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Abstract

Quantum computing leverages phenomena such as superposition, entanglement, and tunneling to

perform computations on quantum processors. Several quantum algorithms, including Grover’s

algorithm and the Quantum Approximate Optimization Algorithm (QAOA), have been developed

for solving optimization problems. However, limited research exists on the practical performance

of these algorithms when applied to real-world problems. Additionally, the community has

not yet developed high-level tools that facilitate both experimentation and the deployment of

quantum solutions to real-life applications. This doctoral thesis addresses the challenge of applying

quantum algorithms to different optimization problems. It provides detailed analyses of well-known

quantum algorithms such as QAOA, the Quantum Alternating Operator Ansatz, the Feedback-

based Algorithm for Quantum Optimization, and a novel approach involving the relaxation of

constraints. These methods are applied for solving selected classical optimization problems like the

Job Shop Scheduling Problem, as well as real-world optimization problems, such as Tactical Aircraft

Deconfliction and the Electric Motor Vehicle Charging Problem. Furthermore, several high-level

tools designed for users interested in quantum applications are introduced. These include a platform

for launching combinatorial optimization problems, the modular tool QCG-QuantumLauncher for

solving problems with quantum algorithms on real quantum hardware and a new decision support

tool for human air traffic controllers . The thesis presents a cohesive, self-propelling loop, where

research and application tools work symbiotically to advance the field of quantum computing for

solving optimization problems.
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Chapter 1

Introduction

Quantum computing is a field of science that studies the use of quantum phenomena to perform

computations. These phenomena include superposition, entanglement, and quantum tunneling. A

device capable of performing such computations in a universal sense, i.e., one that implements

a Quantum Turing Machine [Benioff, 1980], is called a quantum computer. The basic unit of

information in a quantum computer is a qubit, and the basic building blocks of operations are

quantum gates. In addition to universal quantum computers, there are many other quantum devices

that do not fully implement the Quantum Turing Machine but are used to execute specific types of

computations. These include, for example, quantum annealers and quantum bosonic samplers.

Optimization problems involve identifying the best subset of solutions based on chosen evaluation

criteria, while also ensuring that these solutions meet a specified set of constraints, making them

feasible. In this context, a solution refers to any assignment of values to decision variables. Opti-

mization problems can be classified into different types based on various factors. One classification

separates them based on the type of variables used, which can be continuous or discrete. A problem

is considered mixed if it involves both continuous and discrete variables. Optimization problems

can also be categorized by the nature of the solution set, which can be either finite or infinite.

Optimization problems, along with decision, search, counting, and function problems, form a class

of computational problems that are studied within the field of computational complexity, which

focuses on the efficiency of algorithms. Many optimization problems are hard to solve with existing

computers due to their inherent computational complexity.

Quantum computing is a relatively new field of science compared to classical computing. The first

quantum computers with only a few qubits were developed in the late 1990s [Chuang et al., 1998].

Building quantum computers is a difficult task due to various engineering challenges connected to

quantum mechanics. Consequently, the applications of quantum computing to solving optimization

problems are mostly limited to theoretical work and proof-of-concept implementations on Noisy

Intermediate-Scale Quantum (NISQ) computers [Preskill, 2018]. These implementations aim

to demonstrate the potential of quantum approaches, despite the challenges posed by noise

and decoherence in current quantum devices. By nature, quantum algorithms are probabilistic,

meaning they do not guarantee finding exact solutions. Instead, they return solutions with

certain probabilities, depending on the number of final measurement samples. For a high-level

perspective and information about quantum computing, one can refer to PSNC’s Quantum Report

https://quantum.psnc.pl/wp-content/uploads/2023/11/Raport_Quantum_ENG-1.pdf.

Undoubtedly, one of the two most famous quantum algorithms is Grover’s algorithm

[Grover, 1996]. This algorithm is one of the first to reveal the potential quantum advantage

in solving real-life problems. Grover’s algorithm is capable of finding an element in an unstructured

1
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2 Introduction

database in O(
√
N) function evaluations, which constitutes a quadratic speedup compared to

the best classical algorithm available [Bennett et al., 1997]. Due to its quantum advantage and

versatility, Grover’s algorithm is also used as a subroutine in more complex algorithms. For example,

it can be used to address optimization problems by combining Quantum Minimum Finding with

dynamic programming [Ambainis et al., 2019].

Even though current quantum computers can offer over a hundred qubits, which could theoreti-

cally demonstrate a quantum advantage over classical computers if the qubits were ideal, in practice,

their capabilities are limited to successfully running computations only on a few dozen qubits and

several dozen quantum layers [Lubinski et al., 2023]. This is far less than what is required to suc-

cessfully run Grover’s algorithm, let alone its extensions. Algorithms that seem to cope much better

with NISQ computers are so-called variational algorithms, with two prominent examples being

the Variational Quantum Eigensolver (VQE) [Peruzzo et al., 2014] and the Quantum Approximate

Optimization Algorithm (QAOA) [Farhi et al., 2014]. Both of these are hybrid classical-quantum

algorithms, meaning that the quantum operations are supported by classical computations.

Due to NISQ era limitations, current research and applications of quantum computing to

optimization problems can be categorized into three different groups:

• Application research dedicated mainly to deepening the understanding of popular algorithms
solving problems such as MaxCut [Zhou et al., 2020]. These have only narrow applications,

e.g., in the silicon industry.

• Applications focused on reapplying already established rules for problem formulation specific
to non-universal quantum devices, such as quantum annealers, to a broad range of problems,

for example traffic flow optimization or portfolio optimization [Yarkoni et al., 2022].

• Application research that transfers formulations developed for non-universal quantum devices
directly into universal paradigms for selected real-world problems, without conducting an

in-depth analysis or fully exploiting the potential of quantum computers, for example by

solving the tail assignment problem [Vikst̊al et al., 2020].

The number of papers on the considered topic that do not fall into these three groups is very

limited.

On the other hand, a healthy ecosystem encompassing elements like scientific research, in-

dustry application, newcomer training, software development, and hardware integration, all

of which are well-functioning, creates optimal conditions for a wide range of long-term ad-

vancements in the area. As for quantum computing, the community is actively working

on scientific research [Abbas et al., 2023], and gate-level programming tools are well devel-

oped [Javadi-Abhari et al., 2024]. However, there is a substantial need for industry applica-

tion and high-level abstractions, particularly those integrated with high-performance computing

[Schulz et al., 2022], to enable users to focus on applications rather than learning and implementing

technical details.

The following thesis addresses the aforementioned shortcomings in the applications of universal

quantum computing paradigms and the lack of high-level abstractions. The topic of this dissertation,

application of quantum computing approaches for solving optimization problems, is fulfilled in

a multifaceted manner. Firstly, the focus is on solving a well-known scheduling problem with

high applicability in real-life scenarios. Additionally, formulations for less-known problems are

introduced and solved predominantly using the QAOA and its variants on both emulators of

quantum computers and real hardware. For comparison, some results are benchmarked against
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those obtained from quantum annealers. This work is not limited to developing formulations to be

solved by quantum algorithms but also proposes a novel approach for addressing such problems.

The applications are ultimately delivered in the form of two specialized, yet user-friendly platforms,

both of which utilize a modular tool called QCG-QuantumLauncher, a modular tool developed for

solving quantum scenarios. Specifically, the added values of the doctoral dissertation include the

contributions listed below.

• Using the time-indexed representation of the Job Shop Scheduling Problem (JSSP) developed
by [Venturelli et al., 2015] and inspired by the educated-guess strategy demonstrated for the

MaxCut problem [Zhou et al., 2020], the Hamiltonian for both the decision and optimization

versions of the JSSP was formulated. Patterns in the variational parameters of QAOA were

analyzed, and the results were discussed, highlighting the relationship between measured

energy and achieved makespans of schedules. Additionally, different instances and the time

required for optimization using the proposed approach were examined. The early results were

presented during the 18th International Workshop on Project Management and Scheduling,

and the full results were published in a scientific journal (P2).

• Research on solving the JSSP using the QAOA was conducted. A new platform based on
QCG1 [Piontek et al., 2016] was developed, enabling non-experienced users to launch well-

known optimization problems, such as Exact Cover, MaxCut, and JSSP, on various quantum

computers and simulators. That platform development contributed to a software tool for

managing and solving multiple combinatorial optimization problems on various quantum

devices was developed. Named QCG-QuantumLauncher, the tool was further enhanced and

evolved into a modular platform for quantum scenarios, which was subsequently presented at

a scientific conference (P5).

• Addressing the potential future problem of electric vehicle charging due to their increased
numbers, a quantum approach to schedule and optimize their target charging locations on

a motorway was proposed. A collision matrix was introduced as an intermediate step in

formulating the problem Hamiltonian. The QAOA approach launched on a quantum simulator

was compared with D-Wave quantum annealer, and the results were published in a scientific

journal (P1).

• Building on the lessons learned from solving the aforementioned problem, the tactical decon-
fliction problem was investigated as part of the Quantum Air Traffic Management project.

The problem was formulated, quantum circuits were launched on both quantum simulators

and real quantum hardware, and different instances were compared, contrasting the standard

QAOA with the Quantum Alternating Operator Ansatz algorithm [Hadfield et al., 2019]. The

early results were presented during the 19th International Workshop on Project Management

and Scheduling, and the full results were presented at a scientific conference (P3).

• Further expanding research on the Quantum Air Traffic Management project and the tactical
deconfliction problem, a novel approach for formulating quantum Hamiltonians for variational

algorithms by relaxing constraints was proposed. Experiments were conducted on instances

with varying levels of difficulty, and the results were published in a scientific paper (P4).

• All research on the tactical deconfliction problem (P3, P4) contributed to the successful
completion of the Quantum Air Traffic Management project. As part of this project, a

1https://qcg.psnc.pl/

https://qcg.psnc.pl/
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supporting tool for human flight operators to perform aircraft deconfliction was developed.

This tool, named SkyDodge, can use gate-based quantum hardware, quantum annealers, or

photonic devices to perform the deconfliction.

The rest of the paper covers those contributions in greater details. Chapter 2 establishes the

necessary foundations of quantum computing. In Chapter 3, all the research work is described and

results are presented. The applications of the work are discussed in Chapter 4. Finally, Chapter 5

summarizes the work.



Chapter 2

Quantum computing

2.1 Quantum computations

In quantum computing, the basic unit of information is a qubit. Physically, a qubit can be, for

example, an ion in an electromagnetic trap or a photon. Mathematically, a qubit is a two-level

state that can be represented as a vector in a Hilbert space. Typically, to express qubits, we choose

a computational basis, and use Dirac’s bra-ket notation: |0⟩ = ( 10 ) and |1⟩ = ( 01 ). One property

that differentiates qubits from classical bits is their ability to be in a superposition of two basic

states. For a qubit |ψ⟩, we can write it as:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α denotes the amplitude that the qubit has with respect to the state |0⟩, and β denotes
the amplitude that the qubit has with respect to the state |1⟩. Amplitudes are physical values
that can be represented as elements from the set of complex numbers. They correspond to the

probability of a qubit collapsing to the corresponding state upon measurement, which is an action

aimed at observing and therefore determining a qubit’s state. For example, measuring a qubit that

is physically a photon can be achieved by passing it through a polarizing filter. Mathematically,

the probability of a state |ψ⟩ collapsing into a state |m⟩ after measurement is given by:

p(m) = ⟨ψ|M†
mMm |ψ⟩ , (2.2)

where Mm is an element from a set of measurement operators, satisfying the completeness

relation
∑

mM†
mMm = I, which ensures that the probabilities sum up to one, i.e.,

∑
m p(m) = 1.

For the qubit |ψ⟩, taking M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1| and performing simple calculations, we
achieve:

p(0) = α2, p(1) = β2, α2 + β2 = 1. (2.3)

Having a physical qubit, for example, an ion in an electromagnetic field, we can change its state

by applying a laser on it with a given frequency. Mathematically, this is equivalent to performing a

unitary evolution:

|ψ′⟩ = U |ψ⟩ , (2.4)

where U is a unitary linear operator. Unitary linear operators that we apply to qubits are

called quantum gates. For example, to transform a qubit in the |0⟩ state to an equal superposition,
we can employ the Hadamard gate, H = 1√

2

(
1 1
1 −1

)
, obtaining H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ = |+⟩. In a

5
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|0⟩ H •
|0⟩

Figure 2.1: Circuit definition of a Bell state |Φ+⟩.

similar fashion, we can deal with a set of qubits, called a quantum register. Having n qubits, we

can write H⊗n |0⟩⊗n
= 1√

2n

∑
x∈{0,1}n |x⟩ = |+⟩⊗n. Additionally, we often write |xy⟩ = |x⟩ ⊗ |y⟩ as

a shortcut for the tensor product.

The most distinctive property of qubits is the possibility to entangle them. Succinctly speaking,

entanglement constitutes a situation where two or more qubits cannot be considered and described

independently of each other. Moreover, by performing an operation on one qubit, we automatically

affect the other entangled qubits. The simplest entangled states are the Bell states, for example,

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩). To create entanglement gates, we usually use the two-qubit Controlled-NOT

gate (also called CX), CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X, where X = ( 0 1
1 0 ). Starting with two qubits

in the |00⟩ state, the |Φ+⟩ state can be achieved as follows:

|Φ+⟩ = CX(IH |00⟩) = 1√
2
(|00⟩+ |11⟩). (2.5)

However, it is more common to use quantum circuits as a description language for the evolution

of quantum states. The circuit evolution of Equation 2.5 is shown in Figure 2.1. There are many

more quantum gates and specific states that are frequently used. For a comprehensive list, the

reader is referred to well-known textbooks, e.g., [Nielsen and Chuang, 2001]. In general, any unitary

operator U can be written in the form of an evolution:

U = exp(iH), (2.6)

for a Hermitian operator H. Moreover, any Hermitian operator with dimension n2, n ∈ N can
be constructed from the sum of Pauli matrices with real coefficients:

X = ( 0 1
1 0 ), Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, I = ( 1 0

0 1 ). (2.7)

This is especially useful when constructing parameterized rotation operators. When we consider

the rotation of a qubit, we usually think about rotation around a specified axis of a qubit represented

as a Bloch sphere [Feynman et al., 1957]. For example, a θ-parameterized rotation around the

x-axis is defined by:

RX(θ) = e−i θ
2X =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
. (2.8)

Similar ideas apply for creating many-qubit rotation gates. For example, a 2-qubit rotation

about the ZZ axis has the following mathematical representation:

RZZ(θ) = e−i θ
2ZZ =




e−i θ
2 0 0 0

0 ei
θ
2 0 0

0 0 ei
θ
2 0

0 0 0 e−i θ
2



. (2.9)

Note that the RZZ gate is an entangling gate that splits the phases of the states |00⟩ and |11⟩
from the states |01⟩ and |10⟩.
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Sometimes, when we deal with n qubits, we write Zi1 . . . Zim , where i1 < · · · < im, m ≤ n, to

represent a term:

Zi1 . . . Zim = I . . . IZ I . . . IZ I . . . I︸ ︷︷ ︸
i1−1︸ ︷︷ ︸

im−1

. (2.10)

For example, for a quantum register of 5 qubits, Z1Z4 = IZIIZ.

For the purpose of this dissertation, two more theorems that are strongly interconnected

need to be mentioned. Firstly, quantum gates are universal, meaning there exist finite sets of

quantum gates that can be used to approximate any quantum operation to arbitrary accuracy.

This implies that a small, fixed set of quantum gates is sufficient to construct any quantum

algorithm, ensuring the feasibility of implementing complex quantum operations through sequences

of these elementary gates. Examples of such sets include parameterized rotation gates together

with the phase shift gate and CNOT gate, or the set comprising the Clifford set and the T gate

[Nielsen and Chuang, 2001]. However, the construction of some unitary operations might be costly

in some cases, meaning that an exponential number of basic gates might be needed. Fortunately,

there is the Solovay–Kitaev theorem [Kitaev, 1997], which states that we can approximate any

arbitrary one-qubit gate up to ϵ with only O(logc 1
ϵ ), where c is a small constant, using gates from

one of the universal sets. For an algorithm containing m CNOTs and unitary gates, the circuit

can be approximated with O(m logc m
ϵ ), which is believed to be a sufficient complexity for most

applications [Nielsen and Chuang, 2001]. These two theorems build the theoretical foundations for

the practicality of building real quantum computers, as most quantum hardware operates on some

discrete set of single-qubit gates and a limited number of double-qubit gates, which result in a

universal set.

2.2 Quantum algorithms

There are several criteria by which we can classify existing quantum algorithms. One such

criterion distinguishes quantum algorithms based on quantum hardware requirements. Algorithms

that necessitate many (on the order of thousands) high-quality qubits with error correction are

designed for so-called fault-tolerant quantum hardware. These include some of the most well-known

algorithms, such as Grover’s algorithm and Shor’s algorithm, which offer theoretical guarantees of

quantum speedup over classical algorithms. However, according to the most optimistic roadmaps of

companies engineering quantum hardware, it will take at least a decade to reach the fault-tolerant

era [IBM, 2023].

On the other side of the spectrum are algorithms applicable in the so-called Noisy-Intermediate

Scale Quantum (NISQ) era. These algorithms cope much better with noisy environments and error-

prone qubits that are likely to suffer from crosstalk or decoherence. The Quantum Approximate

Optimization Algorithm (QAOA) and the Variational Quantum Eigensolver (VQE) are examples

of such algorithms. These are hybrid variational algorithms, meaning they are essential by classical

computations that optimize variational parameters, which are crucial for the functioning of these

algorithms. However, this hybridity is not only needed for the NISQ era; algorithms are being

developed that exhibit synergy from the integration of fault-tolerant quantum hardware and High

Performance Computing (HPC). In fact, it is the classical computational power that allows for the

early adoption of nascent quantum approaches. The remainder of this subsection will review the

details of NISQ algorithms that are relevant to this dissertation.
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2.2.1 Quantum Approximate Optimization Algorithm

The QAOA is inspired by and designed to mimic the behavior of the adiabatic theorem

[Born and Fock, 1928]. This theorem states that a quantum system initially in an eigenstate

will remain in that eigenstate if changes to the system are applied slowly enough. The idea is

to prepare a state that is the ground state of a simple Hamiltonian and then slowly change this

Hamiltonian to one that describes the solution to a given optimization problem. After measure-

ment, we should then be able to observe a state that corresponds to a solution to our problem.

Mathematically, we can describe it as

H(t) =

(
1− t

T

)
HM +

t

T
HC , (2.11)

where HM is our initial Hamiltonian and HC is the final Hamiltonian. The slow changes are

performed by increasing t from t = 0 up to t = T . When considering optimization problems in

QAOA algorithms and their variants, HM is often referred to as the mixer Hamiltonian, while

HC is known as the cost (or problem) Hamiltonian. The two Hamiltonians in Equation 2.11

do not commute, so to perform Hermitian evolution (see Equation 2.6), the additional step of

Trotterization must be taken. Trotterization is described by the following formula:

eA+B = lim
p→∞

(
e

A
p e

B
n

)p
, (2.12)

where p is an integer that serves as an approximation constant. Further expanding the idea by

combining Equations 2.6 and 2.12, parametrizing a circuit with variational parameters controlled

by an optimizer launched on a classical computer, and assuming the initial eigenstate to be the

equal superposition of n qubits, we obtain the final QAOA formula:

|ψp(
−→γ ,−→β )⟩ = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+⟩⊗n. (2.13)

The |+⟩⊗n state is an eigenstate of the mixer Hamiltonian composed of Pauli-X gates, i.e.,

HM =
∑n

i=1Xi, and −→γ and −→
β are sequences of variational parameters. These variational

parameters are adjusted by a classical optimizer, which aims to minimize the expected value (also

known as energy):

min
−→γ ,

−→
β

⟨ψp(
−→γ ,−→β )|HC |ψp(

−→γ ,−→β )⟩. (2.14)

This equation represents a specific type of measurement known as a projective measurement, as

described in Equation 2.2.

For further insights about the vanilla QAOA, we refer the reader to the original paper

[Farhi et al., 2014] and other detailed analyses [Zhou et al., 2020].

2.2.2 Quantum Alternating Operator Ansatz

Even though the connection between QAOA and the adiabatic theorem is not mathematically

rigorous, it has proven beneficial to align initial states as eigenstates of the mixer Hamiltonian

[He et al., 2023]. However, some approaches diverge from the adiabatic framework by exploring

different interpretations. One such interpretation views the algorithm from a numerical perspective,

noting that the cost Hamiltonian distinguishes preferred solutions in phase, while the mixer

Hamiltonian is responsible for amplitude amplification and reduction. Another observation is that

the mixer Hamiltonian facilitates transitions between different states. This insight is utilized in the

Quantum Alternating Operator Ansatz (QAOAnsatz) algorithm, which aims to reduce the search
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space by restricting exploration to solutions that satisfy hard constraints [Hadfield et al., 2019].

This is achieved by designing the mixer Hamiltonian to preserve two key properties. Firstly, it should

preserve the feasible subspace, meaning transitions can only occur between states corresponding to

feasible solutions. Secondly, it should allow for full exploration of the states corresponding to feasible

solutions, meaning any pair of these states can be connected through unitary transformations

derived from the Mixer Hamiltonian.

The general formula for the Quantum Alternating Operator Ansatz (QAOAnsatz) is similar to

that of the standard QAOA, with one key modification: instead of starting the evolution from the

equal superposition state, we begin from a state that corresponds to one of the feasible solutions to

the problem (or a superposition of states corresponding to feasible solutions), denoted as |ψ0⟩:

|ψp(
−→γ ,−→β )⟩ = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |ψ0⟩. (2.15)

It is natural to consider states corresponding to feasible solutions when dealing with optimization

problems. However, for decision problems, finding a feasible solution already constitutes a solution,

and using the algorithm in such a case would not be meaningful. From an algorithmic perspective,

the key objective is to maintain the relationship between the initial state and the mixer Hamiltonian,

which ensures transitions within a subset of solutions and reduces the search space. Therefore, for

decision problems, the mixer Hamiltonian can be designed to reduce the search space by restricting

transitions between states to only a proper subset of the problem’s constraints.

2.2.3 Feedback-based Algorithm for Quantum Optimization

Optimizing variational parameters can be challenging, especially for deeper QAOA/QAOAnsatz

circuits with higher p. The method proposed by Magann et al. [Magann et al., 2022], called the

Feedback-based ALgorithm for Quantum OptimizatioN (FALQON), addresses this optimization

challenge by utilizing the circuit itself to determine the
−→
β parameter sequence while discarding the

−→γ parameter sequence. This approach makes the algorithm purely quantum, eliminating the need
for any classical optimization.

The algorithm starts by setting β1 = 0 and applying a single evolution e−iβ1HM e−iHC to the

equal superposition state |+⟩n. Subsequently, it measures the commutator observable between HM

and HC :

Ak = −⟨ψk|i[HM , HC ]|ψk⟩. (2.16)

This estimation is used to set Bk+1 = −wAk, where w serves as a hyperparameter. The process

continues by incrementally deepening the circuit and estimating the next βk+1 until k = p, marking

the end of the algorithm. Throughout this algorithm, HC is also estimated to monitor convergence

progress. Typically, when considering optimization problems, HM and HC are chosen to be the

same as in the standard QAOA.

2.3 Quantum computational complexity

To manage expectations about quantum computers, it is important to introduce the concept

of quantum computational complexity. This will help avoid the misconception that quantum

computers can solve exponential, unstructured problems in polynomial time.

Scientists often view the P vs NP problem as a challenge to uncover a deeply hidden structure

within NP-Complete problems, one that has yet to be discovered. Such a discovery could

potentially lead to a proof that P = NP, or conversely, that P ̸= NP. Unfortunately, there
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is little evidence supporting the idea that P might equal NP, and most scientists believe that

NP-Complete problems do not have any intrinsic structure. If this is the case, we can consider

a problem known to lack inherent structure, such as the unstructured database search, which

is addressed by Grover’s algorithm. This algorithm provides a quadratic speedup over classical

algorithms, specifically solving the problem in π
√
N
4 steps [Grover, 1996], where N is the data size.

Assuming N = 2n, the algorithm requires around 2
n
2 queries. While this is impressive and useful,

it does not represent a breakthrough in terms of complexity classes. Moreover, this result is known

to be optimal [Bennett et al., 1997], which suggests that quantum computers might also not be

able to solve NP-Complete problems in polynomial time. It is important to remember that this

statement is based on common-sense suggestions and opinions of the scientific community, rather

than definite proofs.

There are, however, some positive indications of quantum advantage over classical computation

from a computational complexity perspective. The hope is centered on the BQP class, which stands

for Bounded-error Quantum Polynomial time. This class describes problems that can be solved by

quantum circuits with a bounded probability of error in polynomial time. More specifically, it is

defined as the class of languages accepted by a quantum Turing machine in polynomial time, with

an error probability of at most 1
3 . It is known that BQP ⊆ BPP (Bounded-error Probabilistic

Polynomial time), and that BQP ⊆ PSPACE (problems solvable by a Turing machine using
polynomial space) [Bernstein and Vazirani, 1993], forming the following chain:

L ⊆ P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP. (2.17)

Although there exist some algorithms which demonstrate strict inclusions between partic-

ular classes from the chain under a quantum oracle, such as the Deutsch–Jozsa algorithm

[Deutsch and Jozsa, 1992], it remains unknown whether these inclusions are strict in general.

However, it is straightforward to see that P ⊆ EXP and L ⊆ PSPACE. The motivation to work
on quantum computing also arises from strong suggestions that P = BPP, as discussed for example

in [Impagliazzo and Wigderson, 1997]. Moreover, the famous Shor’s algorithm [Shor, 1994], which

solves factoring problem in polynomial time, suggests that BPP might not equal BQP, which

would formally reveal that computers are more powerful than classical ones for practical scenarios.

That being said, there is an expectation that the BQP class might solve some problems in NP

that are not in P (assuming P ̸= NP). Moreover, there are indications that the BQP class might
contain some problems that are outside NP, such as those in PSPACE.
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Research work

Referring back to the introduction, the goal of this dissertation is to contribute to the intersection

of quantum computing, optimization problems, and their applications. Considering the current

state of the art in research, along with the capabilities and limitations of quantum hardware and its

future prospects, the most suitable algorithm to develop and explore new solutions and applications

was the QAOA, along with its enhancements. At the time this work began, there was little research

on the application of QAOA to significant areas. Therefore, it was a natural decision to pave the

way for advancing this field by applying QAOA to complex, real-world optimization challenges and

exploring its potential to push the boundaries of current quantum computing methods.

3.1 Formulating combinatorial problems as cost Hamiltonians

The main idea behind using the QAOA algorithm to solve optimization problems is to construct the

problem Hamiltonian, which not only defines the quantum circuit but also serves as the cost function

for the classical optimizer. A close analogy to classical optimization is representing the problem in

terms of mathematical programming formulations, with objective criteria and variable constraints,

specifically binary variables. Writing the problem in a binary mathematical programming form

is also beneficial because the classical variables can be easily transformed to represent quantum

quantities in a well-established spin Ising model [Lucas, 2014]. Each variable x1, . . . , xn can be

replaced with the following linear operator:

xi =
I − Zi

2
. (3.1)

This approach is typically used when creating analogues from classical quadratic binary opti-

mization, as seen in quantum annealing, to gate-based quantum computers [Vikst̊al et al., 2020].

However, it is more common to directly define Hamiltonians or translate them from Boolean repre-

sentations using derived formulas [Hadfield, 2021]. The construction of the problem Hamiltonian is

particularly critical, as it also defines the circuit, as mentioned earlier. The different approaches to

defining such Hamiltonians are also a subject of this dissertation, and the results of the differences

between them will be discussed in the following sections.

One additional note to consider is that in classical mathematical optimization, the process

involves an optimizer working to minimize or maximize the cost function while ensuring that the

solutions remain within the feasible subspace, i.e., satisfying the constraints. In the standard QAOA

algorithm, however, optimization involves minimizing the cost function while also minimizing the

number of unsatisfied constraints. This approach effectively incorporates the optimization criteria

directly into the cost function, which is similar to the Lagrange multiplier method [Bertsekas, 2014].

11
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We will now briefly describe the application problems addressed in this dissertation and the

base Hamiltonians used for these problems.

3.1.1 Job Shop Scheduling Problem (JSSP)

The Job Shop Scheduling Problem (JSSP) is one of the most well-known scheduling problems,

with applications across various industries [Zhang et al., 2019]. The goal is to find the shortest

possible schedule, known as the makespan, for a set of operations assigned to different machines.

Operations within the same job must follow a predefined sequence. Additionally, the jobs are

non-preemptive. The paper P2 introduces a new Hamiltonian formulation for gate-based quan-

tum computers, which had not been presented before. This formulation draws inspiration from

previous works that approached JSSP using quantum annealing with a time-indexed representation

[Venturelli et al., 2015]. For a complete derivation of the Hamiltonian formulas, we refer the reader

to the original paper and present only the final outcome here.

Firstly, we need to constrain that each operation starts exactly once. The Hamiltonian

responsible for this constraint is formulated as follows:

HJSSP
1 =

∑

k

(
I −

∑

t

Zkt − I

2

)2

, (3.2)

where Zkt corresponds to k-th operation starting at time t in the time-indexed representation.

Secondly, we need to ensure that only one operation is processed on a machine at any given

time. Using the auxiliary set Rm (see, P2), this constraint is enforced by the Hamiltonian:

HJSSP
2 =

∑

m


 ∑

k,t,k′,t′∈Rm

I − (Zkt + Zk′t′ − ZktZk′t′)

4


 (3.3)

Lastly, we need a Hamiltonian to ensure that the predefined order of operations, each of length

lk, within each of the J jobs is maintained. This is accomplished by the Hamiltonian:

HJSSP
3 =

J∑

i=1




∑

ki−1<k<ki

t+lk>t′

I − (Zkt + Zk+1,t′ − ZktZk+1,t′)

4


 (3.4)

Summing these three Hamiltonians, we obtain a final Hamiltonian that fully represents the

decision version of the JSSP:

HJSSP
D = HJSSP

1 +HJSSP
2 +HJSSP

3 (3.5)

For the optimization version of the JSSP, we need to introduce an additional Hamiltonian that

adds a penalty based on the completion times, tk1
+ l1, tk2

+ l2, . . . tkn
+ ln, of the last operations

from each job, k1, k2, . . . kn:

HJSSP
4 =

J∑

i=1

1

2

(
I − Zki,tki

)
(J + 1)tki

+li (3.6)

Thus, for the optimization version of JSSP, the final Hamiltonian is:

HJSSP
O = HJSSP

1 +HJSSP
2 +HJSSP

3 +HJSSP
4 (3.7)
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3.1.2 Electric Motor Vehicle Charging Problem (EMVCP)

In contrast to the JSSP, the problem of charging electric motor vehicles (EMVs) on a motorway

does not have any standardized definitions. The paper P1 simplifies the problem to a decision

problem involving the scheduling of jobs on parallel, unrelated machines and explores multiple

scenarios. For instance, it examines the differences between treating a single charger as a charging

point versus treating an entire station as a charging point. While the paper explores both quantum

annealing and QAOA approaches, the problem instances and definitions had to be simplified for

the QAOA analysis.

In this paper, the Conflict Matrix (CM) was introduced for the first time. The Conflict Matrix

is a lookup table designed to assist in scheduling Electric Motor Vehicles (EMVs) and predicting

potential conflicts between them at a charging stations. It also serves as an auxiliary tool for

constructing Hamiltonians, with the final formulations given below.

