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Abstract

Over the years, the development and growing popularity of the Multi-Criteria
Decision Aiding field has brought many models and algorithms capable of solv-
ing various decision problems. Although the greater variety of methods has
undoubtedly enriched the literature on the subject, the lack of a compre-
hensive comparison of different approaches has caused an increased difficulty
in selecting an appropriate algorithm for the considered problem. This is-
sue is important from the perspective of both decision makers and analysts,
who strive to obtain high-quality recommendations, and the selection of an al-
gorithm is one of the crucial steps in the decision aiding process. Address-
ing this problem was the main goal of this doctoral dissertation. As part
of the research, several comparative analyses of methods and models were
conducted, followed by the provision of observations and conclusions facili-
tating the selection of an appropriate approach based on the specificity of the
considered problem. Moreover, new algorithms and models were proposed
based on stochastic analysis and adapted to various assumptions regarding
the decision-maker’s preferences. Quality measures were also proposed, which
allowed for the examination of the quality, robustness, and expressiveness
of the approaches considered. Lastly, an approach to the preference learning
problem using nature-inspired optimization algorithms was proposed.
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Chapter 1

Introduction

Multiple Criteria Decision Analysis (MCDA) concentrates on research and
systematization of knowledge on solving decision problems in which alter-
natives are evaluated using more than one criterion. Research in this area
aims to provide best practices that constitute the decision-making process.
The most commonly used approach is to synergize information on the eval-
uation of alternatives based on individual criteria and preferences obtained
from the Decision Maker (DM) and then to provide valuable conclusions and
recommendations. To achieve this ultimate goal, over the years, many tech-
niques, models, methods, and algorithms have been developed, improving
the decision support process and thus enriching the literature on the subject.

The decision-making process consists of many steps, among which it is es-
sential to determine the type of problem, to elicit the DM’s preferences,
and to select an appropriate decision support model or method. The devel-
opment and popularization of the field have led to many practical applications
of MCDA, solving real-world problems such as software evaluation , en-
vironmental management @, energy policy , health care [§], conservation
prioritization and planning @I], sports players’ evaluation [10], energy systems
analysis , and sustainability of insulating materials .

According to , in MCDA, four basic types of problems are distin-
guished, which are: choice («), sorting (), ranking (), and description (0)
problems; each of them aims at a different structure of recommendations
about the considered alternatives. In the choice problem, one or a few best
decision variants are selected; the idea of the sorting problem is to assign
alternatives to preferentially-ordered classes; the ranking problem orders the
alternatives from most to least preferred; and the description problem pro-
vides information about the consequences of choosing a particular action.

In the context of preference elicitation, the multitude of problems and
methods for solving them goes hand in hand with the variety of possibilities
for expressing preferences by the DM. distinguished input and output-



oriented preference information. Input-oriented preferential statements can
refer to the intra-criterion preferences, which assess the significance of dif-
ferences in the ratings obtained by different alternatives concering a given
criterion, and to the inter-criterion preferences, which define weights and
trade-offs between the importance of individual criteria. On the other hand,
expressed preferences may also refer to desired output, showing holistically
the DM’s attitude towards the alternatives considered. The most common
ways of expressing preferences in this way are comparisons between pairs
of actions , indicating which one is preferred by the DM, and assigning
example alternatives to predefined decision classes . It is commonly be-
lieved that this type of preference representation is less cognitively demanding
and more intuitive for DMs. Moreover, it does not require detailed domain
knowledge and familiarity with specific decision support methods. Another
advantage is that the holistic preferences expressed in this way are compatible
with many different approaches, which makes them universal.

The development of the MCDA field and the introduction of new methods
and algorithms have made it possible to obtain more robust and qualitative
recommendations and to solve more sophisticated problems. On the other
hand, it has also made the work of decision analysts more demanding, be-
cause selecting a method tailored to the considered problem has become more
difficult. The lack of analyses examining the characteristics and comparing
different approaches constitutes a gap in the literature, and filling it was the
main motivation for this study. In turn, the research hypothesis of this disser-
tation assumes that based on the results of the experimental analysis of the
properties of decision support models and methods, it is possible to formulate
guidelines for decision analysts that will facilitate the selection of adequate
and qualitative approaches to the considered problems.

This dissertation focuses on presenting the analyzed decision support
models and methods, the diversity in their ability to solve specific problems,
provide different quality of recommendations, and consider different assump-
tions regarding recommendation expectations. These approaches were ana-
lyzed in terms of different features that are desirable in the field of MCDA,
such as predictive abilities, robustness, expressiveness, and solving preference
learning problems. A number of quality measures were proposed, which were
then used to conduct an experimental comparative analysis. The scheme
of the experiments that were conducted was also described in detail, and
the results that were obtained were discussed. Finally, based on the results,
guidelines for decision analysts were developed to facilitate their work.

The remainder of this doctoral thesis is organized in the following way.
Chapter [2 presents the necessary theoretical background; in particular, it de-
scribes the considered decision problems and the methods used to solve them.
Chapter [3] describes the obtained results of the conducted research work.
Chapter [4 contains a summary of the research.



Chapter 2

Theoretical background

This chapter describes the basic theories and issues in the field of MCDA,
which are essential for a better understanding of this dissertation and for
defining its scope. The information included here concerns the decision prob-
lems considered, as well as the algorithms and models analyzed. It also de-
scribes the different perspectives on the quality of models, which were the
focus of the conducted analyses.

2.1 Considered problems

In MCDA, decision problems are usually defined by providing a set of decision
alternatives together with their evaluation on various criteria. At the stage
of defining the problem, it is also necessary to determine its type, and thus
the expected structure of the received results. To solve this problem and
obtain satisfactory results, it is also essential to provide knowledge about
the DM’s preferences so that the resulting recommendations can accurately
reflect them.

The set of alternatives A = {a1,...,a,} represents all the possible ac-
tions, alternatives, and options available to the DM when considering the
problem being solved. It can be provided as a complete set of already ex-
isting actions considered in a specific decision-making context. Another ap-
proach is to represent the set of alternatives indirectly by specifying a range
of values, constraints, and trade-offs between ratings on particular criteria.
This approach is typically used for design problems in which arbitrary alter-
natives can be generated with specified characteristics that satisfy assump-
tions and constraints specific to the domain of the problem under consid-
eration. Regardless of how the set of actions is defined, it also determines
the space of all possible solutions, i.e., all possible assignments of alterna-
tives to classes, all possible rankings, or all subsets of selected alternatives,
depending on the nature of the problem.
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The set of criteria G = {g1,...,9m} contains all the attributes that are
important for the specific decision-making process. To consider a multi-
criteria problem, it should contain m > 2 criteria, which describe various
features of individual actions. These attributes should not be redundant,
i.e., they should not refer to the same aspects of the alternatives. In addition,
they should be easily interpretable since they often constitute the basis for
expressing preferences. Moreover, the DM should be able to indicate the
nature of individual criteria, i.e., determine their type:

e gain — the higher the performance of an alternative, the more it is pre-
ferred;

e cost — the lower the performance of an alternative, the more it is pre-
ferred;

e non-monotonic — there is no monotonic relationship between the inten-
sity of preferences and the attribute values obtained by the alternatives.

In most cases considered in this paper, criteria are treated independently,
but it is also possible to define more sophisticated ways of representing DM
preferences, e.g., by taking into account inter-criteria interactions. The value
of the alternative for the j-th criterion is typically denoted as g;(a).

Information about DM’s preferences is crucial to improve the quality
of the recommendations received. The better and more accurately they re-
flect perceptions of alternatives, the more accurate recommendations can
be expected. DMs can express their preferences in various ways, referring
to specific elements of the problem as well as to specific aspects of the ap-
proach used. Indications regarding the algorithm used (e.g., “the weight
of criterion g3 in model M should take the value of 0.4”, “the veto thresh-
old vy for criterion g; should be 10”) are usually easy to apply directly
to a given approach, but they require advanced knowledge and full under-
standing of the specific decision-making procedure and also prevent the use
of this information in other approaches. On the other hand, information
directly related to the alternatives (“as is preferred over a7”, “as should be
assigned to at least class C%”, “ayq should be among the top 10 alternatives
in the ranking”) and/or evaluation criteria (“criterion gs is more important
than g3”, “ay and a4 are indifference according to criterion ¢1”) are easy
to interpret, do not require much effort and domain knowledge from the DM,
and are universal for various decision support algorithms.

In the research described in this dissertation, problems with a pre-defined
set of alternatives were considered, containing from a dozen to several hun-
dred (in case of preference learning problems) alternatives, and evaluated
using two to nine attributes. Within the problems considered, the types
of criteria, the presence or absence of preference monotonicity, and possible
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inter-criteria interactions were indicated. The preference information was tai-
lored to the expected recommendation structure, i.e., pairwise comparisons
of alternatives were provided for the ranking and choice problems, as well as
example class assignments for the sorting problems.

2.2 Models and algorithms

This section provides an introduction to the models and algorithms whose
study and comparison were the subject of this dissertation. The most im-
portant assumptions concerning the discussed approaches, their applications,
and variants are presented. It is also shown why their comparison is an im-
portant research issue.

The UTA-like methods
Basic assumptions

The concept of the UTA (UTilités Additives) method, proposed by ,
based on the Multiple Attribute Value Theory (MAVT), uses the prefer-
ence disaggregation-aggregation paradigm, as described in [17]. The con-
cept of preference disaggregation assumes the use of example DM’s decisions
to develop a decision model consistent with the DM’s preferences. On the
other hand, the aggregation paradigm assumes that the utility of a given
alternative is directly indicated by the marginal utilities on the individual
criteria. In the case of UTA, the global utility score of the alternatives
is determined by Additive Value Function (AVF), which aggregates marginal
scores by adding them up. Global utility values are usually denoted as U(a),
and MVF as a function of the value of the alternative on a specific criterion:
uj(g;(a)). Thus, the AVF value is determined as the sum of the MVF values:
Ula) = 3252, uj(g5(a)).

In the standard approach, two main assumptions are also used: normal-
ization and monotonicity of MVFs. Normalization assumes that all functions
uj(a) have the lowest value equal to 0 and that the sum of their highest val-
ues is 1. These assumptions ensure that the values of the AVF will be in the
range [0, 1], where 0 denotes the least and 1 is the most preferred, potentially
existing alternative. Monotonicity, in turn, assumes that the function u;(a)
is consistent with the type of the j-th criterion, i.e., it is non-increasing in the
case of a cost criterion and non-decreasing in the case of a gain criterion.

The basic version of the model assumes that the marginal functions are
defined for the interval containing all possible values for a given criterion.
In addition to satisfying the properties resulting from the above assumptions,
the functions are piecewise linear, so they consist of v; > 1 intervals of equal
length, separated by characteristic points for which the function values are
explicitly determined. On the other hand, the evaluation of the function



within the intervals is determined based on linear interpolation of the func-
tion values for two characteristic points that are the boundaries of a specific
interval. Such a formulation of the function results in the fact that, on the
one hand, it maintains great flexibility in shaping the DM’s preferences with
respect to a specific criterion. At the same time, it allows for the represen-
tation of monotonicity and normalization constraints in the form of linear
constraints.

It is worth noting that in addition to reducing the model assumptions
to linear constraints, this formulation of the model also allows the DM’s pref-
erences to be expressed in the same way. In the case of a pairwise comparison
of alternatives, if the DM indicates that a is preferred over b , denoted as:
a =PM b an additional linear constraint can be introduced: U(a) > U(b)+¢,
where € is a small, constant positive value. This constraint ensures that the
desired preference relation for this pair of alternatives will be preserved in the
resulting model. Similarly, if the DM indicates an indifference between a pair
of alternatives, then a constraint U(a) = U(b) is added, which ensures that
both alternatives obtain the same global utility value.

In the case of sorting problems, the conducted research used the UTADIS
model proposed in , which introduces a threshold-based approach by en-
riching the model with additional threshold values (to,...,t,), symbolizing
the boundaries between decision classes. Due to the assumed preferential or-
der of classes, which is a feature of multi-criteria sorting problems, the thresh-
old values must also satisfy the monotonicity constraints, i.e., t; —t;_1 > €.
They should also split the interval of all possible global utility scores into
smaller sub-intervals that unambiguously assign the utility value to a spe-
cific class. Threshold values defined in this way allow for an effective solution
of sorting problems. Given the preferential information provided by the DM,
if the reference assignment indicates that alternative a should be assigned
to class Cj, then it is necessary to introduce constraints that ensure that
the value of U(a) is between ¢;_1 and t;. This approach allows preferential
information to be included directly in the assumptions of the decision model.

Both the linear constraints resulting from the model assumptions and from
the DM’s preferences define the space of all feasible solutions, denoted as U*.
In the case of inconsistency within the DM’s preferences or between the pref-
erences and the model assumptions, it may happen that there will be no
solution satisfying all of the constraints — then U = (). To deal with such
situations, the original proposal by introduced o(a) variables, symboliz-
ing “potential error relative to the utility”, which allowed for the acceptance
of solutions that were not fully consistent with the DM’s preferences, but
rather were a compromise solution in which the sum of errors was mini-
mized. Another approach to this problem might be to point out the source
of the inconsistency to the DM and then elicit preferences leading to a feasible
solution. On the other hand, it also happens that the set contains an infinite



number of feasible solutions, which provides an opportunity to analyze the
properties and relationships occurring in the models included in the set. The
most popular tools for analyzing the mentioned aspects of the set of all solu-
tions consistent with DM’s preferences are Robust Ordinal Regression (ROR)
and Stochastic Ordinal Regression (SOR).

Robust Ordinal Regression

According to , robust ordinal regression considers all solutions compat-
ible with the DM’s preferences and provides information about the neces-
sary (compatible with all models) and possible (compatible with at least
one model) “consequences of applying all compatible preference models to
the considered set of alternatives”. Using robustness analysis, inferences are
drawn about possible and necessary relations in a set of solutions, e.g., about
preferences between pairs of alternatives or assignments to decision classes.
To verify a hypothesis concerning a possible property of all feasible solutions,
it is enough to find at least one solution that confirms it. On the other hand,
to check the validity of the necessary relation, one must prove by contradic-
tion that there is no model consistent with the DM’s preferences that does
not satisfy the given properties.

Regardless of the issue or relationship under consideration, ROR enables
the verification of hypotheses and obtaining qualitative information about
all solutions, which allows for checking the possibility or necessity of a given
phenomenon, resulting from both the structure and assumptions of the model
and the DM’s preferences. This information is useful for better understanding
the possible consequences of the decisions made and can support the inter-
active recommendation building process in cooperation with the DM. The
decision maker can react to the feedback received on the ROR results, e.g.,
by indicating desirable and unacceptable relations in the expected outcome
of the procedure. Based on the DM’s indications, the preferential information
can be updated, which should lead to more satisfactory recommendations.

Furthermore, ROR is also used in some approaches to select a represen-
tative model to provide univocal recommendations. The most popular ap-
proach is to use observed relationships through procedures that try to empha-
size their significance and highlight them in the obtained outcome. Moreover,
the information provided by ROR can also be used to formulate conclusions
about the robustness of recommendations and expressiveness of models.

Stochastic Ordinal Regression

SOR, similarly to ROR, also attempts to describe phenomena occurring
in the set of all solutions. However, unlike ROR, it does not focus on the
qualitative analysis of the necessity or possibility of relations but tries to cap-
ture them in a quantitative aspect. Stochastic analysis examines how often
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a given relation occurs in the set of all compatible models. Thanks to this,
it is possible to indicate the most popular relations occurring between pairs
of alternatives or alternatives and decision classes.

Accurately assessing the frequency of occurrence of phenomena in a set
of infinite elements using analytical methods is difficult. For this reason, algo-
rithms from the class of Monte Carlo (MC) methods are used, which are one
of the most popular approaches to this problem. They use random sampling
of the solution space, and based on the obtained subset, approximate values
of specific measures are determined. One of the approaches to generating
uniformly distributed points over bounded regions called hit-and-run (HAR)
algorithm, was first proposed by . The algorithm consists of iteratively
generating a sequence of points in N-dimensional space. Each subsequent
point is obtained by randomly selecting a line passing through the previ-
ous point, and then randomly selecting a point from the selected segment,
bounded by a feasible space of points. This algorithm allows for efficiently
obtaining a set of uniformly distributed samples from any convex polytope,
and this is exactly the shape of the solution space defined based on the as-
sumptions of the described model. For this reason, it can be successfully used
to perform stochastic analysis of the solution space of multi-criteria decision
support problems solved by methods from the UTA family.

The SOR results provide important information about the set of feasible
solutions and are used in a similar way to the ROR outcomes. Quantita-
tive aspects of the phenomena occurring in the solution space are useful
from the perspective of procedures exploiting this information and are used
to define adequate quality measures that allow assessing how well-selected
univocal recommendations represent the entire solution space.

Construction of univocal recommendations

The literature on this topic provides many strategies for creating unambigu-
ous recommendations based on the UTA-like approach, which is used to solve
the selection, ranking and sorting problems. They can be classified according
to the way of building recommendations as follows:

¢ Representative utility function. This is a basic approach to solving
the above-mentioned problem. This concept assumes building recom-
mendations based on one, arbitrarily selected AVF, found in the set
of all feasible solutions. This is usually done by defining an appropri-
ate objective function, which, in combination with linear constraints
imposed by the model assumptions, constitutes the Linear Program-
ming (LP) problem. Various functions are known that try to capture
the most discriminant, parsimonious, benevolent or aggressive AVF.
Due to the convexity of the solution space, it is also possible to obtain
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a unique model by selecting many feasible models arbitrarily or ran-
domly and then averaging them. It is also possible to determine the cen-
tral solution, for example, by introducing additional constraints and
variables into the model. Finally, it is also possible to exploit outcomes
from ROR and SOR to emphasize relationships and class assignments
that occur most frequently in the set of all solutions, making univocal
recommendations representative in the context of the entire set of solu-
tions. However, what all these approaches have in common is that the
recommendations are derived directly from one of the feasible models.

Decision rules. These rules, unlike representative feature selection,
do not use a single AVF to directly obtain recommendations, but take
into account knowledge about several solutions or statistics derived
from the analysis of the entire solution space. These approaches cre-
ate decision rules that shape recommendations based on various aspects
of the evaluations of alternatives, e.g., extreme utility values of alterna-
tives, highest and lowest positions in the obtained rankings, or extreme
assignments to classes in the entire feasible solution set. They can also
apply information from the ROR and SOR results to the generated
recommendations, e.g., by assigning alternatives to the most probable
classes or positions in the rankings. It is worth noting that there may
be no feasible model that provides recommendations identical to those
obtained by applying a given decision rule. For this reason, one can per-
ceive these approaches as a certain extension of the space of potential
solutions.

Scoring procedures. These approaches, like decision rules, also at-
tempt to take into account a more complex perspective on the DM’s
preferences than using a single solution that satisfies all the model con-
straints. They mainly use the results of stochastic and robustness anal-
ysis to determine the score for each alternative and then, based on the
obtained evaluations, generate recommendations. Scoring procedures
use the results of stochastic and robustness analysis to determine score
for each alternative and then provide recommendations based on them.
They are often based on indices estimating the frequency of prefer-
ence relations for pairs of alternatives or taking into account the ratio
of models for which a specific assignment to a decision class occurred.

Most robust solution. This concept is also based on the use of LP,
but in a different way than to find acceptable or optimal AVF parame-
ters. This approach consists of exploiting the results of Stochastic Or-
dinal Regression. It gives information about the percentage of models
in which a preference or indifference relation holds for a pair of alterna-
tives or how often an alternative is assigned to a specific class. Depend-
ing on the problem considered, the task of LP is to find a ranking or as-
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signment of alternatives to classes that maximizes the aggregate values
of statistics derived from stochastic analysis. Modeling is usually done
by introducing binary variables that determine the position of an al-
ternative in a ranking or assign it to a specific class. These variables
are included in constraints indicating the uniqueness of the assignment
to the class or ranking position and the compatibility of the relation
with DM’s preferences. On the other hand, in the objective function,
they are assigned weights adequate to the statistics derived from SOR.
This method allows obtaining a compromise ranking, choice, or sort-
ing solution that is maximally acceptable among all feasible models.
Hence, it can be considered as the most robust solution.

Model modifications

With the development of the MCDA field, a multitude of different approaches
have been proposed, based on the UTA concept. As mentioned above, var-
ious procedures extending the basic approach allow obtaining different uni-
vocal solutions. In addition to them, extensions of the model representing
preferences have also been proposed, which can be observed, among others,
in MCDA-MSS - software supporting the selection of an adequate approach
to the considered problem, proposed by , which provides a collection
of over 200 decision support methods, 27 of which contain “UTA” in their
name, indicating a connection with the approach described above.

One of them is UTAGMS.INT, proposed by , which addresses one
of the issues of the basic approach, i.e. the inability to represent interactions
between criteria occurring in DM preferences. The authors proposed to ex-
tend the AVF with additional functions representing positive and negative
interactions occurring for pairs of criteria. In this way, it allows modeling
more demanding scenarios concerning DM’s preferences. The method works
in two stages: in the first stage, it identifies pairs of interacting criteria, based
on the provided preference information by solving the Mixed-Integer Linear
Programming (MILP) problem. In the second phase, it provides an extended
additive value function, which can then be used to evaluate alternatives and
provide valuable recommendations and conclusions.

Other models based on UTA focus on a different issue, which is the in-
ability to reflect non-monotonic preferences for individual criteria, resulting
directly from the constraints imposed on the model. One of them is the
approach described in [23|, which, at the stage of solving the linear pro-
gramming problem, abandons the constraints related to the monotonicity
of marginal functions and the normalization of the achievable global utility.
Instead, it introduces bound constraints, which limit the range of MVF val-
ues, but allow them to take any shape, preserving their piecewise-linear na-
ture. This procedure allows for the representation of non-monotonic prefer-
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ences for individual criteria, and the resulting model can be easily normal-
ized a posteriori to be consistent with the normalization assumptions used
in the basic UTA method.

Another approach to modeling nonmonotonicity was proposed in [24].
In this case, the non-monotonic nature of preferences was modeled as a com-
position of two value functions with opposite preference directions — non-
increasing for cost type marginal function component and non-decreasing for
its opposite counterpart — gain type. As a result of the composition of these
functions, it was possible to provide non-monotonic MVF's, which then also
had to be normalized in accordance with the assumptions of UTA. Never-
theless, the remaining elements of the method are fully compatible with the
assumptions of the above-mentioned model.

Choquet Integral

A slightly different approach, which also provides recommendations based
on the estimation of the utility of alternatives, is the Choquet Integral model,
which was first published in and named after its inventor. This function
aggregates the evaluations of alternatives for individual criteria while allowing
for the representation of complex interactions using non-additive measures.
In order to obtain a model, it is necessary to determine the values of the
model parameters, called capacities, which represent the importance of the
evaluations of different subsets of the set of all considered criteria — starting
from single attributes to combinations of all available criteria.

The basic assumption of the method is that the strength of the criteria
coalition is indicated by the minimum value that the alternative obtained
for these criteria. The comprehensive value for an alternative is therefore
determined as the product of subsequent capacities (ups) assigned to the
subsets of criteria and the lengths of the intervals between the values obtained
by the alternative: Char(a) = 3770 [g9(j)(a) — gi—1)(a)] - um (G ), where (-)
is a permutation of criteria indices that sorts the values obtained by the
alternative on the criteria from smallest to largest, and G(;) contains the
subset of criteria: {g(;)(a),...,gum)(a)}. In this way, each successive term
of the sum is the result of multiplying the interval between the ratings on the
criteria with increasingly higher ratings and the capacity for increasingly
smaller subsets of criteria. The last term is equal to the difference between the
two highest evaluations of an alternative among all criteria and the capacity
for the subset containing the criterion with the highest rating.

Moreover, capacities satisfy monotonicity and normalization constraints:
upm () = 0, up(G) = 1, up(G1) < up(Ge), for each G € G2 € G. Fur-
thermore, the model requires that the evaluation of individual criteria be rep-
resented by values from the same scale. In particular, if they take values in
the range [0, 1], then the comprehensive value of alternatives also takes val-

11



ues in this range, which is identical to the range of obtainable comprehensive
values in methods from the UTA family. In addition, it is also possible to en-
rich the model with additional parameters constituting boundary values for
decision classes, allowing the adaptation of the approach to solving multi-
criteria sorting problems in a threshold-based manner. Finally, it is also
worth mentioning that preference information can be modeled analogously
to the UTA method, i.e., by comparing the utility of alternatives in the case
of indicating a preference for one alternative over another or assigning an al-
ternative to the desired class by limiting its comprehensive value to the range
between the thresholds of the relevant class.

It is worth noting that several applications use the Choquet integral in de-
cision support problems, such as the evaluation of research institutions de-
scribed in and customer segmentation proposed in [27]. Nevertheless,
finding optimal values of capacities is challenging, especially in the case
of problems with a large number of criteria, as the number of model pa-
rameters grows exponentially with the number of attributes on which the al-
ternatives are evaluated. In such cases, a simplified 2-additive version of the
model may be helpful, in which capacities are explicitly determined only for
the subsets containing one and two criteria.

2.3 Analyzed issues of algorithms and solutions

This section presents the issues that were analyzed in the publications that
contribute to this dissertation. Issues such as accuracy, robustness, and ex-
pressiveness will be discussed. In addition, the issue of Preference Learn-
ing (PL) will be presented.

Accuracy of a solution

One of the most important determinants of the quality of recommenda-
tions suggested by the decision support approach is their accuracy. How-
ever, it should be clearly noted that it should not be associated with and
interpreted in the same way as the concept of accuracy known from other
fields, such as Machine Learning (ML). In these domains, accuracy is usually
measured by aggregating the results of comparisons between expected out-
puts and predictions obtained using a given method. However, this requires
knowledge of the “ground truth” about the analyzed data, which is often un-
available or even impossible in the case of decision-making problems. In the
problems considered, the DM’s preferences are not explicitly expressed, but
rather inferred based on incomplete knowledge about them. The role of dis-
covering “ground truth” is on the side of decision support models, hence the
difficulty in assessing the quality of the recommendations they provide.
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Nevertheless, there are different approaches that attempt to determine
the accuracy of specific models and procedures. Naturally, this would be
possible if the expected recommendations were completely known a priori —
in which case it would be possible to compare the recommendations with
them. Another approach is to perform a retrospective analysis on already
solved decision problems, in which the DM was fully satisfied with the rec-
ommendations obtained. In such a case, it is possible to provide the same
input data to different models and procedures and then compare the recom-
mendations to those that were acceptable to the DM.

In the context of accuracy, experimental analysis offers greater possibil-
ities than in the case of analyzing this aspect for real decision problems.
In this case, it is possible to create an artificial DM that is able to provide
complete and consistent preferential information which can be easily trans-
formed into a form containing the expected recommendations. The prefer-
ences of the artificial DM can also be provided in different ways. On the
one hand, it is possible to use any decision model for this purpose, whose
recommendations are then transformed into the DM’s preferential informa-
tion. On the other hand, it is possible to generate completely random sample
decisions, which are then fed to the methods. Finally, it is possible to pro-
vide random, but also guided or biased information that may simultaneously
reflect the DM’s consistent belief system but also introduce some inaccura-
cies, thus simulating real-world use cases of these methods where preferential
information is often inconsistent.

Turning to the quality measures used, they are oriented to the type
of problem being considered. For sorting problems, traditional measures
are used to compute the fraction of alternatives for which the expected and
predicted decision classes are the same. For the choice problem, a commonly
used quality measure is the Hit Ratio , which returns 1 in case of a cor-
rect prediction of the expected best alternative and 0 otherwise. In the case
of experimental analysis and repeated experiments, the average value of this
measure can indicate the probability of the method making a correct choice.
In the case of ranking problems, measures based on similarity of rankings are
used, such as rank correlation coefficients proposed by and . In addi-
tion, there are measures oriented to the differences in the comparison of two
rankings: expected and predicted. These measures examine how much the
rankings differ in terms of the assignments of alternatives to ranking positions
and vice versa.

Robustness of recommendation

As stated in , the term robustness can be perceived in various ways and re-
late to different phenomena and features of decision support models. Bernard
Roy points out that “depending on the situation, this notion can be related
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to, or integrated into, the notions of flexibility, stability, sensitivity, and even
equity”. In general, robustness refers to all the features of the decision-
making process related to various uncertainties. These uncertainties may
concern input data, preferential information, a specific decision support pro-
cedure, and the usefulness of proposed recommendations in the future. The
proposed decision-making process can be described as robust if it copes with
these issues and allows for obtaining valuable conclusions.

In the context of this work, which is focused on methods and procedures
providing univocal recommendations, the main emphasis is placed on ob-
taining robust solutions, and the study of this aspect mainly refers to the
recommendations provided by the methods. This dissertation does not con-
sider the issue of robustness in the context of the provided input data or the
uncertainty associated with the DM’s preferences. Therefore, this work offers
a dual perspective on the robustness of various decision support approaches
and the results they obtain.

First, the research includes the robustness analysis by verifying the con-
sistency and representativeness of the recommendations provided. The anal-
yses conducted attempt to see to what extent the results obtained by the
individual procedures aimed at selecting univocal recommendations are con-
firmed by all other feasible solutions for the assumed preference representa-
tion model. This makes it possible to draw conclusions about the robustness
of these recommendations by determining the level of credibility they ob-
tained in comparison to other solutions.

On the other hand, the self-consistency of all feasible solutions is also
examined. Assuming no uncertainty regarding the input data and the DM’s
preferences, checking such properties allows us to determine the quality of the
model and increases confidence in the recommendations it provides. In both
cases, SOR and ROR are indispensable, providing the features and statistics
obtained by the models when they are applied to the considered problem.

The quality measures considered verify, on the one hand, to what ex-
tent the provided recommendations, such as positions and relations between
alternatives in a ranking or their assignments to classes in a sorting, are con-
firmed among all other possible solutions. On the other hand, statistics on the
frequency of occurrence of specific phenomena can be successfully used to es-
timate the robustness of individual models, e.g., by evaluating entropy-based
measures for all possible pairwise comparisons or assignments to classes.

Expressiveness of a preference model

The concept of expressiveness refers to the model’s ability to reproduce
and represent DM’s preferences, expressed in an indirect way. The analy-
sis of this issue allows us to determine the degree of universality of a given
model and its applicability to various problems. Models with high expres-
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siveness are able to represent richer DM’s preferences, which are also exposed
to a greater risk of containing inconsistencies.

For this reason, it can be said that this issue is closely related to the ro-
bustness described earlier. The fundamental difference between them is that
expressiveness concentrates on the ability to represent DM’s beliefs and ig-
nores the aspect of the quality of the recommendations provided, the study
of which is the domain of robustness. Moreover, it can be said that these
aspects of the models are opposed because the more flexible the model with
respect to the inaccuracy of the information provided, the more it is exposed
to problems related to the robustness of recommendations.

The assessment of the ability to express DM’s preferences and solve var-
ious decision problems is problematic from a theoretical point of view. In-
stead, an empirical approach is used, which verifies for what kind of problems
a specific model is able to reproduce DM’s beliefs. This proves that in this
context, conducting an experimental analysis of the properties of models
is crucial to investigate and understand this phenomenon.

Ability to solve preference learning problems

According to , PL is a subfield of machine learning focused on predict-
ing or inferring preferences. As stated in [33], PL problems are challenging
due to the need to deal with large amounts of incomplete and inconsistent
preference information and to provide interpretable outcomes. These mod-
els, similarly to machine learning, should generalize well to knowledge about
complex preferences. They should be resistant to biased data and enable the
delivery of valuable and robust recommendations, even in the case of strong
inconsistencies in both the input data and the model itself. Moreover, among
entities formulating decision-making problems, the requirement for full ex-
plainability of recommendations generated by intelligent decision support
systems has recently become popular .

In general, the majority of MCDA methods and procedures are designed
to provide high-quality and interpretable recommendations and solve prob-
lems involving a relatively small number of alternatives. On the other hand,
approaches used in ML are often oriented towards training and prediction
on large datasets, neglecting the aspect of understandability of the deliv-
ered judgments. For this reason, researchers are interested in the possibil-
ity of combining and synergizing the features of these approaches to obtain
procedures that have the capacity for both explainability and scalability of
recommendations.

The research literature in the field of MCDA contains several studies
and proposals of methods that are able to effectively address PL problems.
In the authors introduced a statistical framework for PL classification
with monotonicity constraints, proposed an optimization approach us-
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ing an additive value function model enriched to handle inter-criteria inter-
actions, and presented several approaches to optimize the parameters
of a sorting model with class profiles.

In the case of PL problems, the traditional approach to determining the
values of model parameters by solving the LP problem is difficult to imple-
ment due to the large number of constraints resulting from the rich preferen-
tial information. Moreover, inconsistencies and contradictions of preferences
with model assumptions make obtaining a model fully consistent with DM’s
beliefs in this way time-consuming and often impossible. For this reason, dif-
ferent approaches are used to solve this problem. Instead of obtaining fully
compatible solutions, the aim is to obtain the most satisfactory recommen-
dations possible, reflecting as closely as possible the DM’s information.

One way to provide models capable of solving PL problems is to optimize
the parameters of models used in popular methods for solving multi-criteria
sorting problems, which can be achieved using e.g. logistic regression [38]
or artificial neural networks . However, development and research consid-
ering these aspects are limited and there are many unexplored ways to opti-
mize models. In particular, it is possible to use nature-inspired metaheuristics
and other optimization approaches, which have been proven to give excellent
results in various applications.

To assess the consistency of the recommendation with the DM’s beliefs,
one should also use a quality measure related to the accuracy of the solution,
thus measuring the ability to infer preferences. It should be remembered that
for real-world decision problems, knowledge about the desired ranks of alter-
natives or class assignments is limited and often unavailable. Nevertheless,
experimental analysis, using artificially generated decision scenarios, allows
for verification of the quality of the delivered solutions based on both the
reference and validation subsets of alternatives. Ultimately, the higher the
ability of a method to correctly assess non-reference alternatives, the higher
the ability to generalize knowledge about the DM’s preferences and to solve
challenging PL problems.
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Chapter 3

Results of comparative
analyses

This chapter contains a description of the research work conducted, based on
the experimental analysis of the properties of models and decision support
procedures, along with the obtained results.

3.1 Predictive performance and robustness
concerns of value-based preference
disaggregation ranking and choice methods

As previously mentioned, the MCDA field’s development has brought many
models and procedures, allowing the solving of multi-criteria decision prob-
lems. In particular, many approaches have emerged that are oriented towards
solving the ranking and selection problem by providing univocal recommen-
dations. Various models and procedures, based on different assumptions
about the way and richness of preference representation, have positively
impacted the field and contributed to further development. Among them,
one can distinguish approaches based on complete preferential information,
which requires high cognitive effort and domain knowledge from the DM.
An alternative concept is to provide incomplete holistic judgments, which is
an intuitive and relatively simple way to express the DM’s beliefs.

Unfortunately, incomplete preferential information often leads to multi-
ple or infinitely many solutions and recommendations compatible with in-
direct statements which reflect DM’s preferences. The multiplicity of solu-
tions results in ambiguous recommendations, which, due to difficulty and
low interpretability, do not provide valuable answers to the questions posed
by the decision maker. This issue can be addressed in various ways. One of
them is to use the preference elicitation leading to enrichment of the provided
information, but this leads to additional costs and is not always possible. For
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this reason, another effective way to address this issue is to construct or de-
rive univocal recommendations that provide a precise answer to the DM’s
dilemma.

Despite the availability of many concepts and proposals presenting ap-
proaches to obtaining univocal recommendations, the scientific literature has
so far demonstrated the lack of a comprehensive approach allowing for their
comparison and indicating in what circumstances the use of a given proce-
dure may be beneficial. This became the motivation for the research de-
scribed in the publication P1, which proposes a comprehensive review of the
approaches described in the literature and their comparison by conducting
a series of computational experiments and then analyzing the results to de-
termine the properties of the examined decision-making procedures and the
recommendations obtained.

The research included thirty-five different approaches extending the UTA
method and capable of solving ranking and choice problems. The compared
decision algorithms represent four groups of methods. The first group aimed
at selecting a representative value function, which was achieved by mod-
ifying the goal function and introducing additional parameters to the LP
model. The group included methods with various interpretation of repre-
sentativeness, e.g. as the selection of most discriminant, central, average,
aggressive, benevolent, parsimonious or robust AVF. The second group used
decision rule-based approaches. These methods based their rules on charac-
teristics of individual alternatives, such as the best or worst comprehensive
score of an alternative among all feasible solutions or the frequency of obtain-
ing a specific position in the resulting ranking. Another group used scoring
functions to evaluate alternatives and then create a ranking based on them.
Scoring functions exploited the relationships between pairs of alternatives —
in particular, extreme differences in utilities between alternatives and differ-
ences in the frequency of outranking relationships. The last group includes
methods oriented towards constructing a robust ranking. They use informa-
tion obtained from the stochastic analysis to maximize the support of the
provided recommendations among all compatible solutions, using LP tech-
niques. The publication contains a detailed description and mathematical
notation of existing approaches in the literature, along with an explanation
of their motivation.

The experimental analysis scheme assumed examining the properties and
quality of solutions obtained by individual methods, depending on the char-
acteristics of the problems considered. The problems differed in the num-
ber of decision alternatives (M € {6,8,10,12,14}), the number of criteria
(E € {3,4,5}), the richness of preferential information (the number of pair-
wise comparisons — C' € {4,6,8,10}) and the ability to adapt the shape
of marginal functions (the number of characteristic points — P € {2,3,4}).
The experimental setup assumed solving problems created based on each
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combination of the above parameters. This allowed to provide results taking
into account diverse problems of different difficulty levels. For each com-
bination, 1000 problem instances were considered in order to increase the
reliability of the obtained results. Overall, the conducted experiments in-
cluded solving 180,000 decision problems using all considered procedures.

The performance of each of the considered methods was quantified us-
ing seven quality measures, four of which were oriented towards the quality
of representing the DM’s actual preferences and three towards the robust-
ness of the proposed recommendations. It was assumed that each of these
subgroups should be distinguished by one measure oriented towards solving
the choice problem, while the remaining ones concerned the ranking prob-
lem. The measures assessing the quality of preference mapping were based on
the correlation of rankings (Kendall’s ), the similarity in individual ranking
positions (Normalized Hit Ratio — NHR, Rank Agreement Measure — RAM)
or the differences in positions for individual alternatives (Rank Difference
Measure — RDM). On the other hand, the measures oriented toward assess-
ing the robustness of recommendations exploited the information provided
by the SOR, indicating the dominant phenomena in all feasible solutions.
In particular, on the indices measuring the frequency of alternatives’ as-
signments to individual ranking positions (First Rank Acceptability Index
— FRAI, Mean Rank Acceptability Index — MRAI) and checking how often
specific relations occur for pairs of alternatives (Mean Pariwise Relation Ac-
ceptability Index — MPRI).

Having completed the experiments, their results were analyzed in detail
to identify the best approaches, distinguishing between the type of prob-
lem (ranking or choice), the aspect analyzed (correct representation of DM’s
preferences or all feasible solutions), and the parameters of the considered
problem (number of alternatives, number of criteria, etc.). For each quality
measure, a separate analysis was performed, and the individual procedures
were compared. To determine the statistical significance of the observed re-
lationships, a statistical test was used, specifically the Wilcoxon signed-rank
test with a p-value equal to 0.05.

Both quality measures oriented towards the choice problem (NHR, FRAT)
confirmed that the best procedure in their context was one of the approaches
from the decision rule group - BESTRAI This procedure was based on a rule
that selected the best action from among the entire collection of alternatives
based on the lexicographic objective and the results of stochastic analysis.
The primary aim sorted alternatives according to the best possible position
in any of the feasible rankings, and the secondary aim broke ties by favoring
actions with a higher Rank Acceptability Index (RAI : A x N — R € [0,1])
value for a given position, which is the approximate frequency of a given al-
ternative at a specific position in the ranking, among all rankings compatible
with the DM’s preferences.
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In the case of ranking problems, the remaining quality measures consis-
tently indicated that the best results were provided by approaches from the
group providing recommendations by constructing robust rankings. These
methods can be classified into two subgroups according to the information
provided by the SOR, which they exploit to build recommendations. The
first subgroup of methods is based on the above-mentioned RAI values and
shares a common prefix in their name (RANK-), as these values focus on the
relations between alternatives and ranking positions. The second subgroup
(REL-) uses Pairwise Winning Index (PWI : Ax A — R € [0,1]) values,
which represent the share of all compatible AVFs for which a preference
relation holds between one alternative and another.

The common feature of all the approaches discussed is the method of ob-
taining recommendations by solving the MILP problem, which assigns al-
ternatives to specific ranking positions using binary variables. It is worth
noting that for each of the considered approaches and accompanying MILP
problems, the assumptions of the UTA method are neglected. Instead, they
rely exclusively on the results of stochastic analysis, incorporating, depend-
ing on the procedure, the values of RAI or PW T into the objective function
as weights of the binary variables representing the assignment of the alter-
native to the rank position. These methods also differ in formulating the
objective function, presenting different approaches to aggregating the values
of stochastic indices for individual alternatives to obtain a uniform eval-
uation of the entire ranking. In detail, three types of aggregation in the
objective function are distinguished and introduced as suffixes to the names
of the procedures — summation (-SUM), product (-PROD), and maximin
(-MM) problems. It is also worth noting that these methods also had their
counterparts marked with an additional suffix (-IND), which allowed for
the reflection of indifference relations by assigning more than one alternative
to a given ranking position. Nevertheless, these method variants achieved
comparable but statistically significantly worse results.

Going deeper into the details of the analysis, from the perspective of qual-
ity measures focused on pairwise relations (Kendall’s 7, MPRI) and mini-
mization of rank differences (RDM), the best average results were obtained
by methods from the REL- group. On the other hand, quality measures
emphasizing the correct positioning of alternatives in the ranking positions
(RAM, MRAI) confirmed the dominance of procedures from the RANK-
group.

Among the classical approaches based on selecting a representative AVF,
taking into account all quality measures, the best results were obtained by the
REPROC method, which also enriched the UTA model with information
provided by SOR. This was done by solving the maximin problem, focused
on maximizing the differences in comprehensive values for such pairs of alter-
natives for which the preference relation occurred more often in the sample
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set. Among the decision rules, apart from the aforementioned BESTRALI,
which dominated the quality measures related to the choice problem, the
EXPRANK method, which consists of evaluating and sorting the alter-
natives with respect to the expected position calculated on the basis of all
feasible rankings, kept the best results for all five measures related to the
ranking problem. For scoring methods, MINPOI performed best in choice
problems, and SUMPOI in ranking problems. Both methods assign a score
to an alternative based on the obtained differences in the values of Prefer-
ence Qutranking Index (POI : A x A — R € [0,1]) compared to all other
alternatives, with the former aggregating these values by minimization and
the latter by summation.

It is also worth noting that the conducted analyses, apart from the global
perspective aggregating quality measures among all considered problems, also
confirmed the priority of the above-mentioned methods, regardless of the
specific parameters of the problem, such as the problem’s size or the amount
of preferential information. Thus, the clear indication of the best procedures,
taking into account the considered aspects of the quality of the recommen-
dations provided, confirmed the hypothesis put forward in this thesis.

3.2 Predictive performance and robustness
concerns of value-based preference
disaggregation sorting methods

Similarly to the ranking and choice problems, decision support methods ori-
ented towards solving the multi-criteria sorting problems face similar chal-
lenges. It should be emphasized again that there are many MCDA proce-
dures for solving this type of problem, which can be categorized accord-
ing to the type of preferential information required. Low cognitive cost
and high interpretability make procedures adopting the preference disag-
gregation paradigm, based on the DM-provided example decisions, popular
in this respect. In the context of multi-criteria sorting, the DM’s decisions are
usually expressed as assignments of reference alternatives to decision classes.
One of the most popular sorting methods operating in this paradigm and
accepting exemplary class assignments is UTADIS, which provides recom-
mendations based on AVF and threshold values separating ranges of com-
prehensive values that unambiguously assign alternatives to specific classes.

The incompleteness of preference information implies a potentially infinite
number of solutions which, although fully consistent with DM’s expressed be-
liefs, may lead to different recommendations. As previously mentioned, con-
clusions derived from the robustness analysis, which provides a holistic view
of the relationships and features of the complete set of all feasible solutions,
are difficult for a DM to interpret without domain knowledge. To deal with
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this issue, some procedures propose preference elicitation, which makes the
decision support process more demanding and is not always possible; there-
fore, another popular tool to facilitate the understanding of the problem
solution is to provide univocal recommendations that are easy to interpret
and address the DM’s doubts about the choices made.

The popularity of this approach has led to the emergence of many com-
peting procedures offering different perspectives on the selection of a repre-
sentative sorting model. However, the scientific literature has not provided
a clear answer to the question about the usefulness of individual approaches
and how to select an adequate procedure for the problem under considera-
tion. This question is crucial for decision analysts whose task is to identify
the appropriate tools to solve a given problem. In this context, it is worth
noting the important contribution of , which compares four different pro-
cedures providing univocal recommendations. Nevertheless, this work does
not cover a large number of other relevant approaches in this context; hence,
the conclusions drawn from this publication are limited. To address this liter-
ature gap, a comparative experimental analysis was conducted and described
in the publication P2.

In addition to presenting the formal definition of the model and the is-
sues related to ROR and SOR, the research work included a detailed de-
scription and mathematical formulation behind fourteen different approaches
to obtaining univocal recommendations based on the UTADIS model. The
analysis performed included procedures providing recommendations based
on a selected representative value function. Depending on the method, most

discriminant , parsimonious , average , central , and
robust models were selected.

In addition, four robust approaches based on stochastic outcomes were
also described, including three novel approaches presented in the mentioned
publication. These approaches were based on stochastically derived Class
Acceptability Indices (CAI : A x C — R € [0,1]), which provide informa-
tion about the fraction of all feasible models in which an alternative was
assigned to a particular class, and Assignment-based Pairwise Qutranking
Indices (APOI : A x A — R € [0,1]), which specify the fraction of com-
patible models in which an outranking relation holds for a pair of alterna-
tives. These procedures were designed to find an AVF that best reflected
the relations satisfied in the largest possible number of all feasible solutions,
constituting their representative form providing univocal recommendations.
Moreover, for all fourteen considered approaches, an illustrative study was
also provided, presenting their performance on the practical multi-criteria
sorting problem.

