatmaps, wherein each
pixel’s value represents the probability of a keypoint’s presence at that location. Both regression-
based and heatmap-based methods can be further divided into two primary methodologies: top-
down and bottom-up. The bottom-up approach initially identifies all the body parts in the image,
regardless of the individual, and subsequently assembles them into distinct human poses. This
approach offers a more efficient processing flow, particularly when scaling to a larger number of
people. The Part Affinity Fields (PAFs) introduced in [13] are a unique approach that associates
body parts with individuals in an image while encoding global context. This allows for real-time
performance through a bottom-up parsing step that remains highly accurate regardless of the
number of people present.

The top-down approach first detects each individual in an image and then predicts their pose.
This effectively handles each person separately, which can be advantageous in crowded scenes
but is computationally expensive. The HRNet, as described in [107], is designed to maintain
high-resolution representations throughout the networks processing stages. The architecture
begins with a high-resolution subnetwork and gradually incorporates high-to-low resolution sub-
networks. Parallel connections and repeated multi-scale fusions enhance the richness of the
high-resolution output (Fig. 3.1). Newell [74] presents a method that fuses top-down and bottom-
up approaches, a new convolutional network architecture designed for human pose estimation,
termed the "stacked hourglass" network. This architecture effectively processes features at all
scales and integrates them to capture the complex spatial relationships of body parts. By employ-
ing a strategy of repeated bottom-up and top-down processing with intermediate supervision,
the network significantly enhances performance.

The literature addressing the topic of keypoint detection for vehicles is relatively limited. The
paper [95] evaluates the effectiveness of simple baseline methods by incorporating deconvolu-
tional layers into a backbone network to generate heatmaps for vehicle keypoints - a technique
that has already been successfully applied to human pose estimation. The results, validated on
the PASCAL3D+ dataset [116], achieved state-of-the-art results. Furthermore, additional ex-
periments highlighted existing issues in vehicle keypoints labelling. A novel approach to defining
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Figure 3.2: Block diagram of the Regression Keypoint Network (RKN) architecture for the
keypoint detection.

vehicle keypoints was introduced which was validated using a customised dataset with extended
keypoints, which addressed the aforementioned performance challenges. In [47], Kreiss presented
a comprehensive framework that simultaneously detects and establishes spatiotemporal keypoint
connections in a single step, marking the inception of the first real-time pose detection and track-
ing algorithm. This approach has been shown to be applicable to various semantic keypoints,
including those pertaining to cars.

The reprojection loss has previously been employed for the estimation of human 3D poses. In [37],
Kanazawa et al. employed reprojection loss for the purpose of 3D human mesh recovery. This
permitted the model to be trained using images captured in the wild, which only had ground
truth 2D annotation. Similarly, in [82], reprojection loss was employed for the self-supervised
training of the network.

3.3 Proposed network architectures

Both heatmap-based and regression-based keypoint estimation approaches offer unique advan-
tages and face distinct challenges. The choice between these methods depends on the specific
requirements of the application, including the need for precision, computational efficiency, and
the ability to handle spatial ambiguity. As the field of computer vision advances, ongoing re-
search continues to explore these methodologies, seeking to leverage their strengths and mitigate
their weaknesses for improved 2D keypoint estimation.

3.3.1 Keypoints detection: Regression Keypoint Network

This section will present a regression-based neural network for the detection of keypoints on the
electric bus charger. The well-known Faster R-CNN network serves as the foundation for the
development of the Regression Keypoint Network (RKN), an object detection framework inspired
by the former’s architecture. The initial stage of this process includes the transformation of the
input image by a backbone network, which is responsible for deriving a series of feature maps from
the image. Specifically, the architecture that has been adopted (illustrated in Fig. 3.2) employs
the ResNet101 as the backbone, which generates a set of 1024 feature maps. Subsequently,



Estimation of 2D characteristic points 24

the aforementioned maps are forwarded to the Region Proposal Network (RPN), a component
designed to identify and propose a collection of regions within the image that are highly likely
to encapsulate objects belonging to the targeted category.

Subsequently, the next step involves the extraction of fragments from the backbone’s feature
maps, following the identification of the aforementioned regions by the RPN. Further, the selected
regions are subjected to standardisation through the application of the ROI Pooling layer, thereby
ensuring uniformity in their dimensions. This uniformity is important, as it allows these regions
to be processed in parallel by the various heads of the predictor, thus enhancing the overall
efficiency of the system. In order to enhance the resolution of the processed regions and to
minimise the loss of spatial information, adjustments were made to the parameters of the RPN
network. The objective was to retain as much spatial detail as possible within these regions.

Finally, the regions delineated by the RPN are resized to a consistent dimension of 32×32
pixels. This dimension represents the upper limit of what can be accommodated within the
memory constraints of the available GPU, striking a balance between maintaining sufficient
detail for accurate keypoint detection and adhering to the hardware limitations. This process
serves to illustrate the network’s design philosophy, which prioritises the preservation of spatial
information that is critical for the accurate localisation of keypoints within the constraints of
the computational resources. It is assumed that the bottleneck limiting the accuracy of keypoint
localisation in this approach is the resizing of regions of interest to a 32×32 px size.

The first head of the RKN architecture is a regressor tasked with refining the position of the
bounding boxes. The second head is designed to ascertain the class association and the confidence
level of each proposed region. In contrast to the original Faster R-CNN design, the architecture
incorporates a third predictor, which is tasked with determining the positions of keypoints within
the images.

The keypoint prediction module is constructed from a sequence of eight convolutional layers, each
equipped with 512 filters. Subsequently, the architecture incorporates an additional convolutional
layer, comprising 256 filters. Each convolutional layer uses a filter size of (3,3). The output of
the final convolutional layer is then flattened into a vector. Subsequently, the vector undergoes
further processing by a densely connected layer, which is specifically designed to produce a
number of values that is twice the amount of the predefined keypoints. The final outputs are
tailored to represent the precise x and y coordinates for each keypoint directly, offering an
accurate estimation of their positions.

The loss function used during training is the same as in (2.4), extended with LMSEkpts defined
by Eq. (3.1):

LMSEkpts =

√√√√ 1

n

n∑
i=1

∥∥p2d
i − p̂2d

i

∥∥2, (3.1)

where p2d
i is the ground truth 2D point, p̂2d

i is the predicted 2D point and n denotes the total
number of points.
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Figure 3.3: Block diagram of the Max Resolution Heatmap Keypoint Network (MRHKN)
architecture for the keypoint detection.

The final loss function is defined by Eq. (3.2).

LRKN =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) + LMSEkpts (3.2)

3.3.2 Keypoint detection: Max Resolution Heatmap Keypoint Net-
work

The alternative method for keypoint localisation was conceived as a result of the realisation
that the conventional heads within the RKN architecture could be considered redundant, given
that it is assumed that the object of interest has already been detected and its bounding box
coordinates are known. Furthermore, it was observed that the bottleneck of the size 32×32 px in
RKN network impedes the subsequent head’s ability to estimate keypoints at a higher resolution.
In light of these observations, an innovative architectural concept was introduced, named the Max
Resolution Heatmap Keypoint Network (MRHKN), specifically crafted to preserve the highest
possible resolution of the input image, as depicted in Fig. 3.3.

This architecture represents a departure from the RKN framework, as it eliminates the RPN
along with all other heads, except for the one dedicated to keypoint detection. This omission
allows for a notable expansion in both the depth and width of the keypoint detection head. The
streamlined architecture of the MRHKN model is designed to optimise the utilisation of the
input image’s resolution. This focus on maintaining image resolution throughout the processing
pipeline is an important aspect of the new design, which aims to enhance the keypoint detection
capability.

In a similar manner to the methodology employed in the RKN configuration, the architectural
design utilises the ResNet101 network as its backbone. This block generates the feature maps,
which are subsequently reduced in size by a factor of four. Consequently, for an input image mea-
suring 960×960 pixels, this reduction process yields feature maps with a resolution of 240×240
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pixels. Subsequently, these feature maps undergo a series of transformations through a sequence
of eight convolutional layers, without further noticeable resolution loss.

In order to ensure that the output heatmap and the original input image shapes are identical,
two deconvolution layers have been incorporated into the workflow. These layers play a pivotal
role in gradually enlarging the feature maps to their original dimensions, thereby facilitating
a direct correlation between the heatmap and the input image dimensions. The final stage of
the process involves the application of a final convolutional layer, which is distinguished by the
utilisation of filters with a size of (1,1). The primary function of this layer is to craft a distinct
heatmap for each of the n keypoints under consideration.

The produced heatmap provides only an indication of the likelihood of positions for the key
points. Consequently, additional steps are required to extract precise coordinates for these
points. An illustration of the post-processing required is shown in Fig. 3.4. In Fig. 3.4A, an
actual keypoint location is highlighted by the red circle. The initial output from the network,
as depicted in Fig. 3.4B, also presents false positive detections, which should be removed. These
are indicated by red arrows. A detailed view of an accurate positive detection is presented in
Fig. 3.4C, while Figs. 3.4D and E showcase examples of false activations. To eliminate these
incorrect activations, a process of thresholding is employed to convert the heatmap into a binary
format (shown in Fig. 3.4F). Subsequently, the DBSCAN clustering algorithm is applied to
the binary image to identify potential keypoint locations. The selection of the most probable
keypoint cluster is based on the calculation of a confidence score for each potential cluster. In
particular, the confidence score Si for a given cluster Ki is calculated by summing the intensity
values I(x) for each pixel location x = [u, v] within the raw heatmap that is part of cluster Ki.

Si =
∑

x∈Ki

I(x) (3.3)

The final keypoint location ci is computed as the center of mass of the cluster with the highest
confidence score (Fig. 3.4G):

ci =
1

Si

∑
x∈Ki

x · I(x) (3.4)

For training the MRHKN network, a binary cross-entropy loss was used:

LBCE =

n∑
i=1

− 1

m

m∑
j=1

[mij log(m̂ij) + (1−mij) log(1− m̂ij)]

 , (3.5)

where mij is the true label for the j-th pixel of heatmap corresponding to i-th point, and m̂ij is
the predicted value of considered pixel. In this equation, m denotes the total number of pixels
in the predicted heatmap, and n is the number of points.
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Figure 3.4: MRHKN postprocessing: input image (A), network output (B), closeup of the
network output near a marker to be found (C), false positive markers (D, E), thresholding (F),

DBSCAN clustering and center of mass as actual keypoint coordinates (G)

3.3.3 Keypoint detection: Geometry-Aware Keypoint Network

The genesis of the Geometry-Aware Keypoint Network (GAKN) architecture was significantly
influenced by the superior capabilities demonstrated by state-of-the-art keypoint detectors em-
ployed in top-down approaches to human pose estimation methods, as referenced in [99]. In
the domain of top-down human pose estimation, the strategy includes accurately determining
the positions of keypoints within specified bounding boxes that have been outlined by a person
detection mechanism.

In the experimental setup, a keypoint detection system that utilises the HRNet architecture [107]
as its backbone was employed, which is complemented by a keypoint detection head, implemented
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Figure 3.5: Architecture of the GAKN model. Configurations with heatmap sizes of 128×128,
256×256 and 512×512 contain d equal 0, 1 or 2 Deconv Blocks respectively. Architectures can

be extended with c additional Conv Blocks in the keypoint head

within the MMPose framework [67]. The network heads were designed specifically for this task,
including an additional head aimed at assessing the spatial uncertainty associated with the
detected keypoints, as shown in Fig. 3.5.

The detection head is constructed using deconvolutional blocks, which have been designed to
enhance the resolution of the feature maps by a factor of two. Each deconvolutional block
comprises a series of layers, including a transposed convolution layer, a batch normalization
layer, and a Rectified Linear Unit (ReLU) activation layer. At the end of the detection head is a
single convolutional layer, which is responsible for producing a set of heatmaps, which are equal
in number to the keypoints being targeted.

In order to generate precise training targets in the form of ground truth heatmaps and to accu-
rately interpret the final keypoint positions from these heatmaps, the Unbiased Data Processing
(UDP) and DarkPose techniques were integrated, as outlined in [35] and [122], respectively.
These preprocessing methods play an important role in ensuring the integrity of the keypoint
coordinates throughout the preprocessing and augmentation phases. Moreover, when it comes
to interpreting the predicted heatmaps during the inference stage, these methodologies facilitate
the extraction of keypoint locations with remarkable precision, down to subpixel accuracy.

In this study, an assessment of two distinct backbone networks, HRNet32 and HRNet48 was
conducted. The primary distinction between HRNet48 and HRNet32 is found in the width of
the convolutional layers within the high-resolution pipeline, which are 48 and 32 channels wide,
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respectively. This change gives HRNet48 a better ability to create more feature maps, but it
also requires more computational resources.

Furthermore, the effect of incorporating additional convolutional layers into the keypoint detec-
tion head was explored to ascertain their impact on enhancing the accuracy of pose estimation.
These supplementary layers were positioned subsequent to the Deconvolutional Block and prior
to the convolutional layer responsible for generating the ultimate heatmaps. Each of these added
layers is equipped with 256 filters measuring 3×3, followed sequentially by Batch Normalization
and ReLU activation functions.

It is noteworthy that the standard configuration of the keypoint detector utilising HRNet outputs
heatmaps that are downscaled by a factor of four relative to the original size of the input
image. Consequently, an input image with dimensions of 512×512 pixels yields heatmaps with
dimensions of 128×128 pixels. The process of upsampling these heatmaps is facilitated through
the application of Transposed Convolutional layers, with a single layer effectively doubling the
width and height of the heatmap.

Given that the components of the charging station, including the pylon and head, are static
and maintain a consistent geometric arrangement, the preliminary localisation of keypoints is
somewhat more straightforward compared to the dynamic and complex nature of human pose
estimation. This static nature allows for the anticipation of keypoints within specific regions
of the image. However, the precision of this pose estimation technique is heavily reliant on
the accuracy with which keypoints are identified. Even minor deviations in the pinpointing of
keypoints can lead to disproportionately significant errors in pose estimation, particularly when
observed from extended distances. These observations lead to the hypothesis that enhancing
the resolution of the output heatmaps could significantly contribute to the precise subpixel
determination of keypoint positions, thereby markedly improving the accuracy of camera pose
estimation.

It is important to highlight the difference between detecting keypoints on objects such as an
electric bus charger and detecting keypoints on the human body. The human pose consists of
many parts that move independently, making it less straightforward to determine which part of
an image to analyse for a specific keypoint. However, the fixed geometric structure of a charging
station simplifies this aspect in the network’s design, allowing us to concentrate the efforts on
refining the precision of keypoint localisation.

The importance of scene geometry within traditional models dedicated to estimating poses,
combined with the straightforward process of identification points for elements like the charging
station, as well as understanding the spatial relationships among these specific points, served
as the catalyst for evolving the HRNet baseline model. This evolution led to the creation of
the Geometry-Aware Keypoint Network. The concept was driven by the realization that a deep
comprehension of the geometric structure of a scene significantly enhances the model’s ability
to accurately predict poses. By integrating these geometric principles directly into the model’s
architecture, the aim was to leverage the natural structure and layout of the scene, particularly
the charging station, to inform and refine the network’s predictions. This approach represents a
deliberate shift towards a more geometry-focused methodology in keypoint detection and pose
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estimation, aiming to harness the inherent spatial cues present within the environment to improve
the accuracy and reliability of the model’s outputs.

During its training phase, this network leverages geometric priors by incorporating an extra loss
function that is grounded in the concept of reprojection error. This reprojection loss is designed
to impose penalties on any spatial arrangements of keypoints that defy the constraints of physical
reality, thereby discouraging the model from predicting keypoint configurations that cannot exist
in the physical world. The camera projection function, π, is defined which maps the i-th 3-D
point p3d

i to the 2-D image point p̃2d
i leveraging the given camera intrinsics parameters K:

π(T,K,p3d
i ) 7→ p̃2d, (3.6)

where T is a rigid transformation matrix (rotation and translation).

To calculate the reprojection loss, the difference between the projection of the real 3-D p̃2d object
points is minimised and the points predicted by the network p̂2d. The optimisation problem is
solved by the Trust Region Reflective algorithm [10] which finds a transformation T∗:

T∗ = argmin
T

n∑
i=1

‖(p̃2d
i − p̂2d

i |‖21. (3.7)

The Trust Region Reflective algorithm stands out as an optimization method designed to tackle
constrained problems. In this application, to ensure that the solution remains within the bounds
of physical feasibility and accurately represents the real-world scenario, specific constraints on
the transformation matrix T were introduced. These constraints are designed to mirror the
actual operational environment of the bus. For instance, the range of all three components of
the rotation vector was restricted to π

4 . This limitation is based on the assumption that the roll
and pitch angles of the bus are negligible, thereby confining the yaw angle variation to within
±π

4 , ensuring the rotation remains realistic and within the expected operational parameters.

Furthermore, the constraints extend to the translation movements of the bus, with the lateral
(side-to-side) movement restricted to within ± 20 meters to reflect the typical maneuvering
space. The forward or backward movement, represented by the longitudinal axis, is constrained
to 50 meters, acknowledging the usual operational range. Additionally, the vertical translation,
or movement along the z axis, is also capped at 50 meters, providing a comprehensive framework
that effectively delineates the search space for the optimisation process, as illustrated in Fig. 3.6.
These constraints are required for guiding the optimisation towards solutions that are not only
mathematically sound but also align with the physical constraints and operational realities of bus
movement, ensuring the model’s predictions are grounded in the physical world. For the initial
guess for optimisation, a point within the bus operational space defined by the aforementioned
constraints was chosen.

Finally, the reprojection loss is the value of the cost function for the optimal T∗ transformation:

Lreprojection =

n∑
i=1

‖(π(T∗,K,p3d
i )− p̂2d

i ‖21. (3.8)
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Figure 3.6: The considered search space for the bus location and orientation.

The second loss element is a Mean Squared Error Loss:

LMSE =

n∑
i=1

 1

m

m∑
j=1

(mij − m̂ij)
2

 , (3.9)

where mij is the j-th pixel of the ground truth heatmap corresponding to the i-th point and m̂ij is
the j-th pixel of the predicted heatmap corresponding to the i-th point. The final loss function is
a sum of the Mean Squared Error (MSE) loss (3.9) and the reprojection loss, calculated according
to the formula:

loss = LMSE + λreprojection · Lreprojection, (3.10)

where the metaparameter λreprojection was estimated experimentally and is set to 0.01 for the
evaluation. The experimental evaluation of the aforementioned networks is presented in sec-
tion 6.4.