We need to ensure that each EMV charges at one and only one station. The Hamiltonian that

enforces this constraint is formulated as follows:

HEMV CP
1 =

n∑

i=1

I −
s∑

j=1

mi∑

k=1


1

2
(I − Zijk)

s∏

j′=1,j′ ̸=j

mi∏

k′=1,k′ ̸=k

1

2
(I + Zij′k′)))


 , (3.8)

where Zijk corresponds to the ith EMV charging at station j and driving with mode k.

Additionally, we must ensure that the number of EMVs charging at a station at any given time

does not exceed the station’s capacity. The Hamiltonian that enforces this constraint is formulated

as:

HEMV CP
2 =

∑

p⊆s∈S:|p|=bj+1

1
2|p|

∏

i′jk′:xi′jk′∈p

(I − Zi′jk′), (3.9)

where S is the set containing collections of EMVs which would potentially conflict with the

ith EMV driving with mode k and charging at station j, for each such EMV, provided that the

number of potential conflicting EMV’s is greater than the stations’s capacity bj .

By summing these two equations, we obtain the final Hamiltonian for the problem:

HEMV CP = HEMV CP
1 +HEMV CP

2 . (3.10)

3.1.3 Tactical aircraft deconfliction problem

During the work on the Quantum Air Traffic Management (QATM) project led by Air Force

Institute of Technology, and the consortium partner Poznan Supercomputing and Networking

Center (PSNC)1, it was proposed to address the tactical aircraft deconfliction problem using

quantum approaches. This problem had not been previously tackled with quantum methods, with

most classical approaches relying on mixed-integer linear and nonlinear programming techniques

[Pelegŕın and d’Ambrosio, 2022]. In a nutshell, the tactical deconfliction problem is about predicting

and resolving aircraft conflicts in the airspace from 5 to 30 minutes ahead. A conflict is defined as

a violation of a so-called safety cylinder of one aircraft by other aircraft.

The main idea of the developed approach was to propose, for each of the n aircraft, a set of m

alternative maneuvers corresponding to changes in parameters such as flight speed, heading angle,

or flight level. Subsequently, for each pair of these alternatives, it was determined whether they

would conflict with each other. The results were recorded in a Conflict Matrix (CM), similar to the

1https://itwl.pl/en/news/430-quantum-technologies-in-itwl

https://itwl.pl/en/news/430-quantum-technologies-in-itwl
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one used in the EMVCP. To enable this approach for quantum optimization, two Hamiltonians

need to be formulated.

Firstly, each aircraft must choose one and only one maneuver. This constraint can be enforced

with the Hamiltonian:

HQATM
1 =

n∑

i=1

I −
m∑

j=1


1

2
(I − Zij)

m∏

j′=1,j′ ̸=j

1

2
(I + Zij′))


 . (3.11)

Secondly, if two maneuvers are chosen, there must no be a conflict between them, as is constrained

by the Hamiltonian:

HQATM
2 =

∑

i,j,i′,j′:CM(i,j,i′,j′)=1

1

4
I − 1

4
(Zij + Zi′j′ − ZijZi′j′). (3.12)

When we combine the two Hamiltonians, we obtain the final Hamiltonian that can be used to

correctly solve the tactical aircraft deconfliction problem:

HQATM = HQATM
1 +HQATM

2 . (3.13)

3.2 Performance of standard QAOA for solving optimization problems

The standard QAOA with default Hamiltonian formulations can be successfully used to solve

combinatorial problems, as demonstrated in papers P1 and P3. Both papers include performance

analyses on quantum hardware simulators, which have limited capabilities due to the exponential

costs of computational memory. However, as shown in P3, the results from the simulator do not

differ significantly from those obtained using real quantum hardware provided by PSNC.

For both quantum hardware simulators and real quantum hardware, the sizes of solvable

instances are currently limited to several dozen variables. For example, this corresponds to solving

instances with 5 EMVs for the EMVCP, where there is a 0.5% probability of measuring the feasible

solution on ibmq toronto, as reported in P1. Similarly, for the tactical aircraft deconfliction problem,

instances of size 5× 4 can be solved with a probability of no more than 0.01% on ibmq torino, as

shown in P3. These instance sizes are significantly smaller compared to what can currently be

addressed by specialized quantum annealers, which are capable of solving instances with up to 50

EMVs.

Both papers P1 and P3 highlight the importance of selecting the appropriate QAOA depth, as

deeper circuits (those with larger p) more closely approximate adiabatic evolution and, in theory,

might yield better results. However, on real quantum hardware and noisy simulators, deeper circuits

are more susceptible to noise, decoherence, and crosstalk. The paper P1 demonstrates that the best

results are achieved with circuits of depth p = 2, as circuits with depth p = 1 do not approximate

well, and circuits with depth p = 3 or more are unable to find feasible solutions. It is important to

note, however, that the increase in circuit depth does not significantly affect the computation time

for optimizing variational parameters; for example, the computation time for depth p = 5 is only

1.43 times greater than for depth p = 1.

The final takeaway from the experiments on standard QAOA is that careful attention must be

paid to the formulation of the problem Hamiltonian, as the success probability can vary significantly

with changes in the instance structure, even if the instance size remains the same. In particular, the

experiments reported in P3 for instances of size 12 variables showed that it is much easier to find

feasible solutions when there are more aircraft and fewer maneuvers. Conversely, it is 2 to 3 times
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harder to find feasible solutions when there are fewer aircraft and more maneuvers, even though

the product of these two quantities remains the same as in the previous case. However, the switch

from decision problems to optimization problems does not seem to introduce additional difficulty

in solving the problem, as shown in P2. This is expected since the Hamiltonians for decision and

optimization problems in this context differ only in one-qubit terms and do not introduce any

additional entanglements. This same pattern can be applied to other optimization problems, such

as the tactical aircraft deconfliction problem, as described in P3.

3.3 Hybrid classical-quantum QAOA approach

The close connection between QAOA and adiabatic evolution should also be evident in the behavior

of variational parameters. Building on Equations 2.11 and 2.13, we can conjecture that the

sequence of variational parameters −→γ should increase with circuit depth, while the sequence −→β
should decrease with increasing depth. This pattern was first described by [Zhou et al., 2020],

who proposed an approach that capitalizes on this property by searching for optimal variational

parameters for shallow QAOA circuits, interpolating them, and then using them as initial seeds for

optimization in deeper QAOA circuits. This approach was later verified and applied to the Tail

Assignment Problem by [Vikst̊al et al., 2020].

This approach naturally suggests a synergy between quantum and classical hardware that

can be exploited. The paper P2 demonstrates the utilization of High Performance Computing

(HPC) resources available at PSNC to find optimal variational parameters for the JSSP case.

The paper first introduces a method to visualize optimal variational parameters using energy

landscapes, illustrating that this property also applies to the JSSP. It then presents the results of

such interpolations, starting from a QAOA depth of p = 3. For example, the paper reports up to a

6.5-fold decrease in optimization time between depths p = 3 and p = 4, provided that the optimal

parameters found for a QAOA circuit of depth p = 3 are used as initial optimization points for

depth p = 4.

A related issue worth mentioning is the connection between energy levels and the quality of

solution when dealing with optimization problems. Just as in classical artificial intelligence, where a

cost function is minimized or maximized, energy is minimized in quantum optimization, as derived

in Section 2.2.1. However, when the probability distribution is considered, understanding this

relation can be challenging for those focused on practical applications. Therefore, visualizing this

connection, as demonstrated in P2, can be beneficial for a clearer understanding. The results show

that, in some cases, infeasible solutions may have lower energy than feasible solutions, particularly

in makespan optimization. Nonetheless, the general rule that lower energy corresponds to a higher

probability of obtaining high-quality solutions remains valid. Moreover, the analysis highlights

the potential for tuning decision parameters, such as the maximum time T for JSSP instances, to

improve results.

3.4 Pure quantum optimization

The compute resources and overall summed computation time required for the approach described

in Section 3.3 are significantly high, reaching over 180 CPU days of simulated QPU to find optimal

variational parameters for some instances. On the other end of the spectrum, there is the idea

of removing the classical part entirely, with one such approach being the FALQON algorithm

mentioned in Section 2.2.3. Although never published, experiments on the FALQON algorithm
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Figure 3.1: Exemplary energy results for the FALQON algorithm solving Exact Cover instances as a function of
cumulative processed circuit layers. Left: comparison of different values of the parameter δt. Right: comparison of
two optimization processes with the best δt parameters against standard QAOA with depth p = 10.

have been described in various presentations and seminars. A summary of these experiments which

are relevant to this dissertation is presented in Figure 3.1.

The results indicate that the FALQON algorithm can achieve significantly lower energy levels

compared to standard QAOA. However, it is important to note that while the number of QAOA

layers remains constant throughout the algorithm, FALQON requires iterative circuit deepening,

which increases the probability of noise affecting the outcomes. The results shown in Figure 3.1

were obtained using ideal simulators, meaning they should be considered as a potential roadmap

for future optimization rather than a practical solution on current NISQ hardware.

3.5 Reducing the search space

Another degree of freedom that might be explored to further improve results in quantum optimization

is the approach to integrate hard constraints into the mixer Hamiltonian using the QAOAnsatz

algorithm, as described in Section 2.2.2. This approach reduces the search space, increasing the

probability of measuring a feasible solution, albeit at the cost of adding more entangling gates to

the circuit. Not all hard constraints need to be integrated into the mixer Hamiltonian, as it may

not be beneficial for every constraint. For decision problems, including all constraints is generally

not applicable. However, for the reference problems discussed in Sections 3.1.1, 3.1.2, and 3.1.3, we

can extract a subset of constraints to incorporate into the mixer Hamiltonian, and this approach

has proven to be quite effective.

For the Tactical Aircraft Deconfliction problem, embedding the hard constraint that each aircraft

performs exactly one maneuver into the mixer Hamiltonian increased the probability of measuring

a feasible solution in the RCP instance with 5 aircraft, each with 3 alternative maneuvers, from

11.69% to 77.33%, representing an over sixfold increase, as shown in P3. However, this approach did

not significantly improve the overall shape of the probability distribution in the optimization aimed

at minimizing the total number of changes required to the original flight schedule. Mathematically,

it is enought to replace the standard mixer Hamiltonian with:

HM =

n∑

i=1

XimXi1 + YimYi1 +

m∑

j=1

XijXij+1 + YijYij+1. (3.14)

In other problems, such as the JSSP and EMVCP, the one-hot constraint can be incorporated

in the same way as it was for the Tactical Aircraft Deconfliction problem. Alternatively, other
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problem-specific constraints may require different approaches, such as controlled operations, which

are described in more detail in [Hadfield et al., 2019].

3.6 Relaxation of problem formulations

At first glance, it may seem counterintuitive, but taking the opposite approach to the one described

in Section 3.5 yields similar results. Specifically, relaxing the problem formulation to consider a

broader range of solutions as feasible, while simplifying the number of entanglements, also appears

to deliver better outcomes compared to the standard QAOA approach.

The entirely novel approach, described for the first time in P4 relaxes the entanglement-heavy

constraint that forces aircraft to perform one and only one maneuver, by allowing aircraft to

perform more maneuvers. More precisely, the Hamiltonian from Equation 3.11 is replaced by the

Hamiltonian representing the NOT XOR function:

HQATM
NOT XOR = − 1

2I +
1
2Z1Z2 . . . Zm. (3.15)

.

With this modification, a performance improvement is evident not only in comparison to

standard Hamiltonian formulations but also to QUBO formulations that include at most second-

degree entanglements. For instance, in a scenario involving 3 aircraft and 5 maneuvers, the paper

reports a probability of measuring a feasible solution at 0.0009%, compared to 0.0007% for the

QUBO approach and 0.0001% for the standard formulation, within a particularly challenging

setup where only 5 feasible solutions exist out of 215. These results strongly suggest that universal

quantum computation may become more preferable in the future than quantum annealers.





Chapter 4

Application Results

Except for the most basic concepts and a few well-known algorithms, quantum computing is generally

considered challenging to learn, particularly for those without a strong theoretical background in

mathematics, physics, or computer science. This is especially relevant in the context of industry

applications, where engineers aiming to optimize their processes may not have the time or inclination

to delve deeply into quantum computing to evaluate its applicability to their specific use cases.

This chapter of the dissertation focuses on the tools developed during the four-year PhD studies

period, including both applications created for the internal use of the Poznan Supercomputing

and Networking Center and products developed for external clients, as well as outcomes of public

projects. All the developed solutions are collected and accessible on PSNC’s quantum website,

https://quantum.psnc.pl/en/

4.1 PSNC Hybrid Classical-Quantum Platform for Optimization

Algorithms

As a consortium member, PSNC participated in the EuroHPC PL project1 led by Academic

Computer Center CYFRONET AGH, which aimed to build national infrastructure for large-

scale computing for research and industry. PSNC, as the consortium partner, was responsible

for developing a platform for quantum operational research and discrete optimization, as well

as acquiring access to and purchasing infrastructure for quantum combinatorial optimization.

The former, with a Technology Readiness Level (TRL) [Héder, 2017] of 9, was a central focus

of the applied research in this dissertation. The project’s objectives were met by extending and

integrating the existing QCG software stack [Piontek et al., 2016], and where necessary, developing

new components.

During the development of this project, a web access layer was created to embed application

templates and problem-oriented applications, offering a flexible and customizable platform for

various use cases. This platform was built on the QCG-Portal component, enabling users to

view, control, and monitor jobs through a web-based interface. It was further integrated with

QCG-Templates, allowing for customized application views through parameterization. Additionally,

QCG-API and QCG-Agent were employed for authorization and job submission. Figure 4.1 provides

a high-level overview of the QCG software stack.

The developed platform includes several predefined graphical applications that allow users to

define instances of selected and implemented combinatorial optimization problems, such as the

MaxCut problem, Exact Cover problem, and the JSSP. The interface allows users to specify instance

1https://www.eurohpc.pl/
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Figure 4.1: High-level view of the QCG software stack developed by PSNC (for more details, see https://qcg.
psnc.pl/qcg-building-blocks/).

size and type using an intuitive graphical or text-based interface, or by loading pre-existing data

from a file. Additionally, the platform supports the submission of generic computational tasks for

any optimization problem by entering a QUBO matrix via the text interface or uploading it from

a file. Users can then select the architecture on which the problem will be executed, including

real quantum hardware or quantum simulators deployed during the PRACE-LAB2 project2 led by

PSNC. Multiple additional options allow users to choose the appropriate optimization algorithm

and adjust its hyperparameters. It is also worth noting that the classical parts of the hybrid

algorithms have been prepared for parallelization, enabling their execution on HPC clusters or

high-performance computers, which significantly accelerates calculations. A screenshot showing the

submission of a MaxCut instance is presented in Figure 4.2.

Applications for selected discrete optimization problems are accessible through the QCG-Portal,

which has been adapted and functionally extended for the project. The QCG-Portal also serves as

a tool for resource management, user authentication, task submission to the queuing system, and

retrieval of metadata for submitted tasks. An exemple list of submitted tasks, along with their

statuses and metadata, is shown in Figure 4.3. The developed templates within the platform also

facilitate the analysis of task results via an interactive graphical interface, which presents results in

the form of charts tailored to the specific problem, algorithm, and quantum architecture.

Note that the QCG components required additional enhancements to fully support quantum

use cases, and views specific to these cases had to be implemented. One advanced tool that needed

to be developed from scratch was the QCG-QuantumLauncher (QCG-QL). This tool serves as the

backend of quantum algorithms enabling easy execution of combinatorial problems on quantum

computers using quantum algorithms. The QCG-QL tool is further detailed in Section 4.3

4.2 Quantum-based decision support tool for air traffic control

The EuroHPC PL project was focused on providing users with a tool for solving selected combi-

natorial optimization problems or custom QUBO matrices on quantum machines. While these

solutions were successfully implemented during the project, certain scenarios required more detailed

and specific integration with existing processes. Such was the case in the Quantum Air Traffic

Management (QATM) project3 (TRL 6), where a quantum solution was developed to support air

2https://prace-lab2.pl/
3https://itwl.pl/en/news/430-quantum-technologies-in-itwl

https://qcg.psnc.pl/qcg-building-blocks/
https://qcg.psnc.pl/qcg-building-blocks/
https://prace-lab2.pl/
https://itwl.pl/en/news/430-quantum-technologies-in-itwl
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Figure 4.2: View of the QCG-Portal template for submitting the MaxCut problem for solving on a quantum
computer.

Figure 4.3: View of the QCG-Portal listing submitted jobs, their statuses and metadata.

traffic controllers. The gate-based component of this solution was addressed in the application part

of this dissertation and is a natural continuation os the work described in Section 4.1.

The product developed during the project consists of three modules: the quantum backend,

which processes input data about aircraft and outputs a solution to the problem, a QCG-Template

accessible through the QCG-Portal, which enables launching computations on quantum hardware

or classical simulators and SkyDodge, an interactive interface that monitors the airspace situation

and displays potential solutions found by quantum machines. The quantum backend is based on
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Figure 4.4: View of the QCG-Portal template for submitting the tactical aircraft deconfliction problem for solving
on a quantum computer.

the research published in papers P3 and P4, which are described in Sections 3.2 and 3.5, and also

utilizes the QCG-QL tool (paper P5) described in Section 4.3.

The quantum backend is further divided into two submodules: the generator submodule and

the deconfliction submodule. These submodules are integrated to operate in a loop. The generator

creates air traffic scenarios with conflicts and generates possible routes for aircraft. These routes

are then sent to the deconfliction submodule, which identifies conflicts and uses quantum hardware

to select conflict-free routes that meet additional constraints. The process repeats, with the

generator updating scenarios, adding emergencies (such as storms), and generating new routes

until the simulation ends. The deconfliction submodule also allows for the assignment of weights to

routes based on user preferences, enabling optimizations such as minimizing fuel consumption or

prioritizing certain flights. This approach results in high flexibility in managing airspace situations

and enables near-real-time analysis and conflict resolution.

The good practices established during the work on the EuroHPC PL project (see Section 4.1)

facilitated the efficient design and implementation of the QCG-Portal view. The results of this

work, specifically the submission view, are shown in Figure 4.4. This interface allows users to

submit jobs on various quantum architectures, including the gate-based architecture, which is a

part of this thesis. Additionally, users have the ability to generate instances of a chosen number of

aircraft and maneuvers and to select control parameters such as feedback loop time.

The visualization system, SkyDodge, operates in replay mode and processes the entire air traffic

scenario until its conclusion. The system can visualize aircraft routes, highlight conflicts, display

selected alternative routes, adjust playback speed, rewind the scenario from a chosen time, filter

subsets of aircraft, and present additional flight and sky condition information. It is designed to

clearly show the actions of the controller or deconfliction system and enable detailed analysis of

the decisions made. A screenshot of one potential conflict scenario and its resolution is shown in

Figure 4.5.
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Figure 4.5: A screenshot of Skydodge module showing an exemplary conflict scenario and its resolution made by
quantum hardware in the QATM project.

4.3 QCG-QuantumLauncher: a modular toolkit for managing quantum

application scenarios

Initial experiments aimed at exploring the capabilities of quantum technology revealed a significant

lack of high-level software solutions to facilitate conducting such experiments. Firstly, aside from

the basic rules for Hamiltonian formulation in optimization problems, there was no tool available to

automate this process, necessitating manual translation. This led to the development of an internal

tool for translating logical Boolean functions into Hamiltonians, called Hampy. Secondly, for each

different experimental approach, the entire workflow, including data reading, quantum backend

selection, algorithm selection, results saving, etc., needed to be reimplemented. To simplify this

process, a programming library called QCG-QuantumLauncher (QCG-QL) was developed, which

eventually absorbed Hampy and evolved into a mature and modular solution for solving classical

problems using quantum algorithms on quantum hardware.

The primary benefit of using QCG-QL, evident from the outset, is the significant simplification

it provides in executing quantum algorithms to solve specific problems across various quantum

machines. One notable advantage is the substantial reduction in the amount of code required.

For typical experiments, QCG-QL reduces the code from several hundred lines to just a few. For

instance, a typical implementation of QAOA solving JSSP on a gate-based quantum computer,

including simple result saving, usually requires around 400 lines of code. Using QCG-QL requires

writing only 5 lines of code.

The reduction would be less impressive if QCG-QL merely wrapped specific blocks of code

into callable functions or classes. However, QCG-QL offers full modularity and flexibility. Its

key advantage over similar quantum software libraries is the ability it gives quantum engineers to

effortlessly switch between different quantum architectures. With just a single line of code, users

can switch from a gate-based quantum computer to a quantum annealer or bosonic sampler. The

same applies to switching between optimization problems or algorithms. All the required processes

are handled seamlessly by QCG-QL, with minimal user input.
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Although the tool was first publicly presented recently during the Parallel Processing & Applied

Mathematics conference (P5), it had already been employed for internal use. QCG-QL has not

only proven invaluable in conducting experiments for the papers P1, P3, and P4 but it also serves

as the quantum block for complete products and project outcomes described in Sections 4.1 and

4.2. With its high flexibility and extensibility, it enabled the implementation of a proof-of-concept

integration of HPC and QC resources to develop a hybrid HPC-QC algorithm, which is described in

detail in Section 4.4. Furthermore, QCG-QL serves as a foundation for future HPC-QC integration

projects, such as EuroQCS-Poland4. Having demonstrated its value in multiple areas, QCG-QL can

be regarded as an efficient tool for applying quantum computing approaches to solve optimization

problems.

The implementation details of QCG-QL, along with the specific usage and description of its

three core components, Backend, Algorithm, and Problem, are discussed in detail in paper P5.

4.4 QCG-QL extensions for solving combinatorial problems on hybrid

HPC-QC systems

One particularly important area of interest recognized by the community is the development of hybrid

HPC-QC algorithms. Quantum computers are unlikely to perform computations independently.

Instead, classical and quantum computers will work in synergy. Quantum computers will accelerate

certain HPC tasks, while quantum computations will, in turn, require HPC support for implementing

specific algorithms [Callison and Chancellor, 2022].

For this specific, yet broad area, QCG-QL also demonstrates its applicability. In conjunction

with QCG-PilotJob (QCG-PJ), a QCG service designed for the efficient execution of multiple

tasks within a single allocation, it was employed to develop a hybrid algorithm that leverages

HPC resources to accelerate the process of finding optimal variational parameters for the QAOA

algorithm. Finding these optimal QAOA variational parameters is challenging and computationally

expensive, as outlined in Section 3.3. In the approach mentioned, the computational load is uneven,

with the majority of computations concentrated at the initial step, where parallel multipoint start

search is used to optimize parameters for QAOA at a depth of p = 3. Moreover, the approach has a

significant flaw in that it requires setting the number of initial points at the start of the algorithm.

This can lead to inefficiencies, as unnecessary calculations may be performed if the optimal set of

variational parameters is found early. Conversely, if the number of initial points is insufficient, the

algorithm might fail to find the optimal variational parameters.

The new approach employing QCG-PJ together with QCG-QL operates as follows: To find

optimal parameters for shallow circuits (with depth p = 3), multiple small processes are executed in

parallel. If any process identifies parameters that yield lower energy than the current lowest, those

parameters are interpolated, and all available resources are then focused on optimizing a longer

circuit. At this point, no further small processes are initiated. Interpolation and optimization

continue until the desired circuit depth is reached. However, if the interpolated parameters prove

inadequate for deeper circuits, QCG-PilotJob triggers another set of small processes to search for

new candidate parameters. The schematic view of this processing flow is depicted in Figure 4.6

This approach ensures efficient use of resources within the allocation, as deeper circuits typically

require more computational power than shallower ones. Note, that each block optimizing variational

parameters, as shown in Figure 4.6 represents a hybrid classical-quantum QAOA optimization.

Since quantum computations are expected to become much faster than classical ones, access to

4https://qt.eu/news/2022/european-quantum-computing-simulation

https://qt.eu/news/2022/european-quantum-computing-simulation
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Figure 4.6: A schematic view of a processing flow of the hybrid classical-quantum model using QCG-PJ and
QCG-QL. Each blue block represents a separate optimization process of a hybrid QAOA algorithm.

only a few quantum resources is sufficient to spawn dozens of processes. A quantum computer can

be shared among classical processes and isn’t idle during classical optimization, which would occur

if each quantum resource were tied to a single classical processing unit.

Although large-scale hybrid HPC-QC computations are not feasible in the current NISQ era,

the proposed approach lays the groundwork for such computations using quantum simulators, as

demonstrated in the proof-of-concept solution. This approach was presented at the Messe München

Laser World of Photonics workshop in 2023.





Chapter 5

Summary

This dissertation summarizes the work conducted during a 4-year PhD study. It begins by reviewing

the current state of the field and diagnosing key issues. Subsequent research led to the development

of specialized tools, which were then used to accelerate further investigations, creating a loop that

culminated in real-world applications. Although not all challenges in the field are resolved, the thesis

provides multiple advancements, particularly in terms of scientific knowledge, tools supporting users

and applications, and the applications themselves, offering substantial and coherent contributions

to the field. The scheme summarizing these advancements is depicted in Figure 5.1

The field of quantum computing suffers from insufficient interest in real-world applications of

quantum approaches to optimization problems. Most existing solutions address problems with

limited applicability, such as Max-Cut. This issue partially stems from the relative newness of

quantum computing, but also from the high entry barrier for industry professionals, as there are no

tools with a high level of abstraction to support performing experiments. The situation is further

complicated by the existence of multiple quantum paradigms, each resulting in different quantum

architectures, all of which behave differently and necessitate dedicated approaches.

The first knowledge gap addressed during the work on this thesis was experimenting with the

widely used NISQ algorithm, QAOA. Specific Hamiltonians were formulated for the JSSP (P2), the

EMVCP (P1), and the Tactical Aircraft Deconfliction Problem (P3). Experiments were conducted

to investigate QAOA, including an analysis of educated guess strategies (P2), a comparison with

quantum annealing (P1), and an examination of the relationship between energy and makespan in

the measured JSSP schedules (P2). These experiments have demonstrated the practical application

of quantum computing for solving real-world optimization problems. Additionally, they (P1, P3)

marked the early internal use of QCG-QL and contributed to the design and implementation of the

quantum backend for the EuroHPC PL portal interface, as well as the successful completion of the

QATM project.

During the work, enhanced variants of QAOA were also examined. The purely quantum

optimization enabled by the FALQON algorithm was found to outperform QAOA (Section 2.2.3),

particularly for long circuits, which is not feasible with NISQ devices. The QAOAnsatz emerged as

another promising alternative, demonstrating improved performance over QAOA by incorporating

a subset of hard constraints into the Mixer Hamiltonian (P3). Conversely, the novel approach that

contrasts with the QAOAnsatz by focusing on exploring more solutions also proved superior to

the standard QAOA approach (P4). Moreover, this approach proved to be more powerful than

the standard QUBO method commonly used for computations on quantum annealers. All of these

accomplishments were, once again, greatly facilitated by the previously developed tools such as

QCG-Hampy and QCG-QL.
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Figure 5.1: Summarized schema of the accomplishments described in this thesis. For clarity, the connections from
QCG-QuantumLauncher to the papers P1, P3, and P4, which suggest its usage in experiments, are omitted.

As mentioned at the beginning of this section, the research work was interwoven with application

development, creating a self-propelling loop. The main driving force of this loop was QCG-QL,

which originated from the need for more efficient research (Section 4.3). The QCG-QL was then

used to facilitate further research (P1, P3, P4), and ultimately became a subject of interest to a

broader audience (P5). Firstly, QCG-QL solved the problem of code redundancy when performing

many experiments with different problems, algorithms, or quantum computers. Secondly, QCG-QL

provided a high-level abstraction layer between potential users and the implementation details,

while still offering backdoors for more advanced researchers who might want to conduct more

sophisticated investigations by allowing them to inherit from base QCG-QL classes.

QCG-QL was one of key software components in two projects, namely the EuroHPC PL project

and the QATM project. The EuroHPC PL project (Section 4.1) concluded with the design and

implementation of a platform for combinatorial optimization problems, where users interested in

solving these problems could use a graphical interface for task definition, and easily access and
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utilize available quantum devices provided and supported by PSNC. The platform was integrated

with the QCG-Portal, enabling job organization, result analysis, and monitoring tools on PSNC

computing resources. The successful completion of the EuroHPC PL project was primarily made

possible by the foundational research on quantum combinatorial optimization, particularly the

work presented in paper P2.

The QATM was the second project that concluded successfully, with the quantum backend

being at the heart of the delivered solution (Section 4.2). The quantum solution described in P3

allowed for tactical aircraft deconfliction using quantum algorithms, with possible optimization

criteria such as minimizing fuel consumption or minimizing the number of trajectory changes for

high-priority flights. Moreover, environmental factors such as storms and administrative border

constraints were also taken into account. The quantum solution was implemented to run from

the QCG-Portal being a natural enhancement of the solutions developed at PSNC. Moreover, a

dedicated decision support tool called SkyDodge was developed to visually analyze the deconfliction

process in replay mode, which could ultimately serve as a supporting tool for controllers performing

manual tactical aircraft deconfliction. Enhanced experimental analysis done during the project led

to another publication, P4

There are many avenues of research and application that this work could be extended to.

However, two branches are of particular interest and are currently being explored. The first involves

further investigation into relaxing problem formulations to simplify the Hamiltonian, thereby

reducing the number of gates, which results in less noise impact and better measurement outcomes.

The work presented in paper P4 only touches on what might be possible, merely by substituting

one-hot encoding with the NOT XOR function for the tactical aircraft deconfliction problem. The

research plans include constructing a set of such possible substitutions and publishing a paper

with precise guidelines on how to use these simplifications and relaxations, together with specific

examples of optimization problems.

The second avenue for future work, this time concerning applications, is to design and implement

an enhanced version of QCG-QL, tentatively titled QCG-QL2.0. This tool fits naturally into the

future roadmap of PSNC and corresponds to upcoming projects that PSNC is set to participate in.

QCG-QL2.0 would not only manage the use case of solving problems using algorithms on a quantum

computer but would also handle more complex workflows, particularly multi-GPU and multi-QPU

workflows. For this purpose, additional integration with QCG-PilotJob, a Python service that

facilitates the execution of many tasks within a single SLURM allocation, would be necessary.

Combined with user accounting, asynchronous execution, and hardware-agnostic interfaces, this

would result in user-friendly, pythonic software, a general-purpose, scalable tool for researchers and

engineers to launch any scenario involving quantum hardware with an arbitrary multi-platform

hardware setup.

Additional paths for future research include, in no particular order, comparing the FALQON

algorithm with the QAOA algorithm, investigating potential algorithms that facilitate synergy

between HPC and quantum computing, applying for a project to advance the QATM project to a

higher TRL, or reapproaching the tactical aircraft deconfliction problem to provide the model with

fully quantum trajectory recovery or continuous-variable optimization.

Additional paths for future application include, in no particular order, integrating deconfliction

capabilities within SkyDodge, integrating QCG-QL with QCG-PilotJob, and incorporating low-level

hardware access and control into QCG-QL2.0.
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Abstract: In this paper, the problem of charging electric motor vehicles on a motorway is considered.
Charging points are located alongside the motorway. It is assumed that there are a number of vehicles
on a given section of a motorway. In the motorway, there are several nodes, and for each vehicle,
the entering and the leaving nodes are known, as well as the time of entrance. For each vehicle, we
know the total capacity of its battery, and the current amount of energy in the battery when entering
the motorway. It is also assumed that for each vehicle, there is a finite set of speeds it can use when
traveling the motorway. The speed is chosen when entering the motorway, and cannot be changed
before reaching the charging station. For each speed, there is given a corresponding power usage; the
higher the speed, the larger the power usage. Each vehicle can only use one charger, and when its
battery is full, the amount of energy is sufficient for reaching the outgoing node. We look for a feasible
solution to the problem, i.e., a solution in which no vehicle has to wait for a charger. The problem
is formulated as a problem of scheduling independent, nonpreemptable jobs in parallel, unrelated
machines under an additional doubly constrained resource, which is power. Quantum approaches to
solve the defined problem are proposed. They use the quantum approximate optimization algorithm
and the quantum annealing technique. A computational experiment is presented and discussed.
Some conclusions and directions for future research are given.