The experimental setting was designed to capture three different aspects
of the solutions that were obtained. Omne of them was classification accu-
racy, defining how often the examined methods correctly recommended class
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assignments for non-reference alternatives that were not included in the pro-
vided preferential information. To measure accuracy, it was necessary to de-
fine complete reference information containing the assignment of all alterna-
tives to specific classes. For this purpose, for each of the considered problems,
a value function and threshold values were randomly selected, representing
the DM’s internal belief system. The second quality measure was oriented
towards assessing the robustness of the solution by checking the compatibility
of non-reference class assignments with other feasible solutions, using C Al
values derived from stochastic analysis. The third aspect considered was the
similarity between the reference model and the model obtained by a given
approach, which was assessed by comparing the corresponding marginal func-
tions, comprehensive values, and thresholds.

The considered problems differed in the number of classes (p € {2,3,4,5}),
the number of criteria (m € {3,5,7,9}), the number of characteristic points
in MVFs (v; € {2,4,6}) and the number of reference assignments per class
(R € {3,5,7,10}). The setting formulated in this way made it possible to ex-
amine the methods in the context of solving problems of varying complexity.
For each combination of parameters, 100 different problem instances were
solved to provide more reliable outcomes and conclusions, which in total
resulted in solving 19200 problem instances.

The highest accuracy in reproducing desired class assignments was ob-
tained by the central ACUTADIS approach, determining the analytical cen-
ter of the polytope that represents the space of all feasible solutions. The sta-
tistically significant advantage over the other methods was confirmed by the
Wilcoxon signed-rank test with p-value = 0.05, comparing it with the other
methods. Given the comparison, the next method was CENTROID, which
determines the average solution from all samples used to perform SOR. In the
next positions, we can observe novel approaches (CAI, APOI, COMB) and
another approach to finding the central solution - CHEBYSHEYV that seeks
the central solution, i.e., the center of the largest Euclidean ball contained
in the polytope. Moreover, the performed multivariate analysis confirmed
the dominance of ACUTADIS over the others while emphasizing greater
differences in the obtained mean values of the quality measure for problems
of greater complexity, i.e., with a larger number of criteria, alternatives, and
characteristics points and a lower richness of preference information.

The group of the above-mentioned six best solutions remained the same
for the Mean Class Acceptability Index (MCAI) analysis, averaging the C' Al
values corresponding to the assignments of the alternatives to the classes
provided by a particular method. In the case of this measure, all three novel
approaches performed best, led by CAI, which attempted to obtain a model
with the greatest possible support among all feasible solutions in terms of as-
signing alternatives to specific classes. Among the methods based on search-
ing for a representative value of a function, the best performing one was
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CENTROID approach, followed by UTACHEB and ACUTADIS. In this
case, the statistically significant advantage of CAI over the other methods
was also confirmed in the multivariate analysis taking into account subsets
of results with specific problem characteristics.

Taking into account the similarity of the reference model and the solution
used to create the recommendations, the best results were obtained by the
three approaches mentioned above oriented on the central and average rep-
resentative models. It is worth mentioning REPDIS, which was also one
of the leading ones in this context. This method emphasizes the advantage
of alternatives, which SOR revealed as those assigned more often to a higher
priority class than others. It should be noted that from the DM’s perspec-
tive, the quality and robustness of the recommendations provided are much
more important aspects. Hence, the similarity of the models provides limited
indications of the benefits of using a given procedure.

The presented results allow for the formulation of clear recommenda-
tions regarding the selection of an adequate procedure for building univocal
recommendations. In this context, the conducted research provides suffi-
cient evidence to confirm the research hypothesis. Moreover, the three novel
approaches introduced allow for the obtaining of representative and robust
solutions, which is an additional contribution to the literature on the subject.

3.3 Recommendation robustness and model
expressiveness in view of value-based sorting
methods

In addition to the procedures addressing the selection of univocal recom-
mendations, an important aspect is the structure of the model used and its
ability to represent the DM’s preferences. One of the most popular models
for solving multi-criteria sorting problems is the UTADIS, operating in the
preference disaggregation paradigm and providing recommendations using
a threshold-based procedure for assigning alternatives to preferentially or-
dered classes. It is widely used due to its intuitive form of representing DM’s
beliefs, expressed through exemplary assignments of alternatives to classes,
and providing explainable and easy-to-interpret recommendations.

When dealing with value-based sorting models operating in the pref-
erence disaggregation paradigm, one may encounter two important issues
to address. On the one hand, indirect preferences are not always consistent
with the assumed model, which may result in the lack of feasible solutions.
On the other hand, in the case of achieving full compatibility between the
method and preference information, many feasible models may provide am-
biguous recommendations. These issues can be linked to the concepts of the
expressiveness of models and the robustness of recommendations, respec-
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tively. In this context, robustness concerns the credibility of the model and
the recommendations it provides, whereas expressiveness reflects the model’s
ability to reproduce the DM’s preferences and, thus, its flexibility towards
inaccurate or inconsistent statements about the DM’s beliefs. Both of these
aspects can be seen as competing, since the more expressive models have
richer possibilities of representing preferences, which may result in reduced
robustness. Therefore, it is important to maintain a balance between these
two phenomena in order to provide correct and as robust as possible rec-
ommendations. The UTADIS model’s assumptions mean that it provides
recommendations for problems assuming monotonic preferences for individ-
ual criteria and treats all attribute values of the alternatives independently.
It is worth noting that there are problems for which such a representation
model is insufficient, which has led researchers to propose several modifica-
tions to the basic model described in the scientific literature.

The UTASMS_INT approach presented in [22] proposed a modification
of the basic UTA method commonly used to solve ranking problems, enrich-
ing the model based on AVF with additional functions representing positive
and negative values related to interactions occurring for pairs of criteria.
In this way, the authors changed the approach to the evaluation of alter-
natives, allowing for the reflection of the dependence of DM’s preferences
on multiple criteria simultaneously. The adaptation of LP problem formu-
lation was handled in two ways. In order to maintain the greatest possible
interpretability of the model, during the first phase, the smallest possible
subset of criterion pairs was identified, for which it was necessary to enrich
the representation of preferences with the mentioned synergy and redundancy
functions. In turn, the second phase allowed for obtaining recommendations
using robustness analysis. Moreover, by introducing additional parameters,
the model allowed determining the maximum value of the influence of the
introduced interactions on evaluating the utility of alternatives and limit-
ing the maximum number of interactions in which a single criterion can be
involved. In the publication P4 discussing issues related to models with di-
verse assumptions about the preference structure, it was proposed to adopt
the UTASMSINT approach to multi-criteria sorting problems by introduc-
ing threshold values that allow to determine the assignment of alternatives
to classes.

The second trend of modifications to UTADIS concerned the introduc-
tion of the possibility of reflecting the non-monotonic nature of preferences
with respect to individual criteria for evaluating alternatives. One of the
first approaches to solving this problem was UTA-NM introduced in [46],
which modified the UTA-Star variant of the model proposed in @ while
maintaining all the assumptions concerning the solution except for the afore-
mentioned monotonicity of preferences with respect to the criteria. However,
as the author noted, this approach was highly inefficient due to the long time
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of optimization of the LP model, even for trivial decision problems. An-
other approach was proposed by , which, in the phase of formulating LP
problem, avoided assumptions regarding both monotonicity and normaliza-
tion of marginal functions, replacing them with boundary constraints. This
enabled a consistent interpretation of the obtained comprehensive scores and
relations between alternatives with the results obtained by other methods
from the UTA family. Another model requiring post-normalization of the
obtained model was the approach proposed in [24]. This method modeled
the DM’s non-monotonic preferences by doubling the marginal functions for
each criterion, treating each of them bidirectionally - as a gain and a cost
simultaneously, by providing a non-decreasing and non-increasing MVF, re-
spectively. Such a formulation of the problem did not guarantee that the best
and the worst possible decision alternatives would obtain a comprehensive
value equal to 1 and 0, respectively; hence, for this procedure, it was also
necessary to normalize the model and the recommendations provided.

In total, the described study included a detailed presentation of the six
models considered. In addition to the basic UTADIS concept, the proper-
ties of two approaches adapting the UTAGMS_INT approach to the sorting
problem were investigated, one of which limited the number of possible in-
teractions to a maximum of one per criterion (UTADIS-INT-1) and the
other without any limit in this respect (UTADIS-INT-00). In addition,
three approaches accepting non-monotonic preferences were proposed, two
of which were adapted from the model presented in [23]. The first proposed
procedure (UTADIS-NM-1) enriched the proposed model with threshold
values in order to adapt the procedure to the sorting problem. This model,
in its original form, tried to capture the concept of searching for the most
discriminant value function on the one hand, and minimize slope changes
in piecewise linear MVF on the other, which was supposed to discourage the
model from radical, non-monotonic changes in preferences. The second pro-
posal (UTADIS-NM-2) ignored this aspect, focusing only on maximizing
the discriminative ability of the solution. The last approach (UTADIS-NM-
3) introduced a marginal modification to the original model described in ,
which proposed a solution to problems with multiple decision attributes.

The publication also describes tools explaining preference models that
were used for subsequent analysis of the results, such as ROR and SOR.
Robustness analysis focused on verifying the set of classes to which, based on
the used model and DM’s preferences, it was possible to assign an alternative,
which enabled determining the set of all Possible Class Assignments (PCA)
for a given alternative. On the other hand, stochastic analysis based on
statistical analysis of a sampled subset of all feasible solutions, provided
Class Acceptability Indices (C' AI), indicating how often a given alternative
is assigned to a particular class. The determined values formed the basis for
defining the model quality measures described below.
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The aim of the comparative experimental analysis was to examine the
characteristics of individual models regarding robustness and expressiveness
as well as the trade-off between these two important issues. The simula-
tion design included a solution for which the sample assignments of non-
dominated alternatives to classes provided by the DM were generated com-
pletely randomly to avoid biased results and lower the quality of the con-
clusions drawn from the study. The considered decision problems differed
in the number of classes (from 2 to 5), criteria (from 2 to 5), the number
of characteristic points in MVFs (from 2 to 5), and the number of reference
assignments provided as input (from 1 to 5 for each decision class). The non-
dominated set of alternatives constituting the input was determined in two
ways: either it was generated using an iterative algorithm drawing attribute
values from a uniform distribution while maintaining the lack of dominance
relations in the set or by drawing a point from the unit m-sphere and then
changing the point coordinates to the attribute values. The multivariate
analysis assumed the solution of 64,000 problems of varying structure and
difficulty by all six models considered. Then, the models were evaluated
using seven quality measures, two of which focused on the expressiveness
of the model and five on the robustness of the model and the recommenda-
tions provided.

The measure addressing the question of the model’s expressiveness was
Preference recoverability, which assigned 1 if it succeeded in recovering the
DM’s preferences and 0 otherwise. Averaging the values of this measure al-
lowed us to answer the question of how well the model can represent inconsis-
tent information about DM’s beliefs. The second measure focused on the size
of the slack variable (6*), which determined the minimal distance between
the comprehensive value of an alternative and the boundary value of the
class to which the model was forced to assign it by appropriate constraints.
The formulation of all six models providing univocal recommendations as-
sumed maximization of this value in different ways. Hence, their comparison
provided an additional premise proving the expressiveness of the model.

When considering the robustness of the models, the quality measures
focused on, on the one hand, assessing the level of agreement between all
feasible solutions and, on the other hand, on how well they were represented
by the returned univocal recommendations. The first two quality measures
(Average possible class assignments, Certain assignment ratio) captured the
qualitative results of the ROR analysis, checking the stability of the recom-
mendation, measured by the number of classes to which the model could
assign individual non-reference alternatives. In this context, the most robust
model with the lowest possible uncertainty level would provide the possible
and necessary assignment of an alternative to a single decision class. The
next quality measure (Entropy class acceptability index) used the quantita-
tive results from SOR, validating the entropy measure based on C'AI of the
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alternatives. The last two measures aimed at evaluating univocal recommen-
dations, on the one hand, checked the mean acceptability of the decisions
made (Mean class acceptability index), and on the other hand, the stabil-
ity of class assignments with respect to potential modifications of threshold
values (Certain class assignments).

The results of the analyses confirmed the highest expressiveness in the
INT-00 model, followed by NM approaches and INT-1, while the UTADIS
model, as the most constrained one, gave the least chance of reproducing
problems. On the other hand, considering the problems that UTADIS was
able to solve, it provided the most robust recommendations, the significance
of which was confirmed by all five quality measures. For the remaining prob-
lems solved by both INT approaches and all NM models, the most robust
solutions turned out to be those provided by INT-1, which was also the least
expressive of those mentioned. Further, when comparing INT-oco with all
non-monotonic approaches, it obtained better robustness results than the
others on average, but when making a more detailed analysis, it turned out
that this statement is not always true. As concluded from the results, the ad-
vantage of INT-oo was noticeable only for problems for which the provided
recommendations involved at most two active pairs of interacting criteria.
In the case of three or more active synergy functions, more robust results are
expected from the NM group of methods. Moreover, within the group of mod-
els addressing non-monotonicity of preferences, the NM-2 model turned out
to obtain the most robust results, although its advantage was not as evident
as in the case of the other comparisons discussed earlier. Similar to the pre-
viously discussed publications, the significance of all observed relationships
was confirmed by the Wilcoxon signed-rank test with a p-value of 0.05.

The analysis confirmed that more expressive models generally provide
less robust recommendations. In order to support the work of analysts,
this publication proposes a solution to the problem of selecting an adequate
model by using the proposed framework. First, the most robust approach
(UTADIS) should be used, and if it is impossible to obtain a compatible so-
lution, more sophisticated models should be considered, starting from INT-1
and INT-oo, with the proviso that they should only be used if the obtained
recommendations involve at most two pairs of interacting criteria. If they
are also unable to provide a feasible solution, then the NM-2 model should
be used, and if that fails too, preference elicitation in cooperation with the
DM is necessary. Nevertheless, it should be clearly stated that the proposed
framework should be used only when information about the nature of prefer-
ences for individual criteria is unavailable and there is no way to determine
it. In the case of an explicit DM’s indications about the non-monotonicity
of preferences or the need to express interactions, the decision analyst should
select an adequate decision model that meets the DM’s expectations.
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The contribution of this publication is threefold. First, it has adapted
models that modify the basic assumptions of the UTADIS approach and
proposed an experimental setting that examines the properties of model ex-
pressiveness and recommendation robustness along with seven quality mea-
sures. Second, the study that was conducted experimentally provided evi-
dence of the opposite nature of expressiveness and robustness. Third, it has
provided a framework that proclaims guidelines for decision analysts and
facilitates the selection of an adequate model for the considered problem,
which is also the ultimate goal of this dissertation and confirms the research
hypothesis.

3.4 Nature-inspired preference learning
Choquistic approaches

One of the most critical issues discussed in the contemporary scientific litera-
ture on decision support approaches is Preference Learning problems, which,
in their essence, combine issues known from MCDA and ML . On the
one hand, similarly to MCDA problems, they are based on the provided,
indirect, and incomplete preference information about decision alternatives
and retain a solution structure similar to MCDA problems, such as ranking
or sorting of alternatives. Decision-making procedures are also typically intu-
itive and easy to interpret, and they provide the tools and evidence to support
the recommendations and conclusions provided. Unfortunately, they often
lose the quality of the derived solutions with the increase in the complex-
ity of the problem and the data provided. On the other hand, ML-based
approaches are capable of providing high-quality predictions even for large
datasets. However, due to sophisticated, non-linear methods, the explain-
ability of the judgments made is limited. The optimal Preference Learning
solution would, therefore, be to use an approach that combines the best
features of both concepts by providing a solution that is correct, accurate,
robust, and easy to interpret, even for a large dataset with incomplete and
often inconsistent preferential information.

One approach that may prove helpful in this context is the Choquet
integral model, which has already been used to solve Preference Learning
problems in . This model calculates comprehensive scores of alternatives
based on a non-additive, fuzzy measure that provides importance weights
for all subsets of criteria in the considered problem, which allows for the
capture of advanced preferences related to inter-criteria interactions. The
obtained comprehensive values of alternatives, together with thresholds, al-
low for obtaining an unambiguous classification of individual alternatives,
which, combined with the complexity and large possibilities of representing
preferences by the model, allows for solving challenging multi-criteria sort-
ing problems. Nevertheless, as noted in the aforementioned publication, the
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problem of selecting appropriate model parameters (capacities) in the case of
a large data set and rich preferential information, is too complex for the stan-
dard model optimization approach based on the LP problem formulation. For
this purpose, a technique for solving such complex problems called Cutting-
plane method, was used, which in the optimization phase initially ignores and
then gradually introduces subsequent constraints resulting from the provided
preferential information, in this case, pairwise comparisons of alternatives.
The proposed approach allows for solutions that are not fully compatible
with all provided statements, which is a common practice when solving ML
and PL problems, as obtaining a feasible solution using a given model is of-
ten very difficult or impossible, and could also indicate its overfitting and
reduced predictive capabilities. However, there exist many other optimiza-
tion techniques that can effectively address the problem of determining the
parameters’ values of the Choquet integral model, the investigation of which
was the subject of the research work described in publication P3.

The publication, together with supplementary materials, contains a de-
tailed definition of the problem, including a description of symbols and con-
cepts, and, most importantly, a formal definition of the Choquet integral
model, which is the basis for the threshold-based sorting procedure, together
with an explanation and a practical demonstration of how the procedure
evaluates and assesses alternatives. The publication also proposes eight dif-
ferent approaches to searching for an accurate model, inspired by well-known
and commonly used optimization techniques. Two implement the classical
approach to optimizing model parameters, frequently used in MCDA, by for-
mulating and solving the Mathematical Programming problem. To reduce
the complexity of the problem and the time needed to obtain a solution,
the bagging-inspired approach was used so that instead of solving the
entire mathematical optimization problem by minimizing the number of er-
rors (MINR) or the maximum error (MMR) across all preference-reflecting
recommendations, these approaches solved many simple problems, which in-
volved only a subset of the preference statements as input. In addition, each
of the three methods has a given patience parameter, which indicates how
long the algorithm should try to stick to the current solution in the absence
of improvement over several iterations. If the number of iterations without
improvement in the quality of the solution exceeds the parameter value, then
the search starts with a newly drawn model.

The next group of methods included three procedures inspired by a local
search in the solution space. The operation of all methods was based on the
neighborhood relation, which was true for a pair of solutions for which the Eu-
clidean distance between vectors containing all model parameters was smaller
than the assumed radius. For these approaches to work, it was also necessary
to introduce the loss and regret functions. Regret symbolizes the difference
between the comprehensive value of the alternative and the range of values
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assigned to the desired class. If the alternative is correctly assigned by the
model, then regret is equal to 0, and otherwise, it reaches positive values.
In turn, the model’s loss function aggregates the regret values for all reference
alternatives, by averaging them, hence models with the lowest possible loss
function value are preferred. These concepts are important for understanding
the above-mentioned methods, which differ from each other in their approach
to accepting a newly selected, neighboring solution. The first one (GLS)
generates one new solution in each iteration and accepts it if its loss func-
tion is lower than the previously chosen one. The second approach (SLS)
generates multiple neighboring solutions simultaneously, selects the best can-
didate, and accepts it based on the same rule. The last approach (SAN),
implementing the Simulated Annealing approach , generates one neighbor
and then accepts it unconditionally in case of improvement of the solution
quality or in case of deterioration, with a certain probability, depending on
the difference of the loss function between the compared models.

The last group of methods are nature-inspired metaheuristics, which al-
low for optimization by considering and evolving multiple solutions simulta-
neously. The first one is the Genetic Algorithm (GEN) [50], based on the
concept of natural selection, which, by mutating, crossing, and selecting the
population of solutions, creates subsequent generations of models. By us-
ing evolutionary pressure, this approach can lead to gradual improvement
and find better solutions. The second approach is Fish School Search (FSS)
described in [51], inspired by the movement of schools of fish searching for
food, the specificity of which is used to search for better solutions. The last
concept is Particle Swarm Optimization (PSO), introduced in , inspired
by the dynamics of movements in large swarms of birds. It assumes that each
particle iteratively moves through the solution space according to a vector
representing its velocity, which is attracted by the best solution found so far
by the given particle and by the whole swarm.

Two post-optimization techniques have also been proposed. One of them
selects such threshold values that maximize classification accuracy for refer-
ence alternatives. The other uses an approach inspired by the backpropa-
gation algorithm, which is commonly used for training neural networks .
This idea consists of updating the model parameters in such a way as to re-
duce the regret for each of the considered reference alternatives. A pre-
liminary analysis was also conducted to confirm this technique’s usefulness
and determine the optimal proportion of time spent on its operation in re-
lation to the time spent on optimization using one of the eight algorithms.
Additionally, to protect the optimization procedures and backpropagation al-
gorithm from obtaining solutions that are inconsistent with the monotonicity
and normalization assumptions of Choquet integral capacities, they are pre-
vented by shortening the solution shift vector so that the resulting model is
compatible with the Choquet integral assumptions.
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The experimental analysis comparing the proposed approaches included
the evaluation of the algorithms on five benchmark binary classification prob-
lems, containing from 4 to 7 criteria and from over 200 to 1000 alterna-
tives, with three different ratios (20-80, 50-50, 80-20) of assigning alternatives
to reference and non-reference subsets, respectively. The analysis measured
two indicators of model quality: acc representing the classification accuracy,
and auc indicating the ratio of correctly reflected pairwise comparisons for
non-reference alternatives that were originally assigned to different classes.

It should be emphasized that each of the considered algorithms provided
the possibility of influencing a diverse number of hyperparameters. For this
reason, the study was divided into two phases. In the first phase, for each
combination including the algorithm, the considered benchmark problem,
and the proportion of the division of alternatives, the optimization of the al-
gorithm hyperparameters was carried out, using 10-fold Monte Carlo Cross-
Validation and setting the algorithm stop condition and post-optimization
techniques to ten seconds. This phase aimed to select the best set of hy-
perparameters, for which the number of combinations varied from a dozen
for mathematical programming approaches to over two hundred for the ge-
netic algorithm. The second phase, aimed at comparing the proposed al-
gorithms, performed 100-fold Monte Carlo Cross-Validation for algorithms
with selected hyperparameter values, with a 30-second execution timeout.

The analysis of the average values for both quality measures consistently
confirmed that regardless of the considered split ratio, the best results were
obtained by nature-inspired approaches, consistently outperforming the other
approaches according to the average position in the algorithm rankings cre-
ated for each benchmark dataset. In particular, for problems with the lowest
preferential information richness, containing 20% of alternatives with refer-
ence assignment, the best results were obtained by PSO, followed by GEN,
and FSS. For the 50-50 split, the best performing algorithm was GEN, fol-
lowed by PSO, while FSS obtained results comparable to those of the SLS
approach. The results for problems with 80% of the reference alternatives
highlighted the even greater dominance of GEN over the other approaches
and showed a comparable quality of solutions generated by PSO and FSS.

The conducted research provides a new perspective on the optimization
of the Choquet Integral model parameters in the context of its application
in preference learning problems, along with the description of eight dedicated
algorithms. Moreover, a comparative experimental analysis framework was
proposed, assuming two phases of experiments and examining two different
aspects of the recommendations provided. The results clearly indicated the
dominance of nature-inspired approaches over the other methods considered.
Finally, the conclusions from the conducted analysis provide guidelines for
selecting an adequate approach to the problem, depending on the availability
of information about preferences, which confirms the dissertation hypothesis.
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Chapter 4

Summary

The increasing interest in MCDA methods, which indirectly process DM’s
statements and capture preferences in a holistic manner, has led to the devel-
opment of numerous approaches consistent with the disaggregation paradigm.
The popularity of these approaches is a direct result of their great usefulness
and simplicity, high interpretability and universality, and the low cognitive
effort required by the DM. Undoubtedly, the recent developments in this
field have made a significant contribution to the scientific literature on de-
cision support. However, this also means that the role of decision analysts
has become more crucial than ever. They are now faced with the increas-
ingly important task of selecting the right tools to effectively solve real-world
problems and formulate valuable recommendations.

Analyzing issues related to the accuracy, robustness, expressiveness, in-
tuitiveness, and interpretability of models is an important research aspect
because it reveals the strengths and weaknesses of individual approaches.
Observations of these aspects in an experimental environment, considering
many problems with different characteristics, allow for the determination
of the credibility of specific methods and indicate the circumstances in which
a given decision procedure should be used. This may constitute a premise
for formulating guidelines that, based on the characteristics of the prob-
lem under consideration, can support the process of selecting an adequate
decision-making procedure. The research work aimed to demonstrate that
it is possible to formulate such guidelines based on the results of an ex-
perimental comparative analysis of models and methods exploiting holistic
DM’s preferences.

One of the challenges posed in this dissertation concerned providing highly
interpretable and, at the same time, qualitative recommendations for multi-
criteria choice, ranking, and sorting problems. Considering this issue, the
scope was set on the family of UTA methods capable of providing univo-
cal recommendations. Their diversity, as well as the lack of comprehensive
consideration and comparison of these approaches in the scientific literature,
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made it essential to address this issue. The conducted experimental analy-
ses revealed features indicating the accuracy and robustness of the provided
recommendations.

For the ranking and choice problems, thirty-five procedures originating
from four method streams were compared based on seven quality indicators.
The analysis was focused on the compliance of the provided recommendations
with the DM’s preferences, the compatibility of the provided univocal solu-
tion with the set of all feasible models, and the internal consistency of the
entire space of compatible models and the recommendations they provide.
The multivariate evaluation allowed for obtaining conclusions that clearly
identify procedures that give significantly better results than the others, tak-
ing into account the analyzed priority indicator of decisions made. More
specifically, the results confirmed the high usefulness of the procedures based
on the exploitation of the Stochastic Ordinal Regression results for both types
of problems considered. The conclusions provided allowed the formulation
of a set of guidelines that facilitate the process of selecting an appropriate
procedure for a specific multi-criteria problem.

A similar study was proposed for procedures oriented toward solving the
sorting problem. Fourteen procedures were compared, including three novel
approaches, focused on finding solutions based on the results of stochas-
tic analysis, providing observations on all feasible solutions. Five quality
measures were proposed, covering such aspects as the consistency of recom-
mendations with DM’s preferences, the credibility of recommended decisions
by assessing their representativeness, and the similarity of the derived so-
lution to the reference model representing DM’s beliefs. The results of the
experimental analysis proved that the novel procedures provided the most ro-
bust recommendations. On the other hand, the methods dedicated to central
and average solutions, with the approach of determining the analytical center
of the polygon constituting all feasible solutions, most accurately reproduced
the DM’s preferences. Regardless of the structure and size of the considered
sorting problem, the derived results of multivariate analysis clearly confirm
the advantage of the approaches mentioned above, constituting a basis for
formulating recommendations for decision analysts.

The next issue considered was the comparison of different models solv-
ing sorting problems in the disaggregation preference paradigm. The scope
of the study included examining the properties of one of the most popular
representatives of this paradigm — the UTADIS model along with five modi-
fications of this model, introducing the possibility of representing preferences
with respect to inter-criteria interactions and their non-monotonic nature.
The analysis performed included the assessment of the model expressiveness
and verification of the robustness of the results provided by the models. The
study reveals the contradictory nature of these two issues, showing that the
more expressive the model is, the less robust recommendations it offers.
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In order to provide qualitative statements representing DM’s beliefs, the
research results suggest applying models, starting from the most robust, ba-
sic UTADIS model. In case of a lack of ability to fully reflect DM’s prefer-
ences, the framework further indicates models expressing inter-criteria inter-
actions, assuming their limited use to a maximum of two active synergies for
pairs of criteria. Otherwise, a non-monotonic approach should be used, and
in case of further inability to represent DM’s preferences, preference elicita-
tion should be performed. Moreover, the developed guidelines should only
be applied when the DM’s attitude toward interacting and non-monotonic
preferences is unknown and difficult to determine.

The last issue considered in this dissertation is a comparative analysis
of approaches to solving Preference Learning problems in the context of pro-
viding solutions to the binary classification problem. The desired features
of the provided solutions are: high accuracy and interpretability, the abil-
ity to efficiently process large data sets, and robustness to inconsistencies
contained in preferential information. The Choquet integral model, capable
of representing interacting DM’s preferences, was chosen to represent prefer-
ences in this context. The experimental analysis included the study of dif-
ferent approaches to solve the problem of establishing the model parameters’
values. Their determination is an important aspect because standard meth-
ods based on Linear Programming formulation are time-consuming.

In the conducted research, eight different optimization approaches were
proposed and compared, along with two post-optimization techniques. Their
evaluation was based on experimental comparative analysis using five bench-
mark datasets and assessment on two quality measures, reflecting the accu-
racy of statements referring to unambiguous assignments to classes and the
relations for pairs of alternatives from different decision classes. The results
confirmed the superiority of procedures based on nature-inspired metaheuris-
tics over classical approaches based on mathematical programming and im-
plementing local search strategies in both aspects. In particular, the Particle
Swarm Optimization methods are recommended for problems with poor DM
preference representation, and the Genetic Algorithm should be used in the
remaining cases. Such clear guidelines provide grounds for selecting an ade-
quate method for model optimization under time-constrained conditions.

The common feature of all the research conducted was their experimental
nature, providing empirical evidence of differences in the broadly understood
quality of solutions offered by specific procedures. Additionally, to increase
the comprehensibility of the presented issues, each of the discussed studies
was enriched with a detailed description of the considered procedures, models,
and decision support methods, along with a practical visualization of their
application based on an illustrative study. The study identified the most
important aspects to consider when selecting an adequate decision aiding
procedure.
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Moreover, the high usability and effectiveness of the proposed compara-
tive experimental analyses have been proven. This approach provided many
observations and evidence regarding qualitative aspects of approaches ori-
ented towards providing representative, univocal preferences, the contrasting
nature of expressiveness of models, and the robustness of recommendations
dependent on the assumptions of a specific preference disaggregation model
and the accuracy of statements provided by various Choquet integral model
optimization procedures addressing preference learning problems.

In addition to the analyses performed, newly proposed procedures and
algorithms, as well as adaptations of existing approaches to the problems
being solved, have contributed significantly to the state-of-the-art knowledge
in the field of MCDA. Furthermore, several quality measures related to var-
ious features of methods and recommendations have been proposed, which
facilitate the consideration and empirical capture of different aspects desired
in decision support approaches.

Noticing and measuring the similarities and differences between the var-
ious procedures, models, and algorithms allowed for the formulation of com-
prehensive guidelines indicating the best approaches in the domains and types
of problems. It should be strongly emphasized that the presented conclusions
and the guidelines derived from them are applicable only under the condition
of maintaining specific features of the decision-making process, the consid-
ered problem, and, in some cases, the characteristics of the solutions ob-
tained. Overall, the conducted research fulfilled the research objectives. The
provided conclusions, results, and the above-mentioned formulated guidelines
confirm the research hypothesis.

Future research directions may include further development of evidence-
based guidelines for decision analysts to support their work. It would also
be desirable to create universal principles for evaluating newly proposed ap-
proaches, allowing them to be presented along with indications of their ad-
vantages and evidence of their high utility in a given context. These principles
could include a comprehensive set of diverge measures focused on particular
quality aspects of the models, along with a specific collection of benchmark
datasets, in order to achieve repeatability of the analysis and increase the
credibility of the presented results. Lastly, it would be beneficial to cre-
ate a universal decision support meta-procedure, capable of recommending
an appropriate method based on limited information about the considered
problem, without detailed indications regarding the characteristics of the al-
ternatives, criteria, and the DM’s preferences. Such a method would fit into
the above-mentioned paradigm of preference disaggregation, deriving recom-
mendations based on indirect statements and reducing the cognitive effort
needed to apply such an approach.
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ABSTRACT

We account for the preference disaggregation setting given multiple criteria ranking and choice prob-
lems. An assumed preference model is a set of additive value functions compatible with the Decision
Maker’s pairwise comparisons of reference alternatives. The incompleteness of such indirect preferences
implies the multiplicity of feasible functions and the ambiguity in indicating the most preferred alterna-
tive or ordering alternatives from the best to the worst. We review approaches that construct a univocal
recommendation under such scenarios. They represent four groups of methods: procedures selecting a
representative value function, decision rules, scoring methods, and mathematical models for constructing
a robust ranking. The use of all thirty-five approaches is illustrated on a simple decision problem. Then,
they are compared in an extensive computational study in terms of their abilities to reconstruct the DMs’
true preferences and robustness of delivered recommendations given the support they are given in the
set of all compatible models. The results are quantified in terms of seven performance measures. Their
analysis indicates that in the context of choice, it is beneficial to consider the rank acceptabilities for
the best ranks. For ranking problems, the most advantageous outcomes are attained by procedures that
emphasize the most frequent relations or positions in the feasible polyhedron. Apart from the average
results, we discuss how the performance of all approaches changes for different parameterizations of the

decision problem and preference model.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple criteria ranking and choice are among the most fre-
quent real-world decision problems [18]. The former aims at order-
ing the set of alternatives from the best to the worst, whereas the
latter is oriented towards selecting a small subset of the most pre-
ferred options. Both types of problems are solved using a relative
comparison approach that combines two sorts of information: a
dominance relation and Decision Maker’s (DM’s) preferences [30].
The preference information enriches the dominance, making the
alternatives more comparable given the conflicting nature of the
criteria.

The preferences about the problem and model parameters used
in the Multiple Criteria Decision Aiding (MCDA) methods may be
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complete or incomplete [11,13,48]. The complete preferences guar-
antee precision and direct impact of the DMs on how their value
systems are represented within the method. Their use is advised
when the DMs have a thorough understanding of the employed
MCDA approach and the respective model parameters and feel con-
fident about providing precise inputs. On the contrary, the incom-
plete preferences take the form of imprecise statements that are
translated into constraints on admissible parameter values of an
assumed preference model [48]. Alternatively, they may emerge as
incomplete holistic judgments concerning a small subset of refer-
ence alternatives [26]. In this way, the DMs are not forced to pro-
vide exact estimates of the parameter values. Moreover, the use
of incomplete preferences requires lesser cognitive effort on the
part of DMs, allowing them to exercise their decisions [11]. How-
ever, this is at the cost of trusting the mechanism of disaggregat-
ing holistic statements into the compatible parameter values, the
ambiguity of representing the DM’s preferences by the assumed
model, and, typically, accepting some level of equivocality in the
suggested recommendation.

In this paper, we focus on the most popular preference disag-
gregation method, called UTA [25]. It incorporates pairwise com-
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parisons of reference alternatives to infer a set of compatible ad-
ditive value functions. For this purpose, it employs dedicated lin-
ear programming techniques [51]. Usually, among many functions
consistent with the DM’s preferences, a single one is selected to
impose a complete order on the set of alternatives or identify the
most preferred option. The UTA method has been appreciated in
the MCDA community for using a highly interpretable preference
model that differentiates between inter- and intra-criteria attrac-
tiveness and exhibiting a direct link between the input preferences
and output recommendation. Such engaging characteristics moti-
vated its use in real-life decision problems concerning, e.g., mar-
keting and development of new products [42], environmental man-
agement [50], energy policy [44], project portfolio selection [59],
e-government benchmarking [49], or pharmaceutical strategy de-
termination [38].

The basic variant of UTA has been extended in numerous ways.
When it comes to the accepted preference information, the en-
riched approaches accept other types of holistic judgments, in-
cluding preference intensities [15], rank-related requirements [32],
and uncertain pairwise comparisons [10]. Moreover, some ac-
tive learning strategies have been proposed to maximize the in-
formation gain from the provided indirect preference informa-
tion and minimize the number of iterations needed to arrive at
a sufficiently decisive recommendation [8,9]. As far as the em-
ployed preference model is concerned, the revised variants of
UTA accept general [21], recursive exponential [2], polynomial, or
splined [53] marginal functions instead of piecewise linear ones.
Other model-oriented developments admit data-driven selection of
characteristic points [29], non-monotonicity of per-criterion prefer-
ences [17,45], and interactions between criteria [23,24]. The prefer-
ence disaggregation procedures were also extended to define vari-
ous errors quantifying the consistency between the supplied and
obtained comparisons or rankings [51]. Moreover, some consis-
tency restoration procedures were devised to suggest which DM’s
statements should be modified or withdrawn [21].

Further methodological advancements have been devoted to ro-
bustness analysis, providing dedicated explanations, and address-
ing various structures and types of decision problems. The robust
methods exploit the multiplicity of compatible value functions to
quantify the necessary, possible [21], extreme [30], and probabilis-
tic [34] consequences of their application on the set of alterna-
tives. Other robustness indices for quantifying the stability of both
an additive value model (e.g., the average range of the preferen-
tial parameters and average stability index) and recommended re-
sults have been proposed in [40]. Furthermore, techniques for gen-
erating dedicated explanations of such outcomes were introduced
in [28], whereas measures for quantifying the stability of results
were proposed in [8,54]. Also, [12] adopted UTA to handle crite-
ria organized in hierarchical structures, whereas [51] adjusted it to
problems under uncertainty. Finally, group decision methods were
elaborated for arriving at a consensus recommendation in a pref-
erence disaggregation setting [19,41]. A plethora of real-world ap-
plications and methodological extensions confirm the usefulness
and importance of UTA. However, the major problem related to the
practical use of incomplete preferences in UTA derives from multi-
ple or even infinitely many instances of the preference model com-
patible with the DM’s indirect statements. It is so because their
application on the set of alternatives potentially leads to ambigu-
ous recommendations [21]. In general, preference information can
be completed by eliciting additional preference judgments. How-
ever, in many scenarios, the possibility of continuing such an elici-
tation process is limited [9,48]. As a result, the robustness analysis
methods mentioned above often leave the problem far from being
solved, failing to provide a complete ranking or indicate the most
preferred alternative. Moreover, the analysis of multiple preference
model instances is too abstract for many users who, in turn, are
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used to analyzing a synthetic, precise solution to the problem at
hand [31].

This paper deals with methods that derive a univocal recom-
mendation in the preference disaggregation setting. We review ap-
proaches that support the DMs in concluding which alternative
is the most preferred or ordering alternatives from the most to
the least preferred, even if their preferences are incomplete. These
techniques can be divided into four groups. First, we can select a
single value function representing the feasible polyhedron [3,31].
The procedures serving this purpose are based on different prin-
ciples, identifying the most discriminant [3], average [25], cen-
tral [4], benevolent [5], parsimonious [22], or robust [31,34] model.
However, they all deliver a function that can be displayed to the
DM and derive a precise recommendation. The second group com-
prises decision rules that implement arbitrary criteria for devel-
oping a univocal outcome [33,48]. Examples include maximax and
minimax rules, maximization of expected value or likelihood, and
minimization of regret or unlikelihood. The third subset includes
scoring procedures that exploit the outcomes of robustness anal-
ysis for deriving a comprehensive measure of desirability. In this
case, the intermediate results concern pairwise value differences
between alternatives [39] or the shares of value functions confirm-
ing the advantage of some options over others [33]. Finally, the last
stream proposes mathematical programming models for construct-
ing a complete ranking based on the stochastic results [58]. They
maximize the support given to the elementary pairwise relations
or assignments of alternatives to specific ranks by all compatible
value functions. Overall, we describe 35 procedures that find use
in the context of multiple criteria ranking and/or choice.

The scientific literature offers limited guidance as to which
methods for deriving a univocal recommendation should be
used [48]. The arguments that can be taken into account when
conducting such a selection are diverse. The first builds on whether
the recommendation is associated with singling out a compatible
preference model instance [31,58]. Then, we can refer to the or-
dinal [58] or cardinal [3,39] character of the scale leading to the
ranking or choice. We may also consider if the robustness concern
is incorporated in the process by referring to the outcomes ob-
tained with all feasible models [31,39,58]. The computational cost
may be accounted for because the execution of some procedures
is time-consuming [31,34], and others are hardly applicable for
large sets of alternatives due to the low efficiency of contemporary
solvers [58]. Furthermore, some researchers point out that the suit-
ability of methods may differ depending on the problem context.
For example, when modest stakes are involved, one may consider
some central estimates; however, more precautionary procedures
should prevail with high stakes [48].

The above aspects are evident from the description of each
method. Their consideration may lead to a subjective selection of
the most suitable procedure for a given problem. In this paper,
we add a pair of more objective features that may be accounted
for when deciding on which approach for constructing a univo-
cal recommendation should be used. On the one hand, we refer to
the ability to reconstruct the entire ranking or indicate the most
preferred alternatives based on incomplete preference information.
On the other hand, we verify the robustness of provided recom-
mendation in terms of the support all compatible value functions
give it. These general ideas are materialized with seven measures,
making the comparison of all procedures meaningful. The results
are derived from an extensive computational study involving prob-
lems with different numbers of alternatives, criteria, characteristic
points of marginal value functions, and pairwise comparisons of
reference alternatives. In the experiment, we focus on additively
rational DMs whose pairwise comparisons are consistent with an
assumed model and relatively small MCDA problems for which
both the choice and ranking recommendation may be of interest
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to the DMs. We discuss the average results attained for all scenar-
ios and the performance trends observable with increasing prob-
lem’s complexity, preference model’s flexibility, and availability of
holistic judgments.

The paper’s remainder is organized in the following way.
Section 2 reminds UTA and its robust extensions. In Section 3,
we discuss various procedures for constructing a univocal rank-
ing and choice recommendations in a preference disaggrega-
tion setting. Their use is illustrated on a didactic example
in the e-Appendix (supplementary material available online).
Section 4 presents the results of an extensive experimental study.
The last section concludes the paper.

2. Reminder on UTA and robustness analysis

The following notation is used in the paper:

e A={ay,ay,...,q;,...,a,} - a finite set of n alternatives; each
evaluated in terms of m criteria;

o AR = {a*, a,...a;} - a finite set of r reference alternatives;
AR c A;

e G={g1.82...., Gjrves gm} - a finite set of m evaluation criteria,
gj:A—Rforall jeJ={1,...,m}; without loss of generality,
we assume that all of criteria in G are of gain type;

* X; =1{gj(a;), a; € A} - a finite set of performances of all alterna-
tives in A on criterion g

(A)

.
. x},xz.,.‘.,x.’ - the ordered values of X;, xg?*l

2,...,nj(A), where n;(A) = |X;| and nj(A) <n;
e rank:A— Ne{1,...,n} - a function indicating the alterna-
tive’s rank.

k —
<xj,k_

To compute a comprehensive score of alternative aecA,
UTA [25] considers an Additive Value Function (AVF) [35]:

m

U(a):Zuj(g](a)),VaeA (1)
j=1

where uj, j=1,..., m, are Marginal Value Function (MVF) being

piecewise linear monotonic and defined by a pre-defined number
y; of equally distributed characteristic points ﬂ}, ﬁ]?, ..., BYi, such
that:

s, (@ 1y S—1
Bi = x; + (xj! Xy
A comprehensive value is normalized in the [0, 1] range by as-

suming that uj(ﬂ}) =0forj=1,....,m and 3} ;_, muj(ﬁ;./j) =1

j=1..ms=1,...y; (2)

To enable control over the difference between marginal values as-
signed to the subsequent characteristic points, we consider the p
variable defined as follows:

uj(ﬁj)—uj(ﬁj‘l)zp,j:l,...,m,s=2,..‘,yj. (3)
In the basic setting, p is set to zero. The marginal value for per-
formance x’; e [,3;, ,8]?“] can be computed using a linear interpola-
tion:
xk— B3
uj(,BJS') + (uj(lgjs+1) - u](ﬁj))m j=1,..
j j
= 1.....n;(4). 4)
UTA infers the parameters of AVF from the DM’s pairwise compar-
isons of reference alternatives a*, b* € AR, indicating either indiffer-
ence (a* ~ b*) or preference (a* > b*) relation. Such holistic judg-
ments are reproduced via preference disaggregation as follows:

Yo peoan @ ~ b* = U(a*) —U(b*) =0, (5)

u; (x%) .om, k

Vo prear @ > b* = U(a*) —U (") > 6, (6)
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where § is an arbitrarily small positive value, implying U(a*) >
U(b*). In the original UTA method [25], the comprehensive value
of alternative a € A is expressed as U’(a) =U(a) + o (a), where
o (a) > 0 is a potential error relative to U’(a). Alternatively, in the
UTASTAR method [52] - an improved variant of UTA - it is ex-
pressed as U’(a) =U(a) —o*(a) + o~ (a), where 6" (a),c~(a) >0
are the over- and underestimation errors. The following linear pro-
gram minimizing the sum of deviations is solved to estimate a
value function:

Minimize F = )" o(a*) for UTA or F= ) o*(a")
areAR areAR

+o~(a*) for UTASTAR, (7)

subject to:

u(BH=0,j=1,...,m,

i) =01= }(EN)

Zj:l uj(ﬁj )—1,
uj(ﬂ]?)—uj(ﬂjs.‘l)zp,j:l,...,m,s:Z,...
U'(a*) —U’(b*) =0, for a*, b* € AR : a* ~ b*,
U'(a*) —U’(b*) = 8, for a*, b* € AR : a* ~ b*,
o (a*) > 0 for UTA or ot (a*), 0 ~(a*) > 0 for UTASTAR.

Vi } (EM) (Elf}';A)

(8)

Then, the stability analysis of the provided results is conducted.
If the optimum F* is equal to zero, then the polyhedron of com-
patible value functions is non-empty. The polyhedron of near-
optimal solutions is defined by EGI;A UF < F* + k(F*), where k(F*)
is a threshold being a small proportion of F*. As noted in [40], in
most applications of UTA, one usually seeks value functions that
are free of errors (F* =0), and no relaxation from the minimal
error is allowed (k(F*) = 0). In case the optimal solution is non-
unique, the original postulate of UTA is to partially explore the
polyhedron by first finding the functions that either maximize or
minimize uj(ﬂ;/f), for j=1,...,m, and then averaging thus ob-
tained extreme functions into the final solution. For details and
other possible exploitation algorithms, see [51].

To make the presentation of other UTA-like methods more
straightforward, we will use a simplified notation, where a set /R
of compatible AVF [21] is defined by the following set of linear
constraints:

EN EM
U(a*) —U(b*) =0, for a*, b* e AR : a* ~ b,
U(a*) —U(b*) = 6, for a*, b* € AR : a* > b*.