3.4 Uncertainty estimation of 2D points coordinates

In this section, the discussion delves into a module designed to estimate the uncertainty associ-
ated with the estimation of characteristic points.

A covariance matrix of size 2n× 2n, denoted as Σ2D, is estimated to represent the uncertainties
of n points in the x and y dimension. The Uncertainty Estimation Head (UEH) takes the image
feature maps as input. It processes these inputs to calculate (2n+ 1)n positive numbers, which
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populate the lower triangle of the 2D Cholesky factor matrix, L2D. The UEH is comprised of
a stack of four blocks, each constructed from a convolutional layer, a ReLU activation func-
tion, and batch normalization. The numbers of output filters for these convolutional layers are:
[256,256,64,16]. Following these convolutional blocks is a single linear layer that outputs (2n+1)n

values. The architecture of UEH is shown in Fig. 3.5. To ensure that the estimated numbers are
positive, an Exponential Linear Unit (ELU) activation function is applied, followed by the addi-
tion of a constant to the output values. By multiplying the matrix L2D by its transpose LT

2D, the
covariance matrix Σ2D is derived. This methodology guarantees that the resulting covariance
matrix is positive semi-definite which is a critical property for a valid covariance matrix.

During the training phase, the Gaussian Log-Likelihood Loss function was employed (Eq. (3.11)),
as suggested in [49].

Lunc =

n∑
i=1

log |Σ|+
(
p2d
i − p̂2d

i

)
Σ−1

(
p2d
i − p̂2d

i

)
, (3.11)

where p2d
i is a vector of ground truth keypoint locations and p̂2d

i is a vector of predicted keypoint
locations.

The 2×2 covariance matrices of the individual keypoints are extracted from Σ and can be visu-
alised as uncertainty ellipses in the image plane. The evaluation of this uncertainty estimation
approach is presented in section 6.7

3.5 Gradient visualization

It was hypothesized that incorporating prior geometric knowledge through a reprojection-based
loss component into the Geometry-Aware Keypoint Network architecture would introduce a
beneficial inductive bias. This bias was expected to guide the network towards prioritising the
most pertinent areas within an image for keypoint identification. To test this theory, the GAKN
was augmented with an attention analysis layer, utilising the Score-CAM method [106] for this
purpose. In contrast to previous gradient-based approaches, Score-CAM offers a visualization
of the network’s focus that is clearer and less cluttered by noise, thereby simplifying the task of
interpreting how the network’s attention varies in response to different input images.

Illustrations in Fig. 3.7 showcase activation maps for four identified keypoints in sample images
from the test collection. The top sequence of images for each sample displays heatmaps, revealing
that, within the GAKN framework, the activation around individual points appears more focused
and exhibits a greater intensity compared to earlier methods. The lower sequence in each example
highlights the image segments identified by the Score-CAM method as having the most significant
influence on the determination of specific points within the image.

A notable observation from the baseline network’s activation maps is the widespread dispersion
of activation across the background, suggesting a lack of focused attention by the network. Par-
ticularly for point three (third column in each sample), there is minimal activation in proximity
to the point’s actual location, contrasted with substantial activation in an area of the image not
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Figure 3.7: Visualizations of the outputs of the Score-CAM algorithm and the keypoint
detection networks. The first column presents input images with keypoints marked with a
red circle. In the second column, there are outputs from the baseline HRNet32 network (top
rows) and outputs of the Score-CAM algorithm (bottom rows). The third column presents
outputs from the Geometric Aware Keypoint Network (top rows) and outputs of the Score-

CAM algorithm (bottom rows). Warmer colors mean higher activation

related to the structure of the charger, specifically in the lower left corner. Conversely, Fig. 3.7
presents activation points for the GAKN network, where it is evident that the network’s atten-
tion is more narrowly concentrated around the keypoints of interest, distinguishing it markedly
from the baseline. This contrast underscores the effectiveness of integrating geometric priors
via the GAKN architecture, affirming the initial conjecture that such an approach enhances the
network’s ability to accurately focus on relevant sections of the image for keypoint detection.





Chapter 4

Estimation of the object’s 3D
shape

4.1 Introduction

The problem of monocular 3D shape estimation is an intricate challenge within the field of
computer vision, also significant in applications of autonomous driving. This task entails the
prediction of three-dimensional positions of specific keypoints on an object or a dense mesh from
a single two-dimensional image. Unlike methods that rely on multiple images or depth sensors
to measure depth, monocular 3D shape estimation must infer depth information from a solitary
image, leveraging cues such as perspective, shading, and context.

The main challenge in monocular shape 3D estimation arises from the inherent loss of depth
information when capturing a three-dimensional scene in a two-dimensional image. This trans-
formation, while preserving information about the lateral and vertical axes, results in an am-
biguity regarding the z-axis (depth) for any given point in the image. As a consequence, the
task demands sophisticated inference techniques that can accurately reconstruct the lost depth
information based on monocular cues. This process involves a complex understanding of geo-
metric principles, object appearance, and scene context to predict the likely 3D structure that
corresponds to the two-dimensional visual input [24].

Despite the considerable challenges, advancements in machine learning particularly in deep learn-
ing have led to significant progress in this area. Neural networks have been at the forefront of
these advancements, demonstrating the ability to learn powerful feature representations from
data that encapsulate the complex mappings required for accurate 3D shape estimation from
monocular images. These networks are trained on large datasets containing images annotated
with the 3D positions of keypoints, learning to generalise from these examples to new, unseen
images [24].

Another significant challenge encountered in the processing of images by neural networks is the
loss of spatial resolution, a phenomenon that invariably leads to a decrease in the accuracy

35
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of the results. As images pass through the successive convolutional and pooling layers of a
CNN, detailed spatial information tends to get less distinct. This is primarily because these
layers are designed to abstract and compress the image data to extract relevant features for the
task at hand, such as object detection or classification. However, this process of abstraction
and compression often results in the loss of fine details and nuances of the spatial arrangement
within the image. For tasks that require high fidelity in spatial localization, such as precise
keypoint detection or segmentation, the diminished spatial resolution can significantly hamper
the network’s performance. The challenge, therefore, lies in designing CNN architectures and
processing strategies that can maintain or recover spatial resolution to ensure high accuracy of
the results, especially in applications where precise spatial details are critical for success.

However, the problem is not solely a matter of neural network architectures but also involves
considerations related to the availability of high-quality annotated training data, computational
efficiency, and their robustness to variations in lighting, occlusion, and background. Moreover,
the practical deployment of monocular 3D shape estimation systems necessitates their integration
into broader systems that can utilise the 3D shape information for tasks such as navigation, object
manipulation, or interaction in both real and virtual environments. Such application requires
that the estimations from CNN for 3D shape estimation will be explainable and interpretable.

This chapter addresses the problem of estimating 3D geometric features from images captured
by a monocular camera. The aim is to determine the 3D coordinates of vehicle keypoints or
overall car shapes, which are required for assessing the pose of surrounding vehicles in an urban
setting. The methodology relies solely on a monocular camera setup, processing each image
independently without the benefit of temporal information. This approach presents challenges,
particularly in accurately deriving depth and 3D structure from single images due to the limited
depth cues available from one viewpoint. A notable challenge in advancing this research is the
scarcity of datasets that provide a direct correlation between semantic 2D keypoints and their
corresponding 3D coordinates. This lack of data complicates the development and validation of
models that are capable of converting 2D visual information into 3D data.

This chapter outlines the contributions to the field of 3D car shape estimation:

• A new neural network architecture capable of precise estimation of car characteristic points
coordinates in 3D space from a single image

• An automatic procedure for obtaining labels of 3D cars’ characteristic points in 3D space

• A new neural network architecture for estimation of a dense 3D mesh of cars from a single
image

4.2 Related work

The existing approaches to 3D shape estimation can be broadly categorised into two main groups.
The first group focuses on predicting a sparse set of 3D characteristic points. These methods
typically involve identifying keypoints or landmarks on the object, which provide a simplified but
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informative representation of its 3D structure. These sparse keypoint methods are particularly
advantageous due to their efficiency and lower computational requirements, making them suitable
for real-time applications such as autonomous driving and augmented reality. Li et al. [55] used
a simple cuboid representation of cars to estimate 3D pose. This approach was proposed, among
other reasons, due to the difficulty in accessing high-quality training data. For training this
model, it was possible to use 3D bounding box annotations from the KITTI dataset [27]. The
work presented in [72] used a more complex car model containing 12 vertices. This approach
leverages keypoint-annotated datasets to lift the data from 2D to 3D, capturing intra-class shape
variations by expressing each shape instance as a combination of a mean shape and basis vectors,
thus allowing for a more flexible and accurate 3D shape estimation. In [123] Zhang et al. proposed
the estimation of car models by training model using Fitness Evaluation Score (FES). This score
measures how well a projected 3D vehicle model aligns with the image data by evaluating the
gradient information of pixels within virtual rectangles formed around the visible projected line
segments. The score considers the perpendicular gradient component of each pixel’s magnitude
and weights pixels closer to the projected line segment more heavily.

The second group of approaches aims to predict a dense 3D mesh of an object, providing a
more detailed and comprehensive representation of its shape. Dense mesh prediction methods
generally require more complex models and higher computational resources. These techniques
often leverage advancements in deep learning architectures, such as variational autoencoders
(VAEs) and generative adversarial networks (GANs), to generate detailed 3D meshes from input
images. These dense mesh methods offer higher fidelity and can capture intricate details of the
objects geometry, making them suitable for applications in 3D modeling and virtual reality [32].

Kundu et al. [51] encoded object shape using Principal Component Analysis (PCA) to a low-
dimensional shape space. This representation uses a small set of parameters to describe 3D
shapes, framing the shape estimation problem as predicting the appropriate set of low-dimensional
shape parameters for a given object instance. In [38] to facilitate neural network training for
shape reconstruction, Ke et al. reduced the shape representation dimension using PCA. They
clustered models into four subsets using K-Means based on shape similarity. Firstly, they applied
PCA for each subset to find n-dimensional shape representation. During inference, they predict
the PCA coefficients for each cluster and then blend the final shape using weights acquired by the
classification of input into one of four clusters. An approach from [53] uses the decomposition of
an object shape into three components: mean shape, template offsets, and object offset. Then by
using multi-head cross-attention, they predict object offsets to estimate the final object shape.

Graph Convolutional Networks (GCNs) have emerged as a powerful framework for learning on
graph-structured data, combining elements of graph theory and deep learning to address a wide
range of applications from social network analysis to bioinformatics and computer vision. The
work of Kipf and Welling [43] introduced a simplified formulation of spectral graph convolu-
tions, enabling efficient and scalable learning on graphs. Their approach, which approximates
the spectral graph convolution using a first-order approximation of localised spectral filters, has
become a cornerstone in the development of more complex GCN architectures. Subsequent work
has extended this foundational model to tackle more dynamic and heterogeneous graphs. A
significant contribution in this area is the work of Velikovi et al. [101], who introduced Graph
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Attention Networks (GATs). These networks incorporate attention mechanisms into the GCN
framework to improve model expressiveness and performance on node classification tasks. More
recent advances have focused on improving the scalability and adaptability of GCNs to different
types of graph data and structures, with the efforts of Wu et al. [115] presenting a comprehensive
overview of different GCN variants and their applications in different domains. These contribu-
tions highlight the versatility and robustness of GCNs, making them a focal point of research in
machine learning on data where additional information like local connections is available.

4.3 Estimation of 3D coordinates

This section will present an approach to estimating 3D keypoints of a vehicle from a single
image. This module is responsible for estimating the 3D points in a canonical pose, which
remains consistent regardless of the vehicle’s observed pose. The canonical pose standardises
the coordinate system such that its origin is located at the vehicle’s geometric center, with the
vehicle’s front always oriented in a fixed direction.

The process begins with the feature maps generated from the image crops by the Image Backbone
Network. In this experiment, HrNet [107] and ViT Pose [19] backbone networks were tested.
These feature maps can be utilised also by the 2D Keypoint Head that predicts 2D keypoint
coordinates on an image. Additionally, features extracted from the estimated 2D points are
processed by the Keypoint Backbone Network. To form features from these 2D points, a Mul-
tilayer Perceptron (MLP) comprising seven layers is utilised. This MLP takes the normalised
2D coordinates, adjusted with respect to the bounding box, as its input. These derived feature
maps, both from the image and the 2D points, are then concatenated to form the input for the
Keypoint 3D Head (Fig. 4.1).

Figure 4.1: Pipeline for estimation of 3D keypoints.

Within the 3D Keypoint Head, two separate feature maps are estimated. The first feature map
corresponds to the X − Y plane, facilitating the estimation of the x and y coordinates of the
vehicle in the canonical pose that corresponds to lateral and vertical axes. The second feature
map corresponds to the X − Z plane, which is used to estimate the z coordinate (longitudinal
axis). This dual-map approach, which addresses two orthogonal planes independently, allows
us to employ a similar processing pipeline to that used for 2D keypoint estimation. The used
loss function is MSE as defined in Eq. (3.9). Moreover, the uncertainty of 3D keypoints can be
estimated analogously as described in section 3.4 for keypoints 2D.

The design of the 3D point estimation module allows for seamless integration with the 2D point
estimation network, as it reuses the feature maps extracted from the image. This integration
not only streamlines the workflow but also enhances the overall efficiency and accuracy of the
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pose estimation process by building upon the robust features derived during the 2D estimation
stage. The experimental evaluation of this approach is presented in section 6.5.2.

4.4 Dataset preparation for supervised learning

For this experiment, the ApolloCar3D dataset, which was introduced in [93] was utilised. This
dataset, sourced from the ApolloScape dataset [36], features a collection of high-resolution images
(3384 × 2710 pixels), surpassing 140,000 semantically labeled images that depict complex driving
scenarios. This dataset was curated with images chosen from labeled videos across four cities,
emphasizing environments of relative complexity and ensuring a minimum interval of ten frames
between selected images. To enrich diversity, the dataset was pruned manually to include images
with a wide variety of car scales, shapes, orientations, and levels of occlusion among vehicles,
resulting in a refined set of 5,277 images.

For 3D car models, the dataset demands high accuracy; models must align closely with manually
labeled masks, with an offset boundary of less than 3 pixels on average. Given that existing 3D
models from sources like ShapeNet were insufficiently precise, and considering the high cost of
fitting each model in scenarios with significant occlusion, the project engaged professional model
makers to construct bespoke 3D models. This dataset contains 34 CAD models that accurately
represent the shape and scale of specific car types, including sedans, coupes, minivans, SUVs,
and MPVs, covering a broad spectrum of commonly encountered vehicles.

Statistical data within the dataset reveal a significant variety of cars, often positioned at long
distances or under heavy occlusion and showing diverse spatial distribution. The orientation data
suggests that most cars are either moving towards or away from the data acquisition point. In
terms of vehicle types, sedans appear most frequently. Importantly, many images in the dataset
feature over ten labeled objects, underscoring the dataset’s complexity and depth.

The dataset also incorporates an advanced semi-automatic keypoint annotation process that
combines human annotators with machine assistance. ApolloCar3D defines 66 semantic key-
points per car but annotated are only those points that are visible from the camera’s viewpoint.
However, this keypoints set contains far more than any previous dataset and allows for more
accurate and robust shape and pose registration. The location of keypoints annotated in this
dataset is presented in Fig. 4.2. This approach ensures that ApolloCar3D not only supports de-
tailed analyses of vehicle dynamics but also significantly enhances the development and testing
of autonomous driving technologies. The visualization of keypoints 2D and cars’ mesh is shown
on Fig. 4.3

To address this issue, a procedure as illustrated in Fig. 4.5 was implemented. This method starts
with a CAD model (Fig. 4.4A) that is transformed according to the provided translation and
rotation parameters. By applying these transformations, it is ensured that the 3D model aligns
accurately with the real-world pose of the vehicle captured in the image (Fig. 4.4B).

Next, the parameters of the rays are established, which include all the 3D points whose projec-
tions onto the image fall at the annotated keypoints of the vehicle (red dot on Fig. 4.4 B). For
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Figure 4.2: Location of 66 semantic keypoints annotated in ApolloCar3D Dataset.
Source: [93]

Figure 4.3: Visualization of 2D keypoints (b) and 3D mesh (c) on an example frame (a) from
ApolloCar3D Dataset. Source: [93]
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each keypoint in the image, a ray is cast from the camera through the 2D keypoint location,
extending into the 3D space of the transformed CAD model.

To determine where these rays intersect with the surfaces of the CAD model, the Möller-
Trumbore algorithm [68] was utilised. This algorithm is an efficient method for detecting ray-
triangle intersections, which is particularly useful given the triangular mesh structure of the CAD
models. By applying the Möller-Trumbore algorithm, intersections between the rays and each
face of the CAD model are systematically checked. When an intersection is found, the precise
coordinates of the intersection point on the model’s surface are calculated (Fig. 4.4C).

In scenarios where multiple intersection points are identified, the point closest to the camera is
selected (green dot on Fig. 4.4C, yellow dot will be rejected because it is further from the camera).
This strategy aligns with the dataset’s methodology of annotating only the non-occluded points
and allows to inclusion of only correct matches between 2D and 3D points.

The final stage of this procedure involves transforming the intersection points back to the car’s
canonical pose. This is achieved by applying the inverse of the ground truth rotation and
translation transformations to the identified intersection point. This transformation yields the
coordinates of the keypoints with respect to the standardised orientation and position of the car
model, facilitating consistent and uniform data representation.

Figure 4.4: Visualization of keypoints coordinates estimation using rays and mesh intersec-
tion.

Following the initial mapping and transformation, a fine-tuning process is conducted to enhance
the precision of the derived coordinates. For this fine-tuning step, the Nelder-Mead optimization
algorithm, which is applied to all instances of a particular car type within the training set
was utilised. This algorithm iteratively adjusts the 3D coordinates to minimise the translation
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error. The translation error is quantified as the square of the distance between the ground
truth translation and the translation estimated by the Efficient Perspective-n-Point (EPnP) [54]
method. The EPnP method takes into account the provided camera parameters and the 2D
keypoint coordinates in the image, ensuring that the optimization is guided by accurate geometric
and camera model considerations.

By employing the Nelder-Mead optimization, the initial estimates were refined, achieving a more
precise alignment between the 2D and 3D keypoints. This fine-tuning process enhances the
accuracy of the keypoint localization. The resulting optimised coordinates create a high-quality
dataset that effectively supports the training and validation keypoint 3D estimation models.

Figure 4.5: Pipeline for dataset pre-processing in order to obtain labelled 3D points for
supervised learning.