Keywords: electric motor vehicle; battery charging; power; energy; scheduling; parallel unrelated
machines; quantum computing; quantum approximate optimization algorithm; quantum annealing

1. Introduction

The interest in electric motor vehicles (EMVs) in the world is growing rapidly. Accord-
ing to the report of the Polish Alternative Fuels Association [1], from May 2021 to May 2022,
the number of electric passenger cars in Poland increased by 81% (currently 48,883 vehicles),
the number of electric buses increased by 43% (currently 762), and the number of motorcy-
cles and scooters by 37% (currently 14,464). In total, approximately 26,000 more electric
vehicles appeared on Polish roads than in the previous year. The number of generally
accessible charging stations also increased by 47% (currently 2232). An additional premise
for the increased interest in EMVs is the ban on the sale of new vehicles with internal
combustion engines from the year 2035. It is one of the key elements of the implementation
of the so-called European Green Deal, which aims, among other things, to achieve net-zero
greenhouse gas emissions. Of course, to achieve this, it is necessary not only to reduce
the number of vehicles emitting carbon dioxide, but also to increase the amount of energy
obtained from renewable energy sources.

This paper focuses not so much on the emissivity, but on the comfort of EMV users. Fa-
cilitating the use and operation of a vehicle for an individual user may naturally contribute
to a faster change in the preferences of purchasing a particular type of vehicle, and thus a
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faster technological transformation in the field of transport. The problem of scheduling
EMV battery charging is not new and has been discussed many times in many publications.

In [2,3], the problem of scheduling the battery charging process is considered. In the
adopted model, it is assumed that during charging, the power consumption decreases
linearly with time from a certain known initial value. The available power is a doubly
constrained resource, in an amount not enough to charge all the batteries simultaneously.
In [4], the use of an evolutionary algorithm to find the scheduling of drone-charging tasks
in a multi-station charging station is considered.

In their article [5], Hahnsang and Kang propose the principles of planning activities
aimed at extending the operation time and life of the battery. A weighted-k round robin
(kRR) scheduling framework is designed. It consists of an adaptive filter and the kRR
scheduler, whose task is to plan the number of parallel connected cells to be discharged
while taking advantage of the recovery effect and also plan the load between k cells.
The obtained result is up to 56% longer battery life and 50% more resistance to failures.

Mitici et al. [6] discuss problems related to planning flights by electric planes between
airports. The authors develop an optimization model, thanks to which they create a flight
schedule for electric aircraft. The schedule determines when the batteries are to be charged,
the optimal charging time, when they are to be replaced with spare ones, and the optimal
number of charging and replacement stations. The developed model enables three times
more round trips than the size of the fleet. The included bi-linear charging profiles are
divided into fast (up to 0–90%) and slow (90–100%) charging.

Xiaoqi et al. [7] consider the problem of battery replacement stations and charging the
batteries at the stations. Their goal is to minimize charging costs while meeting the current
demand for immediate battery replacement. In their research, they use the generalized
Benders decomposition algorithm. The same algorithm is used by You et al. [8], who study
the problem of planning the replacement of electric bus batteries.

Schaden et al. [9] considered the problem of charging at a single charging station with
respect to current time-dependent electricity cost and vehicle state of charge. They found
that the problem can be efficiently solved with only 1.5% error approximating concave
power functions with piecewise linear functions.

In [10], Yang et al. described a model for choosing the best charging station on a
highway for a single EMV. They found that using global information causes shorter waiting
times than using only local information.

Del Razo et al. [11] proposed a modified version of the A* algorithm to schedule
generated EMVs driving on a German highway connecting Berlin and Munich. Their work
also enable dynamic changes to the schedule so that traffic can be accounted.

This article differs from the ones above mentioned, first of all, by taking a modern
approach to solving a computationally difficult scheduling problem. This approach guar-
antees short solution times and is attractive due to the low cost of energy used to perform
the calculations. The considerations are narrowed down to the section of the motorway
where traffic flows only one way. On the modeled motorway section, there are many
clearly ordered motorway junctions and a limited, usually small, number of charging
points. The increase in the number of EMVs in use and long charging times pose the risk
of large queues at charging points at stations. In the proposed approach, the aim is to
prevent the arising of queues, and if this is impossible, to minimize their length or waiting
times for charging to start. The proposed model is a relatively faithful reflection of reality,
although, like every model, it includes some simplifications. Nevertheless, the scheduling
problem formulated on its basis remains a difficult problem from a computational point
of view. This means that to solve it, it is rational to use approximate algorithms, the effec-
tiveness of which most often depends on the time of calculations, and thus on the amount
of energy used to perform them. Therefore, in order to solve the considered problem,
we propose to use quantum computers that can reveal their advantages over classical
computers when used to solve problems of a combinatorial nature. Examples of such
successful implementations of algorithms on quantum computers are reported in many



Energies 2023, 16, 442 3 of 20

studies. Ajagekar and You [12] generally discuss many applications of quantum computers
and compare them computationally to classical computers. In their research, they focus
on planning energy systems and notice that quantum computers achieve better solutions
in a much shorter time than classical computers. The authors emphasize, however, that
not every optimization problem can be solved by quantum computers today. Faugler [13]
notices the enormous potential of using quantum computing in the energy sector, where
the complexity of computations is high and the dynamics of the modeled processes require
quick adaptation to the existing situation. An important advantage of quantum computing
is the possibility of building ecological energy management systems on its basis. Quantum
computers were also used to calculate the charging of plug-in hybrid electric vehicles using
the quantum annealing algorithm [14]. The quantum annealing method itself is becoming
more and more popular and used for scheduling problems, e.g., nursing roster [15,16].

In this work, the hypothesis that quantum computers can be used to solve difficult,
complex and real scheduling problems is verified with a specific example. The above
hypothesis is tested experimentally with the use of two quantum computer architectures.
The research was carried out on quantum computers from D-Wave Systems and IBM.

The paper is organized as follows. The problem formulation is given in Section 2.
Section 3 presents our quantum approach. The computational experiment is described in
Section 4, and its results are presented in Section 5. Section 6 is devoted to a discussion on
the obtained results. Finally, some conclusions and final remarks are given in Section 7.

2. Problem Formulation
2.1. Problem Description and Parameters

In this section, we will formulate the problem of searching for the conflict-free order of
charging vehicles on a chosen motorway section as a deterministic problem of scheduling
jobs on machines. Let us start with a formal description of the problem and its parameters.

Given is a set of EMVs that are to drive through the motorway section, and need
charging within this section. Each charging operation is divided into two phases:

• Phase I—reaching the charging point (station).
• Phase II—the process of charging the EMV’s battery.

We define the motorway section M as a sequence of r nodes M = (A, B, . . . , X), where
A is the start node, and X is the end node of the section. For each node its distance from the
start node A is known, and denoted as DN

k > 0, k = 2, . . . , r, where, obviously, DN
1 = 0. We

use the superscript N to distinguish between node distance and charging station distance,
where we use S in the superscript. There are s charging stations over the section M. For each
station j, j = 1, 2. . . , s, the following parameters are defined:

• DS
j —distance between charging station j and the start node A.

• bj—number of chargers at station j.
• Bjl—l-th charger at station j, l = 1, 2, . . . , bj.
• Pjl—available power of charger Bjl .

Furthermore, there are n EMVs on the motorway section M. We assume that we know
the node where the EMV enters the motorway, the node where it leaves, as well as the
time of entrance. We also know the total capacity of its battery, and the current amount of
energy in the battery when entering the motorway. Moreover, we will assume that for each
EMV, there is a finite set of speeds it can use when traveling the motorway. The speed is
chosen when entering the motorway, and cannot be changed until reaching the charging
station. For each speed, there is given a corresponding power usage; the higher the speed,
the larger the power usage. Consequently, we can speak about driving modes, where a
mode represents a relation between the speed of EMV and its power usage. Summarizing,
for i-th EMV, i = 1, 2, . . . , n, the following parameters are known:

• Nin
i —entrance (ingoing) node.

• Nout
i —outgoing node.

• ai—arrival time of EMV i, i.e., the time of entering the motorway through node Nin
i .



Energies 2023, 16, 442 4 of 20

• C f ull
i —total capacity of the battery of EMV i.

• Ccurr
i —current amount of energy in the battery of EMV i.

• mi—number of driving modes “speed/power usage”.
• vi—vector of available speeds, vi = [vi1, vi2, . . . , vili ].
• pi—vector of corresponding power usages, pi = [pi1, pi2, . . . , pimi ].

As we can see, Cde f
i = C f ull

i − Ccurr
i is the energy deficit of EMV i, the amount of

energy needed for its battery to be fully charged.
An example of data describing an EMV is shown in Figure 1.

Figure 1. Parameters of an EMV.

Let us notice that the power usage function of an EMV, expressed by the “speed/power
usage” modes, is nonlinear, and, usually, convex. If the function was linear, the energy
consumed per distance unit as well as charging time would be both constant. In con-
trast, the more realistic, nonlinear power usage function does not assume constant dis-
tance/speed power usage, which, for example, might lead to the situation where, driving
with a particular speed, the EMV may be unable to arrive at some stations because of the
lack of energy. This indication, together with having all the data about the motorway infras-
tructure, can be utilized to define at the stage of processing a set of feasible (i.e., reachable)
charging stations for each driving mode of an EMV. Notice that for each mode, this number
may be different since the power usage function is nonlinear.

We further assume that the charging operations are independent, i.e., there are no
precedence relations between EMVs, as well as nonpreemptable, i.e., the charging process
in phase II cannot be interrupted (the battery is being charged without preemptions until it
is full). We also make the following additional assumptions:

1. Each EMV can charge its battery only once, i.e., when the battery is full after phase II,
the amount of energy is sufficient for reaching the outgoing node.

2. For each EMV, there exists at least one available speed for which the number of feasible
charging stations is greater than 0.

3. Operations in phase I can be performed fully in parallel, i.e., we do not assume any
limited capacity of the motorway, accidents, traffic jams, etc.

4. Each charging process is done by using exactly one charger.

5. The charging time in phase II is linearly dependent on the energy deficit Cde f
i in

the battery.

From the problem point of view, EMVs that can travel through the highway without
charging are not of interest because they require no attention or alterations to the proposed
solution. On the other hand, it would be tedious for EMV drivers to charge many times,
even if it would result in reduced travel time. Therefore, we decided for a trade-off and,
by assumption (1), allow only a single charging. Additionally, the assumption (2) assures
that there are no instances for which we know already in the preprocessing step that there is
no feasible solution. We further simplify the problem with assumptions (3) and (4). Current
batteries charge linearly up to some threshold near being fully charged, after which the
charging process slows down. As we noted in the assumption (5), we approximate it with
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linear dependence; however, we are aware of the fact that the faithful reproduction of the
charging process would eliminate some solutions.

We look for a feasible solution of the problem, i.e., a solution in which no EMV has
to wait for a charger. To this end, for each EMV, we have to define its mode, i.e., speed
and corresponding power usage (fixed between the entrance node and the charging
point) and its charging point, i.e., charging station or charger which, we will discuss in
points Sections 2.3.1 and 2.3.2 such that the time gap between the end of phase I and the
beginning of phase II is equal to 0. To improve the readability of the rest of the paper,
the term “EMV instance” will mean the assignment of both a specific driving mode and
charging point to an EMV vehicle.

2.2. Classification of the Problem in the Classical Scheduling Theory

The problem formulated in Section 2.1 can be treated as a decision problem of schedul-
ing (charging) jobs on parallel, unrelated machines. Each job corresponds to an operation
of charging the battery of a single EMV. Jobs can be performed in various execution modes
defined by pairs: available speed of the EMV and its corresponding power usage. Each
machine corresponds to a single charging point. For each couple (machine, execution
mode), the following two parameters can be calculated and set:

• Ready time ri of job i, calculated as the sum of arrival time ai of EMV i and the
duration dI

i of phase I for this EMV (i.e., the time needed for reaching the charging
point): ri = ai + dI

i .
• Execution time of job i, i.e., the duration dI I

i of phase II (the length of the charging
process) for the corresponding EMV.

We look for such an allocation of jobs to machines (vehicles to charging points) that
guarantees zero time gap between phase I and phase II for each EMV, i.e., no vehicle waits
to start the charging process. The problem is NP-hard as a generalization of the problem
of scheduling independent, nonpreemptable jobs in parallel, unrelated machines (see, for
example, [17]).

A similar problem is considered in [18]. The authors study the unrelated parallel ma-
chine scheduling problem where the processing time of a job is based on resource allocation
and the jobs are delivered in batches with unlimited batch capacity. A mathematical model
is presented for minimizing the total weighted penalties of tardiness and earliness, resource
allocation, and batch delivery costs with idle time and machine eligibility constraints. Three
metaheuristic algorithms, including modified ant colony optimization (MACO), genetic
algorithm (GA), and a hybrid algorithm based on the hybridization of MACO and GA, are
proposed to solve the problem.

2.3. Charging Point Models

Let us now consider two options of defining the charging point. The applied model
will then have an influence on, among others, the chance of finding a feasible solution.

2.3.1. Charger as a Charging Point

In the first, natural option, each charging point corresponds to a single charger with
its unique parameters, in particular, the available charging power. Under this assumption,
in an instance of the problem, the number of unrelated machines can be very large, which
has a strong impact on the size of potential solutions and results in a huge computer
memory requirements by the elaborated scheduling algorithm. An example of a motorway
infrastructure in this case is presented in Figure 2.



Energies 2023, 16, 442 6 of 20

Figure 2. Example of a motorway infrastructure in model I.

2.3.2. Station as a Charging Point

A possible method of reducing the memory usage could be making some assumptions
exceeding classical formulations of machine scheduling problems. Namely, if in the same
location j (at the same charging station), there is a certain number of identical chargers
(Pjl = Pj for l = 1, ..., bj), a set of such chargers may be treated as a single multi-functional
machine able to perform several jobs in parallel. Such a machine is characterized by an
additional parameter—the number of terminals (see parameter bj in Section 2.1) defining
the maximum number of jobs that can be processed simultaneously. Such an assumption
can result in significant reduction of memory used by the scheduling algorithm; however,
it may also reduce the chance of finding a feasible solution by the algorithm. It follows
from that fact that the time of execution of a set of jobs by such a multi-functional machine
is determined by the processing time of the longest jobs. As a result, some machines may
not be fully loaded, and some idle times may occur.

An example of a motorway infrastructure in this case is presented in Figure 3.

Figure 3. Example of a motorway infrastructure in model II with b1 = 3, b2 = 3, b3 = 4, b4 = 2.

3. Quantum Approach

Due to recent advancements in building real quantum hardware, especially in the past
few years, quantum computation and quantum information have rapidly accelerated not
only as a field of science, but also as a field of technology. Many researchers invest their
time to make quantum computers useful in the current noisy intermediate scale quantum
(NISQ) era, because they believe that quantum approaches can soon achieve significant
advantages over classical computing in computation time, solution quality or energy usage.
This is mainly due to exploiting superposition and entanglement phenomena. In short,
having n qubits in superposition allows to perform simple computations simultaneously
on up to 2n possible states, while adding entanglement allows to make more complex
computations, where two or more states depend on one another.

In the current NISQ era, there are two leading approaches which give exposure to
the quantum realm: the gate-model architecture and the quantum annealing. The gate
model paradigm is to use universal set of basis gates to encode any possible function [19].
Moreover, by the Solovay–Kitaev theorem, any arbitrary qubit gate can be approximated to
some accuracy using the polylogarithmic number of these gates [20]. The nice properties do
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not come with no cost however, as it remains a difficulty to build many-qubit fault-tolerant
quantum computers. The most advanced in the technology seems to be the IBM company,
which bases its quantum-chip technology on Josephson junctions cooled to near absolute
zero temperatures. Currently reaching up to 127 qubits [21], they still suffer from noise,
decoherence gate and measurement errors, which all lead to useless final measurements
when the quantum circuit is too long.

The quantum-annealing-based devices are an attempt to build more powerful and
accurate quantum computers at the cost of their universality. Their architecture restricts
computation to a single type of algorithm—quantum annealing—which in and of itself is a
technique with very broad applications. To make a problem solvable by quantum annealing,
it has to be transformed to a QUBO formulation, which stands for quadratic unconstrained
binary optimization. In short, it is a notation which assigns penalties to binary variables
(representing qubits), as well as to pairs of them. Assigning rewards is also possible by
setting a penalty to a negative value. We assume that the variable is selected when its
respective qubit’s state after measurement is 1. To implement problem constraints, we can
assign penalties for selecting a single variable by controlling its superposition state to tilt
toward value 0. A penalty for selecting two variables is implemented using entanglement.
The bigger penalty there is for selecting a pair of variables; the more strongly their qubits
are entangled, therefore the less likely they are to both be measured in the same state.

3.1. Conflict Avoidance Problem

An ideal situation on the motorway would allow every EMV to start charging its
battery as soon as the vehicle arrives at the station. In that way, the users would waste no
time waiting in the queue. Simultaneously, this would result in the chargers being used to
their full potential, as less waiting time means more dense charging schedules.

In order to avoid waiting in queue, the problem we try to implement using a quantum
computer is a conflict avoidance problem.

Due to the nature of the quantum computer, our approach will detect potential conflicts
between each pair of vehicles, taking into account all their possible driving modes. By
definition, conflicts only occur at specific charging points. At a single charging point,
however, all potential conflict situations between each pair of vehicles using the motorway
must be considered.

The number of potential conflicts between two vehicles i1 and i2 (at a given charging
point), therefore, depends on the number of their driving modes mi1 and mi2 , respectively.
Thus, at each charging point reachable by both EMVs, mi1 ×mi2 , different conflict situations
should be checked. If a certain charging point was reachable by all EMVs traveling in
any of the m driving modes, the number of possible different conflict matches (or lack
thereof) to all vehicles would be 2n×m. If you further consider that there are many such
charging points, the exponent of this number is increased by an additional factor—number
of charging points.

In order to find a feasible solution of the problem, for each EMV, it is necessary to
choose such a driving mode and such a charging point that ensure that there are no charging
conflicts along the entire stretch of motorway. If we denote by xijk a binary variable that
takes the value 1 when the i-th EMV moving in k-th driving mode is charged at station j,
a one-hot constraint should be fulfilled:

∑
j

∑
k

xi,j,k = 1 for all i = 1, 2, ..., n (1)

Now we can move on to one of the key elements of our algorithm, which is the
conflict matrix.

3.2. Conflict Matrix

The set of conflicts between each pair of vehicles moving in different driving modes is
most conveniently represented in a binary array—the Conflict Matrix (CM). For a single



Energies 2023, 16, 442 8 of 20

charging point, this array is a two-dimensional upper triangular matrix of the form shown
in Figure 4.

Figure 4. Excerpt of an exemplary 2D conflict matrix (single charging point).

The maximum size of the 2D CM can be calculated as

n

∑
i=1

mi

∑
k=1

1×
n

∑
i=1

mi

∑
k=1

1 (2)

Different types of conflict situations between two EMV’s are depicted in Figure 4:

• Orange “1”—conflict because the charging point is unreachable by one of the EMVs
moving in the selected driving mode;

• Black “1”—conflict because of charging at the charging point at the same time;
• Green “0”—no conflict.

Before the CM is fed to the quantum computer, all columns and rows representing
driving modes leading to unreachable charging points can be removed. It allows to reduce
the matrix size. Of course, the two-dimensional CM must be expanded to include a third
dimension in which all charging points are represented. The 3D CM representing potential
conflicts at all charging point is shown in Figure 5.

In the paper, we consider two different definitions of a charging point. The conse-
quence of their application is discussed below.

3.2.1. Conflict Matrix for Charger as a Charging Point

The most general way to represent conflicts at each potential charging point is to
include all individual chargers in the conflict matrix. We will call the so-constructed matrix
the general conflict matrix (GCM). In this case, the solution to the problem is feasible when
such a driving mode and charger can be found in the GCM for each EMV, guaranteeing the
lack of conflict. The size of such a matrix is not greater than

n

∑
i=1

mi

∑
k=1

1×
n

∑
i=1

mi

∑
k=1

1×
s

∑
j=1

bj

∑
l=1

1 (3)
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This representation of conflicts has its advantages and disadvantages. Its advantage is
that it allows detecting feasible solutions in which an EMV sequence is being charged on
one of the chargers, even though charging is going on all the time on other chargers of the
same station. Such a situation is shown in Figure 6.

Figure 5. Excerpt of an exemplary 3D conflict matrix representing 5 charging points.

Figure 6. Gantt chart for “the charger as a charging point” case.

Its disadvantage, on the other hand, is that the 3D CM constructed in this way (GCM) un-
necessarily contains redundant information about conflicts on chargers from the same location.

3.2.2. Conflict Matrix for Station as a Charging Point

Smaller 3D conflict matrices, and consequently fewer necessary calculations, can be
obtained by taking into account the fact that some stations are equipped with multiple
identical chargers. In this case, you can limit yourself to detecting conflicts at the station,
aggregating information from individual chargers. In practice, this looks like counting
the conflicts of pairs of EMVs at a given station. If each EMV at a station j containing bj
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chargers is in conflict with no more than bj − 1 other EMVs, the solution is considered
feasible. The size of the conflict matrix (in this case, called the station conflict matrix—SCM)
so constructed is

n

∑
i=1

mi

∑
k=1

1×
n

∑
i=1

mi

∑
k=1

1× s (4)

This approach—while useful due to lower memory occupancy and shorter time of
necessary calculations—does not allow to find some feasible solutions of the problem.
The feasible solution in Figure 7 is treated as infeasible in this case, since EMVs 1, 4 and 5
are in conflict with more than three other EMVs.

Figure 7. Gantt chart of a feasible solution which “the station as a charging point” rule treats as the
infeasible one.

A feasible solution correctly recognized by “the station as charging point” rule is
shown in Figure 8.

Figure 8. Gantt chart of a feasible solution for “the station as a charging point rule”.

3.3. Gate-Based Approach and QAOA Algorithm

Mathematically a quantum state is typically represented as a superposition of the two
basis states written in Dirac bracket notation:

|ψ〉 = a|0〉+ b|1〉 (5)

where the complex numbers a and b are called the amplitudes of the basis states satisfying
normalization constraint

√
a2 + b2 = 1. In contrast to classical computing, a qubit before

measurement can be in any proportion between its basis states. After the measurement, a
qubit collapses into one of them. The squared amplitudes describe the probabilities of a
qubit to collapse into |0〉 or |1〉 after Z-basis measurement. This comes directly from the
measurement and projection properties followed by their formal definitions [19]. A many-
qubit state can be written using the tensor product. As a consequence, the number of base
states and the number of amplitudes raise exponentially,

a0|00 . . . 00〉+ a1|00 . . . 01〉+ · · ·+ a2n |11 . . . 11〉 (6)

where n is the number of qubits, and we write |00 . . . 00〉 as an abbreviation of a tensor prod-
uct.
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In quantum mechanics, the evolution of a quantum state can be always described with
a unitary operator U

ψ′ = U|ψ〉 (7)

This has some important consequences, e.g., that a quantum operation is always
reversible. Strongly connected to the the unitary evolution is the notion of a Hamiltonian,
which, in quantum mechanics, describes the total energy of a quantum system. In quantum
computing, the Hamiltonian often acts as an expected value operator. Its size is 2n × 2n,
where n is the number of qubits, and it can be interpreted as a map assigning a value to
each of the 2n basis states. The expected value of the Hamiltonian is called energy and can
be written as

E = 〈ψ|H|ψ〉 (8)

From now on, we will use the term ‘energy’ to both indicate the expected value and
the energy in batteries. Their meaning should naturally come from the context. Hamilto-
nians, together with parametrized unitaries, are often used in a special family of hybrid
quantum–classical algorithms, which are able to solve combinatorial optimization prob-
lems, namely variational algorithms. The approach is to construct such a circuit and find
such parameters so that the expectation value of a user-defined Hamiltonian is minimum.
The user-defined Hamiltonian acts as a function which aggregates both the cost function as
well as the constraints.

To tackle the problem of conflict-free EMV charging, as a hybrid quantum–classical vari-
ational algorithm, we use the quantum approximate optimization algorithm (QAOA) [22].
QAOA is an algorithm that tries to approximate continuous-time quantum adiabatic evolu-
tion [23], which states that if we change the time-dependent Hamiltonian slowly enough,
a system will remain in its eigenstate. Mathematically, the adiabatic evolution can be
written as

H(t) = (1− t)HM + tHC (9)

In QAOA, we often call HM a mixer Hamiltonian, and HC is a cost Hamiltonian. HM
is usually composed of Pauli-X gates so that the quantum state can be easily prepared as an
equal superposition of the basis states using Hadamard gates. The slow enough evolution
is performed using Trotter–Suzuki approximation, and hence the final form of QAOA is

|ψp(
−→γ ,
−→
β )〉 = e−iβp HM e−iγp HC . . . e−iβ1 HM e−iγ1 HC |+〉⊗n (10)

The |+〉 denotes equal superposition, and p is a key parameter of QAOA, which
defines the length of the circuit, and thus the approximation quality. The longer the circuit
is, the better the solution can be, but it is harder to optimize the variational parameters β
and γ. This trade-off is especially visible when working on a real NISQ hardware, as the
noise prevents from taking advantage of longer circuits.

We can see that the role of HC in QAOA is twofold. Firstly, by the adiabatic theorem,
it defines the building blocks of the circuit. Secondly, by being the expected value operator,
we can treat it as a function to minimize.

3.4. Gate-Based Hamiltonian Formulation

Due to technological limitations, we will limit the implementation of the Gate-based
approach only to the “station as a charging point” model. We established the one-hot
constraint (1) in Section 3.1. Additional constraints arise from the need to avoid conflicts
and are based on information stored in the SCM. Since the cost Hamiltoniain HC is a
function that aggregates constraints, we need to convert them accordingly. Every Boolean
function can be represented as a sum of Pauli-Z clauses [24]. Following the recipe, we can
write the one-hot constraint as a 1-in-n function, or rather its negation, as we are minimizing
the expected value, selecting only one instance of the same EMV

Hone−hot = ∑
i

1-in-n(xi,1,1, . . . , xi,s,li ) (11)
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where 1-in-n is derived with the Fourier transform as in [24].
Likewise, we define the conflict Hamiltonian. Firstly, let us define a set containing all

EMVs possibly conflicted with a EMV i driving in mode j and charging at a station k

Si,j,k = {xi′ j′k′ : SCM(i, j, k)(i′ j′k′) = 1} (12)

Since we are interested only in those situations where the number of EMVs simulta-
neously charging at a station is greater than available chargers, we define a collection S
containing only these Si,j,k with cardinality greater than bj

S = {Si,j,k : |Si,j,k| > bj} (13)

To prevent more than bj EMVs to arrive at a station at the same time, it is sufficient to
prevent bj + 1 EMVs to arrive, so we define a set P of such possible combinations:

P =

{(
s
bj

)
∀s ∈ S

}
(14)

The set P can be easily interpreted as a sum of logic AND functions preventing more
than bj EMVs to simultaneously charge at that station:

Hconflict = ∑
p∈P

1
2|p| ∏

xi′ j′k′∈p
(I − Zi′ j′k′) (15)

where Zi′ j′k′ is applied on a qubit assigned to xi′ j′k′ .
Having the constraints converted, we can construct the final Hamiltonian as

HC = Hone−hot + Hconflict (16)

3.5. Quantum Annealing

Quantum-annealing-based solutions also utilize Hamiltonians to formulate optimiza-
tion problems. The problem’s energy landscape is described by the following equation:

H = ∑
i

Qi,ixi + ∑
i<j

Qi,jxixj (17)

where Qi,j are entries of upper-triangular Q matrix (18) and xi is a state i-th qubit ended up
in after measurement. The Q matrix is used to control the degree of qubit superposition
imbalances and entanglement strengths.




Q11 Q12 · · · Q1n
0 Q22 · · · Q2n
...

...
. . .

...
0 0 · · · Qmn


 (18)

The upper-triangular matrix Q is constructed from the state Hamiltonian.
Every entry on the main diagonal of the Q matrix describes how much energy the

solution will gain if a given variable is selected. The selection of a variables is in fact a
qubit being measured as 1. Every other entry of the Q matrix describes how much energy
the solution will gain if two qubits end up in the same state. For example, if Qi,j = 2,
the solution’s energy will rise by 2 if both xi and xj are selected. Positive values in Q matrix
act as penalties for the model. It is also possible to assign negative penalties to encourage
the QPU to select a given variable.
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3.6. Quantum Annealing Hamiltonian Formulation

After the GCM (or SCM) is created, we apply several constraints to quantum variables,
ensuring that the final result represents a feasible solution to the EMV conflict avoidance
problem. Every qubit represents a selection of its corresponding EMV instance. The qubit
representing j-th instance of i-th vehicle is denoted as qi,j.

The first restriction applied to qubits is a one-hot constraint (1). We group all qubits
describing instances of the same EMV, sum their values and require that their sum be equal
to one. This way, the selection of just one EMV instance (charging point and driving mode)
is ensured:

Hone−hot =
n

∑
i=1


(1−

s

∑
j=1

mi

∑
k=1

bj

∑
l

xi,j,k,l)
2


 (19)

where n is a number of vehicles, mi is a number of driving modes of vehicle i, s is a number
of available stations, and bj is a number of chargers available on station k. Every time
the QPU chooses more (or less) than one instance of every EMV, the solution’s energy
increases exponentially.

The second part of the problem Hamiltonian ensures the minimization of conflicts
during charging. The equation differs depending on whether we treat each charger as a
separate charging point:

Hconflict =
s

∑
j=1

bj

∑
l=1

(
n

∑
i=1

mi

∑
k=1

n

∑
i′=i+1

mi

∑
k′=k+1

xi,(j,l),k ∗ xi′ ,(j,l),k′ ∗GCM(i, (j, l), k)(i′, (j, l), k′)

)
(20)

or each station as a collection of chargers:

Hconflict =
s

∑
j=1

(
n

∑
i=1

mi

∑
k=1

n

∑
i′=i+1

mi

∑
k′=k+1

xi,j,k ∗ xi′ ,j,k′ ∗ SCM(i, j, k)(i′, j, k′)

)
> bj (21)

Note that Equation (21), for the cost of being less precise, contains fewer variables,
which means greater problems can be embedded on QPU chips:

HC = Hone−hot + Hconflict (22)

The final Hamiltonian incorporates both one-hot constraint and conflict constraint.
It is possible to apply weights to those Hamiltonian in order to regulate their impact,
but experiments showed that an equal representation results in a robust optimization.

3.7. Note on Energy

Looking at the Hamiltonians defined in both quantum techniques, we can see that
they correlate to the number of constraints that failed to be met. Even though the energy
value is not proportional to the number of unresolved conflicts, it can be interpreted as
such. The key point is to understand that minimizing the Hamiltonian energy directly
improves the solution.