(E") (9)

When E4® is feasible, R consists of at least one compatible AVF.
Typically, when the compatible AVF is non-unique, there are in-
finitely many such functions. This paper assumes that the DM’s
preference information is consistent with an assumed additive
value model, and hence UR is non-empty. For the exemplary al-
gorithms dealing with the potential inconsistency, see [3,21,51].

In what follows, we discuss the approaches for robustness anal-
ysis, whose results will be exploited by some procedures con-
structing a univocal recommendation. Robust Ordinal Regression
(ROR) exploits &R to verify the stability of the recommendation. In
particular, the necessary relation =N holds if a weak preference re-
lation = is unanimously confirmed by all compatible AVF, i.e. [21]:

Vopen @ =N b = YU eu® : U(a) > U(b). (10)

Its truth is verified by solving the following Linear Programming
(LP) problem:

Minimize U(a) — U(b), s.t. EA. (11)

Let us denote its optimal solution by D(a, b), indicating the min-
imal value difference between a and b. In case D(a, b) > 0, then



M. Kadziniski, M. Wajcik and K. Ciomek

a =N b. Otherwise, there exists at least one compatible value func-
tions such that U(b) > U(a), and hence —(a =N b).

In Stochastic Ordinal Regression (SOR), &R is exploited with the
Monte Carlo simulations to derive a large set S € &R of uniformly
distributed AVF that are representative for all feasible preference
model instances [34]. The results obtained for these models are
summarized in the form of stochastic acceptabilities [37], which
are estimates of actual shares of compatible value functions con-
firming a specific outcome:

o Rank Acceptability Index (RAI(a, k)) is the share of all compati-

ble AVF that rank alternative a € A at k-th position, i.e.:
H{U € S : rank(a) = k}|
IS| '

VaeaVieq1,..ny RAI(a, k) = (12)

Pairwise Winning Index (PWI(a, b)) is the share of all compat-

ible AVF for which alternative a is strictly preferred to alterna-

tive b, i.e.:

{UeS:U(a) >Ub)}|
IS| '

Vobea PWI(a,b) = (13)

Pairwise Outranking Index (POI(a, b)) is the share of all com-

EA
Uj(ﬂ]k) - Uj(ﬂ]’-{_l) B uj(ﬂ}c_l) - Uj(ﬂjl-c_z) —é
st ﬂ}( N '3}{71 'B}H B /ng ) forj=1,...
ui (B —u(BF2) . ui(BH) —ui (B <o ’
,3]’?7] - .3]’4(72 B - ,3]’4{7] -

patible AVF for which alternative a is weakly preferred to alter-

native b, i.e.:

[{UeS:U(a) =UD)}|
N ’

Vabea POI(a,b) = (14)

Pairwise Indifference Index (PII(a, b)) is the share of all compat-
ible AVF for which alternative a is indifferent with alternative b,
ie.
[{U eS:U(a) =U(b)}|
N '
The above relation can be revised to an approximate indiffer-
ence, which represents a scenario when the comprehensive val-
ues of two alternatives differ by no more than a pre-defined
threshold [58].

Note that Vo4 > }_;RAI(a,k) =1 and VY, 4sPWI(a,b) =1 -
POI(b, a). In this paper, we sample from set &R using the Hit-And-
Run (HAR) algorithm [56] implemented in [7].

Vabea Pli(a,b) = (15)

3. Methods for constructing a univocal recommendation

This section reviews thirty-five methods for constructing a uni-
vocal ranking and choice recommendation in a preference disag-
gregation setting. The underlying assumption is that the space of
compatible AVF is non-empty.

3.1. Selection of a representative value function

In this section, we review different procedures for selecting a
representative value function in the context of UTA. For this pur-
pose, they optimize different objective functions subject to the
constraint set EA" that defines a set of compatible value functions.
The selected function can be displayed to the DMs, who can ana-
lyze the shapes of MVF, criteria weights, and alternatives’ compre-
hensive scores, leading to a univocal recommendation.
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Let us start with the max-min formulations that seek the most
discriminant AVF. This idea was first implemented in UTAMP1 [3],
which postulates maximizing the minimal difference between
comprehensive values of reference alternatives related by the pref-
erence relation, i.e.:

Maximize 8, s.t. E". (16)

This approach highlights the DM’s indirect preferences, repro-
ducing them boldly and robustly. Another procedure, called
UTAMP2 [3], optimizes § along with the difference between
marginal values assigned to all pairs of consecutive characteristic
points, i.e.:

Maximize 8 + p, s.t. E", (17)

where p > 0. The method favors strictly monotonic MVF with
steeper linear components and greater slopes.

The procedure underlying the selection of a parsimonious AVF
aims at MVF, which minimally deviate from the linearity [6,31].
The model corresponding to this idea is called a Minimal Slope
Change Value Function (UTAMSCVEF). It can be obtained by solving
the following Linear Programming (LP) model, which is applicable
when at least three characteristic points are considered:

Minimize ¢

(Efiscve) (18)

i

A different idea consists in finding a model that sheds a pos-
itive light on all alternatives considered jointly. Such a benevo-
lent procedure, called Maximal Sum of the Scores Value Function
(UTAMSVF) [6], maximizes a sum of comprehensive values for all
reference alternatives:

Maximize Y U(a*), st. EA*.

a*eAR

(19)

Another group of procedures derive a representative subset of AVF
and average them to approximate the centroid of the polyhedron
of feasible models. In UTAJLS, 2 - m AVF are generated by optimiz-
ing the maximal share of each MVF. We revise this idea by opti-
mizing the sum of marginal values associated with all characteris-
tic points on a given criterion, i.e.,, for j=1,..., m:

Vi
Maximize | Minimize )" u;(8)), s.t. E~.
k=1

(20)

In this way, we consider extreme models representing the max-
imal and minimal impacts that each criterion has on the com-
prehensive score. They can also be interpreted as the most con-
cave (when maximizing) or the most convex (when minimizing)
marginal functions.

An alternative procedure, called UTAAVE, averages a large sam-
ple S={U', U2, ...UB} of compatible AVF considered in SOR
hence obtaining a more accurate approximation of the central so-
lution:

IS|

s 1 i(Bs :
uj(ﬂj)zmguj(ﬂj),]:1,...,m,s=1,.., (21)

Lyl
A central model can be looked for directly, without considering a
sample of feasible AVF. UTACHEB is an adaptation of the procedure
proposed in [14] for sorting problems. It seeks for the center de-
fined as a mid-point of the largest Euclidean ball that fits in the
polyhedron of feasible models:
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Maximize r,
EN,
ui(B) —u;(B ) —r=0 for j=1,..., ms=2,..., i Ly
“'U(a*) —U(b*) =0, for a*,b* € AR : a* ~ b*, c«
U(a*) —U(b*) —cir = 0, for a*, b* € AR : a* > b*,
(22)

where ¢; is the Euclidean norm of the decision variables’ (except
r) coefficients in the constraint in which they occur [14]. The cen-
trality of such a model derives from being equally distant from all
essential monotonicity and preference disaggregation constraints.
In the same spirit, ACUTA selects an analytic center of the feasi-
ble polyhedron [4]. It is identified by maximizing the logarithmic
barrier function of the slacks (dgs +, d;s) involved in the essential

constraints of EA", using Newton’s method:

m Vi
Maximize > logdg e+ ) > logdys.
Vg peear 0% >D* j=1s=2

EN,
Sht.u,-(ﬂj—) —uj(ﬁjfl) =djs, for j=1,....ms=2,....y; )
U(a*) —U(b*) =0, for a*, b* e AR : a* ~ b*,
U(a*) —U(b*) = dg. p., for a*,b* € AR : a* » b*.
(23)

The solution of the above model is always unique. The last stream
of procedures aims at selecting AVF that is representative in the
sense of robustness preoccupation. UTAROB emphasizes the nec-
essary consequences of applying all compatible AVF on the set of
alternatives [31]. In the first stage, it maximizes the minimal value
difference for pairs of alternatives related by >N, which is evidence
of a robust advantage of some alternatives over others:

Maximize w,
EA, A
U@ -UB) 20 Vapes @V b) A=(b N a).} (Bros,

(24)

Then, it minimizes a value difference for pairs that are incompara-
ble in terms of =N, suggesting that their order in the ranking de-
pends on the compatible AVF. This is conducted while respecting
the optimization of the previous target (i.e., setting @ = w*):

Minimize A,
Efog,
w=w", AR
SEU) ~U) < 0 Yegon ~( 2N d) A =@ =N o), [ Erom)
U(d) —U(C) = A Vegon ~(c 2N d) A —(d =N O).
(25)

In turn, REPROC exploits the results of SOR. It emphasizes the
advantage of alternatives that are more preferred over others for
a more significant share of compatible AVF [34]. This is attained
by maximizing the minimal value difference for pairs a, b € A such
that PWI(a, b) > PWI(b, a), i.e.:

Maximize «,

E~,
st. U(a)—-U() =«(a,b), Vgpea PWI(a,b) > PWI(b,a), (E,’Z‘\';,,‘)
k(a,b) >k, Vabea PWI(a, b) > PWI(D, a).

(26)
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In the second stage, we optimize the sum of elementary value dif-
ferences « (a, b), while respecting the results of the first stage by
setting x = k*, i.e.:

Maximize k(a,b), s.t. Eﬁ;,,’ Uk =k*.  (27)
Y, peaPWI(a,b)>PWI(b,a)

3.2. Decision rules

Decision rules have been elaborated to impose a complete rank-
ing or arbitrarily indicate the most preferred alternative in case
there is no agreement concerning the recommended decision in
set UR. Their name should not be confused with “if-then” rules
that are used in MCDA as a preference model [20]. The recom-
mendation is suggested without singling out a compatible prefer-
ence model instance, referring, in turn, to the extreme or expected
scores, value differences, or ranks. In what follows, we formulate
all rules in a way that favors alternatives with greater scores.

The first group of decision rules derives the recommendation
from the ranges of comprehensive values that alternatives attain in
the feasible polyhedron. In MAXIMAX, the alternatives are ranked
according to their highest possible values, i.e.:

Maximize U(a), s.t. E**. (28)

Hence, each alternative is let to select a value function that is the
most advantageous for it. As a result, there is no common basis for
the comparison because these functions may differ from one alter-
native to another. Analogously, in MAXIMIN, the ranking is deter-
mined by the lowest possible values, i.e.:

Minimize U(a), s.t. EA°. (29)

Thus, this rule favors alternatives that are the best in the least ad-
vantageous scenario compatible with the DM’s preferences. Please
note that UTAAVE can be seen as a decision rule, which considers
expected values rather than extreme ones while assuming a uni-
form distribution of compatible AVF.

Other decision rules consider how favorable is the performance
of alternatives relative to others. The most prevailing procedure
among them is called MM-REGRET. It first considers the maximal
loss of value for each pair of alternatives, indicating how much the
value of other alternatives can exceed that of the potentially se-
lected option, i.e.:

Maximize U(b) —U(a), s.t. E*". (30)

Let us call the optimal solution of the above model by
regret(a,b) = —D(a, b). Intuitively, the greater regret(a,b), the
more significant the loss when choosing a rather than b. The com-
prehensive score for alternative a € A is derived from its worst-
case comparison against some other alternative b € A\ {a}. Over-
all, to favor alternatives with the greatest maximal regrets, we or-
der them from the best to the worst by considering the following
scores:

Scmm-grecrer (@) = — bg}e{)g} regret(a, b). (31)

The remaining three rules build on the outcomes of SOR
concerning the stability of ranks attained by alternatives in uX.
EXPRANK derives the comprehensive score of each alternative
from its expected rank in the feasible polyhedron, ie., }}_; —k-
RAI(a, k) [33]. While this rule represents an average performance
given incomplete preference information, the remaining two pro-
cedures stand for the optimistic and pessimistic scenarios.

The BESTRAI rule is a generalization of the maximal likelihood
principle to ranking problems. Specifically, the alternatives are or-
dered by their best possible ranks and, in case of a draw, by the
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highest probability of attaining these most favorable ranks. Such
scores can be synthetically represented as:

Scgestrar(a) = —BestRank(a) + RAI(a, BestRank(a)),

x where BestRank(a) = kTinn{RAI(a, k) >0} (32)
Note that this rule ranks at the top potentially optimal alterna-
tives and, in addition, favors those that attain the first ranks for
the greatest share of compatible AVF.

Analogously, WORSTRAI generalizes the minimal unlikelihood
principle by ordering alternatives according to their worst ranks,
and breaking the ties, by favoring options with lower probabili-
ties of attaining these unfavorable ranks. Such scores can be repre-
sented as:

Scworstrar (@) = —WorstRank(a) — RAI(a, WorstRank(a)),

This rule ranks at the bottom the alternatives, which are ranked
last for the most significant share of compatible AVF.

3.3. Scoring procedures

The role of scoring procedures is to exploit the outcomes of
comparisons for all pairs of alternatives to derive a comprehensive
measure of desirability for each alternative. Hence, similarly to the
decision rules, a cardinal scale is driving the recommendation, but
no single model is associated with it.

The first group of approaches prioritizes the alternatives by
exploiting the minimal differences between their comprehensive
scores. Note that such a score for pair a, b € A is denoted by D(a, b)
(see Section 2). Such differences are called intensities of dom-
inance, and hence the respective approaches are considered as
dominance measuring methods. In what follows, we discuss a pair
of procedures, called AP1 and AP2, proposed in [1]. AP1 orders the
alternatives according to a comprehensive dominance measure de-
fined as a sum of dominance intensities of one alternative over the
remaining ones, i.e.:

Scapi(a) = Z D(a, b). (34)

beA\{a}

In AP2, the dominating and dominated measures are considered
jointly to combine the arguments in favor of each alternative’s
strength and weakness, i.e.:

Scapa(@) = Y D(a,b) — D(b, a). (35)
beA\{a}

Thus, the more an alternative dominates others, and the less the
remaining ones dominate it, the higher its position in the compre-
hensive ranking.

Similar idea has been implemented in dominance measuring
extensions, called DME1 and DME2 [39]. The motivation for their
development derived from the observation that AP1 involves a
trade-off between positive and negative values of dominating mea-
sures, whereas AP2 duplicates the dominated measures. To address
these problems, in DME1, one considers the positive and negative
dominating («/ and « ) and dominated (8; and ;) measures:

af = > D(a,b) and o] = > D(a,b), (36)

beA\{a}rD(a,b)>0 beA\{a}AD(a,b)<0

Bi= X

beA\{a}AD(b,a)>0

D(b,a) and B; = > D(b,a). (37)

beA\{a}AD(b,a)<0

Note that a is necessarily strictly preferred to b if D(a, b) > 0, while
being ranked lower for all U € 4® when D(b, a) > 0. A total score
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of dominance intensity is computed as the difference between pro-
portions representing both the strength of a given alternative dom-
inating the remaining ones and its weakness derived from being
dominated by others, i.e.:

+ +
+aa _ Jr:311 . (38)
O — Uy .Ba - :Ba
In this way, the stronger the intensity of preference of a over oth-
ers and the weaker the preference intensity of others over a, the
more preferred is a. The DME2 procedure is similar in the sense
of exploiting dominance measures, but they are transformed into
preference intensities (PI; also called - dominance probabilities).
Specifically, PI(a, b) =1, if D(a, b) > 0 (indicating the evident ad-
vantage of a over b); PI(a, b) =0, if D(b,a) > 0 (indicating a clear
weakness of a compared to b), and Pl(a,b) = %, oth-
erwise (i.e., when the results of a comparison between a and b
are ambiguous). The alternatives are ordered in the non-increasing
order according to the following dominance probability measure
that captures the comprehensive strength of alternative’s prefer-
ence over all remaining options:

Scome2(a) = Y Pl(a,b). (39)
beA\{a}

Scpme (@) =

The other group of scoring procedures exploits the results of
pairwise comparisons capturing the share of compatible value
functions confirming the preference of some alternatives over the
others [33]. Specifically, we refer to the difference of POIs for all
pairs of alternatives while aggregating them using different opera-
tors:

o MAXPOI derives the maximal POI difference, capturing the
most favorable pairwise comparison for alternative a € A:

Scmaxpor(a) = bg}‘%}[POI(G, b) — POI(b, )] (40)

o MINPOI computes the minimal POI difference, reflecting the
least advantageous pairwise comparison for alternative a € A:

Scuminpor (@) = bg\iﬂ,][POI(a’ b) — POI(b, a)]: (41)

o SUMPOI aggregates POIs supporting each alternative’s strength
and weakness, hence indicating its average performance against
all remaining alternatives:

Scsumpor (@) = Z [POI(a, b) — POI(b, a)]. (42)
beA\{a}

Intuitively, in the above three procedures, the alternatives de-
rive their scores from the comparison with the best, the worst, or
all alternatives. Moreover, the potential ties are broken by apply-
ing the same procedure limited in scope to a subset of alternatives
attaining the same score.

3.4. Construction of a robust ranking

The methods for constructing a robust ranking exploit the
probabilistic information provided by the stochastic acceptabilities.
They do not infer a representative value function nor associate a
score with any alternative. In turn, they aim at figuring the order
supported by a large share of compatible AVF.

The first group of models constructs a ranking by solving an
assignment problem of alternatives to ranks [58]. For this purpose,
they consider binary variables x;, € {0, 1} such that x;, = 1 means
that alternative g; is assigned to k-th position. The most straight-
forward method, denoted by RANK-SUM-IND, maximizes the sum
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of RAIs supporting the constructed ranking, while respecting that
each alternative is assigned to one rank, i.e.:

n n
Maximize Z Z RAI(a;, k) - X, (43)
i=1 k=1
n .
s.t. ink: 1, Vi= 1,...,n. }(ERAI) (44)
k=1

A revised model, called RANK-SUM, additionally assumes that ex-
actly one alternative must be assigned to each rank, hence pre-
venting the indifference relation. It leaves the same objective func-
tion as the former model, thus maximizing the average probability,
but considers an enriched set of constraints:

ERAI U Z?:lxik:17 Vk:l,...,n. }(EIIQIX? (45)

Another model, called RANK-PROD, considers the joint probability
of the entire ranking by maximizing the product of RAIs associated
with the assignments of alternatives to their respective ranks. The
linear form of the considered model is as follows:
n n
Maximize Z Zlog(RAI(a,-, k)) - Xy, s.t. ENP. (46)
i=1 k=1

The last model exploiting RAIs, called RANK-MM, maximizes the
minimal support of any assignment:

Maximize fi, s.t. Em? U frdh < RAI(a;, k) + (1 — xy), Vi
=1,....,n, Vk=1,....n (47)

It is also possible to consider the variants of the last two models
that admit an indifference relation.

The second group of models - also originally proposed in [58] -
constructs a ranking by determining pairwise preference relations.
The approaches that do not admit indifference consider binary
variables y;; € {0, 1} such that y;; = 1 means that alternative q; is
strictly preferred to alternative a;. The considered set of constraints
ensure that the relation imposed on the set of alternatives is com-
plete, asymmetric, irreflexive, and transitive:

Vii+yi=1, Vi#],
yi=0, Vi=1,..,n,
Yij =Y +Ykj— 1.5,

Then, three different objectives can be optimized to maximize the

support given by PWIs to the ranking constructed from the rela-
tions assigned to pairs of alternatives:

(Epwi) (48)
Vk £, j.

o for REL-SUM - the sum of preference probabilities, i.e.,
n n
Maximize }° > PWI(q;, a;) - yij, S.t. Epwrs

i=1j=1
o for REL-PROD - the joint probability, ie.,
n n
Maximize Y > log(PWI(a;, a;)) - yij, S-t- Epwr;
i=1 j=1

o for REL-MM - the minimal probability of an established prefer-
ence, i.e.:

Maximize fyy!, s.t. Epwi U fijy! < PWI(a;, a;) + (1 = y;).
Vi=1,...,n, Vj=1,...,n

For the counterparts of the above models that tolerate indiffer-
ence, one needs to consider binary variables y,.V)f € {0, 1} such that
y}’}( =1 implies weak preference of a; over aj, and z;; such that
z;j =1 when q; and a; are indifferent. The considered set of con-
straints ensure that the weak preference is complete and transitive.
In contrast, indifference is instantiated when the weak preference
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holds for an ordered pair of alternatives and its inverse counter-
part:

y;.’]Y-f—y‘;l{zl, Vi=1,..,n—-1, j=i+1,..,n,
Y=y +ye—15 Vk#i ], (EReL-inD)
zij:y}’}f+y;‘;—1, Vi=1,..,.n-1, j=i+1,..n

(49)

The three objectives maximizing the support given by PWIs and
PIIs to the constructed ranking are as follows:

o for REL-SUM-IND - an additive objective related to the sum of
probabilities of established relations:

n-1 n
Maximize Y > PWI(a;, a;) - (¥} — zij)
i=1 j=i+1
+PWI((1j, (11') . (y}'\; — Z,’j) + PII(al-, aj) - Zij, S.t. EReL—inD-
(50)

o for REL-PROD-IND - a multiplicative objective related to the
product of probabilities of established relations that can be
translated into the following linear form:

n-1 n
Maximize Y > log(PWI(a;, a;)) - (v} — zij)
i=1 j=i+1
+log(PWI(a;, ay)) - (¥} — zij)
+log(PII(a,~, Gj)) . Zij’ s.t. EREL—IND~ (51)
Technically, in the above objective function, the stochastic ac-
ceptabilities are increased by an arbitrarily small positive value
€ to avoid an undefined value of log(0).

o for REL-MM-IND - the max-min objective optimizing the least

probability of an established relation:

Maximize fREL (52)

ERer—inp,
st fing < PWIai, aj) - 07 — zij) + PWI(aj, @) - (0% — zi5)
+PII(a,-,a]-) ~Z,'j, i= l, e, — 1, ] = l, ey 1

The last group adopts the ranking techniques originally proposed
as part of other MCDA methods to a new context. In this regard,
we propose to use distillation procedures known from ELECTRE
Il [46,47] for exploiting a valued preference relation formed by
POIs rather than an outranking relation constructed via concor-
dance and discordance tests. We consider the downward and up-
ward distillations, denoted by DOWN-DIST and UP-DIST. Their de-
tailed formulations can be found in [47]. Let us note that DOWN-
DIST constructs a ranking in a top-down fashion, retaining alter-
natives with the greatest quality first and iteratively applying the
same procedure until all alternatives are added to the preorder.
The quality is interpreted as the difference between strength and
weakness. Roughly, for alternative a € A, they are interpreted as
the numbers of other alternatives b € A\ {a} such that POI(a, b) is
significantly large and substantially greater than POI(b, a) or vice
versa. In turn, UP-DIST is conducted analogously with the proviso
that the preorder is constructed bottom-up, and the alternatives
with the least quality are retained first.

Using all 35 methods for constructing a univocal recommenda-
tion is illustrated in a simple didactic example in the e-Appendix.
This description emphasizes the specificity of all methods by refer-
ring to the results they exploit and the objectives they optimize.
The reference to a particular, small problem and precise obtained
results gives a better chance of comprehending the discussed pro-
cedures.
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4. Computational experiments

This section is devoted to the computational experiments per-
formed to verify the quality of procedures for constructing a uni-
vocal recommendation. First, we define the measures employed to
compare the 35 considered approaches. Second, we specify an ex-
perimental setting. Finally, we discuss the average results across
all considered problem instances and some trends when the value
of a single problem- or model-related parameter is changed. The
extreme (minimal and maximal) results for all measures are dis-
cussed in the e-Appendix. Note that whenever we claim that some
procedures are the best or the worst, perform favorably or poorly,
such conclusions are limited by the considered experimental set-
ting, in particular, the decision problem characteristics and the way
of simulating the DM’s preferences.

4.1. Comparative measures

The performance of procedures for selecting a single sorting
model will be quantified in terms of seven measures. On the one
hand, they capture the similarity between the DM’s simulated ref-
erence model and the recommendation derived with various pro-
cedures in the context of choice or ranking based on incomplete
and indirect preference information. On the other hand, they re-
fer to the robustness of provided recommendations in view of the
support they are given in the set of all compatible AVF.

First, we refer to the measures quantifying the similarity be-
tween the true DM’s ranking and the recommendation obtained
with procedure P. They are recalled after [33], where detailed
definitions and explanations can be found. We denote the high-
est (r*(M, a)) and the lowest (r.(M, a)) ranks attained by alterna-
tive a € A according to the DM (M = DM) or procedure P (M = P).
If there are no shared ranks, then each a €A is assigned pre-
cisely to a single rank, and hence r*(M, a) = r.(M, a). Otherwise,
r*(M,a) <r.(M,a) for at least two alternatives a € A. For exam-
ple, the ranking: a ~ b~ c > d translates into the following po-
sitions: (M, a) =r.(M,a) =1, r*(M,b) =r*(M,c) =2, r.(M,b) =
r.(M,c) =3, and r*(M,d) =r.(M,d) =4. Such an interpretation
corresponds to acting with prudence, i.e., avoiding arbitrary tie-
breaking by assigning, e.g., the best or the worst admissible rank to
all indifferent alternatives contained in the same equivalence class.
A subset of alternatives that according to M € {DM, P} are ranked
in the r-the position is denoted by:

M(r)={aeA:r*"(M,a) <r<r,(M,a)}, forr=1,....,n. (53)

To compare alternatives a, b € A according to M, we use function
p(M, a,b). It is equal to 1 if a is preferred to b, 0.5 when a and b
are indifferent, and 0 when a is worse than b.

The only measure that considers the similarity of recommenda-
tions in the context of the choice problem is Normalized Hit Ratio
(NHR). It compares the subsets of alternatives that are ranked at
the top according to DM and procedure P, similarly to the Jaccard’s
coefficient:
|DM(T= DNP(r= 1)|
IDM(r=1)UP(r=1)|

If the same subset of alternatives is ranked first by the DM and P,
then NHR is equal to one. When there is no intersection between
the two subsets, then NHR is zero. The remaining three similarity
measures consider the entire rankings.

The Kendall’s T quantifies the similarity given the pairwise re-
lations observed for all pairs of alternatives. It computes the com-
prehensive distance between these relations and normalizes it to
the [—1, 1] interval as follows:

> |p(DM, a,b)
_(@b)eAxa

NHR(DM, P) = c[0,1]. (54)

- p(P.a,b)]

T(DM,P,n) =1 (55)

n-(n-1)
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Note that the distance between relations observed for a,b e A is
the least when these relations are the same and the greatest when
comparing preference with inverse preference. As a result, if the
relations for all pairs of alternatives are the same, t is equal to 1,
whereas if one ranking is inverted with respect to the other, T =
1.

In turn, Rank Difference Measure (RDM) quantifies the similar-
ity between the attained ranks. For alternative a € A, the respective
difference in the ranks assigned by the DM and procedure P can be
computed as follows:

(DM, a) «(P.a)
Z:I:r*(gM,a) Z::z:riz(P,a) |T1 - T2|
[r.(DM, a) — (DM, a) + 1] - [r,(P,a) —r*(P,a) + 1]
(56)

r*(DM, a) =

rdm(DM, P, a) =

For example, consider alternative aeA with
r.(DM,a) =2, and two procedures P1 and P2 such that
r*(P1,a) =r,(P1,a) =4 and r*(P2,a) =3 <r.(P2,a) =6. Then,
rdm(DM,P1,a) =12 -4|/(1-1) =2 and rdm(DM, P2, a) =
[12=3|+2-4|+|2-5|+|2-6]]/(1-4) = Further, RDM
aggregates these differences for all alternatives and normalizes
them to the [0,1] interval:

> rdm(DM, P, a)

RDM(DM,P,n) =1 — %4 € [0,1], (57)
maxgj?’ji(n)
where max' (n) is (n/2)-n when n is even or (n/2)-(n—1) if

dif f
n is odd. Overall, RDM is equal to one, when all alternatives attain

exactly the same rank(s), and it is equal to zero, when the differ-
ences between their positions are the greatest possible.

The last similarity measure is called Rank Agreement Measure
(RAM). It generalizes NHR to all ranks, hence investigating if ex-
actly the same subsets of alternatives attain the same positions
r=1,...,n

IDM(r) N P(r)|

1
RAM(DM, P, n) = Z |IDM(r) U P(r)|

€[0,1]. (58)
In the case of a perfect agreement, RAM is equal to 1. On the con-
trary, when each alternative a € A attains a different rank according
to the DM and procedure P, RAM is 0.

To investigate the robustness of the recommendation delivered
by procedure P, we define three measures. They capture the sup-
port that is offered to such a univocal recommendation by all
compatible value functions ¢®. Such support is quantified by the
stochastic acceptabilities derived from SOR. As far as the choice
recommendation is concerned, we refer to the First Rank Accept-
ability Index (FRAI), which quantifies an average share of compati-
ble AVF that assign the first position to the alternatives ranked at
the very top by procedure P, i.e.:

_t
P(r=")]

When a single alternative is unanimously the most preferred ac-
cording to P, FRAI reflects the probability that this alternative is
ranked first in &R. FRAI is equal to 1 if all feasible models rank
such an alternative at the top, whereas it is equal to 0 if none com-
patible AVF indicates it as the most preferred option.

Mean Rank Acceptability Index (MRAI) generalizes FRAI to all
ranks by investigating an average RAI-based support that is given
to the ranks (r =r*(P,a),...,1(P,a)) assigned to each alternative
a € A by procedure P:

FRAI(P) = > RAI(a.1)€[0.1]. (59)

aeP(r=1)

[0, 1]. (60)

«(P.a)
MRAI(P,n) = . )3 Lo o RAIET)
T n — r.(P,a) —r<(P,a) + 1

Consequently, MRAI is equal to 1 when all alternatives are ranked
at the same position(s) by procedure P and all compatible AVF. On
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the contrary, MRAI is 0, when there is no feasible model supporting
the rank attained by any alternative according to P.

In turn, Mean Pairwise Relation Acceptability Index (MPRI) inves-
tigates the support that is given to the pairwise relations observed
for all pairs of alternatives in the ranking determined with P. Let us
denote such a support for pair (a,b) € A x A by PRI(P, a,b). When
a is preferred to b according to P, PRI is equal to PWI(a, b); if a
and b are indifferent, we consider PII(a, b), and in case b is ranked
better than a, PRI(P, a, b) is set to PWI(b, a). Then, MPRI is an av-
erage PRI-based support that is given to all pairs of alternatives:

S PRI(P,a,b)
MPRI(P,n):Z-a'bEAAl;I%b(n_D c[0,1]. (61)

Note that MPRI is equal to 1 if all compatible AVF compare all pairs
of alternatives in the same way as procedure P. On the other ex-
treme, MPRI is 0 when no feasible model supports the relation ob-
served in P for any pair of alternatives.

4.2. Experimental setting

When generating instances of test problems, we considered var-
ious settings for the dimensionality of data:

« the number of alternatives - M ¢ {6, 8, 10, 12, 14};

o the number of criteria - E € {3, 4, 5};

o the number of characteristic points for each criterion g; - P €
{2,3,4};

« the number of pairwise comparisons provided by the DM - C
{4,6,8,10}.

In this way, we focus on MCDA problems with a small size for
which both the choice and ranking recommendation may be of in-
terest to the DMs. For each combination of parameter values, we
averaged the results over 1000 problem instances with randomly
drawn performances [14]. Hence we considered 5-3-3-4.1000 =
180, 000 instances in total. In general, some considered parame-
ter combinations represent less plausible scenarios (e.g., eliciting a
limited number of pairwise comparisons for a problem with nu-
merous alternatives, criteria, and characteristic points, or consider-
ing rich preference information when the values of other problem
dimensions are small). However, we did not filter them so that the
subsequent analysis of the impact of values of a single parame-
ter on the attained results is more reliable and independent of the
values assigned to other parameters.

For each instance, we randomly generated AVF serving as the
DM'’s reference model. To ensure its consistency with an assumed
model, the number of characteristic points Vi for the respective
MVFs was equal to P in the considered problem setting. This func-
tion was used to rank M alternatives evaluated in terms of E crite-
ria. For this ranking, C pairs of alternatives were randomly selected,
and the relations observed for them were supplied as a simu-
lated DM’s indirect and incomplete preference information. Then,
for each instance, we performed robustness analysis in the spirit
of ROR and SOR. Finally, 35 methods for constructing a univocal
recommendation were run, and their respective recommendations
were compared with the DM’s true model. Note that UTAMSCFV
was not run for instances with P = 2 characteristic points as its
objective function makes sense only when the MVF are piecewise
linear. Overall, we performed 6,24 million executions of all proce-
dures.

4.3. Results

4.3.1. Similarity between the DM’s simulated model and the derived
recommendation

In this section, we discuss the similarities in recommendations
provided by the reference model and the procedures exploiting in-
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complete preference information. The values of NHR, Kendall's 7,
RDM, and RAM averaged over all considered problem instances are
provided in Table 1.

Let us start by discussing the agreement for the most pre-
ferred alternatives. The difference between the best and worst-
performing procedures in terms of NHR is large (over 0.25). This
means the best procedures can correctly identify the most pre-
ferred alternative in 25% more scenarios than average worst per-
formers. The most advantageous NHR is attained by BESTRAI
(0.7671). This method is specifically oriented toward identifying
the most preferred alternative because it derives the ranking from
the analysis of stochastic acceptabilities for the best rank of each
alternative. As a result, the alternative attaining the first posi-
tion for the most significant share of compatible value functions
is ranked at the very top. Its advantage over all remaining ap-
proaches is statistically significant. This is confirmed by the Hasse
diagram presented in Fig. 1, indicating a partial order established
based on the Wilcoxon test for paired samples with p-value equal
to 0.05 [9].

Only slightly worse results are attained by methods that con-
struct a robust ranking by exploiting the stochastic acceptabilities
for pairwise relations. They include all six REL procedures that em-
phasize the most frequent relations in the set of feasible models
(NHR equal to 0.7657 or 0.7654). As a result, the best-ranked al-
ternative is most likely the one that is preferred to the remaining
ones for the majority of compatible value functions. Though mod-
eled slightly differently, similar objectives are considered by MIN-
POI (0.7656) and REPROC (0.7654). The computational process un-
derlying MINPOI is based on a simple scoring function. Hence it
is computationally less complex than the REL methods. Moreover,
REPROC associates a value function with the provided recommen-
dation. Advantageous results are also attained by UTAAVE (0.7650).
By averaging a large sample of feasible models, it ranks an alter-
native with the greatest expected comprehensive value at the top.
The differences between these nine approaches are not statistically
significant (see Fig. 1).

The best performing procedures exploit the outcomes derived
with SOR. This also holds for the next group attaining favorable
results in terms of average NHR. Among them, the best outcomes
are attained by RANK-SUM. Its advantage over the remaining RANK
procedures is statistically significant: RANK-SUM >~ RANK-PROD >
RANK-SUM-IND > RANK-MM, with an average advantage of RANK-
SUM over RANK-MM being more than 0.03. In general, these pro-
cedures aim at assigning an alternative that is most frequently
ranked at the top. However, as confirmed by the slight differences,
the form of an optimized objective function impacts the attained
results. Other NHR values confirm that it is slightly more advan-
tageous to consider expected values than ranks (UTAAVE vs. EX-
PRANK), the worst-case pairwise comparison rather than all pair-
wise comparisons at once (MINPOI vs. SUMPOI), and construct the
entire ranking at once rather than in subsequent iterations (the
REL methods vs. UP-DIST and DOWN-DIST).

The best results among the procedures that do not take ro-
bustness concern into account are attained by ACUTA (0.7492) and
UTACHEB (0.7427). For example, their advantage in terms of aver-
age NHR over UTAMP2 and UTAMP1 is about 0.08 and 0.13, respec-
tively. The latter two approaches are among the bottom ones. This
confirms the validity of selecting a central rather than the most
discriminant model. When it comes to the methods exploiting
dominance intensities, AP2 attains better results than AP1, DME1,
and DME2. The worst NHR-based results are attained by UTAMSVF
(0.5291) and MAXIMAX (0.5028). Both exploit the greatest com-
prehensive values attained by alternatives, though UTAMSVF opti-
mizes them for all alternatives jointly, whereas MAXIMAX finds the
most advantageous value function for each alternative considered
individually. Let us emphasize that the results reported for UTAM-



M. Kadziniski, M. Wajcik and K. Ciomek

Table 1

Omega 113 (2022) 102715

Average values of measures quantifying similarity between the DM’s simulated model and the derived recommendation over
all problem instances (* - UTAMSCVF was run for instances with at least three characteristic points).

Method NHR T RDM RAM Method NHR T RDM RAM
UTAMP1 0.6180 0.7218  0.7859  0.4116 DMEI1 0.6960 0.7536  0.8072  0.4448
UTAMP2 0.6658  0.7492  0.8047 0.4415 DME2 0.7197  0.7969  0.8382  0.4776
UTAMSVF 0.5291 0.6519 0.7356  0.3590 MAXPOI 0.7130 0.7844 0.8290 0.4704
UTAJLS 0.6881 0.7815 0.8278 0.4809  MINPOI 0.7656  0.7843  0.8289  0.4704
UTAAVE 0.7650 0.8266  0.8605  0.5330  SUMPOI 0.7612  0.8253  0.8592  0.5226
UTACHEB 0.7427 0.8083  0.8472 0.5108 RANK-SUM-IND  0.7546 0.8174 0.8548  0.5329
ACUTA 0.7492 08123  0.8501 0.5165  RANK-SUM 0.7650 0.8184  0.8569  0.5473
UTAROB 0.6515 0.7447 0.8017 0.4326  RANK-PROD 0.7639  0.8181 0.8566  0.5472
REPROC 0.7654 0.8269  0.8607  0.5334 RANK-MM 0.7329  0.8104 0.8506  0.5299
MAXIMAX 0.5028 0.7040 0.7724  0.3941 REL-SUM 0.7657  0.8271 0.8608  0.5337
MAXIMIN 0.6735 0.7048 0.7730 0.3938  REL-PROD 0.7657  0.8271 0.8608  0.5336
MM-REGRET 0.6815 0.7094 0.7760  0.4011 REL-MM 0.7657  0.8271 0.8608  0.5336
EXPRANK 0.7612  0.8253  0.8592  0.5226  REL-SUM-IND 0.7654  0.8269  0.8606  0.5330
BESTRAI 0.7671 0.7749  0.8214  0.4521 REL-PROD-IND 0.7654 0.8269  0.8606  0.5331
WORSTRAI 0.6972  0.7750  0.8215 0.4517  REL-MM-IND 0.7654  0.8268  0.8606  0.5329
AP1 0.7093  0.7691 0.8178  0.4551 DOWN-DIST 0.7542  0.8192  0.8547 0.5151
AP2 0.7233  0.7967 0.8384 0.4893  UP-DIST 0.7574  0.8191 0.8546  0.5150
UTAMSCVF (*)  0.6014 0.6836 0.7569  0.3864

REL-PROD-IND @ RANK-PROD

Fig. 1. The Hasse diagram indicating the statistically significant differences in terms of NHR based on the Wilcoxon test with p-value equal to 0.05.
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Fig. 2. Boxplot for Normalized Hit Ratio.

SCVF are derived from the analysis of problem instances with at
least three characteristic points. However, even when considering
only these instances, this procedure attains the NHR values better
than UTAMSVF and MAXIMAX.

The respective boxplots for NHR are presented in Fig. 2. They
confirm the stability of results attained by the best performing
procedures. In fact, the box’s length for many approaches is zero,
which derives from Q1 and Q3 being equal to the median that, in
turn, is equal to one. This means that for at least 75% problem set-
tings, these methods attained the maximal NHR score. Some indi-
vidual observations indicate fractional values (e.g., 1/2, 1/3, or 1/6),
which correspond to the instances for which these procedures rank
a few alternatives at the top, but only one of them is the DM'’s
true most preferred alternative. On the contrary, the results for the
worst performers, such as UTAMSVF or MAXIMAX, indicate greater
variability of results. For these methods, the median is equal to 0.5,
but Q3 is already equal to zero.

The ranking-oriented measures quantifying the similarity be-
tween the reference and resulting models will be discussed jointly.
The analysis of Kendall’s T, RDM, and RAM (see Table 1) lead to
similar conclusions. In the main paper, we focus on the average
results. The respective boxplots and Hasse diagrams with statisti-
cally significant differences for the three measures are presented
in the e-Appendix.

The best performing procedures in terms of rank similarity
measures include procedures for constructing a robust ranking
by solving dedicated mathematical programming models. They in-
clude:

o the REL procedures - 0.8268-0.8271 in terms of Kendall’s 7,
0.8606-0.8608 for RDM, and 0.5329-0.5337 for RAM; in partic-
ular, REL-SUM, REL-PROD, and REL-MM attain statistically sig-
nificant better results given Kendall’s T and RDM than all other
methods; these results mean that they reproduce correctly over
91% pairwise relations and reveal over 86% consistency in terms
of the differences between ranks attained by all alternatives;
note that even though the differences between the REL meth-
ods are marginal, the approaches that do not admit indifference
attain statistically better results than their IND counterparts;
the favorable performance of the REL procedures in terms of
Kendall’s 7 is consistent with the findings discussed in [58];

o the RANK-SUM and RANK-PROD procedures - 0.8181-0.8184
in terms of Kendall’s t, 0.8566-0.8569 for RDM, and 0.5472-
0.5473 for RAM; in particular, they attain statistically significant
better results in terms of RAM than all other approaches; the
high values of RAM confirm that the similarity in terms of the

1

share of alternatives attaining the same positions in the refer-
ence and resulting rankings is over 53% of the maximal possible
consistency.

The differences in the top-ranked approaches for the above
measures are understandable given their context and operational
procedures. In fact, the REL procedures focus on emphasizing the
most supported pairwise relations, which aligns with the pairwise
perspective considered by Kendall’s T and RDM. In turn, the RANK
methods emphasize the most frequent rank assignments, which is
consistent with the focus on ranks implemented by RAM.

Favorable performances in terms of all three measures are at-
tained by REPROC and UTAAVE. They are very close to the best-
performing methods in Kendall's ¢ and RDM and just slightly
worse given RAM. Nonetheless, these differences, even if marginal,
are significant. In general, such statistically sound differences in
rank similarity performances are observed for a greater number of
method pairs in the upper half of the ranking than in the case of
NHR.

An interesting observation concerns relatively good results at-
tained by methods that focus on the stability of outcomes for all
pairs of alternatives or all ranks. This is confirmed by the positions
between ninth and thirteenth attained by SUMPOI and EXPRANK.
They quantify the average strength from all pairwise relation ac-
ceptabilities or all ranks. Moreover, they are vastly better than their
counterparts focusing only on the extreme outcomes, i.e., MAXPOI
and MINPOI or BESTRAI and WORSTRAIL The latter methods de-
rive rankings from the analysis of the most or the least favorable
pairwise comparisons or ranks in the set of all compatible value
functions.

Similar to NHR, the best results among approaches that do
not incorporate robustness analysis are attained by UTACHEB and
ACUTA. For example, ACUTA scores 0.8123 for Kendall's 7, 0.8501
for RDM, and 0.5165 for RAM. Both methods prove to be signifi-
cantly better in terms of all three measures than procedures se-
lecting a representative value function averaging only the extreme
model (UTAJLS) or emphasizing the differences between compre-
hensive values of alternatives compared by the DM (UTAMP1 and
UTAMP2) or related by the necessary preference (UTAROB). These
methods are also outperformed by the approaches exploiting dom-
inance intensities. Among them, the more advanced variants, called
AP2 and DME2, attain better results than their simplified counter-
parts, AP1 and DMET1.

In general, the lower halves of the rankings indicating statisti-
cally significant differences are the same for the three measures.
In particular, they all agree that MM-REGRET is preferred to MAX-
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Average values of measures quantifying the robustness of recommendation derived by different meth-
ods over all problem instances (* - UTAMSCVF was run for instances with at least three characteristic

points).

Method MRAI MPRI FRAI Method MRAI MPRI FRAI
UTAMP1 04115 0.8535 0.6181 DMET1 0.4453  0.8724  0.6965
UTAMP2 0.4408 0.8744 0.6647 DME2 0.4778 0.8984  0.7201
UTAMSVF 03590 0.8152 0.5298  MAXPOI 0.4701 0.8921  0.7127
UTAJLS 0.4807 0.8907 0.6884  MINPOI 0.4702  0.8921 0.7664
UTAAVE 0.5327 09132 0.7658  SUMPOI 0.5229 09127 0.7618
UTACHEB 0.5106 09040 0.7437 RANK-SUM-IND  0.5334 0.8961  0.7556
ACUTA 0.5160 0.9060 0.7485  RANK-SUM 0.5481 0.9093  0.7659
UTAROB 04319 0.8690 0.6512  RANK-PROD 0.5478  0.9091 0.7647
REPROC 0.5334 09134 0.7660 RANK-MM 0.5307 0.9053  0.7345
MAXIMAX 03936  0.8292  0.5027 REL-SUM 0.5336 09135 0.7664
MAXIMIN 0.3938 0.8373  0.6739  REL-PROD 0.5336 09135 0.7664
MM-REGRET 0.4010 0.8377 0.6822 REL-MM 0.5336 09135 0.7663
EXPRANK 0.5229 09126 0.7617  REL-SUM-IND 0.5331 09132  0.7660
BESTRAI 0.4517  0.8867  0.7681 REL-PROD-IND 0.5331 09132  0.7660
WORSTRAI 0.4515 0.8867 0.6967  REL-MM-IND 0.5330 09132  0.7660
AP1 0.4552 0.8845 0.7100 DOWN-DIST 0.5152  0.8935  0.7546
AP2 0.4893  0.8984  0.7238  UP-DIST 0.5152  0.8936  0.7579
UTAMSCVF (*)  0.3863  0.8418  0.6011

IMIN and MINIMAX, which are, in turn, better than UTAMSVE
Nonetheless, these approaches are among the four worst perform-
ers given Kendall's t, RAM, and RDM. This proves the limited
usefulness of approaches exploiting the ranges of comprehensive
values attained by the alternatives in the feasible polyhedron in
reconstructing the entire ranking. Specifically, UTAMSVF is worse
than the best performing procedures by over 0.17 for Kendall’s 7,
0.12 for RDM, and almost 0.19 for RAM. Such great differences con-
firm the importance of selecting an appropriate method when con-
structing a ranking based on incomplete preference information.