4.5 Reprojection loss

For the training of 2D and 3D keypoint heads, the reprojection loss function was applied. This
function ensures the geometric consistency of the estimated coordinates. It operates by compar-
ing the projected 3D points, transformed using ground truth data, with the predicted 2D points.
This comparison ensures that the network’s estimations of 2D and 3D points are aligned and
consistent with each other, as well as with real-world geometries. By enforcing this consistency,
the reprojection loss function helps the network maintain accurate spatial relationships between
the estimated points, which is needed for reliable 3D shape estimation from 2D images. This
loss is defined as:

Lreprojection =

n∑
i=1

(∥∥π (
T, p̂3d

i ,K
)
− p̂2d

i

∥∥
2

)2
, (4.1)

where π is the projection function, T is a ground truth pose, p̂3d
i are the estimated 3D coordinates

of the i-th characteristic point, K is the camera intrinsics matrix, and p̂2d
i are the estimated

2D coordinates of the i-th keypoint on image. The application of this reprojection loss function
improves the accuracy of the point estimation heads. By enforcing geometric consistency between
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the predicted 2D points and their corresponding projected 3D points, the network is able to refine
its estimations.

4.6 Estimation of 3D model

This section presents an approach to the estimation of dense object mesh from a single image.
A network that estimates a dense mesh of vehicles offers several advantages over networks that
directly estimate 3D keypoints. By reconstructing the full vehicle mesh, this approach allows for
a better understanding of the vehicle’s geometry, enabling more precise extraction of semantic
keypoints. This precision arises because the dense mesh encompasses all relevant geometric
details, ensuring that keypoints derived from this model better reflect the vehicle’s structure.
Consequently, the derived keypoints are inherently aligned with the true geometric properties of
the vehicle, leading to more reliable inputs for algorithms solving Perspective-n-Point problem
and, subsequently, more accurate pose estimations. Additionally, the dense mesh approach
supports robust performance against partial occlusions and varying lighting conditions, which
can often challenge methods that estimate keypoints directly. This adaptability enhances the
network’s utility across different operational scenarios, thus providing a better tool for vehicle
pose estimation tasks. A detailed 3D mesh of surrounding vehicles allows autonomous systems
to perform precise spatial analyses, needed, e.g. collision detection. By understanding the exact
shape and size of nearby vehicles, an autonomous driving system can predict potential collisions
more accurately and make more informed decisions about maneuvers in order to avoid accidents.

This pipeline takes as input the image crop containing the car, with the expected output being
a mesh that represents the car’s shape. The construction of this pipeline involves two steps.
The first step is the training of a Variational Autoencoder capable of encoding a car’s shape to
a latent vector, the second step is training a network for estimation of mesh from image input
Fig. 4.6.

Figure 4.6: Architecture of the pipeline for the car shape estimation. Green blocks show
trainable parts of the network, and the blue blocks mean that the weights are frozen during

the training phase.

The Variational Autoencoder architecture employs Graph Convolutional Networks designed for
encoding and decoding the 3D shape of cars. The input for the network is a mesh containing
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vertices and the edges - connections between the closest vertices and the desired output is the
same mesh as provided in the input.

The dataset used for training the VAE was prepared by combining car meshes from the Apollo
Car3D dataset [93] and meshes acquired from the VUMO company [103]. An important aspect
of this process is ensuring the uniformity of the mesh topology. Uniformity, in this context,
refers to the consistency in the number of mesh vertices and the local connections between them
(edges). To achieve this, the raw meshes were processed to meet these uniformity requirements.

Figure 4.7: An icosphere and input car mesh before warping procedure (A). Examples of
raw car meshes from datasets (B) and processed meshes with uniform topology (C)

The creation of processed mesh begins with an icosphere containing 2562 vertices (Fig. 4.7A).
This icosphere is then adjusted to wrap around the car’s model, ensuring it conforms to the shape
of the car. Examples of input meshes and processed, uniform meshes are shown in Fig. 4.7B and
C. The final dataset, used for training, comprises 136 distinct car meshes, each with a uniform
topology. Examples are presented in Fig. 4.8.

The encoder part of the VAE utilises a sequence of 16 GCNConv layers, designed to process
the graph representation of a car’s shape, which comprises vertices and their edge connections.
The output channels for these layers are set to the following values: [12, 48, 96, 192, 384,
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Figure 4.8: Examples of car meshes from train dataset. Yellow examples are from the
ApolloCar3D dataset and blue cars are obtained from VUMO.

768, 1536, 1536, 3072, 768, 192, 96, 48, 48, 12, 1], allowing for a detailed feature extraction
process that gradually abstracts the input into a more informative, high-level representation.
This structured layering ensures the model captures a comprehensive spectrum of features from
simple to complex, necessary for precise shape encoding.

After GCN processing, the model transitions to a series of linear layers to compress the mesh
representation into a latent vector. Starting with the input size of 2562, corresponding to the
number of mesh vertices, the process involves several stages of dimension reduction through
linear layers and LeakyReLU activations. The sizes progressively reduce through a calculated
sequence: from 2562 through 640, 320, 160, to a latent size of 32.
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The decoder of this VAE is engineered to reconstruct the input mesh from the encoded latent
vector, effectively reversing the encoding process to regenerate the 3D shape of a car from its
abstracted form. This process initiates with the latent vector traversing a sequence of expansive
linear layers that incrementally increase the data’s dimensionality. The data is progressively
doubled in size through a sequence of linear transformations paired with LeakyReLU activations,
culminating in a dimension that matches the total number of output channels, equivalent to the
number of vertices in the input mesh. The number of output features of each linear layer is [64,
128, 256, 512, 1024, 2562].

Following the linear transformations, the data is reshaped to fit the requirements of the Graph
Convolutional Network layers. These layers are essential for mapping the high-dimensional linear
output back into the structured format of a mesh. The reshaped data undergoes processing
through multiple GCN layers. The GCN layers start from a single channel and progressively
build up complexity through a series of graph convolution operations paired with LeakyReLU
activations. The exact values of output channels are: [3, 12, 24, 96, 192, 384, 768, 1536, 1536,
3072, 768, 192, 96, 48, 12, 3]. A VAE network architecture is shown in Fig. 4.9.

Figure 4.9: Architecture of the car’s mesh Variational Autoencoder.

During training, three loss functions are employed to ensure accurate mesh estimation. The
first, loss LMPVPE, measures the mean vertex estimation error, providing a direct assessment of
how closely the estimated vertices match the true vertices. The second loss LDim, measures the
discrepancy in the external dimensions of the car, ensuring that the overall size and proportions
of the estimated mesh match the actual car. The third loss LKLD, measures the Kullback-
Leibler Divergence (KLD), which regularises the latent space by ensuring that the distribution
of the latent vectors remains close to a normal distribution. The loss function is formulated in
Equations: (4.3), (4.4), (4.5) and (4.6).

Ltotal = λMPVPELMPVPE + λDimLDim + λKLDLKLD, (4.2)

where Ltotal is the total loss function, λMPVPE is the scaling weight for the Mean Per Vertex
Position Error (MPVPE) loss, λDim is the scaling weight for the dimension discrepancy loss,
λKLD is the scaling weight for the KLD loss.



Estimation of the object’s 3D shape 47

LMPVPE =
1

N

N∑
i=1

‖v̂i − vi‖2 , (4.3)

where N is the number of vertices, v̂i represents the estimated vertex position, and vi represents
the ground truth vertex position.

LDim =
∣∣∣l̂ − l

∣∣∣+ |ŵ − w|+
∣∣∣ĥ− h

∣∣∣ , (4.4)

where l̂ is the estimated length of the car, ŵ is the estimated width of the car, ĥ is the estimated
height of the car, l is the ground truth length of the car w is the ground truth width of the car
and h is the ground truth height of the car.

LKLD = −1

2

(
1 + log(σ2)− µ2 − σ2

)
, (4.5)

where µ is the mean of the latent variable and σ is the standard deviation of the latent variable.

The architecture of the network for car shape estimation is depicted in the lower row of Fig. 4.6.
The pipeline begins with an image crop containing the car as input. This image is processed by
the Vision Transformer backbone network, which extracts feature maps. These feature maps are
then processed by the Shape Head. The primary task of the Shape Head is to estimate the latent
vector z that best describes the car under consideration. Once this latent vector z is estimated,
the decoder part of the VAE uses it to generate the full car’s mesh.

The Vision Transformer used for feature extraction, was implemented in mmpose framework [67].
The used variant has the following configuration. This network processes images of size 192x256
pixels by breaking them down into patches of 16x16 pixels each. An embedding dimension equal
to 1024, which means that each patch representation processed by the transformer is a vector of
1024 values. The architecture comprises 24 layers. Each layer employs 16 attention heads. The
transformer utilises feedforward networks within each transformer block, with max channels set
to 4096. Additionally, the network incorporates a drop path rate of 0.3 to combat overfitting
during training by randomly dropping out certain paths in the attention mechanisms. The initial
training weights have been pretrained on the ImageNet dataset. The Shape Head is built by 4
convolutional layers with a number of output filters equal to: [512, 256, 128, 1]. At the end,
there is a single linear layer that outputs 32 values that build latent vector z. The final mesh is
obtained from the output of the VAE Decoder block.

Once the dense mesh of the car has been estimated, it becomes possible to determine the co-
ordinates of all characteristic points on the vehicle. This task was accomplished by utilising a
straightforward three-layer MLP, which was trained in conjunction with the rest of the network.

During training, the weights of the VAE Decoder block were frozen. The loss function was
similar to Eq. (4.2) and described by Eq. (4.6). The only difference was an additional component
LKpts3D. That minimised the error between the predicted and ground truth coordinates of the
3D keypoints (Eq. (4.7)).
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Ltotal = λMPVPELMPVPE + λDimLDim + λKLDLKLD + λKpts3DLKpts3D, (4.6)

where Ltotal is the total loss function, λMPVPE is the scaling weight for the MPVPE loss, λDim

is the scaling weight for the dimension discrepancy loss, λKLD is the scaling weight for the KLD
loss and λKpts3D is the scaling weight for the Keypoints3D loss.

LKpts3D =
1

n

n∑
i=1

∥∥p̂3d
i − p3d

i

∥∥
2
, (4.7)

where n is the number of characteristic points, p̂3d
i represents the estimated keypoint position,

and p3d
i represents the ground truth keypoint position. The experimental results of this network

are discussed in section 6.6.



Chapter 5

Camera pose estimation

5.1 Introduction

Estimation of the pose of surrounding objects is an important component for understanding
the vehicle environment and ensuring safety in autonomous driving. This chapter explores the
concept of pose estimation, which involves determining the position and orientation of objects
relative to the vehicle using a monocular camera. Accurate pose estimation is required for effec-
tive navigation, influencing the autonomous vehicles decision-making capabilities, and impacting
tasks such as obstacle avoidance, path planning, and interaction with other road users. This task
involves the detection and 3D positioning of various entities like other vehicles, pedestrians, and
road infrastructure objects. The precision of this process directly affects the vehicle’s ability to
interpret its surroundings and respond appropriately. For instance, having precise positions of
surrounding cars allows for the estimation of their velocity by tracking how their positions change
over time. This approach requires robust algorithms to accurately monitor the positions and
movements of other vehicles. By ensuring these algorithms are precise and reliable, autonomous
vehicles can better predict the behavior of surrounding objects, enhancing overall safety and
efficiency in navigation.

Despite its importance, camera-based pose estimation in autonomous driving faces several chal-
lenges. Variations in environmental conditions, such as lighting and weather, pose significant
difficulties. Additionally, the presence of dynamic and partially occluded objects in driving sce-
narios complicates the estimation process. A critical requirement for autonomous vehicles is the
need for real-time processing in pose estimation. This necessitates the development of algorithms
that are not only accurate but also computationally efficient.

There are works that use LIDARs for the pose estimation task. This technology is often used in
autonomous vehicles. However, there are notable drawbacks to LiDAR-based pose estimation.
Firstly, LiDAR systems tend to be quite expensive, which can increase the cost of manufacturing
autonomous vehicles. Additionally, while LiDAR is excellent for distance measurement, it lacks
the color and texture detail provided by optical cameras, needed for recognising and classifying
objects and provides relatively low resolution. Another limitation is performance in adverse

49



Camera pose estimation 50

weather conditions. LiDAR sensors can struggle in heavy rain, fog, or snow, as these conditions
can scatter the laser beams and degrade the accuracy of the sensors readings.

There are two primary approaches to visual pose estimation:

• The stereovision method, which mimics human depth perception by using two cameras
at different viewpoints, has traditionally been used in pose estimation. This method cal-
culates depth information by comparing the disparity between the images from the two
cameras. The advantage of stereovision lies in its accuracy in depth determination, which
is important for understanding the 3D structure of the environment. However, the imple-
mentation of stereovision in vehicles comes with challenges. It involves the calibration and
synchronization of two cameras, which adds to the system’s complexity and cost.

• The monocular approach, which uses a single camera for pose estimation. This method has
gained popularity due to advancements in computational techniques, particularly in the
fields of machine learning and artificial intelligence. The monocular approach is simpler
and more cost-effective, as it requires only one camera and minimal calibration. However,
the challenge with this approach is the accurate estimation of depth from a single image, a
task that is inherently more complex than with stereovision. Recent developments in deep
learning have, however, improved the efficacy of monocular systems, making them a viable
option for pose estimation in autonomous vehicles [6].

The main approach to estimating pose from a single camera relies on methods that solves the
Perspectve-n-Points problem. Iterative methods for solving this problem, are highly adaptable
solutions. They leverage iterative optimization techniques to refine an initial pose estimate
through successive minimization of a chosen objective function, usually the reprojection error.
Their customizable nature allows for different optimization algorithms to be employed based on
the specific requirements of the problem. Additionally, they offer the flexibility to incorporate
bounds and constraints on the optimization process to ensure physically plausible solutions.
Moreover, users can apply various loss functions tailored to the application’s needs.

The selection of accurate and reliable points is important for the effectiveness of PnP algorithms.
Points that are precisely matched and broadly distributed across the target object enable more
stable and well-defined estimations, reducing uncertainties in camera pose calculations. On
the other hand, using points that are poorly distributed or inaccurately matched can lead to
significant errors, resulting in incorrect pose estimates. Additionally, outliers or points obscured
by occlusions can skew the results if they are not carefully excluded [77].

The need for real-time processing in autonomous vehicles significantly impacts the development
of pose estimation technologies. These vehicles must analyse a large amount of sensory data,
including information from pose estimation systems, almost instantaneously for safe and effective
navigation. Stereovision systems process two synchronised video streams, which adds complexity.
Monocular systems, though simpler in hardware, rely on complex software algorithms, often using
artificial intelligence to ensure precision. These algorithms are designed to optimise the trade-off
between accuracy and processing speed, as delays can result in the use of outdated information,
affecting the vehicles ability to adapt to changing road conditions. The challenge is to develop
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pose estimation methods that are both accurate and fast enough to support the vehicle’s rapid
decision-making needs.

Understanding the uncertainty in pose estimation is important for autonomous vehicles, which
rely on their perception systems to make driving decisions. The effectiveness of these systems
in accurately perceiving the vehicles environment impacts their navigation safety. Pose uncer-
tainty estimation provides a probabilistic measure of confidence in the vehicle’s pose estimates.
This information helps in navigating complex environments, where accurate knowledge of the
vehicle’s position relative to other objects such as pedestrians, vehicles, and road infrastructure
is necessary for safe maneuvering and collision avoidance.

Estimating uncertainty, especially when using Convolutional Neural Networks, presents chal-
lenges. CNNs are widely used for image processing tasks and are fundamental to many au-
tonomous vehicle perception systems. However, these networks usually do not offer insights into
the confidence level of their predictions. This limitation is important in autonomous driving,
where decisions based on uncertain predictions can affect safety. Therefore, developing CNN
architectures that predict pose, and quantify the uncertainty of these predictions requires new
approaches in network design and training.

The practical applications of accurately estimated pose uncertainty in autonomous vehicles are
extensive. It improves the safety of these vehicles by offering a measure of the reliability of pose
estimations, which supports better risk assessment and decision-making in uncertain environ-
ments. This is important in situations marked by ambiguous or incomplete information, like
in adverse weather or on unstructured roads. Furthermore, the quantification of uncertainty is
important in sensor fusion algorithms, where data from various sensors such as cameras, LiDAR,
and Global Positioning System (GPS) are combined to understand the vehicle’s surroundings.
Accurate uncertainty estimation enhances the calibration of these algorithms, ensuring that the
most reliable data influences decision-making processes.

Moreover, understanding pose uncertainty can aid in the development of adaptive control systems
for autonomous vehicles. These systems can dynamically adjust the vehicles behavior based on
the level of confidence in the pose estimation, ensuring optimal performance under varying
conditions. For instance, in situations where the uncertainty is high, the vehicle might adopt a
more cautious driving strategy.

The estimation of pose uncertainty also has broader implications in the development of au-
tonomous driving technologies. It contributes to the robustness of autonomous systems, making
them more resilient to unexpected changes in the environment or sensor malfunctions [108].

In this chapter, the focus is on the problem of pose estimation using a monocular camera,
addressing two specific scenarios within the context of autonomous driving. The first scenario
involves estimating the pose of a city bus relative to a charging station. This application is
designed to assist drivers or autonomous systems in accurately docking buses to charging stations,
a task that requires precise alignment to ensure successful connection and charging. The second
scenario deals with estimating the pose of surrounding vehicles in an urban environment. This
task is required for navigating complex traffic scenarios where understanding the orientation and
position of other vehicles is necessary for safe and efficient driving decisions. Both scenarios
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pose unique challenges due to the reliance on a monocular camera, which provides limited depth
information. Additionally, the field of autonomous driving demands not only accurate pose
estimation but also a quantification of the uncertainty associated with these estimates. This
requirement highlights the need for advanced methodologies capable of delivering both precise
pose estimations and corresponding confidence assessments, ensuring that autonomous systems
can make informed decisions despite uncertainty.

This chapter presents the following contributions to the field of pose estimation in the context
of autonomous driving:

• A full processing pipeline for estimation of the pose of surrounding cars from a single
monocular image

• A pose refinement procedure for correction of pose estimation error caused by outlier
characteristic point estimations

• An application of unscented transform for propagation of keypoints uncertainty for the
uncertainty of estimated pose

5.2 Related work

A common approach to pose estimation is to use algorithms that solve the Perspective-n-Point
problem, calculating the orientation and position of a camera in 3D space by matching 2D image
points with known 3D coordinates. Over the years, several algorithms have been developed to
address this problem, each offering unique advantages and optimizations for different scenarios.