4. Computational Experiment
4.1. Assumptions

To confirm the usefulness of quantum approaches for solving the practical problem
considered in this work, a number of computational experiments were carried out. The
assumptions for the experiments were matched to the current strong technological limita-
tions (small number of available qubits) of available quantum computers. More attractive
due to the size of the possible instances of the problem is the DWave quantum computer,
so more experiments were carried out for the QUBO algorithm. A more general conflict
matrix, GCM, and “charger as a charging point” model, were used in all experiments
for this case. A test instance generator was implemented specifically for the purpose of
these experiments.
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The second quantum technology presented above—the gate-based architecture (and
QAOA algorithm)—was tested only on an instance limited in size. Due to the small
capacity of currently available gate-model-based quantum computers, only one set of
toy-size experiments was conducted. The experiments instance included part of the A4
motorway (described below), but only 5 EMVs were considered. Moreover, we decided
to utilize a smaller version of the conflict matrix, SCM, and consequently the “station as
charging point” method for the conflict avoidance problem.

All experiments assumed a convex function of EMV power usage while driving—an
assumption that reflects the actual dependence of power consumption on vehicle speed. In
the experiment for the real section of the motorway, precise tabular data specified for two
specific EMV models were adopted. As for the available EMVs types, in the experiments
with QAOA, we follow ref. [25], wherein two types of vehicles are described: Mitsubishi
i-MiEV with 16kWh battery capacity and Nissan Leaf with 24 kWh battery capacity.

However, due to the limitations of quantum computers, a relatively small number of
driving modes were assumed in all experiments. For example, it resulted in only 18 EMV
instances (for 5 EMVs) in the QAOA experiment.

4.2. Test Instances—Generator

As for a dataset for our implementation of the QUBO algorithm, we decided to write
our own instance generator. The process of generating a complete instance comprises
three steps. Firstly, the motorway is generated. The key parameters of the motorway
are its length, number of stations (or alternatively, station frequency), number of nodes
(alternatively, their frequency) and chargers in each station. Secondly, EMV types are
generated. Each EMV has different battery capacity (C f ull

i ∈ [10, 30] kWh, i = 1, 2, ..., n) as
well as an individual vector of power usages corresponding to global vector of available
speeds (pimi ∈ [80, 250] kWh/km, i = 1, 2, ..., n). We set the vector so that the energy
consumption raises with the EMV speed. In the last step, EMVs entering and leaving the
motorway are randomly selected. Their amount of energy when entering a motorway is
also randomly selected. In this step, we can control the difficulty of an instance by changing
two parameters: density, which defines the overall occupation of charging station and
simulation time, which defines size of the instance. The range of parameter values that
affect the size of GCM is given below:

• s ∈ {1, 2, ..., 25}
• bj ∈ {2, 3}, j = 1, 2, ..., s
• n ∈ {3, 4, ..., 33}
• mi = 6, i = 1, 2, ..., n.

The instance generator is designed so that every instance is guaranteed to have at
least one feasible solution. If all the EMVs travel with their lowest speed, there is always
a schedule such that there is no conflict at the charging stations. Note that this does not
mean that there are other feasible solutions in which EMVs can travel with higher speed.

4.3. Exemplary Practical Instance

Our instance generator allows for the generation of numerous instances of different
kinds. The problem of choosing an optimal location for the charging infrastructure is
interesting in itself, and has been widely studied, e.g., [26]. Since we are considering only
motorways, we can make an assumption that gas stations will be naturally transforming
themselves into charging stations, as the basic infrastructure, such as exits or parking
spaces, are already there.

In order to get closer to real data, in some experiments, we will be considering the
A4 motorway, which is currently the longest motorway in Poland (669 km) and it is a part
of the European route E40. We will be considering a section of the motorway between
two big polish cities: 104 km route in direction from Katowice to Krakow. The section
characteristics [27] are as follows:
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• r = 18 nodes
• s = 4 gas stations which we will interpret as charging stations.
• We will assume each charging station has 2 terminals in total.

4.4. Runtime Environment

All of the experiments with the QUBO algorithm were obtained using D-wave’s
Advantage 4.1 computer with the pure binary quadratic model (BQM) representation.
This means that the entirety of the problem’s solution computation was performed on a
quantum computer. The only preprocessing done was the problem’s embedding on an
Advantage chip and mapping problem variables to qubits.

The experiments for QAOA were run on a 27-qubit quantum machine: ibmq_toronto
(32 Quantum Volume, 1.8 k circuit layers operations per second).

5. Results

Two sets of instances were used in our experiments with QAOA. To acquire Figures 9–11,
we used artificially constructed (using the implemented generator) instances of motorways
with varying number of EMVs utilizing the motorway. Figure 12 represents data from a
part of the A4 motorway located in the south of Poland.

The height of the bars of figures is an average value from different instances of the
problem, grouped by the number of cars (Figures 9 and 12) or the size of the general conflict
matrix (Figure 10) As seen in Figures 9 and 10, the quality of the solution depends on
the instance’s number of EMVs and the size of the corresponding GCM. This result is
hardly surprising, as number of qubits used in the computation is determined by the size
of the GCM.

In Figure 11, the distribution of the dependence of the GCM size on the value of the
parameter n (the number of EMVs) is presented. It confirms that the number of EMVs is
highly correlated with the GCM size in our experiments.
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Figure 9. The quality of quantum-annealing-based solutions to the conflict-free EMV charging
problem with respect to the number of EMVs in the problem instance. Different colors represent
different number of unresolved collisions occurring in the solution.

In addition to data on the efficiency of the tested algorithm in finding solutions to
the considered problem, the computation times on the quantum computer seem equally
interesting. Below, we present the mean timing values:

• QPU_SAMPLING_TIME: 1.97 s
• QPU_ANNEAL_TIME_PER_SAMPLE: 20.0 µs
• QPU_READOUT_TIME_PER_SAMPLE: 156.20 µs
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• QPU_ACCESS_TIME: 1.98 s
• QPU_ACCESS_OVERHEAD_TIME: 107.13 ms
• QPU_PROGRAMMING_TIME: 15.07 ms
• QPU_DELAY_TIME_PER_SAMPLE: 20.54 µs
• POST_PROCESSING_OVERHEAD_TIME: 1.12 ms
• TOTAL_POST_PROCESSING_TIME: 8.59 ms.
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Figure 10. A figure equivalent to Figure 11 with respect to CM size instead of number of EMVs.
The lower the solutions’ energy value, the better.
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Figure 11. The size of the GCM size with respect to the number of EMVs in a problem instance.

The values were obtained directly from the D-wave’s leap platform. The precise
meaning of those metrics may be found in [28], where many helpful tutorials and guides
are included.
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Figure 12. The quality of quantum-annealing based solutions to the conflict-free EMV charging
problem with respect to the number of EMVs present on the A4 motorway. Different colors represent
different numbers of unresolved collisions occurring in the solution.

In the experiments with a gate-based model of a quantum computation (QAOA),
we tried to study the effect of the length of the circuit on the chance of finding feasible
solutions to the considered problem. We show the results for QAOA for different circuit
length (from p = 1 to p = 5) in Figure 13. We can see that the highest chance of measuring
optimal solution is when using circuit of length 2. After that, the noise issues disturb the
optimization process. We can also observe, that for p = 2, the probability of measuring
the feasible solution is around 0.5%, which is several times better than drawing a random
bitstring. The computational times (classical and quantum computation) for different circuit
length are the following:

• p = 1: 1 h 7 m 7 s
• p = 2: 1 h 10 m 59 s
• p = 3: 1 h 19 m 3 s
• p = 4: 1 h 29 m 31 s
• p = 5: 1 h 35 m 29 s.
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Figure 13. Probability of measuring a solution with given energy level, for different circuit lengths
using QAOA algorithm.

6. Discussion

We were looking for the assignment of the appropriate speed and charging point to
EMV traveling on the motorway so that no one has to wait for the charging process to start
after reaching the station. We considered two models of vehicle charging points:

1. A set of independent chargers (probably some of them at the same station).
2. A set of charging stations with several identical chargers.
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In the first case, we treat each charger separately and search for conflicts consisting
in connecting more than one vehicle to the same charger at the same time. This is a more
accurate approach to the problem under consideration. In the second case, we enable
charging a number of vehicles in parallel at the same station. As described earlier, such
an approach, despite the lower memory consumption, causes the rejection of acceptable
solutions due to the detection of a greater number of conflicts (Figure 7). However, we
use this approach because of the limited technological capabilities of quantum computers
(low capacity) and the limited time of computing. Minimizing the number of variables
and simplifying the conflict matrix allows finding feasible solutions for instances of the
greater size.

In the graphs provided in Section 5, the parameter solution energy value should
be interpreted as a value proportional to the number of unresolved conflicts at charging
points. As a result of the experiments, the expected effect was observed—the more EMV,
the more potential conflicts and the more difficult it is to find a feasible solution to the
conflict avoidance problem. It can be assumed that in these cases, an acceptable solution
does not exist. However, it should be taken into account that the tested algorithms should
be considered as heuristics, which do not guarantee finding the sought solutions to the
problem. Their great advantage, however, is the short computation time (evident for the
QUBO case) and low energy consumption for computation.

At the current level of quantum technology development, larger instances of the
problem can be solved on D-wave computers. It should be noted that in our experiments, we
used BQM only—a purely quantum model of computation. The D-wave company provides
another way of solution computation using hybrid (both quantum and classical computing).
The constraint quadratic model (CQM) allows for defining inequality constraints, as well as
many other utilities. What is more, this model type is required to use hybrid computing in
which the problem is first divided into sub-problems and only then solved, piece by piece,
on a purely quantum machine. This approach allowed us to reliably solve similar instances
containing 40 EMVs (compared to BQM’s 10). Unfortunately, as the computing time on
D-wave machines is highly limited, we could only run a handful of experiments.

The problem we are discussing can be developed toward an optimization problem. We
will notice that when using the discussed method of work, one can consider the problem,
among others, of minimizing the travel time assuming one or more charges or minimizing
the energy consumption of all tested vehicles. Another limitation that can be taken into
account is the limitation of the power or energy available at specific charging stations,
which would further reduce the number of vehicles charged at the same time.

7. Conclusions

In this paper, a problem of charging batteries of EMVs driving on a motorway was
considered. The problem was formulated in terms of the deterministic scheduling theory.
We looked for a feasible solution in which no EMV has to wait for starting the process of
charging its battery. Two quantum computing approaches were proposed to attack the
problem—gate-based approach (QAOA) and quantum annealing (QA). A computational
experiment was designed and carried out in order to evaluate the efficiency of the proposed
quantum algorithms. It can be seen that quantum technology is just developing, but its
use is already becoming real and useful. With the assumed considerable limitations,
the obtained results are still several times better than the random results.

The results show that the quality of the solution is strongly related to the number of
variables (number of EMVs, charging stations, and driving modes). Due to the limitations
of quantum machines and access to them, we managed to perform only one test instance
with tangible results. The obtained result leaves us an open path for further experiments
on this topic, as soon as there are more possibilities for the use of quantum computers.

Let us notice that although our model contains some simplifications (e.g., a discrete
number of driving modes defined by available speeds), it can still be useful in practice.
Decisions made by such a centralized scheduling module can achieve an advantage over a
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set of decisions made autonomously by EMV drivers. It has all the information coming from
monitoring systems on the motorway, as well as from the vehicles themselves. This may
enable to synchronize and optimize the entire process of charging the fleet of EMVs which
an individual driver is not capable of doing. Nowadays, there are already technical means
sufficient to carry out the entire process. Additionally, despite the fact that the situation
on a motorway is very dynamic and, generally, it would require online scheduling, the
quantum computing power may be enough to apply the batch scheduling approach and
solve the problem for a fleet of EMVs currently present on a considered motorway section.
This approach will become practically more applicable in the near future when quantum
computers become more powerful.

Future research can go in several directions. First of all, the considered problem can
be generalized in many different ways. Possible extensions may include generalizations
of the EMV model, motor way infrastructure, and/or charging process assumptions. In
this paper, we only analyzed a decision (deconfliction) problem. On its basis, various
optimization problems can be formulated in which different objective functions may be
studied, e.g., minimization of the total (or mean) flow time, total waiting time, the number
of waiting EMVs, and energy consumption. Additionally, from the computational point
of view, various extensions of the experiment are possible, including solving bigger in-
stances and comparing quantum approaches to some classical ones, e.g., involving local
search metaheuristics.
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a b s t r a c t 

The Job Shop Scheduling Problem (JSSP) has always been considered as one of the most complex and 

industry essential scheduling problems. Optimizing the makespan of a given schedule generally involves 

using dedicated algorithms, local search strategies, or metaheuristics. These approaches, however, heavily 

rely on classical computational power, which is bounded by the physical limits of microcontrollers and 

power issues. Inspired by the promising results achieved for Quantum Annealing (QA) based approaches 

to solve JSSP instances, we propose a new approach that uses gate-model quantum architecture as an 

alternative to QA. We find that we can make use of the time-indexed JSSP instance representation to 

build a cost Hamiltonian, which can be embedded into Quantum Approximate Optimization Algorithm 

(QAOA) to find an optimal solution to a basic JSSP instance. We demonstrate the use of QAOA to solve 

the JSSP, and we evaluate its efficiency and accuracy for this problem from experimental results, as there 

is an increased urgency to demonstrate the applicability of quantum optimization algorithms. We also 

find that optimal variational parameters form patterns that can facilitate computation in bigger quantum 

circuits. Additionally, we compare the obtained noiseless simulation results of gate-model quantum cir- 

cuits demonstrating the relationship between two evaluation criteria - makespan and energy. Finally, we 

analyze and present the overall performance of our approach with the increasing deadline and simulated 

depth of QAOA circuits. 

© 2023 Poznan Supercomputing and Networking Center IBCH PAS. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The real value of quantum computers can be unlocked only 

through new applications, especially in operational research, where 

many difficult problems are of practical interest and hard to solve 

due to their computational complexity. Inspired by the unique fea- 

tures of the quantum realm, quantum computing promised from 

the early 1980s to deliver the ability to solve problems beyond 

classical computers’ capability. Despite the impressive progress 

of quantum research, including recent studies and interesting at- 

tempts based on experimental quantum hardware, it is still un- 

clear to many researchers how and to what extent they can benefit 

from quantum computations. They need to understand how to de- 

sign, implement, and run a quantum computational experiment to 

solve a specific combinatorial optimization problem in a reliable 

and controlled way. It is worth introducing fundamental concepts 

∗ Corresponding author. 

E-mail address: krzysztof.kurowski@man.poznan.pl (K. Kurowski) . 

and existing challenges before diving into our quantum algorithmic 

and experimental details. 

There is a conceptual analogy and mathematical resemblance 

between the equations of an objective function used in an opti- 

mization problem and a Hamiltonian formalism. In a nutshell, the 

Hamiltonian, with its cost value, is an operator for the total en- 

ergy of a system in quantum mechanics. Historically, it was real- 

ized back in the 1980s that simulating quantum dynamics to find 

the ground state energy of even a small molecule is far too com- 

plex for a classical computer as the computational power required 

to describe a quantum system scales exponentially with the num- 

ber of components. Thus, the idea of using quantum instead of 

a classical computer to simulate other quantum systems evolved 

slowly after new concepts connecting quantum computation and 

ground states of many-body quantum systems were discussed in 

Feynman (1982) . Additionally, the construction of a microscopic 

quantum mechanical Hamiltonian model of the computation pro- 

cesses represented by Turing machines was proposed in Benioff

(1980) . Over the next decade, there have been a lot of theoret- 

https://doi.org/10.1016/j.ejor.2023.03.013 
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ical attempts to demonstrate the potential of quantum mechan- 

ical computers and their computational properties, including but 

not limited to concepts of universal and inefficient quantum Tur- 

ing machine presented initially in Deutsch (1985) and equivalence 

between quantum Turing machines and uniform quantum circuits 

in Yao (1993) . 

Although the tremendous theoretical results sparked a lot of in- 

terest among some researchers, many doubts about their practical 

significance and applications remained. One of the biggest tech- 

nical challenges towards scalable and reliable quantum comput- 

ing is decoherence phenomenon. Compared with classical comput- 

ers, quantum computers are extremely susceptible to noise. Deco- 

herence is the permanent adversary of quantum information pro- 

cessing since it destroys the fragile superpositions where informa- 

tion is stored. Lower decoherence can alleviate the error correction 

overhead and significantly reduce noise in quantum circuits and 

processing. Basically, the greater the influence of noise, the shorter 

the quantum algorithm that can be run before it suffers an error 

and outputs an incorrect result. Thus, stability and error correc- 

tion issues remain an obstacle for unlocking quantum supremacy 

in solving real-world problems today. To describe the current state 

of the art in the fabrication of quantum circuits the concept of 

Noisy Intermediate-Scale Quantum (NISQ) era was introduced re- 

cently in Preskill (2018) . It is clear that even today special atten- 

tion must be paid to quantum error correction as NISQ devices are 

still not fault-tolerant and contain only a limited number (going 

into hundreds) of available basic units of quantum information - 

qubits . Thus, it is essential to identify a computing task or problem 

of interest to operational research that hopefully can be performed 

more efficiently, with better quality or more cost-effectively using 

quantum computers. Today, even without access to NISQ devices, 

advanced analysis and experimental tests of new quantum algo- 

rithms relevant for operational research can be performed thanks 

to quantum simulators widely available, as we demonstrate in this 

paper. Consequently, new quantum algorithms could be evaluated 

experimentally, adapted and tuned to constantly improved quan- 

tum NISQ devices, and we could have practical applications in the 

future. Last but not least, quantum computers promise to use much 

less energy and still vastly outperform supercomputers in the fu- 

ture. Modern classical supercomputers use between one to several 

megawatts of power on average. In contrast, existing NISQ devices 

use tens of kilowatts and generate almost no heat. Naturally, en- 

ergy efficiency will depend on the concrete architecture and thus 

on available technological solutions. However, we may expect sig- 

nificant progress and a technological breakthrough in this relevant 

and economic aspect of computations. 

The rest of this paper is organized as follows. In Section 2 we 

give a state of the art and brief review of the related works. In 

Section 3 we present the problem formulation. In Section 4 we 

formulate the Ising Hamiltonian representation applicable to the 

Quantum Approximate Optimization Algorithm (QAOA). Compu- 

tational experiments and the obtained results are described in 

Section 5 . Section 6 concludes the paper and shows some direc- 

tions for future work. 

2. State of the art 

From a conceptual computational complexity perspective, the 

Deutsch-Jozsa algorithm was the first to show a separation be- 

tween the quantum and classical difficulty of a problem ( Deutsch 

& Jozsa, 1992 ). Then, a set of first truly and historically impor- 

tant quantum algorithms were proposed, in particular quantum 

polynomial-time algorithms for the discrete logarithm and inte- 

ger factoring problems ( Shor, 1994 ), the first algorithm to solve 

a promise problem exponentially faster than any classical algo- 

rithm ( Simon, 1994 ), or the quantum search algorithm achieving 

quadratic speedup in unordered database search ( Grover, 1996 ). Al- 

though we have some evidence of quantum algorithms perform- 

ing better than their classical equivalents we are far from precisely 

establishing the true power of quantum computers. The quantum 

complexity theory was naturally investigated in Bernstein & Vazi- 

rani (1993) , Yao (1993) , and a new class of computational prob- 

lems called ’ Bounded error, Quantum, Polynomial time ’ (BQP) was 

then introduced in Bernstein & Vazirani (1997) . BQP consists of 

those decision problems that are solvable with bounded probabil- 

ity of error using a polynomial-size quantum circuit, and examples 

of problems belonging to this class can be the aforementioned in- 

teger factorization. We know so far that BQP is contained inside 

PSPACE class, which is the class of decision problems solvable by 

a Turing machine in polynomial space, and that it contains the 

BPP (problems which can be solved using randomized algorithms 

in polynomial time if bounded by probability error), hence the P 

class ( Fortnow & Rogers, 1999 ). It is then determined that P ⊆ BPP 

⊆ BQP ⊆ PSPACE ⊆ EXP. Since we know that P ⊂ EXP and do not 

know which of the inclusion is stricter, and also that we do not 

know how BQP relates to NP, researchers suspect that there might 

be some problems outside NP that quantum computers can solve 

efficiently. Another motivation towards quantum computers is the 

Solovay Kitaev theorem ( Kitaev, 1997 ) which states that an arbi- 

trary single qubit gate may be approximated to some accuracy us- 

ing polylogarithmic number of gates from a predefined universal 

discrete set, so we know that we can construct quantum circuits 

efficiently. 

The next relevant step was the introduction of quantum fluc- 

tuations into the well-known simulated annealing process of op- 

timization problems in Kadowaki & Nishimori (1998) . Then, quan- 

tum computation by adiabatic evolution was proved in Farhi, Gold- 

stone, Gutmann, & Sipser (20 0 0) , and suggested a novel quantum 

algorithm for solving the satisfiability problem and other combi- 

natorial search problems. Additionally, adiabatic computation has 

been shown to be polynomially equivalent to conventional quan- 

tum computing in the quantum gate model ( Aharonov et al., 2007 ). 

In principle, the concept of Quantum Annealing (QA) came from 

the well-known metaheuristic optimization technique called Simu- 

lated Annealing (SA), in which the space of admissible solutions 

to a given optimization problem is penetrated by temperature- 

dependent random movements. The cost function defines the total 

energy of the solution space, and the solution space can be effi- 

ciently explored thanks to thermal fluctuations. The basic concept 

of simulating annealing has been adopted and implemented in 

quantum hardware successfully when quantum fluctuations have 

replaced thermal fluctuations known from the classical SA ap- 

proach ( Boixo, Albash, Spedalieri, Chancellor, & Lidar, 2013; Hum- 

ble et al., 2013 ). Consequently, we have been observing a rapid 

growth of QA approaches successfully used for solving optimiza- 

tion problems formulated in terms of finding ground states of 

classical Ising spin Hamiltonians ( Lucas, 2014 ). Today’s quantum 

annealing devices (e.g. D-Wave) can be used to solve small in- 

stances of combinatorial optimization problems, including the Job 

Shop Scheduling Problem (JSSP), as it has been demonstrated in 

Venturelli, Marchand, & Rojo (2016) and Kurowski, W ̧e glarz, Sub- 

ocz, Różycki, & Waligóra (2020) . 

One should note that state of the art quantum computers in the 

NISQ era can only be easily applied to some problems, but they 

perform pretty well for some computational problems. If encoded 

correctly, selected problems can be solved on gate-based quan- 

tum computers (e.g. IBM quantum processing unit) thanks to vari- 

ational hybrid quantum-classical algorithms. In general, efficient 

variational hybrid quantum-classical approaches include two lead- 

ing algorithms, namely the Variational Quantum Eigensolver (VQE) 

( Cerezo et al., 2021; Coveney & Highfield, 2020; Ralli, Love, Tran- 

ter, & Coveney, 2021 ) and Quantum Approximate Optimization Al- 
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gorithm (QAOA) ( Farhi, Goldstone, & Gutmann, 2014 ). QAOA is a 

hybrid (quantum-classical) algorithm that approximates the value 

of the optimal solution of a binary optimization problem with its 

accuracy controlled by the hyperparameter p, which is a small pos- 

itive integer. The cost function of the problem is mapped to a 

Hamiltonian represented by a quantum circuit with depth (length) 

dependent on p. The quantum circuit that implements the algo- 

rithm consists of unitary gates and is evaluated several times on 

a quantum device with respect to classically precomputed variable 

parameters, updated with every iteration. 

QAOA has already been applied to a few well-known combina- 

torial optimization problems, such as Max-Cut ( Crooks, 2018 ), Trav- 

elling Salesman Problem ( Radzihovsky, Murphy, & Mason, 2019 ), 

and Graph Coloring ( Tabi et al., 2020 ). The author of the first pa- 

per studied the performance of QAOA on the MaxCut problem, 

optimizing the quantum circuits on a classical computer using 

automatic differentiation and stochastic gradient descent ( Crooks, 

2018 ). It was demonstrated that it is possible to amortize the 

training cost by optimizing batches of problem instances. The pa- 

per shows that QAOA can exceed the performance of the clas- 

sical polynomial time Goemans-Williamson algorithm with mod- 

est circuit depth and that performance with fixed circuit depth is 

insensitive to problem size. Moreover, MaxCut QAOA can be ef- 

ficiently implemented on a gate-based quantum computer with 

limited qubit connectivity using a qubit swap network. The pre- 

sented results support the prospects that QAOA will be an efficient 

method for solving complex combinatorial optimization problems 

on near-term quantum computers. In the second paper the authors 

implemented and investigated two versions of QAOA for the Trav- 

elling Salesman Problem (TSP) ( Radzihovsky et al., 2019 ). They call 

them Hamiltonian cost implementation and mixer implementation, 

respectively. The authors showed that their mixer implementation 

successfully solves the TSP and reproduces, up to cyclic permuta- 

tions, the solution found by the classical solver. They also found 

that the mixer approach requires fewer gates than the Hamilto- 

nian cost implementation, whereas the cost Hamiltonian is gener- 

ally faster than the mixer. The authors stated that their implemen- 

tations provide a glimpse into what problems quantum computers 

can solve and the possibility of utilizing quantum supremacy. They 

concluded that although they could not compare the quantum al- 

gorithms against classical algorithms on real-world scale problems, 

this will be an exciting area of future research as quantum hard- 

ware continues to improve. Finally, the authors introduced a novel 

space-efficient quantum optimization algorithm for the Graph Col- 

oring Problem ( Tabi et al., 2020 ). Their circuits were deeper than 

the ones of the standard approach. However, through a series of 

investigations, the authors presented the performance gain of this 

method. They showed that the required circuit width to embed 

the colouring problem was exponentially reduced in the number of 

colours. Although the depth of a single QAOA layer was increased, 

the number of required layers and optimization iteration steps to 

reach the optimal solution also decreased. The authors state that 

the proposed method and comparative study can be extended to 

a benchmarking framework for such performance gain analyses. 

Furthermore, they concluded that analogous space-efficient em- 

bedding techniques could be used to improve upon other graph- 

related quantum optimization methods. 

Although QAOA is proven to improve the solution quality with 

increased depth, it is hard to scale this regularity on real NISQ 

quantum hardware due to errors caused by qubit imperfections 

such as cross-talk or decoherence, as well as errors caused by 

faulty gates and measurements. The current references demon- 

strate that a notable quantum advantage seems likely to be ob- 

served on real quantum hardware once the noise decreases by two 

orders of magnitude ( Stilck França & Garcia-Patron, 2021 ). For this 

reason, researchers limit themselves in running QAOA experiments 

only to small circuits ( De Palma, Marvian, Rouzé, & França, 2022; 

Harrigan et al., 2021; Khumalo, Chieza, Prag, & Woolway, 2022; 

Magann et al., 2021 ) of size p = 1 to p = 3 . Nonetheless, alterna- 

tives that seem more robust to noise have been introduced, e.g. the 

feedback-based technique discussed in Magann, Rudinger, Grace, & 

Sarovar (2022) . 

In general, two main approaches address the issue of noise 

and errors in existing NISQ devices. The short-term approach is 

quantum error mitigation techniques used to deal with errors as 

they occur. Error mitigation techniques operate mainly in the post- 

processing stage, and therefore, they have limited usage because 

their usability decreases with circuit length and complexity. The 

long-term answer is the quantum error correction approach with 

techniques that can fix errors during circuit execution. With er- 

ror correction, there exists a concept of a logical qubit, which can 

be composed of physical qubits, typically in the range between 

5 (simple error correction techniques) and 10 0 0 (perfect logical 

qubit). For more information about quantum error mitigation and 

correction, we refer the reader to standard textbooks, e.g. Nielsen 

& Chuang (2002) . As our research focused on experimental verifi- 

cation of QAOA using a quantum simulator, not real NISQ quantum 

hardware, detailed analysis is outside the scope of this paper. 

Nevertheless, even if the size of considered problem instances 

is small for today, we have been observing rapid development of 

quantum technologies, new error correction techniques, and con- 

stant growth of the number and better quality qubits. It will re- 

sult in the possibility of solving much larger problem instances in 

the near future. Consequently, it is relevant to develop and ver- 

ify experimentally new quantum-based approaches, such as QAOA, 

to complex combinatorial problems today since they will be able 

to cope with bigger and bigger problem instances until they fi- 

nally surpass classical algorithms and prove quantum supremacy. 

Some promising symptoms of that have already been shown in the 

abovementioned papers. 

Thus, this paper is aimed to identify a possible adaptation of 

QAOA to scheduling problems by conducting a relatively simple 

but comprehensive series of experiments to pave the way for the 

scheduling application’s development. Due to many practical appli- 

cations of scheduling in advanced planning, decision support and 

computer systems, we have selected the JSSP benchmark. In this 

paper, we show a set of advanced analyses and guide the reader 

step by step, demonstrating possible opportunities and limits in 

quantum simulation environments using still significant classical 

computational power, which can be supported or replaced by im- 

proved NISQ devices in the future. 

3. Job shop scheduling problem 

3.1. Problem formulation 

The Job Shop Scheduling Problem (JSSP) has been one of the 

most studied optimization problems over a few decades. In the 

problem a set of dedicated (i.e. different) machines is to perform 

tasks of jobs, i.e. each job is composed of an ordered list of tasks, 

from among which every task requires a specific machine for a 

known processing time. There exist several constraints imposed on 

jobs and machines: (i) tasks are nonpreemptable, (ii) tasks of dif- 

ferent jobs are independent, (iii) each task can be performed on 

one machine at a time, and (iv) each machine can process only 

one job at a time. The problem is to minimize the makespan, i.e. 

the maximum completion time of all tasks. The JSSP belongs to the 

most intractable scheduling problems considered in the literature. 

It is NP-hard in the strong sense, and only a few particular special 

cases are efficiently solvable. There are several different formula- 

tions of the JSSP (see e.g., Bła ̇zewicz, Dror, & W ̧e glarz, 1991 for a 

survey), whereas a problem instance, as well as a feasible solution, 

520 



K. Kurowski, T. Pecyna, M. Slysz et al. European Journal of Operational Research 310 (2023) 518–528 

can be represented by a disjunctive graph or its specialized repre- 

sentation the graph matrix ( Bła ̇zewicz, Pesch, & Sterna, 20 0 0 ). In 

order to solve JSSPs exact methods, heuristic and metaheuristic al- 

gorithms have been used over the years ( Bła ̇zewicz, Domschke, & 

Pesch, 1996; Jain & Meeran, 1999 ). The exact approaches have al- 

most entirely been based on branch-and-bound procedures. These, 

as it is known, rely very much on strong lower bounds in order to 

cut branches of the enumeration tree as early as possible. Lower 

bounds for the JSSP have been analyzed in e.g., Brucker & Jurisch 

(1993) and Carlier & Pinson (1994) . As far as approximation algo- 

rithms are concerned, many approaches have used priority rules 

to order the tasks of jobs. For an extended summary and discus- 

sion see Haupt (1989) . Various schedule generation schemes for 

the JSSP with sequence-dependent setup times have been analyzed 

in Artigues, Lopez, & Ayache (2005) . One of the most powerful 

procedures used for the problem is the shifting bottleneck heuris- 

tic ( Adams, Balas, & Zawack, 1988; Pezzella & Merelli, 20 0 0 ). Also 

constraint propagation approach has been widely used to solve the 

problem ( Dorndorf, Pesch, & Phan-Huy, 2002 ). From among local 

search methods a great variety of approaches have been applied to 

the JSSP (see Vaessens, Aarts, & Lenstra, 1996 for a survey). Many 

metaheuristic algorithms have also been proposed over the years, 

including simulated annealing, tabu search, genetic algorithms, ant 

colony optimization, variable depth search, and their hybrids (see 

Bła ̇zewicz et al., 2019 for an extensive review). From among them 

excellent results are presented in Balas & Vazacopoulos (1998) , 

where a guided local search with shifting bottleneck has been pro- 

posed, and in Zhang, Li, Rao, & Guan (2008) in which a simulated 

annealing/tabu search hybrid is described. In order to compare the 

efficiency of algorithms various benchmark sets are being used. A 

review of the current state of bounds on benchmark instances of 

the JSSP is given in van Hoorn (2018) . 