When considering problem instances with at least three charac-
teristic points, UTAMSCVF is better than MAXIMIN, MINIMAX, and
UTAMSVF for all measures. Moreover, it proves to be better than
MM-REGRET for RAM and RDM and better than UTAMP1 for RAM.
The same relative comparisons are confirmed concerning the ro-
bustness of provided recommendations. This suggests that finding
a parsimonious model that minimally deviates from the linearity is
insufficient for reconstructing the DM’s preferences generated us-
ing a potentially highly non-linear model.

4.3.2. Robustness of provided recommendations

In this section, we discuss the robustness of recommendations
provided by the considered procedures understood in terms of the
support all compatible value functions give them. The values of
MRAI, MPRI, and FRAI averaged over all problem instances are pro-
vided in Table 2. In the main paper, we present the boxplot (see
Fig. 3) and the Hasse diagram emphasizing statistically significant
differences (see Fig. 4) only for MRAL For the other two measures,
the respective figures can be found in the e-Appendix.

The best average results in terms of MRAI are achieved by
RANK-SUM (0.5481) and RANK-PROD (0.5478). This means that
the position attained by each alternative in the ranking deter-
mined with these procedures is supported by almost 55% com-
patible value functions. Their advantage over the remaining ap-
proaches is statistically significant. In particular, it is over 0.014
greater when compared to REL-SUM, REL-PROD, and REL-MM and
their IND counterparts. Such a beneficial performance of the two
RANK procedures derives from optimizing the support given to
the rank assignments in the objective functions, which is consis-
tent with the robustness measure captured by MRAIL However, a
slightly worse performance of RANK-MM and RANK-SUM-IND con-
firms that the form of both an objective function and constraints
influences the attained results (see Fig. 4).
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When it comes to the best performers given MPRI, they include
REL-SUM, REL-PROD, REL-MM (0.9135), and their IND counterparts
(0.9132). Such high values indicate that the relations established
by these procedures for each pair of alternatives are supported, on
average, by over 91% compatible value functions. When compared
to the MRAI values, this means that the robustness of constructed
rankings can be very high when considering pairwise comparisons,
but the alternatives are not necessarily ranked in the same posi-
tions as in the feasible polyhedron. Slightly worse results attained
by the best RANK procedures (0.9093 for RANK-SUM and 0.9091
for RANK-PROD) confirm that it is more beneficial to emphasize
the robust results concerning the same perspective as captured by
a specific measure. In the case of MPRI, these are relations hold-
ing for all pairs of alternatives, as done by the REL methods. Again,
the performance of RANK-MM and RANK-SUM-IND is significantly
worse than for the remaining methods constructing a robust rank-
ing.

Among the procedures selecting a representative value func-
tion, the best results are attained by REPROC, which emphasizes
the advantages derived from the analysis of PWIs. This proce-
dure is ranked sixth in terms of MRAI and fourth given MPRI,
being only marginally worse than the best performers. However,
it outperforms many procedures that exploit the same stochas-
tic acceptabilities, including the REL methods admitting indiffer-
ence, SUMPOI, and both distillations. UTAAVE and ACUTA also at-
tain highly favorable outcomes. The former exploits expected com-
prehensive values, outperforming the methods that build on the
expected ranks (EXPRANK) or averages from the extreme models
(UTAJLS). Furthermore, ACUTA proves to be better than UTACHEB,
which suggests that the recommendation associated with the ana-
lytic center is more robust than the ranking corresponding to the
Chebyshev center.

The differences between the best and the worst performing
procedures are great. For MRAI - it is close to 0.2, and for MPRI
- it is almost 0.1. Also, the rankings indicating the statistically
significant differences are conclusive, leaving only a few pairs of
methods incomparable (see, e.g., Fig. 4). Most of these incompara-
bilities concern approaches that exploit the same results, though
in a slightly different way. In the lower half of the rankings for
both measures, these pairs include (DOWN-DIST, UP-DIST), (MIN-
POI, MAX-POI), (BESTRAI, WORSTRAI), and (MAXIMAX, MAXIMIN).
This suggests that the robustness of the entire ranking is similar
irrespective if it is constructed up-down or bottom-up, based on
the most or the least advantageous pairwise comparisons, when
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Fig. 3. Boxplot for Mean Rank Acceptability Index.

accounting for the best or the worst ranks, or when considering
the greatest or the least comprehensive values.

Let us remind that BESTRAI and MINPOI were among the lead-
ers when it comes to indicating the DM’s true most preferred alter-
native. However, the robustness of the rankings determined with
these procedures is poor. For example, the average support given
to all ranks or pairwise relations for BESTRAI is lower by almost
0.1 and 0.03 than for the best-performing methods in MRAI and
MPRI, respectively. Hence focusing on the extreme attainments in
the set of feasible models may be suitable for identifying the best
alternative. However, it is not sufficient for reconstructing the en-
tire ranking nor producing a highly robust ranking.

The group of methods attaining the worst results in terms
of MRAI and MPRI is the same. These include techniques se-
lecting the most discriminant value function (UTAMP1, UTAMP2,
and UTAROB), decision rules based on extreme outcomes (MM-
REGRET, MAXIMIN, and MAXIMAX), and the benevolent proce-
dure maximizing the sum of comprehensive values for all alterna-
tives (UTAMSVF). The results attained by UTAMSVF are significantly
worse than for all remaining methods.

The boxplot for MRAI is presented in Fig. 3. It indicates that all
procedures attain the maximal consistency for at least one prob-
lem instance (MRAI = 1). When it comes to the least results, they
range between 0.17 for RANK-SUM and RANK-PROD to zero for
UTAMSVE. In general, the robustness of results depends on the con-
sidered problem instance. Relatively high variability is confirmed
by the differences between Q3 and Q1, ranging between 0.25 and
0.3 for all methods. The average best performers attain the most
stable outcomes. Still, a similar level of results’ stability across all
methods implies that the conclusions derived from the analysis of
median, first and third quartiles are the same as for the mean.

The best average result in terms of FRAI is attained by BE-
STRAI (0.7671). This means that the alternative ranked at the top
by this procedure is also indicated as the most preferred by almost
77% compatible value functions. It is followed by the REL proce-
dures, MINPOI, and REPROC. These methods exploit the results of
stochastic analysis for all pairs of alternatives, aiming to indicate
as the most favorable option this alternative which is more pre-
ferred to all remaining ones for the majority of feasible models.
Note that these approaches also proved to be the most advanta-
geous in terms of reproducing the true pairwise relations in the
entire ranking (see Kendall's T and MPRI). When it comes to FRAI,
they attain significantly better results than the RANK procedures.
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One could expect the opposite because FRAI captures the support
given to the alternative ranked in the first place by all compati-
ble value functions, and the RANK methods proved the best given
MRAIL However, the first rank is only one out of many positions,
specific in the sense that the conditions for attaining it can be
easily defined with respect to pairwise comparisons. This gives a
chance to the REL methods to outperform their RANK counterparts.
Still, RANK-SUM and RANK-PROD need to be seen among the over-
all good performers because they scored the best in terms of RAM
and MRAI and are only marginally worse than the best methods
given NHR and FRAL

As far as other procedures are concerned, high FRAI values are
attained by UTAAVE, EXPRANK, and SUMPOL. In these cases, the
average support given to the most preferred alternatives among
all feasible models ranges between 76.17% and 76.58%. These pro-
cedures rank at the top an option that attains the greatest aver-
age comprehensive value, the highest expected rank, or the best
POI-based support in all pairwise comparisons, respectively. When
comparing with the robustness of the entire ranking, slightly bet-
ter relative performance in terms of FRAI is attained by both dis-
tillation procedures. In particular, UP-DIST and DOWN-DIST were
worse given MPRI than ACUTA, UTACHEB, DME2, and AP2, whereas
the ranking is inverse when considering FRAIL

MAXIMAX (0.5027) and MSVF (0.5298) performed the worst
given FRAL In this case, the order is reversed compared to the
measures quantifying the robustness of the entire ranking. How-
ever, both procedures are vastly outperformed even by the third
worse method, i.e., UTAMP1 (0.6181). The results for FRAI confirm
the benefits of constructing the recommendation based on stochas-
tic acceptabilities. Among eight bottom-ranked procedures, none
incorporates the shares of feasible models in its operational steps.

4.3.3. Performance trends

In this section, we consider the impact that different parameter-
izations of the problem and preference model have on the perfor-
mance of the considered methods. For this purpose, we report the
values of performance measures for various numbers of alterna-
tives (M), criteria (E), characteristic points (P), and pairwise com-
parisons provided by the DM (C). In the main paper, we discuss the
observed trends for NHR and MRAL In this way, we consider mea-
sures that are representative for choice (NHR) and ranking (MRAI)
as well as for the consistency with the DM’s true model (NHR)
and robustness of results (MRAI). The detailed outcomes given the
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Fig. 4. The Hasse diagram indicating the statistically significant differences in terms
of MRAI based on the Wilcoxon test with p-value equal to 0.05.
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remaining measures are provided in the e-Appendix. Since the
changes observed for them are analogous, we do not elaborate on
them in detail.

In Table 3, we present the values of NHR attained by 35 meth-
ods for different problem settings. When it comes to the impact
of the number of alternatives, with greater M, the results become
worse. For example, BESTRAI correctly identifies the most preferred
alternative in 86.54% scenarios for M = 6, whereas for M =14 -
such a consistency drops to 70.08%. A similar trend is observed for
all procedures. This is understandable given an increased complex-
ity of indicating the DM’s true most preferred alternatives based
on incomplete preferences when more alternatives are considered.

When considering the outcomes for different neighboring val-
ues of M, the greatest deterioration of NHR can be observed when
passing from M = 6 to 8 (on average, 0.0866). On the contrary, the
smallest decrease of 0.0265 can be observed between M = 12 and
14. Hence, when the set of alternatives is very small, adding ad-
ditional ones increases the problem complexity of identifying the
best option more than in the scenarios where the share of new
alternatives is smaller.

The rankings of different procedures are consistent irrespective
of the number of alternatives. In particular, BESTRAI attains the
best results for all considered values of M, and its performance
deterioration is the least with the increase of M. In turn, MAXI-
MAX and UTAMSVF are ranked at the bottom for all considered
numbers of alternatives. Moreover, when moving from M =6 to
14, their performance drop is twice as big as for the best methods
(e.g., compare the difference of 0.3449 for MAXIMAX and 0.1646
for BESTRAI).

Also, the increase in the number of criteria has a negative im-
pact on NHR attained by all procedures. For example, for BESTRAI,
the consistency in terms of indicating the most preferred alter-
native drops from 79.51% for E =3 through 76.47% for E =4 to
74.14% for E =5. With more criteria, the preference model be-
comes more flexible, and the set of compatible value functions be-
comes larger. As a result, the variety of choice recommendations
delivered by the set of feasible models is greater, and it becomes
more challenging to identify the most preferred option correctly.
More significant differences are observed for fewer criteria. The
performance decrease when moving from E =3 to 4 is the least
for the REL methods (0.0292 — 0.0293), MINPOI (0.0293), and RE-
PROC (0.0294). The change from 4 to 5 criteria had the least sig-
nificant impact on RANK-SUM and RANK-PROD (0.0204). In gen-
eral, the impact of E on the attained results is smaller than in the
case of M. The greatest difference between the extreme considered
numbers of criteria is observed for UTAMSCVF (0.1221).

The greater number of characteristic points has, in general, a
negative impact on the methods’ ability to correctly identify the
DM’s true most preferred alternative. However, this trend is evi-
dent for all procedures only when moving from P =2 to 3 char-
acteristic points. For example, for BESTRAI the average NHR value
drops from 79.00% to 75.44%. Nevertheless, for some approaches,
the change in P from 3 to 4 leads to better outcomes. For example,
for DOWN-DIST and EXPRANK, the mean NHR increases by 0.005
and 0.0035, respectively. Overall, the correct indication of the top-
ranked alternative is easier when marginal value functions are lin-
ear. However, when considering various piecewise linear functions,
the trend depends on the specific procedure. The increase in the
preference model’s flexibility is much greater when adding a sin-
gle breakpoint in the mid-range compared to the scenario where
additional characteristic points are included allowing the modeling
of even more complex curvatures of marginal functions.

The problem characteristic that positively impacts the efficiency
of indicating the most preferred alternative is the number of pairs
of reference alternatives compared by the DM. For example, for BE-
STRAI, the mean NHR is equal to 71.37% for C =4 and 81.54% for
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Table 3

Average Normalized Hit Ratios (NHRs) for different numbers of alternatives, criteria, characteristic points, and pairwise comparisons.

Alternatives Criteria Characteristic points Pairwise comparisons

METHOD AVG 6 8 10 12 14 3 4 5 2 3 4 4 6 8 10

UTAMP1 0.6180  0.7692 0.6545 0.5934  0.5489  0.5242 0.6612 0.6114  0.5815 0.6951 0.5957  0.5633 0.5099  0.5937 0.6559  0.7126
UTAMP2 0.6658 0.7982 0.6970  0.6430 0.6069  0.5841 0.7204  0.6592 0.6179  0.7319 0.6481 0.6176  0.5784  0.6451 0.6955  0.7443
UTAMSCVF 0.6014 0.7639  0.6465 0.5665 0.5280  0.5020 0.6666  0.5930  0.5445 0.5982  0.6045 05024 0.5794 0.6347  0.6890
UTAMSVF 0.5291 0.7209 0.5743 0.4962 0.4468 0.4075 0.5782 0.5216  0.4877  0.5820  0.5153 0.4902 0.4178  0.5031 0.5676  0.6280
UTAJLS 0.6881 0.8144 07196  0.6641 0.6348 0.6076 0.7370  0.6850 0.6424  0.7642 0.6760  0.6241 0.6092  0.6695 0.7156  0.7582
UTAAVE 0.7650  0.8643 0.7921 0.7475 0.7239  0.6970 0.7930  0.7623 0.7396  0.7868 0.7526  0.7555 0.7105  0.7517 0.7835  0.8141
UTACHEB 0.7427 0.8500 0.7706  0.7263 0.6948 0.6719 0.7755 0.7404  0.7123 0.7669 0.7275 0.7337 0.6894 0.7294  0.7601 0.7919
ACUTA 07492 08552 07761 07309 0.7026  0.6813 07775 0.7468 0.7234 07694 0.7358 0.7426  0.6965 0.7370  0.7660  0.7974
UTAROB 0.6515 0.7810 0.6776  0.6249 0.5945 0.5797 0.7050  0.6456  0.6040  0.7148 0.6295 0.6103 0.5681 0.6311 0.6800  0.7269
REPROC 0.7654  0.8652 0.7928 0.7486 0.7236  0.6966 0.7926  0.7632 0.7403 0.7878 0.7530  0.7553 0.7104  0.7532 0.7829  0.8150
MAXIMAX 0.5028 0.7153 0.5556  0.4656 0.4069 0.3704  0.5517  0.4992 0.4575 0.6312 0.4676  0.4096 03820 0.4714 0.5457 0.6120
MAXIMIN 0.6735 0.8086 0.7113 0.6523 0.6129  0.5826 0.7201 0.6677 0.6329 0.7112 0.6711 0.6383 0.6008 0.6560  0.6985  0.7388
MM-REGRET 0.6815 0.8167 0.7198 0.6599 0.6216  0.5895 0.7307  0.6753 0.6385 0.7396  0.6666  0.6382 0.6051 0.6633 0.7076  0.7500
EXPRANK 0.7612 0.8629 0.7888 0.7455 0.7183 0.6905 0.7890  0.7584  0.7362 0.7814  0.7494  0.7528 0.7061 0.7479 07790  0.8118
BESTRAI 0.7671 0.8654  0.7936  0.7507 0.7249  0.7008 0.7951 0.7647 0.7414  0.7900 0.7544  0.7568 0.7137  0.7551 0.7841 0.8154
'WORSTRAI 0.6972 0.8213 0.7275 0.6750 0.6430  0.6191 0.7355 0.6921 0.6639  0.7218 0.6838  0.6860  0.6323 0.6800 0.7196  0.7569
AP1 0.7093 0.8263 0.7388 0.6879 0.6591 0.6343 0.7527  0.7044  0.6707  0.7469 0.6979  0.6830 0.6477  0.6911 0.7311 0.7671
AP2 0.7233 0.8284  0.7498 0.7061 0.6781 0.6540 0.7633 0.7200 0.6865 0.7744  0.7070  0.6885 0.6638  0.7084 07429  0.7780
DME1 0.6960 0.8154 07266  0.6733 0.6441 0.6205 0.7482 0.6921 0.6477  0.7472 0.6842 0.6566  0.6200 0.6766  0.7241 0.7632
DME2 0.7197 0.8275 0.7464  0.6997 0.6741 0.6508 0.7636  0.7162 0.6793 0.7626  0.7069  0.6897 0.6600  0.7023 0.7408  0.7757
MAXPOI 0.7130  0.8331 0.7406  0.6932 0.6619  0.6362 0.7544  0.7092 0.6754  0.7462 0.6984  0.6945 0.6499  0.6964 0.7352  0.7705
MINPOI 0.7656  0.8653 07930  0.7487 0.7238  0.6974 07929 0.7636  0.7405 07879  0.7534 0.7556  0.7108  0.7534 0.7829  0.8154
SUMPOI 0.7612 0.8630 0.7888 0.7455 0.7183 0.6905 0.7890  0.7584  0.7363 0.7815 0.7494  0.7528 0.7061 0.7479 07790  0.8118
RANK-SUM-IND 0.7546  0.8615 0.7866  0.7369 0.7084  0.6797 0.7847 0.7516 0.7275 0.7765 0.7406  0.7468 0.6964  0.7411 0.7737  0.8073
RANK-SUM 0.7650  0.8643 0.7919  0.7478 0.7231 0.6979 0.7934  0.7610 0.7406  0.7866  0.7524  0.7560  0.7108  0.7529 0.7826  0.8136
RANK-PROD 0.7639  0.8643 0.7909  0.7462 0.7218 0.6961 0.7925 0.7598 0.7393 0.7858 0.7508  0.7550  0.7101 0.7514  0.7812  0.8127
RANK-MM 0.7330  0.8566 0.7767 0.7169 0.6737 0.6408 0.7696  0.7287 0.7005 0.7611 0.7171 0.7207 0.6697 07190 07520  0.7910
REL-SUM 0.7657 0.8653 0.7930  0.7488 07239  0.6974 0.7929  0.7637 0.7405 0.7880 0.7534  0.7556  0.7109  0.7535 0.7829  0.8154
REL-PROD 0.7657 0.8653 0.7929  0.7488 0.7239  0.6975 0.7929  0.7637 0.7405 0.7880  0.7535 0.7556  0.7108  0.7535 0.7829  0.8154
REL-MM 0.7657 0.8653 0.7930  0.7488 0.7239  0.6976 0.7929  0.7637 0.7405 0.7880  0.7535 0.7557 0.7110  0.7535 0.7829  0.8154
REL-SUM-IND 0.7654  0.8651 0.7929  0.7483 0.7233 0.6972 0.7924  0.7631 0.7406  0.7875 0.7532 0.7555 0.7103 0.7531 0.7830  0.8151
REL-PROD-IND 0.7654  0.8651 0.7929  0.7483 0.7233 0.6973 0.7924  0.7631 0.7406  0.7875 0.7532 0.7555 0.7103 0.7531 0.7830  0.8151
REL-MM-IND 0.7654  0.8651 0.7929  0.7481 0.7236  0.6972 0.7926  0.7633 0.7402 0.7876  0.7529  0.7556  0.7107  0.7526  0.7831 0.8151
DOWN-DIST 0.7542 0.8570 0.7835 0.7361 0.7109  0.6832 0.7821 0.7512 0.7292 0.7735 0.7420  0.7470  0.6978  0.7413 0.7718  0.8057
UP-DIST 0.7574  0.8586 0.7855 0.7409 07136  0.6885 0.7862 0.7543 0.7317  0.7794  0.7445 0.7484  0.7017  0.7443 0.7757  0.8079
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C = 10. When moving from 4 to 6 pairwise comparisons, the av-
erage increase for all procedures is 0.0506; between C =6 and 8
- it is 0.0381, and when considering 10 rather than 8 reference
pairs, the improvement is by 0.0379. On the one hand, the general
increasing trend is understandable given the additional informa-
tion gain offered by each pairwise comparison. The space of fea-
sible models becomes more constrained, and the variability of al-
ternatives that could be judged as the DM’s most preferred alter-
natives becomes lesser. On the other hand, the increase in NHR
becomes smaller when accounting for richer preference informa-
tion. Hence the benefit offered by each additional pairwise com-
parison in terms of correctly identifying the most preferred al-
ternative becomes lesser when numerous comparisons have been
already elicited. This is consistent with the findings presented
in [8,9] where the increase in the robustness of results offered by
initially provided pairwise comparisons is significantly greater than
by the preference statements supplied when the set of compatible
value functions is already significantly constrained. This effect is
additionally strengthened in the study by the random selection of
reference pairs. There already exist algorithms for selecting such
pairs to maximize the potential information gain (see, e.g., [8,9]).
A more general conclusion is that care should be taken to elicit
the diverse comparisons reliably reflecting the DM’s policy.

The average MRAI results obtained for different problem set-
tings are presented in Table 4. The increase in the number of al-
ternatives implies significant deterioration of MRAI for all proce-
dures. For most of them, when moving from M = 6 to 14 alterna-
tives, the average MRAI becomes over twice lesser. For example, for
EXPRANK, the results attained for the extreme considered M values
are 74.79% and 37.12%. This can be easily explained because larger
M translates into a greater number of possible rankings. As a re-
sult, with the same amount of preference information, the support
given to the alternatives’ positions in the set of compatible value
functions becomes lesser for problems involving more alternatives.

The rankings of different approaches are very alike irrespec-
tive of M. Specifically, RANK-SUM achieves the highest average
MRAI for all considered numbers of alternatives, followed closely
by RANK-PROD. Their advantage over the remaining methods in-
creases for greater M. For example, when 6 alternatives are consid-
ered, the difference between RANK-SUM and REL-SUM is 0.0045,
whereas in the case of 14 alternatives - it is already 0.0212. This
suggests that the competitive advantage of the procedures directly
optimizing the support given to different ranking positions be-
comes more evident when the number of alternatives is greater.

Similarly, increasing the number of criteria leads to lower MRAI
values for all methods. The performance deterioration is not as
rapid as for different numbers of alternatives. For example, for
RANK-SUM, average support given to the ranks to which the al-
ternatives are assigned in the set of all compatible value functions
drops from 59.28% for E = 3 through 54.14% for E = 4 to 51.00% for
E = 5. The least absolute and relative deterioration in the robust-
ness of assigned ranks is observed for DOWN-DIST and UP-DIST.
It implies that both distillation procedures performed better for
problems with 5 criteria than ACUTA and UTACHEB, even though
the relation is inverse when 3 criteria are considered. A similar ef-
fect can be observed for DME2, which recorded the highest relative
decrease in the average MRAL As a result, the robustness of ranks
delivered by DME2 is worse than for MIN-POI and MAX-POI for
problems involving 5 criteria, even if it was clearly higher when
accounting for 3 criteria. This observation emphasizes the impor-
tance of directly exploiting the stochastic acceptabilities for more
complex problems than relying on the dominance intensities that
capture only the extreme value differences in the set of compatible
value functions.

As far as the number of characteristic points is concerned, its
impact on MRAI is negative for all methods when moving from
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linear to piecewise linear marginal value functions. However, when
comparing the results attained for P =3 and P =4, the trend de-
pends on the specific approach. For most procedures, it is still de-
creasing. However, the absolute difference is smaller than when
moving from P = 2 to 3. For other methods, including, e.g., the REL
procedures, UTACHEB, and EXPRANK, there is even a marginal in-
crease in MRAL

The greatest relative deteriorations are observed for methods
that identify the most discriminant models (e.g., UTAMP1) or de-
rive their recommendations from analyzing extreme comprehen-
sive values (MAXIMIN and MAXIMAX). This is understandable be-
cause with a greater number of characteristic points, the marginal
value functions become more flexible, and the space of all feasible
models becomes larger. As a result, such extreme results may be-
come more distant from the regularities — captured by the stochas-
tic acceptability indices - observed in the entire set of all com-
patible values functions. In turn, the smallest relative decreases of
MRAI are noted for procedures that exploit PWIs or RAIs when
constructing a recommendation. In particular, for UP-DIST, DOWN-
DIST, SUM-POI, and EXPRANK, the number of characteristic points
has no direct impact on the way these procedures work. It in-
directly influences their operational steps by increasing the vari-
ability of results and decreasing stochastic acceptabilities’ stability
when more characteristic points are allowed.

The number of pairwise comparisons is again the only pa-
rameter that, when increasing, positively affects the performance
of all procedures. This is particularly visible for procedures such
as UTAMP1, UTAMSVF, MAXIMAX, MAXIMIN, MM-REGRET, and
UTAMSCVF that cope badly when the DM compares only a few
pairs. For example, UTAMP1 attained the highest relative increase
of MRAI from 0.3180 for C =4 comparisons to 0.4994 for C = 10.
When additional preference information is available, the compati-
ble rankings receive greater support in the set of all feasible mod-
els. This is related to the shrink of the feasible polyhedron when
indirect preferences become more complete. The least relative in-
crease in MRAI is noted for procedures such as RANK-SUM and
RANK-PROD. These methods can produce robust rankings even if
the number of pairwise comparisons is low and the space for im-
provement is much lesser than for the underperforming meth-
ods. Still, the robustness of their recommendations increases sig-
nificantly when preference information becomes richer. For exam-
ple, the average support given to the ranks produced by RANK-
SUM increases from 0.4788 for C =4 through 0.5279 and 0.5716
for the intermediate numbers of pairwise comparisons to 0.6139
for C = 10.

5. Summary and future research

We considered the preference disaggregation setting in the con-
text of multiple criteria ranking and choice. We assume the De-
cision Maker specifies pairwise comparisons of reference alterna-
tives, translated into parameters of an additive value function. The
indirectness and incompleteness of such preference information
imply the multiplicity of feasible models. In this case, the neces-
sary preference relation is unlikely to help determine a complete
ranking or the most preferred alternative. In such scenarios, it is
necessary to seek other ways to arrive at a sufficiently decisive and
conclusive recommendation.

We reviewed thirty-five methods for constructing a univo-
cal recommendation given an indetermination of the preference
model. They are divided into four sub-groups with the proviso that
some procedures may be assigned into more than one category.
These include (i) methods for selecting a representative value func-
tion, (ii) decision rules, (iii) scoring procedures, and (iv) approaches
for constructing a robust ranking. Only procedures from the first
group associate a feasible model with the provided recommenda-
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Table 4

Average Mean Rank Acceptability Indices (MRAIs) for different numbers of alternatives, criteria, characteristic points, and pairwise comparisons.

Alternatives Criteria Characteristic points Pairwise comparisons

METHOD AVG 6 8 10 12 14 3 4 5 2 3 4 4 6 8 10

UTAMP1 0.4115 0.6360 0.4632 03714 03134 0.2734  0.4595 0.4037 03713 0.4864 03878  0.3602 03180  0.3852 0.4433 0.4994
UTAMP2 0.4408 0.6657 0.4955 0.4024 0.3407 0.2995 0.4963 0.4322 03937  0.5055 0.4248  0.3919 03554  0.4155 0.4699  0.5221
UTAMSCVF 0.3863  0.6340 0.4404 03396 02783 0.2390 0.4412 03769  0.3407 0.3844 03881 03015 03605 04147  0.4683
UTAMSVF 03590  0.6066 0.4082 03116 0.2531 0.2156 0.4012 0.3513 0.3245 0.4033 0.3450  0.3288 02787 03324 03854  0.4395
UTAJLS 0.4807 0.7083 0.5405 0.4435 03786  0.3328 0.5322 0.4746 0.4355 0.5435 0.4657 04330 0.4007 0.4570  0.5081 0.5571
UTAAVE 0.5327 0.7538 0.5970  0.4997 0.4308 0.3821 0.5755 0.5261 0.4964  0.5662 0.5151 0.5167 04599 0.5116 0.5574  0.6019
UTACHEB 0.5106  0.7333 0.5720  0.4757 0.4093 0.3626 0.5573 0.5037 0.4708  0.5494  0.4900  0.4923 0.4415  0.4897 0.5337  0.5774
ACUTA 05160 0.7393 05781 0.4815 04142 03671 05598 0.5091 04793 05518 04976 04987 04471 04953 0.5391  0.5826
UTAROB 04319  0.6482 0.4815 0.3935 03370  0.2991 0.4876  0.4240 0.3840 0.4990 0.4089  0.3877 0.3507  0.4071 0.4593 0.5104
REPROC 0.5334 0.7544 0.5979  0.5007 0.4315 0.3824  0.5762 0.5268 0.4971 0.5671 05158  0.5173 0.4606 0.5124  0.5581 0.6025
MAXIMAX 03936  0.6386 0.4491 0.3486 0.2866  0.2453 0.4408 0.3862 03538 04560 03796  0.3453 0.3051 0.3666  0.4241 0.4788
MAXIMIN 0.3938 0.6383 0.4487 0.3491 0.2877 0.2453 0.4408 0.3864  0.3541 0.4563 03807  0.3443 03049  0.3673 0.4243 0.4787
MM-REGRET 0.4010  0.6445 0.4570  0.3567 02949  0.2515 0.4459  0.3935 0.3635 0.4575 03839  0.3615 03130 03756 04310 0.4843
EXPRANK 05229  0.7479 0.5866  0.4887 0.4200 0.3712 0.5640  0.5167 0.4880 0.5540 0.5059  0.5087 0.4495  0.5014  0.5477  0.5929
BESTRAI 0.4517 0.6966 0.5083 0.4091 0.3443 0.3000 0.4930  0.4452 0.4167  0.4835 0.4354  0.4361 0.3802 04280 04750 0.5234
'WORSTRAI 0.4515 0.6962 0.5082 0.4084 03444  0.3003 0.4928 0.4444 04173 04836 04349 04360 03800 0.4278 0.4751 0.5231
AP1 0.4552 0.6918 0.5152 0.4147 03500 03044 0.5076  0.4480 0.4101 05134  0.4360 0.4162 03765 04310 04814 05319
AP2 0.4893 0.7099 0.5475 0.4533 0.3902 0.3455 0.5433 0.4824  0.4421 0.5526  0.4690  0.4462 0.4136  0.4665 05148  0.5622
DME1 0.4453 0.6761 0.4999  0.4052 03440  0.3015 0.5091 0.4372 03897  0.5139 0.4287 03934 03582 04189 04756 0.5286
DME2 0.4778 0.6987 0.5332 0.4413 03796  0.3362 0.5317 04711 0.4306  0.5321 0.4603 0.4410 0.4024 04550 0.5031 0.5506
MAXPOI 0.4701 0.7093 0.5276  0.4288 03644  0.3205 0.5160  0.4633 0.4312 0.5108 0.4508  0.4488 03986  0.4470  0.4940  0.5409
MINPOI 04702 07093 05281 0.4291 03644 03200 05161 04636 04309 05103 04510 04491 03989 04472 04938  0.5408
SUMPOI 05229  0.7479 0.5866  0.4887 0.4200 0.3712 05640  0.5167 0.4880  0.5541 0.5059  0.5087 0.4495 0.5014 05477  0.5929
RANK-SUM-IND 0.5334  0.7550 0.5989  0.5010 0.4310  0.3809 0.5767 0.5269 0.4965 0.5673 0.5156  0.5171 0.4596  0.5121 0.5586  0.6032
RANK-SUM 0.5481 0.7590 0.6092 0.5169 0.4512 0.4041 0.5928 0.5414  0.5100 0.5870  0.5296  0.5277 0.4788  0.5279 0.5716  0.6139
RANK-PROD 0.5478 0.7589 0.6090  0.5167 0.4509  0.4038 0.5926  0.5412 0.5098  0.5867 0.5293 0.5275 04786  0.5277 05714  0.6137
RANK-MM 0.5307 0.7557 0.5993 0.4991 0.4261 0.3736 0.5777  0.5238 0.4907  0.5715 0.5113 0.5093 0.4584  0.5097 05554  0.5994
REL-SUM 05336  0.7545 0.5980  0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609 0.5126  0.5583 0.6026
REL-PROD 0.5336  0.7545 0.5980  0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609 0.5126  0.5583 0.6026
REL-MM 0.5336  0.7545 0.5980  0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609  0.5126  0.5583 0.6026
REL-SUM-IND 0.5331 0.7540 0.5975 0.5004  0.4313 03824 05754  0.5268 0.4972 0.5663 0.5157  0.5173 0.4607  0.5122 0.5578  0.6018
REL-PROD-IND 0.5331 0.7540 0.5975 0.5005 0.4313 0.3824 05754  0.5268 0.4972 0.5663 05157  0.5173 0.4607  0.5122 05578  0.6018
REL-MM-IND 0.5330  0.7540 0.5975 0.5003 0.4311 0.3820 0.5752 0.5267 0.4971 0.5662 05156  0.5172 0.4605  0.5121 0.5577  0.6017
DOWN-DIST 0.5152 0.7420 0.5793 0.4802 0.4115 0.3628 0.5553 0.5091 0.4811 0.5453 0.4985 0.5017 0.4414  0.4935 0.5402  0.5856
UP-DIST 0.5152 0.7420 0.5794  0.4807 0.4112 0.3627 0.5553 0.5092 0.4811 0.5456  0.4984 0.5016  0.4415 0.4936  0.5400 0.5857
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Reconstruction of DM s preferences

Type of decision
problem
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Measure: RAM Measure: RDM
Methods: RANK-SUM, RANK-PROD Methods: REL-SUM, REL-PROD, REL-MM

Fig. 5. A decision tree supporting the selection of the measure and the best performing method depending on the characteristics of the problem.

tion. In the methods from the first three groups, the scale leading
the recommendation is cardinal, whereas for the last group - it is
ordinal. All methods except a few oriented toward selecting a rep-
resentative model account for the robustness of results obtained in
the set of compatible value functions. However, these outcomes are
different, referring to the extreme value differences (dominance in-
tensities), stability of pairwise relations, or robustness of ranks at-
tained by alternatives. Moreover, even if the general aim of some
methods is the same, they differ in terms of how this objective is
implemented. For example, in the case of selecting a representa-
tive model, one may opt for the most discriminant, average, cen-
tral, benevolent, aggressive, parsimonious, or robust value function.
In turn, constructing a robust ranking may be conducted using
upward or downward distillations, or mathematical programming
models maximizing the sum, product, or minimal support quanti-
fied with stochastic acceptabilities.

The performance of all methods was compared on problem in-
stances with different complexities. The outcomes of an extensive
study were quantified in terms of seven measures. By referring to
their specificity, we can design a decision tree facilitating the selec-
tion of the best performing procedure based on the experimental
outcomes (see Fig. 5). The tree refers to four characteristics im-
portant for the practice of decision aiding. The major one points
out to maximizing either the similarity between the DM’s true
preferences and the recommendation suggested by the method or
the robustness of the delivered recommendation in terms of the
support it is given in the set of compatible value functions. The
other essential feature distinguishes between the choice and rank-
ing problems. When dealing with choice, the focus is always on
identifying the most preferred alternative. In the case of ranking
problems, we can differentiate between the analysis of pairwise re-
lations or ranks assigned to alternatives. The former is focused on
one-against-one comparisons, whereas the latter refers to the per-
formance of individual alternatives derived from their comparisons
with all remaining options. Finally, given the rank-oriented per-
spective in the context of reconstruction of the DM’s preferences,
it may be interesting to consider if alternatives attain precisely the
same ranks in the true and predicted rankings or account for the
differences between the ranks associated with the alternatives in
the two rankings.

There is a consistency in indicating the best performing pro-
cedures for the three groups of measures. First, when it comes to
identifying the DM’s true most preferred alternative (NHR) and the
support given to the top-ranked alternative by all feasible mod-
els (FRAI), the best results are attained by BESTRAL It investigates
the best ranks attained by all alternatives along with the shares
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of compatible value functions confirming such a favorable result.
Thus, BESTRAI is recommended for use in the context of choice
problems. Second, concerning the reproduction of the relations in
the DM’s true ranking (Kendall’'s t and RDM) and the support
given to the pairwise relations by all compatible models (MPRI),
the best outcome are attained by the REL procedures. They con-
struct a ranking by emphasizing the relations confirmed by the
greatest share of value functions consistent with the DM’s prefer-
ences. Hence, when dealing with ranking problems with the in-
terest of either reconstructing the DM’s pairwise preferences or
maximizing the robustness of recommendation for all pairs of al-
ternatives, we advise employing REL-SUM, REL-PROD, or REL-MM.
Third, as far as reconstructing the positions in the DM’s true rank-
ing (RAM) and the support given to the assigned ranks in the feasi-
ble polyhedron (MRAI) are concerned, the most advantageous per-
formance is observed for RANK-SUM and RANK-PROD. These meth-
ods construct a ranking by placing the alternatives in these po-
sitions that they attained most frequently in the set of compat-
ible preference model instances. The above conclusions are con-
strained by the considered experimental setting (e.g., relatively
small MCDA problems and additively rational DMs). Such a limi-
tation concerns all experimental studies whose feasibility requires
making arbitrary assumptions and fixing a finite number of pa-
rameter values specifying the relevant problem instances. Never-
theless, the likelihood of the conclusions presented in this paper
is strengthened by a broad spectrum of considered problem char-
acteristics and analyzing a significant number of 180,000 problem
instances.

Even though the best performers differ from one measure to
another, the subsets of methods attaining favorable results are con-
sistent given all measures. They include the approaches that con-
struct a robust ranking based on stochastic acceptabilities, meth-
ods that exhibit the expected results, and procedures selecting rep-
resentative value functions that emphasize the robustness preoc-
cupation (REPROC), average the indications of all feasible models
(UTAAVE) or can be deemed as central in the feasible polyhedron
(ACUTA and UTACHEB). The exception in this regard can be noted
for BESTRAI and MINPOI. They deal exceptionally well in the con-
text of choice but fail to provide satisfactory results when consider-
ing the entire rankings. The least favorable outcomes were attained
by simple decision rules based on the extreme outcomes in the
set of feasible models, procedures selecting a representative value
function that is benevolent, parsimonious, or the most discrimi-
nant, and methods exploiting the dominance intensities. This con-
firms that an increased computational effort at the stage of con-
structing a decision recommendation pays off to increase both its
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robustness and the chances for reconstructing the DM’s true pref-
erences.

The experimental study indicated that the consistency between
the reference and resulting models, as well as the robustness of
recommendations delivered by all methods, decreased with greater
numbers of alternatives and criteria, lesser number of character-
istic points, and when moving from linear to piecewise linear
marginal value functions. Such trends can be explained given a
greater complexity of problems involving more alternatives and
criteria, higher flexibility of additive value functions and greater
variability of rankings with more criteria and characteristic points,
and more constrained space of feasible models when additional
pairwise comparisons are available. More significant absolute dif-
ferences in the performance measures were observed in the lower
scale range of different parameters of a decision problem or a rank-
ing model (e.g., when passing from 6 to 8 alternatives, from 3 to 4
criteria, from 2 to 3 characteristic points, of from 4 to 6 pairwise
comparisons). In turn, the differences in the upper parts of the pa-
rameter scales were lesser (e.g., when passing from 12 to 14 alter-
natives, from 4 to 5 criteria, from 3 to 4 characteristic points, or
from 8 to 10 pairwise comparisons). In general, the relative perfor-
mances of all procedures were the same irrespective of the prob-
lems’ and models’ parameterization. Some slight differences were
related to the operational steps of different methods. For example,
the approaches that do not build their recommendations on the
robustness of results tend to perform worse for greater problem
instances or with more flexible preference models.

The universal setting adopted in the UTA-like methods makes
the findings of this paper of interest to researchers in other
fields, including choice modeling (CM) [43] and preference learning
(PL) [16]. On the one hand, CM, an essential subfield of economics
and marketing, employs consumers’ revealed or stated preferences
in the form of pairwise comparisons (discrete choice). These are
used to construct a preference model - often via linear program-
ming - that is typically a utility function [55,57]. The model re-
veals the importance of various attributes and trade-offs between
characteristics, allowing to value products, goods, or services that
the consumers have not directly judged [27]. In this perspective,
both its form and usefulness are similar to those learned by the
UTA-like methods, even though the typical contexts of use (e.g.,
refining new product development, estimating the willingness to
pay, or testing product viability) are different. On the other hand,
PL, an important subfield of machine learning and artificial intelli-
gence, also uses holistic observed preferences to infer models pre-
dicting the preference for previously unseen items, objects, or in-
stances. The prevailing PL methods search for utility functions by
solving regression problems. However, unlike UTA-like methods,
they are typically used in the context of large sets of preference
statements, e.g., in the search engine or recommender system en-
vironments [11].

We envisage the following directions for future research. First,
it is possible to develop more procedures for constructing a univo-
cal recommendation. In this regard, an exciting idea consists in in-
corporating the robust optimization objectives from [58] into pro-
cedures selecting a representative value function. Such procedures
may be applicable to scenarios where the Decision Maker needs to
consider a concrete instance of the preference model along with
the recommended decision. Also, the pairwise stochastic accept-
abilities can be exploited with other approaches as, e.g., proposed
in [36], where the eigenvector method was applied in the context
of robust efficiency results. Second, a limitation of our study con-
sisted of assuming that the set of compatible value functions was
non-empty. While some approaches (e.g., those exploiting the out-
comes of robustness analysis) are applicable only under such a set-
ting, others can also be used when an additive value model can-
not perfectly reproduce all DM’s pairwise comparisons. Therefore,
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it would be interesting to adjust some methods to the case of in-
compatibility and conduct a simulation study focusing specifically
on such a context, similarly to what has been in [3]. Third, some
methods presented in this paper are universal, being applicable to
results obtained with any preference model. However, the selection
of procedures for deriving a representative parameter set in the
context of outranking methods or representative set of rules appli-
cable with the Rough Set Theory is scarce. Hence novel approaches
can be elaborated and subsequently compared in terms of their
predictive accuracy or robustness preoccupation. Finally, an appeal-
ing direction for future research consists of elaborating preference
learning algorithms for constructing a recommendation based on
large sets of inconsistent pairwise comparisons. In this paper, we
considered problem instances with sizes typical for MCDA. How-
ever, adjusting the preference disaggregation algorithms to the era
of big data becomes more and more critical given an increasing
range of applications where the extensive collections of prefer-
ences are already available or observed from the users’ behavior
rather than directly elicited from the DMs.
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1. Illustrative study

In this section, we illustrate the use of 35 methods for constructing a univocal recommendation. For this purpose, we
consider a problem of ranking six cars that are evaluated in terms of the following five criteria: price (g1; cost), power
(92; gain), acceleration (g3; cost); fuel consumption (gq, cost), and COy emission (gs; cost). For the performances, see
Table 1. To simulate the DM’s policy, we have drawn Marginal Value Functions (MVFs) for the reference model (see
Figure 1). The ranks, marginal and comprehensive values attained by all alternatives are provided in Table 1. To perform
the analysis, we assume the DM provides the following four randomly selected pairwise comparisons derived from the

reference ranking: as > as, ag >~ a1, az = a9, and a4 > as.

Table 1: Performances of six cars on five criteria and their marginal and comprehensive values according to the reference model.

Performances Reference model

Alternative g1 g2 gs ga gs Rank | u1 usg usg ug us U

a1 (Audi A3) 22080 | 105 | 11.4 | 5.8 | 119 4 0.4191 | 0.0000 | 0.0000 | 0.0337 | 0.0775 | 0.5304
az (Audi A4) 28100 160 8.6 9.6 164 6 0.1201 0.2095 0.1395 0.0000 0.0000 0.4691
a3 (BMW 118) 24650 | 143 | 9.0 4.5 | 119 1 0.2834 | 0.1526 | 0.1213 | 0.0555 | 0.0775 | 0.6903
as (BMW 320) 32700 | 177 | 7.9 6.7 | 128 5 0.0000 | 0.2665 | 0.1713 | 0.0186 | 0.0626 | 0.5190
as (Volvo C30) 22750 | 136 | 9.4 7.6 | 151 2 0.3837 | 0.1247 | 0.1032 | 0.0100 | 0.0233 | 0.6450
ae (Volvo S40) 27350 | 180 | 7.9 8.4 | 164 3 0.1407 | 0.2765 | 0.1713 | 0.0060 | 0.0000 | 0.5946

In what follows, we use MVFs with v; = 3 characteristic points. The set of compatible Additive Value Func-
tions (AVFs) is non-empty. Let us first discuss the intermediate results exploited by some procedures that construct a
univocal recommendation. In Table 2, we present the dominance intensities, i.e., minimal value differences for all pairs
of alternatives. In case D(a,b) > 0, a is necessarily weakly preferred to b. Such a robust relation holds for the following

pairs: (as,az), (as,as), (as,a2), (as,a1), (as,a2), and (a;,a;) for i =1,...,6.

Table 2: Dominance intensities for all pairs of alternatives and scores of alternatives according to AP1, AP2, DME1, and DME2.

Dominance intensities Scores according to four procedures
D(a, b) ay a2 as a4 as ag AP1 AP2 DME1 DME2
ay 0.0000 -0.9998 -0.9999 | -0.9999 | -0.9998 | -0.9998 -4.9992 | -3.5140 | -6.73E-05 | 1.0535
as -0.4922 | 0.0000 -0.6710 | -0.8107 | -0.5128 | -0.5138 -3.0005 | -1.6288 -0.0001 1.0906
as -0.1744 | 0.0001 0.0000 -0.6238 | 0.0001 -0.5137 -1.3116 | 2.3957 0.0002 3.9161
a4 -0.3188 | 0.0001 -0.6193 | 0.0000 -0.3771 | -0.3621 -1.6771 | 2.0774 5.96E-05 | 3.5251
as -0.5000 | -0.3721 -0.7462 | -0.8202 | 0.0000 -0.6976 -3.1360 | -0.8788 | -4.43E-05 | 1.9062
ae 0.0001 5.52E-17 | -0.6710 | -0.5000 | -0.3676 | 0.0000 -1.5385 1.5485 6.50E-05 | 3.5085

The set of compatible AVFs can also be exploited with the Monte Carlo simulation to obtain stochastic acceptabilities.
In Tables 3 and 4, we present PWIs and RAIs, respectively, estimated based on 10,000 value functions. Clearly, for
all pairs a,b € A such that a = b, PWI(a,b) = 1. However, the share of feasible models confirming the advantage of
some alternatives over others is also great for other pairs (see, e.g., (a3, a1), (a4,a1), and (a4, as)). For another pairs, the

preference probabilities are more balanced (see, e.g., (a1,a2) and (ag, aq)). We distinguish in bold PW s corresponding
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to the relations observed in the complete reference ranking. Similarly, in Table 4, we emphasize RAIs for the positions
attained by each alternative in the DM’s ranking. Some alternatives (see as, a3, and ag) have a relatively strong support
for their true positions in the set of compatible AVFs. However, the distribution of ranks probabilities is less focused for
other alternatives, with a4 and a5 attaining five different positions depending on the selected model. Limited support
offered to some elements of the true DM’s ranking is related to the fact that it is unknown to the method, being supplied

with incomplete preference information concerning only four pairs of alternatives.