A significant contribution to the field of pose estimation is the EPnP algorithm developed by
Lepetit et al. [54]. The EPnP is advantageous due to its computational efficiency and the ability
to provide accurate pose estimates with a minimal set of points, as few as four. This efficiency
makes it particularly useful in real-time systems.

The Perspective-Three-Point (P3P) problem focuses on determining the position and orientation
of a camera given only three known reference points in 3D space and their corresponding 2D pro-
jections in the image. The paper by Xiao et al. [25] offers a solution to this problem through both
algebraic and geometric approaches. Using Wu-Ritt’s zero decomposition algorithm, the authors
present a complete triangular decomposition of the P3P equation system, providing the first
comprehensive analytical solution. The geometric approach complements this by offering purely
geometric criteria to determine the number of real-world solutions, adding valuable depth to the
problem’s understanding. In [44] Kneip introduced a novel, closed-form solution to this problem,
directly computing the camera’s position and orientation in one step without intermediate point
derivation. By utilising an intermediate frame of reference and two-parameter representation,
the proposed approach significantly improves computational efficiency and numerical stability,
offering solutions up to 15 times faster than existing state-of-the-art methods at that time.

Different types of methods for solving the PnP problem are iterative algorithms [60], which are
known for their robustness and accuracy in handling real-world data. Those methods iteratively
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refine the camera pose estimate to minimise the reprojection error, which is the distance between
the projected 3D points and the corresponding 2D image points. Multiple optimisation methods
can be applied within those algorithms.

The Gauss-Newton [26] is a widely used algorithm for nonlinear least squares problems. The
Levenberg-Marquardt [70] algorithm effectively combines the gradient descent method, which
adjusts model coefficients in the direction that most reduce error, and the Gauss-Newton method,
which approximates the least squares function as locally quadratic, adapting its approach based
on how close the current solution is to the optimal. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) [23] computes the descent direction by enhancing the gradient with curvature data,
incrementally refining an estimate of the Hessian matrix of the loss function. This estimate is
derived solely from evaluations of the gradient (or its approximations) through a generalised
secant method. Lastly, the Nelder-Mead [73] algorithm, used in the previous chapter, provides
a robust alternative for optimization problems where derivatives are not available.

In recent years, deep learning-based methods have revolutionised monocular pose estimation
by learning rich feature representations directly from data. One prominent approach is to use
convolutional neural networks to extract features from a single image and then regress the 3D
pose of objects. For instance, Mousavian et al. [71] introduced a method for 3D bounding box
estimation from a single image. 3D information is estimated based on the assumption that the
perspective projection of a 3D bounding box should fit tightly within its 2D detection window.

Another contribution in the specific context of autonomous driving is the work by Chen et
al. [15], which proposed a method that utilises energy minimization to position object candidates
in 3D, ensuring they align with the ground plane. Each candidate box, when projected onto the
image plane, is scored based on multiple factors including semantic segmentation, contextual
information, size and location priors, and typical object shape.

The 6D-VNet extends Mask R-CNN by incorporating customised heads for predicting the ve-
hicle’s finer class, rotation, and translation. 6D-VNet is trained end-to-end, which significantly
simplifies the training process and enhances performance. The inclusion of translational regres-
sion in the joint losses addresses the significant variations in object translation distances along
the longitudinal axis common in autonomous driving scenarios. Furthermore, 6D-VNet incor-
porates mutual information between traffic participants via a modified non-local block, which
considers spatial neighboring information [113].

Filtering outliers has its application in many computer vision applications, including (PnP) al-
gorithms, where even a few erroneous data points can significantly distort results. Outliers often
emerge due to errors in data processing or occlusions. The filtering process typically involves
leveraging statistical methods or robust optimization techniques to detect and discard these out-
liers before solving the main problem. For instance, RANSAC (Random Sample Consensus) [22]
is a popular method that iteratively tests subsets of the data to identify a consensus set that
represents the majority of points. By focusing on inliers, the algorithm ensures that subsequent
computations produce accurate estimations of the camera pose or scene geometry. This paper [7]
introduced Graph-Cut RANSAC (G-C RANSAC). Its local optimization step is globally opti-
mal for the best model parameters. The authors also proposed a criterion for applying this step,
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which significantly improves processing time without compromising accuracy. GC-RANSAC can
be combined with features like Progressive Sample Consensus (PROSAC) sampling.

5.3 Pose estimation of objects with known shape and di-
mensions

One of the simpler methods for estimating the position of known objects is based on the size
of the bounding box in an image. This method relies on the proportions between the object’s
projection on the image and its actual dimensions. It requires knowledge of the camera’s intrinsic
parameters and can only be applied when the dimensions of the object are known and the
perspective from which the object is viewed is limited. An example scenario is docking with an
electric city bus to the charging station.

Figure 5.1: Examples of Faster R-CNN detection: correct bounding box (A), and oversized
bounding box (B)

Figure 5.2 shows the geometric construction that is used to compute the distance having only the
dimensions of the bounding box. The coordinates x, y and θ define the position and orientation
of the charger roof with respect to the camera coordinate system.

Figure 5.2: Visualization of distance calculation in x axis
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For the calculation of the distance from the camera to the charger, it is necessary to have
information about the dimensions of the bounding box surrounding the charger, the intrinsic
parameters of the camera as determined by calibration, and the physical measurements of the
charger itself. The positions of pixels within an image are mapped out using the (u, v) coordinate
system.

By specifying (fu, fv) to represent the focal lengths of the camera along the u and v axes re-
spectively, (cu, cv) to indicate the central point of the camera’s image, and r and s to denote the
actual height and width of the charger, the foundation for our computations was set. Further-
more, r̃ and s̃ refer to the height and width of the charger’s image projection measured in pixels,
while Iv1 and Iv2 identify the lower and upper edges of the charger’s projection in relation to
the image’s central axis. Iu marks the position of the charger’s center on the image along the
u axis. With these parameters established, the angles α and β are determined, enabling the
measurement of the distance by leveraging the geometric relationships and projections captured
by the camera:

α = arctan

(
Iv2
fv

)
, β = α− arctan

(
Iv1
fv

)
. (5.1)

Then, having a known camera pitch angle (γ) the translation can be estimated from the equa-
tions:

x =
fv · r
r̃

· cos (α+ γ)

cosα
· cos (α− β + γ)

cos (α− β)
, y =

x · (Iu − cu)

fu
. (5.2)

The process of identifying the pitch angle involves aligning it with the direction of the gravity
vector, a task accomplished by utilising the Inertial Measurement Unit (IMU) that is calibrated
with the camera.

Bounding boxes, while commonly used in object detection, often fail to provide useful additional
information for improving estimation accuracy. They typically encompass more area than the
actual projection of the object on the image, as illustrated in (Fig. 5.1B), leading to inefficiencies
in precise pose estimation. To address these shortcomings, the capabilities of the Mask R-
CNN network have been utilised. This approach leverages detailed silhouette information of the
charger (Fig. 5.3A), which aids in determining the θ angle. However, this method is sensitive to
inaccuracies; even minor variations in the detected shape, such as those caused by changes in
lighting, can result in significant deviations in angle estimation.

The output from the Mask R-CNN is a grayscale patch that matches the size of the detection
bounding box, where each pixel’s intensity indicates the likelihood of that pixel being part of the
charger. The application of a threshold to this grayscale patch facilitates a clearer delineation
of the charger’s silhouette.

Another approach to this problem involves using an algorithm that addresses the Perspective-n-
Point problem. The pose estimation in this method relies on detecting keypoints using a deep
learning framework and incorporating the knowledge of a 3D model of the object. Early tests
showed that the best results were achieved using an solvePnP iterative algorithm [60] designed
to minimise the reprojection error, which is calculated as the sum of squared distances between
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Figure 5.3: Examples of Mask R-CNN detection (A), and key points detection (B)

the localised points on the image and the projected points from the object model.

T∗ = argmin
T

n∑
i=1

(
p̂2d
i , π

(
T,p3d

i

))T (
p̂2d
i , π

(
T,p3d

i

))
, (5.3)

where n is the number of points, p̂2d
i are the image coordinates of the i-th point of the charger

detected on the image by the deep learning system, π(.) is a camera projection function, T is a
rigid transformation matrix (rotation and translation), and p3d

i are coordinates of the i-th 3D
object’s point based on the 3D model of the charger.

However, this optimization-based method requires a good initial estimate of the camera pose.
While this is not an issue when localising the bus along a predefined path toward the station,
where previous pose estimates and odometry data can be utilised, the absence of an initial guess
poses a challenge. To address this, a separate initialization procedure was developed. This
involves running the solvePnP algorithm with several initial guesses within the maneuver’s oper-
ational area and selecting the estimate with the smallest reprojection error. Consequently, this
enhanced pose estimation system operates efficiently without requiring an initial pose estimate,
thereby overcoming a common limitation of iterative solvePnP method.

5.3.1 Reprojection-based Pose Refinement

Keypoints defined on the object can be detected with varying levels of accuracy, influenced by
several factors, including the camera viewpoint and the amount of motion blur present in the
image. In such scenarios, it is possible for some keypoints to be accurately extracted while others
are inaccurately positioned or even misplaced.

For setups involving a small number of keypoints (4-5), a sanity check procedure that incor-
porates geometric constraints during the neural network’s inference process was implemented.
This procedure refines the neural network predictions by addressing the same task described in
equation 3.7.

Once the optimal transformation T∗ is determined, the 3D coordinates of the keypoints are
projected onto the image. Then the distances between the predicted points p̂2d

i and the projected
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points p̃2d
i are calculated. The maximum distance dmax is compared with the mean of the

remaining distances dres, which is multiplied by a parameter γref = 2.

If the inequality dmax > γrefdmean is satisfied, this projection as the final prediction for the
keypoints’ locations is adopted. This condition ensures that only cases where there is a single
point with an inaccurate prediction are refined, thereby improving the overall accuracy of the
keypoint estimation.

This procedure was implemented in conjunction with the GAKN network for charger pose es-
timation using four keypoints. The reprojection-based refinement is executed during the post-
processing stage, and as such, it does not affect the number of operations performed by the
network or the number of parameters. This design choice ensures that the refinement process
does not impose additional computational burdens on the network itself.

On average, the reprojection-based refinement step takes approximately 4 milliseconds per im-
age. This processing time constitutes 11% of the total processing time for a heatmap resolu-
tion of 128×128 and only 8% for a heatmap resolution of 512×512. Therefore, incorporating
reprojection-based refinement does not significantly increase the overall image processing time,
maintaining efficiency across different resolutions.

By integrating the GAKN network with reprojection-based refinement, the issue of outlier key-
points is effectively addressed. This ensures that the system delivers more consistent and accurate
pose estimations. The results of this approach are presented in section 6.4.

5.4 Pose estimation of vehicles with an unknown shape

5.4.1 Pose estimation from single image

In this section, the comprehensive pipeline designed for the pose estimation of a vehicle using
a monocular camera is introduced, which operates without requiring explicit knowledge of the
vehicle’s 3D model. This approach is particularly significant as it circumvents the necessity
of pre-existing 3D information, making it more versatile and broadly applicable. The entire
processing pipeline for pose estimation is illustrated in Figure 5.4, providing an overview of
the sequential steps and interactions between various components. Additionally, the details of
the head architectures are depicted in Figure 5.5, offering deeper insights into their specific
configurations.

The input to the pipeline is a cropped image that isolates the vehicle of interest. The pipeline is
composed of several specialised modules: the 2D Keypoint Estimation Head, the 3D Keypoint
Estimation Head, the Keypoint Score Head (KSH), and the Uncertainty Estimation Head (UEH).

The first module in our pipeline is a deep neural network designed to estimate the 2D coordinates
of the vehicle’s characteristic points on the image. Our methodology employs the HRNet48
architecture [107] as the backbone. This backbone is combined with a head dedicated to feature
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Figure 5.4: Architecture of the proposed vehicle pose estimation system

Figure 5.5: Architecture details of the implemented network heads. Conv Block means
Convolution layer followed by batch normalization and ReLU activation. Linear Block means

Linear layer followed by batch normalization and ReLU activation.

extraction and heatmap estimation for each point on the image, ensuring precise localization of
the vehicle’s keypoints. The second module predicts keypoints 3D as described in the Sec. 4.3.

The subsequent module - Keypoint Score Head in our pipeline is designed to assess the precision
of the estimated points. Accurate localization of characteristic points is inherently challenging
due to occlusions that occur from various viewing angles, which obscure a substantial portion of
these points. Inaccurately estimated points can significantly distort the overall pose estimation,
leading to unreliable results. To mitigate this issue, an additional head specifically for evaluating
the accuracy of each estimated point has been developed.

It takes as input the image feature map, the estimated heatmaps, and the normalised coordinates
of the estimated points. By processing these inputs, the KSH can assess the reliability of each
point’s estimation, selecting the points that are accurately estimated and distributed across the
vehicle to ensure the best results pose estimate using the PnP algorithm.

The image feature maps and heatmaps undergo processing through a sequence of six convolu-
tional layers, which results in the generation of two feature vectors, each with a length of 3072.
These feature vectors, combined with the estimated point coordinates, are then concatenated
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and further processed through a sequence of six linear layers. The final layer in this sequence is
a sigmoid activation layer, which restricts the output values to a range between zero and one.

The output produced by this head consists of a set of N values, each representing the estimation
precision score of a specific 2D point on the image. During the training phase, the learning
targets are binary values: ’1’ for a correctly estimated point and ’0’ for an incorrectly estimated
point. A point is classified as correctly estimated (assigned a ’1’ label) if the estimation error,
normalised to the bounding box, is less than 0.04.

In addition, experiments were conducted using the keypoint 2D estimation errors normalised to
the bounding box directly as learning targets for the KSH. However, the results obtained from
this approach were less favorable compared to using binary targets derived from thresholding
the error as described in the previous paragraph. The binary classification proved to be more
effective for our models learning process.

The training process is organised into distinct stages, with each stage focusing on a specific
aspect of the network. Initially, in the first stage, our attention is directed towards training the
2D and 3D point heads along with the backbone network. This foundational stage establishes
the basic capabilities of the model in estimating both 2D and 3D points accurately.

After completing the initial stage of training, the best-performing model from this phase is
selected. The selection is based on performance evaluation using two key metrics: the Percentage
of Correct Keypoints (PCK) for 2D keypoints and the Mean Per Joint Position Error (MPJPE)
for 3D point estimations.

The PCK metric is defined as:

PCK =
ncorrect

n
· 100, (5.4)

where n is the total number of predicted points. For this metric, the number of correctly
estimated points ncorrect is summed up. These points are defined as keypoints for which the
error in coordinate estimation, when normalised to the bounding box, is less than 0.05.

The MPJPE metric is a measure used to evaluate the accuracy of our model’s 3D point estima-
tions. It is defined as the mean of the Euclidean distances between the estimated points and
their corresponding ground truth points (Eq.( 5.5)).

MPJPE =
1

n

n∑
i=1

∥∥p̂3d
i − p̂2d

i

∥∥
2

(5.5)

where n is the total number of keypoints, p3d
i represents the ground truth coordinates of the

i-th keypoint in a 3D space and p̂3d
i represents the predicted coordinates of the i-th keypoint in

a 3D space.

In addition, the training of the 2D and 3D keypoint heads incorporates a reprojection loss
function. This function extends the approach presented in [76], which is designed to maintain
the geometric consistency of the estimated coordinates. The reprojection loss function operates
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by comparing the projected 3D points, transformed using ground truth data, with the predicted
2D points. This comparison ensures that the network’s estimations of 2D and 3D points are not
only internally consistent but also align accurately with real-world geometries.

This loss is defined as:

Lreprojection =

n∑
i=1

(∥∥π (
T, p̂3d

i ,K
)
− p̂2d

i

∥∥
2

)2
, (5.6)

where π is the projection function, T is a ground truth pose, p̂3d
i are the estimated 3D coordinates

of the i-th characteristic point, K is the camera intrinsics matrix, and p̂2d
i are the estimated 2D

coordinates of the i-th keypoint on image.

The application of this reprojection loss function has been shown to enhance the accuracy of the
point estimation heads. By ensuring geometric consistency between the 2D and 3D estimations,
the loss function helps the network to produce more precise and reliable keypoint predictions.

After selecting the best-performing model from the initial training phase, the weights are frozen.
This preserves the optimal results achieved for keypoint estimation, ensuring that the finely
tuned parameters remain unchanged during subsequent training stages.

In the second stage of training, the focus shifts to the Uncertainty Estimation Head and the
Keypoint Score Head. Training these components after the Keypoint 2D and 3D Heads allows us
to leverage the well-tuned features provided by the backbone network and the point-generating
heads. By building on this foundation, the UEH and KSH can be trained more effectively,
enhancing the overall performance of the model.

The Uncertainty Estimation Head is trained to quantify the uncertainty associated with each
keypoint estimation, providing valuable insights into the confidence level of the predictions.
Meanwhile, the Keypoint Score Head is trained to evaluate the accuracy of the estimated key-
points, producing scores that reflect the precision of each point.

The fine-tuning of the UEH and KSH components is performed using the loss functions described
by Eq. (5.7), (5.8)

Lstage1 = wrepr · Lreprojection + Lheatmap3Dxy + Lheatmap3Dxz + Lheatmap2D (5.7)

Lstage2 = Luncertainty2D + Luncertainty3D + Lkeypoint_score, (5.8)

where wrepr = 1e−7 and Lheatmap3Dxy,Lheatmap3Dxz,Lheatmap2D,Lkeypoint_score are defined as
the Mean Squared Error loss function.

Given the 2D points in the image, their corresponding 3D points in the model, and the camera
matrix K, various PnP algorithms can be employed to derive the vehicle’s pose. The network
estimates both the 2D characteristic points of the car and the corresponding 3D points. In this
research, two approaches were utilised: the EPNP algorithm [54] and a dedicated procedure
called Solve-PnP-BFGS, implemented using the SciPy library [102]. To provide input for the
PnP algorithm, a subset of N best-estimated points based on their KSH scores is selected.
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The Solve-PnP-BFGS procedure operates by minimising the reprojection error using the BFGS
optimization algorithm [11]. The reprojection error in this context is defined similarly to
Eq. (5.6), but instead of the ground truth transformation T, the optimised transformation is
used. This optimization ensures that the estimated pose aligns as closely as possible with the
observed data.