In this paper we use the following formulation of the JSSP. 

There are J jobs J = { j 1 , . . . , j J } and each of them has O j oper- 

ations (tasks) O j = { o j1 → · · · → o jO j } to be processed in prede- 

fined order. Each of these single job operations must be processed 

on a specified and distinct machine from a set of M machines, 

M = { m 1 , . . . , m M 

} , and only one operation can be processed by a 

machine at a given time. Note that ∀ j O j ≤ M. The objective is to 

find the minimum makespan, i.e., the earliest completion time of 

the last running job. 

3.2. Problem representation 

To effectively apply QAOA to the JSSP we need to find a rep- 

resentation, so that the feasibility constraints can be defined as a 

sum of binary clauses. Initially, a generic method for the decision 

version of JSSP together with experimental tests was presented in 

Venturelli et al. (2016) . We have proposed an extension of this 

method for the optimization version of JSSP. In addition, when 

comparing two feasible solutions, in our approach, we guaranteed 

that the one with a shorter makespan would also be of lower en- 

ergy. Consequently, a new Hamiltonian function responsible for op- 

timizing makespan was proposed, parametrized, and considered 

during experimental feasibility studies for solving a well-known 

reference JSSP benchmark (FT06) on the D-Wave 20 0 0Q quantum 

annealer ( Kurowski et al., 2020 ). We use the time-indexed instance 

representation and for each operation we assign a set of binary 

variables representing specific timestamps on which the operation 

can start, i.e.: 

x k,t = 

{
1 : if operation o k starts at time t 

0 : otherwise . 
(1) 

The time t is bounded by an arbitrary deadline T common for 

all jobs, and the index k is a running index representing a position 

of an operation in a list that concatenates all operations over all 

jobs: ⎡ 

⎢ ⎣ 

o 11 , . . . , o 1 O 1 ︸ ︷︷ ︸ 
j 1 

, o 21 , . . . o 2 O 2 ︸ ︷︷ ︸ 
j 2 

. . . , o J1 , . . . o JO J ︸ ︷︷ ︸ 
j J 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

o 1 , . . . , o k 1 ︸ ︷︷ ︸ 
j 1 

, o k 1 +1 , . . . o k 2 ︸ ︷︷ ︸ 
j 2 

. . . , o k J−1 +1 , . . . o k J ︸ ︷︷ ︸ 
j J 

⎤ 

⎥ ⎦ 

. (2) 

Note, that in general the deadline T has to be estimated e.g. 

using some heuristic algorithm. In this paper, however, we restrain 

ourselves to setting T as a makespan of a random, feasible solution. 

Let us now define a set of constraints which assures that the 

solution is feasible and ends before T . Firstly, the operation must 

start once and only once, which is expressed by the following for- 

mula: 

∑ 

k 

(∑ 

t 

x k,t − 1 

)2 

= 0 . (3) 

Secondly, there can be only one operation running at a given 

machine at any time, i.e.: 

∑ 

m 

( ∑ 

k,t ,k ′ ,t ′ ∈ R m 
x k,t x k ′ ,t ′ 

) 

= 0 , (4) 

where R m 

is a union of two sets R m 

= A m 

∪ B m 

. A m 

is a set that 

constraints operation o k ′ to start on a machine m if operation o k 
is still running on the machine, and B m 

is a set that constraints 

two operations from starting at the same time unless one of their 

times is 0: 

A m 

= { (k, t, k ′ , t ′ ) : (k, k ′ ) ∈ I m 

× I m 

, 

k � = k ′ , 0 ≤ t , t ′ ≤ T , 0 < t ′ − t < l k } , 
B m 

= { (k, t, k ′ , t ′ ) : (k, k ′ ) ∈ I m 

× I m 

, 

k < k ′ , t ′ = t, l k > 0 , l k ′ > 0 } . 
In this notation we denote l k as the processing time of opera- 

tion k and I m 

as the set of all operations that have to be processed 

on the machine m . 

The last constraint is defined so that the original order of the 

operations is kept for all the operations for every job in a given 

instance: 

J ∑ 

n =1 

⎛ 

⎜ ⎝ 

∑ 

k n −1 <k<k n 
t + l k >t ′ 

x k,t x k +1 ,t ′ 

⎞ 

⎟ ⎠ 

= 0 . (5) 

If we name h 1 , h 2 , h 3 as the constraint objectives (3), (4) (5) we 

get: 

h 1 (x ) = 

∑ 

k 

(∑ 

t 

x k,t − 1 

)2 

, (6) 

h 2 (x ) = 

∑ 

m 

( ∑ 

k,t ,k ′ ,t ′ ∈ R m 
x k,t x k ′ ,t ′ 

) 

, (7) 

h 3 (x ) = 

J ∑ 

n =1 

⎛ 

⎜ ⎝ 

∑ 

k n −1 <k<k n 
t + l k >t ′ 

x k,t x k +1 ,t ′ 

⎞ 

⎟ ⎠ 

, (8) 

where x is a vector of length R representing all possible variables 

x k,t . If the values of all three objectives are equal 0, then all the 
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constraints are satisfied, i.e., there is a feasible schedule and the 

makespan of this schedule is less or equal to T . 

The Job Shop Scheduling Problem is not only limited to finding 

a feasible schedule, but also optimizing its makespan. We can take 

advantage of the time-indexed representation by deriving an addi- 

tional term that will put a penalty favouring any optimal schedule 

over any non-optimal schedule. 

Suppose that for our J jobs in a JSSP instance an optimal sched- 

ule finishes at a time τ . Since any job finishes when its last opera- 

tion o k 1 , o k 2 , . . . , o k J is complete, we can penalize only the comple- 

tion time of the last jobs’ operations. Each last operation is there- 

fore given a penalty of the form base last-operation-completion-time . Let 

t k 1 , t k 2 , . . . , t k J be the last operations’ completion times in the op- 

timal schedule. Let us also choose the base as J + 1 . We can show 

now that any optimal schedule will be less penalized that any non- 

optimal schedule. 

The penalty that will be given to any optimal schedule takes 

the form of: 

J ∑ 

n =1 

(J + 1) t k n , t k n ≤ τ, (9) 

and the most penalized optimal schedule, i.e., the schedule in 

which all the last operations finish at time τ will be given the 

penalty: 

J ∑ 

n =1 

(J + 1) τ = J(J + 1) τ . (10) 

Comparing (9) and (10) we can easily see that, indeed: 

J ∑ 

n =1 

(J + 1) t k n ≤ J(J + 1) τ . (11) 

Moreover, from (10) we can also see that: 

J(J + 1) τ < (J + 1)(J + 1) τ = (J + 1) τ+1 , (12) 

which tells us that the most penalized optimal schedule is al- 

ways less penalized than an operation that completes at a small- 

est non-optimal time τ + 1 . If we denote by t ′ 
k 1 

, t ′ 
k 2 

, . . . , t ′ 
k J 

the last 

operations’ completion times of this non-optimal schedule (i.e., 

∃ n : t ′ 
k n 

= τ + 1 ), we can enhance (12) and write: 

J(J + 1) τ < (J + 1) τ+1 < 

J ∑ 

n =1 

(J + 1) t 
′ 
k n , (13) 

which ends our proof, that the most penalized optimal schedule is 

always less penalized than any non-optimal schedule. 

Taking advantage of the derived penalties we can define an ad- 

ditional objective: 

h 4 (x ) = 

J ∑ 

n =1 

(J + 1) t k n , (14) 

which has the lowest values if the vector x produces an optimal 

schedule. 

4. Quantum computing for the JSSP 

4.1. Quantum computing 

Preliminary to describing our approach of using QAOA to solve 

JSSP, it is useful to draft some basic concepts of quantum comput- 

ing as it is a relatively new field of computer science. In the fol- 

lowing subsection we will describe only the necessary ideas, an in- 

terested reader is referred to more comprehensive handbooks, e.g. 

Nielsen & Chuang (2002) 

A qubit is a name for any two-level quantum system. A typical 

representation of a qubit takes the form of a ket 

| ψ〉 = a | 0 〉 + b| 1 〉 (15) 

by which we mean that we expect the qubit to be in the base state 

| 0 〉 with probability a 2 and to be in the base state | 1 〉 with prob- 

ability b 2 . This phenomena is called superposition. The parameters 

a and b are probability amplitudes of the qubit and satisfy the nor- 

malization criterion a 2 + b 2 = 1 . A system composed of R qubits is 

represented by 

a 0 | 0 0 . . . 0 0 〉 + a 1 | 00 . . . 01 〉 + · · · + a 2 R | 11 . . . 11 〉 , (16) 

where we write | 0 0 . . . 0 0 〉 as an abbreviated form of a tensor 

product | 0 〉 � | 0 〉 � · · · � | 0 〉 � | 0 〉 and a r is the probability ampli- 

tude of a corresponding base state. A qubit (or a system composed 

of many qubits) is in a given and prepared state and quantum state 

preparation is an essential subroutine for quantum computing. The 

only way to acquire knowledge about the qubit or the quantum 

system (i.e. there are hundreds of qubits) is to perform a mea- 

surement. However, the measurement does not give us complete 

knowledge about the state because once the qubits are measured, 

they always collapse into one of their base states. If we can prepare 

the same state many times, we can alleviate this problem by per- 

forming the measurement many times hence estimating the am- 

plitudes up to some error. 

Another useful way of describing a quantum state, which ori- 

gins from quantum mechanics where it describes the total energy 

of a system, is by specifying its Hamiltonian. In quantum comput- 

ing, a Hamiltonian is often user-defined and acts as an operator for 

an expected value measurement for some desired state. The expec- 

tation value of a quantum system (often referred to as energy) is 

mathematically written as 

E = 〈 ψ | H| ψ 〉 . (17) 

The Hamiltonian H is usually composed of scalar-weighted Pauli 

gates ( Pauli, 1927 ), which in this case are used as the operators of 

orthogonal measurements. By its definition, the Hamiltonian can 

aggregate any function which can be described as a sum of binary 

clauses ( Hadfield, 2021 ). In many quantum optimization algorithms 

the strategy is to aggregate into the Hamiltonian functions of in- 

terest e.g. functions describing constraints or the cost function and 

evolve an initial quantum state such that the expected value of the 

Hamiltonian is minimal. The state evolution is done using so-called 

quantum gates. Physically they take various forms which depend 

on quantum computer architecture, but mathematically they can 

always be described as unitary, linear transformations. 

4.2. Quantum approximate optimization algorithm 

Having formulated the JSSP, we can now describe the Quantum 

Approximate Optimization Algorithm and show a straightforward 

and intuitive transformation which takes the already derived ob- 

jectives to cost Hamiltonians needed by QAOA. 

Looking at the QAOA in a general way, suppose a combinatorial 

optimization problem is given. If we can define the problem ob- 

jective function as a sum of finite number of clauses C α(x ) where 

x ∈ { 0 , 1 } R is a binary string of length R , 

C(x ) = 

∑ 

α

C α(x ) , (18) 

then we can use QAOA to find an approximate solution for the 

problem with a given probability. To this end, we need to con- 

vert the clauses into quantum Hamiltonians by replacing the bi- 

nary variables x r , r ∈ { 1 , 2 , . . . , R } , with spin variables s r , 

x r = 

1 − s r 

2 

, (19) 
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and promoting each spin variable s r to a Pauli-Z matrix σ z 
r . As a 

result, we obtain a cost Hamiltonian 

H C = C(σ z ) . (20) 

The QAOA algorithm alternately applies the cost Hamiltonian 

and a mixing Hamiltonian H B to the equal superposition | + 〉 �R 

state p times, thus achieving a final state ψ : 

| ψ p ( 
−→ γ , 

−→ 

β ) 〉 = e −iβp H B e −iγp H C . . . e −iβ1 H B e −iγ1 H C | + 〉 �R , (21) 

where the variables γ and β play the role of variational param- 

eters to be optimized by a classical algorithm, and the mixing 

Hamiltonian H B usually takes the form of a sum of Pauli-X ma- 

trices ( Farhi et al., 2014 ): 

H B = 

R ∑ 

r=1 

σ x 
r . (22) 

The goal of QAOA is to find such optimal parameters γ ∗ and β∗, 

so that the expected value 

F p ( 
−→ γ , 

−→ 

β ) = 〈 ψ p ( 
−→ γ , 

−→ 

β ) | H C | ψ p ( 
−→ γ , 

−→ 

β ) 〉 (23) 

is maximized (or minimized). In our work we will look for the so- 

called ground state of the cost Hamiltonian, hence we will aim 

to minimize the expected value. The expected value of the cost 

Hamiltonian will be referred to as energy in the following sections. 

4.3. QAOA For the JSSP 

Let us take the objectives (6) to (8) and (14) we derived before- 

hand and, using the formula (19) , replace all the binary variables 

from vector x with spin variables s . Subsequently, let us promote 

the spin variables to Pauli-Z matrices. We can now treat the objec- 

tive function expressed by the formula: 

H C (σ
z ) = h 1 (σ

z ) + h 2 (σ
z ) + h 3 (σ

z ) + h 4 (σ
z ) (24) 

as the cost Hamiltonian (20) . This cost Hamiltonian can be then 

embedded into the QAOA to find the solution of the JSSP. 

5. Experiments and results 

Due to computational power limitations required for quantum 

simulations, the following analysis is conducted on a toy JSSP in- 

stance. Our algorithm was launched using the Atos myQLM quan- 

tum simulator framework, allowing users to run quantum noiseless 

simulations up to several tens of cubits depending on the classical 

computer performance. The basic instance consists of 3 jobs and 

each of them contains between 1 and 2 operations with process- 

ing times ranging from 1 to 2 units. The number of machines is 3. 

The makespan for the optimal schedule for this instance is τ ∗ = 3 . 

We present the instance on a disjunctive graph in Fig. 1 . 

5.1. Patterns in the parameter space 

For a given QAOA depth we can always find such variational 

parameters in the non-convex space that lie near the global opti- 

mum and further optimization gives no significant advantage to- 

wards lower energy. Let us call them the optimal variational pa- 

rameters. 

The succeeding optimal variational QAOA parameter sequences 

β∗ = β∗
1 
, . . . , β∗

i 
, . . . , β∗

p and γ ∗ = γ ∗
1 
, . . . , γ ∗

i 
, . . . , γ ∗

p might form 

patterns, i.e. their values might increase monotonically with in- 

creasing i and also, that they should interpolate the space with in- 

creasing p as demonstrated in Zhou, Wang, Choi, Pichler, & Lukin 

(2020) . These properties are used in so-called educated guess strat- 

egy which is known to significantly speed up the process of finding 

Fig. 1. The basic synthetic JSSP instance - the numbers on the directed edges rep- 

resent processing tfimes of each operation, and the vertex color coding substitute 

undirected edges by marking operations that have to processed on the same ma- 

chine. 

optimal parameters ( Vikstål et al., 2020; Zhou et al., 2020 ). The ed- 

ucated guess strategy will be discussed in the next subsection. To 

confirm that in the case of the JSSP’s cost Hamiltonian these prop- 

erties appear as well, we started our series of experiments by find- 

ing optimal parameters for an arbitrary p. Having found the opti- 

mal parameters we could plot landscapes of pairs (βi , γi ) ranging 

both βi and γi from −2 π to 2 π . Fig. 2 shows the energy landscapes 

with monotonically traveling optimal pairs, which empirically con- 

firms our assumptions. 

5.2. Educated guess strategy 

The educated guess interpolation strategy proposed in Zhou 

et al. (2020) assumes patterns in the parameter space. These pat- 

terns allow to take the optimal parameter sequences of depth p

used by a quantum circuit of depth p, interpolate them to obtain 

parameter sequences of depth p + 1 and pass them to the longer 

circuit of depth p + 1 . This is beneficial because (i) the longer the 

circuit is, the higher is the probability of obtaining a better solu- 

tion (i.e., solution with low energy), and (ii) it takes more time 

to optimize parameters for longer circuits, so starting from initial 

points which are close to optimal ones can speed up the process 

of optimization. 

In our implementation, we set p to a low value ( p = 3 ) and 

then use multi-start strategy to initialize many random QAOA pa- 

rameters and pass them as starting points to the local optimizer. 

The local optimizer was chosen to be the Constrained Optimiza- 

tion BY Linear Approximation (COBYLA) ( Powell, 1994 ) algorithm, 

implemented in SciPy library, version 1.5.4 ( Virtanen et al., 2020 ), 

and the function tolerance we set to 0 . 001 . The number of start- 

ing points is empirically determined to be 500. After running the 

optimizer algorithm, we select several ( 5 ∼10 ) points, resulting in 

the lowest cost Hamiltonian energy. We interpolate them, as it was 

described in Zhou et al. (2020) to obtain new points of higher di- 

mensionality. These points are then fed as parameters to the QAOA 

circuit of depth p + 1 and optimized again by the COBYLA algo- 

rithm. We repeat the optimization-interpolation steps until a de- 

sired Hamiltonian energy is achieved on one of these points. 

We start our series of experiments by defining the cost Hamil- 

tonian as a sum of the feasibility constraints (6) to (8) only. This 

means that no penalty will be given on non-optimal schedules 

but the Hamiltonian will be less complex. In Fig. 3 we present 

a comprehensive visualisation of the behaviour of the variational 

parameters together with energy probabilities of the Hamiltonian. 

The data was collected using the aforementioned algorithm to the 

JSSP, choosing T to equal 4. We can see that both γ and β tend to 

monotonically increase their values in the domain of a single cir- 

cuit and that they tend to interpolate the space in the domain of 
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Fig. 2. Energy landscapes for the JSSP in a function of variational parameters β and γ for p = 6 . On a single subplot we show only selected pairs of parameters (βi , γi ) , 

while the remaining (β j , γ j ) , i � = j are set to constant, optimal values. We can observe repetition of the landscape energy values, which are the result of symmetries in 

variational parameters. 

Fig. 3. Results for solving the toy JSSP instance using the educated-guess strategy with the Hamiltonian constructed of feasibility constraints only. The plots show 7 pairs of 

optimal parameters β and γ and corresponding energy probabilities of the cost Hamiltonian (solutions with energy greater than 4 are aggregated into one bar). Every next 

column represents one unit longer circuit than the previous one. Every next circuit was fed with previously found, interpolated and then optimized parameters (except the 

first circuit of depth p = 3 plotted on the first column, where the initial parameters were randomly chosen and optimized without interpolation). 

increasing circuit depth p. We can also see that, indeed, the circuit 

depth affects the energy probabilities reaching over 90% chance of 

measuring the feasible solution when the depth p = 9 . 

We now proceed with the experiments by adding the fourth 

objective (14) , which penalizes non-optimal schedules, to the 

Hamiltonian. Looking at the Fig. 4 we can see that the results are 

similar to the ones presented in Fig 3 . Variational parameters make 

twin landscapes and they form similar patterns that interpolate 

the space with increasing circuit depth. Since now, the JSSP opera- 

tions are penalized on their completion time, the minimal energy 

is almost always greater than 0 (unless all the processing times 

are 0, which is not the case in the instance). Comparing the en- 

ergy probabilities of circuits with the same depth from both fig- 

ures, we can see that they are roughly similar, e.g., the summed 

probability of measuring energies in range [0 . 0 , 0 . 5) and [0 . 5 , 1 . 0) 

in Fig. 3 with circuit of depth p = 6 is approximately equal to 0.64, 

which is comparable to probability of measuring energy value of 0 

in Fig. 4 with circuit of depth p = 6 . This leads to a conclusion that 

using the more complex Hamiltonian, seems to have little effect on 

the probabilities of measuring a solution with a low energy. This is 

good news since it also means that we can obtain low-makespan 

solution with no additional computational effort. The relation be- 

tween energy and makespan will be the matter of the next sub- 

section. 
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Fig. 4. Results for the JSSP instance using the educated-guess strategy with the Hamiltonian also penalizing solutions with high makespan. The subplots show 3 pairs of 

optimal parameters β and γ as well as corresponding energy probabilities of the cost Hamiltonian (solutions with close energy values are aggregated into single bins of 

range of 0.5). 

Fig. 5. A randomly sampled solution of the toy JSSP instance plotted on a Gantt 

chart. The operations O 31 and O 11 have processing time equal 2. The schedule gen- 

erates energy 1.27 with the final makespan 5. 

5.3. Performance analysis 

We start the following analysis by randomly sampling a feasi- 

ble solution for our toy instance. We plot the solution in Fig. 5 . 

Its energy is approximately 1.27 and its makespan is 5. Based on 

this random solution, in the following series of experiments we 

set the deadline T = 5 and launch our energy-minimization algo- 

rithm to see how the mean energy decrease affects the probability 

of obtaining a solution with different (preferably lower) makespan. 

Afterwards, we lower the deadline to T = 4 in order to investigate 

the impact that hardening the constraints has on the probabilities 

of obtaining solutions with given energies. 

We present the relation between energy and makespan in 

Fig. 6 . The circuit used to produce data for this figure had depth 

p = 5 . We can see a clear pattern that the lower the energy is, the 

higher is the probability of obtaining a feasible solution with a low 

makespan. Moreover, only the lowest range of energies correspond 

with the optimal solution (makespan 3). With circuit depth p = 5 

approximately half of the solutions are infeasible, however. This 

is an expected behaviour that comes from the nature of quantum 

computing and can be reduced by iterative increasing the depth of 

the circuit, as was described in Section 5.2 . 

Interestingly enough, restricting the deadline to T = 4 resulted 

in rise in probability of measuring solutions with low energy, 

therefore lower makespan. This property might be advantageous 

when using any strategy based on repeated querying the circuit, 

e.g., starting with large T , measuring any feasible solution with 

makespan lower than T , and then setting this makespan value as 

T for the next iteration. Consequently, this would, again, accelerate 

the process of finding the optimal solution. 

When considering performance we cannot underestimate the 

importance of time consumption, so in Fig. 7 we show the opti- 
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Fig. 6. Left hand-side: relationship between solution makespan and energy. Size of the markers are proportional to the probability of measuring a solution with given 

makespan and energy range. Right hand-side: marginal distribution of energy over the makespan. The top row present the results for deadline T = 5 , while the bottom row: 

T = 4 . 

Fig. 7. Time needed for optimization of the variational parameters γ and β in the function of depth of simulated quantum gate-model circuit. The left hand-side shows the 

summed optimization time for all initial β and γ points per i th steps over all threads which were used. The right hand-side shows the optimization time of a single initial 

point, which resulted in the optimal solution. 

mization time of the toy instance and its slight modifications (e.g. 

increased number of jobs). Then, we have enhanced the experi- 

ments up to 19 variables. We can observe an advantage of using 

the educated-guess strategy to solve the JSSP over a regular QAOA. 

Finding the optimal parameters is hard even for low-depth circuits, 

but if the optimal parameters are found and interpolated, the time 

needed to optimize them decreases significantly. 

The second most apparent observation is the height of the over- 

all duration time of the algorithm. For the toy instance, which is 

easily solvable by hand in several minutes by humans, it takes even 

days for a computer to solve, which might seem disappointing. 

Note, however, that in this paper, all the experiments have been 

made using a quantum simulator, meaning that all possible states 

(which number grows exponentially with the number of variables) 
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had to be processed sequentially on a classical computer. Thus, ex- 

perimenting with only toy scheduling problem instances is neces- 

sary today when working with quantum simulators since quan- 

tum evolution requires the multiplication of quantum states by 

large matrices 2 2 n . If we were to analyze with benchmarks from 

scientific literature, e.g. the FT06 benchmark for JSSP as we have 

demonstrated on a real quantum annealer, we would need at least 

hundreds of variables, which means that we would need RAM of 

around 2 2 ·100 ·4 bytes on a classical computer to keep the quantum 

evolution matrices. Nevertheless, nowadays, several real gate-based 

NISQ devices with up to hundreds of qubits, e.g. recent IBM Q sys- 

tems, are capable of handling this complexity with quantum com- 

putations. 

We can also see, that the optimization time not only depends 

on the number of variables, but also depends on T or the instance 

parameters such as number of jobs. The reason for that is that 

QAOA’s circuit depth is no longer dependent on the instance size n , 

but instead it is a function of the parameter p ( Zhou et al., 2020 ). 

Even though these are not directly comparable, it is shown in Farhi 

& Harrow (2019) that it is enough to obtain quantum advantage in 

some cases. 

6. Conclusions 

This paper presented how to successfully implement a widely 

studied QAOA to solve a reference scheduling problem. We demon- 

strated how to efficiently apply QAOA to the well-known JSSP to 

find the optimal solution and pave the way for solving more com- 

plex scheduling problems in the future with more powerful and 

hybrid classic-quantum NISQ devices. Additionally, we investigated 

the behaviour of our energy-minimization algorithm in a series of 

experiments and demonstrated the relation between energy and 

makespan in achieving feasible and infeasible solutions. We dis- 

cussed our experiences gained from real computational experi- 

ments and showed appropriate technical steps for quantum appli- 

cation developers interested in quantum simulation environments. 

All the presented results can be quickly adopted and extended 

by gate-model application developers, especially for initial testing 

and experimental verification of new quantum-based approaches 

for intensive quantum simulations. This paper can also be seen 

from the performance evaluation perspective of classical high- 

performance computer (HPC) systems and requirements for com- 

puting resources as new quantum-inspired and hybrid Quantum- 

HPC methodologies emerge. 
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Abstract. Tactical deconfliction problem involves resolving conflicts be-
tween aircraft to ensure safety while maintaining efficient trajectories.
Several techniques exist to safely adjust aircraft parameters such as
speed, heading angle, or flight level, with many relying on mixed-integer
linear or nonlinear programming. These techniques, however, often en-
counter challenges in real-world applications due to computational com-
plexity and scalability issues. This paper proposes a new quantum ap-
proach that applies the Quantum Approximate Optimization Algorithm
(QAOA) and the Quantum Alternating Operator Ansatz (QAOAnsatz)
to address the aircraft deconfliction problem. We present a formula for
designing quantum Hamiltonians capable of handling a broad range of
discretized maneuvers, with the aim of minimizing changes to original
flight schedules while safely resolving conflicts. Our experiments show
that a higher number of aircraft poses fewer challenges than a larger num-
ber of maneuvers. Additionally, we benchmark the newest IBM quantum
processor and show that it successfully solves four out of five instances
considered. Finally, we demonstrate that incorporating hard constraints
into the mixer Hamiltonian makes QAOAnsatz superior to QAOA. These
findings suggest quantum algorithms could be a valuable algorithmic can-
didate for addressing complex optimization problems in various domains,
with implications for enhancing operational efficiency and safety in avi-
ation and other sectors.

Keywords: Tactical Aircraft Deconfliction · Quantum Approximate Op-
timization Algorithm · Quantum Alternating Operator Ansatz.

1 Introduction

The global COVID-19 pandemic was not enough to stop the long-term trend of
increasing demand for aviation services. According to Airports Council Interna-
tional, in 2023 the number of passengers reached almost 95% of the levels from

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_22



2 T. Pecyna et al.

2019, and projections indicate a surpassing of the 2019 level in 2024 [1]. Along
with this trend, problems with airspace congestion are returning, and the de-
mand for specialized algorithms dealing with airspace management comes back,
one of the problems being the tactical aircraft deconfliction.

In literature, aircraft deconfliction, also known as a conflict detection and
resolution problem, refers to the natural and common challenge of ensuring ap-
propriate and safe separation among aircraft operating in the same controlled
airspace. The problem arises due to the limited airspace and the need to accom-
modate multiple aircraft at different directions, altitudes, speeds, and planned
maneuvers. The problem has been a subject of interest among many researchers
within the community. Despite extensive exploration of conflict detection and
resolution, numerous models struggled to sufficiently address the challenges of
considered problem, as noted in a seminal work by Kuchar and Yang [16]. Then,
the work by Pallottino et al. [21] gained much community attention by introduc-
ing the velocity change model, which utilizes mixed-integer linear programming
(MILP) to allow real-time maneuvering to resolve aircraft conflicts. This ap-
proach was further refined by Alonso-Ayuso et al. [3], who incorporated altitude
changes, weather conditions and trajectory recovery into the model while main-
taining real-time capabilities.

In a separate study [27], Vela et al. concentrated on addressing the problem
of future conflicts, which could occur within a timeframe ranging from 15 to
45 minutes, to minimize fuel costs. They reported achieving near-optimal so-
lutions using the MILP approach, incorporating control over both velocity and
altitude. Furthermore, Omer [20] observed that air traffic controllers and aircraft
pilots do not favor all velocity, heading, and altitude changes. Consequently, he
suggested a discretization approach to facilitate easier handling by human op-
erators, resulting in a minor increase in fuel consumption, amounting to a few
kilograms.

Instead of employing MILP, some researchers have proposed using nonlinear
programming to address the issue of aircraft deconfliction. In their study [7],
Cafieri and Durand utilized Mixed Integer Nonlinear Programming (MINLP) as
a natural choice to model separation conditions, addressing the problem using
only velocity change. The study conducted by Alonso-Ayuso et al. [4] also ap-
plied MINLP formulation to solve the deconfliction problem via turn changes.
One notable work that builds upon these two approaches and combines them
was conducted by Cafieri and Omheni [8]. They suggest initially resolving the
problem by adjusting heading angles and subsequently using this solution as a
preprocessing step for modifying velocities.

Various other studies have explored the deconfliction problem, considering
factors such as stochasticity and three-dimensional space [17], or employing a
new method such as bilevel programming [9]. For an in-depth review of research
on deconfliction over the past two decades, one should refer to [22].

Given the recent advancements in quantum computing and still persistent
challenges in the broad domain of air traffic management, it is not surprising
that researchers have been exploring alternative approaches. The initial study
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Quantum variational algorithms for the aircraft deconfliction problem 3

that focused on the application of quantum computers in aviation was conducted
by Stollenwerk et al. [25], who proposed a method to solve flight-gate assignment
problem using the D-Wave 2000Q quantum annealer. Using the same device,
Stollenwerk et al. [26] addressed the strategic aircraft deconfliction problem by
incorporating takeoff delays into wind-optimal trajectories. Additionally, they
outlined a simplified model for trajectory modifications proposing pairwise ex-
clusive avoidance or introducing delays between two consecutive conflicts. The
D-Wave 2000Q quantum annealer was also used to solve the Tail Assignment
Problem [12] in a study presented by Martins et al. [18]. The problem had been
addressed also thanks to classical simulation of a universal quantum computer in
[28]. Real gate-based quantum hardware, however, was employed to successfully
solve only toy instances of flight-gate assignment in [19, 10].

In this paper, we introduce a novel approach to address the tactical aircraft
deconfliction problem using gate-base quantum computers. Inspired by the ideas
presented in [20], we advocate for conflict resolution through discretized maneu-
vers. Our main contributions include designing a proper cost Hamiltonian for the
Quantum Approximate Optimization Algorithm coupled with the effective relo-
cation of a subset of hard constraints into the mixer Hamiltonian of the Quantum
Alternating Operator Ansatz. Furthermore, we establish a connection with our
previous research by benchmarking our approach against a widely-used circle
problem dataset published by Rey and Hijazi [23], which has been downscaled
to align with the capacity of current quantum machines.