Table 3: Pairwise winning indices (PW Is) for all pairs of alternatives and scores of alternatives according to SUMPOI, MAXPOI, and MINPOL.

Pairwise Winning Indices Scores according to three procedures

Alternative | a1 as as aq as ag SUMPOI | MAXPOI MINPOI
ay 0.000 0.484 | 0.000 | 0.034 | 0.300 0.000 -3.364 -0.032 -1

as 0.516 0.000 0.000 | 0.000 0.327 0.000 -3,314 0.032 -1

as 1.000 1.000 | 0.000 | 0.587 | 1.000 | 0.769 3.712 1 0.174
a4 0.966 1.000 | 0.413 | 0.000 0.902 0.777 3.116 1 -0.174
as 0.700 | 0.673 | 0.000 | 0.098 | 0.000 0.169 -1.72 0.4 -1

ag 1.000 1.000 | 0.231 0.223 | 0.831 0.000 1.57 1 -0.554

Table 4: Rank Acceptability Indices (RAIs) for all alternatives and ranks, and scores of alternatives according to EXPRANK, BESTRAI, and
WORSTRAL

Rank Acceptability Indices Scores according to three procedures
Rank | 1 2 3 4 5 6 EXPRANK | BESTRAI | WORSTRAI
al 0.000 0.000 0.016 0.259 | 0.252 0.473 -5.182 -2.984 -6.473
az 0.000 0.000 0.000 0.249 0.345 0.406 -5.157 -3.751 -6.406
as 0.555 | 0.246 0.199 0.000 0.000 0.000 -1.644 -0.445 -3.199
as 0.363 0.436 0.119 0.060 0.022 | 0.000 -1.942 -0.637 -5.022
as 0.000 0.051 | 0.161 0.286 0.381 0.121 -4.360 -1.949 -6.121
a6 0.082 0.267 0.505 | 0.146 0.000 0.000 -2.715 -0.918 -4.146

The rankings obtained with all 35 methods are provided in Table 5. UTAMSCVF was the only approach that
reproduced the DM’s true ranking. The majority of methods (19 out of 35; e.g., ACUTA, EXPRANK, and RANK-SUM)
returned the same ranking: ag = a4 = ag = a5 = az > a1. Only a few methods (e.g., UTAMSVF, DOWN-DIST, and
UP-DIST) admitted indifference relation, e.g., by ranking both as and a4 at the top.

Table 5: Rankings attained by six alternatives in the reference ranking and recommendations provided by the 35 considered methods.

Method ay as | asg a4 as ag Method a as as as | as ag
REFERENCE 4 6 1 5 2 3 AP1 6 4 1 3 5 2
UTAMP1 6 4 2 1 5 3 AP2 6 5 1 2 4 3
UTAMP2 6 5 1 2 4 3 DME1 5 6 1 3 4 2
UTAMSCVF 4 6 1 5 2 3 DME2 6 5 1 2 4 3
UTAMSVF 6 5 1 1 4 3 MAXPOI 6 5 2 1 4 3
UTAJLS 5 6 3 1 4 2 MINPOI 6 5 1 2 4 3
UTAAVE 6 5 1 2 4 3 SUMPOI 6 5 1 2 4 3
UTACHEB 4 5 3 1 6 2 RANK-SUM-IND 5 5 1 2 4 3
ACUTA 6 5 1 2 4 3 RANK-SUM 6 5 1 2 4 3
UTAROB 6 5 3 1 4 2 RANK-PROD 6 5 1 2 4 3
REPROC 6 5 1 2 4 3 RANK-MM 6 5 1 2 4 3
MAXIMAX 6 5 1 2 4 3 REL-SUM 6 5 1 2 4 3
MAXIMIN 5 4 3 2 6 1 REL-PROD 6 5 1 2 4 3
MM-REGRET 6 4 2 1 5 3 REL-MM 6 5 1 2 4 3
EXPRANK 6 5 1 2 4 3 REL-SUM-IND 6 5 1 2 4 3
BESTRAI 5 6 1 2 4 3 REL-PROD-IND 6 5 1 2 4 3
WORSTRAI 6 5 1 3 4 2 REL-MM-IND 6 5 1 2 4 3
DOWN-DIST 5 5 1 1 4 3 UP-DIST 5 5 1 1 4 3

The MVFs and the respective comprehensive values derived with the ten methods that select a representative value
function are shown in Figure 1 and Table 6. The MVFs returned by UTAMP1 and UTAMP?2 are very similar, leading to
the same rankings. This is understandable given their objective functions that maximize the minimal value difference for
pairs of reference alternatives compared by the DM. For UTAMP1, the optimal § is equal to 0.361, whereas for UTAMP2
— it is only slightly lower (0.3596). This is because the latter approach compromised this objective against a slightly
greater minimal slope p of MVFs.

The UTAMSCVF method aims at inferring a parsimonious model. This was perfectly attained because MVFs are
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Figure 1: Reference model and representative marginal value functions obtained with ten methods.

linear (see Figure 1), assigning the greatest share in the comprehensive value to g1, and neglecting the impact of both
gs and gs. In turn, UTAMSVF maximized the sum of scores assigned to all reference alternatives. As a result, they are
close to one, and the discrimination between alternatives is poor. This was attained by assigning the greatest impact to
g3 and almost nullifying the importance of the remaining four criteria.

Even though UTAJLS and UTAAVE apply a similar idea of selecting an average model, their results differ. Due to
considering only the extreme models, UTAJLS assigned slightly greater impact to g1, g2, and g4, whereas UTAAVE —
considering a large sample of uniformly distributed models — attributed significant shares in the comprehensive value to
g2 and g3. Moreover, for UTAAVE, the MVFs are closer to being linear, whereas for UTAJLS — they are either concave
or convex on all criteria. For this study, the average model built on Stochastic Ordinal Regression (SOR) is similar to an
analytic center of the feasible polyhedron determined by ACUTA. The rankings of these two methods are the same, and
the comprehensive scores for six alternatives differ by at most 0.04. The MVFs corresponding to the Chebyshev center
are very characteristic in the sense of attributing the same marginal values to the middle breakpoints on all criteria and
four out of five best performances. As a result, the impacts of various criteria are more balanced, which is consistent with
the objective of finding the center of the hypersphere inscribed in the simplex.

The remaining two procedures for selecting a representative value function emphasize the robustness of results.
UTAROB exploits the necessary relation by making the value differences for alternatives compared in the same way

by all feasible functions as large as possible. Indeed, such a minimal difference is large, being equal to 0.3314 (see, e.g.,



Table 6: Comprehensive values for all alternatives according to the reference model and the representative value functions selected by ten
methods.

Method al az as a4 as ag
REFERENCE 0.5304 | 0.4591 | 0.6903 | 0.5190 | 0.6450 | 0.5946
UTAMP1 0.3223 0.4688 0.8298 0.8298 0.4688 0.6833
UTAMP2 0.3234 0.4690 0.8286 0.8286 0.4690 0.6830
UTAMSCVF 0.6114 0.4411 0.7256 0.4421 0.6457 0.6124
UTAMSVF 0.0010 0.9990 1.0000 1.0000 0.9990 0.9995
UTAJLS 0.4137 0.4088 0.5985 0.6888 0.4868 0.6404
UTAAVE 0.4373 0.4701 0.7499 0.7251 0.5177 0.6468
UTACHEB 0.4247 0.4099 0.6142 0.7233 0.4027 0.6502
ACUTA 0.4387 0.4410 0.7668 0.7527 0.4792 0.6179
UTAROB 0.3675 0.3675 0.6989 0.8758 0.3675 0.6989
REPROC 0.4160 0.5149 0.9103 0.8114 0.6137 0.7126

(as,as), (a4, a2), and (ag,az2)). The other objective aiming at neglecting the difference for pairs which are not related by
=N led to very similar comprehensive scores for two subsets of alternatives: (a1, as, as) and (a3, ag). A more detailed
information captured by PW s is handled by REPROC. It maximizes the values difference for pairs a,b € A such that
PW1I(a,b) > PWI(b,a). The number of such pairs is greater than those related by the necessary preference. As a result,
the optimal value of the objective function is lesser (0.0988) (see, e.g., (az,a1), (as,az2), and (as,as4)). Each alternative
that proved to be better than other for a larger share of compatible AVFs is ranked better in the representative ranking
determined by REPROC (see, e.g., PWI(as,as) = 0.673 > PW1(ag,as) = 0.327).

The results of three value-based decision rules are presented in Table 7. They provide ambiguous recommendations.
In particular, MAXIMAX ranks as at the top because of its excellent comprehensive value equal to one in the most
advantageous scenario. Furthermore, according to MINIMAX, ag is the most favorable option as it has the greatest
minimal comprehensive value (0.3290). Finally, MM-REGRET indicates a4 as the best because its greatest regret to the
most preferred alternative is the least (0.6193).

Table 7: Scores attained by six alternatives according to three value-based decision rules.

Method al a2 as a4 as ae
MAXIMAX 0.8211 0.9999 1.0000 1.0000 0.9999 0.9999
MINIMAX 7.14E-05 0.1535 0.2727 0.3088 1.35E-16 0.3290
MM-REGRET -0.9999 -0.8107 | -0.6238 | -0.6193 | -0.8202 -0.6710

The three rank-based decision rules agree concerning the most preferred alternatives. The scores assigned to ag by
EXPRANK, BESTRAI, and WORSTRAI are —1.644, —0.445, and —3.199, respectively. For the scores of all alternatives,

see Table 4. Such favorable evaluations of ag derive from attaining:
e the best position (1.644) in an average case (the expected rank for the second-best alternative a4 is 1.942);

e the first rank in the best case with RAI(ag, 1) = 0.555, being greater than for other potentially optimal alternatives
ay (RAI(a4,1) =0.363) and ag (RAI(ag,1) = 0.082);

e the third rank in the worst case (with RAI(as,3) = 0.199), which is better than for the five remaining alternatives

attaining positions from fourth (see ag) to sixth (see aq, as, and as) in the least advantageous scenario.

The outcomes for scoring procedures exploiting dominance intensities are provided in Table 2. AP1 assigns the best
score to ag because its regrets to other alternatives are relatively small, ranging from —0.6238 to 0.0001. On the contrary,
aj is vastly worse than all other alternatives in the worst-case scenario, with regrets ranging from —0.0998 to —0.9999.
AP1 just sums up such regrets over comparisons with all remaining alternatives and favors those for which such a sum
of regrets is the least. In turn, AP2 puts together this information with the regrets of all remaining alternatives to a
given one. Hence it combines the arguments in favor of each alternative’s strength and weakness captured by dominance
intensities. Since, in general, other alternatives lose more to ag than vice versa, the AP2 score for ag is highly positive,
putting its ahead of a4 and ag for which the balance is also greater than zero. Note that the sum of AP2 scores for all
alternatives is zero because the strength of some alternatives counts as a weakness of some other option.

DMEL1 considers the same intermediate results as AP2. However, it aggregates them into ratios between positive

and negative values in the row and column corresponding to a given alternative in the dominance intensity matrix (see
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Table 2). Since there are only a few positive values in this matrix, the ratios and final scores are close to zero. Similar to
AP1 and AP2, DMEI1 ranks a3 at the top with the score of 0.0002, but the positions of the remaining alternative differ.
When it comes to DME2, it considers preference intensities for all pairs a,b € A, deriving them from the comparison of
D(a,b) and D(b,a). Such comparisons are again the most advantageous for ag (3.9161), which is necessarily preferred to
ag and as (here, preference intensities are equal to one) while being marginally less favorable in terms of regrets only when
compared to as. On the other extreme, a; attains the lowest DME2 score (1.0535) because it is necessarily outranked by
ag and loses more in terms of dominance intensities to all remaining alternatives than each of them loses to a;.

The scores derived with three POI-based procedures are provided in Table 3. They consider the differences between
POI(a,b) and POI(b,a) for all pairs a,b € A, while transforming them into scores differently using sum, min, or max
operators. According to SUMPOI and MINPOI, a3 is ranked first, because the comprehensive balance of its POIs is
strongly positive (3.712) and its minimal POI advantage over some other alternative is 0.174. For MAXPOI, a3, aq,
and ag attain the same maximal POI difference of one. However, when reducing the POI-based pairwise comparisons
only to these three alternatives, a4 proves to the best, because of its large advantage over ag (POI(a4,a¢) — POI(ag, as)
= 0.777 — 0.223 = 0.554 is greater than POI(as,a4) — POI(a4,a3) = 0.174 and POI(as,as) — POI(ag,a3) = 0.538).

The remaining methods for constructing a univocal recommendation exploit stochastic acceptabilities. RANK-SUM,
RANK-PROD, and RANK-MM derived the same ranking (as = a4 > ag > a5 > as > a1) by maximizing the support
given to the assignments of alternatives to ranks based on RAIs. For RANK-SUM, the sum of such supports is 2.6
(RAI(a3,1)+ RAI(a4,2)+ RAI(ag,3)+ RAI(a5,4)+ RAI(az2,5)+ RAI(a1,6) = 2.6), for RANK-PROD - their product
is 0.0057, and for RANK-MM — the minimal support is 0.286 corresponding to the assignment of a5 to fourth rank
(RAI(as,4) = 0.286). The order for RANK-SUM-IND is different in terms of assigning a; and ag to the same position.
This is because such an indifference allowed to maximize the sum of RAI-based supports due to high values of RAI(aq,6) =
0.473 and RAI(az,6) = 0.406.

All mathematical programming models constructing a univocal ranking based on PW s led to the same solution
as RANK-SUM. This means that for this particular problem, it was equivalent to consider the supports provided by
stochastic acceptabilities to the assignments of alternatives to ranks and pairwise relations. None PW [-based procedure
opted for an indifference relation for any pair of alternatives as such shared ranks were not observed for any compatible
value function in the sample of 10,000 compatible AVFs. Let us just note that the sum of supports to the ranking derived
with REL-SUM was 12.721 (PW1(a3,a4) + PW1(ag,a6) + ...+ PWI(az,a1) = 12.721), whereas the minimal support
optimized by REL-MM was 0.516 corresponding to PW1(ag,a;). Consequently, similar to REPROC, each alternative
preferred to others for a greater share of compatible AVFs is ranked better in the constructed ranking.

The upward and downward distillations applied to the POI matrix constructed the same ranking, admitting indiffer-
ence relations between a3 and a4 at the very top and a; and as at the very bottom. When DOWN-DIST considers all
alternatives jointly in the first iteration, az and a4 have the same greatest qualities equal to three. This is because their
POIs over ay, ag, and as are very high and significantly greater than the inverse POIs. However, in the internal distilla-
tion, it is not possible to distinguish among as and a4, because POI(as, a4) is not significantly greater than POI (a4, a3).
In the same spirit, when UP-DIST considers all alternatives, a; and as have the same least quality equal to —3. This is
because the POIs of as, a4, and ag over these these two alternatives are very high. Again, in the internal distillation, it

is impossible to differentiate a; and ag, because POI(a1,a2) and POI(az2,aq) are alike.

2. Boxplots

In this section, we present boxplots for the performance measures. For NHR and MRAI, they are provided and discussed
in the main paper. Figures 2—6 represent such boxplots for the remaining five measures (Kendall’s 7, RDM, RAM, MPRI,

and FRAI). Their discussion would be similar to this provided in the main paper for other measures.
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Figure 3: Boxplot for Rank Difference Measure.
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3. The Hasse diagrams representing statistically s

In this section, we present the Hasse diagrams representing statistically significant differences between the considered

methods. For NHR and MRAI, they are provided and discussed in the main paper. Figures 7-11 represent such diagrams

for the remaining five measures (Kendall’s 7, RDM, RAM, MPRI, and FRAI).
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Figure 5: Boxplot for Mean Pairwise Relation Acceptability Index.

4. Experimental results — the extreme performance of the procedures exploiting incomplete preference
information

In the main paper, we discussed the experimental results while focussing on the average performance across all considered
problem instances. In this section, we refer to the best and the worst performances given the seven measures as well as
their relation with the mean attainments. The extreme performances can be observed in the respective boxplots presented
in the main paper for NHR and MRAI and in the e-Appendix for Kendall’s 7, RDM, RAM, MPRI, and FRAI

4.1. Similarity between the DM’s simulated model and the derived recommendation

In this section, we discuss the similarities in recommendations provided by the reference model and the procedures
exploiting incomplete preference information. When it comes to NHR, all methods attained the worst (i.e., 0) and the
best (i.e., 1) possible values for some problem instances. In fact, twelve out of 35 methods (e.g., UTAAVE, RANK-
SUM, or REL-PROD) obtained only the extreme values for all generated instances. This can be explained as follows.
According to the DM’s models, there was a unique true most preferred alternative for all considered scenarios. The high
discrimination capacity of some methods implied that they generated rankings without shared positions. Then, when the
top-ranked alternative was the true most preferred option, NHR was equal to one, whereas if the two alternatives did
not align, NHR was zero. However, some other methods tend to rank at least two alternatives at the very top. If one of

them was the true most preferred option, then NHR took values between zero and one. For example, for some problems
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Figure 6: Boxplot for First Rank Acceptability Index.

instances, MAXIMAX and UTAMSVF — characterized by low discrimination power — ranked twelve alternatives at the
top. Moreover, the outlying observations presented on the NHR boxplot (see main paper) for REPROC confirm that for
some problems, the method ranked the true most preferred alternative first as one out of two, three, four, five, or six
alternatives (leading to NHR ranging from 1/2 to 1/6).

The method for which NHR = 0 was observed least frequently (i.e., for 16.24% of the considered instances) is UP-
DIST. In this regard, it was followed by RANK-SUM (18%), DOWN-DIST (20.99%), and BESTRAI (23.27%). However,
the latter approach accomplished the best average NHR value. This is mainly due to attaining NHRe€ (0, 1) only for 0.05%
considered instances. For other well-performing procedures, such ambiguous hit was observed for a more significant share
of problems (for UP-DIST — around 15%, for RANK-SUM — 13%, and for DOWN-DIST — 7%). This, in turn, lowered
their average performance in terms of NHR. The procedures that most often failed to identify the true most preferred
alternatives were UTAMSCVF (almost 40%), UTAMP1 (over 35%), and UTMSVF (over 34%).

The analysis of results for 35 procedures confirms that the shares of problem instances with NHR equal to zero or
one strongly correlate with the average NHR values (see Figure 12). The Pearson’s correlation coefficients are —0.748 for
the shares of problems leading to NHR = 0 and 0.963 for problems with NHR = 1. This is an expected result given a
low share of problems (2.84%) for which NHR values between zero and one were observed. Hence, in general, the greater
the ratio of instances for which the method attained NHR = 1 and the lesser the share of problems with NHR = 0, the
better the average performance of the method in terms of this choice-oriented measure.

The extreme results for ranking-oriented measures quantifying the similarity between the reference and resulting
models will be discussed jointly. Each method reproduced the entire true DM’s ranking for some considered problem
instances. Then, they attained the maximal values for Kendall’s 7, RDM, and RAM. Such a scenario was observed most
often (from 13.87% to 14.03% of the considered instances) for the RANK methods that emphasize the highest RAI values.
On the contrary, the reproduction of the complete ranking was the least frequent for UTAMSVF (6.20%) and the decision
rules such as MAXIMAX (6.33%), MAXIMIN (6.62%), and MM-REGRET (6.84%). The correlation between the shares
of instances for which the DM’s ranking is fully reproduced and the average values of the ranking-oriented performance
measures is high (see Figure 13). The precise values of the Pearson’s correlation coefficients are 0.856 for Kendall’s T,
0.854 for RDM, and 0.907 for RAM with p-values lesser than 10~ for each of the three measures.

The relation between the minimal and average values for Kendall’s 7, RDM, and RAM is presented in Figure 14. For
Kendall’s 7, the Pearson’s correlation coefficient between these values is 0.667 with p-value of 1.22-107°. The respective
coefficient for RDM is 0.688 (p-value = 4.88 - 107%). The worst minimal values of Kendall’s 7 and RDM were attained
by UTAMSVF (—0.5 and 0, respectively) and UTAMSCVF (—0.467 and 0, respectively). The highest most pessimistic
values of Kendall’s 7 were observed for DME2 (0.0), MAXPOI (—0.071), WORSTRAI (—0.071), and AP2 (—0.111),
whereas the greatest values of RDM in the worst-case scenario were noted for DME2 and UP-DIST (0.333) followed by
SUMPOI (0.28), EXPRANK (0.28), and DOWN-DIST (0.26). The REL methods — which proved to be the best in the
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average case given the two measures — attained —0.2 for Kendall’s 7 and 0.2 for RDM in the most pessimistic scenario.

In the case of RAM, all methods obtained the lowest value of zero for some considered problem instances. The
respective shares of scenarios for which no single alternative was assigned to its position in the DM’s true ranking are
presented in Figure 15. These shares are marginal for RANK-SUM (0.21% of problems), UP-DIST, DOWN-DIST (0.26%),
RANK-SUM-IND (0.69%), RANK-PROD (0.72%), and the REL methods (0.81%). Interestingly, even if MAXIMAX
attained the least average RAM values, the measure was equal to zero for this method only for 1.42% of instances.
On the contrary, UTAJLS — a clearly better average performer in terms of RAM — obtained RAM = 0 for nearly 2% of
problem instances. The lowest possible RAM values were again noted most often for UTAMSCVF (5.07%) and UTAMSVF
(4.16%). Also, there is a strong negative correlation between the shares of instances with the lowest possible RAM values
and the mean values of this measure (the Pearson’s correlation coefficient is —0.8333 with p-value of 5.41 - 10710).

The performances of UP-DIST and DOWN-DIST deserve special attention. When it comes to the average case, they
were always placed in the upper half of the ranking for the three measures. However, they reconstructed the entire ranking
relatively rarely, only for 8.2% of considered problem instances. At the same time, they belong to the best procedures
when it comes to the worst attained values of Kendall’s 7 and RDM. In general, their results are the most stable, which

is confirmed by the lowest standard deviations among all methods given the three ranking-oriented measures.

4.2. Robustness of provided recommendations

In this section, we discuss the robustness of recommendations provided by the considered procedures understood in terms
of the support all compatible value functions give them. Attaining the highest possible value for MRAI and MPRI is
possible only if all compatible value functions confirm the same ranks (in the case of MRAI) and pairwise relations (in the
case of MPRI). Hence, the possibility of attaining MRAI or MPRI equal to one depends on the problem characteristics.
Due to the incompleteness of DM’s preference information, the methods are rarely given a chance to do so. The highest
share of problem instances with the maximal MRAT or MPRI values is equal to 1.08%, observed for 22 out of 35 procedures
(including, e.g., UTAAVE, UTACHEB, ACUTA, and the REL and RANK procedures; see Figure 16). The sole outlier
for which this share is significantly lower (0.77%) is UTAMSCVF.

The correlation between the lowest and mean values of MRAI (0.951) and MPRI (0.922) is high. It is confirmed by
Figure 17, which exhibits the worst value attained by 35 procedures given the two measures. UTAMSVF is the only
method that attained the lowest possible MRATI of zero. Conversely, RANK-SUM-IND and RANK-PROD achieved the
highest minimal MRAT scores (0.17), followed by the REL procedures (0.14). The REL methods that excluded indifference
in the delivered ranking achieved the highest minimum MPRI values (0.720), followed by UTA-AVE (0.719). Noteworthy,
REPROC - placed just before the REL methods in the average case — attained a relatively poor lowest value of MPRI
(0.583), placing it in the lower half of the ranking in this regard.

The results related to the extreme performances given FRATI are presented in Figure 18. It confirms that all methods
achieved the highest possible value of FRAI for some problem instances. For most procedures, this happened for 17.06%
of considered instances (i.e., all problems for which all sampled value functions ranked the same alternative at the
top). For some other methods, mainly including procedures leading to the selection of some extreme models such as
UTAMSCVF (13.38%), MAXIMAX (14.99%), and UTAMSVF (15.66%), these shares are slightly lower. The Pearson’s
correlation coefficient between the maximal and average values of FRAI is 0.699. The worst possible value of FRAI was
attained for at least one problem instance by 19 out of 35 procedures, including, e.g., UTAMP, MAXIMIN, AP, and DME
methods. Then, no sampled compatible value function confirmed the alternative selected by these approaches as the
most preferred one, hence leading to FRAI = 0. This occurred most commonly for MAXIMAX (2.03% of the considered
problem instances), UTAMSVF (1.46%), and MM-REGRET (1.14%). The remaining methods always recommended the
alternative that appeared at the top for at least one sampled compatible value function. The best results in the most
pessimistic scenario given FRAI were attained by BESTRAI (0.173) and the RANK methods (from 0.131 to 0.144).



5. Performance trends

In this section, we present detailed results for performance trends. Such trends for NHR and MRAI were provided and
discussed in the main paper. In Tables 8-12, we report them for the remaining five measures (Kendall’s 7, RDM, RAM,
MPRI, and FRAI). However, their discussion would be similar to this provided in the main paper.
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Figure 7: The Hasse diagram indicating the statistically significant differences in terms of Kendall’s 7 based on the Wilcoxon test with p-value
equal to 0.05.
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Figure 8: The Hasse diagram indicating the statistically significant differences in terms of RDM based on the Wilcoxon test with p-value equal
to 0.05.
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Figure 9: The Hasse diagram indicating the statistically significant differences in terms of RAM based on the Wilcoxon test with p-value equal
to 0.05.
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Figure 10: The Hasse diagram indicating the statistically significant differences in terms of M PRI based on the Wilcoxon test with p-value
equal to 0.05.
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Figure 11: The Hasse diagram indicating the statistically significant differences in terms of FRAI based on the Wilcoxon test with p-value
equal to 0.05.
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Figure 12: The relation between the average NHR values and the share of models leading to NHR equal to either 0 or 1 based on the

performance of 35 procedures.
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Figure 13: The relation between the average Kendall’s 7, RDM, and RAM values and the share of models leading to the maximal values of
these performance measures based on the results attained by 35 procedures.
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Figure 14: The relation between the average Kendall’s 7, RDM, and RAM values and the minimum values of these performance measures
based on the results attained by 35 procedures.
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Figure 15: The relation between the average RAM values and the share of models leading to the least possible value of this measure based on

the results attained by 35 procedures.
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Figure 16: The relation between the average MRAI and MPRI values and the share of models leading to the maximal values of these performance

measures based on the results attained by 35 procedures.
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Figure 17: The relation between the average MRAI and MPRI values and the minimum values of these performance measures based on the

results attained by 35 procedures.
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Figure 18: The minimal FRAI values and the shares of models leading to the minimal or maximal FRAIs based on the results attained by 35

procedures.
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We consider preference disaggregation in the context of multiple criteria sorting. The value function
parameters and thresholds separating the classes are inferred from the Decision Maker’s (DM’s)
assignment examples. Given the multiplicity of sorting models compatible with indirect preferences,
selecting a single, representative one can be conducted differently. We review several procedures
for this purpose, aiming to identify the most discriminant, average, central, parsimonious, or robust
models. Also, we present three novel procedures that implement the robust assignment rule in
practice. They exploit stochastic acceptabilities and maximize the support given to the resulting
assignments by all feasible sorting models. The performance of fourteen procedures is verified on
problem instances with different complexities. The results of an experimental study indicate the most
efficient procedures in terms of classification accuracy, reproducing the DM’s model, and delivering
the most robust assignments. These include approaches identifying differently interpreted centers of
the feasible polyhedron and robust methods introduced in this paper. Moreover, we discuss how the
performance of all procedures is affected by different numbers of classes, criteria, characteristic points,

and reference assignments.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords:

Multiple criteria decision aiding
Preference disaggregation
Sorting

Representative model
Robustness analysis

1. Introduction

In multiple criteria sorting problems, alternatives need to be
assigned to preference-ordered classes [1]. Each of them is pre-
defined and associated with a precise semantic, implying the
same subsequent treatment of alternatives placed in a given
category. The presence of multiple, potentially conflicting criteria
makes such ordinal classification problems challenging. For this
reason, the field of Multiple Criteria Decision Aiding (MCDA) of-
fers a variety of methods that support the Decision Makers (DMs)
in carrying forward the solution process (see, e.g., [2]). They are
helpful in problem structuring, preference elicitation, construc-
tion and exploitation of the preference model, and explaining the
recommended assignments [3]. In recent years, the approaches
adopting a preference disaggregation perspective have been pre-
vailing [4]. They construct a sorting model using a regression-like
scheme based on the DM'’s decision examples. Such approaches
facilitate the solution process by lowering the cognitive effort on
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Technology, Piotrowo 2, 60-965 Poznarn, Poland.
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(K. Ciomek).
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the part of DMs and not requiring specialized knowledge required
when directly specifying values of decision model parameters.

The most popular preference disaggregation sorting method
is UTADIS [5]. It accepts indirect preference information in the
form of assignment examples, specifying the desired classification
for a subset of reference alternatives [6]. Such holistic state-
ments are translated into compatible parameters of an additive
value function and thresholds separating the classes on a scale
of a comprehensive value [7]. UTADIS has been appreciated in
the MCDA community for using an intuitive sorting procedure
with highly interpretable alternatives’ scores and class thresholds,
while at the same time being free of statistic hypotheses and
restrictions [8,9]. Also, it handles both qualitative and quan-
titative criteria, differentiates between inter- and intra-criteria
attractiveness, and provides means for interaction with the DMs
who might review the model by changing or enriching their
preferences [10]. Such appealing features have motivated the
practical use of UTADIS for solving real-world decision problems
concerning, e.g., credit risk assessment [11], supplier classifica-
tion [12], sorting activities in civil construction [13], and adoption
of green chemistry principles in nanotechnology [10].

The basic variant of UTADIS has been extended in numer-
ous ways. In particular, it was generalized to an example-based
procedure where the classes are delimited implicitly by decision

0950-7051/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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examples rather than class thresholds [14]. Furthermore, a se-
quential classification technique, called M.H.DIS, was introduced
in [15] to consider the assignment of not yet classified alterna-
tives to the most preferred class in a stepwise fashion. Moreover,
UTADIS was advanced to a robustness analysis framework, where
a multiplicity of compatible sorting models are exploited to verify
the stability of classification. In Robust Ordinal Regression (ROR),
all such models are translated into the necessary and possi-
ble results using mathematical programming [14,16]. In turn, in
Stochastic Ordinal Regression (SOR) - the Monte Carlo simula-
tions derive a large, representative set of such models whose
results are summarized in the form of stochastic acceptabili-
ties [17]. Then, in Bayesian Ordinal Regression (BOR), a posterior
distribution over a set of all potential sorting models is derived to
emphasize the differences in the models’ abilities to reconstruct
the DM’s assignment examples [18]. Also, many works proposed
dedicated techniques for dealing with the inconsistency of as-
signment examples. They aim at restoring the consistency [19],
minimize a misclassification error [7], use preference models
compatible with different preferential reducts [10], or incorporate
contingent, inter-related models that altogether reconstruct the
holistic preference information [20,21]. In the same spirit, some
optimization techniques were devised for handling large sets of
assignment examples [22-24].

Further methodological advancements have been devoted to
supporting preference elicitation, tolerating uncertain perfor-
mances, enriching incorporated models, and addressing various
structures and types of handled decision problems. In [25], one
proposed active learning strategies that minimize the number
of assignment examples needed for arriving at a sufficiently
robust recommendation. Also, [26] tolerated hesitancy regarding
assignment examples and the performance of alternatives using
probability linguistic term sets. Moreover, [27] introduced a uni-
fied framework handling preference information in the form of
assignment-based pairwise comparisons and constraints on the
category sizes [28,29] along with assignment examples, whereas
[22] accounted for valued desired classifications and [ 18] handled
potentially uncertain assignments. An additive value function
used in UTADIS was extended to admit interactions between
criteria [30], non-monotonicity [23,31-33] or polynomial char-
acter [34] of marginal value functions. Furthermore, [35] adapted
the method to a hierarchical structure of criteria, whereas [33,36]
considered a multi-decision classification problem with many
inter-related decision attributes. Finally, dedicated group decision
methods were devised for handling preferences of multiple DMs
and either arriving at a collective recommendation [37,38] or
investigating the spaces of consensus and disagreement observed
in the group [39].

Various real-world applications and methodological develop-
ments confirm the status of UTADIS as one of the essential meth-
ods in MCDA. This paper deals with procedures for selecting
a single instance of the threshold-based value-driven sorting
model. Since the polyhedron of all functions and thresholds com-
patible with the stated indirect preference information can be
quite large [14,16], such a selection can be performed differently.
Whichever the choice or construction procedure, exhibiting a
single representative sorting model allows the DM to analyze
the shapes of marginal functions, the trade-offs between crite-
ria, the dispersion of class thresholds, the comprehensive values
of individual alternatives, and margins of safety in the recom-
mended univocal assignments [40]. A single model is, therefore,
a synthetic and intuitive solution to the sorting problem, sup-
porting the validity of the derived recommendation or motivating
reactions from DMs.

We contribute to the literature in a three-fold way. First, we
review different concepts underlying the selection of a repre-
sentative sorting model in the context of UTADIS. The primary
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idea consists of choosing the most discriminant model in terms
of the differences between comprehensive values of reference
alternatives assigned to different classes and/or marginal values
associated with consecutive characteristic points of per-criterion
functions [41]. Furthermore, we discuss the concept of controlling
the slope of marginal functions [42]. Another methodological
stream is oriented toward identifying a central model with the
proviso that the concept of centrality is interpreted in various
ways [43,44]. Moreover, we refer to the mean models obtained
by averaging either the extreme models compatible with the
DM'’s preferences [45] or a large sample of uniformly distributed
ones [10]. The last postulate builds on the outcomes of robustness
analysis by making use of necessary, possible [40] or stochastic
results [17] to define the targets that should be emphasized in
the representative case.

Our second contribution consists of proposing novel proce-
dures for selecting a single sorting model representative in the
sense of robustness preoccupation. Specifically, we refer to the
outcomes of Stochastic Ordinal Regression in the form of Class
Acceptability Indices (CAls) and Assignment-based Pairwise Out-
ranking Indices (APOIs) [17]. They quantify the shares of compat-
ible sorting models, confirming a given alternative’s assignment
to a particular class or supporting one alternative being assigned
to a class that is at least as good as another. The representative
model emphasizes the most frequent classifications of all alterna-
tives, the most common assignment-based preference relations
for all pairs of alternatives, or both of these objectives at once.
Similar to [40], we refer to the “one for all, all for one” motto
by representing all compatible sorting models, which contribute
to the definition of a representative one. However, we build on
more informative and detailed outcomes in the form of stochastic
acceptabilities [46] rather than the possible and necessary assign-
ments that need to be confirmed by at least one or all compatible
models, respectively. We illustrate all procedures, including the
existing and newly introduced ones, on a single decision problem
to clarify their operational steps.

The third contribution consists of a thorough experimental
evaluation of the fourteen discussed procedures. The problem of
choosing the “best” sorting model in the preference disaggre-
gation methods is ill-defined. However, one can consider some
objective criteria for the meaningful comparison of various pro-
cedures. In particular, we account for five measures that make
sense in the context of both using incomplete preference in-
formation concerning a subset of reference alternatives and the
multiplicity of sorting models compatible with the DM'’s assign-
ments examples. They concern (i) the ability to reconstruct ref-
erence classification for all alternatives, (ii) the robustness of
derived assignments in terms of the support they are given by
all compatible models, and (iii) the capability of restoring the
preference model in terms of per-criterion marginal value func-
tions, alternatives’ comprehensive values, and class thresholds.
The experiment involves problems with different numbers of
classes, criteria, characteristic points of marginal functions, and
reference alternatives assigned by the DM to each class. We
discuss the average results attained over all considered settings
and the trends observed with the increasing model’s complexity
and availability of preference information.

Our study can be seen as a significant extension of the ex-
periments discussed in [44], where only four procedures have
been collated in a similar context. Compared to [44], we include
additional methods that account for the shape of Marginal Value
Functions (MVFs), determine an average model, or emphasize the
robustness of recommendations obtained with a set of all feasible
models in six different ways. Also, we consider a more compre-
hensive set of parameter values characterizing decision problems.
In this way, we provide richer insights into the performance
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trends. Finally, we refer to a more extensive set of measures
capturing the capability of restoring the preference model.

The paper’s remainder is organized in the following. Section 2
reminds UTADIS and its robust counterparts. In Section 3, we
discuss various procedures for selecting a representative sorting
model. The eAppendix (supplementary material available online)
illustrates their use in a didactic example. In Section 4, we present
the results of an extensive experimental comparison of different
approaches. The last section concludes the paper.

2. Reminder on UTADIS and robustness analysis

The following notation is used in the paper:

e A={a,a,...,q,...,a,} — a finite set of n alternatives;
each of them is evaluated in terms of m criteria;

o AR = {aj, a},...,a’} - a finite set of r reference alterna-
tives; AR C A:;

e G = {g1.82....,8,...,8n} — a finite set of m evaluation
criteria, g§j : A — R for allj € J] = {1, ..., m}; without loss
of generality, we assume that all of the criteria in G are of
gain type;

o X; = {gj(a;),a; € A} - a finite set of performances of all
alternatives in A on criterion gj;

.,x}w) - the ordered values of X;, x}H <Xk =

° le, ij,
|Xj| and nj(A) < n; thus, X =

2, ..., nj(A), where n;(A) =
m

l_[X- is the performance space; note that X; can also be

=1
enrlched with the extreme values of the performance scale

that are not attained by any alternative;
e C1,Cy, ..., C, - p pre-defined and preference-ordered class-
es so that G is preferred to G,_q for [ =2, ..., p.

To compute the desirability of each alternative a € A, UTADIS
[5] considers an Additive Value Function (AVF) [47]:

m
U(a) =) uj(g(a)), Va € A, (1)
j=1
where u;, j = 1, ..., m, are MVFs being piece-wise linear mono-
tonic and defmed by a pre- deﬁned number y; of equally dis-

tributed characteristic points 8!, 2, ..., ;‘3 with the extreme
A
points set to ,3; = xj and ﬂjy’ = x;’( ), and:
ni(A) s—1
/S]—x + (%" le)y-—l’J:L'“’m’S:L”"yj' (2)
j

A comprehensive value is normalized in the [0, 1] range by as-

,m, andZu] B =

To enable control over the difference between marglnal values
assigned to the subsequent characteristic points, we consider
variable p > 0 introduced as follows:

w(B) —w(B ) = p. j=1,.

In the basic setting, p is set to 0, which implies fulfillment
of the weak monotonicity constraints. The marginal value for
performance xj" S [/35 ,35“] can be computed using a linear
interpolation:

suming that uj(8}') = 0, for j =

LM S=2,..., ¥ 3)

xk _ gs

u(x) = ui(B) + (uj(ﬁ]”l) uj(ﬂ,—‘))ﬁ_sjﬂ_ﬁjﬂ;, @)
’j ’j

m, k=1,...,n(A).

UTADIS incorporates a threshold-based sorting procedure, where
each class (; is delimited by the lower t;,_; and upper t; thresholds

i=1,...,
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defined on a scale of a comprehensive value U. For simplicity, we
do not consider the lower threshold of the least preferred class
C; and the upper threshold of the most preferred class C,, which
could be arbitrarily fixed to to = 0 and t, > 1. Hence, to derive
the assignment for alternative a € A, U(a) is compared with a
vector of p — 1 thresholds t = [tq, ..., ti—1, &, ..., t,—1] such that
tiy >eti—ti1 > e forl=2,...,p—1,and t,_;+¢& < 1, where ¢
is an arbitrarily small positive value. Due to the threshold-based
division of the scale of possible comprehensive values U into
disjoint class intervals, each value and, thus, each alternative is
assigned to exactly one class in a given model.

In UTADIS, the parameters of an assumed sorting model are
inferred from the DM'’s indirect preference information. It consists
of the desired class assignments for reference alternatives in AR.
Assigning an alternative a to class C; can be written as a —"" C,
where l € {1, ..., p}. It can also be defined with function I, which
indicates to which of the p classes a given alternative is assigned:

¢ Ipy(a*) =1L (5)

In this paper, we consider only precise assignment examples.
They are reproduced via preference disaggregation that ensures
a comprehensive value of each reference alternative a* e AR
is within the range [t;_1, t;) delimited by the lower and upper
thresholds corresponding to its desired class Cj, i.e.:

va* € AR, a* =M ¢

va* e AR: y(a)=1le{l,...,p—1} = t—U(a")>35+s,
(6)
a*)—t_q =4,

(7)

where § > 0. Overall, a set R of compatible AVFs and class

thresholds is defined by the following set E** of linear con-
straints:

Va* € AR: Ipy(a*)=1e{2,...,p} = U(

W) =0j=1....m,
m " (EN)
> =1,

B - (B = p i=1,... ms=2,...,y, A
t1 > ¢, ( )
t—t1>¢1=2,..., p—1, (ET)
tp—1+€§1,

Va* € AR: Ipy(a)=le(l,...,p—1} = t—U(a*)>5+e,

Va* e AR: Ipy(a*)=1€e(2,...,p} = U(@*)—ti_1 >,

where p > 0,8 > 0, and ¢ is a small positive constant that
transforms non-strict inequalities into strict ones (in our imple-
mentation, we set its value to 107%). Please note that constraints
ensuring the monotonicity of the thresholds (t; — t;_; > ¢) are
redundant when the DM assigns at least one alternative to each
class. However, we keep them for the clarity of presentation and
comprehensiveness of the model under all scenarios.

Since the DM’s preference information is incomplete, when
A is feasible, &R typically consists of infinitely many sorting
models. To choose one of them, one needs to optimize an ob-
jective function. In Section 3, we discuss fourteen procedures
that differ mainly with respect to considering various objectives
and/or incorporating additional variables and constraints. Some
methods optimize p and/or §, which are then treated as variables.
In general, p and § allow for controlling the difference between
marginal values assigned to the successive characteristic points
and the distances of alternatives’ comprehensive values from the
class limits, respectively. If p or § are not optimized, they are
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treated as constants and set to zero. In this way, we ensure non-
strict monotonicity of marginal value functions or reproduction
of the assignment examples.

In what follows, we discuss the approaches for robustness
analysis, whose results will be exploited by some procedures. ROR
verifies the possibility or necessity of certain relationships based
on a set of all compatible sorting models. This requires checking

. . . R . ey
the consistency of the basic constraint set EA" with additional
constraints representing a verified hypothesis. For this purpose,
the relations between the pairs of alternatives in individual mod-
els were specified. One of them is the weak assignment-based
preference -, defined as follows:

tazy b &= Iy(a) > Iy(b), 9)

where Ij;(a) is the index of class to which a is assigned by function
U. When Iy(a) = |, then a —Y . Hence a ; b means that,
according to U, the class of a is at least as good as the class of
b. 1If = is confirmed for all compatible sorting models, then this
relation is necessary according to ROR, i.e.:

Ya,beA: az"Nb < YUeu®: ax; b. (10)

Note that if —=(a =N b), there exists at least one compatible
sorting model in &R that assigns b to a more preferred class
than a. Relation ~; for a single model U along with its robust
counterpart ~~N based on a set of models ¢® can be defined
analogously by checking whether one alternative is assigned to
the same class as another (Iy(a) = Iy(b)). In the same spirit,
relations >~ and >N reflect the assignment to a strictly more
preferred class (Iy(a) > Iy(b)). The truth of these relations is
verified using linear programming [17,40].

In SOR, u® is exploited with the Monte Carlo simulations

to derive a set S < R of uniformly distributed compatible
sorting models. Specifically, we sample from a convex polyhedron
defined by constraint set A with § = p = 0and ¢ set to a
small positive value (in our case, 107°). In practice, S C ©® and
IS| <« |tR|. The results obtained for these models are summarized
in the form of four stochastic acceptabilities: Class Acceptability
Indices (CAIs) and Assignment-based Pair-wise Winning (APWI),
Outranking (APOI) and Equality (APEI) Indices. CAI € [0, 1] quan-
tifies the share of compatible sorting models assigning a € A to
class G. Its approximation CAI’ is defined as follows, i.e.:
YacAVie{l,...,p}: CAl'(a, ) = W es '|;l|’(a) — l”. (11)
Furthermore, APWI : A x A — [0, 1] is defined as the share
of all models in ¢, which classify one alternative into a more
preferred class than another alternative. Its approximation APWI’
is computed in the following way:
Va.beA: APWI(a,b)= LU ES ILI;T) > @) (12)
The remaining pairwise indices, i.e., APOIs and APEIs, are defined
analogously by referring to the shares of models confirming that
one alternative is assigned to a class, respectively, at least as
good (Iy(a) > Iy(b)) or the same (Iy(a) = Iy(b)) as another.
In this paper, we sample from set ® using the Hit-And-Run
(HAR) algorithm [48] implemented in [49]. Note that even if the
stochastic acceptability indices are defined in the range between
0 and 1, for clarity of presentation, they can also be expressed in
percentages between 0% and 100%.

Va,be Aand U € uf

3. Procedures for selecting a representative sorting model

In this section, we review different concepts underlying the
selection of a representative sorting model in the context of
UTADIS. Their most distinctive feature is optimizing a unique
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objective function subject to the constraint set E** that defines
a set of all compatible value functions and class thresholds. Some
procedures focus only on selecting a value function. In this case,
the thresholds are set in equal distances between extreme com-
prehensive values of reference alternatives assigned to each class.
This is consistent with selecting the most discriminating function,
emphasizing the derived assignments as sharply as possible given
a value function model.