In the BFGS algorithm, the optimization search space is constrained by bounds applied to the
estimated translation parameters. This constraint helps guide the optimization process within
realistic limits, preventing it from exploring implausible solutions. The optimization is carried
out five times, each time starting from a different randomly selected point within the search
space. This multiple-start approach helps to mitigate the risk of the optimization process getting
trapped in local minima. The final solution selected is the one that yields the lowest value of
the cost function. The results of this approach are presented in section 6.5.3.

5.4.2 Propagation of point uncertainty to the pose uncertainty

The uncertainties estimated as described in section 3.4 for both 2D and 3D points can be propa-
gated to determine the uncertainty of the estimated vehicle pose. To achieve this, the Unscented
Transform (UT) method as described in [80] is used. The Unscented Transform is a method
used to propagate probability distribution through nonlinear transformations. To propagate the
uncertainty of an n-dimensional input it utilises a set of 2n+1 sigma points (χi, i = 0, ..., n).
These points are chosen to best represent the distribution’s mean and covariance to capture
the effects of nonlinearity without requiring derivatives or Jacobians. These sigma points are
propagated through the nonlinear system, and the resulting set is used to compute a new mean
and covariance, thereby reflecting the transformed distribution’s properties.

The sigma points are calculated according to specific formulas (Eq. (5.9)):

χ0 = mx, χ2i−1 = mx +
√

n+ λχ

[√
Cx

]
, χ2i = mx −

√
n+ λχ

[√
Cx

]
, (5.9)

for i = 1, ..., n, where mx and Cx are the mean and variance of the estimated points, λ is a
scaling factor calculated according to Eq. (5.10).

λχ = α2
χ(n+ kχ)− n, (5.10)

where α and k are the parameters influencing how far the sigma points are away from the mean.

By applying the PnP algorithm (a nonlinear transformation), a set of points is obtained from
which the mean and covariance of the transformed points can be estimated. The reconstruction
of the covariance matrix was done according to Eq. (5.11). In our implementation, the Unscented
Transform parameters αχ βχ and kχ are set to 0.9, 2, and 50, respectively.

Cy =

2n∑
i=0

wc
i (Yi −my)(Yi −my)

T , (5.11)
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where Yi are sigma points after passing through the nonlinear transformation, my is the mean
of the transformed sigma points and wc

i are the weights associated with each sigma point, used
for calculating the covariance defined by Eq. (5.12, 5.13).

wc
0 =

λχ

n+ λχ
+ (1− α2

χ + βχ) (5.12)

wc
i =

1

2(n+ λχ)
for i = 1, . . . , n (5.13)

Figure 5.6: Block diagram of keypoints uncertainty propagation on the pose uncertainty.
Yellow boxes are the covariance matrices.

The propagation process for 2D and 3D points is performed independently. Once the uncertain-
ties have been propagated separately, the resulting covariance matrices, which have the same
dimensions, are summed. This summation assumes statistical independence between the coor-
dinates of the 3D and 2D keypoints (Fig. 5.6). The experimental results of this approach are
presented in section 6.7.



Chapter 6

Applications of visual perception
for autonomous vehicles

6.1 Introduction

In this chapter, the results of the experimental evaluation of the methods presented in the
previous chapters will be discussed. The evaluation focuses on two specific scenarios: the docking
maneuver of an electric bus to a charging station, and the estimation of vehicle poses in an
urban environment. These practical applications facilitate the validation of the effectiveness and
practicality of the proposed methods in real-world applications. The chapter will explore how
each method performs under the unique challenges posed by these scenarios, providing insights
into their potential for deployment in autonomous driving systems.

The integration of electric buses into urban public transportation systems is a growing trend,
driven by the need for sustainable and safe transit solutions [8]. As these buses increasingly
rely on electric charging stations mounted on pylons for recharging en route, the challenge of
docking these long, articulated vehicles with precision becomes evident. This task, demanding in
terms of spatial coordination and timing, requires considerable skill and experience from drivers.
The complexity of maneuvering a large vehicle into a precise position necessitates technological
interventions to ensure efficiency and safety.

Given this backdrop, there is a demand for an Advanced Driver Assistance System [48] tailored
for electric buses. Such systems aim to support drivers, particularly those with less experience,
by providing clear and actionable guidance for docking at charging stations.

The docking maneuver is defined as the positioning of a selected guidance point of the bus relative
to the charging station’s head, as depicted in (Fig. 6.1). While the initial position of the bus in
the charger head’s coordinate system is known, the positioning task is reduced to computing a
feasible trajectory between the initial pose of the bus within the charging station’s coordinates
and the desired location of the pantograph tip.

63
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Figure 6.1: Illustration of the docking maneuver with an articulated bus. The visualised
coordinate system’s origin is coincident with the guidance point, while the red curve indicates
the planned trajectory. The inset image shows a charging station with example salient features,

as seen by the localization system’s camera. Source: Google Maps

The process of docking involves several technical challenges, primarily the estimation of the bus’s
pose relative to the stationary charging station. Traditionally, this would involve technologies
such as GPS. However, the standard GPS suffers from significant limitations in urban envi-
ronments [119]. Signal outages and interferences commonly found in densely built areas make
GPS unreliable for tasks requiring high precision. Although Differential GPS (DGPS) offers
enhancements by correcting the GPS signal with additional real-time data from nearby reference
stations, issues such as signal blockage by tall buildings, delayed corrections, and the necessity
of a continuous network connection introduce complications that undermine its practicality for
routine operations by bus fleets.

In light of these challenges, this research proposes an approach utilising passive vision technolo-
gies. Passive vision, leveraging cameras to capture the environment, offers several advantages
over other sensor technologies. Cameras provide rich visual information that can be processed to
extract detailed spatial data about the environment. When combined with advanced image pro-
cessing and deep learning techniques, this data can be used to achieve accurate pose estimation
necessary for precise docking maneuvers.

Specifically, a monocular camera setup is employed, a cost-effective solution compared to more
complex stereo vision systems. This choice is dictated by the need for a system that is not only
effective but also economical and easy to integrate into existing bus models. The monocular sys-
tem, despite its simplicity, is capable of delivering the required performance through algorithms
capable of interpreting the visual data in real-time.
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Another practical application of the algorithms presented in previous chapters is the pose estima-
tion of surrounding cars relative to the autonomous vehicle. This chapter presents an application
of a pipeline for the pose estimation of surrounding cars with uncertainty quantification presented
in Chapter 5.

The application of this pose estimation pipeline in autonomous driving is multifaceted. It en-
hances the vehicle’s ability to make informed and safe decisions by providing reliable and precise
data on the positions and movements of other vehicles [6]. Moreover, the inclusion of uncertainty
measures aids in the development of robust decision-making algorithms that can effectively han-
dle the unpredictabilities inherent in real-world driving scenarios.

The effectiveness of this pipeline is demonstrated through an evaluation using a real-world
dataset. The system’s performance is evaluated based on its accuracy, comparing it with current
state-of-the-art systems in autonomous vehicle perception.

This chapter presents the practical applications of the algorithms detailed in Chapters 2 through
5, demonstrating their real-world viability through case studies and field implementations. An
ablation study is conducted to systematically evaluate the impact of various components of the
proposed methods, highlighting their individual and collective contributions to the system’s over-
all performance. Furthermore, the chapter presents a comprehensive comparison of the obtained
results with current state-of-the-art algorithms, showcasing the advancements and enhancements
that this approach brings to the field of perception for autonomous driving.

6.2 Related work

The development of autonomous docking and charging systems for various types of vehicles
has been an area of recent research. These systems aim to ensure that autonomous vehicles
can efficiently recharge their batteries reducing human intervention, thereby enhancing their
operational reliability and usability.

Luo [61] presented a foundational system involving a docking station equipped with an automatic
recharging device for a security robot. This station utilises an artificial landmark to detect and
recognise its presence, and a virtual spring model to guide the robot for accurate alignment and
docking, demonstrating the feasibility of such systems through successful docking and recharg-
ing experiments. Building on the concept of autonomous docking, [96] explored a vision-only
navigation and docking control system for an autonomous mower. This system employs a single
camera and integrates the YOLO object detection framework with Double Deep Q-Networks for
reinforcement learning, achieving centimeter-level accuracy in navigation from arbitrary starting
points to the docking station. This showcases the potential of low-cost, vision-based solutions
in enhancing autonomous operational accuracy without the need for external sensors. In urban
environments, Clarembaux et al. [16] focused on the Furbot project, aiming to improve urban
freight transportation using fully electric vehicles. The project enhances vehicle autonomy in
docking by utilising onboard intelligent units that process LiDAR data to enhance perception
and control during the docking processes, thereby optimising urban logistics operations.
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Further addressing the challenges of electric vehicles, particularly regarding their short driving
range and the inconvenience of manual charging, Miseikis et al. [66] introduced an automated
robot-based charging station with 3D vision guidance. This system facilitates the accurate con-
nection of chargers using shape-based matching methods and a three-step robot motion planning
process, significantly simplifying the electric vehicle (EV) charging process. Similarly, Petrov [79]
developed an innovative docking station architecture for electric vehicle recharging that features
a hybrid control scheme for automatic docking. This scheme integrates an automated arm and
an infrared beacon system for precise vehicle localization and docking, demonstrating enhanced
control effectiveness through simulation and experimental results. Expanding the scope of au-
tonomous docking technologies, Gong et al. [30] proposed a real-time planning and tracking
control method for wireless charging of nonholonomic autonomous vehicles in open environ-
ments. This advanced method incorporates dynamic obstacle avoidance and precise posture
control, significantly reducing docking errors to less than 3 cm, thus showcasing a substantial
improvement over traditional SLAM-based planning and control algorithms.

In the field of autonomous driving, vehicle pose estimation is an important aspect that influences
the performance of autonomous systems. This section reviews the existing literature on the topic,
focusing on different methods developed for pose estimation. The following papers utilise the
ApolloCar3D dataset which makes its application similar to the one discussed in this dissertation.

An approach presented in [34] addresses the challenge of view-invariant object detection and
semantic keypoint pose estimation from a single RGB image, aiming to estimate the absolute
pose of on-road vehicles using a monocular camera. This research introduces a deep hybrid archi-
tecture combining a Convolutional Neural Network and a Recurrent Neural Network (RNN) to
enhance 6D pose inference. The proposed method leverages Long Short-Term Memory (LSTM)
networks to filter out stationary vehicles and focus on moving ones. DeepMANTA [14] repre-
sents another approach, designed for simultaneous vehicle detection, part localization, visibility
characterization, and 3D dimension estimation from a single image. The architecture employs a
convolutional network and a coarse-to-fine object proposal mechanism to enhance vehicle detec-
tion. The outputs of this network feed into a real-time pose estimation algorithm, which deter-
mines vehicle orientation and 3D position. GSNet [38] is an end-to-end framework that jointly
estimates 6DoF poses and reconstructs detailed 3D car shapes from urban street views. GSNet
utilises a unique feature extraction and fusion scheme, which improves model performance. By
implementing a divide-and-conquer strategy for 3D shape representation, GSNet achieves high
detail in 3D vehicle reconstruction. The introduction of a multi-objective loss function enhances
geometrical consistency and scene context, improving the accuracy of 6D pose estimation. An-
other study proposes the BAAM [52] algorithm for monocular 3D pose and shape reconstruction.
BAAM reconstructs 3D object shapes by considering the relevance between detected objects and
vehicle shape priors, followed by estimating 3D object poses using bi-contextual attention. This
approach leverages inter-object relationships and scene context to improve pose accuracy. The
study also introduces a 3D non-maximum suppression algorithm to eliminate spurious objects
based on Bird-Eye-View distance. A learning-based framework for recovering vehicle pose in
SO(3) from a single RGB image is introduced [56]. This approach extracts meaningful Inter-
mediate Geometrical Representations (IGRs) to estimate vehicle orientation. The deep model
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transforms perceived intensities to IGRs, which are then mapped to a 3D representation encod-
ing object orientation in the camera coordinate system. A new loss function based on projective
invariants allows the use of unlabeled data during training, enhancing representation learning.

6.3 Object detection

This section presents the results of the experimental evaluation of the method for attention
visualization of object detection network and guided learning procedure presented in chapter 2.

6.3.1 Experimental verification of attention visualization

To train and evaluate an electric bus charger detector two datasets were prepared. One dataset
was collected using a real charger placed at the campus of Poznan University of Technology
(PUT), as shown in Fig. 6.2 A. While this setup allows for gathering new recordings when needed,
it does not fully replicate real-life scenarios due to the fixed background. In this controlled
environment, 2000 images, referred to as the PUT dataset, were extracted from video sequences.

To evaluate the detection system’s performance in real-world conditions, a second dataset was
collected at the Solaris Bus & Coach (SBC) [17] production facility. This dataset includes
images taken from the top of a bus maneuvering towards an electric charger mounted on a
pylon, simulating typical operational conditions. In these settings, another 2000 images were
captured from various angles and distances as depicted in Fig.6.2 B.

Figure 6.2: The exemplary images of the electric charger taken on a setup at PUT (A) and
the Solaris Bus & Coach (B)

A baseline model was trained using a base dataset comprising 2000 images from the PUT dataset
and 1000 images from the SBC dataset.

An example of attention visualisations is presented in Fig. 6.3. Regions marked by the warmer
colors show where the network’s attention is focused. Fig. 6.3 A demonstrates that the warmer
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Figure 6.3: Visualization of attention maps for a model trained on the base dataset.

regions of the heat map directly correspond to locations of false positive detections, specifically
on the glass facade of the building and the bus.

In a more complex scenario illustrated in Fig. 6.3 B, the electric charging post is accurately
identified, yet a closer examination of the heat map indicates that despite generating the correct
bounding box, the network’s focus was significantly influenced by the presence of a crowd on
the street and a bus occupying a substantial portion of the image. This instance of utilising this
method reveals an important insight: the network, having been trained on a relatively simple
dataset, may not perform as anticipated under conditions akin to those depicted. The presence of
minor variations, such as an increase in the number of people within the frame, has the potential
to misguide the network’s focus towards incorrect areas of the image. This suggests that while
the network can correctly identify specific objects, its ability to maintain focus on relevant areas
can be compromised in complex, dynamic environments, highlighting the need for training on
more diverse datasets to enhance the model’s robustness in real-world scenarios.

The examination of the scenarios previously discussed uncovers that the system’s accuracy could
be enhanced by incorporating training images that mainly feature buses, cars, and pedestrians.
These elements are often incorrectly identified as electric chargers by the system. This misiden-
tification, especially concerning people, might seem paradoxical at first glance. However, it is
important to acknowledge the operational mechanics of CNNs, which analyse a conglomeration
of local features to make identifications. Through this lens, it becomes apparent that numer-
ous minor similarities, which typically escape human notice, can collectively lead to erroneous
recognition by the system. This insight underscores the need for expanding the training dataset
to include a wide variety of real-world elements. By doing so, the model is better equipped
to discern between genuinely relevant features and coincidental resemblances, thereby reducing
the likelihood of false identifications and substantially improving system performance in diverse
environments.

6.3.2 Experimental verification of guided learning procedure

Experiments concerning guided learning procedure were conducted using a base training dataset
(SBC_50) comprising 2000 images from the PUT dataset and 1000 images from the SBC dataset,
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supplemented with additional images that did not contain any electric chargers (negative exam-
ples). The proposed configurations are presented in Table 6.1. Learning results obtained for
these configurations are presented in Fig. 6.4.

Image Dataset
source SBC_50 BUS_25 BUS_100 BUS_500
PUT 2000 2000 2000 2000
SBC 1000 1000 1000 1000
Buses, cars - 25 100 500
People - 25 100 500

Table 6.1: Sequences used for system training when additional images with buses and people
are used

Figure 6.4: Learning curves obtained when the base dataset (SBC_50) system was aug-
mented with additional samples containing buses and crowded places without additional pos-

itive examples of electric chargers

The augmentation of the dataset with additional object examples guided by the attention
heatmaps acquired using a method introduced in Section 2.3.1 has improved the results. This
approach has reduced false positive detections caused by buses and glazed panels, enabling a sin-
gle, accurate detection (Fig. 6.5A). In Fig. 6.5B, the electric charger is correctly recognised, and
the network’s attention is no longer distracted by crowd or bus elements, indicating increased
robustness to local background variations.

Figure 6.5: Visualization of attention maps for a model trained on a BUS_500 dataset
extended with negative examples. Compare with Fig. 6.3
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Figure 6.6: No detection examples when the network was trained on the BUS_500 dataset
(C, D). For these examples the electric chargers were correctly recognised when trained on

BUS_25 (A, B)

Surprisingly, adding only a small number of additional negative examples generally leads to worse
performance compared to not including these images at all. The limited amount of diverse train-
ing data "confuses" the network, resulting in decreased performance. Additionally, providing a
large number of negative examples does not necessarily improve performance, as demonstrated
in Fig. 6.6. In these cases, the network trained on the BUS_500 dataset failed to produce any
correct bounding boxes, even though the heatmaps indicated that the system focused on the cor-
rect areas of the images. Hence, it is needed to balance the amount of additional augmentation.

Figure 6.7: Electric charger detections marked on heat maps when the system was trained
on the base (A) and an augmented dataset (B)
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However, guided augmentation increases the likelihood of correctly detecting bounding boxes for
the object of interest while reducing the probability of incorrect detections. This is demonstrated
in Fig. 6.7, where the charger is detected twice with bounding boxes of different scales. Selecting
the correct bounding box was challenging when using the base dataset for training, as the
detection probabilities were nearly equal (93% and 95% – Fig.6.7A). In contrast, training with
the augmented dataset significantly increased the network’s confidence in the correct detection
(96%) compared to the rough one (55%), as shown in Fig. 6.7B. This improvement allows for
selecting the correct bounding box using simple thresholding.

In real-world settings, electric charging stations are not often prominently featured in most
photographs. Based on this observation, the efficiency of the proposed solution was evaluated
using the "00" sequence from the KITTI dataset, which includes a total of 4541 images without
any bus electric charger imagery. When training with the base dataset, which comprised a mix
of cars and people, a substantial number of 8487 false positives were encountered, with various
cars and individuals mistakenly identified as charging stations, as shown in Fig. 6.8 A. The
original image displayed only one misidentification; however, the corresponding attention heat
map revealed that the network’s focus was excessively concentrated on all automobiles present.
This result was somewhat anticipated given the lack of cars in the utilised training data.