The paper is organized as follows. In Section 2, we formulate the problem,
both classically and in quantum terms. In Section 3, we show how to use our
formulation with existing quantum algorithms. In Section 4, we describe the
results, and conclude the paper with future work in Section 5.

2 Problem Representation and assumptions

Let us assume that during the flight, an aircraft must maintain a minimum
separation of 5 nautical miles horizontally and 1000 feet vertically from other
aircraft, where a nautical mile equals 1852 meters and a foot equals 30.48 cm. A
conflict between two aircraft arises when a pair of aircraft violates at least one
of these constraints. If a particular conflict is detected and resolved within five
to thirty minutes, then we consider the tactical deconfliction. [22]. We further
assume that aircraft motion can be described by a sequence of line segments,
maintaining a constant speed within each segment and allowing instantaneous
speed changes at the beginning of each segment.

2.1 Classical formulation

We present a graphical summary of our approach to the deconfliction problem
in Figure 1. The diagram illustrates the key components of our methodology,
including the set of proposed maneuvers and the conflict matrix, which is intro-
duced mathematically later in this subsection.
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Problem
Instance
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x23

x11 x12 x13 x21 x22 x23 x31 x32 x33

Conflict Matrix

Solution

xij
Aircraft i performs
maneuver j

Original trajectory

Proposed maneuver

Conflict

x11 1 0 0 0 1 0 1 1 0
0 1 0 1 0 0 1 1 0
0 0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

x11 x12 x13 x21 x22 x23 x31 x32 x33

0 0 1 1 0 0 1 0 0

Fig. 1. Diagram summarizing our approach to the deconfliction problem. Initially, three
aircraft are in conflict. After proposing 2 additional maneuvers (totaling 3 maneuvers),
one feasible solution is proposed: aircraft 1 maneuver 3, aircraft 2 maneuver 1, aircraft
3 maneuver 1. After conflicts are resolved, aircraft may return to their original desti-
nations, which, however, is beyond the scope of our approach.

Given a set of n aircraft with their respective positions, heading angles,
speeds, and flight levels, our approach begins by proposing a set of discretized
maneuvers for each aircraft. Maneuvers could be of various kinds, including head-
ing angle change, speed change, or flight level change. For simplicity, we assume
that each aircraft can perform m maneuvers, although the actual number may
vary for an aircraft depending on specific flight requirements. To keep track of
these maneuvers let us introduce a set of the following binary variables:

X = {xij : i = 1 . . . , n, j = 1, . . . ,m, xij ∈ {0, 1}}. (1)

If the variable xij is assigned the value 1 it indicates that the aircraft i
performs maneuver j, whereas a value of 0 indicates the opposite. In this work,
we assume that maneuvers are disjoint for an aircraft, i.e., an aircraft must
perform one and only one maneuver:
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m∑

j=1

xij = 1 ∀i, i = 1 . . . , n. (2)

After proposing the set of maneuvers for each aircraft, we can then fill a
4-dimensional Conflict Matrix (CM) of size n ×m × n ×m with binary values
indicating presence or absence of a conflict between two aircraft,

CM(i, j, i′, j′) =




1 if aircraft i performing maneuver j conflicts

with aircraft i′ performing maneuver j′
0 otherwise.

(3)

To detect the potential conflicts, we use a subroutine proposed by Bilimo-
ria [5] wherein we appropriately transform the coordinate system and calculate
the relative aircraft speed. Naturally, the entire matrix is redundant due to its
symmetry, i.e., CM(i, j, i′, j′) = CM(i′, j′, i, j).

The primary focus of the tactical deconfliction problem is to modify aircraft
trajectories to resolve all conflicts. This objective can be achieved by satisfying
the following constraint:

n∑

i=1

m∑

j=1

n∑

i′=1

m∑

j′=1

xijxi′j′CM(i, j, i′, j′) = 0. (4)

We can clearly see that, while it is relatively efficient to check whether the
solution is feasible, the number of possible solutions grows exponentially with
the number of aircraft and maneuvers.

The aircraft deconfliction problem extends beyond the sole consideration of
avoiding conflicts as it also encompasses the optimization of various parame-
ters such as fuel consumption or average delay. Typically, such criteria can be
aggregated into a cost function to minimize, comprising partial costs for each
aircraft:

C =
n∑

i=1

m∑

j=1

Cij . (5)

In this work, we simplify the optimization process by focusing solely on min-
imizing the total number of changes to the original trajectory. Nevertheless, the
objective can be easily expanded to incorporate more sophisticated criteria as
needed.

2.2 Quantum formulation and encoding

When addressing optimization challenges, quantum computing offers a variety
of approaches to choose from [2]. In this study, our emphasis is on two dif-
ferent optimization algorithms, namely the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [11] and the Quantum Alternating Operator Ansatz
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(QAOAnsatz) [14]. These two algorithms are rooted in the Adiabatic Theorem
[6], which states that a quantum system in an eigenstate undergoing slow enough
changes will remain in that eigenstate. The mathematical connection between
these algorithms and the Adiabatic Theorem is not rigid. In practice, the pro-
cess begins with an arbitrary state, preferably an easy-to-prepare ground state
[15]. This initial state then evolves into the ground state that corresponds to the
solution of the problem described by the problem Hamiltonian. The subsequent
discussion outlines how to construct such a Hamiltonian.

For the translation of the formulas derived in Section 2.1 to quantum Hamil-
tonians we employ the composition rules described in [13]. In this process, we
make use of the Pauli matrices: I = ( 1 0

0 1 ), Z =
(
1 0
0 −1

)
. The first constraint, en-

suring that an aircraft can perform one and only one maneuver, can be described
in the following way:

H1 =
n∑

i=1

I −
m∑

j=1


Hx(xij)

m∏

j′=1,j′ ̸=j

(Hnot(xij′)))


 . (6)

The Hamiltonian term Hnot(xij′) =
1
2 (I + Zij′) represents a boolean clause

that has a value of 1 if aircraft i does not perform maneuver j′. The product
represents a clause with a 1 if any other maneuver, except j, is not performed.
We specify the clause that has a value of 1 if aircraft i performs maneuver j by
the Hamiltonian term Hx(xij) = 1

2 (I − Zij). We repeat the process for every
possible maneuver j to achieve a boolean clause that has a value of 1 if we have
a correct one-hot encoding. Note that we want the ground state to represent the
desired solution, so we must negate the Hamiltonian. Afterwards, we sum over
all possible aircraft.

The second constraint, ensuring that no two aircraft are in conflict, is repre-
sented as follows:

H2 =
∑

i,j,i′,j′:CM(i,j,i′,j′)=1

Hand(xij , xi′j′). (7)

The Hamiltonian term Hand(xij , xi′j′) =
1
4I − 1

4 (Zij + Zi′j′ − ZijZi′j′) rep-
resents a boolean clause that evaluates to 1 only if aircraft i performs maneuver
j and aircraft i′ performs maneuver j′. Summing these situations gives us the
total number of conflicts. Naturally, our objective is to minimize the number of
conflicts, aiming for a value of 0.

The optimization criterion is determined by a Hamiltonian that assigns ap-
propriate weights to the chosen maneuvers of each aircraft:

Hopt =
n∑

i=1

m∑

j=1

wijHx(xij). (8)

Here, wij represents the cost associated with aircraft i performing maneuver
j. When aiming to minimize the number of changes from the original trajectories,
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the weights for the original trajectories are set to 0, while a positive value is
assigned to the weights corresponding to modified trajectories.

These partial Hamiltonians have been crafted to be combined into a final
Hamiltonian, where the ground state aligns with our desired deconflicted solu-
tion:

H = θ1H1 + θ2H2 + θoptHopt. (9)

In the final Hamiltonian, we introduced additional multipliers to ensure that
the ground state consistently corresponds to a feasible solution, regardless of the
number of changes needed in the original trajectory. A simple valid assignment
can be made as follows: θ1 = 1, θ2 = 1, θopt = sum(CM), where sum(CM) is
the number of all conflicts (all 1s) in the CM.

3 Application

The two algorithms, QAOA and its enhancement, QAOAnsatz, are both hybrid
quantum-classical variational algorithms. In these approaches, a parametrized
quantum circuit is designed, and the variational parameters are iteratively ad-
justed using a classical optimizer to minimize the cost function defined by the
expectation value of a chosen observable. We provide a brief overview of the foun-
dations of each of these algorithms and their application in solving the tactical
deconfliction problem.

3.1 Quantum Approximate Optimization Algorithm

Given R qubits, QAOA initializes by preparing the quantum register in the state
|+⟩⊗R, which is the ground state of a mixing Hamiltonian composed of Pauli-
X gates, HM =

∑R
i=1Xi. It then alternately applies the problem Hamiltonian

(also known as the cost Hamiltonian) and the mixer Hamiltonian to the initial
state, p times, where p is a positive integer. The number p is also referred to
as the depth of QAOA. The evolution of Hamiltonians is parameterized by two
sequences of variational parameters, namely −→γ and

−→
β . The former controls Hc,

while the latter controls Hm. Combining these elements, the final state |ψ⟩ after
evolution is expressed as follows

|ψp(
−→γ ,−→β )⟩ = e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC |+⟩⊗R. (10)

The role of Hc is to distinguish our desired problem solution by applying a
change in phase to it. In the context of the tactical deconfliction problem, we
simply need to set HC = H, see Equation 9. The HM , on the other hand, aims
to amplify the phase increasing the probability of measuring the desired solu-
tion. This is achieved by adjusting the variational parameters using a classical
optimizer which minimizes the expectation value:

min
−→γ ,

−→
β

⟨ψp(
−→γ ,−→β )|HC |ψp(

−→γ ,−→β )⟩. (11)
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The expectation value of the circuit measurement is also commonly known as
energy. Minimizing the energy is equivalent to increasing the probability of mea-
suring solution to our problem. It is noteworthy that Hc serves a dual purpose,
as it also functions as a cost function in this context.

3.2 Quantum Alternating Operator Ansatz

We can modify the approach by initializing the quantum register with a state
that corresponds to a feasible solution (or a semi-feasible solution, such as one
that satisfies only one of several constraints). The algorithm then applies HC as
usual to distinguish our desired solution in phase, but the mixer Hamiltonian is
used differently. It is designed to provide transitions from one feasible solution
to another. This way we explore and search for the lowest-energy solution only
within a feasible subspace constrained by the hard constraints of our problem,
which is the essence of the QAOAnsatz algorithm [14].

In the context of the tactical deconfliction problem, we have chosen to encode
only the one-hot constraint (Equation 6) into HM . To achieve this, we employ
a single-qubit ring mixer defined as follows:

HM =
n∑

i=1

XimXi1 + YimYi1 +
m∑

j=1

XijXij+1 + YijYij+1. (12)

Here, the Y symbol represents the Pauli-Y gate. The term XimXi1 + YimYi1
closes the loop between the last and the first qubit, representing the one-hot
encoding for each aircraft.

As we have encoded the one-hot constraint into HM , we can remove the
constraint from HC :

HC = θ2H2 + θoptHopt. (13)

However, it’s important to note that in the presence of noisy hardware, the
evolution may drift away from feasible-only solutions. In such cases, having a
redundant term in the cost Hamiltonian might be advantageous. In this paper,
we choose to use the full cost Hamiltonian, as formulated in Equation 9.

4 Experimental results

In the proposed encoding, the number of qubits was equal to the product of
the number of aircraft and their maneuvers. Consequently, instances with an
identical number of variables could differ in the ratio of aircraft to maneuvers.
We started our set of experiments by investigating how altering these two factors
affects instance difficulty. For this purpose, we introduced a set of instances that
require only 12 qubits but feature different numbers of aircraft and maneuvers,
and these instances were artificially generated by constructing CM to ensure
only one solution exists.
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Fig. 2. Average success probability as a function of instance type. Instances are ordered
based on the number of aircraft, ranging from 2 aircraft with 6 possible maneuvers to 6
aircraft with only 2 possible maneuvers. The comparison involves two different QAOA
depths.

For each instance, we executed 100 QAOA circuits on a noisy simulator with
varying initial variational parameters, and the results of success probability were
averaged. We used SPSA [24] as the optimizer, as it has proven to perform well
on noisy setups. The outcomes are presented in Figure 2. Observing both circuit
depths p, we noted that the algorithm faces increasing difficulty in finding the
correct solution as the number of maneuvers grows. Conversely, increasing the
number of aircraft at the expense of maneuvers tends to make the instance easier.
This behavior aligns with our expectations, as ensuring that no two aircraft are
in conflict requires less entanglement between qubits compared to constraining
that an aircraft can perform one and only one maneuver. More entanglement
naturally makes the circuit longer, introducing additional noise. Moreover, en-
tangling gates are typically more error-prone than single-qubit gates. As a side
note, we observed that increasing the circuit depth also appears to result in a
slight improvement in the average success probability. After conducting initial
experiments on a quantum simulator, we evaluated the capabilities of physical
quantum computers.

Existing quantum hardware in the noisy intermediate-scale quantum (NISQ)
era provides access to several hundred superconducting qubits. Promising qubit
implementations use other quantum technologies, such as trapped ions, neutral
atoms, or photons. However, the superconducting quantum architectures lack
all-to-all qubit connectivity, requiring multiple swaps to make them adjacent
before entanglement. Introducing extra SWAP quantum gates may cause addi-
tional errors, potentially degrading the solution quality and, in extreme cases,
leading to a failure to find one. With this in mind, we decided to downscale
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Fig. 3. Probability of finding a solution to the deconfliction problem in the function of
instance difficulty and QAOA depth. The instances are the Random Circle Instances
with n aircraft, each of the aircraft having m maneuvers to choose from (e.g., n = 5,
m = 3 for RCP 5× 3). Experiments were launched on the 133-qubit ibm_torino.

the Random Circle Problem (RCP) instances [23] to involve 3, 4 and 5 aircraft.
For instance, with 3 aircraft, we proposed 2 maneuvers and for 4 aircraft we
proposed 3 maneuvers. The instance with 5 aircraft was approached with 3, 4,
and 5 maneuvers. This results in a total of five RCP instances, requiring 9, 12,
15, 20, and 25 qubits, respectively.

We evaluated the performance of the latest IBM quantum computer using
the superconduting 133-qubit ibm_torino quantum computer in solving all in-
stances across three different QAOA depths. The results are illustrated in Figure
3. Clearly, instances requiring fewer qubits are generally easier to solve. As we
move to cases with 5 aircraft, the probabilities of measuring a correct solution
drop below 0.01 (less than 1%). It is important to note that this low success
probability does not indicate failure, as each circuit is typically measured sev-
eral thousand times. Given the exponential complexity of the tactical decon-
fliction problem, achieving a correct solution for even a dozen qubits surpasses
the performance of a random guess. Even a single positive outcome is sufficient
to solve the considered instance. Unfortunately, the quantum computer selected
for our experiments could not solve the problem instance with 5 aircraft and 5
maneuvers. Additionally, we could not identify any noticable trend within the
circuit depth, largely due to the inherent randomness of a quantum device. Con-
sequently, further experiments are necessary.

Our final set of experiments involved a comparison between QAOA and
QAOAnsatz. Once more, we measured the difference on a quantum simulator
and take the average of 100 runs. Given that the tactical deconfliction problem
is an optimization problem, we choosen to minimize the number of changes to
the original flight schedule. Consequently, we present the probabilities of find-

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_22



Quantum variational algorithms for the aircraft deconfliction problem 11

1 2 3 4 5
0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

<0.01
0.02

0.05 0.04
<0.010.01

0.1

0.3
0.32

0.05

p = 1
QAOA
QAOAnsatz

1 2 3 4 5
0.0

0.1

0.2

0.3

Pr
ob

ab
ilit

y

0.03

0.08
0.05

<0.01<0.01

0.13

0.34
0.3

0.04
<0.01

p = 2

Number of changes to the original trajectory

Fig. 4. Comparison between QAOA and QAOAnsatz on a noisy quantum simulator
across various two depths, with a focus on the optimization criterion of minimizing
changes to the original trajectory. The probabilities of finding a solution to the RCP
5× 3 problem are averaged over 100 runs.

ing a correct solution for the RCP 5× 3 instance in a function of the number of
changes required to achieve a correct solution. The results are shown in Figure 4.

We observed that leveraging the feature of QAOAnsatz, which allows for
incorporating hard constraints into the mixer Hamiltonian, provides a signifi-
cant advantage over using mixers from the vanilla QAOA. The probabilities of
measuring a solution to the problem are much higher for QAOAnsatz. How-
ever, QAOAnsatz still faces challenges in finding solutions that require only one
change to the flight schedule to deconflict aircraft. The experiments demonstrate
that QAOAnsatz might be a noteworthy algorithm candidate capable of solving
deconfliction instances that QAOA could not handle. We leave this investigation
for future work.

5 Conclusions and future work

In this paper, we have successfully shown how to formulate the aircraft deconflic-
tion problem in a way that is applicable to solve using quantum variational algo-
rithms. By designing a proper cost Hamiltonian for the Quantum Approximate
Optimization Algorithm (QAOA) and incorporating hard constraints into the
mixer Hamiltonian of the Quantum Alternating Operator Ansatz (QAOAnsatz),
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we have demonstrated the efficacy of quantum computing in addressing this chal-
lenge. Our experiments have validated the feasibility of quantum approaches
in handling the complexity of aircraft deconfliction and shed light on the nu-
anced interplay between aircraft and maneuvers in determining solution diffi-
culty. Moreover, using physical quantum machines, such as the IBM quantum
computer, has underscored the practicality of our proposed methodologies in
real-world settings.

We plan to extend our work in a twofold manner. Firstly, we plan to enhance
the series of experiments qualitatively. One intriguing avenue for exploration
involves investigating the effects of removing the constraint that limits each air-
craft to one and only one maneuver. Suppose an airplane can execute more than
one maneuver simultaneously. In that case, it implies that both maneuvers are
conflict-free, enabling the decision-making process to be deferred to the post-
processing phase. Another way of improving the solution finding would be to
perform a more in-depth analysis of QAOAnsatz variants, mainly by incorporat-
ing controlled state transitions to the mixer Hamiltonian. We should not neglect
the fact to address trajectory recovery, which was considered in some papers.

Secondly, we plan to enhance the series of experiments quantitatively by per-
forming more experiments and trying to solve bigger problem instances. Some
of the implemented qualitative measures, e.g. moving the one and only one con-
straint to the post-processing phase, will naturally allow for performing larger
experiments. A notable consequence of the time-dependent three-dimensional
domain of the problem is that some maneuvers do not with each other. It means
that we can find such a bijection between variables and qubits so that the no-
conflicting maneuvers correspond to qubits which are distant from each other on
the quantum computer processor topology, which could significantly reduce the
need for SWAP gates, suppressing the noise. Finally, performing more experi-
ments on the same size instances would also improve the precision and potential
findings of the experimental results.
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Improving Quantum Optimization

Algorithms by Constraint Relaxation.

Appl. Sci. 2024, 14, 8099. https://

doi.org/10.3390/app14188099

Academic Editor: Sergio Pagano

Received: 30 July 2024

Revised: 27 August 2024

Accepted: 7 September 2024

Published: 10 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Improving Quantum Optimization Algorithms by
Constraint Relaxation
Tomasz Pecyna 1,2 and Rafał Różycki 2,*
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Abstract: Quantum optimization is a significant area of quantum computing research with antici-
pated near-term quantum advantages. Current quantum optimization algorithms, most of which
are hybrid variational-Hamiltonian-based algorithms, struggle to present quantum devices due to
noise and decoherence. Existing techniques attempt to mitigate these issues through employing
different Hamiltonian encodings or Hamiltonian clause pruning, but they often rely on optimistic
assumptions rather than a deep analysis of the problem structure. We demonstrate how to formulate
the problem Hamiltonian for a quantum approximate optimization algorithm that satisfies all the
requirements to correctly describe the considered tactical aircraft deconfliction problem, achieving
higher probabilities for finding solutions compared to previous works. Our results indicate that
constructing Hamiltonians from an unconventional, quantum-specific perspective with a high degree
of entanglement results in a linear instead of exponential number of entanglement gates instead
and superior performance compared to standard formulations. Specifically, we achieve a higher
probability of finding feasible solutions: finding solutions in nine out of nine instances compared to
standard Hamiltonian formulations and quadratic programming formulations known from quantum
annealers, which only found solutions in seven out of nine instances. These findings suggest that
there is substantial potential for further research in quantum Hamiltonian design and that gate-based
approaches may offer superior optimization performance over quantum annealers in the future.

Keywords: quantum computing; quantum optimization; quantum approximate optimization algorithm;
tactical aircraft deconfliction problem; quadratic unconstrained binary optimization; Hamiltonian;
noisy intermediate-scale quantum era

1. Introduction

As a relatively new and rapidly evolving field in both science and technology, the full
potential of quantum computing remains largely uncharted. Researchers are still exploring
its practical usefulness across various domains. While significant advancements have been
made, such as Shor’s algorithm [1] for factoring integers and Grover’s algorithm [2] for
unstructured search problems, which demonstrate the theoretical advantages of quantum
computing, its real-world applications are still being uncovered.

Among the different branches of quantum computing, one area has demonstrated
significant practical potential: quantum annealers. Quantum annealing, a method specifi-
cally designed for solving optimization problems, has shown promising results and near-
practical utility. Quantum annealers, such as those developed by D-Wave Systems, are
being increasingly utilized for their ability to find approximate solutions to complex op-
timization problems more efficiently than any other quantum architecture paradigm [3].
However, the downside is that quantum annealers are not universal quantum computers.
Despite the fact that the vast majority of combinatorial optimization problems can be repre-
sented as quadratic unconstrained binary optimization (QUBO) formulations, researchers
continue to explore and improve other approaches. With simultaneous advancements in
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the quality of universal quantum computers, the true leader in quantum optimization has
yet to be determined.

Most quantum optimization algorithms in the NISQ (noisy intermediate-scale quan-
tum) era involve representing the optimization problem as a Hamiltonian [4]. In physics, a
Hamiltonian represents the energy of a system and governs its time evolution. In quantum
computing, it often serves as a crucial component for determining measurable quantities
and finding the most favorable solutions by seeking the system’s ground state. Although
some general guidelines for constructing such Hamiltonians have been established [5],
there is no single, universal method for doing so. The construction of a Hamiltonian for a
given problem can vary based on the emphasis placed on different aspects of the problem
or by considering different quantum paradigms. For example, quantum annealers are de-
signed to handle optimization problems in QUBO form, which constrains the Hamiltonian
to contain entanglements of at most second-degree, i.e., entangling at most two qubits with
each other.

Another aspect of encoding the Hamiltonian is to introduce interpretability to the
energy values. In its simplest form, the Hamiltonian can be monotonic, meaning that
better solutions have lower energy than worse ones. However, the Hamiltonian can also
be encoded to provide more detailed information. For instance, the energy value might
represent the number of unsatisfied constraints, giving a clear indication of how far a
solution is from being feasible. Additionally, each digit or component of the Hamiltonian’s
energy value could correspond to different constraints or optimization criteria, allowing
for a more granular analysis of the solution’s quality.

Choosing the encoding for a Hamiltonian should not be considered in isolation from
the performance of the algorithm. Hamiltonians that encode more detailed information in
their energy values tend to be more complex. This complexity often necessitates the algo-
rithm to invest more time and computational effort to achieve convergence. Additionally,
such Hamiltonians may require the construction of more intricate quantum circuits, which
involve costly operations and are more susceptible to noise. This is particularly problematic
for current quantum computers, which are limited by noise and error rates in the NISQ era.
Therefore, a balance must be struck between the richness of the information provided by
the Hamiltonian and the practical limitations of the quantum hardware.

In this paper, we focus on a specific subset of gate-based quantum optimization
algorithms: namely, variational algorithms. We explore an approach for constructing a
Hamiltonian for the standard quantum approximate optimization algorithm (QAOA) [6].
Although we primarily discuss the vanilla QAOA, our approach is also applicable to more
recent and advanced versions of QAOA [7], potentially enhancing their performance in the
same way as it benefits the standard QAOA.

2. Idea of Better Quantum Optimization

The QAOA is a gate-based hybrid classical quantum algorithm inspired by the adia-
batic theorem. The adiabatic theorem states that a quantum system initially in an eigenstate
will remain in that eigenstate if the Hamiltonian governing the system changes sufficiently
slowly [8]. The core idea of QAOA is to approximate this adiabatic process using a sequence
of quantum gates, enabling the transition from an easy-to-prepare initial state to a state
that approximates the solution to a given optimization problem. To implement this, QAOA
uses a combination of two Hamiltonians: HC, the problem Hamiltonian, and HM, the
mixing Hamiltonian. The evolution is discretized using the Lie–Trotter product formula [9],
resulting in a sequence of alternating unitary operations. The final state of the algorithm
after p steps is given by:

|ψp(
−→γ ,

−→
β )⟩ = e−iβp HM e−iγp HC . . . e−iβ1 HM e−iγ1 HC |+⟩⊗R. (1)

We can clearly see that the problem Hamiltonian serves a dual role in QAOA. Firstly, it
acts as a quantum observable, measuring the energy of the system and providing feedback
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to adjust the variational parameters −→γ and
−→
β . Secondly, it defines the structure of the

quantum circuit, determining the gates and operations required for the algorithm. Because
the Hamiltonian directly influences both the optimization process and the quantum circuit’s
complexity, it is beneficial to simplify and reduce its complexity wherever possible. A
simpler Hamiltonian can lead to shorter quantum circuits with fewer entanglement gates,
which, in turn, might increase the chances of achieving good results and solving larger
problem instances.

The structure of the Hamiltonian is also influenced by the chosen variable encoding of
the problem. Often, a binary encoding is employed, where a qubit in the state |0⟩ indicates
that a particular option is not selected, and |1⟩ indicates that it is selected. This encoding
is straightforward for problems with binary variables. For problems with more than two
choices, one-hot encoding is typically used. In one-hot encoding, a string of length m
is constructed, where m corresponds to the number of possible choices. Each string is
designed to have a Hamming weight of 1, meaning that only one qubit in the string is
in the state |1⟩, while all others are in the state |0⟩. This ensures that only one option is
chosen out of the m possible choices, providing a clear and unambiguous representation of
the selection.

There are two main approaches for encoding the one-hot constraint. The first approach
uses the QUBO formulation:

HQUBO-onehot(x) =

(
m

∑
j=1

Hx(xj)− 1

)2

, (2)

where xj is further replaced using the Pauli-Z term:

Hx(xj) =
1
2
(I − Zj), (3)

and the Pauli matrices are defined as follows:

I =
(

1 0
0 1

)
, Z =

(
1 0
0 −1

)
.

The encoding from Equation (2) has the advantage of using at most n(n−1)
2 entan-

glements. However, if we need to sum many such partial Hamiltonians as constraints,
we cannot derive any meaningful interpretation from the energy value, as this encoding
increases quadratically with the Hamming distance from the one-hot encoding.

If we want better interpretability, we can use entanglements with higher degrees,
which are unavailable in, e.g., D-Wave quantum annealers, with the following formula:

Hfull-onehot = I −
m

∑
j=1


Hx(xj)

m

∏
j′=1
j′ ̸=j

Hnot(xj′)


, (4)

where
Hnot(xj′) =

1
2
(I + Zj′). (5)

Equation (4) evaluates to 1 if and only if the one-hot value is encoded correctly, and
it is 0 otherwise. However, a significant disadvantage is that after Hermitian evolution,
this approach results in a quantum circuit with many entanglement gates of high degree,
introducing substantial noise into the model.

In this paper, we observe that not all encodings known from classical problem defini-
tions are as effective as possible for quantum computing. It might seem counterintuitive,
but it turns out that by extending the search space, we actually increase the chances of
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measuring a feasible/optimal solution while simultaneously simplifying the Hamiltonian.
For example, the one-hot constraint can, in some cases, be replaced by a relaxed “at least
one” constraint, which ultimately serves the same purpose but significantly reduces circuit
length and noise. We show how to do that using a concrete example in Section 4.

3. Literature Review

Many researchers have investigated reducing noise and improving experimental
results through circuit manipulations or truncations. For instance, using imperfect Hamil-
tonian representations for NISQ-era adiabatic quantum optimization has been shown to
yield better results when employing specific techniques [10]. Additionally, several studies
have examined the variable encoding procedures, noting that different encodings and
embeddings significantly affect circuit performance [11–13].

A particularly interesting branch of research related to our approach involves specific
variants of the QAOA algorithm [7]. One notable example is the ADAPT-QAOA algorithm,
which iteratively selects operators to enhance the QAOA mixer Hamiltonians based on
gradient descent algorithm outputs, thereby reducing the overall number of necessary
entanglement gates [14]. Another algorithm, focusing on problem Hamiltonians, draws
inspiration from classical neural networks by introducing a quantum dropout approach [15].
This method shows that selectively dropping clauses that define the problem Hamiltonian
while maintaining the cost function can enhance QAOA performance.

Our work diverges from these approaches by being the first, to our knowledge, to
design a QAOA problem Hamiltonian from the beginning to be simpler than its ideal
counterpart. This simplification involves the relaxation of constraints within the problem
Hamiltonian, aiming to retain the core structure and characteristics of the original problem
while making it more amenable to efficient quantum optimization. By doing so, we strive
to balance the complexity of the problem representation with the capabilities of current
quantum hardware, which is often limited by noise and decoherence.

4. Exemplary Optimization Problem

In this paper, we consider the tactical aircraft deconfliction problem; however, the
following approach can also be used to deal with similar constraints in other problems,
such as the job shop scheduling problem [16]. The tactical deconfliction problem involves
predicting and resolving conflicts between aircraft in airspace from 5 to 30 min into the
future. A conflict is defined as a violation of the safety cylinder of an aircraft by another
aircraft. Most approaches to solving this problem involve mixed-integer linear/non-linear
programming [17], but there are also some recent quantum approaches.

We base our work on the approach described by Pecyna et al. [18], who first formulated
the quantum approach for this problem. For a detailed explanation of the approach, we
refer the reader to the original paper. Following this approach, for each of n aircraft, we
propose m maneuvers and define a set of n × m binary variables as follows:

X = {xij : i = 1, . . . , n, j = 1, . . . , m, xij ∈ {0, 1}}, (6)

where the variable xij taking the value 1 means that aircraft i is assigned maneuver j; it
takes the value 0 otherwise. Each variable directly corresponds to a specific qubit in a
quantum environment. From this set of variables, we form two types of constraints. The
first constraint ensures there are no conflicts, while the second constraint ensures that an
aircraft performs one and only one maneuver. The Hamiltonian representing the no-conflict
constraint is originally written as:

H1 = ∑
i,j,i′ ,j′ :CM(i,j,i′ ,j′)=1

Hand(xij, xi′ j′). (7)

where the CM matrix is defined as in [18]: Hand(xij, xi′ j′) =
1
4 I − 1

4 (Zij + Zi′ j′ − ZijZi′ j′).
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The Hamiltonian for the constraint that ensures an aircraft can perform one and only
one maneuver is originally formulated as:

H2 =
n

∑
i=1

I −
m

∑
j=1


Hx(xij)

m

∏
j′=1
j′ ̸=j

Hnot(xij′)


, (8)

where Hnot(xij′) =
1
2 (I + Zij′) and Hx(xij) =

1
2 (I − Zij).