The three methods introduced in this paper are distinguished
as CAIl, APOI, and COMB. They exploit stochastic acceptability
indices of class assignments and assignment-based pairwise re-
lations. Moreover, UTADISMP3 and MSCVF adjust to the sorting
context the procedures that have been so far used for ranking
problems [50]. The remaining nine methods have been proposed
before in the preference disaggregation literature, and a suitable
reference is provided for each of them.

3.1. The most discriminant models

Let us start with the max-min formulations that seek the most
discriminant model parameters. In the context of multiple criteria
ranking, this idea was first implemented in UTAMP1 [41]. When it
comes to sorting, UTADISMP1 [40,44] postulates maximizing the
minimal difference between comprehensive values of reference
alternatives and their respective class thresholds, i.e.:

Maximize 8, s.t. E*". (13)

In this way, the gap between all consecutive classes is maximized,
yielding a model that is away from the boundaries of the poly-
hedron of all compatible sorting models [43]. As a result, the
DM'’s assignment examples are reproduced in a bold and robust
way [44].

Another procedure is motivated by the ranking method, called
UTAMP?2 [41]. Apart from optimizing 8, i.e., the distances between
the comprehensive values and class thresholds, it maximizes the
difference between marginal values assigned to all pairs of con-
secutive characteristic points. The problem solved by UTADISMP2
is the following:

Maximize & + p, s.t. E*", (14)

where p > 0. The method has similar features to UTADISMP1,
while favoring steeper linear components of marginal value func-
tions. This prevents weakly monotonic functions with level parts
or even neglecting some criteria whose marginal functions take
zero values for all performances. The p component is considered
alone in UTADISMP3, highlighting the differences in values of
marginal functions even more:

Maximize p, s.t. E*". (15)

3.2. Parsimonious decision model

UTADISMP3 impacts the shape of marginal value functions
by desiring the most discriminant ones. In turn, [42] postulated
selecting as linear MVFs as possible, i.e., functions minimally
deviating from the linearity. The model corresponding to this idea
is called a Minimal Slope Change Value Function, in short, MSCVF.
It can be obtained by solving the following Linear Programming
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(LP) model:
Minimize ¢,
A
By
k—1 k—2
_ )_“j:ﬂf ) - ¢ ) AR
s.t. g2 = forj=1,...,m, (Emscvr)
(B —uy(Bf ) k=3,...,y
W
w(B—u(B )
) ) < ¢
k k—1 —
ﬁj(_ﬂj
(16)

Note that using MSCVF makes sense when at least three charac-
teristic points are considered on a given criterion. The above idea
can be interpreted as favoring a parsimonious decision model
consistent with the Occam razor principle. It says that “entities
must not be multiplied beyond necessity”, which can be intu-
itively interpreted as: “the simplest explanation is most likely the
correct one” [51].

Both UTADISMP3 and MSCVF aim for specific shapes of marg-
inal value functions. The former tries to maximize the differ-
ence between consecutive points, while functions are as linear
as possible in the latter. However, it is not always possible to
achieve this goal due to other constraints. In that case, the pro-
cedure looks for the closest acceptable solution. Therefore, these
methods can be considered flexible and adaptable to the existing
conditions.

3.3. Average models

Another appealing idea consists of conducting a post-optimal-
ity analysis, deriving a set of representative sorting models, and
averaging them to form an approximation of the polyhedron’s
centroid model [44]. It has been implemented in two different
ways.

UTADIS-JLS was motivated by the system of 2m extreme so-
lutions originally considered in the context of ranking prob-
lems [45]. Each of them is obtained by minimizing or maximizing
the greatest value attained by MVF for each criterion, i.e.:

Maximize / Minimize uj(ﬂ;/j), st EAY (17)

Note that uj(ﬁjyj) can be interpreted as a weight or a trade-off
constant of criterion gj.

A disadvantage of UTADIS-JLS consists of accounting only for
the extreme models. In [10], the concept of finding an “aver-
age” model was generalized by considering a large sample S =
{U',U?,..., U®I of models considered in SOR. The CENTROID
procedure is not based on optimization. It derives an average of
all samples that can be considered a stochastic approximation of
the central solution. This applies to both characteristic points of
MVFs and class threshold values:

IS

1 )
tlzmzt;, l:1,...,p_],
i=1

IS

1 . . .
ui(B5) = mZu}(,fsj), j=1,...,ms=1,...,9.
i=1

It is worth noting that since the space of possible solutions (2/})
is convex, the average model also satisfies all constraints [14].
In [52], it is called a barycenter solution. Such average models are
claimed to be more robust and less vulnerable to changes in the
DM'’s assignment examples [44]. Moreover, procedures based on
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an analogous idea exhibit favorable performance in the context
of multiple criteria ranking [50,52].

3.4. Central models

Opting for an average model can be seen as a particular im-
plementation of selecting a central model. However, the concept
of centrality can be interpreted in different ways, two of which
- denoted CHEBYSHEV and ACUTADIS - are discussed in this
subsection. The Chebyshev center of a polyhedron is a mid-
point of the largest Euclidean ball that fits in a polyhedron. A
model corresponding to such a center was proposed in [44]. To
determine it, one needs to maximize variable r that is inscribed
in each monotonicity and assignment-based constraint:

Maximize r,
EN, ET,
w(B) — (™) — V2r > 0,
j=1,....ms=2,...,¥
s.t. Vaf e AR: y(a)=1e{1,...
= t—U(a’)—bir > ¢,
var € AR Ipm(af)=1€{2,...,p}
= U(@)—t1—cr=0,

p—1} {(ER)

where +/2, b;, and ¢; are the Euclidean norms of the decision
variables’ coefficients (except r) in constraint in which they
occur [44]. For example, consider the inequality that ensures the
monotonicity of the MVFs at the consecutive characteristic points.
In each of these inequalities, only uj(ﬂjs) and uj(ﬂjs’]) have non-
zero coefficients of 1 and —1, respectively. Thus,
100,...,0,1,=1,0,...,0)| = +/12 + (=12 = +/2. The values
of b; and ¢; in the remaining inequalities can be determined anal-
ogously. Let us emphasize that since these norms are constants,
the constraints remain linear. Such a solution can be considered
central because it is equally distant from all essential inequality
constraints.

ACUTADIS postulates selecting an analytic center rather than
the Chebyshev one. It was initially proposed for ranking problems
and adjusted to the scope of sorting in [40]. It corresponds to the
model maximizing the logarithmic barrier function of the slacks
(di-, di+, dj5) involved in the essential constraints of X [44]:

m Y

Maximize Z (logd;- + logd;+) + Z Zlog djs,
afeAR j=1 s=2
EN, ET
yB) — (B =di, j=1,....ms=2,....y,
var € AR Ipy(af)=1e(1,...
= t—U(a*)—d;- = ¢,
var € AR : Ipy(af)=1€{2,...,p}
- U(a;k) — tl—l — di* =0.

st p—1 ()

(20)

The above non-linear problem can be solved using Newton’s
method [43], always leading to a unique solution, if any exists.

3.5. Robust models based on exact outcomes

The methods for robustness analysis were developed to exploit
a set of all compatible models [14,16]. The derived outcomes re-
flect the stability of the sorting recommendation. However, their
use for real-world decision aiding indicated that it is not easy for
some users to comprehend such robust results and an abstract
concept of infinitely many compatible models. This motivated
the development of procedures for selecting a representative



M. Wajcik, M. Kadziriski and K. Ciomek

Knowledge-Based Systems 278 (2023) 110871

Maximize ¢,

s.t. U(a) = U(b) — ¢ > U(c) — U(d),

}Va, b,c,deA: (a="Nb)A—=(b="Na)A(c~Nd).

(E

R—compromise )

Box 1.

sorting model that can be exhibited to the DMs. The primary
idea consisted of representing all compatible sorting models that
contribute to the definition of a representative one. In this way,
one does not lose the advantage of knowing all compatible ones
while gaining a model instance that can be used to analyze the
impact of different criteria, separation of decision classes, and
robustness in the sense of distances of alternatives’ values from
class thresholds.

In [40], two objectives were defined to emphasize the ro-
bustness concerns. They are based on exact robust outcomes
computed with mathematical programming. On the one hand, for
all pairs of alternatives such that one of them is assigned to a class
at least as good as another for all feasible models and for at least
one of them it is assigned to a class strictly better, the difference
between their comprehensive values should be maximized:

Maximize w,
X
) R
s.t. U(a)—U(b) > w (Ellg—iterativel)

Va,beA: (a=""Nb)A—=(b="Na).
(21)

On the other hand, the value difference should be minimized for
all pairs of alternatives necessarily assigned to the same class.
This can be conducted while respecting the optimization of the
previous target (i.e., setting w = w™*):

Minimize A,

AR

R—iterativey ®
® = ", B
Uc)—Ud)<r Ye,deA: (c ~>Nd), R—iterative
Ud)—Uc)<r VYc,deA: (c ~>Nd).

s.t.

(22)

In the above iterative procedure, called ROBUST-ITER, the main
objective is to maximize the value differences for those pairs
of alternatives where there is a one-sided weak preference nec-
essary relation. Once this is achieved, the secondary goal is to
minimize the differences among those pairs where alternatives
are assigned to the same class by all U € uR.

An alternative approach is ROBUST-COMP, where a compro-
mise solution is selected to attain both objectives simultaneously
by maximizing the difference between the first and the second
goal is given in Box I. The results of ROBUST-ITER and ROBUST-
COMP will typically be different because they attain the two
targets in various ways.

3.6. Robust models based on stochastic outcomes

A sorting model that is representative in terms of the robust-
ness preoccupation can also be selected based on the stochastic
outcomes computed by SOR. The idea implemented in REPDIS
consists of emphasizing the advantage of these alternatives, which
are assigned to a better class than others for a greater share of

compatible sorting models, i.e., APWI'(a, b) > APWI'(b, a). This
can be attained by maximizing the minimal value difference for
pairs of alternatives satisfying the above condition:

Maximize w,
E*,
U(a) — U(b) = w(a, b), .
s.t. Ya,beA: APWI'(a,b) > APWI'(b, a), ¢ (Efp)
w(a, b) > o, '
Va,b € A: APWI'(a, b) > APWI'(b, a).

(24)

In the second stage, one can optimize the sum of elementary
value differences w(a, b), while respecting the results of the first
stage by setting w = w*, i.e.; Maximize

Maximize E

Va,beA: APWI'(a,b)>APWI’'(b,a)

w(a, b) sit. EQ,’EW,I, Ulo = o).

In what follows, we discuss three novel approaches that ex-
ploit the stochastic acceptability indices for selecting a single, ro-
bust sorting model. These models are inspired by the procedures
for deriving the robust rankings proposed in [53]. Apart from
handling ordinal classification problems and suitably exploiting
sorting-specific results, the notable differences include (a) infer-
ring a representative, feasible sorting model rather than con-
structing only the most robust recommendation and (b) ensuring
the DM’s preference information is reproduced.

The first method, called CAI, aims at maximizing the CAI’(a;, C})
corresponding to the class assignment C; suggested for each
alternative a € A by a given sorting model U € ©R, denoted
by a =Y (. Due to the intrinsic nature of CAls, maximization
involves the product of values for individual alternatives instead
of a sum. The main reason is that the relationships between CAls
should be compared in terms of a ratio rather than a difference.
For example, CAl'(a, C;) = 0.25 and CAl’(a, C;) = 0.75 indicate
that a — C, occurred three times more often than a — C; in the
space of compatible sorting models. The objective function can be
formulated as follows:

*
U™ = arg maxy &

]_[ CAI'(a;, C)).

VajeA: a;—Uq

We will replace the above non-linear form with its linear coun-
terpart. Specifically, we replace the product of numbers with
the sum of their logarithms (note that CAI’ values are computed
beforehand). The objective function needs to build on CAIs that
correspond to the class assignments of alternatives suggested
by the selected model. This is ensured by introducing binary
variables x; that should be equal to one when a; —U ( is
satisfied. After these transformations, the following problem is
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obtained:

P
Maximize ke = Z Zx” log CAI'(a;, C}),
ajeA I=1
At
Va; e AVlie {2,...,p}: U(a)) — .1 — 8 — Mxy > —M,
Va;e AVie{l,...,p—1}: t;—U(a))— 86 —Mx; > ¢ —M,

P
R
s.t. Va; € A: in, =1, (E?AII)
I=1

Vai e AVle{1,....p}: xq € 0,1},
Vaj e AVle{l,...,p}: CAI'(a;,G)=0 = x; =0,
Vg, e AVle{l,....,p}: ¢ »>M G = x=1,

(25)

where M > 1 is a large constant. Note that for any inequality

in the form: X — Mb > —M, where X is an expression whose

value can be determined and b is a binary variable, b may be

equal to one only if X > 0. Hence, variable x; will be equal to

one when the conditions justifying Iy(a;) = [, i.e.,, U(a;)) > t_4

and t; > U(a;), are met. Then, other variables x;;, h # I, will be set
p

to zero, hence satisfying the following constraint in, = 1.To

=1
avoid situations where CAI'(a;, C;) = 0 is included in the objective
function, and thus the logarithm value is undefined, we forbid the
corresponding class assignments by setting x; = 0. Finally, we
ensure that all DM'’s classification examples are reproduced.

Solving the above Mixed-Integer Linear Programming (MILP)
problem allows identifying a sorting model that best represents
the entire space in terms of assignments of alternatives to classes,
measured with CAIs. As a secondary objective, we will regularize
the model to balance the maximal shares of all criteria in the
comprehensive value, hence advocating for a more central func-
tion. Specifically, we will minimize the deviations between the
greatest marginal values for all pairs of criteria:

Minimize &,
AR
ECA:,v
V— *
st e = Kaaio (X )

Vije{l...ompni#j: w(pl) —w(B") Caly

‘ <&,
Vije{l....mini#j:  w()—w(p") <&
(26)

This secondary target will also be considered in the context of the
following two procedures. Since the model used for this purpose
will be the same, we will not repeat it to save space.

An analogous approach, called APOI, can be formulated based
on the analysis of the stability of assignment-based relations for
all pairs of alternatives rather than class assignments of indi-
vidual alternatives. In particular, we will consider the following
stochastic acceptabilities for all (a;, ;) € A x A:

e APWI'(a;, ;) indicating the share of models for which q; is
assigned to a more preferred class than g;, ie., Iy(a;) >
Iy(ay);

e APEIl'(a;, a;) indicating the share of models for which a; is
assigned to the same class as g;, i.e., Iy(a;) = Iy(a;);

e APWI'(g;, a;) indicating the share of models for which g; is
assigned to a less preferred class than g;, i.e., Iy(a;) < Iy(a)).

Overall, we aim at identifying the model emphasizing the assi-
gnment-based pairwise relations captured with APWI’s and APEI's
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in the best way, i.e.:

APWI’(G,‘, aj) if IU(a,-) > Iu(aj),
U* = arg maxy¢,r l_[ APEI'(a;, a;)  if Iy(a;) = Iy(a)),
(ap.q)eAxaiz | APWI (a;, a;)  if Iy(ai) < Iy(aj).

Similar to the CAI procedure, we introduce the binary variables
corresponding to the three possible relations for each pair of
alternatives (a;, a;) € A x A, i # j: vy corresponding to a scenario
with g; being assigned to a more preferred class than g; (for the
inverse situation, we consider vj;) and e;; standing for g; and g;
being assigned to the same class. After transforming the product
of elementary objectives into the sum of respective logarithms,
the following model can be formulated:

Maximize kqpoi = E
(aj,a;)€AXA:i#]

D

(ai,aj)eAxA:i;éj

D

(aj,a;)€EAXA:i#]

vij log APWI'(a, a;)
e;j log APEI'(a;, a;)

vji log APWI'(aj, a;),

AR
ECAI,

p p
V(ﬂi,ﬂj)GA XA/\i;éjZ ZIX,'[—ZIXJ"—MUU' >05—-M,
1=1 =1

14 p
V(a,—,aj)eAxA/\i;éj: le,-,—lej,—Mvijgo.S, (EAR
1=1 =1

s.t. — — APOI,)
V(a,-,aj)eAxA/\i;éj:v,-j+e,-j+vj,-=1,
V(a,-,aj)eAxA/\i;éj: Vij, €jj, vjfe{O,l},
Y(ai,q5) e AxANi#j: APWI'(a;,0)) =0 = v;; =0,

Y(aij,a5) e AXANi#j: APEI'(a;, 0;)) =0 = e; =0,
Ya;eAVie{l,...,p}:  =>"M (G = xy=1.

(27)

The role of M is the same as in the CAI procedure. The first
three constraints mentioned above enforce v; = 0 when g; is not
assigned to a class better than a;. However, if g; is assigned to a
more preferred class than g;, then the second constraint enforces
vj = 1. In case both v; = 0 and v; = O, the third constraint
implies e; = 1. The three variables are used to select the factor
in the maximization function for each pair of alternatives. In this
way, the optimization focuses on assigning alternatives to classes
to reflect as closely as possible the relationships between pairs of
alternatives in the entire set of sorting models compatible with
DM'’s preferences. Again, we incorporate constraints that prohibit
relations confirmed by none compatible model in the stochastic
analysis.

The joint focus on reproducing the most frequent assignments
of individual alternatives and the most supported assignment-
based preference relations is reflected in the COMB procedure. It
combines the objective functions considered in CAI and APOI un-
der a unified framework, hence reconciling the two perspectives:

p
Maximize Keomp = Z Zx,-, log CAI'(a;, C))

aieA I=1

+ Z vij log APWI'(a;, ;)

(aj,aj)€A:i#j (28)
+ Z e;j log APEI'(a;, a;)

(aj,aj)€A:i#j

+ ) uilogAPWI'(q), @), St Efpe,-
(aj,aj)€A:i#]
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Still, the idea of reflecting the outcomes of SOR in a single model
that can be exhibited to the DM is maintained.

To illustrate how the procedures for selecting a represen-
tative sorting model work, we consider an example problem
concerning the evaluation of 30 major European cities in imple-
menting green policy [54]. Such an illustration aims to remind
the operational steps and emphasize the peculiar features of the
typical solutions returned by all procedures in a specific study.
Also, we demonstrate that they may lead to various models
and recommendations even if operating on the same data and
incorporating the same preference model. Moreover, such an ex-
ample, exhibiting a deeper analysis of a single problem, makes the
results of the subsequent experimental comparison (in particular,
measure values) more understandable. In turn, the experimental
section focuses on the average case performance across all con-
sidered problem instances. The results of the illustrative study are
presented in eAppendix 1.

4. Computational experiments

This section is devoted to the computational experiments per-
formed to examine the quality and characteristics of procedures
for selecting a representative sorting model. We define the mea-
sures used to compare the 14 approaches and the features of
problem instances considered during the tests. The results ob-
tained for each measure are discussed in detail, given the average
outcomes across all considered settings and performance trends
observed when changing some parameter values. Moreover, we
assess the statistical significance of the differences observed be-
tween the results attained by various pairs of methods using
appropriate tests. Finally, we use the linear regression model
to identify the average impact of changes in individual problem
parameters on the measured values.

4.1. Comparative measures

The performance of the procedures for selecting a single sort-
ing model will be quantified in terms of five measures. The
results will be used to compare individual methods in three
main aspects. First, they show how the assignments used to
simulate the decision-making policy are reflected in the results
based on incomplete preference information. In this way, we
quantify the predictive accuracy. Second, we consider how repre-
sentative the recommended assignments are for the compatible
sorting models. Thus, we refer to the robustness of the recom-
mendation delivered by each approach given the multiplicity of
outcomes obtained with a set of models consistent with the
DM'’s preferences. The third goal is to compare the structure of
models, i.e., marginal value functions, comprehensive values of
alternatives, and thresholds. This provides conclusions about the
similarity between the DM'’s decision policy and the preference
model that attempts to capture it.

Let us denote a set of all non-reference alternatives that the
DM has not classified by AT = A \ AR. The reference model
composed of marginal value functions, comprehensive values,
and class thresholds is denoted by U, and the analogous model
returned by procedure P is UP.

Classification accuracy. To determine the quality of the sort-
ing model, we can verify how far the solution proposed by
the procedure is from the comprehensive DM’s preferences in
terms of recommended assignments. We focus only on the non-
reference alternatives because all procedures reproduce the as-
signments of reference solutions. Therefore, the classification
accuracy captures the proportion of alternatives in set AT for
which the recommended and reference assignments agree [44],
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ie.:
la:aeA" Alyr(a) =
|AT|

Assignment acceptability. Another measure compares the as-
signments recommended by different procedures with the clas-
sification obtained in the entire set of sorting models. The as-
signment acceptability reflects average support given to the as-
signments recommended by a particular procedure for all non-
reference alternatives in terms of class acceptability indices CAI's
derived from the analysis of all feasible solutions, i.e.:

1
1AT| 2

aeAT :q—UP i

Iyrer ()]

accuracy(U”) = (29)

MCAI(U?) = CAl'(a, G,) € [0, 1]. (30)

The maximal MCAI value can be obtained when each non-refere-
nce alternative is assigned to the class with the highest CAI value.
As noted in [44], this approach to classification is based on the
robust assignment rule. The value defined in this way is marked
as MCAlyx:

MCAl gy = —— Z max CAI (a,C) € [0, 1]. (31)

|AT AAAAA

In what follows, we consider an Absolute MCAI (MCAlgps =
MCAI(U?)), and the Relative MCAI, which makes the measure
values more interpretable by referring them to the best possible
solution that could be obtained for a given problem:
P P

MCAL(U) = MCAI(U”) — MCAlnax _ MCAI(U") L (32)

MCAIax MCAI gy
The advantage of accounting for the average value is its high
interpretability. For example, MCAI(U?) = 0.7 indicates that the
assignment obtained with U” for each alternative is, on average,
supported by 70% of feasible models. Recommending precise
assignments confirmed by a large share of all feasible models is
a desirable property of sorting methods.

Clearly, other approaches to aggregating individual CAls are
also possible. The basic ones include the product of all CAls or a
minimum of CAls confirming the assignment to a given class. The
obtained value may be challenging to interpret in the first case,
especially when the model assigns several alternatives to classes
with low CAls. The product of several low values could obscure
the high certainty for the remaining assignments. In turn, the
measure based on the minimum does not reflect the distribution
of all CAls. Then, models with significantly different acceptability
indices on most alternatives may be characterized with the same
measure value, failing to capture various robustness levels of the
delivered recommendations.

The following three measures focus on the similarity between
models rather than assignments. Hence they focus on the prox-
imity of models and their various components. Such a perspective
is complementary to the predictive performance and robustness
of the delivered recommendation.

Differences between marginal values. To capture the agree-
ment between the shapes of MVFs, we compare the marginal val-
ues assigned to all characteristic points except the least preferred.
The latter ones are, by definition, always assigned values equal to
zero. Such a measure - summarizing absolute value differences
- can be considered as the comprehensive distance between the
reference model URF and U” obtained with procedure P:

A
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Another perspective concerns the distance of MVFs from a sorting
model that represents well the feasible space of all models. For
this purpose, we adopt the outcomes of the CENTROID procedure
(denoted with an upper script CENT, e.g., U%NT), which is an
average of a large sample of uniformly distributed value functions
and class thresholds. It can be defined in the following way:

m

— ZZW (B4 — (BN (34)
ZE: j 1 k=2

j=1

ACENT(UP)

Such a measure indicates to what extent the solutions generated
by a given procedure deviate from the average solution. In this
case, the results need to be interpreted as a specific character-
istic of the models returned by various methods rather than a
performance measure indicating some good or bad approaches.
Differences between comprehensive values. Another mea-
sure refers to the aggregated results at the level that considers all
criteria jointly. Instead of comparing the MVFs, it summarizes the
differences between comprehensive values attained by all non-
reference alternatives for the reference and resulting models:

REF Uf’
Aw (U |AT Z u

aeAT

— U (a). (35)

Differences between threshold values. The last measure con-
cerns the similarity between separating class thresholds in the
reference and resulting models:

. Z [ ) (36)

It captures if the method can reproduce the range width of
comprehensive values that justify an assignment to a given class
and their positions on the scale of AVF. The values of the above
measures for selected procedures based on the results of an
illustrative case study are available in eAppendix 2.

In our view, the predictive accuracy and the recommendation
robustness are more important than the similarity with the ref-
erence model. Accuracy - reflecting the fraction of predictions a
given model got right - is a fundamental metric for evaluating
classifiers in the Machine Learning (ML) context. In a preference
disaggregation setting, it captures how well sparse and incom-
plete preference information on a subset of reference alternatives
is used to reconstruct the DM’s comprehensive decision policy on
the entire set of alternatives. In turn, the robustness of outcomes
delivered by a given method indicates how well these results
represent the entire space of models compatible with incom-
plete assignment examples. This is more important in the MCDA
context when addressing uncertainty related to the existence of
multiple consistent sorting models, out of which one is used to
derive final recommendations. However, from the experimental
perspective, the robustness measures can also be interpreted in
relation to classification accuracy. Indeed, they build on the set of
all models compatible with the DM’s preference information. The
fact that only assignments of reference alternatives are available
to the method implies that each compatible model could have
served as the true one, and the same input preferences on the
reference set would be derived from it. In this perspective, MCAI
can be seen as an average classification accuracy while assuming
that each compatible sorting model was used as the true one.

The model similarity measures represent another perspective,
referring to the distances in the space of parameter values. In
a way, they capture if incomplete preferences are sufficient for
reconstructing the complete form of a model from which they
were derived. However, this aspect is less relevant for the practice

A =
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of decision-aiding. In the end, it is the recommendation that
matters most to the DM. In this regard, even if the differences
between parameter values are minor, the differences in provided
classifications can be substantial. Conversely, large differences in
parameter values may not imply inconsistencies in the suggested
assignments. Furthermore, preferences of real DMs are not de-
rived from a pre-defined additive value model combined with
precise class thresholds. Hence, the true reference model typically
does not exist in practical applications, even if the reference
decisions serving as the benchmark are often known. However, in
the experimental setting, the model similarity measures can still
support understanding the characteristics of various procedures
in view of measures focusing on other perspectives. For example,
small differences in model parameter values can allow explaining
a favorable predictive accuracy or robustness. In turn, some other
methods may attain decent results despite significant differences
in derived value functions and thresholds.

4.2. Experimental setting

When generating instances of test problems, we considered
various settings for the dimensionality of data:

the number of classes - p € {2, 3, 4, 5};

the number of criteria - m € {3, 5,7, 9};

the number of equally distributed characteristic points for
each criterion g - y; € {2, 4, 6};

e the number of reference alternatives assigned by the DM to
each of p classes - R € {3, 5,7, 10}.

In this way, we covered relatively simple problems with three
linear criteria and six reference alternatives in two classes, and
complex problems with 9 criteria associated with marginal func-
tions with 6 — 1 = 5 linear pieces and up to 50 reference
alternatives in five decision classes. The number of non-reference
alternatives from set AT is ten for each class. In this way, we
represent the realistic scenarios in which the set of reference
alternatives is at least as large as the test (non-reference) set.
Consequently, the greatest problem instances involved up to 100
alternatives. It is a high value when considering the typical MCDA
setting, which nevertheless still makes feasible the execution of
robustness analysis methods incorporated by some of the con-
sidered procedures. For each combination of parameter values,
we averaged the results over 100 problem instances. Hence we
considered 4 x 4 x 3 x 4 x 100 = 19,200 instances in total.

For each instance, we followed the procedure described in [44].
Hence, two pools of 1,000 alternatives were drawn, each with m
criteria values. The alternatives’ performances on each criterion
were drawn using the uniform distribution. This does not exclude
dominated alternatives. However, in the case of a sorting prob-
lem, even if the DM assigns the dominating alternative to some
class, it is usually impossible to determine to which class the
dominated alternative will be assigned precisely. It only allows
us to delimit the range of possible assignments.

The reference alternatives were randomly selected from the
first pool, and the test (non-reference) alternatives were chosen
from the other pool. The alternatives in these two pools were
evaluated with a randomly generated AVF serving as the DM'’s
reference model. For simplicity, we assumed that the number
of equidistant characteristic points for the respective MVFs was
equal to y; in the considered problem setting. Then, the separat-
ing class thresholds t = [ty,...,t,—1] were set to respect the
following proportions of alternatives from the first (reference)
pool being assigned to particular classes: for p = 2 - 50-50,
for p = 3 - 30-40-30, for p = 4 - 20-30-30-20, and for
p = 5 - 15-20-30-20-15. Such divisions correspond to realistic
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scenarios in which extreme classes are less common than inter-
mediate ones. The threshold values were determined using the
interpolated values of the respective percentiles in the set of all
scores obtained in the reference set so as to divide it into the
given proportions. Specifically, they were set randomly in the
value range, guaranteeing pre-defined proportions. That is, for
2-class problems, t; was determined as the 50-th percentile of
all scores; for 3-class problems, t; is the 30-th percentile, and t,
is the 70-th percentile; for 4-class problems, thresholds take the
values of the 20-th, 50-th, and 80-th percentiles, and for 5-class
problems, the thresholds are the 15-th, 35-th, 65-th, and 85-
th percentiles, respectively. Such thresholds were used to derive
class assignments for alternatives contained in both pools. Finally,
depending on the considered setting, a pre-defined number of
alternatives were randomly selected for each class to construct
sets of reference and test alternatives. When put together, these
two sets (AR and AT) formed a set of alternatives A that would
be normally considered by the DM facing a particular decision
problem.

The 14 methods were run for all problem instances except for
MSCVF for problems with y; = 2 characteristic points. In this case,
the marginal value functions for all methods are linear. For each
problem instance, the values of stochastic acceptability indices
were estimated based on 10,000 sorting models generated with
HAR.

4.3. Results

In this section, we discuss the results of an experimental
comparison of the 14 procedures for selecting a single, represen-
tative sorting model. For each measure, we consider the outcomes
averaged over all problem instances and the mean values of
the performance measures obtained for different values of each
problem dimension (p, m, y;, and R).

4.3.1. Classification accuracy

The accuracy of the classification is important and, in many
cases, the main evaluation criterion in the context of choosing the
best method. Average classification accuracies over all problem
instances are provided in Table 1. To check the significance of the
relationships between the results of each method, the Wilcoxon
signed-rank test [55] for paired samples with a p-value of 0.05
was performed. The test results are reflected in the Hasse dia-
gram in Fig. 1, which shows if there is a statistically significant
difference between the results of different approaches.

The difference between the best and worst performers is sub-
stantial (over 12%). The best accuracy was obtained by ACUTADIS
(0.8313), which identifies an analytic center of the polyhedron
using non-linear optimization. In general, seeking the central so-
lution is an excellent strategy to increase classification accuracy.
This is confirmed by the results attained by other approaches
implementing this concept, i.e.,, CENTROID (0.8134) and CHEBY-
SHEV (0.8099). Highly favorable results (between 0.8113 and
0.8119) are obtained by the approaches exploiting the stochastic
acceptability indices: CAI, APOI, and COMB. The advantageous
performance of these methods, along with the high position
of CENTROID, confirms the usefulness of conducting robustness
analysis with the Monte Carlo simulations. Slightly lesser classi-
fication accuracies were attained with the traditional procedures,
which are most often used in the context of UTADIS due to their
simplicity, i.e., UTADISMP1, UTADISMP2, and UTADIS-JLS. They
choose either the most discriminant model or an average model,
though, based on the analysis of extreme ones only.

One of the worst average accuracies was achieved by pro-
cedures focusing on the shape of the MVFs, i.e., MSCVF and
UTADISMP3. Note that the comparison of the mean value for the
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ROBUST-ITER
ROBUST-COMP

Fig. 1. The Hasse diagram indicating the statistically significant differences in
terms of the classification accuracy based on the Wilcoxon test with p-value
equal to 0.05.

MSCVF is not appropriate because it has not been assessed for
problems with linear MVFs, so the mean value may be underes-
timated. In the context of this method, more significant obser-
vations can be made by comparing the values for the problems
with y; € {4, 6}). The unfavorable performance of UTADISMP3
in terms of predictive accuracy and other measures is partially
due to penalizing non-linear MVFs, while the models of simulated
DM s are drawn randomly, typically involving non-linear marginal
functions. Nonetheless, it is interesting to note that UTADISMP2 -
additionally involving the discriminating component - performs
slightly better.

Both the mean values and the Hasse diagram shown in Fig. 1
confirm that procedures exploiting the exact outcomes of robust-
ness analysis achieved significantly worse results than UTADIS
MP3. ROBUST-ITER and ROBUST-COMP allowed for reproduc-
ing the correct assignment for over 10% less non-reference al-
ternatives than ACUTADIS. The objectives considered by these
approaches differ vastly from the best-performing methods. A
general conclusion from the experiment is that when one aims
to maximize classification accuracy, a sorting model should be
selected by exploiting the feasible polyhedron or considering the
robustness of shapes or recommendations delivered with a large
subset of all compatible models.

The number of classes significantly impacts the classification
accuracy attained by different approaches. Table 1 confirms that
the accuracies decrease for a greater number of classes. For exam-
ple, for UTADISMP2 - the accuracy ranges between 0.8108 for p =
2 and 0.7553 for p = 5. It is intuitive because, with more classes,
the sorting problem becomes more challenging, the sub-spaces of
feasible models corresponding to different classes are more con-
strained, and the class thresholds become closer to each other. As
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Table 1
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Mean values and standard deviations of classification accuracy for all considered problem settings, different numbers of classes and criteria.

Procedure All settings Number of classes Number of criteria
mean std 2 3 4 5 3 5 7 9

UTADISMP1 0.7897 0.1252 0.8094 0.7852 0.7814 0.7829 0.8503 0.8023 0.7686 0.7376
UTADISMP2 0.7756 0.1210 0.8108 0.7760 0.7604 0.7553 0.8294 0.7872 0.7567 0.7292
UTADISMP3 0.7483 0.1231 0.8101 0.7494 0.7207 0.7132 0.7989 0.7569 0.7287 0.7088
UTADIS-JLS 0.7703 0.1345 0.7917 0.7621 0.7606 0.7669 0.8237 0.7859 0.7506 0.7211
CHEBYSHEV 0.8099 0.1124 0.8423 0.8074 0.7956 0.7942 0.8623 0.8204 0.7918 0.7650
MSCVF 0.7100 0.1304 0.7521 0.7097 0.6956 0.6828 0.7860 0.7234 0.6811 0.6496
ACUTADIS 0.8313 0.1040 0.8548 0.8288 0.8214 0.8203 0.8794 0.8424 0.8136 0.7899
CENTROID 0.8134 0.1140 0.8434 0.8129 0.7993 0.7979 0.8714 0.8255 0.7915 0.7650
REPDIS 0.7571 0.1207 0.7841 0.7545 0.7444 0.7456 0.8138 0.7684 0.7349 0.7114
CAI 0.8119 0.1145 0.8426 0.8118 0.7975 0.7958 0.8705 0.8242 0.7897 0.7632
APOI 0.8113 0.1151 0.8412 0.8114 0.7971 0.7952 0.8695 0.8234 0.7890 0.7631
COMB 0.8113 0.1150 0.8414 0.8115 0.7971 0.7953 0.8696 0.8236 0.7891 0.7631
ROBUST-ITER 0.7294 0.1330 0.7554 0.7207 0.7190 0.7226 0.8005 0.7445 0.7026 0.6703
ROBUST-COMP 0.7238 0.1348 0.7518 0.7179 0.7126 0.7130 0.7967 0.7381 0.6966 0.6639

a result, the comprehensive values of non-reference alternatives
have lower chances of fitting in the value range corresponding
to their expected class. The greatest decrease in performance is
observed between problems with 2 and 3 classes (from 2.42%
for UTADISMP1 to 6.07% for UTADISMP3). However, with the
increasing number of classes, these differences become lesser,
and when comparing the results for 4 and 5 for some procedures
- they are negligible, and for five procedures (e.g., UTADISMP1,
REPDIS, and ROBUST-ITER) - there is even a marginal increase
in performance. This suggests that, at this point, an increased
problem complexity implied by a higher number of classes is
well balanced by an added information value offered by more
assignment examples.

Compared to other methods, a marginal decrease in accuracy
with an increasing p is an additional advantage of ACUTADIS. This
procedure proves to be more robust to modifying p, increasing
its relative advantage over the remaining methods when more
classes are considered. In the same spirit, the underperformance
of MSCVF is more evident in instances involving more classes.

The number of criteria and characteristic points affect the
accuracies similarly to the number of classes. With the increase in
m and y;, the performance of all procedures deteriorates (see Ta-
bles 1 and 2). For example, for CHEBYSHEV, an average accuracy
ranges between 0.8623 and 0.7650 for 3 and 9 criteria, respec-
tively, and between 0.8526 and 0.7790 for 2 and 6 characteristic
points. Again, this is intuitive because, with more criteria and
characteristic points, the space of feasible models becomes more
significant, and MVFs become more flexible. The only exception
is observed in the improved performance of MSCVF when passing
from y; = 4 to 6. However, this can be attributed to an extremely
poor classification accuracy attained by this procedure already for
less flexible MVFs.

The average differences between accuracies for problems with
three and nine criteria range from 8.95 to 13.64% (see Table 1).
Hence, they are more substantial than between the extreme num-
bers of classes (e.g., for UTADISMP1 and UTADIS-JLS - even four
times greater). The sole exception in this regard is UTADISMP3.

The decrease in accuracy is visible between all subsequent
numbers of criteria. For all fourteen procedures, it is on average
4.68% between 3 and 5 criteria, 3.44% between 5 and 7 criteria,
and 2.74% between 7 and 9 criteria. As for the number of char-
acteristic points (see Table 2), there is a clear difference in the
accuracy of methods between linear and piecewise-linear MVFs.
The scores attained for MVFs with 2 and 6 characteristic points
differ from 4.53% for UTADISMP2 up to 14.73% for UTADIS-]LS.

Noteworthy, UTADIS-]JLS achieved relatively high results (85.
02% compared to 86.96% accuracy achieved by the best method
- ACUTADIS) when using linear value functions. However, when

employing six characteristic points, the difference between these
two methods increased to over 10%. Such a difference is asso-
ciated with optimizing values assigned to the last characteristic
points for each MVF. For the linear functions, this contributes
to controlling their entire shapes and selecting more central
value functions. In turn, with greater y;, the marginal values of
intermediate characteristic points are not directly affected by
the optimized model. For MSCVF, the differences in accuracies
attained for MVFs with 4 and 6 points are negligible. This is due
to the characteristic of the method, which - regardless of the
number of points - tries to linearize the marginal functions as
much as possible.

The increase in the number of reference alternatives per class
positively affects the classification accuracy (see Table 2). For ex-
ample, for UTADISMP1, the accuracy ranges between 0.7069 and
0.8547 for, respectively, R = 3 and 10. A greater number of as-
signment examples makes the knowledge available to the meth-
ods more complete, offering additional arguments on the DM’s
sorting policy. From a mathematical viewpoint, additional indi-
rect statements constrain the space of feasible models, leaving
lesser freedom to the procedures for selecting a representative
model.

With limited preference information (see R = 3), ACUTADIS
has a clear advantage over the remaining methods (more than
2.5% over CENTROID). Generally, the margin between the stocha-
stic- (CENTROID, CAI, APOI, COMB) or centralization-based (ACU-
TADIS, CENTROID, CHEBYSHEV) and the remaining approaches
is greater with more sparse DM’s preferences. For example, for
R = 3 - the difference in accuracies of APOI and UTADISMP1 is
3.52%, whereas, for R = 10, it drops to 1.18%. This emphasizes
the usefulness of the best-performing approaches when only a
few assignment examples are available.

To investigate the impact of individual parameters on the
results more holistically and to compare the strength of the
influence of particular problem features on the measured values,
we conducted a linear regression analysis. In the definition of the
regression problem, the explanatory variables were the values of
four parameters determining the problem, and the expected value
was the average accuracy value for each method. The slope coef-
ficients of individual parameters and the intercept value shown
in Table 3 were determined separately for each method based on
the results obtained during the experiment.

Taking into account the methods’ specificities and the pre-
viously observed features, one group of approaches for which
the slope coefficients are very similar can be distinguished. The
regression models in Table 3 confirm the high similarity of the
results obtained by the methods exploiting stochastic analysis
outcomes. REPDIS, CAI, APOI, and COMB use acceptability indices
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Table 2

Knowledge-Based Systems 278 (2023) 110871

Average classification accuracy for different numbers of characteristic points and reference alternatives per class.

Procedure Number of ch. points Number of reference assignments
2 4 6 3 5 7 10

UTADISMP1 0.8446 0.7739 0.7507 0.7069 0.7772 0.8200 0.8547
UTADISMP2 0.7993 0.7735 0.7540 0.6948 0.7631 0.8042 0.8405
UTADISMP3 0.7869 0.7363 0.7217 0.6695 0.7340 0.7753 0.8145
UTADIS-JLS 0.8502 0.7579 0.7029 0.6695 0.7559 0.8061 0.8498
CHEBYSHEV 0.8526 0.7980 0.7790 0.7423 0.7987 0.8341 0.8644
MSCVF 0.7096 0.7105 0.6113 0.6986 0.7442 0.7861
ACUTADIS 0.8696 0.8184 0.8059 0.7713 0.8232 0.8520 0.8788
CENTROID 0.8673 0.7979 0.7748 0.7459 0.8021 0.8380 0.8674
REPDIS 0.8126 0.7376 0.7212 0.6763 0.7437 0.7848 0.8237
CAI 0.8662 0.7962 0.7733 0.7439 0.8007 0.8365 0.8665
APOI 0.8649 0.7958 0.7731 0.7421 0.8003 0.8362 0.8665
COMB 0.8650 0.7960 0.7731 0.7422 0.8004 0.8363 0.8665
ROBUST-ITER 0.7927 0.7098 0.6858 0.6397 0.7107 0.7588 0.8085
ROBUST-COMP 0.7905 0.7036 0.6774 0.6352 0.7057 0.7543 0.8001

Table 3

Coefficients of solutions obtained for the linear
individual procedures.

regression problem for

average accuracy depending on the defined dimensions for

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 —0.008322 —0.018596 —0.023477 0.020602 0.895558
UTADISMP2 —0.018225 —0.016563 —0.011330 0.020305 0.857199
UTADISMP3 —0.031941 —0.014931 —0.016284 0.020284 0.888062
UTADIS-JLS —0.007605 —0.017163 —0.036815 0.025072 0.890492
CHEBYSHEV —0.015584 —0.016025 —0.018392 0.017054 0.927554
MSCVF —0.022204 —0.022567 0.000432 0.024155 0.770027
ACUTADIS —0.011083 —0.014865 —0.015927 0.014911 0.929816
CENTROID —0.015004 —0.017669 —0.023124 0.016995 0.958154
REPDIS —0.012565 —0.017034 —0.022829 0.020548 0.866217
CAI —0.015500 —0.017815 —0.023215 0.017133 0.958832
APOI —0.015236 —0.017681 —0.022958 0.017357 0.954017
COMB —0.015265 —0.017689 —0.022991 0.017333 0.954538
ROBUST-ITER —0.010021 —0.021621 —0.026704 0.023687 0.853010
ROBUST-COMP —0.012159 —0.021994 —0.028258 0.023165 0.866598

for class assignments or pairwise comparisons. Apart from them,
the CENTROID approach also uses raw sampling results.

For the five methods mentioned above, adding more dimen-
sions to the problem decreases accuracy. An additional attribute
reduces it by an average of 1.7-1.8%, and another characteristic
point in MVFs by 2.3%. The REPDIS method is better than the
other approaches when changing the other two parameters. This
method is more robust in the case of an increased number of
classes (—1.2% vs. —1.5% for other methods), and its accuracy
increases more evidently when the number of available assign-
ments increases (accuracy increases by over 2% vs. 1.7% for other
methods). However, this may be because, on average, this method
performs much worse than the others, so it is easier to make
progress in correctly assigning alternatives when the problem
becomes more straightforward.

In the context of obtaining additional preference information,
the above regularity is confirmed for all other methods. Indication
of additional assignments to each class has the greatest posi-
tive impact on the average accuracy of the weakest approaches:
UTADIS-]JLS (increase by 2.5%), MSCVF (2.4%), and ROBUST meth-
ods (2.3-2.4%). On the contrary, increased availability of prefer-
ences has the most negligible impact on the method with the best
average value - ACUTADIS (1.5%).

The stability of the results of MSCVF is noticeable when the
number of characteristic points changes. The pursuit of this
method to obtain the functions that are as linear as possible makes
its results practically insensitive to changing this parameter. It is
entirely different from UTADIS-JLS, which does not consider the
values for the internal MVFs at all, so in this case, the impact is
most significant (a 3.6% decrease in accuracy for each next point).

12

4.3.2. Assignment acceptability

Average assignment acceptabilities over all problem instances
are provided in Table 4. The ranking of procedures resulting from
the Wilcoxon paired test with p-value equal to 0.05 for both
absolute and relative MCAI are presented as the Hasse diagram
in Fig. 2. The difference between the best and worst-performing
procedures is enormous (almost 0.25). The procedures exploiting
stochastic acceptabilities attained the highest absolute MCAIs.
In particular, the CAI procedure emphasizes the most frequent
assignments when selecting a representative model. It success-
fully attains this target with an absolute MCAI equal to 0.8979
and its relative counterpart being close to zero. This means that
the CAI method identifies a model that classifies all alternatives
according to the robust assignment rule [44], i.e., it assigns each
alternative to a class associated with the highest CAL Since, for
some problem instances, no model optimized such an objective
in a perfect way (in the experiment - this happened for 4 out
of 19,200 instances), the average relative MCAI for this method
is slightly above zero. The APOI and COMB methods are only
marginally worse in this regard (absolute MCAI equal to 0.8975).
This means that considering stochastic acceptabilities for the
assignment-based pairwise preference relations led to different
assignments for very few problem instances. This confirms that
the two perspectives are highly consistent in guiding the methods
to the most robust assignments.

Another group of methods that perform well in terms of as-
signing alternatives to their most frequent classes in the set of all
feasible models is composed of CENTROID (0.8968), CHEBYSHEV
(0.8620), and ACUTADIS (0.8449). Note that CAI, APOI, and COMB
have a competitive advantage over these methods in considering
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Fig. 2. The Hasse diagram indicating the statistically significant differences in
terms of the absolute and relative MCAI based on the Wilcoxon test with p-value
equal to 0.05.

the assignments of all alternatives, including non-reference ones,
already at the stage of identifying a representative model. When
such an approach is too costly in terms of required computa-
tional effort, one can opt for methods selecting a central model
that exploit only the information provided by the DM. Interest-
ingly, unlike for the classification accuracy, ACUTADIS performs
slightly worse than procedures selecting an average model or the
Chebyshev center.