Remarkably, when 1000 new pictures of buses and people were added to the training dataset, the
number of mistakes the system made dropped to just 207. This decrease to 2.4% of the initial
count of false positives underscores the system’s enhanced performance, as shown in the attention
heat maps post-guided learning (Fig. 6.8 B), showing a reduced tendency to incorrectly recognise
objects that were previously mistaken. Thus, despite the initial training dataset not closely
mirroring the testing environment, the integration of additional, targeted imagery based on
insights from the attention visualization algorithm improved the system’s performance. The final
number of false positives, given the system’s initial unfamiliarity with the testing environment’s
specific conditions, is deemed to be within an acceptable range. This outcome demonstrates the
potential of leveraging guided learning and targeted data augmentation to refine and improve
object detection systems, even in the absence of directly analogous training materials.
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Figure 6.8: A) The false detection reported for the KITTI sequence 00 when trained on base.
B) The system trained on BUS_500 is no longer confusing cars with electric charger.

6.4 Vechicle pose estimation in assisted bus charging

In this chapter, the results of evaluating the pose estimation methods for electric bus chargers
presented in section 5.3 will be discussed. The first part compares RKN and MRHKN networks
and presents the ablation study of the MRHKN network, and the second part presents an
evaluation of the GAKN network.

Docking a bus to a charging station’s head necessitates accurate localization within the station’s
coordinate system over a range of distances, beginning from nearly 40 meters. Ensuring precise
results at the initial stages of this maneuver is difficult due to the small size of observed objects,
while at the final stages, the charging station may not fit entirely within the image frame.
Additionally, the lateral distance offset between the pantograph’s tip and the charger’s head,
as well as the angular offset between the charger’s head’s longitudinal axis and the approach
direction, must be minimal by the end of the maneuver to avoid mechanical damage. However,
some tolerance in both translational and rotational components of the estimated pose is allowed,
given that the charger’s head’s mechanical design accommodates lateral offsets and allows safe
docking with slight angular inaccuracies [89].

The pose estimated by the vision system is not directly employed in the path planning and
steering of the ADAS. Instead, it is combined with an odometric pose estimate derived from a
mathematical model of the vehicle and measurements from the bus’s proprioceptive sensors. This
method addresses occasional lapses in pose estimation caused by occlusions or image artifacts,
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such as those from direct sunlight, and enables the provision of pose estimates to the control
system at a higher frequency. However, bus odometry and its integration are part of the ADAS
control system, which is beyond the scope of these experiments. The focus is on the performance
of vision-based localization, without using odometric data to enhance the pose estimates in the
presented experiments.

Due to the extensive range of observation distances, a high-resolution FLIR Blackfly S camera
is utilised (5472×3648 pixels). This high resolution ensures optimal performance, which can be
scaled down to balance performance with the cost for real-world applications (see Sec. 6.4.6).
The camera’s field of view (FoV) also plays an important role. A smaller FoV enlarges the object
in the image but limits the range of possible maneuvers that keep the charger within the camera’s
view. Charging stations are sometimes located in bus bays that require rather sharp steering
during docking. Thus, it was assumed that a 60◦ FoV is suitable for all realistic scenarios,
providing the necessary resolution for subsequent processing. Considering these design choices
and the technical requirements of the bus manufacturer, the goal is to create a vision-based
localization system with a translational error under 0.35 meters and a rotational error under 1◦.

6.4.1 Experimental setup and image sequences

The dataset used for training the neural networks was collected during May and June, primarily
in sunny weather conditions. Two electric buses were utilised for data collection: a 12-meter
long single-body bus and an 18-meter long articulated bus. The bus driver executed various
paths towards the charging station to create a diverse dataset. The training dataset comprises
1000 manually labeled images, which were augmented by applying random changes in brightness
and contrast, as well as random resizing and cropping. This augmentation process expanded the
training dataset to a total of 10,000 different samples.

The proposed methods were evaluated using a dataset of images collected over five days in late
autumn with an 18-meter articulated bus, under various weather conditions including cloudy,
rainy, and sunny (Fig. 6.9). This dataset comprises 81 sequences in which the bus followed
different trajectories toward the charging station. Data diversity was achieved by starting from
different points and orientations, navigating along curved or slalom-like paths, and varying the
bus speeds along these routes (Fig. 6.10). Throughout these maneuvers, the vision-based po-
sitioning system was active, though the bus driver did not utilise the ADAS-generated driving
suggestions.

The driver was intentionally instructed to perform maneuvers that deviated from the typical
approach to the charging station to create a more varied set of trajectories, including oscillations
and sharp turns. These maneuvers resulted in numerous trajectories that did not conclude with
successful docking (indicated in red in Fig. 6.10), aiming to test if the vision system could still
position the bus accurately in such scenarios. In this dataset, the total duration when the entire
charging station’s mast is visible on camera amounts to 1630 seconds (approximately 27 minutes),
equating to 12,366 frames. Due to its smaller dimensions, the charging station’s head remained
visible for a longer period, totaling 1783 seconds (around 30 minutes), or 13,530 frames.
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Figure 6.9: Example images from the test dataset with different weather and lighting condi-
tions - cloudy morning (A), sunny midday (B), sunny morning (C), foggy morning (D).

Figure 6.10: Bus trajectories used to gather the evaluation sequences. Colored lines highlight
a few representative trajectories that are straight and end in proper docking (green), are
unrealistic in real-world scenarios, but still end in proper docking (blue), or miss the charger’s
head by a large margin imitating a driver not following the suggestions of ADAS (red). Short
arrows demonstrate start orientations for example trajectories. Notice that the vertical axis
is scaled differently than the horizontal one in order to make the plot with a large number of

trajectories more readable.
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No publicly available dataset could be found to evaluate this approach on third-party data.
Specifically, human pose estimation datasets, such as MPII Human Pose [3], cannot be utilised
for a fair comparison of keypoint detection, as this system is specifically designed for positioning
relative to a rigid object.

6.4.2 Ground truth and evaluation procedure

To evaluate the localization method’s performance, a DGPS system (Ublox C099-F9P boards
with ZED-F9P modules) was employed, featuring two receivers mounted on the bus and one
external reference station placed near the experimental site. The DGPS system operated in
a moving base scenario, utilising external corrections from the reference station to achieve an
approximate accuracy of 1 cm in position and 1 degree in orientation while functioning in RTK
(Real-Time Kinematic) mode [1].

The accuracy of the proposed camera-based system was assessed by comparing its estimates
to those provided by the DGPS system, considering the requirements for motion planning and
control. In practice, some detections from the neural networks may be erroneous and need to be
filtered out. To achieve this, the system checks the alignment between the detected keypoints
and the 3D model points projected onto the image plane, rejecting measurements if the Root
Mean Squared Error (RMSE) of all charger points exceeds 10 pixels. The detections with smaller
RMSE errors are considered valid (accepted detection) and are then evaluated by comparing the
2D pose of the camera (location on the ground plane and orientation as a single yaw angle) to the

Figure 6.11: The vision-based localization system is evaluated with respect to the translation
error on the ground plane (2D position) and the orientation error (yaw) understood as a

difference between the estimated and the ground truth heading of the bus.
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DGPS measurements. This evaluation ensures that the errors in the 2D pose accurately reflect
the components of the bus pose that are necessary for motion planning and control procedures
(Fig. 6.11).

Despite rigorous efforts, a small percentage of the computed camera poses may display significant
translational errors. These errors can be easily rejected during path execution by considering the
temporal relationships between consecutive detections. Nevertheless, each detection was treated
independently, and these inaccurate detections were included in the evaluation and statistics.
This approach was chosen because the focus is solely on evaluating the vision-based localization
method, without integrating the bus odometry model, which must be separately identified for
each vehicle type [65].

For each evaluated configuration of the positioning system, plots of the cumulative distribution
function (CDF) of errors are presented. These plots visually distinguish the number of valid
detections and illustrate the entire distribution of errors reported on the testing sequences. In
the experiments, multiple initial guesses were used for each detection to ensure independence
from previous ones. Odometry was not utilised, and DGPS was employed solely to obtain ground
truth data.

6.4.3 Proposed processing pipeline

High-resolution images are utilised, which cannot be processed in real-time with standard hard-
ware and neural network architectures. Given that the charging station’s mast occupies only
a small portion of the image from long distances, a two-stage processing pipeline was imple-
mented. This pipeline initially detects the object of interest and subsequently identifies the
keypoints belonging to that object (Fig. 6.12).

In the first step, the frame is resized to 960×960 pixels and processed by the Faster R-CNN
network to detect the charging station. Images at this resolution are sufficient for accurately
detecting charging stations in the given scenarios. Once the object detector network provides
the bounding box coordinates, the region of interest is cropped from the original high-resolution
image (Fig. 6.13). This region of interest (ROI) is then resized to 960×960 pixels and processed
by another neural network to determine the keypoint positions on the object. This approach
allows us to employ a common object detector architecture on high-resolution images from the
camera and utilise the ROI at the maximum possible resolution, ensuring the best keypoint
estimation accuracy.

Consequently, the camera’s pose can be estimated using an algorithm designed to solve the PnP
problem as described in Section 5.3.

The presented approach also necessitates detailed 3D locations of the keypoints on the charging
station. Although a CAD model can serve this purpose, the experiments involved a mockup of
the charging station that was partially assembled using non-standard elements. To accommodate
this, a detailed 3D model of the station was obtained using a SURPHASER 100HSX 3D laser
scanner, which captured a mesh-based model from a single viewpoint with an accuracy of 1 mm.
This method allowed us to adjust the location of points as needed, even after the mast was fully
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Figure 6.12: The block diagram illustrates the image processing and pose estimation pipeline
employed for positioning electric buses relative to a charging station. The CAD model visu-
alises the 3D mesh acquired from the SURPHASER 100HSX, complete with annotated dimen-

sions between markers.

Figure 6.13: Visualization of the two-step processing pipeline: The object detector first
analyses the full input frame at a reduced size and predicts the position of the charging
station on the image (the small red rectangle). Subsequently, the ROI containing the charging
station is cropped from the full-resolution image for further processing (the large red frame).
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Figure 6.14: Overview of the coordinate systems: camera (C), DGPS (G), charger’s head
(E), and bus front axis (F ).

mounted. For system deployment, these markings are envisioned to be pre-mounted on the mast
components before installation at the desired location. Consequently, a production-ready system
would utilise the 3D CAD model, obviating the need for an accurate 3D laser scanner.

The end result of this processing pipeline is the estimation of the pose of the charging station
(E) relative to the camera coordinate system (C), denoted as CTE (Fig. 6.14). However, in
practical applications, the system must provide the pose of the bus’s front axis (F ) relative to
the charger coordinate system (E). This information is required for planning and controlling the
motion of the bus as it approaches and docks with the charging station. To accurately evaluate
the system and gather ground truth data, two masts were mounted to the roof of the bus.

In the first setup, a FLIR camera and a GPS antenna were mounted at the front of the bus. The
second mast, which was positioned approximately 5 meters behind the front setup, supported an-
other GPS antenna. This configuration was designed to achieve an accurate orientation estimate
using DGPS. The final estimate is computed as:

ETF =
(
CT−1

E

)
CTF , (6.1)

where ETF is the pose of the bus’s front axis with respect to the charger, CTE is the original
measurement of the electric charger in the camera coordinate system, and CTF is the pose of
the camera coordinate system with respect to the front axis of the bus.

The camera’s position on the bus (i.e. the CTF transformation) was established using CAD files.
This position was then verified through manual distance measurements and the attitude data of
the camera setup, which was obtained from an XSens MTi IMU attached to the camera’s mast.
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Figure 6.15: Location of keypoints for charger pose estimation: four points located on the
head and called head (A), four points located on the natural corners of the head and the mast
called corners (B), and four points located inside the artificial markers called markers (C).

6.4.4 Selection of characteristic points

Two deep neural network architectures presented in section 3 (the RKN and the MRHKN) have
been tested across three different spatial arrangements of keypoints.

The first arrangement, referred to as the head, consists of four keypoints located at the corners of
the charger’s head (Fig. 6.15 A). The second configuration, known as corners, uses two keypoints
at the corners of the head and two additional keypoints on the supporting mast where the head
is attached (Fig. 6.15 B). The third configuration, termed markers, involves keypoints placed
within simple artificial landmarkssmall rectangles made of black tape positioned on both the
head and the mast (Fig. 6.15 C).

Evaluating both neural network architectures allowed to compare their performance. By testing
different spatial arrangements of keypoints, the study aimed to examine the impact of spatial
layout and the type of physical features (i.e. natural corners or markers) on both the recall rate
of the point detector and the accuracy of the computed pose. These findings help identify the
optimal configuration of keypoints on the charging station for the best performance.

The initial aspect of detection efficiency to be compared when evaluating RKN is the ratio of
accepted detections to the total number of frames where the charger is visible. The accepted
detections are the detections where the RMSE compared to the 3D model points projected
onto the image plane is less than 10 px. The head configuration performed the worst, correctly
detecting keypoints in approximately 77% of frames. In contrast, the markers and corners
configurations demonstrated improved performance, achieving coverage rates of 84% and 89%,
respectively.

The pose error evaluation results for this approach are presented in Fig. 6.16. One notable ob-
servation is the almost linear distribution of translation errors. The slopes of the markers and
corners configurations are similar and steeper compared to the head configuration. The distri-
bution of rotation errors for the markers and corners configurations is more convex compared to
the head configuration, indicating significantly better performance in estimating rotation angles.

Quantitative analysis shows that the median 2D translation error for the head configuration is
nearly 4 meters, with a median yaw angle error of 10 degrees. These errors can be attributed to
the dense packing of keypoints in the image. As described in the RKN approach, the method’s
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Figure 6.16: Cumulative distribution functions of 2D translation error (up) and orientation
error (down) for the considered scenarios using RKN with head, markers, and corners points

for pose estimation.

32×32 pixel bottleneck likely causes a loss of information about the locations of densely packed
points during image processing.

The dense packing of keypoints also leads to unreliable camera pose estimates from the solvePnP
algorithm, as small changes in keypoint locations result in relatively large changes in the esti-
mated 3D pose. Additionally, some keypoints may have been inaccurately labeled during training
due to the rounded corners of the charging station’s head. Furthermore, the significant varia-
tions in the range of object observation throughout the maneuver make it challenging to maintain
proper camera focus for all frames, resulting in some blurry images (Fig. 6.17 A).

The corners and markers configurations achieved median 2D errors of 0.97 meters and 1.94
degrees, and 0.91 meters and 1.96 degrees, respectively. These errors are significantly smaller
than those observed with the head configuration and are quite similar to each other, making it
difficult to determine which is superior. However, despite the improved performance, neither the
corners nor the markers configuration meets the accuracy requirements for localization in the
ADAS system.
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Figure 6.17: Example of a blurry image of the head with round corners (A) and inaccurately
detected keypoints from RKN (B).

A closer examination of the results revealed inaccuracies in the estimated keypoint locations
for both configurations. For example, the keypoints often missed the centers of the landmarks
significantly, as illustrated in Fig. 6.17 B. This indicates the need to modify the image processing
system to achieve more precise keypoint localization.

The MRHKN approach was evaluated with three distinct point configurations on the same
dataset. The localization errors are shown as cumulative error distributions in Fig. 6.18.

Evaluation of the MRHKN + head version resulted in 87% of accepted detections, with a median
2D translation error of 6.46 meters and a median yaw angle error of 18°. These results indicate
that this version is unsuitable for ADAS localization.

Although the MRHKN + corners version had only 66.6% accepted detections, the error curves in
Fig. 6.18 demonstrate an improvement in pose estimation accuracy compared to the RKN model.
The median 2D translation error of 0.28 meters and the median yaw error of approximately
0.6 degrees underscore the importance of keypoint locations in pose estimation. Most invalid
detections occurred at distances greater than 25 meters, possibly because this method uses two
points on the charger’s head, which are not clearly visible from long distances, as previously
discussed.

The best result, with 90.9% of accepted detections, was achieved by the MRHKN + markers
version. This configuration appears sufficient for localization purposes. The quantitative evalua-
tion showed a median 2D translation error of 0.17 meters and a median yaw error of 0.41°. This
version demonstrates better keypoint detection from long distances, with significantly smaller
median errors for camera positions more than 25 meters away from the charging station com-
pared to the MRHKN + corners version. These results confirm that even simple and inexpensive
artificial markers can enhance the robustness of the keypoint detection process.
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Figure 6.18: Cumulative distribution functions of 2D translation error (up) and orientation
error (down) for the MRHKN approach with head, markers, and corners points for pose
estimation. Version head performs poorly due to the small size of the object. Natural corners

points work worse than the artificial markers approach.

6.4.5 Comparing the proposed models to existing solutions

The neural network architectures evaluated for comparison include HRNet and SCNet from the
MMPose framework [67], the Faster R-CNN-based architecture from [78], and the ResNet101
backbone with the keypoint extraction head. These architectures were assessed uniformly, and
the numerical results are summarised in Table 6.2. Overall, it was observed that results using
natural corners were inferior to those obtained with artificial markers. Previous tests indicated
poor performance for the head points arrangement with proposed network architectures, so this
arrangement was excluded from the method comparison. When markers are used, the MRHKN
approach shows the highest percentage of accepted detections, with the lowest median translation
and rotation errors. Conversely, the RKN approach demonstrates the largest median translation
and rotation errors among the evaluated solutions, while HRNet exhibits the lowest percentage
of accepted detections.

The model from [78] could not operate with images sized 960×960 due to insufficient GPU
RAM. This issue is intrinsic to the network architecture, as it generates heatmaps and two
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offset maps (for the x and y axes) for each point, and then calculates the final location based
on this data. Creating the required four-dimensional tensors, where each dimension matches
the length of one side of the heatmap, demands substantial GPU memory. Consequently, the
largest input image size manageable on a modern Nvidia A100 card with 40 GB of RAM was
500×500 pixels. In terms of processing time, the MRHKN network outperforms the Papandreou
model while handling nearly double the image input size. When run on the Nvidia A100 GPU,
Papandreou’s network achieved 4 Frames Per Second (FPS), utilising 32 GB of RAM, whereas
MRHKN achieved 5.5 FPS, requiring only 8 GB of GPU RAM.

Table 6.2: Comparison between the number of accepted detections, median 2D translation
errors, and median 2D rotation errors of the RKNand MRHKN models and state-of-the-
art HRNet, SCNet, ResNet101 (with head), and Papandreou’s approaches (best results are
bolded). Model marked with * was evaluated with input image size reduced to 500×500 due

to memory limits.