If these two types of constraints are satisfied, it means that aircraft are assigned conflict-
free trajectories and each aircraft performs only one maneuver. The deconfliction problem
that is formulated this way does not have an optimization function, so a solution satisfying
these two types of constraints is a correct, feasible solution to the problem.

In this work, we focus on improving the second constraint. Note that due to the
products in Equation (8), the number of summands containing Pauli-Z terms is n2m, with
most necessitating entanglements of degree higher than two. This, in turn, can make it
challenging to find the ground state of the final Hamiltonian and can make the quantum
circuit prone to errors in noisy quantum environments.

Classical optimization of hard problems almost always benefits from reducing the
search space. Setting up more constraints while simultaneously keeping the number of fea-
sible solutions constant prevents classical algorithms from wasting their computing cycles
on exploring unprofitable dead ends that do not yield valuable solutions. In quantum com-
puting, however, qubits can be put into superposition, allowing operations on many states
simultaneously. This enables virtually cost-free computation on unfeasible solutions with-
out adding any additional overhead. Considering this, we note that the one-hot constraint
for the tactical aircraft deconfliction problem is superfluous when using quantum optimiza-
tion algorithms, and removing it can lead to significant performance improvements.

Counterintuitively, let us replace the constraint that an aircraft can perform one and
only one maneuver with the constraint that an aircraft must perform at least one maneuver.
The no-conflict constraint remains intact. Feasible solutions would then include solutions
with aircraft performing multiple maneuvers simultaneously, which is obviously impossible
in real-life situations. This, however, does not concern us, because we can interpret the
solution of an aircraft performing multiple maneuvers as if all those maneuvers were
conflict-free. The solution would then be a subset of possible non-conflict maneuvers for
the aircraft, with the specific maneuver selection postponed until the post-processing phase.
Moreover, at this stage, one can define an optimization criterion and select such a solution
that optimizes the criterion.

As promising as it might sound, this approach does not help us much. The reason is
that if we encoded a Hamiltonian for the at least one maneuver constraint, the number of
Pauli-Z summands would be the same as for the one-hot constraint.

We can shift our perspective and identify the fundamental criteria that our constraints
must meet:

1. The state 0 . . . 0 must have a value of 1;
2. Each state with a Hamming weight of 1, representing the feasible solution, must yield

a value of 0;
3. All other possible states must have a non-negative value to ensure that no bitstrings

have a lower Hamiltonian value than any correct solution.

These three requirements do not correspond to the one-hot or the at-least-one con-
straint. However, they are sufficient to form a sensible constraint that contains all essential
and indelible requirements for a correct Hamiltonian for the tactical deconfliction problem.

There is one function that directly meets these criteria, which is the multi-variable
NOT XOR function. For example, consider an aircraft with m = 5 possible maneuvers. The
Hamming weights for all 26 = 32 bitstrings would range from 0 to 5. Moreover,
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• Bitstrings with Hamming weights of 0, 2, and 4 would yield a value of 1, fulfilling the
first requirement and partially the third requirement;

• Bitstrings with Hamming weights of 1, 3, and 5 would yield a value of 0, fulfilling the
second requirement and completing the third requirement.

We present a more visual representation of the behavior of the NOT XOR function
in Table 1. Subsequently, the Hamiltonian for the NOT XOR function can be encoded
as follows:

HNOT XOR = − 1
2 I + 1

2 Z1Z2 . . . Zm. (9)

Table 1. Example of possible maneuver assignments for one aircraft and the corresponding evaluation
of the NOT XOR function.

Number of Maneuvers
(Hamming Weight) 0 1 2 3 4 5

Bitstring 00000

00001 00011 00111 01111

11111

00101 01011

00010 00110 01101 1011101001 01110

00100 01010 10011 1101101100 10101

01000 10001 10110 1110110010 11001

10000 10100 11010 1111011000 11100

NOT XOR 1 0 1 0 1 0

Using the NOT XOR function, we see that there is only one Pauli-Z term with an
entanglement of degree m. This represents a significant improvement, as the number of
Pauli-Z terms directly corresponds to the number of entanglement gates needed to encode
such Hamiltonians in a quantum circuit, as shown in Figure 1. For an aircraft with m
possible maneuvers, the one-hot encoding requires O(2m) entanglements, the quadratic
encoding requires O(n2) entanglements, while the NOT XOR encoding requires only
O(1) entanglements.

• • • • • •
RZ (0.25 ∗ γ1) • • • •

RZ (0.25 ∗ γ1) RZ (0.25 ∗ γ1) RZ (0.75 ∗ γ1)

(a) One-hot (standard) encoding

• • • •
RZ (1.0 ∗ γ1) • •

RZ (1.0 ∗ γ1) RZ (1.0 ∗ γ1)

(b) Quadratic (QUBO) encoding

• •
• •

RZ (1.0 ∗ γ1)

(c) NOT XOR encoding

Figure 1. Quantum circuit representations resulting from Hamiltonian evolution for three different
encodings of an aircraft (n = 1) with m = 3 possible maneuvers. The symbol RZ represents a
parameterized quantum gate rotation around the Z-axis.

5. Computational Experiment

Having introduced the NOT XOR Hamiltonian, we compare it with standard one-hot
encoding with many entanglements of high degree and with quadratic encoding, which
uses only second-degree entanglements. We benchmark these three approaches against
nine artificially generated instances of the same size: n = 3 aircraft with m = 5 alternative
maneuvers. The difference between these instances lies in the number of potential conflicts
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between maneuvers, resulting in a varying number of feasible solutions to the problem. We
choose to test instances with difficulties of 1, 3, 5, 10, 20, 30, 50, 100, and 124 solutions. The
reason for choosing such a set of instances is that the first constraint for conflict avoidance
(see Equation (7)) already contains the quadratic Pauli-Z terms. Thus, with an increasing
number of potential conflicts, the entanglement complexity of the constraint determining
the number of maneuvers performed by the aircraft may lose its significance.

The test instances are generated using an iterative graph-based algorithm that detects
cycles between nodes. Each node in the graph represents an aircraft performing a maneuver,
while edges represent possible coexistence between these maneuvers. By removing an edge
between two nodes, we introduce a conflict, reducing the number of solutions. Starting
from a complete graph with no conflicts, the number of solutions removed corresponds to
the number of cycles that include removing an edge.

We tested the instances in a noisy simulator environment using the noise model
derived from the ibm_torino quantum device. The 3 × 5 size of instances was the largest
we could compute within a reasonable time frame and required several days of HPC
computations across multiple nodes. For the optimization of QAOA parameters, we used
the Constrained Optimization BY Linear Approximation (COBYLA) [19] algorithm with
the default 1000 iteration threshold. We fixed 10 random initial points, optimized each
instance starting from each of these random points, and averaged the results. The results
are presented in Figure 2.
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Figure 2. Probabilities of measuring a feasible solution as a function of the number (denoted by
#) of feasible solutions in the instance and the chosen encoding. The probabilities are evaluated in
two ways. First, we sum the probabilities for all correct one-hot-measured bitstrings (blue bars).
Second, we sum the probabilities for all bitstrings that correspond to the aircraft performing at
least one maneuver (green bars). After performing a set of measurements, each probability bar
represents the ratio of feasible solutions, as defined by the aforementioned rules, to the total number
of measurements.

The figure answers two questions: Firstly, is the NOT XOR encoding better in terms of
the number of feasible solutions we can find, i.e., does it make the optimization landscape
simpler? Secondly, does the NOT XOR encoding introduce less noise to the circuit? One
could argue that it would be unfair and biased to report that the NOT XOR solution gives
better results when we treat all solutions that have no conflicts and where aircraft perform
at least one maneuver as feasible. This is because optimizers with the one-hot and QUBO
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Hamiltonians as observables do not aim to increase the probability of measuring states
where aircraft perform more than one maneuver. For this purpose, we also evaluate all
these Hamiltonians against the one-hot evaluation strategy, which is theoretically not
favorable from the perspective of an optimizer aiming to minimize the energy measured
with the Hamiltonian that encodes the NOT XOR observable.

We report that in the considered instances, the NOT XOR Hamiltonian outperforms the
standard one-hot Hamiltonian in both evaluation strategies. This means that using this kind
of encoding is always favorable, as it both simplifies the optimization landscape and reduces
potential noise. This also indicates that this approach would be preferred over the standard
one-hot encoding even if the goal was to fully satisfy the one-hot encoding, i.e., it was not
possible to choose one maneuver for an aircraft out of many at the postprocessing stage.

Moreover, for all instances, the NOT XOR Hamiltonian achieves better results than the
QUBO Hamiltonian for the evaluation strategy where bitstrings of aircraft performing at
least one maneuver are considered feasible. Additionally, for seven out of nine instances, the
NOT XOR Hamiltonian outperforms the QUBO Hamiltonian when we consider bitstrings
satisfying the one-hot encoding as feasible. The two instances where the QUBO encoding
outperforms the NOT XOR encoding are the two easiest instances, i.e., the two instances
with 100 and 124 solutions, which also means fewer conflicts. This result can be easily
explained by noting that when there are few possible feasible solutions in an instance, most
of them have a Hamming weight of 1. Conversely, when there are many feasible solutions,
there are also many solutions having a Hamming weight greater than 1.

6. Conclusions and Future Work

In this paper, we have presented an alternative approach to formulating the problem
Hamiltonian for the quantum approximate optimization algorithm that reduces the total
number of necessary entanglements from exponential to linear. This formulation employs
high-degree entanglements (higher than quadratic), resulting in significant performance
benefits, such as fewer noise-induced errors and a higher probability of measuring the
correct solution. Our solution outperforms the standard Hamiltonian formulation for
the tactical deconfliction problem in all considered instances and surpasses the quadratic
formulation known from quantum annealers in seven out of nine instances.

We see two evident directions for further research. Firstly, our experiments were
conducted on a noisy simulator designed to closely resemble real quantum machines. How-
ever, there are quantum architectures, such as ion traps, that are particularly well-suited
for performing high-degree entanglements in a single operation. It would be beneficial
to repeat these experiments on real hardware that is optimized for such setups. Secondly,
we have demonstrated only one use case of this Hamiltonian formulation. It would be
valuable for the community to conduct in-depth research on various well-known opti-
mization problems and explore how to reformulate existing encodings to enhance their
efficiency. A key area of interest would be to propose a set of general rules for constructing
custom Hamiltonians.
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Abstract. The evolving landscape of quantum computing at its early
stages presents challenges in predicting which from among many different
quantum architectures will become dominant. This uncertainty and di-
versity has led to the proliferation of various software solutions, resulting
in complexity for developers and researchers experimenting with differ-
ent quantum paradigms. Existing tools attempt to address these chal-
lenges, yet they often fall short of meeting the needs of current researchers
seeking simplicity in software while retaining access to specific quantum
hardware details. In this paper, we introduce QCG-QuantumLauncher,
a software library designed to solve specific problems by launching se-
lected quantum algorithms on chosen quantum devices through a simple,
uniform interface. Additionally, we delineate the future development tra-
jectories of QCG-QuantumLauncher, aiming to position it as the premier
tool choice for any quantum researcher.

Keywords: Quantum Computers · Quantum Software · Optimization

1 Introduction

The rapid advancement of quantum technologies, spanning both software and
hardware, is undeniable. Motivated by early theoretical breakthroughs demon-
strating quantum computational advantages, such as Shor’s [22] and Grover’s
[10] algorithms, enabled by phenomena like superposition, entanglement, and
tunneling [20], companies are dedicating substantial time and resources to es-
tablish their foothold in this burgeoning field. Their work is further accelerated
by the growing challenges faced by current classical architectures, including is-
sues like high energy consumption, heat dissipation, miniaturization constraints,
and the inability to maintain Moore’s Law, which results in failure to address cur-
rent computational challenges [6]. Notable players in this arena include Xanadu
with their photonic quantum devices [2], D-Wave pioneering in quantum anneal-
ers [14], IonQ advancing ion-trap quantum computers [3], and IBM leveraging
superconducting technology for their quantum computers [18]. The most promis-
ing quantum technology is yet to be determined, leading to a diverse array of
approaches. One notable consequence of this diversity is the need for each tech-
nology to have a device-specific set of control instructions, often accompanied by
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the development of high-level programming libraries to facilitate device program-
ming. While researchers using solely gate-based quantum computers encounter
relatively few issues switching between algorithms and quantum computer ven-
dors, thanks to common open standards for circuit definition [4], the same cannot
be said for those engaging in cross-architecture research using also other quan-
tum architectures like annealers or bosonic samplers. Such research efforts often
encounter unnecessary code redundancy, especially during the preprocessing,
launching, data gathering, and postprocessing phases.

Various approaches aim to address this issue. One strategy involves construct-
ing a high-level platform that provides users with specific tools for construct-
ing and managing quantum solutions. This approach aims to shield users from
the complexities of different environments, exemplified by platforms like Quan-
tumPath [12]. However, this approach may limit users’ control over dataflow and
the execution of complex scenarios or custom workflows. On the other hand, tools
like XACC [17], QCOR [19] or Quingo [8] offer high control over low-level in-
structions while maintaining hardware agnosticism. However, these tools lack
higher-level modularity, which is essential for less advanced users to easily test
their applications on different algorithms and backends with minimal coding.
Occupying a middle ground between these two approaches are solutions like
Covalent [5] or Cuda-Q [23], offering user-friendly interfaces for managing both
classical and quantum resources while still providing sufficient control to develop
custom workflows. However, at present, they do not support heterogeneous quan-
tum workflows.

In this paper, we introduce QCG-QuantumLauncher (QCG-QL), a quantum
enhancement of the QCG middleware1 [21] developed by Poznan Supercomput-
ing and Networking Center. QCG-QL is a library for heterogeneous quantum-
classical computing, designed to meet the needs of users seeking to solve specific
problems by launching selected quantum algorithms on chosen quantum devices.
Primary design goals of QCG-QL include the following:

– to cater to quantum software engineers with domain knowledge, ensuring
the library is highly useful for their needs;

– to encompass not only gate-based quantum technologies but also various
architectures such as quantum annealing or boson sampling;

– to eliminate the need for code redundancy when preparing experiments with
the same problems but different algorithms and computers;

– to ensure code reusability and extensibility;
– to maintain consistent, clear, and simple interfaces, enabling less advanced

users to fully benefit from using the library.

The details of our quantum software and future extensions will be discussed
in the remainder of this paper.

1 https://qcg.psnc.pl/
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2 QCG-QuantumLauncher

In the realm of quantum computing optimization, certain patterns consistently
emerge, underscoring the necessity of a structured and methodical approach.
Initially, it is necessary to explicitly define the problem to be solved. This in-
volves clearly outlining the task at hand and ensuring that the objectives are
unambiguous. A well-defined problem statement lays the foundation for subse-
quent steps by directing the focus towards the specific challenge that needs to
be addressed.

Once the problem is clearly defined, the next fundamental step is to identify
an algorithm that is optimally suited to solve this specific problem. The selection
of an algorithm requires a deep understanding of both the problem characteristics
and the available quantum algorithms. In some cases, it might be necessary to
design a new algorithm tailored to the unique requirements of the problem. This
phase is important as the efficiency and effectiveness of the solution heavily
depend on the appropriateness of the chosen algorithm.

Finally, the execution of the algorithm necessitates appropriate hardware.
Quantum algorithms require quantum computers or simulators capable of han-
dling the computations. This includes not only the quantum processing units
but also the associated classical infrastructure to manage and support quantum
operations. The choice of hardware can significantly increase the probability of
measuring desired solution and impact the overall performance.

In summary, the path to effective quantum computing involves a well-defined
problem statement, the selection of a suitable algorithm, and the execution on
appropriate hardware. These three components are interdependent and impor-
tant for the optimization process.

GCG-QuantumLauncher framework is designed to simplify the complexities
of quantum programming by organizing it into these three fundamental compo-
nents: the problem to be solved, the algorithm used and the hardware utilized to
execute the solution. The high-level structure of our approach is shown in Figure
1. This division aims to clarify each component’s responsibility. With this unified
approach, our program becomes not only easier to write but also easier to read
and maintain.

2.1 Architecture

Problem: When solving a problem using a computer, it is essential to define
the problem in a manner that the computer can process. This entails specify-
ing both the nature of the problem and the approach for solving it. The same
methodology applies to quantum computers. Typically, problems are defined us-
ing models such as Quadratic Unconstrained Binary Optimization, Ising models,
or Hamiltonians [15]. These models are integral to a wide range of algorithms
and can be translated between each other in polynomial time relative to the
number of variables involved. In the case of QCG-QL, users need only to pre-
pare a formulation in one of these formats, and the framework will handle the
translation to other models.
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Fig. 1. Diagram illustrating the hierarchical structure of the QCG-Quantum Launcher
methodology, highlighting the specific components within each category.

Algorithm: There are many different quantum approaches for solving compu-
tational problems on quantum computers. These methods range from the most
popular ones, such as Quantum Approximate Optimization Algorithm (QAOA)
[7] and Quantum Annealing [13], to their variants like FALQON [16] and Quan-
tum Alternating Operator Ansatz [11]. While each of these algorithms is im-
plemented differently, they share many common similarities. Proper structure
can greatly enhance these methods. For example, in QAOA, even the smallest
changes can significantly affect the algorithm’s performance. A well-structured
approach provided by QCG-QL makes it easier to implement and test these
small modifications, resulting in more modular and maintainable code.

Backend: Each of the abovementioned algorithms needs to be executed on
some computational platform. These platforms can vary widely, offering diverse
APIs. To simplify the user experience, this module aims to standardize access to
these platforms, regardless of their specific characteristics. The backend module
simplifies the process of switching between different platforms, allowing users to
easily test their applications on various devices. Many hardware providers allow
users to select the machine by specifying its name as a parameter, while others
require different functions, which can be complex. Our solution consolidates this
process into a single, unified interface, making it more straightforward for the
user.

QuantumLauncher: QuantumLauncher module integrates all other modules
within the framework, providing a unified interface for users. This integration
enhances user convenience by abstracting complex operations and presenting a
cohesive workflow from problem definition to solution analysis. By managing
these processes centrally, the Quantum Launcher module simplifies the user ex-
perience, making quantum programming more accessible and efficient. Addition-
ally, it offers tools for postprocessing and data management, further simplifying
the overall workflow.
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2.2 Usage

The QCG-QuantumLauncher framework is designed to cater to a broad spec-
trum of use cases, from educational purposes to advanced research. Its simplicity
and intuitive syntax are particularly beneficial for those who are new to quan-
tum computing. Listings 1.1 and 1.2 demonstrate sample code snippets that
highlight the ease of use for inexperienced users, providing them with a gentle
introduction to quantum programming concepts.
import quantum_launcher as ql
from quantum_launcher.qiskit_routines import

FALQON , QiskitBackend

pr = ql.problems.JSSP(instance_name=’toy’,
max_time =3)

alg = FALQON(delta_t =0.03, beta_0=0, n=2)
backend = QiskitBackend(’ibm_sherbrooke ’)
launcher = ql.QuantumLauncher(pr, alg , backend)
launcher.process(save_pickle=True)

Listing 1.1. Solving the Job Shop
Scheduling Problem with the QAOA Al-
gorithm using ibm_sherbrooke Quan-
tum Computer.

import quantum_launcher as ql
from quantum_launcher.orca_routines import

BinaryBosonic , OrcaBackend

pr = ql.problems.QATM(onehot=’exact’,
instance_name=’RCP_5’)

alg = BinaryBosonic ()
backend = OrcaBackend(’local’)
launcher = ql.QuantumLauncher(pr, alg , backend)
launcher.process(save_json=True)

Listing 1.2. Solving the QATM Prob-
lem with the Binary Bosonic Sampling
[9]. Algorithm on a local simulator of the
ORCA Quantum Device.

Inexperienced users For individuals beginning their journey in quantum com-
puting, the challenge often lies in integrating various components of the system
independently. They must choose a quantum platform, learn the syntax of its
specific library, familiarize themselves with the available algorithms, and under-
stand how to formulate a problem in a manner that a quantum computer can
process.

The Quantum Launcher framework simplifies this learning process. Users
can focus on the aspects they wish to learn first and obtain meaningful results
regardless of their starting point or prior knowledge of implementation details.
This approach allows users to progressively learn quantum programming without
the immediate need to implement complex functions that may be initially beyond
their understanding.

Advanced researchers Experienced users can also benefit significantly from
the QCG-QuantumLauncher framework. The simplified process of testing and
benchmarking new solutions allows researchers to quickly deploy and evaluate
their algorithms on multiple machines at the same time, without the need to
learn the specifics of each architecture or prepare distinct code for each plat-
form. This not only reduces the amount of code that needs to be written but also
enhances the reliability of benchmarks by facilitating direct comparisons across
different solutions. The QCG-QL framework is designed as a modular structure,
which makes it highly extensible and simplifies the implementation of new fea-
tures. Additionally, researchers can reuse existing code to develop new, slightly
modified solutions. This capability can lead to substantial improvements in the
quality of results with minimal effort, enabling efficient postprocessing analysis
of the solutions.
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Fig. 2. A sample extended workflow that will be possible to define in a future version of
QCG-QL. The workflow should be read from left to right, with the vertical dimension
representing parallel hybrid execution. It is worth noting that this workflow utilizes
various quantum architectures and establishes two different couplings between classical
and quantum resources.

3 QCG-QuantumLauncher: future directions

QCG-QL is currently fully functional and ready for use. However, ongoing devel-
opment aims to expand its capabilities. At present, QCG-QL supports a single
type of workflow: solving a problem with an algorithm on a selected quantum
backend. To meet the diverse needs of researchers, our primary focus for enhance-
ment is to make QCG-QL a universally adaptable tool for defining various hybrid
workflows. An example of an extended workflow that includes multiple steps can
be seen in Figure 2. For this example workflow to be implemented, two neces-
sary developments are required. Firstly, a method for defining specific couplings
must be developed. While low-frequency loose coupling is often straightforward,
strong coupling e.g. for error correction requires additional software support for
high-frequency communication. Secondly, we need to design and develop a com-
mon, universal data structure that is agnostic to both quantum architecture and
algorithm. Additionally, a standardized method for passing data between con-
secutive steps of the workflow, involving classical and quantum processing, needs
to be established.

Extended multi-step workflows are not the only improvements planned for
QCG-QL. Some hybrid workflows are based on algorithms that change their re-
source requirements during execution. To address this, we intend to integrate
QCG-QL with existing tools, such as QCG-PilotJob [1], that will allow us to de-
fine more sophisticated and highly dynamic workflows. Furthermore, our team
is actively working on integrating QCG-QL with popular frameworks such as
IBM’s Qiskit, Cuda-Q, and MPI, aiming to make it a versatile choice for seam-
less connections with external tools. Additionally, we plan to explore possible
integrations with graphical job management, monitoring, and data management
tools, such as those provided by QCG, to further enhance QCG-QL’s capabilities.

There is one more area of particular interest to us, which is especially relevant
in data centres and high-performance computing environments. The connection
between Artificial Intelligence (AI) and quantum computing has already demon-
strated its potential and is believed to create synergy that can result in powerful
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models. Therefore, achieving comprehensive functionality in QCG-QL necessi-
tates the incorporation of support for multi-QPU and multi-GPU execution.
Furthermore, the integration can be enhanced with asynchronous execution, al-
lowing for greater flexibility and efficiency in executing various quantum AI
workflows.

4 Conclusions

In this paper, we provided an overview of the current landscape of software
supporting heterogeneous quantum environments. We highlighted the lack of
appropriate software and emphasized the need for a comprehensive solution to
address this gap. We introduced QCG-QuantumLauncher, a versatile library
enabling users to select and manage various quantum problems, devices, and
algorithms through a unified interface. Additionally, we discussed the necessary
enhancements required to make QCG-QL universally applicable for all use cases.
Looking forward, our roadmap for further development includes specific plans
to enhance QCG-QL’s functionality and usability, ensuring its effectiveness in
advancing quantum computing research.
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Extended abstract in Polish

Zastosowanie metod obliczeń kwantowych do
rozwiązywania problemów optymalizacyjnych.

1. Wprowadzenie

Informatyka kwantowa jest dziedziną nauki, w której, do wykonywania obliczeń, wykorzystuje

się zjawiska kwantowe, takie jak superpozycja, splątanie i tunelowanie. Urządzenia, które przy

zastosowaniu tych zjawisk są w stanie rozwiązywać uniwersalne problemy obliczeniowe, nazywane

są komputerami kwantowymi. Podstawową jednostką informacji w komputerze kwantowym jest

kubit, a podstawowymi elementami reprezentującymi możliwe do wykonania operacje na kubitach,

są bramki kwantowe. Oprócz komputerów kwantowych istnieje wiele innych urządzeń kwantowych,

które nie realizują w pełni założeń kwantowej maszyny Turinga, jednak znajdują zastosowania w

specyficznych typach obliczeń. Do takich urządzeń zaliczamy m.in. kwantowe wyżarzacze oraz

urządzenia realizujące próbkowanie bozonów.

Rozaważane w rozprawie problemy optymalizacyjne należą do problemów obliczeniowych, w

których celem jest znalezienie rozwiązań najlepszych (rozwiazaniem optymalnych) wśród rozwiązań

spełniających określone ograniczenia (rozwiązań dopuszczalnych). Oceny rozwiązań dokonuje

się na podstawie ustalonych kryteriów oceny, najczęściej wyrażonych za pomocą odpowiednich

funkcji. Poszukiwane rozwiązania problemów wygodnie jest reprezentować za pomocą wektora

niewiadomych, czyli tzw.zmiennych decyzyjnych. W takich przypadku pojedyncze rozwiązanie

stanowić będzie dowolne przypisanie wartości do tych zmiennych Problemy optymalizacyjne można

klasyfikować na różne sposoby, m.in. według typu użytych zmiennych, które mogą być ciągłe lub

dyskretne. Jeśli w modelu problemu konieczne jest użycie obu typów zmiennych, problem taki

nazywany jest mieszanym. Typ użytych w modelu problemu zmiennych wpływa na liczność zbioru

jego rozwiązań. Jeśli zbiór ten jest skończony lub policzalny, problem optymalizacyjny nazywamy

kombinatorycznym. Ze względu na swoją złożoność, wiele problemów optymalizacyjnych, w tym

kombinatorycznych, jest trudnych do rozwiązania przy użyciu współczesnych komputerów.

Informatyka kwantowa jest stosunkowo nową dziedziną nauki w porównaniu z informatyką

klasyczną. Pierwsze komputery kwantowe z kilkoma kubitami powstały pod koniec lat 90. Kon-

struowanie komputerów kwantowych jest trudne ze względu na wyzwania inżynieryjne wynikające z

mechaniki kwantowej. W efekcie, zastosowania obliczeń kwantowych do rozwiązywania problemów

optymalizacyjnych są głównie teoretyczne i sprowadzają się najczęsciej do prostych implementacji

na małej liczbie kubitów, w środowisku dodatkowo obciążonym zaszumieniem wynikającym z

istniejących ograniczeń technologicznych. Celem tych realizacji jest pokazanie potencjału podejść
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kwantowych, mimo problemów związanych z szumem i dekoherencją. Algorytmy kwantowe są

probabilistyczne, co oznacza, że nie gwarantują znalezienia rozwiązań najlepszych (jeśli takowe

istnieją), a jedynie zwracają je z określonym prawdopodobieństwem, zależnym od liczby pomiarów.

Jednym z dwóch najbardziej znanych algorytmów kwantowych jest bez wątpienia algorytm

Grovera. Jest to jeden z pierwszych algorytmów, który wykazał potencjalną przewagę kwantową

nad podejściami klasycznymi w rozwiązywaniu rzeczywistych problemów. Algorytm Grovera potrafi

znaleźć element w nieustrukturyzowanej bazie danych szybciej (w stopniu wyrażonym za pomocą

funkcji kwadratowej) w porównaniu do najlepszego algorytmu klasycznego. Dzięki swojej kwantowej

przewadze i wszechstronności, algorytm Grovera często stosowany jest jako podprogram w bardziej

złożonych algorytmach.

Mimo że obecne komputery kwantowe oferują ponad sto kubitów, co teoretycznie mogłoby poz-

wolić na wykazanie przewagi kwantowej nad komputerami klasycznymi dla wielu realnych problemów

obliczeniowych, ich rzeczywiste możliwości są ograniczone do obliczeń na kilkudziesięciu kubitach

i kilkudziesięciu warstwach kwantowych. Jest to znacznie mniej, niż potrzeba do skutecznego

uruchomienia algorytmu Grovera, nie wspominając o jego rozszerzeniach. Algorytmy, które lepiej

sprawdzają się na współczesnych komputerach kwantowych, to tzw. algorytmy wariacyjne, z

których najbardziej znane to Variational Quantum Eigensolver (VQE) oraz Quantum Approximate

Optimization Algorithm (QAOA). Oba są algorytmami hybrydowymi - kwantowo-klasycznymi.

Ze względu na ograniczenia współczesnych komputerów kwantowych, obecne badania i zastosowa-

nia obliczeń kwantowych w problemach optymalizacyjnych można sklasyfikować w następujący

sposób:

• Badania aplikacyjne koncentrują się głównie na pogłębianiu zrozumienia znanych algorytmów
służących do rozwiązywania standardowych problemów, takich jak MaxCut, które mają

jedynie ograniczone zastosowania, np. w produkcji układów scalonych.

• Aplikacje skoncentrowane na zastosowaniu już wrześniej wypracowanych podejść dla nieuniw-
ersalnych urządzeń kwantowych (takich jak komputerów realizujących kwantowe wyżarzanie)

do kolejnych rodzajów problemów.

• Badania aplikacyjne, które przenoszą sformułowania opracowane dla nieuniwersalnych urządzeń
kwantowych bezpośrednio do uniwersalnych paradygmatów dla wybranych problemów świata

rzeczywistego, bez przeprowadzania dogłębnej analizy lub pełnego wykorzystania potencjału

komputerów kwantowych,

Liczba publikacji dotyczących rozważanego tematu, które nie mieszczą się w jednej z tych trzech

grup, jest bardzo ograniczona.

Równocześnie środowisko obejmujące takie elementy, jak badania naukowe, zastosowania prze-

mysłowe, szkolenie nowych użytkowników, rozwój oprogramowania i integracja sprzętu, tworzy

optymalne warunki dla długoterminowych postępów w danej dziedzinie. W przypadku obliczeń

kwantowych zaobserwować można aktywny rozwój badań naukowych. Dobrze rozwinięte są również

narzędzia do programowania na poziomie bramek kwantowych. Wciąż jednak istnieje duża potrzeba

rozwoju zastosowań przemysłowych i wysokopoziomowych abstrakcji, w szczególności tych zin-

tegrowanych z klasycznymi superkomputerami, aby umożliwić użytkownikom skupienie się na

aplikacjach, zamiast na przyswajaniu nowinek technicznych i ich implementacji .