The worst performers in terms of assignment acceptability are
the same as those for classification accuracy. The least robustness
of recommended assignments is observed for MSCVF (0.7161).
It is understandable, given that the objective function optimized
by this approach has nothing in common with alternatives’ as-
signments or the robustness of results. Moreover, this proce-
dure omitted the problems with linear MVFs. Surprisingly low
MCAIs are attained by ROBUST-ITER (0.7400) and ROBUST-COMP
(0.7272). These procedures build on the outcomes of robustness
analysis. However, they focus on the necessary and possible rela-
tions derived from mathematical programming. This proves that
such extreme, robust outcomes are often too scarce to provide
valuable insights and guide the procedures to select a model that
would be representative in terms of robustness preoccupation.
Since the space between the necessary and the possible may be
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Table 4
Mean values and standard deviations of assignment acceptabilities for all
considered problem settings.

Procedure Absolute Relative
mean std mean std

UTADISMP1 0.8034 0.1058 —0.1060 0.1010
UTADISMP2 0.7902 0.1046 —0.1208 0.0998
UTADISMP3 0.7814 0.1005 —-0.1312 0.0887
UTADIS-JLS 0.7766 0.1191 —0.1357 0.1193
CHEBYSHEV 0.8620 0.0669 —0.0407 0.0396
MSCVF 0.7161 0.1209 —0.2095 0.1202
ACUTADIS 0.8449 0.0760 —0.0594 0.0622
CENTROID 0.8968 0.0491 —0.0012 0.0025
REPDIS 0.7980 0.0902 —0.1123 0.0782
CAI 0.8979 0.0485 —1.4E—07 1.4E—05
APOI 0.8975 0.0491 —0.0005 0.0020
COMB 0.8975 0.0490 —0.0005 0.0018
ROBUST-ITER 0.7400 0.1251 —0.1773 0.1228
ROBUST-COMP 0.7272 0.1261 —-0.1913 0.1256

quite large, using stochastic acceptabilities computed with the
Monte Carlo simulation and filling this gap is more beneficial for
most problem instances.

In Tables 5-8, we provide the average assignment acceptabil-
ities for different values of particular dimensions. In general, the
robustness of recommended assignments increases with fewer
classes, criteria, and characteristic points and a greater number
of reference alternatives per class. Hence, these trends are the
same as for the classification accuracy. They can be attributed to
the same reasons. Less flexible models and greater information
load lead to more constrained space of feasible models and more
robust sorting results. For example, for UTADISMP2 - the differ-
ence between extreme values for each dimension are as follows:
for p € {2,5} - 0.0359, for m € {3, 9} - 0.0908, for y; € {2, 6}
- 0.0221, and for R € {3, 10} - 0.1539. This indicates that the
number of reference alternatives per class has the greatest impact
on the robustness of recommended assignments. In contrast, the
influence of the number of characteristic points is the least.

When it comes to absolute MCAIs attained for different num-
bers of classes (see Table 5), the greatest differences are observed
for problems with 2 and 3 classes. The deviation from the general
trend is noted for some procedures when comparing the results
for problems with 4 and 5 classes. As far as various procedures are
concerned, the performance of CAI, APOI, COMB, and CENTROID
is the most stable (e.g., for the last approach, absolute MCAI is
0.9099 for p 2 and 0.8931 for p 5). All these methods
share the component of performing the stochastic acceptability
analysis. The highest decrease in the quality of the generated
solutions can be seen for UTADISMP3. In the case of absolute
values, it falls from 0.8421 for 2 classes to 0.7446 for 5 classes.
This decrease is also the highest in the case of relative values.
For the problems with 2 classes, the deviation from the optimal
MCAI value for all alternatives was 0.0757, and with 5 classes, it
was over 2 times higher and equal to 0.1695. For the remaining
approaches, these relative values are more stable, and for some
of them (see, e.g.,, UTADISMP1 and REPDIS), they tend to perform
even slightly better when moving from three to five classes.

When the number of criteria increases, the trends for absolute
and relative MCAIs are more consistent (see Table 6). For all pro-
cedures, the robustness of recommended assignments decreases
in terms of absolute values and their distances from the best pos-
sible solution. Interestingly, a slight decrease in absolute values
is also noticeable for the CAI method, which, apart from a few
exceptions, always obtains the solution with the highest absolute
MCAI value possible. This may lead to the conclusion that a
greater number of attributes results in greater model flexibil-
ity. Herefore, the recommendations resulting from the stochastic
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Table 5

Average assignment acceptability for different numbers of classes.
Procedure Absolute Relative

2 3 4 5 2 3 4 5

UTADISMP1 0.8155 0.7949 0.7982 0.8048 —0.1048 —0.1120 —0.1060 —0.1013
UTADISMP2 0.8158 0.7857 0.7793 0.7799 —0.1039 —0.1223 —0.1274 —0.1295
UTADISMP3 0.8421 0.7840 0.7549 0.7446 —0.0757 —0.1247 —0.1551 —0.1695
UTADIS-JLS 0.8050 0.7675 0.7642 0.7698 —0.1154 —0.1424 —0.1442 —0.1410
CHEBYSHEV 0.8830 0.8592 0.8525 0.8535 —0.0310 —0.0403 —0.0449 —0.0464
MSCVF 0.7645 0.7175 0.6993 0.6831 —0.1728 —0.2058 —0.2210 —0.2385
ACUTADIS 0.8744 0.8410 0.8319 0.8321 —0.0399 —0.0602 —0.0676 —0.0702
CENTROID 0.9099 0.8936 0.8906 0.8931 —0.0009 —0.0013 —0.0014 —0.0013
REPDIS 0.8132 0.7910 0.7918 0.7959 —0.1079 —0.1168 —0.1131 —0.1112
CAI 0.9107 0.8947 0.8918 0.8943 0 —1.9E-08 —4.1E—-07 —1.5E-07
APOI 0.9104 0.8942 0.8913 0.8939 —0.0003 —0.0006 —0.0006 —0.0005
COMB 0.9105 0.8943 0.8914 0.8939 —0.0003 —0.0006 —0.0005 —0.0004
ROBUST-ITER 0.7597 0.7298 0.7313 0.7390 —0.1661 —0.1854 —0.1818 —0.1757
ROBUST-COMP 0.7563 0.7205 0.7167 0.7153 —0.1698 —0.1954 —0.1978 —0.2021

Table 6

Average assignment acceptability for different numbers of criteria.
Procedure Absolute Relative

3 5 7 9 3 5 7 9

UTADISMP1 0.8593 0.8163 0.7830 0.7549 —0.0540 —0.0909 —0.1248 —0.1545
UTADISMP2 0.8379 0.8030 0.7727 0.7471 —0.0774 —0.1058 —0.1365 —0.1634
UTADISMP3 0.8163 0.7867 0.7686 0.7541 —0.1018 —0.1243 —0.1419 —0.1570
UTADIS-JLS 0.8231 0.7886 0.7607 0.7340 —0.0943 —0.1215 —0.1494 —0.1776
CHEBYSHEV 0.8821 0.8635 0.8549 0.8476 —0.0283 —0.0380 —0.0446 —0.0517
MSCVF 0.7896 0.7280 0.6876 0.6592 —0.1272 —0.1932 —0.2417 —0.2761
ACUTADIS 0.8794 0.8509 0.8323 0.8169 —0.0313 —0.0518 —0.0694 —0.0853
CENTROID 0.9065 0.8960 0.8930 0.8918 —0.0009 —0.0012 —0.0013 —0.0015
REPDIS 0.8301 0.8019 0.7853 0.7745 —0.0863 —0.1069 —0.1225 —0.1334
CAI 0.9073 0.8970 0.8941 0.8931 0 —1.7E-07 0 —4.1E-07
APOI 0.9069 0.8966 0.8937 0.8927 —0.0005 —0.0005 —0.0005 —0.0006
COMB 0.9069 0.8967 0.8937 0.8927 —0.0004 —0.0004 —0.0005 —0.0005
ROBUST-ITER 0.8081 0.7561 0.7134 0.6823 -0.1114 —0.1586 —0.2031 —0.2359
ROBUST-COMP 0.7957 0.7405 0.7009 0.6717 —0.1250 —0.1758 —0.2167 —0.2477

analysis give less robust conclusions. In the case of CAI, however,
these changes are much smaller than in the case of, e.g., ROBUST-
COMP or MSCVF. For these two approaches and problems with 9
criteria, the mean relative loss to the optimum is nearly twice as
large as for the problems with 3 criteria.

The general trend of decreasing absolute MCAIs with a greater
number of characteristic points is visible in Table 7. However, it
is not valid for all procedures. For the best-performing methods,
including CAI, APOI, COMB, CHEBYSHEV, and CENTROID, it is in-
verse. For example, the absolute MCAIs for CAI are 0.8849, 0.8942,
and 0.9145 for y; = 2,4, 6. For the approaches exploiting the
stochastic acceptabilities, one may interpret that more flexible
MVFs offer greater chances for better fitting the models to reflect
the CAls and APOIs. Even though for the procedures identifying
the Chebyshev and analytic centers, the absolute MCAIs increased
when moving from linear to piecewise linear MVFs, their relative
counterparts marginally deteriorated.

With a more significant number of reference alternatives per
class, the trends of increasing absolute MCAI and decreasing loss
to the most robust assignment are unanimously confirmed for all
procedures (see Table 8). For example, for CHEBYSHEYV, its ab-
solute assignment acceptability increases from 0.8105 to 0.9044
when moving from R = 3 to 10, and its relative loss decreases
from 0.0572 to 0.0277. With additional preference information,
the entropy of class acceptability indices gets lower, and hence
the feasible models become more similar in terms of the sug-
gested sorting recommendations [25]. Consequently, irrespective
of the applied procedure, the chances of selecting a model whose
assignments are highly robust get higher.

The results of the linear regression analysis for the relative and
absolute assignment acceptabilities are available in eAppendix 3.
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4.3.3. Differences between marginal and comprehensive values and
class thresholds

In this section, we discuss the results for the remaining three
measures jointly because the underlying rankings are similar
to a large extent. This is understandable because all measures
concern the similarity between the models derived with dif-
ferent approaches and the reference model, even if they refer
to its various components. We present the average differences
between marginal and comprehensive values and class thresholds
in Table 9. In addition, for the marginal values, we report the
difference to an average solution obtained with CENTROID, in the
space of all models consistent with DM’s preferences.

For all these measures, we performed Wilcoxon signed-rank
tests to investigate the statistical significance of the observed
differences with a p-value of 0.05. Moreover, the coefficients of
the influence of individual problem features on the results were
determined by solving the linear regression problem. The tables
with regression coefficients and the Hasse diagrams reflecting
the relationships resulting from the statistical test outcomes are
available in eAppendix 4.

Given all three measures, the most significant similarity to
the reference model is observed for the outcomes of ACUTADIS,
CENTROID, and CHEBYSHEV. For example, for ACUTADIS, the
distance from the reference model in terms of marginal values
is 0.0417; for comprehensive values - it is 0.0502, and for class
thresholds - 0.0409. For the procedures identifying an average
solution and the Chebyshev center, the measure values are only
slightly higher. The distances of the function returned by ACU-
TADIS and CHEBYSHEV from the centroid solution are very low,
suggesting that the three procedures return similar models. For
UTADIS-JLS, which implements an analogous selection rule to
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Table 7

Average assignment acceptability for different numbers of characteristic points.
Procedure Absolute Relative

2 4 6 2 4 6

UTADISMP1 0.8484 0.7966 0.7650 —0.0428 —0.1108 —0.1645
UTADISMP2 0.7949 0.8029 0.7728 —0.1032 —0.1034 —0.1557
UTADISMP3 0.7828 0.7711 0.7904 —0.1175 —0.1393 —0.1369
UTADIS-JLS 0.8460 0.7667 0.7171 —0.0457 —0.1444 —0.2171
CHEBYSHEV 0.8568 0.8540 0.8753 —0.0328 —0.0457 —0.0434
MSCVF 0.7160 0.7162 —0.2013 —0.2178
ACUTADIS 0.8646 0.8326 0.8374 —0.0237 —0.0698 —0.0848
CENTROID 0.8842 0.8931 0.9132 —0.0009 —0.0014 —0.0014
REPDIS 0.8199 0.7847 0.7893 —0.0753 —0.1235 —0.1379
CAI 0.8849 0.8942 0.9145 —3.2E-07 —1.1E-07 0
APOI 0.8844 0.8938 0.9142 —0.0007 —0.0005 —0.0003
COMB 0.8844 0.8939 0.9142 —0.0006 —0.0005 —0.0003
ROBUST-ITER 0.7972 0.7262 0.6965 —0.1020 —0.1902 —0.2396
ROBUST-COMP 0.7883 0.7105 0.6828 -0.1119 —0.2075 —0.2545

Table 8

Average assignment acceptability for different numbers of reference alternatives per class.
Procedure Absolute Relative

3 5 7 10 3 5 7 10

UTADISMP1 0.7170 0.7914 0.8344 0.8707 —0.1641 —0.1119 —0.0843 —0.0639
UTADISMP2 0.7040 0.7776 0.8211 0.8579 —0.1794 —0.1274 —0.0987 —0.0776
UTADISMP3 0.7110 0.7695 0.8052 0.8399 —0.1735 —0.1375 —0.1168 —0.0971
UTADIS-JLS 0.6785 0.7624 0.8102 0.8553 —0.2085 —0.1439 —0.1104 —0.0802
CHEBYSHEV 0.8105 0.8535 0.8797 0.9044 —0.0572 —0.0430 —0.0348 —0.0277
MSCVF 0.6232 0.7041 0.7479 0.7893 —0.2865 —0.2164 —0.1828 —0.1524
ACUTADIS 0.7939 0.8367 0.8618 0.8870 —0.0756 —0.0614 —0.0543 —0.0464
CENTROID 0.8575 0.8903 0.9102 0.9293 —0.0019 —0.0013 —0.0010 —0.0007
REPDIS 0.7288 0.7875 0.8213 0.8542 —0.1517 —0.1167 —0.0989 —0.0818
CAI 0.8591 0.8914 09111 0.9299 —5.3E-07 —5.3E—-08 0 0
APOI 0.8580 0.8911 09110 0.9299 —0.0013 —0.0004 —0.0002 —0.0001
COMB 0.8581 0.8911 09110 0.9299 —0.0012 —0.0004 —0.0002 —0.0001
ROBUST-ITER 0.6480 0.7213 0.7704 0.8202 —0.2452 —0.1908 —0.1547 —0.1183
ROBUST-COMP 0.6378 0.7087 0.7581 0.8042 —0.2570 —0.2048 —0.1680 —0.1354

CENTROID, such a distance is higher. This is also reflected in more
substantial differences from the DM’s reference model. Therefore,
it is apparent that averaging only extreme models does not lead
to obtaining an average solution.

Favorable results in terms of differences between marginal and
comprehensive values are attained with REPDIS. However, when
considering the class thresholds, these differences are higher.
It is intuitive because REPDIS does not optimize the threshold
values, focusing only on selecting a representative value function.
Still, REPDIS proves better in terms of the three measures than
the remaining methods exploiting the stochastic acceptabilities.
For example, for CAI, the distance from the reference model in
terms of marginal values is 0.0642; for comprehensive values
- it is 0.0916, and for class thresholds - 0.0818, being 1.5-2
times higher than for the best-rated ACUTADIS. This confirms that
aiming to reproduce the most common results attained in the set
of all compatible sorting models does not ideally allow replicating
a single reference model.

The group of UTADISMP methods and ROBUST-ITER achieve
intermediate results. In the case of UTADISMP1 and ROBUST-ITER,
both procedures attain the same values in terms of distances built
on marginal and comprehensive values. This is because they aim
to identify the most discriminant models. While UTADISMP1 ex-
ploits only the DM'’s preference information, ROBUST-ITER refers
to the necessary assignment-based preference relation in the set
of all alternatives. However, this relation is heavily influenced by
the DM'’s assignment examples because all reference alternatives
from the more preferred classes are necessarily preferred to the
alternatives assigned to the least preferred classes. Still, the nec-
essary relation can be richer, involving pairs that are compared
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in the same way by all feasible models, even if this is not a
direct consequence of the DM’s statements. Also, the differences
between these methods can be typically observed for the measure
values related to class thresholds. This is because UTADISMP1
directly optimizes their values, while ROBUST-ITER is focused
only on the parameters of the AVF. Furthermore, UTADISMP2
constructed models that are, on average, slightly more similar to
the reference ones than UTADISMP1, whereas the similarity re-
sults for ROBUST-COMP are marginally worse than for its iterative
counterpart.

UTADIS-JLS achieves a relatively good approximation of the
marginal values compared to the reference and the centroid mod-
els. Therefore, averaging the extreme models can be beneficial if
the primary aim is to understand how the DM evaluates partic-
ular criteria. However, this approach achieves the worst results
for the similarity measures based on comprehensive values and
thresholds.

Finally, the worst-performing methods include CAI, APOI,
COMB, MSCVF, and ROBUST-COMP. For the three methods ex-
ploiting the acceptability indices, it can be concluded that al-
though they usually obtain models that differ significantly from
the reference one, they create consistent and representative solu-
tions in the context of preference information provided by DM. In
turn, MSCVF and ROBUST-COMP fail to offer satisfactory results
given all analyzed aspects.

The differences between the reference and resulting models
obtained for different values of each problem dimension (p, m,
y;, and R) together with linear regression models and Hasse
diagrams resulting from the Wilcoxon signed-rank tests are dis-
cussed in the eAppendix.
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Average value and standard deviation of differences between marginal values, comprehensive values, and class thresholds from the
reference model (in case of marginal values, also the differences from the centroid model).

Procedure Marginal values Comprehensive Class

Reference Centroid values thresholds

mean std mean std mean std mean std
UTADISMP1 0.0582 0.0439 0.0493 0.0412 0.0811 0.0709 0.0594 0.0602
UTADISMP2 0.0606 0.0412 0.0516 0.0396 0.0803 0.0679 0.0588 0.0572
UTADISMP3 0.0607 0.0362 0.0424 0.0269 0.0655 0.0367 0.0526 0.0440
UTADIS-JLS 0.0558 0.0403 0.0426 0.0330 0.0997 0.0887 0.1004 0.1024
CHEBYSHEV 0.0459 0.0313 0.0207 0.0174 0.0553 0.0375 0.0461 0.0436
MSCVF 0.0628 0.0384 0.0547 0.0312 0.0870 0.0421 0.0758 0.0551
ACUTADIS 0.0417 0.0286 0.0239 0.0158 0.0502 0.0337 0.0409 0.0395
CENTROID 0.0445 0.0291 0 0 0.0545 0.0380 0.0461 0.0449
REPDIS 0.0492 0.0357 0.0256 0.0262 0.0622 0.0519 0.0684 0.0680
CAI 0.0642 0.0375 0.0463 0.0256 0.0916 0.0801 0.0818 0.0877
APOI 0.0644 0.0377 0.0465 0.0256 0.0908 0.0790 0.0812 0.0868
COMB 0.0644 0.0377 0.0465 0.0256 0.0908 0.0790 0.0812 0.0868
ROBUST-ITER 0.0582 0.0439 0.0493 0.0412 0.0811 0.0709 0.0958 0.1023
ROBUST-COMP 0.0614 0.0454 0.0541 0.0425 0.0853 0.0741 0.0978 0.1035

5. Summary and future research

We considered preference disaggregation in the context of
multiple criteria sorting. We assumed the classification is driven
by an additive value function and thresholds separating the
categories. The parameters of such a model are inferred from
the Decision Maker’s assignment examples. Using such indirect
and incomplete preference information leads to infinitely many
compatible sorting models, potentially implying different assign-
ments for the non-reference alternatives. Given the multiplicity
of feasible models, selecting a single, representative one can be
conducted in different ways.

We reviewed several procedures for such a selection. They aim
to identify the most discriminant, average, central, parsimonious,
or robust model. These ideas differ regarding the exploited in-
formation and aspects to be emphasized that translate into the
relevant constraints and an objective function. Our core contribu-
tion is proposing three novel procedures that assign the alterna-
tives according to the robust classification rule. For this purpose,
they exploit class acceptability indices and/or assignment-based
pairwise acceptabilities and maximize the support given to the
resulting assignments by all feasible sorting models. The use of
all approaches, including the existing and novel ones, was illus-
trated in a study concerning the green performance assessment
of European cities.

In the extensive experimental study, we compared the per-
formance of all procedures on problem instances with different
complexities. The results were quantified in terms of five mea-
sures. When it comes to reproducing the assignments generated
by a simulated Decision Maker’s model and the parameters of this
model, involving marginal and comprehensive values as well as
class thresholds, the best performers are the same. They include
the procedures that determine a central sorting model with the
proviso that it can be an analytic center, the Chebyshev center,
or an average determined based on a large sample of compatible
models. When it comes to approximating the unknown model
parameters, favorable results were also attained by the most
discriminant procedures.

We performed a related experiment whose initial results —
derived from the analysis of a smaller set of problems - were
not included in the paper due to their extremely high correlation
in terms of the ranking of methods imposed by the classification
accuracy. Namely, for each simulated DM’s value function, we
drew different sets of reference alternatives and verified how
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well each procedure performs, predicting the classification for the
non-reference alternatives across different reference sets. Such a
measure reflects how strongly the arbitrary choice of reference
alternatives influences each method’s performance. An observed
high similarity of outcomes was expected. The results reported
in the main paper for each problem setting were averaged across
100 instances with various performances and simulated DMs.
With so many repetitions, whether we derive the mean predic-
tive performance from analyzing various instances or the same
instances with different reference sets does not influence the
methods’ average performance.

The novel approaches exploiting stochastic acceptabilities pro-
ved to be the best in emphasizing the robustness of results in
a univocal recommendation. This is, however, at the increased
computational cost related to conducting robustness analysis for
all alternatives and solving a more challenging optimization prob-
lem. Overall, the results returned by the three procedures were
highly similar, with CAI attaining only slightly better results than
APOI and COMB. Even if the idea underlying these methods is
very alike, they exploit various results and optimize different
objectives. Hence such a high similarity or even the same out-
comes delivered for most problems could not be predicted before
conducting the experiments. Based on the obtained experimen-
tal results, we recommend using CAI when the DM focuses on
robustness.

The favorable performance of CAI, APOI, and COMB in ensuring
high robustness could have been anticipated. Their aim consists
in providing the best possible representation of the recommen-
dations feasible in the entire space of compatible sorting models.
Given that each of them is consistent with the DM’s incomplete
preference information and could have served as the reference
model, high robustness is also related to average high classifi-
cation accuracy. Indeed, the experiments confirmed the novel
procedures attained favorable results in terms of classification
accuracy.

The center-oriented procedures also achieved high robustness
of results. Moreover, CENTROID and ACUTADIS attained higher
predictive accuracy than CAL Among them, CENTROID ensures
lower computational costs, requiring no optimization. Finally,
focusing only on the shape of marginal value functions, as in the
UTADISMP methods, or exploiting the exact, necessary results, as
in the ROBUST approaches, did not lead to favorable outcomes
given any considered measure.
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The favorable performance of center-oriented procedures re-
garding predictive accuracy and robustness can be explained
by referring to the model similarity measures. These methods
returned models very close to the reference ones in terms of
comprehensive and marginal values and class thresholds. In this
perspective, they can be considered the best candidates for de-
fault choices in the applications of UTADIS-like methods when
the DM cares about all measures. On the contrary, the models
constructed by CAI, APOI, and COMB were among the least similar
to the reference ones. Specifically, they were in the bottom four
for value-based measures and the bottom half of the ranking
for threshold-oriented metrics. This aspect is less relevant for
the practice of decision-aiding. However, it confirms that even if
the parameter values of various models differ significantly, they
may nevertheless provide similar recommendations based on the
incomplete DM’s preferences. This emphasizes the importance of
informativeness and trustworthiness of the information supplied
at the method’s input. Also, when solving real-world problems,
the form of the abstract DM’'s model is unknown, making the
comparison with its values infeasible. The above speaks in favor
of using the novel procedures proposed in this paper as they
ensure high predictive capabilities and results’ robustness despite
not reproducing the reference parameter values closely.

When limiting the analysis of results only to the four ap-
proaches considered in [44], our findings are largely consistent.
The statistically significant rankings reported in [44] given both
the classification accuracy and the assignments’ acceptability
indicate the following order: ACUTADIS (called analytic cen-
ter in [44]), CHEBYSHEV (Chebyshev center), UTADISMP1 (max-
min), and UTADIS-JLS (post-optimality). We confirmed the same
ranking given the prediction performance and observed inverse
positions, with marginal differences, only for the center-based
approaches when it comes to the recommendation robustness.

The experimental study indicated that the classification accu-
racy of procedures and assignment acceptability of their recom-
mendation decreased with more classes, criteria, and character-
istic points and fewer reference alternatives per class. These out-
comes can be justified given a more significant challenge posed
by the classification problems with more classes, higher flexibility
of a preference model with more criteria and breakpoints, and
greater information gain offered by additional assignment exam-
ples. This is consistent with the findings reported in [44,56] given
both performance trends and the positive association between
predictive performance and recommendation robustness.

The average differences between the reference and deliv-
ered models given values of parameters such as marginal values
assigned to particular characteristic points, alternatives’ com-
prehensive values, or class thresholds exhibit slightly different
trends. They become lower with more classes (also implying more
assignment examples) and reference assignments per class and
higher with more characteristic points. Regarding the impact of
the number of criteria, the observed regularities were unclear and
differed from one approach to another.

Due to a broader range of parameter values considered in this
paper compared to [44], we gained more insights into how they
affect the reported measures. In most cases, the trend of change in
values of all measures was non-linear with respect to considered
values of different dimensions. Specifically, greater modifications
were observed in the lower scale range of different parameters of
a decision problem or a sorting model (e.g., when passing from
2 to 3 classes, from 3 to 5 criteria, from 2 to 4 characteristic
points, of from 3 to 5 reference assignments per class). In turn, the
differences in the upper parts of the parameter scales were lesser
(e.g., when passing from 4 to 5 classes, from 7 to 9 criteria, from
4 to 6 characteristic points, of from 7 to 10 reference assignments
per class).
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We envisage the following directions for future research. Firs-
tly, in this paper, we focused only on analyzing procedures for
selecting a representative sorting model in case of compatibility
with the DM'’s preference information. However, it would be use-
ful to extend the study in terms of both simulating artificial DMs’
policies with the models that do not ensure such a compatibility
(e.g., by allowing some errors in making the classifications sug-
gested by a simulated model) as well as considering procedures
that are specifically oriented toward selecting a representative
model in case of inconsistency [7,41]. This would reflect how
much each method is influenced by the errors and inconsisten-
cies and even quantify if it can correct them. Nonetheless, this
requires studying a completely different set of methods han-
dling inconsistency between the provided preferences and an
assumed model. In the same spirit, it would be interesting to ver-
ify the conclusions for other preference models (e.g., the Choquet
integral [57,58]) or uncertain preference information [18,59].

Second, when generating the assignment examples in the
experimental study, we simulated realistic scenarios in which
extreme classes were less common than intermediate ones. We
could also consider other distributions, e.g., assuming that all
classes are represented by the same number of reference alterna-
tives or just simulating a certain number of assignments without
influencing their distribution and hence tolerating very unbal-
anced ones. However, each setting requires a separate report
spanning tens of pages. Also, our initial experiments on a limited
set of instances confirmed that even if the absolute values of
classification accuracy or robustness-oriented measure differ, the
relative rankings of methods are not influenced.

Third, it would be interesting to design the procedures com-
promising between deriving central and robust models. This
would allow them to score well in classification accuracy, re-
producing the unknown DM’s model, and in the support given
to their recommendation in the set of all compatible models.
Also, we may construct the most robust recommendation without
exhibiting any feasible model and including constraints related
to using a threshold-based value-driven sorting procedure as
in the approaches proposed in this paper. In this way, we can
investigate how restrictive the underlying model assumptions are
in constructing a robust recommendation.

Finally, a similar review and results of an experimental study
in the context of multiple criteria ranking can be found in [50].
The variety of procedures applicable in this context is wider,
including procedures to construct a representative value function,
decision rules, scoring methods, and approaches for constructing
the most robust recommendation without exhibiting the model.
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Selection of a representative sorting model in a preference disaggregation setting:
a review of existing procedures, new proposals, and experimental comparison
eAppendix
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Abstract

The eAppendix contains additional material not included in the main paper. First, we report the results of the illustrative
study demonstrating the use of fourteen procedures on the same problem. Then, we discuss the values of the performance
measures for selected procedures based on the results of an illustrative study. Furthermore, we present the results of the
linear regression analysis for the relative and absolute assignment acceptabilities. Finally, we elaborate on the results
concerning all measures quantifying the similarity between the models derived with different approaches and the reference

model.

Keywords: Multiple criteria decision aiding, Preference disaggregation, Sorting, Representative model, Robustness

analysis, Computational study

1. Illustrative study

To illustrate how the procedures for selecting a representative sorting model work, we consider an example problem
concerning the evaluation of 30 major European cities in implementing green policy. In the considered study, each city
is rated in terms of the following four criteria: C'Os emissions (g;), energy consumption (gs), water management (gs),
and waste and land use (g4). The performances on the scale between 0 and 10 were determined by considering various
indicators. They are given in Table 1. We will employ UTADIS to assign the cities to three classes: C7, Cs, and Cs,
where Cj3 is the most preferred category. We assume that a marginal function for each criterion has three characteristic
points (y; = 3 for j =1,...,4). Moreover, they are defined over the [0, 10] range, and thus ﬂjl =0, 6? =5, and 5]3 = 10.

Then, we drew three reference alternatives for each class to form the DM’s indirect preference supplied as the input for
UTADIS: ays, a2, a7 — C1, ar,a18,a19 — Ca, and a1, ag,a19p — C3. To simulate the DM’s policy, we randomly selected
an additive value function with marginal functions depicted in Figure 1. All alternatives were assessed given this function
(see Table 1 for marginal and comprehensive values). Subsequently, a pair of thresholds (¢; = 0.3977 and ¢ = 0.6543) was
selected to delimit the three preference-ordered classes, and derive the assignments with the DM’s reference model (see
Table 1). The threshold values were chosen randomly in such value ranges, which guaranteed that each class received ten
alternatives. The reference alternatives are marked in red, and their labels are provided under the axis in Figure 2. Some
procedures discussed in the previous section make use of robust results. In particular, we employed Hit-And-Run (HAR)
for deriving CAI’s (see Table 1) and APWI's (see Table 2). They were computed based on 10,000 compatible sorting
models.

In what follows, we discuss the results obtained with 14 procedures for selecting a representative sorting model.
The respective MVF's are illustrated in Figure 3. For precise marginal values assigned to the characteristic points and
class thresholds, see Table 3. Tables 4 and 5 show the comprehensive values and class assignments determined with all
approaches. To save space, we provide detailed results only for nine non-reference cities, for which at least one method
recommended a class that differed from the one assigned by the reference model. For the remaining twelve alternatives,

all 14 procedures recommended an assignment compatible with the indication of the reference model.
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k.ciomek@gmail.com (Krzysztof Ciomek)
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Table 1: Evaluation of decision alternatives (cities) on four criteria, their marginal and comprehensive values according to a reference model,
and Class Acceptability Indices CAI'(a;, C;) for all alternatives and classes.

Performances Reference values Class acceptabilities
Alternative g1 gz gs ga wq Uug us Uug U(a) Ch Cs C3
a1 (Oslo) 9.58 | 871 | 6.85 | 8.23 0.0691 | 0.2384 | 0.1896 | 0.1992 0.6963 0.000 | 0.000 | 1.000
asz (Stockholm) 899 | 7.61 | 7.14 | 7.99 0.0616 | 0.2240 | 0.2074 | 0.1872 0.6802 0.000 | 0.029 | 0.971
a3 (Zurich) 8.48 | 6.92 | 8.88 | 8.82 0.0552 | 0.2149 | 0.3142 | 0.2286 0.8129 0.000 | 0.000 | 1.000
a4 (Copenhagen) 8.35 | 8.69 | 8.88 | 8.05 0.0535 | 0.2381 | 0.3142 | 0.1902 0.7960 0.000 | 0.000 | 1.000
as (Brussels) 832 | 6.19 | 9.05 | 7.26 0.0532 | 0.2054 | 0.3246 | 0.1508 0.7339 0.000 | 0.000 | 1.000
ae (Paris) 7.81 | 4.66 | 8.55 | 6.72 0.0467 | 0.1769 | 0.2939 | 0.1239 0.6414 0.000 | 0.056 | 0.944
a7 (Rome) 7.57 | 6.40 | 6.88 | 5.96 0.0437 | 0.2081 | 0.1915 | 0.0859 0.5292 0.000 | 1.000 | 0.000
ag (Vienna) 7.53 7.76 9.13 | 8.60 0.0432 0.2259 | 0.3295 0.2177 0.8163 0.000 | 0.000 1.000
ag (Madrid) 7.51 5.52 8.59 | 5.85 0.0429 0.1966 | 0.2964 | 0.0804 0.6163 0.000 | 0.124 | 0.876
a1o (London) 7.34 | 5.64 | 8.58 | 7.16 0.0408 | 0.1982 | 0.2958 | 0.1458 0.6805 0.000 | 0.000 | 1.000
a11 (Helsinki) 7.30 | 4.49 | 7.92 | 8.69 0.0403 | 0.1704 | 0.2553 | 0.2222 0.6881 0.000 | 0.200 | 0.800
a12 (Amsterdam) 7.10 | 7.08 | 9.21 | 8.98 0.0378 | 0.2170 | 0.3344 | 0.2366 0.8258 0.000 | 0.000 | 1.000
a13 (Berlin) 6.75 | 5.48 | 9.12 | 8.63 0.0334 | 0.1961 | 0.3289 | 0.2192 0.7775 0.000 | 0.000 | 1.000
a14 (Ljubljana) 6.67 | 2.23 | 4.19 | 5.95 0.0323 | 0.0846 | 0.0638 | 0.0854 0.2662 1.000 | 0.000 | 0.000
a5 (Riga) 5.55 | 3.53 | 6.43 | 5.72 0.0182 | 0.1340 | 0.1639 | 0.0739 0.3900 1.000 | 0.000 | 0.000
aie (Istanbul) 4.86 | 5.55 | 5.59 | 4.86 0.0110 | 0.1970 | 0.1124 | 0.0370 0.3573 1.000 | 0.000 | 0.000
a17 (Athens) 4.85 | 494 | 7.26 | 5.33 0.0109 | 0.1875 | 0.2148 | 0.0545 0.4677 0.088 | 0.912 | 0.000
a1g (Budapest) 4.85 2.43 6.97 | 6.27 0.0109 0.0922 | 0.1970 0.1014 0.4016 0.000 1.000 | 0.000
a19 (Dublin) 4.77 | 4.55 7.14 | 6.38 0.0108 0.1727 | 0.2074 | 0.1069 0.4978 0.000 1.000 | 0.000
azo (Warsaw) 4.65 | 5.29 | 490 | 5.17 || 0.0105 | 0.1936 | 0.0747 | 0.0465 0.3252 1.000 | 0.000 | 0.000
a21 (Bratislava) 4.54 | 4.19 | 7.65 | 5.60 0.0102 | 0.1590 | 0.2387 | 0.0680 0.4759 0.001 | 0.999 | 0.000
a2z (Lisbon) 4.05 | 5.77 | 542 | 5.34 0.0091 | 0.1999 | 0.1019 | 0.0550 0.3659 1.000 | 0.000 | 0.000
az3 (Vilnius) 3.91 | 239 | 7.71 | 7.31 0.0088 | 0.0907 | 0.2424 | 0.1533 0.4952 0.000 | 0.935 | 0.065
a24 (Bucharest) 3.65 | 3.42 | 4.07 | 3.62 0.0082 | 0.1298 | 0.0620 | 0.0275 0.2276 1.000 | 0.000 | 0.000
a5 (Prague) 3.44 | 3.26 | 8.39 | 6.30 0.0078 | 0.1237 | 0.2841 | 0.1029 0.5185 0.000 | 0.849 | 0.151
aze (Tallinn) 3.40 | 1.70 | 7.90 | 6.15 0.0077 | 0.0645 | 0.2541 | 0.0954 0.4216 0.008 | 0.991 | 0.001
az7 (Zagreb) 3.20 | 4.34 | 4.43 | 4.04 0.0072 | 0.1647 | 0.0675 | 0.0307 || 0.2701 1.000 | 0.000 | 0.000
azg (Belgrade) 3.15 | 4.65 | 3.90 | 4.30 0.0071 | 0.1765 | 0.0594 | 0.0327 || 0.2757 1.000 | 0.000 | 0.000
az9 (Sofia) 2.95 2.16 1.83 | 3.32 0.0067 | 0.0820 | 0.0279 0.0252 0.1418 1.000 | 0.000 | 0.000
azo (Kiev) 2.49 | 1.50 | 5.96 | 1.43 0.0056 | 0.0569 | 0.1351 | 0.0109 0.2085 1.000 | 0.000 | 0.000

Table 2: Part of the matrix with the APW I’ values.

aj ag aio aii e a24 azs a6

a;

ag S 0.000 | 0.000 | 0.171 | ... 1.000 | 0.725 | 0.880
aio S 0.124 | 0.000 | 0.200 | ... 1.000 | 0.849 | 0.999
ai1 S 0.095 | 0.000 | 0.000 | ... 1.000 | 0.649 | 0.800
a24 . 0.000 | 0.000 | 0.000 e 0.000 | 0.000 | 0.000
azs . 0.000 | 0.000 | 0.000 e 1.000 | 0.000 | 0.158
aze S 0.000 | 0.000 | 0.000 | ... 0.992 | 0.000 | 0.000

The UTADISMP1 method aims at reproducing the DM’s preferences by maximizing the difference between compre-
hensive values of reference alternatives and the thresholds of their desired classes. This objective implies that due to
the existence of reference alternatives with comprehensive values close to the thresholds (e.g., a15 and a;g), the resulting
marginal functions and class thresholds differ from the reference ones. Indeed, maximizing the difference between these
values and thresholds often requires assigning positive marginal values only in the last segments (see Figure 3). Moreover,
the operational procedure underlying UTADISMP1 implies that non-reference alternatives with very similar performance
profiles to reference alternatives are assigned to the same class. This can be observed for, e.g., a19 and a17 or ag and aqg.

The models obtained with UTADISMP2 and UTADISMP3 are the same. This is understandable since both procedures
account for maximizing the minimal slope of MVFs, while UTADISMP2 additionally considers the same objective as
UTADISMP1. The evidence of maximizing the differences between marginal values assigned to successive characteristic
points is visible in Table 3. For all criteria, u;(5) has the same value (0.10763), and in three cases, u;(10) is exactly twice
as large (0.21526), hence satisfying the monotonicity constraints with a large margin (p). In this case, the slacks for other
constraints were rather marginal. For example, comprehensive values of two reference alternatives U(ays) = 0.4770076
and U(aig) = 0.4770096 are very close to threshold ¢; = 0.4770086, though being assigned to different classes: Cy and
Cs, respectively. A characteristic consequence of maximizing p is that for many problems, the solutions obtained by these

two methods have a relatively even distribution of the maximal values of MVFs and their curvatures are close to being
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Figure 1: Marginal value functions in the reference model.
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Figure 2: Comprehensive values for all alternatives in relation to class thresholds in the reference model.

linear.

An explicit mechanism for deriving the marginal functions which minimally deviate from linearity is implemented in
MSCVEF. For the considered problem, it obtained an ideal model, satisfying the following condition: Vj € {1,2,3,4} :
“ju%:gi(s) = “j(sg:g-f(o) for all criteria, which translated to the lowest possible objective function’s value (¢ = 0). The
linear MVF's are visible in Figure 3. Obviously, attaining such parsimony is not possible for all problems as it depends

on the alternatives’ performances and reference assignments.

UTADIS-JLS is a heuristic approach that constructs a representative model by averaging the extreme compatible
ones that maximize and minimize the greatest value of the individual MVFs. For the considered problem, this led to
non-negligible maximal shares of all MVFs with the predominant role of g3 (u3(10) = 0.3571) and g4 (u4(10) = 0.3779)
and well-distributed class thresholds (¢; = 0.3999624 and ¢, = 0.603032). Interestingly, in the final model, u4(5) = 0.0,
which means that this marginal value was equal to zero in the eight intermediate models. Analyzing the results obtained
with other methods, many solutions repeat this pattern. This suggests that low scores (below 5.0) w.r.t. waste and land
use (g4) may have no or negligible impact on the recommended class assignments. As a result, Kiev (g4(asp) = 1.43) and
Istanbul (g4(a16) = 4.86) are often scored equally on w4, despite a noticeable difference in their performances.

The CENTROID method is similar to UTADIS-JLS in terms of deriving an average model. However, when doing so,
it considers a large sample of uniformly distributed models. The marginal value functions obtained with CENTROID
confirm that the extreme models considered by UTADIS-JLS are not representative of the entire feasible polyhedron. In



--e- REFERENCE --e- REFERENCE --e- REFERENCE --e- REFERENCE --e- REFERENCE
— —@— UTADISMP1 — —#%— UTADIS-JLS — —&— ACUTADIS — —— CAl —&— ROBUST-ITER

1.0 _g¢~ uTADISMP2 1 —%— CHEBYSHEV 1 -4 CENTROID 1 —e— APOI 1 -%~ ROBUST-COMP
0.8 UTADISMP3 MSCVF REPDIS COMB
0.6 : 8 1 1
g1
0.4 : : . 1

Figure 3: Marginal value function obtained with 14 procedures for selecting a representative sorting model.

particular, the maximal shares of us and ug are greater, whereas the impact of u4 is reduced (even though u4(5) is not
zeroed in this case). A detailed analysis of the derived model confirms that incomplete indirect preference information
(in this case, concerning 9 out of 30 alternatives) does not allow for reproducing the reference model accurately, even
if the assignment examples are perfectly reproduced. When comparing the two models in Figure 3, one can observe
the overestimation of the maximum value for g1 (41, ,pprenves(10) = 0.0744 and w1, ,yrroin (10) = 0.1663) and g3
(Uspprereycs (10) = 0.3829 and U3, yrrorp (10) = 0.4868) and the underestimation for ga (U2ppppreves (10) = 0.2553
and s yrrorp (10) = 0.1494) and g4 (Usapprpreves(10) = 0.2875 and U4y pyrrorp (10) = 0.1975).

In the CHEBYSEV method, the “central” model is determined in a more formalized way as the center of the hyper-
sphere inscribed in the polyhedron defining the set of all compatible sorting models. For this purpose, the constraints
incorporate variable r representing the value of the hypersphere radius. The obtained MVF's are similar to those obtained
with UTADISMP2 in the sense of assigning the same marginal values to mid-points on all criteria (u;(5)). Also, the
values assigned to the end points u;(10) and us(10) are exactly twice as large. This is due to optimizing variable r,
which is responsible for maximizing the minimal differences between marginal values assigned to successive characteristic
points. In addition, this variable is also used in constraints reproducing the class assignments, as the hypersphere radius
depends on these constraints too. As a result, the comprehensive values of reference alternatives also highly diverge from
the thresholds, which is mainly attained thanks to high maximal shares on u3 and uy.

In the same spirit, ACUTADIS derives a central model corresponding to an analytic center of the polyhedron. The



Table 3: Marginal values assigned to characteristic points and class thresholds obtained by 14 procedures for selecting a representative sorting
model.

Method ul (5) u1(10) u (5) ’LL2(10) U3(5) u3(10) ’LL4(5) u4(10) t1 tz
REFERENCE 0.0113 | 0.0744 0.1898 | 0.2553 0.0762 0.3829 0.0380 0.2875 0.397722 | 0.654317
UTADISMP1 0.0000 0.0000 0.0000 0.0897 0.0000 0.7118 0.0000 0.1985 0.281516 0.408793
UTADISMP2 0.1076 0.2153 0.1076 0.2153 0.1076 0.2153 0.1076 0.3542 0.477009 0.678257
UTADISMP3 0.1076 0.2153 0.1076 0.2153 0.1076 0.2153 0.1076 0.3542 0.477009 0.678257
UTADIS-JLS 0.0948 0.1722 0.0177 0.0927 0.1250 0.3571 0.0000 0.3779 0.399624 0.603032
CHEBYSHEV 0.0229 0.0459 0.0229 0.0459 0.0229 0.5405 0.0229 0.3678 0.328974 0.500873
MSCVF 0.0524 0.1047 0.1270 0.2540 0.0000 0.0000 0.3206 0.6413 0.514602 0.624040
ACUTADIS 0.0527 0.1453 0.0466 0.1390 0.0519 0.3731 0.0527 0.3426 0.352980 0.539950
CENTROID 0.0801 0.1663 0.0511 0.1494 0.0654 0.4868 0.0715 0.1975 0.419456 0.591524
REPDIS 1.2e—5 1.2e—5 0.0000 6.8e—6 0.0000 1.6e—5 0.999959 | 0.999965 0.999978 0.999985
CAI 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
APOI 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
COMB 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
ROBUST-ITER 0.0000 0.0000 0.0000 0.0897 0.0000 0.7118 0.0000 0.1985 0.232163 0.359440
ROBUST-COMP 0.0000 1.6e—6 0.0000 0.0000 0.999978 | 0.999987 0.0000 1.1e—5 0.999984 0.999986

Table 4: Comprehensive values for a subset of non-reference alternatives assigned by 14 procedures for selecting a representative sorting model.