Method Version
Percent of
accepted

detections

Median
t2D [m]

Median
r2D [deg]

ResNet101 corners 39.4% 0.54 1.14
HRNet corners 44.5% 0.43 1.52
SCNet corners 18.0% 0.64 0.93

Papandreou* corners 40.9% 0.53 1.15
RKN corners 84.5% 0.92 1.96

MRHKN corners 66.6% 0.28 0.60
ResNet101 markers 87.7% 0.30 0.75

HRNet markers 82.0% 0.34 0.59
SCNet markers 88.7% 0.31 0.59

Papandreou* markers 63.6% 0.47 1.10
RKN markers 88.7% 0.97 1.95

MRHKN markers 90.9% 0.17 0.41

Figure 6.19 illustrates the performance comparison between RKN, MRHKN, the model from [78],
and other state-of-the-art methods from the MMPose library, using images annotated with mark-
ers ground truth points. The corners arrangement was excluded due to its inferior performance
compared to the markers arrangement. The histogram shapes indicate that the MRHKN method
more accurately estimates both the position and orientation of the camera compared to the other
methods. In contrast, the error distributions for the RKN and Papandreou’s method are roughly
linear and worse than those for the evaluated ResNet101, HRNet, SCNet, and the MRHKN mod-
els. The inferior performance of the state-of-the-art networks compared to the MRHKN solution
is likely due to the different architecture of the keypoint head, which contains fewer convolution
layers. The HRNet’s lower performance might also be attributed to the relatively small number
of feature maps returned by the backbone network. All MMPose-implemented methods (HRNet,
SCNet, and ResNet101) perform similarly, with ResNet101 achieving the best translation error,
while HRNet and SCNet exhibit smaller orientation errors.

Based on the evaluation presented, it is evident that the proposed MRHKN method surpasses
state-of-the-art solutions and aligns best with the requirements. Consequently, MRHKN is the
sole method considered for the docking scenario and is further assessed in the subsequent ablation
study.
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Figure 6.19: Histograms of 2D translation error (up) and orientation error (down) for the
RKN and MRHKN approaches compared to the approaches implemented in the MMPose
framework and Papandreou’s network reveal superiority of the MRHKN approach. Model
marked with * was evaluated with input image size reduced to 500×500 due to memory limits.

6.4.6 Influence of image resolution

The camera eventually installed in the buses by the operator may differ from the high-resolution
camera used to acquire the training data for the previously discussed results. Consequently,
during evaluation, the impact of image size on pose estimation accuracy was assessed (Fig. 6.20)
to identify the minimum camera resolution that satisfies the localization accuracy requirements.
To ensure consistency across different resolutions, a lower resolution camera was simulated by
resizing the training and testing data to a fraction of the original size and adjusting the ground
truth keypoint locations used for training accordingly.

Using this method, six different models were trained with progressively scaled-down image reso-
lutions to evaluate performance with lower resolution images. The images were resized by scaling
factors of 0.05 (Scaled 0.05 ), 0.1 (Scaled 0.1 ), 0.2 (Scaled 0.2 ), 0.4 (Scaled 0.4 ), 0.6 (Scaled 0.6 ),
and 0.8 (Scaled 0.8 ). For each scaling factor, a new network was trained and tested on the ap-
propriately resized images, with ground truth labels adjusted to match the discrete pixel values,
accurately reflecting the training process on these scaled images.

The performance of the MRHKN + markers approach remains consistent with the original results
in both accepted detection coverage and pose estimation error for the Scaled 0.8, Scaled 0.6, and
Scaled 0.4 versions. These versions demonstrate an accepted detection rate exceeding 90%, with
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Figure 6.20: Cumulative distribution of translation and orientation errors for experiments
with reduced image sizes for MRHKN + markers approach. No significant drop in performance

even if the image is reduced up to 2188×1459 pixels was noticed.

median pose errors reported below 0.17 meters and 0.61 degrees. However, further reductions in
image size result in noticeable performance declines. The Scaled 0.2 version maintains median
errors of 0.18 meters and 0.42 degrees, but the accepted detection rate falls to 85.5%. As
anticipated, reducing the image size predominantly affects detection coverage and pose accuracy
at greater distances. Additional reductions lead to poorer performance in the Scaled 0.1 version
and a significant breakdown for the Scaled 0.05 version, which detects fewer than one-tenth of
the charger keypoints identified by the original network with full-size images. Numerical results
for all evaluated versions are summarised in Table 6.3.

Achieving satisfactory performance with reduced-resolution images allows for the implementation
of a lower-resolution camera on the bus. This widens the selection of industrial-grade cameras
suitable for the production system, taking into account factors such as interface compatibility
and enclosure protection, while also lowering costs. Based on the experimental results, it can be
concluded that a camera with a resolution of 2188× 1459 (4 MP class) would be appropriate for
the presented positioning system, providing accurate results at a fraction of the cost of the 20
MP camera used in the experiments.
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Table 6.3: Performance comparison between versions of the MRHKN + markers method
configured with different image sizes during training and testing

Scaling
factor Image size

Percent of
accepted

detections

Median
t2D [m]

Median
r2D [deg]

0.05 273×182 7.1% 0.35 1.95
0.1 547×364 56.4% 0.30 0.87
0.2 1094×729 85.5% 0.18 0.42
0.4 2188×1459 96.3% 0.17 0.42
0.6 3283×2188 94.8% 0.20 0.61
0.8 4377×2918 93.4% 0.18 0.45
1.0 5472×3648 90.9% 0.17 0.41

6.4.7 Performance dependence on the distance to the charging station

Figure 6.21: Distribution of the translation error (black bars) and orientation error (gray
bars) as a function of the distance to the charging station for MRHKN + markers.

The distance to the observed object influences the accuracy of pose estimation. All accepted
detections from the MRHKN + markers model were categorised into 10 bins, covering ranges
from 7 to 37 meters, and the median errors for translation and rotation were calculated for each
bin (Fig. 6.21). As expected, the translation estimation error increases with the observation
distance, with a notable decrease in accuracy at distances greater than 30 meters. Despite
the increasing translation error with distance, the rotation error remains relatively constant.
These error characteristics are suitable for motion planning and execution procedures [65], as
the rotation error remains low even beyond 30 meters, which is important for trajectory planning.
The translation error decreases significantly as the bus approaches the charging station. Within
the final few meters, the translation error reduces to about 10 cm, allowing the bus odometry to
take over if the roof-mounted camera loses sight of all the markers. Once accurately positioned
relative to the charger station head, and being very close, the bus can move along a straight
path and safely engage the pantograph using its mechanical adaptation system.
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Figure 6.22: Distribution of translation error (black bars) and orientation error (gray bars)
as a function of the orientation to the charger for MRHKN + markers.

6.4.8 Performance dependence on the observation angle of the charg-
ing station

Another factor that might influence the localization system’s accuracy is the observation angle.
In the test dataset, all observations were made at angles less than 15 degrees. This assumption
is based on realistic maneuver scenarios where, at the beginning of the maneuver, the bus travels
along a lane approximately parallel to the x-axis of the charger station’s coordinate system. The
observation angle largely depends on the lateral offset between the bus path and the roadside
charging station (see Fig. 6.1). Similar to the previous analysis, all observations were divided
into 10 bins, and the median error is shown in Fig. 6.22. The chart indicates that translation
error is relatively unaffected by the observation angle, which is beneficial, as the system can
handle less common scenarios with larger observation angles that might not be well-represented
in the training dataset. Likewise, the accuracy of yaw angle estimation is not dependent on
the observation angle. Comparing these error values to those in Fig. 6.21, it can be concluded
that within the considered ranges, observation angle is a less significant factor in determining
localization accuracy than distance.

6.4.9 Performance dependence on the bus speed

Docking the bus to a charging station is performed at a low speed due to the need for precise
steering. The entire maneuver covers less than 40 meters and requires the bus to stop at the
end. Bus operators typically instruct drivers not to exceed 20 km/h when approaching the
charging station, but in practice, drivers tend to use much lower speeds for docking. The vision-
based localization across the full range of speeds observed during the docking experiments was
evaluated. As shown in Fig. 6.23, neither the translation nor the rotation estimation error is
influenced by speed. Despite using a camera with a rolling shutter, the performance remained
unaffected by vehicle motion, as the MRHKN approach ensures robust keypoint detection.
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Figure 6.23: Distribution of translation error (black) and orientation error (gray) as a func-
tion of the bus speed for MRHKN + markers.

Table 6.4: Comparison of the size of networks, inference time, pose estimation errors, and
percent of accepted detections of the evaluated architectures.

Heatmap size Configuration Operations
[GFLOPs]

Parameters
[M]

Inference
time [ms]

Median t_2D
[m]

Median r_2D
[deg]

Percent of
accepted

detections

152×152 Papandreou 41.22 42.67 167.82 0.53 1.15 40.90 %
Papandreou+Refined 171.82 1.16 1.67 52.34 %

128×128

Baseline

41.08 28.54

35.60 0.43 0.97 92.59 %
Refined 40.60 0.44 0.98 95.66 %
GAKN 35.60 0.37 0.67 92.14 %

GAKN+Refined 40.60 0.37 0.67 94.79 %

256×256

Baseline

43.34 28.67

38.40 0.35 0.74 93.56 %
Refined 42.40 0.36 0.74 95.99 %
GAKN 38.40 0.32 0.62 95.56 %

GAKN+Refined 42.40 0.32 0.61 96.60 %

512×512

Baseline

112.47 29.72

50.60 0.32 0.70 94.03 %
Refined 54.60 0.32 0.71 95.02 %
GAKN 50.60 0.30 0.64 92.82 %

GAKN+Refined 54.60 0.31 0.64 94.44 %

6.4.10 Geometry-Aware Keypoint Network

In this section, the results of the evaluation of the Geometry-Aware Keypoint Network will be
presented. For all experiments, the input image size was set to 512×512 pixels. The results
of the main experiments are shown in Table 6.4. The configurations of the keypoint extraction
network considered include the Baseline (HRNet32 with a 3-layer head), Refined (Baseline with
Reprojection-based Pose Refinement), GAKN, and GAKN+Refined (GAKN with Reprojection-
based Pose Refinement).

Backbone network and Keypoint Head depth

Comparing the HRNet32 and HRNet48 networks (Table 6.5), it is evident that the medians of
rotation and translation errors are lower for the HRNet48 network across both keypoint head
variants. However, there is no significant impact on the percentage of accepted detections.
The inference time is slightly longer for the HRNet48 version, and the required operations and
number of parameters are more than double those of the HRNet32 backbone. Additionally, the
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Table 6.5: Comparison of the size of networks, inference time, pose estimation errors, and
percent of accepted detections of the networks with different backbones and depths of the

keypoint head.

Heatmap size Backbone
Convolution
layers in the
keypoint head

Operations
[GFLOPs]

Parameters
[M]

Inference
time [ms]

Median t_2D
[m]

Median r_2D
[deg]

Percent of
accepted

detections

128×128

HRNet32 1 41.08 28.54 M 35.40 0.46 0.98 93.59 %
HRNet48 84.10 63.60 M 37.10 0.42 0.72 92.83 %
HRNet32 3 41.12 28.54 M 35.60 0.43 0.97 93.89 %
HRNet48 84.18 63.60 M 37.60 0.40 0.71 92.87 %

HRNet48-based network demands over 8 GB of GPU memory for the entire processing pipeline.
For commercial applications, the cost of the hardware must be considered. Despite the improved
pose estimation accuracy with HRNet48, the HRNet32 backbone was chosen for the Baseline
due to its acceptable accuracy and compatibility with low-end hardware (GPU). Consequently,
the GAKN architecture configurations evaluated in the experiments also utilise the HRNet32
backbone.

Adding extra convolutional layers to the keypoint head slightly reduces the median translation
and rotation errors (Tab. 6.5). This modification does not impact the percentage of accepted
detections and has only a minimal effect on the number of operations and inference time.

Heatmap size

In this subsection, the performance of the Baseline network across three different heatmap resolu-
tions will be compared. The default keypoint detector implementation based on HRNet generates
heatmaps downsampled by a factor of four relative to the input image size, resulting in 128×128
pixel heatmaps for a 512×512 pixel image. Increasing the heatmap size has a negligible effect on
the percentage of accepted detections but significantly reduces translation and rotation errors.
The increase in the number of operations is modest when moving from a 128×128 to a 256×256
heatmap; however, for the 512×512 version, the number of operations triples. Consequently,
the processing time for a single image doubles in the 512×512 version compared to the 128×128
version. While larger heatmaps improve location accuracy, they also increase processing time.
Nonetheless, the increase in network parameters with larger heatmaps is minimal.

This indicates that all the discussed architectures, even the largest one, can fit on a graphics
card with 8 GB of memory. As the heatmap size increased, a reduction in errors was observed,
specifically, the translation error of a 128-sized heatmap compared to a 512-sized heatmap was
reduced by 26.7% and the rotation error by 33.9%. For the 256-sized heatmap, errors were higher
than the 512-sized but lower than the 128-sized heatmap, confirming the relationship between
heatmap size and location accuracy. Heatmap size did not affect the percentage of accepted
detections.

The GAKN network configuration maintains the same number of operations, parameters, and
processing times because modifications were only made during training and do not affect in-
ference. There is a reduction in translation and rotation errors across all three heatmap sizes.
When using reprojection loss with a 128-sized heatmap, there was a 15.2% reduction in transla-
tion error and a 37% reduction in rotation error. For the 256-sized heatmap, translation error
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decreased by 8.4% and rotation error by 15.5%. For the 512-sized heatmap, there was a 2.6%
reduction in translation error and a 9.5% reduction in rotation error.

Combining both approaches: increasing heatmap size and applying reprojection loss, resulted
in the lowest median translation error among all tested models and a median rotation error
comparable to the best obtained with the 256-sized heatmap. Using a 256-sized heatmap offers
a reasonable trade-off between processing time and location accuracy. The system achieved the
best rotation error result, while the translation error was comparable to the best result, and
exhibited a short inference time similar to the 128×128 heatmap. Additionally, the percentage
of accepted detections in the GAKN configuration with this heatmap size is higher than in the
baseline.

6.5 Pose estimation of surrounding cars for autonomous
driving

In this section, the evaluation of the pipeline for estimation of the pose of surrounding cars will
be presented.

Model evaluation was performed on the validation set of the ApoloCar3D dataset, which includes
200 images as defined by the dataset’s authors. On a Nvidia 1080Ti GPU, the proposed pipeline
achieves a processing speed of 20 FPS for the EPNP variant without uncertainty propagation,
and 18 FPS when full uncertainty propagation is included.

6.5.1 Keypoints 2D

For the evaluation of the 2D keypoints estimation network, the PCK metric was used with three
thresholds: 5 pixels, 10 pixels, and 15 pixels.

The first two rows in Table 6.6 were computed using only visible vehicle points as references,
specifically those included in the ground truth annotations of the dataset. The metric values for
all marked points were presented as well as for those points that the network identified as having
the highest Keypoint Score Head score. The results demonstrated that the network accurately
assesses the point estimation accuracy and is capable of improving the PCK metric results.

The last two rows in Table 6.6 show similar PCK metric values but with a key difference: the
ground truth annotations used were the projections of 3D points, based on the ground truth
translation and rotation of each vehicle. This method allows for the evaluation of invisible
points, which is more relevant to real-world scenarios where the visibility of points is not known
in advance.

The right part of the table presents results obtained using a modified network architecture, where
the HrNet backbone network was replaced by the ViTPose model.

The results, particularly for the points selected by the KSH score, indicate sufficient accuracy
for 3D pose estimation using PnP algorithms.
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Table 6.6: PCK metric of the 2D keypoints accuracy comparing to manually labelled visible
points and all 66 points acquired by the projection of 3D points, for HRNet estimates (top)

and ViTPose estimates (bottom).

Threshold 5 px 10 px 15 px 5 px 10 px 15 px
HrNet ViTPose

Visible all 44.9 71.0 81.7 67.2 85.1 90.8
Visible selected 64.0 87.2 93.6 74.5 90.8 94.8
All 19.0 32.7 41.0 28.3 39.4 45.0
Selected all 59.6 82.6 89.9 76.6 89.4 93.5

6.5.2 Keypoints 3D

In this section, the results related to estimating 3D points on vehicles using the proposed method
will be presented. The module’s performance is assessed using the MPJPE metric, which quan-
tifies the average distance error of the estimated points. The findings show an average MPJPE
value of 0.119 m for all points estimated by the network. Focusing on the N points with the
highest KSH scores reduces the error to 0.105 m, confirming that the KSH score improves key-
point quality. The most accurately estimated points are located on the rear corner of the car
handle of the right front door, with a mean error of 0.073 m, while the least accurate points,
averaging an error of 0.235 m, are found on the left corner of the rear bumper.

6.5.3 A3DP metrics

The Absolute Average 3D Precision (A3DP-Abs) metric, as introduced in [93], was employed
to evaluate the results. This metric emphasizes the absolute distances to objects and considers
three components: the estimated shape, position, and rotation of the car. The translation error
metric is defined as:

ctrans =
∣∣tgt − t̂

∣∣
2
≤ δt, (6.2)

where tgt denotes ground truth translation, t̂ denotes estimated translation and δt is an accep-
tance threshold. The rotation error metric is defined as:

crot = arccos (|qgt · q̂|) ≤ δrot, (6.3)

where qgt denotes ground truth rotation quaternion, q̂ denotes estimated rotation quaternion,
and δrot is an acceptance threshold.

Similar to the metrics proposed for the COCO dataset, the authors of ApolloCar3D introduced
a set of metric thresholds ranging from strict to loose. The translation thresholds range from
2.8 m to 0.1 m, increasing by 0.3 m increments, while the rotation thresholds range from π/6 to
π/60 in steps of π/60. Besides the ’mean’ metric, which averages results across all thresholds,
two single-threshold metrics were defined. The loose criterion (denoted as c− l) uses [2.8, π/6]
thresholds for translation and rotation, whereas the strict criterion (denoted as c − s) employs
[1.4, π/12] thresholds. For evaluating the 3D shape reconstruction, a predicted mesh is rendered
from 100 different perspectives, and the Intersection over Union (IoU) is computed between these
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renderings and the ground truth masks. The average of these IoU values is then used to assess
the shape reconstruction accuracy.

Table 6.7 presents the results and compares them with state-of-the-art methods. For a fair
comparison, the implementations of the algorithms proposed in [50] and [14] were taken from
the baselines provided in [93].