Niniejsza praca doktorska koncentruje się na wspomnianych wcześniej brakach w obszarze infor-

matyki kwantowej, w szczególności w zastosowaniach uniwersalnych (bramkowych) komputerów

kwantowych oraz na braku wysokopoziomowych abstrakcji. Temat pracy, czyli zastosowanie metod
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obliczeń kwantowych do rozwiązywania problemów optymalizacyjnych, realizowany jest na kilka

sposobów. Po pierwsze, skoncentrowano się na rozwiązaniu dobrze znanego problemu szeregowania,

mającego szerokie zastosowanie w przemyśle. Dodatkowo wprowadzono i rozwiązano mniej znane

problemy, głównie z wykorzystaniem algorytmu QAOA i jego wariantów, zarówno na symulatorach

komputerów kwantowych, jak i na sprzęcie rzeczywistym. Niektóre wyniki porównano z wynikami

uzyskanymi za pomocą komputerów realizujących kwantowe wyżarzanie. Praca nie ogranicza się

jedynie do opracowania reprezentacji Hamiltonianowej służącej do rozwiązywania problemów przez

algorytmy kwantowe, ale proponuje również nowe podejścia do ich rozwiązywania. Wypracowane

aplikacje są dostarczane w postaci dwóch wyspecjalizowanych, lecz przyjaznych dla użytkownika

platform, z których każda korzysta z modułowego narzędzia QCG-QuantumLauncher. Narzędzie to

zaprojektowano do uruchamiania algorytmów kwantowych i rozwiązywania różnorodnych scenar-

iuszy na różnych docelowych architekturach kwantowych.

2. Prace Badawcze

2.1 Efektywność algorytmu QAOA w problemach kombinatorycznych

Jak wykazano, algorytm QAOA z domyślnie sformułowanymi Hamiltonianami może być z powodze-

niem stosowany do rozwiązywania problemów kombinatorycznych. Pokazano, że jakość wyników

uzyskanych na symulatorze nie różni się znacząco od tych uzyskanych na rzeczywistym sprzę-

cie. Zarówno w przypadku symulatorów kwantowych, jak i rzeczywistych komputerów, rozmiary

rozwiązywanych instancji są obecnie ograniczone do kilkudziesięciu zmiennych. Na przykład,

odpowiada to rozwiązywaniu instancji z 5 pojazdami dla problemu ładowania pojazdów elek-

trycznych na autostradzie. Na komputerze ibmq toronto możliwe jest osiągnięcie 0.5% praw-

dopodobieństwa znalezienia dopuszczalnego rozwiązania dla takich instancji. Te rozmiary instancji

są znacząco mniejsze w porównaniu do tych, które mogą być obecnie rozwiązywane przez komputery

realizujące kwantowe wyżarzanie, zdolne do rozwiązywania instancji zawierających aż 50 pojazdów

elektrycznych. Podobnie, dla problemu taktycznej dekonfliktacji statków powietrznych, instancje o

rozmiarze 5× 4 mogą być rozwiązane z prawdopodobieństwem nie większym niż 0.01%.

Istotny okazał się dobór odpowiedniej głębokości algorytmu QAOA. Głębsze obwody (z większym

parametrem p) lepiej przybliżają ewolucję adiabatyczną i mogą dawać lepsze wyniki. Jednak

w przypadku rzeczywistego sprzętu kwantowego oraz symulatorów z szumem, głębsze obwody

są bardziej podatne na szum, dekoherencję i interferencje. Dla problemu ładowania pojazdów

elektrycznych wykazano, że najlepsze wyniki uzyskuje się przy obwodach o głębokości p = 2,

ponieważ obwody o głębokości p = 1 nie są w stanie wystarczająco dobrze przybliżyć ewolucji

adiabatycznej, a obwody o głębokości p = 3 lub większej nie są w stanie znaleźć dopuszczalnych

rozwiązań. Warto jednak zauważyć, że wzrost głębokości obwodu nie wpływa znacząco na czas

obliczeń potrzebnych do optymalizacji parametrów wariacyjnych; na przykład, czas obliczeń dla

głębokości p = 5 jest tylko 1,43 razy dłuższy niż dla p = 1.

Kolejnym wnioskiem z eksperymentów nad algorytmem QAOA jest to, że kluczowe jest staranne

sformułowanie Hamiltonianu kosztu, ponieważ prawdopodobieństwo sukcesu może znacznie się

różnić w zależności od struktury instancji, nawet jeśli jej rozmiar pozostaje ten sam. Eksperymenty

dla instancji problemu dekonfliktacji statków powietrznych o rozmiarze 12 zmiennych pokazały,

że łatwiej jest znaleźć dopuszczalne rozwiązania, gdy jest więcej statków powietrznych, a mniej

manewrów. Z kolei, gdy jest mniej statków powietrznych i więcej manewrów, prawdopodobieństwo

sukcesu spada od 2 do 3 razy, mimo że iloczyn tych dwóch wartości pozostaje taki sam. Zmiana

z problemów decyzyjnych na optymalizacyjne nie wydaje się natomiast zwiększać trudności w
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rozwiązywaniu problemu. Jest to zgodne z oczekiwaniami, ponieważ Hamiltoniany dla problemów

decyzyjnych i optymalizacyjnych różnią się tylko w termach jednokubitowych, nie wprowadzając

dodatkowych splątań.

2.2 Połączenie algorytmu QAOA z klasycznymi zasobami

superkomputerowymi

Związek między QAOA a ewolucją adiabatyczną sugeruje, że sekwencje parametrów wariacyjnych

powinny monotonicznie wzrastać lub maleć wraz z głębokością obwodu. W rozprawie przebadano

możliwość wykorzystania zasobów superkomputerów dostępnych w Poznańskim Centrum Superkom-

puterowym i Sieciowym do znalezienia optymalnych parametrów wariacyjnych dla problemu JSSP.

W eksperyymentacg zaobserowano 6, 5-krotne skrócenie czasu optymalizacji między głębokościami

p = 3 a p = 4. Efekt taki można uzyskać pod warunkiem wykorzystania optymalnych parametrów

znalezionych dla obwodu QAOA o głębokości p = 3 jako punktów początkowych dla głębokości

p = 4.

Warto również wspomnieć o związku między wartością energii a jakością rozwiązania w prob-

lemach optymalizacyjnych. Podobnie jak w sztucznej inteligencji, gdzie minimalizowana jest funkcja

kosztu, w optymalizacji kwantowej minimalizowana jest energia. Wyniki pokazują, że w niektórych

przypadkach rozwiązania niedopuszczalne mogą mieć energię niższą niż rozwiązania dopuszczalne, w

szczególności w kontekście optymalizacji całkowitego czasu uszeregowania. Niemniej jednak ogólna

zasada, że niższa energia odpowiada wyższemu prawdopodobieństwu uzyskania wysokiej jakości

rozwiązań, pozostaje aktualna. W toku badań stwierdzono istotny potencjał dostosowywania

parametrów decyzyjnych, takich jak maksymalny czas, w celu poprawy wyników.

2.3 Optymalizacja wykorzystująca jedynie obliczenia kwantowe

Podejście znajdowania optymalnych parametrów wariacyjnych jest kosztowne zarówno pod względem

zasobów obliczeniowych, jak i całkowitego czasu obliczeń. Z drugiej strony, istnieje np. algorytm

FALQON, którego istotą jest możliwość pominięcia klasycznej części obliczeń.

Wyniki przeprowadzonych eksperymentów wskazują, że algorytm FALQON może osiągać

znacznie niższe poziomy energii w porównaniu do standardowego QAOA. Ważne jest jednak

to, że podczas gdy liczba warstw QAOA pozostaje stała w trakcie obliczeń, FALQON wymaga

iteracyjnego pogłębiania obwodu, co zwiększa prawdopodobieństwo ingerencji szumu w uzyskane

rezultaty. Wyniki uzyskano przy użyciu symulatorów idealnych, co oznacza, że należy je traktować

jako ciekawą inspirację do dalszych badań w przyszłości, a nie jako praktyczne podejście do

wykorzystania na obecnych komputerach kwantowych.

2.4 Redukcja przestrzeni poszukiwań

Kolejnym sposobem, który pozwala na dalszą poprawę wyników w optymalizacji kwantowej,

jest podejście oparte na włączeniu twardych ograniczeń w Hamiltonianie miksującym za po-

mocą algorytmu QAOA Ansatz. To podejście redukuje przestrzeń poszukiwań, zwiększając praw-

dopodobieństwo znalezienia rozwiązania dopuszczalnego. Odbywa się to jednak kosztem dodania

większej liczby bramek dwukubitowych. Nie wszystkie twarde ograniczenia muszą być włączone

do Hamiltonianu miksującego, ponieważ nie dla wszystkich ograniczeń jest to korzystne. W przy-

padku problemów decyzyjnych zazwyczaj nie można uwzględnić wszystkich ograniczeń. Jednak w
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odniesieniu do problemów omawianych w pracy udało się wyodrębnić podzbiór ograniczeń, które

włączone do Hamiltonianu miksera, poprawiły skuteczność algorytmu.

W przypadku problemu taktycznej dekonflikcji statków powietrznych, włączenie twardego

ograniczenia mówiącego, że każdy statek wykonuje dokładnie jeden manewr, do Hamiltonianu

miksera zwiększyło prawdopodobieństwo pomiaru rozwiązania dopuszczalnego w instancji z 5

statkami powietrznymi, z których każdy miał 3 alternatywne manewry, z 11,69% do 77,33%, co

stanowi ponad sześciokrotny wzrost. Jednakże to podejście nie poprawiło znacząco ogólnego

kształtu rozkładu prawdopodobieństwa w optymalizacji mającej na celu minimalizację całkowitej

liczby zmian wymaganych w pierwotnym planie lotów.

2.5 Złagodzenie ograniczeń w formułowaniu Hamiltonianów

Nieintuicyjne wydawać się może, że przyjęcie odwrotnego podejścia do ograniczenia przestrzeni

poszukiwań może przynieść podobne rezultaty. Wykazano, że złagodzenie sformułowania problemu,

aby uwzględnić szerszy zakres rozwiązań jako dopuszczalne, przy jednoczesnym zmniejszeniu liczby

splątań, również wydaje się prowadzić do lepszych wyników. Jest to nowe podejście, opisane po raz

pierwszy w niniejszej pracy doktorskiej. Polega ono na uproszczeniu Hamiltonianów generujących

obwody posiadające wiele bramek dwukubitowych. Oznacza to, że w modelu problemu taktycznej

dekonflikatcji dopuszcza się w danej chwili wykonanie przez statek powietrznych większej (niż

standardowo - jeden) liczby manewrów jednocześnie. Dzięki tej modyfikacji zaobserwowano poprawę

wydajności nie tylko w porównaniu do standardowych sformułowań Hamiltonianu, ale także do

sformułowań kwadratowych (QUBO) znanych z komputerów opartych o kwantowe wyżarzanie,

które obejmują najwyżej splątania drugiego stopnia. Przykładowo, w scenariuszu z 3 statkami

powietrznymi i 5 manewrami zarejestrowano prawdopodobieństwo zmierzenia dopuszczalnego

rozwiązania wynoszące 0, 0009%, w porównaniu do 0, 0007% dla podejścia QUBO i 0, 0001% dla

standardowego sformułowania, w szczególnie trudnej instancji, gdzie istnieje tylko 5 wykonalnych

rozwiązań spośród 215. Co ciekawe, wyniki te sugerują, że w przyszłości uniwersalne obliczenia

kwantowe mogą stać się bardziej efektywne niż realizacje algorytmów kwantowego wyżarzania.

3. Prace wdrożeniowe

3.1 Portal QCG jako webowe narzędzie do rozwiązywania problemów

kombinatorycznych na komputerach kwantowych i symulatorach

Poznańskie Centrum Superkomputerowo-Sieciowe, jako członek konsorcjum, brało udział w projekcie

EuroHPC-PL, którego celem było zbudowanie krajowej infrastruktury do obliczeń dużej skali

dla badań i przemysłu. PCSS było odpowiedzialne za opracowanie platformy do kwantowych

badań operacyjnych i optymalizacji dyskretnej, a także za uzyskanie dostępu do infrastruktury

do kwantowej optymalizacji kombinatorycznej. Pierwszy z tych elementów, o poziomie gotowości

technologicznej (TRL) 9, był centralnym punktem badań wdrożeniowych w tej pracy. Cele projektu

zrealizowano poprzez rozszerzenie i integrację istniejącego zestawu oprogramowania QCG oraz

opracowanie nowych, nieistniejących wcześniej komponentów.

Podczas realizacji projektu stworzono warstwę dostępową do osadzania szablonów aplikacji

oraz aplikacji zorientowanych na problem, oferując elastyczną i dostosowywalną platformę do

różnych zastosowań. Platforma ta została zbudowana na komponencie QCG-Portal, umożliwiając

użytkownikom przeglądanie, kontrolowanie i monitorowanie zadań za pomocą interfejsu webowego.

Została ona również zintegrowana z QCG-Templates, co pozwoliło na dostosowanie widoków
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aplikacji poprzez parametryzację. Ponadto, wykorzystano QCG-API i QCG-Agent do autoryzacji i

przesyłania zadań.

Opracowana platforma zawiera kilka wstępnie zdefiniowanych aplikacji graficznych, które

pozwalają użytkownikom definiować instancje wybranych i zaimplementowanych problemów opty-

malizacji kombinatorycznej, takich jak problem MaxCut, problem Exact Cover oraz JSSP. Interfejs

umożliwia użytkownikom określenie rozmiaru i rodzaju instancji za pomocą intuicyjnego interfejsu

graficznego lub tekstowego, bądź przez wczytanie wcześniej istniejących danych z pliku. Platforma

wspiera również przesyłanie ogólnych zadań obliczeniowych dla dowolnego problemu optymalizacji

poprzez wprowadzenie macierzy QUBO w interfejsie tekstowym lub przez wgranie jej z pliku.

Użytkownicy mogą następnie wybrać architekturę, na której problem zostanie wykonany, w tym

rzeczywiste komputery kwantowe lub symulatory wdrożone podczas projektu PRACE-LAB2. Do-

datkowe opcje umożliwiają wybór odpowiedniego algorytmu optymalizacyjnego oraz dostosowanie

jego hiperparametrów. Warto również zauważyć, że klasyczne części algorytmów hybrydowych

zostały przygotowane do równoległego przetwarzania, co umożliwia ich wykonywanie na klastrach

HPC lub superkomputerach, znacząco przyspieszając obliczenia.

Aplikacje dla wybranych problemów optymalizacji dyskretnej są dostępne za pośrednictwem

QCG-Portal, który został zaadaptowany i funkcjonalnie rozszerzony na potrzeby projektu. QCG-

Portal służy również jako narzędzie do zarządzania zasobami, uwierzytelniania użytkowników,

przesyłania zadań do systemu kolejkowania oraz pobierania metadanych dotyczących przesłanych

zadań. Opracowane szablony w ramach platformy ułatwiają również analizę wyników zadań za

pomocą interaktywnego interfejsu graficznego, który prezentuje wyniki w formie wykresów dos-

tosowanych do konkretnego problemu, algorytmu oraz architektury kwantowej. Należy zauważyć, że

komponenty QCG wymagały dodatkowego rozszerzenia, aby w pełni obsługiwać przypadki użycia

związane z obliczeniami kwantowymi. Konieczne było także wdrożenie widoków specyficznych

dla tych zastosowań. Jednym z zaawansowanych narzędzi, które musiały zostać opracowane od

podstaw, był QCG-QuantumLauncher (QCG-QL). Biblioteka ta umożliwia łatwe wykonywanie prob-

lemów kombinatorycznych na różnych komputerach kwantowych z użyciem wybranych algorytmów

kwantowych.

3.2 Skydodge: menadżer ruchu lotniczego

Projekt EuroHPC PL skupiał się na dostarczeniu użytkownikom narzędzia do rozwiązywania

wybranych problemów optymalizacji kombinatorycznej lub własnych macierzy QUBO na maszynach

kwantowych. Chociaż te rozwiązania zostały pomyślnie wdrożone w ramach projektu, w niektórych

scenariuszach wymagana była bardziej szczegółowa i specyficzna integracja z istniejącymi procesami.

Tak było w przypadku projektu Quantum Air Traffic Management (QATM) (TRL 6), gdzie

opracowano rozwiązanie kwantowe wspierające kontrolerów ruchu lotniczego.

Produkt opracowany w ramach projektu składa się z trzech modułów: logicznej warstwy

kwantowej, która przetwarza dane wejściowe dotyczące statków powierznych i generuje rozwiązanie

problemu, QCG-Template, dostępnego przez QCG-Portal -umożliwiającego uruchamianie obliczeń

na sprzęcie kwantowym lub klasycznych symulatorach, oraz SkyDodge - interaktywnego interfejsu

monitorującego sytuację w przestrzeni powietrznej i wizualizującego potencjalne rozwiązania

znalezione przez maszyny kwantowe. Kwantowa warstwa logiczna opiera się na efektach badań

zebranych w opublikowanych artykułach i podsumowanych we wcześniejszych punktach.

Moduł kwantowy składa się z dwóch podmodułów: podmodułu generatora oraz podmodułu

dekonfliktacji. Te podmoduły są zintegrowane na zasadzie działania w pętli. Generator tworzy

scenariusze ruchu lotniczego z konfliktami i generuje możliwe trasy dla samolotów. Te trasy są
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następnie przesyłane do podmodułu dekonfliktacji, który identyfikuje konflikty i wykorzystuje

sprzęt kwantowy do wyboru tras bezkonfliktowych, spełniających dodatkowe ograniczenia. Proces

powtarza się, a generator aktualizuje scenariusze, dodaje sytuacje losowe (między innymi takie jak

burze) i generuje nowe trasy, aż do zakończenia symulacji. Podmoduł dekonfliktacji umożliwia także

przypisywanie wag do tras na podstawie preferencji użytkownika, co pozwala na optymalizację, taką

jak chociażby minimalizacja zużycia paliwa lub priorytetyzacja określonych lotów. Takie podejście

zapewnia dużą elastyczność w zarządzaniu sytuacjami w przestrzeni powietrznej i umożliwia analizę

oraz rozwiązywanie konfliktów w czasie bliskim rzeczywistemu.

Dobre praktyki ustalone podczas pracy nad projektem EuroHPC PL ułatwiły efektywne zapro-

jektowanie i wdrożenie widoku QCG-Portal. Interfejs ten pozwala użytkownikom na przesyłanie

zadań na różne architektury kwantowe, w tym architekturę bramkowaą. Ponadto użytkownicy mają

możliwość generowania instancji z wybraną liczbą statków powietrznych i manewrów oraz doboru

parametrów sterowania, takich jak czas pętli odpowiedzi. System wizualizacji, SkyDodge, działa w

trybie odtwarzania i przetwarza cały scenariusz ruchu lotniczego aż do jego zakończenia. System

potrafi wizualizować trasy statków powietrznych, oznaczać sytuacje konfliktowe, wyświetlać wybrane

alternatywne trasy, dostosowywać prędkość odtwarzania, przewijać scenariusz od wybranego mo-

mentu, filtrować podzbiory statków powietrznych oraz prezentować dodatkowe informacje o locie i

warunkach powietrznych. Został on zaprojektowany w taki sposób, aby jasno pokazać działania

kontrolera lub systemu dekonfliktacji oraz umożliwić szczegółową analizę podjętych decyzji.

3.3 QCG-QuantumLauncher: modułowy zestaw narzędzi do zarządzania

kwantowymi scenariuszami aplikacyjnymi

Wstępne eksperymenty mające na celu zbadanie możliwości technologii kwantowych ujawniły

znaczącą lukę w rozwiązaniach programistycznych wysokiego poziomu, które ułatwiłyby przeprowadzanie

takich eksperymentów. Po pierwsze, oprócz podstawowych zasad formułowania Hamiltonianów

w problemach optymalizacyjnych, nie istniało żadne narzędzie, które automatyzowałoby ten pro-

ces, co wymagało ręcznego tłumaczenia funkcji logicznych na Hamiltoniany. W związku z tym

zdecydowano się opracować wewnętrzne narzędzie do tłumaczenia funkcji logicznych na Hamil-

toniany, nazwane QCG-Hampy. Po drugie, dla każdego kolejnego podejścia eksperymentalnego

cała ścieżka przetwarzania, w tym odczyt danych, wybór backendu kwantowego, wybór algorytmu,

zapisywanie wyników itp., musiała być ponownie implementowana w kodzie. Aby uprościć ten

proces, opracowano bibliotekę programistyczną o nazwie QCG-QuantumLauncher (QCG-QL),

której QCG-Hampy został częścią, a która przekształciła się w dojrzałe i modułowe rozwiązanie do

rozwiązywania klasycznych problemów obliczeniowych przy użyciu algorytmów kwantowych na

komputerach kwantowych.

Główną korzyścią płynącą z użycia QCG-QL, którą można zaobserwować na pierwszy rzut

oka, jest znaczące uproszczenie, jakie oferuje w zakresie wykonywania algorytmów kwantowych do

rozwiązywania konkretnych problemów na różnych maszynach kwantowych. Jedną z zauważalnych

zalet jest znaczne zmniejszenie wymaganej liczby linii kodu. W typowych eksperymentach QCG-

QL redukuje kod z kilkuset linii do zaledwie kilku. Przykładowo, typowa implementacja QAOA

rozwiązująca JSSP na bramkowym komputerze kwantowym, w tym proste zapisywanie wyników,

zazwyczaj wymaga około 400 linii kodu. Używając QCG-QL, wystarczą jedynie 5 linii kodu.

Redukcja ta nie byłaby tak imponująca, gdyby QCG-QL jedynie opakowywał konkretne bloki kodu

w funkcje lub klasy. Jednak QCG-QL oferuje pełną modularność i elastyczność. Jego kluczową zaletą

w porównaniu do podobnych bibliotek oprogramowania kwantowego jest możliwość przełączania
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się między różnymi architekturami kwantowymi. Użytkownicy mogą przełączyć się z bramkowego

komputera kwantowego na komputer oparty o kwantowe wyżarzanie lub komputer realizujący

próbkowanie bozoniczne za pomocą zaledwie jednej linii kodu. To samo dotyczy przełączania między

róznymi problemami optymalizacyjnymi lub użytymi do ich rozwiązywania algorytmami. Wszystkie

wymagane procesy obsługiwane są przez QCG-QL w sposób niewidoczny dla użytkownika, przy

minimalnym jego zaangażowaniu.

Chociaż narzędzie zostało po raz pierwszy publicznie zaprezentowane dopiero niedawno podczas

wystąpienia konferencyjnego, było ono już wcześniej wykorzystywane do celów wewnętrznych. QCG-

QL okazało się nieocenione w przeprowadzaniu eksperymentów dla prac zajmujących się problemem

taktycznej dekonfliktacji statków powietrznych a także problemem ładowania pojazdów z silnikiem

elektrycznym. QCG-QL służył także jako komponent kwantowy dla pełnych produktów i wyników

projektów QATM i EuroHPC PL. Dzięki swojej dużej elastyczności i rozszerzalności QCG-QL

umożliwił wdrożenie koncepcji integracji superkomputerów z komputerami kwantowymi w celu

opracowania algorytmu hybrydowego, opisanego w następnym punkcie. Ponadto QCG-QL stanowi

fundament dla przyszłych projektów integracyjnych. Biorąc pod uwagę wymienione zastosowania

w wielu obszarach, QCG-QL można uznać za skuteczne narzędzie wspierające zastosowanie metod

obliczeń kwantowych w rozwiązywaniu problemów optymalizacyjnych.

3.4 Rozszerzenia QCG-QL do rozwiązywania problemów

kombinatorycznych w systemach hybrydowych

Jednym ze szczególnie istotnych obszarów badań z zakresu obliczeń kwanotwych jest rozwój

hybrydowych algorytmów klasyczno-kwantowych. Mało prawdopodobne jest, aby komputery kwan-

towe realizowały obliczenia niezależnie. Bardziej prawdopodobnym scenariuszem jest synergiczne

współdziałanie komputerów klasycznych i kwantowych. Spodziewać się należy, że komputery

kwantowe będą wykonywały pewne specyficzne obliczenia, przyspieszając obliczenia klasyczne, ale

również obliczenia klasyczne będą stanowiły wsparcie dla obliczeń kwantowych.

W przypadku tego specyficznego, lecz szerokiego obszaru hybrydowych obliczeń klasyczno-

kwantowych, QCG-QL również wykazuje swoją przydatność. W połączeniu z narzędziem QCG-

PilotJob (QCG-PJ), usługą QCG zaprojektowaną do efektywnego wykonywania wielu zadań w

ramach jednej alokacji, QCG-QL został wykorzystany do opracowania hybrydowego algorytmu,

który wykorzystuje zasoby superkomputerowe do przyspieszenia procesu znajdowania optymalnych

parametrów wariacyjnych dla algorytmu QAOA. Znalezienie optymalnych parametrów wariacyjnych

dla QAOA jest trudne i kosztowne obliczeniowo. W omawianym podejściu narzut obliczeniowy jest

nierównomierny, ponieważ większość obliczeń koncentruje się na początkowym etapie. To podejście

ma również istotną wadę, polegającą na konieczności ustalenia liczby punktów początkowych podczas

inicjalizacji algorytmu. Może to prowadzić do nadmiarowych obliczeń, jeśli optymalny zestaw

parametrów zostanie znaleziony wcześniej. Z drugiej strony, jeśli liczba punktów początkowych

okaże się niewystarczająca, algorytm może nie znaleźć optymalnych parametrów wariacyjnych.

Nowe podejście zapewnia efektywne wykorzystanie zasobów w ramach alokacji, ponieważ

głębsze obwody kwantowe zazwyczaj wymagają większej mocy obliczeniowej niż płytsze. Należy

zauważyć, że każdy blok optymalizujący parametry wariacyjne, reprezentuje hybrydową klasyczno-

kwantową optymalizację QAOA. Ponieważ oczekuje się, że obliczenia kwantowe będą znacznie

szybsze niż klasyczne, dostęp do kilku zasobów kwantowych wystarczy aby uruchomić dziesiątki

takich procesów. Komputer kwantowy może być współdzielony między procesami klasycznymi i
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nie pozostaje bezczynny podczas klasycznej optymalizacji, co miałoby miejsce, gdyby każdy zasób

kwantowy był powiązany z jedną jednostką klasyczną.

4. Podsumowanie

Niniejsza dysertacja podsumowuje prace przeprowadzone w trakcie czteroletnich studiów doktoranc-

kich. Rozprawa rozpoczyna się od przeglądu obecnego stanu wiedzy w przedmitwej dziedzinie badań

oraz identyfikacji kluczowych problemów. Kolejne badania doprowadziły do opracowania specjalisty-

cznych narzędzi, które następnie wykorzystano do przyspieszenia dalszych prac badawczych, tworząc

pętlę, która umożliwiła realizację praktycznych aplikacji. Mimo że nie wszystkie wyzwania w tej

dziedzinie zostały rozwiązane, praca ta wnosi istotny, spójny i uporządkowany wkład, zwłaszcza w

zakresie wiedzy naukowej, narzędzi wspierających użytkowników oraz aplikacji do optymalizacji

kwantowej.

Zastosowoanie komputerów kwantowych w praktycznych zastosowaniach do rozwiązywania

problemów optymalizacyjnych jest wciąż na początkowym etapie rozwoju. Większość obecnych

rozwiązań dotyczy problemów o ograniczonym zastosowaniu. Problem ten wynika częściowo z

nowości samej technologii, ale także z wysokiego progu wejścia dla specjalistów z przemysłu,

spowodowanego brakiem narzędzi o wysokim poziomie abstrakcji, które ułatwiłyby przeprowadzanie

obliczeń. Dodatkowo sytuację komplikuje istnienie różnych paradygmatów kwantowych, które

wymagają podejść dedykowanych.

Pierwszą luką w dotychczasowych badaniach, którą zidentyfikowano i zajęto się w tej pracy,

były eksperymenty z algorytmem QAOA. Sformułowano dedykowane Hamiltoniany dla JSSP,

problemu ładowania pojazdów elektrycznych i problemu taktycznej dekonflikcji. Przeprowadzono

eksperymenty dotyczące QAOA, obejmujące analizę strategii interpolacji optymalnych parametrów

wariacyjnych, porównanie z kwantowym wyżarzaniem oraz badanie związku między energią a

długością znalezionego uszeregowania zadań. Eksperymenty te pokazały praktyczne zastosowanie

komputerów kwantowych do rozwiązywania rzeczywistych problemów optymalizacyjnych, a także

przyczyniły się do wczesnego wykorzystania narzędzia QCG-QL oraz opracowania warstwy logicznej

dla portalu EuroHPC PL i pomyślnego zakończenia projektu QATM.

Podczas prac badano także rozszerzenia algorytmów QAOA. Czysto kwantowa optymalizacja

z użyciem algorytmu FALQON radziła sobie lepiej niż QAOA, szczególnie w przypadku długich

obwodów, które jednak nie są możliwe do realizacji na obecnych komputerach kwantowych. Al-

gorytm ograniczający przestrzeń poszukiwań okazał się obiecującą alternatywą, wykazując lepszą

skuteczność w rozwiązywaniu problemów. Z kolei całkowicie nowe podejście, stojące w opozycji do

obecnych, znanych algorytmów, a polegające na eksploracji większej liczby rozwiązań, także okazało

się lepsze od standardowej wersji algorytmu QAOA. Co więcej, okazało się przewyższać tradycyjną

metodę QUBO stosowaną na komputerach realizujących kwantowe wyżarzanie. Prowadzenie szero-

kich eksperymentów w ramach pracy było znacznie ułatwione dzięki wcześniej zaimplementowanym

narzędziom, takim jak QCG-Hampy i QCG-QL.

Prace badawcze były ściśle powiązane z rozwojem aplikacji, co stworzyło samonapędzającą

się pętlę. Główną siłą napędową tej pętli było narzędzie QCG-QL, które powstało z potrzeby

bardziej efektywnych badań, a ostatecznie stało się przedmiotem zainteresowania szerszego grona

odbiorców. W pierwszej kolejności, QCG-QL rozwiązało problem powtarzalności kodu przy

przeprowadzaniu wielu eksperymentów z różnymi problemami, algorytmami lub komputerami

kwantowymi. Po drugie, QCG-QL dostarczyło warstwę wysokopoziomowej abstrakcji, ukrywając

przed użytkownikami szczegóły implementacyjne, pozostawiając jednocześnie otwartą możliwość
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dla bardziej zaawansowanych badaczy, którzy mogą rozszerzać moduły bazowe QCG-QL w celu

prowadzenia bardziej zaawansowanych badań.

QCG-QL stanowiło kwantową bazę logiczno-obliczeniową dla dwóch projektów: EuroHPC

PL i QATM. Projekt EuroHPC PL zakończył się zaprojektowaniem i wdrożeniem platformy

do rozwiązywania problemów optymalizacji kombinatorycznej, która umożliwia użytkownikom

korzystanie z graficznego interfejsu do definiowania zadań oraz łatwego dostępu do dostępnych

komputerów kwantowych. Platforma została zintegrowana z narzędziem QCG-Portal, co pozwoliło

na organizację zadań, analizę wyników oraz monitoring.

Projekt QATM był drugim projektem, który zakończył się sukcesem, w ramach którego QCG-QL

stanowił bazę logiczno-obliczeniową. Rozwiązania wypracowane w pracach badawczych umożliwiły

taktyczną dekonfliktację statków powietrznych za pomocą algorytmów kwantowych, z możliwością

optymalizacji kryteriów, takich jak minimalizacja zużycia paliwa czy liczba zmian trajektorii dla

lotów o wysokim priorytecie. Wzięto pod uwagę również czynniki środowiskowe, takie jak burze,

oraz ograniczenia administracyjne. Kwantowe rozwiązanie zostało wdrożone w usłudze QCG-

Portal, stanowiąc naturalne rozszerzenie rozwiązań opracowanych w ramach projektu EuroHPC

PL. Dodatkowo opracowano specjalne narzędzie o nazwie SkyDodge do wizualnej analizy procesu

dekonfliktacji w trybie odtwarzania, które może ostatecznie służyć jako wsparcie dla kontrolerów

lotów.
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