Table 6.7: Comparison of results with the state-of-the-art methods on A3DP-Abs metrics

algorithm mean c− l c− s
3D-RCNN [50] 16.4 29.7 19.8
DeepMANTA [14] 20.1 30.7 23.8
GSNet [38] 18.9 37.4 18.4
BAAM-Res2Net [52] 25.2 47.3 23.1
Ours EPnP 23.4 44.6 31.7
Ours BFGS 25.6 47.7 34.6

The results of the A3DP-Abs mean metric demonstrate that the implemented system outperforms
the recently proposed BAAM method [52], showcasing the proficiency of the selected solution
in accurately estimating the 3D position of surrounding vehicles. A significant advantage of the
network is its performance on the strict criterion c − s, which evaluates the module’s ability
to estimate 3D points under stringent conditions. This challenging task requires a high level
of precision and reliability. This system surpasses all existing state-of-the-art solutions on this
metric by a considerable margin, underscoring its excellence in providing highly accurate 3D
characteristic points.

The table 6.8 presents the results of an ablation study that examines the influence of a back-
bone network, the selection of points for the PnP algorithm, and the accuracy of keypoints 3D
estimation.

The first set of variants uses a transformer-based network, called ViTPose, as the backbone for
feature extraction. The study investigated the influence of point selection on the accuracy of
solutions to the PnP problem. One variant used 17 points known to have the lowest estimation
error relative to the ground truth labels. The other set of variants relied on points identified as
visible by annotators, representing a more intuitive method of point selection that emphasises
the reliability of point visibility in pose estimation. The purpose of these comparative studies
was to assess how the accuracy of 2D point estimation and point selection affect the performance
of algorithms solving the PnP problem. Through these comparisons, the goal is to discover the
most effective strategies for improving the accuracy of vehicle pose estimation using deep neural
networks.

The network using HRNet as the backbone, together with the 17 best-estimated points (HRNet
Best 17), slightly outperformed the variant using the ViTPose network (ViTPose Best 17) and
achieved results very similar to the baseline variant, where the points for solving the PnP problem
are selected by a neural network. This indicates that the quality of point estimation by the neural
network is close to optimal for solving the PnP problem. Despite the superior accuracy of the
ViTPose network in 2D point estimation, its performance in pose estimation was not as strong.
This discrepancy could be due to the accuracy of the corresponding 3D point estimates and their
spatial distribution on the vehicle.
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Table 6.8: Comparison of results from different variants on A3DP-Abs metrics. c − l is a
loose criterion that uses thresholds=[2.8 m, π/6 rad], while c− s is a strict criterion that uses

thresholds=[1.4 m, π/12 rad] for translation and rotation errors respectively.

Algorithm mean ↑ c-l ↑ c-s ↑
Baseline 25.6 47.7 34.6
ViTPose Best 17 25.7 46.7 34.7
HRNet Best 17 27.6 49.8 38.4
ViTPose Best 17 GT J3D 46.9 68.5 60.5
HRNet Best 17 GT J3D 46.7 68.7 60.4
ViTPose Visible 22.4 41.3 30.6
HRNet Visible 18.7 35.8 26.4
VitPose Visible GT J3D 33.1 51.9 44.1
HRNet Visible GT J3D 28.5 48.8 39.3

Further investigation included a pair of variants, named ViTPose Best 17 GT J3D and HRNet
Best 17 GT J3D for pose estimation, which used ground truth coordinates for 3D points and
the 17 best estimated 2D points. In this case, the ViTPose network performed slightly better,
supporting the idea that the most accurately estimated 2D points by HRNet are also linked to the
most accurately estimated 3D points. This success is likely influenced by the use of reprojection
loss during training, highlighting the critical role of reprojection loss in training for the accurate
estimation of 3D points from their 2D counterparts.

Another variant analysis used 3D points estimated by the network and selected points marked
as visible for pose estimation to remove the influence of point selection on estimation accuracy.
Here, the ViTPose network performed better than HRNet, which showed a significant decrease
in accuracy with HRNet Visible compared to HRNet Best 17. In contrast, the ViTPose network
showed a much smaller decrease, highlighting the impact of joint learning for the branches
estimating 2D and 3D points, as opposed to the ViTPose variant where the 2D point estimation
network was trained independently. This demonstrates the importance of integrated training
approaches and suggests that they may be more effective in maintaining accuracy when factors
such as point visibility are taken into account.

The final variant analysis included ground truth 3D points and points marked as visible. The
ViTPose network again showed superior performance, although the results were not as robust as
the ViTPose Best 17 GT J3D and HRNet Best 17 GT J3D variants. This observation highlights
the importance of the spatial distribution of the selected points and the need to include points
that are not marked as visible for pose estimation, highlighting how important point selection
and spatial distribution are to the accuracy of pose estimation tasks.

6.6 Car shape estimation

The table 6.9 compares an approach described in Section 4.3 that directly estimates the positions
of 3D keypoints to an approach that first estimates a dense mesh described in 4.6, from which
keypoint coordinates are then regressed. The first column compares the MPJPE for all 66 key-
points on the ApolloCar 3D validation dataset. The results show that the mesh-based approach
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Figure 6.24: Ground truth meshes (left column) and estimated counterparts (right column)

performs slightly better. However, when comparing the A3DP-Abs metrics, the mesh-based ap-
proach yields worse results. An explanation can be found by examining the MPJPE for the 17
keypoints selected by the Keypoint Score Head. Here, it is evident that the accuracy in the case
of the mesh-based approach did not improve, unlike the direct approach, which exhibits smaller
estimation errors. The likely cause of these results is that the accuracy of keypoint estimation
in the mesh-based approach does not depend on the viewpoint, because their coordinates are
extracted directly from the mesh rather than the image. This means that all points have similar
estimation errors. On the other hand, the direct approach can more precisely estimate points
that are actually visible, and the variation in estimation errors is larger, thus making it possible
to find a subset of 17 points that has a lower mean estimation error compared to the mesh-based
approach. On the Fig. 6.24 are shown examples of car shape reconstructions.

Table 6.9: Comparison of Keypoint 3D MPJPE and A3DP-Abs metric for Keypoint 3D
based and Dense mesh based pipelines for vehicles pose estimation.

Keypoint 3D
MPJPE All

Keypoint 3D
MPJPE Top 17

A3DP-Abs
mean

A3DP-Abs
c-l

A3DP-Abs
c-s

3D keypoint based 0.119 0.105 25.6 47.7 34.6
Dense mesh based 0.111 0.110 23.3 43.7 32.6
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Table 6.10: Percentage of ground-truths within uncertainty ellipse for different standard
deviations.

Standard deviation 1σ 2σ 3σ
Percentage of ground-truths
within uncertainty ellipse 48.75 % 87.38 % 98.00 %

6.7 Uncertainty estimation

This section presents an experimental evaluation of the uncertainty estimation methods intro-
duced in the previous chapters of the dissertation. The focus is placed on two distinct scenarios:
keypoint estimation uncertainty in the context of docking to the charging station and uncertainty
of pose estimation of surrounding vehicles.

The quality of the estimated uncertainty for 2D points detected on the charger was evaluated
using a hand-labeled validation dataset of approximately 200 images. The geometric uncertainty
prediction was assessed by measuring the percentage of ground truth keypoint locations that fall
within the 1, 2, and 3 σ uncertainty ellipses. The numerical values for these evaluations are
presented in Tab. 6.10.

Qualitative results of the covariance matrices prediction are illustrated in Fig. 6.25. Comparing
Fig. 6.25A and Fig. 6.25B reveals that keypoint detection uncertainty decreases as the distance
to the charger decreases. Figures 6.25C and 6.25E demonstrate increased uncertainty for poor
quality images. In Fig. 6.25D, the two leftmost points exhibit greater uncertainty along the
x-axis because, from that viewpoint, estimating their precise location is more ambiguous.

Figure 6.25: Visualisation of estimated keypoints locations and 3 sigma uncertainty ellipses
for different observation cases. Fig. A presents detection from a close distance, B - a far
distance, C - a blurry image, D - a different observation angle, and E - cloudy/foggy weather.
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The following fragment presents results related to the uncertainty estimation of 2D and 3D char-
acteristic points, as well as the vehicle’s pose using the ApolloCar3D dataset. The visualizations
of 2d keypoints uncertainty are shown in Fig. 6.26.

Figure 6.26: Visualization of 2D keypoints uncertainty represented by ellipses, each corre-
sponding to a 1-σ standard deviation from the estimated values.

The initial evaluation analysed the percentage of point and vehicle translation estimations falling
within the ranges of 1, 2, and 3 standard deviations (σ). These results are detailed in Table 6.11.
Additionally, the relationship between the mean value of σ and the vehicle’s distance is explored,
as illustrated in Fig. 6.27.

These findings indicate that as the distance increases, the uncertainty in pose estimation also
rises. This trend is expected, as distant objects appear with lower resolution in images, leading
to higher uncertainties in estimation. Another notable observation is that the uncertainty along
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Table 6.11: Percentage of estimation that falls within the ranges of one, two, and three σ

Keypoints 2D Keypoints 3D Pose translation
x y x y z x y z

1 σ 79.0 79.8 82.5 80.3 64.8 84.5 85.0 81.3
2 σ 93.1 93.8 94.2 94.1 80.9 94.9 95.6 93.7
3 σ 97.2 97.2 97.5 97.3 87.5 98.6 98.6 97.5

Figure 6.27: Plot of the mean σ (standard deviation) depending on the observation distance
on the validation subset of the ApolloCar3D dataset.

the z-axis (depth direction) is greater than along the other two axes. This is understandable, as
determining the position along the axis perpendicular to the image plane is often more challeng-
ing. Due to the nature of monocular vision and image projection, depth information tends to be
less reliable, resulting in higher uncertainties. Figures 6.28 illustrates six examples of predictions
and the associated uncertainty of the estimated pose from a bird’s eye view. The uncertainty
in position (x, y) for each vehicle is depicted by its uncertainty ellipse. It is evident that cars
that are partially occluded or located further from the camera have larger uncertainty ellipses
compared to those that are closer and fully visible.
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Figure 6.28: Visualizations of the estimated pose and uncertainty are presented. Circles
indicate the estimated positions of the cars, while squares represent their ground truth posi-
tions. Colored rays depict the ground truth yaw angles, and grey fans illustrate the estimated

one-sigma yaw range. Ellipses denote the one-sigma position uncertainty.



Chapter 7

Conclusions

7.1 Summary

This dissertation has addressed challenges in the field of data-efficient and explainable machine
learning within the context of visual perception for autonomous vehicles. The research set out
with specific goals to enhance the functionality and efficiency of deep neural networks by focusing
on four primary objectives: efficient training on limited datasets, enhancing the explainability
and interpretability of Deep Neural Networks outputs, designing a DNN architecture for es-
timating 3D geometric features from monocular images, and improving DNN performance by
incorporating geometric constraints.

Chapter 2 introduced contributions to the field of object detection in autonomous driving. Ini-
tially, it presented a novel method for the visualization of spatial areas of interest
within the Faster R-CNN network. Additionally, the chapter detailed a guided learn-
ing procedure that was designed to enhance the performance of machine learning
models when training data was scarce. This approach utilised targeted feedback from the
visualization method to identify shortcomings in the model’s training regime and augmented the
training dataset with appropriate examples.

Chapter 3 highlighted advancements in neural network design and processing techniques within
the context of the estimation of semantic keypoints location. Three new neural network
architectures were introduced, specifically tailored for the precise detection of key-
points on an electric bus charger. The architectures were designed to preserve high spatial
resolution throughout the processing pipeline, which is needed for maintaining the precision of
keypoint localization. In addition to the architectural innovation, a new loss function was
developed that leverages knowledge of the 3D object model and geometrical envi-
ronment constraints. By incorporating 3D object models directly into the training process,
the network learned to predict keypoints that are geometrically consistent with the real-world
structure of the objects, thereby reducing estimation errors. Furthermore, this chapter presents a
neural network branch designed to estimate the uncertainty of keypoint coordinate
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predictions. By integrating uncertainty estimation directly into the neural network architec-
ture, the system provides a probabilistic measure of confidence in each prediction. This feature is
particularly valuable in autonomous driving applications, where decision-making processes must
consider the reliability of sensory and perception data to ensure safe and efficient operation.

Chapter 4 introduced contributions in neural network architectures and automated labelling tech-
niques, aimed at enhancing the precision of 3D spatial estimations from single images. Firstly, a
new neural network architecture was developed for the estimation of characteristic
points of cars in 3D space from a single image. This network allowed for the estimation
of 66 vehicles’ semantic keypoints with a mean error of less than 12 cm. Additionally, an au-
tomatic procedure for obtaining labels of car’s characteristic points in 3D space
was introduced. This procedure automated the typically labor-intensive and error-prone task
of manually labelling 3D points, thereby streamlining the training process and enhancing the
dataset’s quality. By automating this process, the network could learn from a consistently accu-
rate and richly annotated dataset, leading to improvements in model performance and reliability.
Furthermore, the chapter detailed the development of a new neural network architecture
designed specifically for estimating a dense 3D mesh of cars from a single image. This
architecture allowed for a reconstruction of vehicle geometry, which can be applied to applica-
tions requiring high fidelity spatial information such as advanced driver-assistance systems and
fully autonomous driving solutions.

Chapter 5 presented a processing pipeline designed for the estimation of the pose of
surrounding cars using a single monocular image. The pipeline integrates image process-
ing and machine learning techniques to determine the position and orientation of nearby vehicles,
a feature required for ensuring safe navigation and interaction in dynamic traffic environments.
Additionally, the chapter introduced a pose refinement procedure for correcting pose
estimation errors that often arise from outlier characteristic point estimations. This refine-
ment procedure effectively adjusts the estimated pose by identifying and mitigating the impact
of anomalous data points, thereby enhancing the reliability and accuracy of the pose estimation
process. Furthermore, the chapter detailed the application of the unscented transform to
propagate the uncertainty of keypoint estimations to the overall uncertainty of the
estimated pose. This mathematical approach allows to estimate pose uncertainty from the
keypoint 2D and 3D uncertainty by considering the non-linearities in the transformation from
image space to pose estimation. By implementing the unscented transform, the pipeline provides
a quantifiable measure of confidence in the pose estimations generated by the system, offering a
more robust and reliable system for autonomous driving applications.

Chapter 6 detailed the practical verification of attention visualization and guided learn-
ing procedure. Visualisation of the network’s attention allowed for deeper insights into model
behavior, which is useful for debugging and refining model performance. The application of
guided learning reduced the false positive detections without the need to acquire more data from
the target operational environment. This is particularly beneficial for niche applications in au-
tonomous driving such as docking to the charging station with electric city buses where acquiring
large labeled datasets can be expensive and time-consuming. This chapter presented also the
practical verification of pose estimation methods based on deep neural networks
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that incorporate uncertainty measurement. These methods were tested on real-world ap-
plications, including the docking of electric buses to charging stations and the estimation of the
pose of surrounding cars using a realistic dataset. The methods were successfully applied to
detect and estimate the pose of a bus in a bus charger coordinate system from a distance greater
than 30 meters, using a monocular camera. Based on these estimations, it was possible to plan
and execute a docking maneuver with an error margin of less than 30 cm. Additionally, the pose
estimation methods were applied to the task of determining the pose of surrounding vehicles
in real-world driving conditions. The proposed method achieved state-of-the-art results on the
public dataset ApolloCar3D, showcasing their robustness and accuracy.

7.2 Conclusions and thesis contribution

The algorithms presented in this dissertation evaluated experimentally on practical tasks make
contributions to the current state of the art in machine learning for autonomous driving. The
following contributions support the research theses:

1. A method for the visualization of spatial areas of interest within the Faster R-CNN ob-
ject detection network coupled with a guided learning procedure designed to enhance the
performance of machine learning models when training data was scarce.

2. A neural network that estimates uncertainty of keypoints 2D and 3D and method for
propagating these estimations to the pose uncertainty.

3. Three new neural network architectures tailored specifically for the precise detection of
keypoints on an electric bus charger.

4. A neural network capable of estimating the 3D car keypoint coordinates and shape repre-
sented as a dense mesh

5. A method for automatic labelling of keypoints 3D.

6. A loss function that leverages geometric constraints to improve the keypoint detection
network’s output.

7. A keypoint postprocessing procedure that corrects imprecise keypoint detections based on
geometric constraints.

8. A processing pipeline designed for the estimation of the pose of surrounding cars using a
single monocular image with pose uncertainty estimation

Considering the contributions presented above and the results of the experimental evaluation
of the aforementioned algorithms, the theses stated at the beginning of the dissertation can be
verified:

1. The results of experimental evaluations presented in Section 6.3 support the first hypoth-
esis, i.e. "Deep learning architectures that allow us to extract and visualise meaningful
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intermediate features make it possible to guide learning by augmenting the existing data
sets."

2. The results of experimental evaluations presented in Section 6.7 supports the second hy-
pothesis i.e. "Deep learning architectures allow us to describe the uncertainty of the geo-
metric features produced by the network."

3. The results of experimental evaluations presented in Sections 6.5.2 and 6.6, and the de-
scription of an algorithm in section 4.4 that led to results presented in section 6.5.3 support
the third hypothesis, i.e. "Using the available 3D models of observed objects makes it pos-
sible to learn geometric features from 2D images of these objects without exact labelling,
and improves geometric feature detection from 2D images of these objects."

4. The results of experimental evaluations presented in Sections 6.4.10 and 6.5 support the
fourth hypothesis, i.e. "The knowledge of the geometric constraints stemming from known
object models allows a deep learning architecture to decrease the number of falsely detected
features and increases the accuracy of feature location."

7.3 Future work

Building on the contributions of this dissertation, there are several avenues for advancing the re-
search in data-efficient and explainable machine learning for visual perception within autonomous
vehicles.

There is an opportunity to enhance the resolution and detail of car shape reconstructions by
integrating generative neural network models, such as diffusion models, into the current network
framework. By leveraging the capabilities of these novel generative models, it may be possible to
produce more detailed and accurate representations of vehicle geometries, which could improve
the overall effectiveness of the shape estimation process.

Enhancing the generalization capabilities of the pose estimation pipeline for surrounding vehicles
presents another promising area for future work. Utilising Variational Autoencoders for car
shape compression offers a novel approach to generate diverse vehicle shapes without requiring
extensive dataset expansions. By sampling and decoding from the latent space of a VAE, diverse
car shapes can be synthesised, potentially enhancing the robustness and adaptability of the pose
estimation models to different vehicle types and configurations.

Future research could also explore the integration of more complex geometric constraints into
the pose estimation process. This could include considering the relative pose of other vehicles
in the vicinity and incorporating temporal context to enhance the accuracy of pose estimations.
By understanding the interactions and relative positions of multiple vehicles, the pose estima-
tion algorithms could achieve higher precision and reliability, particularly in complex driving
scenarios.
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