Method ag ag a1 air a21 az2 az3 azs a26
REFERENCE 0.6414 0.6163 0.6881 0.4677 0.4759 0.3659 0.4952 0.5185 0.4216
UTADISMP1 0.5737 0.5542 0.5622 0.3348 0.4011 0.0871 0.4775 0.5342 0.4585
UTADISMP2 0.6449 0.6149 0.7139 0.4909 0.4898 0.4525 0.5231 0.4966 0.4442
UTADISMP3 0.6449 0.6149 0.7139 0.4909 0.4898 0.4525 0.5231 0.4966 0.4442
UTADIS-JLS 0.5746 0.5151 0.6858 0.3643 0.3943 0.2763 0.5080 0.4574 0.4170
CHEBYSHEV 0.5891 0.5358 0.6567 0.3475 0.4016 0.1578 0.5146 0.5172 0.4488
MSCVF 0.6311 0.5940 0.7478 0.5181 0.5131 0.5314 0.5704 0.5228 0.4732
ACUTADIS 0.5805 0.5399 0.6433 0.3661 0.3965 0.2548 0.4761 0.4644 0.4092
CENTROID 0.6556 0.6456 0.6417 0.4639 0.4909 0.3120 0.5106 0.5438 0.4821
REPDIS 0.999985 | 0.999984 | 0.999985 | 0.999979 | 0.999979 | 0.999972 | 0.999980 | 0.999980 | 0.999978
CAI 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
APOI 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
COMB 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
ROBUST-ITER 0.5737 0.5542 0.5622 0.3348 0.4011 0.0871 0.4775 0.5342 0.4585
ROBUST-COMP 0.999989 | 0.999987 | 0.999992 | 0.999983 | 0.999984 | 0.999980 | 0.999988 | 0.999987 | 0.999986

underlying optimization model is non-linear, considering the sum of logarithms of the slack variables involved in each
inequality. The obtained MVFs are strictly increasing, the class thresholds are well-separated, and us and u4 have about
2.5 times greater impact on the comprehensive values than u; and us. ACUTADIS is also one out of only four methods
that made only a single mistake in classifying the non-reference alternatives. The incorrectly rated city is Paris (ag),
which is relatively similar to London (aio) assigned by the DM to C3. The latter alternative is distant from the lower
threshold of its desired class (U(a1p) = 0.6143 and t3 = 0.5399). This implies that the comprehensive value of Paris also
fits in the range associated with the most preferred class.

The REPDIS procedure returned a model which builds the comprehensive scores based on just a single criterion (in
this case — g4). Hence, the maximal share of uy4 is equal to one, whereas the marginal value assigned to u4(5) is very close to
one (0.999974). As a result, the differences between comprehensive values of a large set of alternatives, as well as between
class thresholds, are extremely small. This is an undesired effect from the viewpoint of the results’ interpretability. It
suggests that for this particular problem, the objectives built on the analysis of APW I’s proved too challenging to let the
method emphasize the value differences for all pairs of alternatives simultaneously. To maximize its objective function
while considering the conflicting sub-objectives, REPDIS opted to balance the alternatives’ comprehensive assessments.
The same problem can be observed for ROBUST-COMP with the proviso that in this case, criterion g3 was used as the
sole one from which alternatives derived positive values. A side effect of such minor differences is that when comparing
the classification suggested by such models for non-reference alternatives and the ones derived with the DM’s simulated
model, there is no match for many pairs. In the case of ROBUST-COMP, such mistakes are observed for 5 out of 21
cities.

ROBUST-ITER and ROBUST-COMP take into account the necessary assignment-based preference relations. While
ROBUST-COMP attempts to consider the two objectives relevant to this approach at once, ROBUST-ITER optimizes
them one after another. For the illustrative study, such an approach led to a more intuitive and interpretable model. In

fact, the model obtained after considering the first objective was not modified when subsequently optimizing the other
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Table 5: Class assignments for a subset of non-references alternatives determined with 14 procedures for selecting a representative sorting
model.

Method
REFERENCE
UTADISMP1
UTADISMP2
UTADISMP3
UTADIS-JLS
CHEBYSHEV
MSCVF
ACUTADIS
CENTROID
REPDIS
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ROBUST-COMP
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objective. Hence, the resulting model was determined solely by maximizing the value differences for pairs of alternatives
related by the necessary assignment-based preference relation (e.g., (a7, a15) among reference alternatives and (ass, as4)
among non-reference alternatives). The value differences for pairs always assigned to the same class were just a side
effect of the primary optimization. Clearly, this observation does not hold for all decision problems because the secondary
objective can often break ties when selecting among models that optimize the primary objective equally well. When it
comes to the assignments of non-reference alternatives, ROBUST-ITER misclassified 6 out of 21 cities compared to the
assignments provided by the DM’s reference model.

The three novel approaches proposed in this paper (CAI, APOI, and COMB) selected the same model for the considered
problem. Putting the objective functions of CAI and APOI together, COMB often returns a result that matches the
solution of either model. However, such a perfect agreement between CAI and APOI is less common. Nevertheless, it
can be justified because they build their outcomes on the stochastic acceptability indices, even if CAI focuses on the class
assignments and APOI considers assignment-based pairwise relations. Still, such a high similarity between the models
returned by these methods — confirmed also in the experimental section — could not be predicted beforehand, without
verifying how these approaches work in practice.

When it comes to the considered study, the model discovered by these approaches is characterized by equal maximal
shares of all criteria (0.25) and a positive marginal value assigned to the mid-point only for us. Such a balanced distribution
implied relatively low comprehensive values of all alternatives (see Table 4) and low thresholds separating the classes
(t; = 0.148776 and to = 0.354549). To explain the operational procedure of CAI and APOI, let us focus on Riga and
Athens. According to Stochastic Ordinal Regression (SOR), Riga is assigned to C; by all models (CAI'(ay5,C1) = 1.0).
For Athens, there is an ambiguity in the assignments (CAI'(a17,C1) = 0.088 and CAI'(a17,C2) = 0.912). As a result,
they are assigned to a class better than Riga for the vast majority (91.2%) of models (APOI'(a15,a17) = 0.088 and
APOI'(a17,a15) = 1). Hence to optimize the objective functions’ values and emphasize the most frequent results in the
representative models, the novel procedures opt for assigning Riga to C; and Athens to Cs, even if it was challenging to
separate these two alternatives (U(ays) = 0.1487745, U(ay7) = 0.1487765, and t; = 0.1487755).

2. Measure values for selected procedures based on the results of the illustrative study

In this section, we report selected measure values for a few procedures based on the results of the illustrative study.
Classification accuracy. When considering the results reported in Table 5 for 9 non-reference alternatives and re-
membering that the classification of the remaining 12 test options agreed with the references one, the classification

accuracy obtained by UTADISMP2 was accuracy(UVTAPTSMP2y — 20— (9524 and for CHEBYSHEV - it was

21
UCHEBYSHEV) — 11 — (.8095. The former procedure misclassified only ass, whereas for the latter — four

non-reference alternatives (ag, ag, ass, and ass) were classified incorrectly w.r.t. the reference assignment.

accuracy(

Assignment acceptability. When considering C AI’s reported in Table 1, for 21 non-reference alternatives, M C Al 4 18
equal to 0.9656. In fact, the maximal C'AI’ was lesser than one only for 9 alternatives. Four approaches (CENTROID, CAI,
APOI, and COMB) identified a solution with M CAl,, = MCAI,,4,. Consequently, for these methods, MCAIL.,(UF) =
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0. Hence these procedures perfectly reflect the most robust assignments. Note that this value is lower for the reference
model, which assigns alternatives ag and ag to class C3. However, their class acceptabilities for class C3 are higher
than for Cy (e.g., for ag — CAI'(ag,C3) = 0.056 and CAI'(ag,C3) = 0.944). As a result, for the reference model,
MCAILys(UREE) = 0.8875 and MCAL.(UREEF) = 8:32;2 — 1 = —0.0809. This example emphasizes that MCAI
captures whether a given procedure reconstructs the most common results observed for all compatible sorting models

rather than the reconstruction of the reference assignments.

Differences between marginal values. When considering the results reported in Table 3, the model which is the
closest to the reference one in terms of AREF was obtained with ACUTADIS (AREF(UACUTADIS) = (.0595). On
the other extreme, REPDIS identified the furthest solution from the reference model (0.3331). As far as the compar-
ison with an average model is concerned, the outcome of the CENTROID procedure is, by definition, the same (i.e.,
AGENT(UCENTROIDY — ().0). However, other methods which also aimed to identify a central model attained quite fa-
vorable scores too: for ACUTADIS — AZENT (UACUTADIS) — (.0443, for UTADIS-JLS — 0.0690, and for CHEBYSHEV
- 0.0781. Again, for REPDIS, the distance was vast (0.3413).

Differences between comprehensive values. Part of the results needed to compute the differences between com-
prehensive values for the illustrative study is available in Table 4. Taking into account the comprehensive values of 21
non-reference alternatives, the closest model to the reference one was obtained with CENTROID (AZEF(UCENTROID) —
0.0265). In turn, the furthest distance can be attributed to ROBUST-COMP (AZEF(UROBUST-COMP) — () 4287).
Differences between threshold values. For the illustrative example, the difference between threshold values can be de-
termined based on Table 3. For UTADIS-JLS, the threshold values are the closest to the reference model (AEREF(UTADIS=JLS) |
0.0266). On the other extreme, they are the furthest for REPDIS and ROBUST-COMP (for both of them, AREF(UF) =

0.4740). Indeed, the separation between classes was very poor for these methods, and all thresholds were close to one.

3. Linear regression solutions obtained for the assignment acceptabilities

Linear regression allows for further analysis of trends in the context of individual procedures. First, we focus on the

relative assignment acceptabilities. The coefficients of solutions obtained for the relative MCALI are presented in Table 6.

Table 6: Coefficients of solutions obtained for the linear regression problem for average relative MCAI depending on the defined dimensions
for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 0.001629 -0.016765 -0.030410 0.013842 0.023974

UTADISMP2 -0.008175 -0.014437 -0.013143 0.014108 -0.041136
UTADISMP3 -0.031191 -0.009152 -0.004839 0.010618 -0.014165
UTADIS-JLS -0.007858 -0.013888 -0.042860 0.017717 0.035798

CHEBYSHEV -0.005071 -0.003836 -0.002640 0.004089 -0.014888
MSCVF -0.021215 -0.024763 -0.008259 0.018436 -0.060628
ACUTADIS -0.009831 -0.008980 -0.015267 0.004029 0.064738

CENTROID -0.000146 -0.000110 -0.000115 0.000163 -0.000610
REPDIS -0.000623 -0.007850 -0.015653 0.009646 -0.060658
CAI -0.000000 -0.000000 0.000000 0.000000 -0.000000
APOI -0.000039 -0.000020 0.000096 0.000171 -0.001702
COMB -0.000041 -0.000021 0.000082 0.000152 -0.001464
ROBUST-ITER -0.002523 -0.020901 -0.034387 0.017789 -0.016656
ROBUST-COMP -0.009931 -0.020450 -0.035637 0.017098 0.001854

There is a high similarity in the results obtained for the methods based on stochastic analysis. Due to the objective
function converging with the measure definition, CAI reaches its maximum value regardless of the problem size. Hence
the coefficients are equal to 0. This regularity is also visible for APOI, COMB, and CENTROID, for which the slope
coeflicients are very close to 0. The exception is REPDIS, whose average values are sensitive, especially to the change
in the number of characteristic points. The decrease in relative MCAI by almost 1.6% may be because REPDIS focuses
only on emphasizing the relationship between pairs of alternatives and not on whether they will be assigned to the most
common class in sampling models.

Unique among all the methods is the positive effect of increasing the number of classes for UTADISMP1. Although
the increase in the regression’s slope coefficient is not substantial (0.16%), other methods working similarly, such as
UTADISMP2 and UTADISMP3, show significant decreases. For UTADISMP3, we observe the largest decrease among all
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methods. It is equal to 3.1% for each newly introduced class. In both cases, these effects are likely caused by more classes
introducing more assignments. The crucial aspect for UTADISMP1 is that there is a quadratic growth in the number of
constraints highlighting the discriminatory nature of this approach, depending on the number of assignments provided
by the DM. The decrease for UTADISMP3 is likely due to focusing solely on maximizing the minimum slope between
two consecutive points. The other slopes are not optimized in any way, and the more assignments and classes, the more
challenging it becomes to recreate the most robust classification properly.

The ROBUST procedures respond the worst to the increase in the number of characteristic points and almost the
worst to the increase in the number of criteria. Both features introduce more flexibility to the models, reducing the
number of necessary relations in the set of alternatives. Fewer such relations imply fewer constraints for constructing the
objective function and a wider choice of the resulting model. Consequently, the derived model may not reflect the most
popular dependencies occurring in the entire space of consistent solutions.

The MCAI-based results confirm the relationship between the strength of the impact of the number of assignments
provided and the average results obtained by the methods. The worse the method’s average results, the more significant
the positive impact of the increase in the number of reference alternatives (see Table 4 and Figure 2). Adding one al-
ternative per class, on average, increases the relative MCAI by around 1.7-1.8% for the weakest ROBUST methods. In
contrast, for CHEBYSHEV, which is one of the best procedures, it only increases by 0.4%.

Table 7 presents the slope coefficients obtained from solving the linear regression problem for the absolute MCAI
measure. Since the CAI method obtained the maximum MCALI relative value equal to 0 for almost all cases, the absolute
values of this method are also the highest achievable ones. For this reason, the slope coefficients for CAI can be viewed
as the maximum achievable Absolute coefficients, and they can serve as a benchmark when evaluating other procedures.
Thus, it is evident that the increase in the complexity of MVF's and reference assignments positively affects the robustness
of the recommendation of the robust assignment rule. In turn, an increase in the number of classes and criteria decreases
the best possible MCAI values, but not as much as for the other factors. Again, other approaches based on acceptability
indices and the CENTROID method perform similarly to CAL

Regarding the increase in the number of classes, only UTADISMP1 is more resistant to it than the procedures
mentioned above. For this approach, the number of classes matters little as the procedure emphasizes the correct
separation of classes irrespective of how many categories are considered. UTADISMP1 is more sensitive to changing the
number of criteria. Adding one criterion, in this case, results in an average 1.7% drop in Absolute MCAI, which is large
compared to the CAI with only a 0.2% drop. Only MSCVF (2.2%) and the group of ROBUST methods (2.1%) recorded

more significant declines.

Table 7: Coefficients of solutions obstained for the linear regression problem for average absolute MCAI depending on the defined dimensions
for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 -0.002868 -0.017331 -0.020834 0.021358 0.867229
UTADISMP2 -0.011423 -0.015128 -0.005519 0.021423 0.809100
UTADISMP3 -0.032175 -0.010236 0.001899 0.017977 0.835487
UTADIS-JLS -0.010897 -0.014758 -0.032217 0.024559 0.878676
CHEBYSHEV -0.009519 -0.005601 0.004618 0.013091 0.828673
MSCVF -0.026236 -0.021589 0.000087 0.023000 0.793282
ACUTADIS -0.013617 -0.010300 -0.006802 0.012953 0.900571
CENTROID -0.005335 -0.002359 0.007266 0.010007 0.838038
REPDIS -0.005126 -0.009175 -0.007657 0.017424 0.792688
CAI -0.005212 -0.002266 0.007381 0.009879 0.838452
APOI -0.005249 -0.002279 0.007453 0.010017 0.837100
COMB -0.005250 -0.002281 0.007443 0.010002 0.837287
ROBUST-ITER -0.006047 -0.021004 -0.025165 0.024151 0.836867
ROBUST-COMP -0.012680 -0.020583 -0.026393 0.023389 0.854476

Despite the decrease in relative MCAI value with the increase in the number of MVF segments for almost all methods,
many show slight increases in the context of absolute MCAI. This is because the increase in the highest achievable values
was significant (0.7%), and the relative decreases for, e.g., CHEBYSHEV and UTADISMP3 were not that high. For this
reason, these two methods obtained higher absolute results when more characteristic points were considered.

The relationships between the obtained scores and the number of reference alternatives that were observed for other
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measures are also present in this case. Again, the best-performing methods obtained the lowest average profit from
considering additional information from the DM — the value for CAI increased by only less than 1%. In turn, the
UTADISMP methods achieved improvement between 1.8 and 2.1% and the ROBUST methods between 2.3 and 2.4%.
These outcomes again underline the superiority of methods incorporating stochastic analysis to obtain more robust results,

especially when the availability of DM’s preferences is limited.

4. Experimental results concerning differences between marginal and comprehensive values and class
thresholds

In this section, we consider the outcomes concerning the differences between the reference and resulting models obtained

for different values of each problem dimension (p, m, 7;, and R).

4.1. Differences between marginal values

An increase in the number of classes has a positive effect on reproducing the DM’s preference model in terms of marginal
values (see Table 8). This is confirmed for all procedures. The monotonicity of the decrease in differences is the greatest
between 2- and 3-class problems. Furthermore, UTADISMP1 and ROBUST-ITER (both attain 0.1009 for 2-class and
0.0313 for 5-class instances) improve most significantly with the increase of p. For 2-class problems, these two perform
the worst, whereas, for 5-class problems, their results are only slightly inferior to REPDIS (0.291) and center-based
approaches (0.0253 for ACUTADIS, 0.280 for CENTROID, and 0.0287 for CHEBYSHEV).

Table 8: Average differences between marginal values for various numbers of classes.

Reference Centroid

Procedure 2 3 4 5 2 3 4 5

UTADISMP1 0.1009 | 0.0591 | 0.0413 | 0.0313 0.0933 | 0.0495 | 0.0318 | 0.0227
UTADISMP2 0.0971 | 0.0616 | 0.0466 | 0.0370 0.0867 | 0.0522 | 0.0381 | 0.0293
UTADISMP3 0.0819 | 0.0648 | 0.0531 | 0.0430 0.0495 | 0.0463 | 0.0401 | 0.0337
UTADIS-JLS 0.0841 | 0.0601 | 0.0446 | 0.0345 0.0611 | 0.0457 | 0.0356 | 0.0279
CHEBYSHEV 0.0697 | 0.0484 | 0.0368 | 0.0287 0.0320 | 0.0222 | 0.0163 | 0.0123
MSCVF 0.0953 | 0.0645 | 0.0496 | 0.0417 0.0832 | 0.0550 | 0.0432 | 0.0374
ACUTADIS 0.0650 | 0.0440 | 0.0326 | 0.0253 0.0336 | 0.0255 | 0.0202 | 0.0162
CENTROID 0.0672 0.0469 0.0358 0.0280 0 0 0 0

REPDIS 0.0777 0.0519 0.0381 0.0291 0.0471 0.0268 0.0170 0.0117
CAI 0.0883 | 0.0697 | 0.0553 | 0.0434 0.0633 | 0.0510 | 0.0399 | 0.0309
APOI 0.0886 | 0.0698 | 0.0556 | 0.0436 0.0634 | 0.0511 | 0.0401 | 0.0312
COMB 0.0886 | 0.0698 | 0.0556 | 0.0436 0.0634 | 0.0511 | 0.0401 | 0.0312
ROBUST-ITER 0.1009 | 0.0591 | 0.0413 | 0.0313 0.0933 | 0.0495 | 0.0318 | 0.0227
ROBUST-COMP 0.0981 | 0.0628 | 0.0470 | 0.0374 0.0884 | 0.0546 | 0.0408 | 0.0326

A higher number of criteria also reduces a gap between marginal values (see Table 9). This is understandable because,
with more criteria, their shares in the comprehensive values decrease, leading to lesser differences between the compared
models. The most substantial differences for the extreme numbers of criteria can be observed for UTADISMP3 and
UTADIS-JLS. For both approaches, the mean differences between marginal values decreased more than two times when
comparing problems with three and nine criteria (for UTADISMP3 - from 0.0873 to 0.0421, and for UTADIS-JLS — from
0.0822 to 0.0390). With a greater number of criteria, their solutions become more similar to the central models, which
approximate the DM’s preferences up to a satisfactory level.

The increasing number of characteristic points affects the performance of procedures differently (see Table 10). For
most methods (including ROBUST-ITER, UTADISMP1, ROBUST-COMP, UTADIS-JLS, REPDIS, CAI, APOI, and
COMB), an increase of y; leads to a more significant difference between marginal values — and thus a deterioration in the
quality of reconstructing the reference AVF (e.g., for UTADIS-JLS — the distance increases from 0.0420 to 0.0686). The
center-oriented approaches (CENTROID, ACUTADIS, and CHEBYSHEV) maintain the stability of distances of their
models from the reference one for different numbers of characteristic points.

The decrease in the average differences between marginal values can be observed for UTADISMP2 (0.0625 to 0.0600)
and UTADISMP3 (0.0645 to 0.0569). Both approaches maximize the differences between marginal values assigned to
the consecutive points. The greater the share of such values among variables optimized by the methods, the better the

results achieved by these procedures. A similar trend is observed for MSCVF, which is also focused on optimizing the
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Table 9: Average differences between marginal values for various numbers of criteria.

Reference Centroid

Procedure 3 5 7 9 3 5 7 9

UTADISMP1 0.0748 | 0.0596 | 0.0516 | 0.0467 0.0594 | 0.0509 | 0.0454 | 0.0416
UTADISMP2 0.0825 | 0.0619 | 0.0519 | 0.0461 0.0681 | 0.0524 | 0.0452 | 0.0406
UTADISMP3 0.0873 | 0.0632 | 0.0502 | 0.0421 0.0636 | 0.0438 | 0.0342 | 0.0279
UTADIS-JLS 0.0822 | 0.0566 | 0.0455 | 0.0390 0.0644 | 0.0423 | 0.0340 | 0.0295
CHEBYSHEV 0.0621 | 0.0474 | 0.0395 | 0.0346 0.0296 | 0.0215 | 0.0172 | 0.0146
MSCVF 0.0837 | 0.0645 | 0.0548 | 0.0481 0.0670 | 0.0567 | 0.0503 | 0.0448
ACUTADIS 0.0560 | 0.0430 | 0.0362 | 0.0316 0.0328 | 0.0247 | 0.0204 | 0.0176
CENTROID 0.0591 | 0.0459 | 0.0388 | 0.0342 0 0 0 0

REPDIS 0.0681 | 0.0497 | 0.0420 | 0.0371 0.0381 | 0.0246 | 0.0208 | 0.0191
CAI 0.0897 0.0669 0.0542 0.0459 0.0663 0.0478 0.0385 0.0325
APOI 0.0901 | 0.0670 | 0.0544 | 0.0460 0.0668 | 0.0479 | 0.0387 | 0.0325
COMB 0.0901 | 0.0670 | 0.0544 | 0.0460 0.0668 | 0.0479 | 0.0387 | 0.0325
ROBUST-ITER 0.0748 | 0.0596 | 0.0516 | 0.0467 0.0593 | 0.0509 | 0.0454 | 0.0416
ROBUST-COMP 0.0824 | 0.0627 | 0.0532 | 0.0471 0.0711 | 0.0555 | 0.0471 | 0.0427

shape of MVFs. However, since the latter approach is applicable for settings with more than two characteristic points, in

this case, the observation is confirmed only for the results obtained for instances with four and six breakpoints.

Table 10: Average differences between marginal values for various numbers of characteristic points.

Reference Centroid

Procedure 2 4 6 2 4 6

UTADISMP1 0.0526 0.0606 0.0613 0.0391 0.0514 0.0576
UTADISMP2 0.0625 | 0.0593 | 0.0600 0.0537 | 0.0466 | 0.0544
UTADISMP3 0.0645 | 0.0607 | 0.0569 0.0571 | 0.0398 | 0.0303
UTADIS-JLS 0.0420 | 0.0570 | 0.0686 0.0249 | 0.0453 | 0.0576
CHEBYSHEV 0.0446 | 0.0469 | 0.0462 0.0272 | 0.0206 | 0.0144
MSCVF 0.0664 | 0.0591 0.0574 | 0.0521
ACUTADIS 0.0416 | 0.0424 | 0.0410 0.0225 | 0.0262 | 0.0229
CENTROID 0.0393 | 0.0474 | 0.0467 0 0 0

REPDIS 0.0426 | 0.0522 | 0.0528 0.0214 | 0.0262 | 0.0293
CAI 0.0508 | 0.0690 | 0.0727 0.0362 | 0.0494 | 0.0532
APOI 0.0510 0.0693 0.0729 0.0367 0.0495 0.0532
COMB 0.0510 | 0.0693 | 0.0729 0.0367 | 0.0495 | 0.0532
ROBUST-ITER 0.0526 | 0.0606 | 0.0613 0.0391 | 0.0514 | 0.0575
ROBUST-COMP 0.0526 | 0.0638 | 0.0677 0.0414 | 0.0566 | 0.0643

The impact of different numbers of reference alternatives per class is reported in Table 11. With richer preference
information, the differences between marginal values become lesser for all procedures. Again, the change in the number of
reference alternatives has the greatest impact on the performance of UTADISMP1 and ROBUST-ITER, (compare 8.26%
for R = 3 and 4.01% for R = 10). Interestingly, for CAI, APOI, and COMB, the relative distances from the centroid
solution are stable for different values of R. However, their distances from the reference model decrease when additional

assignment examples become available.

Table 11: Average differences between marginal values for various numbers of reference alternatives per class.

Reference Centroid

Procedure 3 5 7 10 3 5 7 10
UTADISMP1 0.0826 | 0.0609 | 0.0491 | 0.0401 0.0749 | 0.0516 | 0.0399 | 0.0309
UTADISMP2 0.0824 | 0.0629 | 0.0527 | 0.0443 0.0738 | 0.0536 | 0.0434 | 0.0355
UTADISMP3 0.0749 | 0.0641 | 0.0558 | 0.0480 0.0503 | 0.0446 | 0.0398 | 0.0349
UTADIS-JLS 0.0745 | 0.0590 | 0.0493 | 0.0405 0.0573 | 0.0450 | 0.0373 | 0.0307
CHEBYSHEV 0.0594 | 0.0484 | 0.0410 | 0.0349 0.0272 | 0.0217 | 0.0184 | 0.0156
MSCVF 0.0843 | 0.0646 | 0.0549 | 0.0473 0.0746 | 0.0559 | 0.0473 | 0.0410
ACUTADIS 0.0535 | 0.0440 | 0.0373 | 0.0320 0.0268 | 0.0246 | 0.0228 | 0.0213
CENTROID 0.0577 | 0.0467 | 0.0397 | 0.0339 0 0 0 0
REPDIS 0.0621 0.0513 0.0449 0.0385 0.0286 0.0265 0.0249 0.0225
CAI 0.0742 0.0668 0.0604 0.0553 0.0492 0.0481 0.0452 0.0426
APOI 0.0747 | 0.0670 | 0.0606 | 0.0553 0.0497 | 0.0482 | 0.0454 | 0.0426
COMB 0.0746 | 0.0670 | 0.0606 | 0.0553 0.0497 | 0.0481 | 0.0454 | 0.0426
ROBUST-ITER 0.0826 | 0.0609 | 0.0491 | 0.0401 0.0749 | 0.0516 | 0.0399 | 0.0309
ROBUST-COMP 0.0821 | 0.0644 | 0.0535 | 0.0454 0.0757 | 0.0565 | 0.0459 | 0.0384

Tables 12 and 13 show the results of solving the linear regression problems in terms of differences with the reference and

CENTROID model. When it comes to the former, the most significant differences are visible in the case of an increase in
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the number of classes. Across all methods, they are 2 to 5 times more important than adding another criterion, and 3 to 6
times more important than adding another reference alternative to each class. This is likely because the new assignments
are provided from different ranges, significantly reducing the solution space. However, the situation is different when the
number of reference alternatives per class is increased. Then, additional assignments are similar to the already known

ones, which does not reduce the space of feasible models considerably.

Table 12: Coefficients of solutions obtained for the linear regression problems for the average difference from the marginal values of the reference
models depending on the defined dimensions for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 -0.022675 -0.004616 0.002178 -0.005895 0.193353
UTADISMP2 -0.019523 -0.005965 -0.000635 -0.005255 0.200092
UTADISMP3 -0.012856 -0.007416 -0.001889 -0.003792 0.181453
UTADIS-JLS -0.016422 -0.007032 0.006650 -0.004739 0.158525
CHEBYSHEV -0.013490 -0.004521 0.000384 -0.003430 0.140136
MSCVF -0.017546 -0.005818 -0.003662 -0.005094 0.209241
ACUTADIS -0.013055 -0.003989 -0.000155 -0.003024 0.130845
CENTROID -0.012886 -0.004084 0.001849 -0.003324 0.127481
REPDIS -0.015961 -0.005042 0.002545 -0.003288 0.145710
CAI -0.014912 -0.007195 0.005490 -0.002695 0.154426
APOI -0.014893 -0.007242 0.005461 -0.002748 0.155309
COMB -0.014890 -0.007241 0.005464 -0.002745 0.155254
ROBUST-ITER -0.022672 -0.004616 0.002174 -0.005894 0.193345
ROBUST-COMP -0.019806 -0.005773 0.003783 -0.005118 0.182168

Table 13: Coefficients of solutions obtained for the linear regression problems for the average difference from the marginal values of the
CENTROID models depending on the defined dimensions for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 -0.022940 -0.002933 0.004617 -0.006064 0.166660
UTADISMP2 -0.018645 -0.004489 0.000177 -0.005278 0.176035
UTADISMP3 -0.005375 -0.005834 -0.006701 -0.002189 0.136704
UTADIS-JLS -0.010969 -0.005645 0.008170 -0.003709 0.105339
CHEBYSHEV -0.006511 -0.002461 -0.003195 -0.001621 0.081169
MSCVF -0.014934 -0.003655 -0.002642 -0.004609 0.170932
ACUTADIS -0.005781 -0.002485 0.000107 -0.000782 0.063473
CENTROID 0.000000 0.000000 0.000000 0.000000 0.000000
REPDIS -0.011595 -0.003041 0.001975 -0.000869 0.081989
CAI -0.010826 -0.005538 0.004251 -0.000981 0.106513
APOI -0.010776 -0.005600 0.004140 -0.001034 0.107687
COMB -0.010774 -0.005595 0.004141 -0.001035 0.107645
ROBUST-ITER -0.022934 -0.002932 0.004615 -0.006065 0.166642
ROBUST-COMP -0.018109 -0.004693 0.005713 -0.005162 0.155052

The Hasse diagrams presented in Figures 4 and 5 show the results of the Wilcoxon signed-rank tests for paired samples
with a p-value equals 0.05. The performances of various methods in terms of these measures were discussed in the main
paper. Therefore, we note only the most peculiar features. ACUTADIS returns solutions that are more similar to the
reference ones than those obtained with CHEBYSHEV. However, when comparing the similarity with respect to the
centroid solution, the order between these procedures is inverse. Then, ROBUST-COMP is the most distant from the
average model. Nevertheless, in the context of the reference model, it is better than stochastic methods: CAI, APOI,
and COMB. Surprisingly, these approaches perform poorly compared to CENTROID, given that their models are based
on the same sampling data. This shows that the average solution can differ significantly from the solution recreating the

most popular acceptability indices in the whole space of consistent models.

4.2. Differences between comprehensive values

A greater number of classes has a positive effect on reproducing the original comprehensive values assigned by the DM
to alternatives (see Table 14). The ACUTADIS method turns out to be the best irrespective of p (0.0727 for 2-class
and 0.0337 for 5-class problem instances). On the contrary, the most considerable relative differences can be observed
for UTADISMP1 and ROBUST-ITER (the difference between comprehensive decreases from 0.1434 to 0.0434 when
moving from 2 to 5 classes). These two methods have one of the worst results for 2-class problems, but with 5 classes,
only ACUTADIS and central-based methods (CENTROID, CHEBYSHEV) achieved better average values. Exactly the
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Figure 4: The Hasse diagram indicating the statistically significant differences in terms of the differences from the marginal values of the
reference models based on the Wilcoxon test with p-value equal to 0.05.

opposite situation can be observed for UTADISMP3, which gives way only to the three mentioned methods for 2-class

dilemmas, and with 5 classes, it is worse than more than half of the approaches.

Table 14: Average differences between comprehensive values for various numbers of classes.

Procedure 2 3 4 5

UTADISMP1 0.1434 | 0.0807 | 0.0568 | 0.0434
UTADISMP2 0.1380 | 0.0791 | 0.0579 | 0.0460
UTADISMP3 0.0835 | 0.0695 | 0.0587 | 0.0501
UTADIS-JLS 0.1531 | 0.1054 | 0.0790 | 0.0611
CHEBYSHEV 0.0773 | 0.0589 | 0.0470 | 0.0381
MSCVF 0.1178 | 0.0887 | 0.0748 | 0.0665
ACUTADIS 0.0727 | 0.0532 | 0.0412 | 0.0337
CENTROID 0.0760 | 0.0580 | 0.0463 | 0.0378
REPDIS 0.0935 | 0.0661 | 0.0497 | 0.0394
CAI 0.1553 | 0.0938 | 0.0664 | 0.0511
APOI 0.1541 | 0.0933 | 0.0649 | 0.0508
COMB 0.1541 | 0.0933 | 0.0650 | 0.0508
ROBUST-ITER 0.1434 | 0.0806 | 0.0568 | 0.0434
ROBUST-COMP 0.1383 | 0.0853 | 0.0646 | 0.0529

An increase in the number of criteria differently influences the results of particular methods (see Table 15). A greater
number of performance dimensions positively affects the performance of UTADISMP3, MSCVF, CHEBYSHEV, ACU-
TADIS, CENTROID, and REPDIS. The greatest relative differences between 3- and 9-attribute problems are observed
for UTADISMP3 (from 7.22% to 5.98%) and REPDIS (from 7.05% to 5.85%). In general, these methods optimize the
shape of MCVFs or exploit the geometry of the polyhedron of all feasible models. On the contrary, with a more sig-
nificant number of criteria, the average difference from the reference model in terms of comprehensive values increases
for UTADISMP1, UTADISMP2, CAI, APOI, COMB, and ROBUST-ITER. These approaches focus on optimizing the
comprehensive values of alternatives, usually making them as discriminatory as possible, though based on differently
formulated objectives.

Table 16 shows that for the vast majority of procedures, adding characteristic points leads to an increased difference
between comprehensive values. The most significant increase is observed between instances with two and four charac-
teristic points (e.g., for UTADIS-JLS — the respective values are 0.0280 and 0.1109). The central-based approaches also

record relatively large increases for the above instances, but this increase is already minimal when moving from four to

12



ROBUST-COMP

Figure 5: The Hasse diagram indicating the statistically significant differences in terms of the differences from the marginal values of the
CENTROID models based on the Wilcoxon test with p-value equal to 0.05.

Table 15: Average differences between comprehensive values for various numbers of criteria.

Procedure 3 5 7 9

UTADISMP1 0.0790 | 0.0801 | 0.0813 | 0.0838
UTADISMP2 0.0790 | 0.0793 | 0.0802 | 0.0825
UTADISMP3 0.0722 | 0.0672 | 0.0626 | 0.0598
UTADIS-JLS 0.1017 | 0.0941 | 0.0985 | 0.1043
CHEBYSHEV 0.0588 | 0.0561 | 0.0534 | 0.0530
MSCVF 0.0923 | 0.0876 | 0.0850 | 0.0829
ACUTADIS 0.0541 | 0.0507 | 0.0486 | 0.0475
CENTROID 0.0569 | 0.0553 | 0.0532 | 0.0528
REPDIS 0.0705 | 0.0611 | 0.0586 | 0.0585
CAI 0.0892 | 0.0907 | 0.0914 | 0.0952
APOI 0.0890 | 0.0899 | 0.0905 | 0.0937
COMB 0.0889 | 0.0899 | 0.0905 | 0.0937
ROBUST-ITER 0.0790 | 0.0801 | 0.0812 | 0.0839
ROBUST-COMP 0.0896 | 0.0851 | 0.0826 | 0.0839

six breakpoints. Though slightly greater in terms of absolute values, the same effect can be observed for the methods
that select the most discriminant model. In general, these results confirm that the move from linear MVF's to functions
with three linear pieces increases the flexibility of the models more substantially than the change from three to five linear
pieces.

A greater number of reference alternatives per class lets all procedures construct the models that are more similar to
the reference one in terms of comprehensive values (see Table 17). The largest relative decreases in differences — from
0.1165 to 0.0556 — are achieved by UTADISMP1 and ROBUST-ITER. On the contrary, a minor reduction in terms of
similarities between comprehensive values is observed for CAI, APOI, and COMB (from 0.1115 to 0.0750 for CAI and
from 0.1102 to 0.0745 for APOI and COMB). It is apparent that the narrowing of the space of coherent models with
additional preferential information makes solutions of discriminative approaches more and more similar to the reference
model. On the other hand, although the methods based on the stochastic analysis of the solution space reproduce
preferential information well, the resulting model differs from the one used by DM.

Table 18 shows the slope coefficients resulting from linear regression, indicating the impact of individual parameters
on the difference between the comprehensive values. Again, the number of classes is the essential factor. Including one
additional class in the problem yields some methods to reduce the distance by as much as 3.3%. Only in the case of
UTADIS-JLS, the influence of the number of characteristic points is slightly more significant. In this case, adding another
characteristic point and making MVFs more flexible significantly increases the distance from reference comprehensive
values. Again, the weakness of this method can be attributed to focusing only on the extreme characteristic points.

UTADIS-JLS is also the worst procedure in this context, whereas ACUTADIS, CENTROID, and CHEBYSHEV
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Table 16: Average differences between comprehensive values for various numbers of characteristic points.

Procedure 2 4 6

UTADISMP1 0.0359 | 0.0960 | 0.1113
UTADISMP2 0.0404 | 0.0917 | 0.1087
UTADISMP3 0.0413 | 0.0781 | 0.0770
UTADIS-JLS 0.0280 | 0.1109 | 0.1601
CHEBYSHEV 0.0300 | 0.0676 | 0.0684
MSCVF 0.0900 | 0.0840
ACUTADIS 0.0279 | 0.0611 | 0.0617
CENTROID 0.0262 | 0.0678 | 0.0696
REPDIS 0.0280 | 0.0761 | 0.0824
CAI 0.0329 | 0.1003 | 0.1417
APOI 0.0331 | 0.1003 | 0.1389
COMB 0.0331 | 0.1003 | 0.1389
ROBUST-ITER 0.0359 | 0.0960 | 0.1113
ROBUST-COMP 0.0355 | 0.1009 | 0.1195

Table 17: Average differences between comprehensive values for various numbers of reference alternatives per class.

Procedure 3 5 7 10

UTADISMP1 0.1165 | 0.0839 | 0.0682 | 0.0556
UTADISMP2 0.1130 | 0.0826 | 0.0689 | 0.0566
UTADISMP3 0.0788 | 0.0680 | 0.0615 | 0.0536
UTADIS-JLS 0.1365 | 0.1056 | 0.0862 | 0.0704
CHEBYSHEV 0.0689 | 0.0573 | 0.0508 | 0.0443
MSCVF 0.1091 | 0.0888 | 0.0794 | 0.0706
ACUTADIS 0.0615 | 0.0521 | 0.0464 | 0.0409
CENTROID 0.0680 | 0.0566 | 0.0500 | 0.0436
REPDIS 0.0754 | 0.0642 | 0.0584 | 0.0507
CAI 0.1115 | 0.0962 | 0.0839 | 0.0750
APOI 0.1102 | 0.0950 | 0.0833 | 0.0745
COMB 0.1102 | 0.0950 | 0.0833 | 0.0745
ROBUST-ITER 0.1165 | 0.0839 | 0.0682 | 0.0556
ROBUST-COMP 0.1156 | 0.0883 | 0.0739 | 0.0632

perform most favorably. This relation is visible in the Hasse diagram shown in Figure 6. It is worth noting the high
position of UTADISMP3 in the ranking, as it performs worse only than the central models and REPDIS. Apparently,
maximizing slopes gives a relatively good approximation of comprehensive values, despite the different shapes of the
MVFs and poor achievements in terms of classification accuracy. However, this aspect is not crucial in most problems.
In turn, it is more important to reconstruct the preferences and DM’s classification policy than to correctly reproduce

comprehensive values.

4.3. Differences between class thresholds

For all considered procedures, the average difference between class thresholds decreases as the number of classes increases
(see Table 19). However, the level of this reduction ranges between methods. The greatest discrepancies from around
0.18 to around 0.05 are observed for methods based on robustness analysis (ROBUST-ITER and ROBUST-COMP). This
is related to the fact that we consider more assignment examples with a greater number of classes. These, in turn, imply
additional constraints, leading to enriched necessary inference that leaves lesser flexibility to the class thresholds when
optimized by the methods. Though slightly less substantial in absolute terms, a similar trend can be observed for the
CAl-based approaches. The least improvement with the increase of p can be observed for UTADISMP3 and MSCVF.
These approaches do not optimize the threshold values, adhering instead to a default procedure that sets the thresholds
at equal distances from the extremely evaluated reference alternatives for each class.

Analogously, the average difference between class thresholds for most procedures decreases as more criteria are con-
sidered (see Table 20). However, some methods, such as UTADIS-JLS, CAI, APOI, COMB, and ROBUST-ITER, do not
follow this trend for all analyzed values of m. In general, a greater number of attributes makes the trade-offs between the
criteria smaller. This, in turn, implies that selecting class thresholds and MVFs that ensure the reconstruction of DM’s
preferences is more challenging due to lesser flexibility.

The results reported in Table 21 reveal a significant impact of the number of characteristic points on deviation in
threshold values of the reference model. Again, the most significant differences can be observed between instances with two

and four breakpoints. However, when collating the outcomes for four and six characteristic points, for some approaches
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Table 18: Coeflicients of solutions obtained for the linear regression problems for the average difference from the comprehensive values of the
reference models depending on the defined dimensions for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 -0.032393 0.000785 0.018870 -0.008374 0.166579
UTADISMP2 -0.029732 0.000569 0.017078 -0.007731 0.160913
UTADISMP3 -0.011100 -0.002104 0.008918 -0.003521 0.103271
UTADIS-JLS -0.030218 0.000618 0.033025 -0.009231 0.127304
CHEBYSHEV -0.012960 -0.001004 0.009598 -0.003416 0.089665
MSCVF -0.016752 -0.001532 -0.002988 -0.005272 0.202681
ACUTADIS -0.012876 -0.001095 0.008455 -0.002864 0.085938
CENTROID -0.012622 -0.000723 0.010858 -0.003396 0.080843
REPDIS -0.017890 -0.001929 0.013600 -0.003420 0.103332
CAI -0.033990 0.000945 0.027208 -0.005178 0.128469
APOI -0.033838 0.000744 0.026463 -0.005049 0.130438
COMB -0.033827 0.000756 0.026460 -0.005049 0.130338
ROBUST-ITER -0.032386 0.000783 0.018865 -0.008372 0.166564
ROBUST-COMP -0.027688 -0.000983 0.020991 -0.007240 0.149364

Table 19: Average differences between class thresholds for various numbers of classes.

Procedure 2 3 4 5

UTADISMP1 0.0884 | 0.0634 | 0.0475 | 0.0385
UTADISMP2 0.0836 | 0.0622 | 0.0486 | 0.0409
UTADISMP3 0.0595 | 0.0569 | 0.0497 | 0.0443
UTADIS-JLS 0.1459 | 0.1079 | 0.0827 | 0.0650
CHEBYSHEV 0.0583 | 0.0497 | 0.0411 | 0.0352
MSCVF 0.0928 | 0.0783 | 0.0693 | 0.0628
ACUTADIS 0.0547 | 0.0440 | 0.0346 | 0.0304
CENTROID 0.0592 | 0.0496 | 0.0407 | 0.0349
REPDIS 0.1066 | 0.0707 | 0.0533 | 0.0431
CAI 0.1390 | 0.0837 | 0.0586 | 0.0458
APOI 0.1389 | 0.0835 | 0.0570 | 0.0454
COMB 0.1388 | 0.0835 | 0.0571 | 0.0455
ROBUST-ITER 0.1828 | 0.0904 | 0.0624 | 0.0477
ROBUST-COMP 0.1720 | 0.0944 | 0.0685 | 0.0563

such as CHEBYSHEV, ACUTADIS, CENTROID, UTADISMP3, and MSCVF, the differences are negligible, or even the
trend becomes inverse. For the first three methods mentioned above, this observation confirms that for various levels of
flexibility of MVFs, the center-oriented methods are stable and reproduce the DM’s preference model well. Furthermore,
the stability of threshold-based similarity values for MSCVF and UTADISMP3 is likely because these methods emphasize
the shape of the MVFs. MSCVF aims for functions that are as linear as possible, and UTADISMP3 opts for the highest
possible and, therefore, equal distances between consecutive points.

The impact of the number of reference alternatives per class on the difference between class thresholds in the reference
and resulting models is reported in Table 22. Clearly, these differences decrease for all methods with additional assignment
examples. On the one hand, the most considerable reduction between instances with three and ten reference alternatives
per class is observed for the ROBUST methods. This corresponds with the trend already explained for different numbers
of classes. On the other hand, the least reductions between the extreme R values are noted for the stochastic and central-
based procedures. The former approaches perform rather poorly when few reference alternatives are available, and the
space of compatible sorting models is large. In turn, the latter ones achieve stable, good performance regardless of the
number of reference alternatives, and the enriched preference information helps them reproduce the reference model even
more faithfully.

Table 23 indicates that the performance of procedures concerning changes in individual parameters is similar. The
distance from the reference thresholds decreases most when more classes and fewer characteristic points are considered.
Modifying these dimensions implies additional restrictions resulting from more assignments or reducing the model’s
flexibility. The most sensitive to the changes mentioned above are the ROBUST methods, the stochastic approaches, and
the UTADIS-JLS. In turn, the slope coefficients are low for the procedures that aim at central or the most discriminating
models. Hence they are more resilient to changes, at least in the context of restoring the threshold values. The stability of
results attained by these methods allowed them to stay ahead of the other approaches regardless of the problem setting.
This is confirmed by Figure 7, exhibiting the statistically significant differences derived from the Wilcoxon signed-rank
test.
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Figure 6: The Hasse diagram indicating the statistically significant differences in terms of the differences from the comprehensive values of the
reference models based on the Wilcoxon test with p-value equal to 0.05.

Table 20: Average differences between class thresholds for various numbers of criteria.

Procedure 3 5 7 9

UTADISMP1 0.0681 | 0.0597 | 0.0553 | 0.0547
UTADISMP2 0.0671 | 0.0592 | 0.0548 | 0.0542
UTADISMP3 0.0661 | 0.0546 | 0.0467 | 0.0431
UTADIS-JLS 0.1143 0.0938 0.0944 0.0990
CHEBYSHEV 0.0581 | 0.0477 | 0.0402 | 0.0383
MSCVF 0.0914 | 0.0780 | 0.0698 | 0.0640
ACUTADIS 0.0513 | 0.0422 | 0.0363 | 0.0340
CENTROID 0.0573 | 0.0478 | 0.0406 | 0.0388
REPDIS 0.0850 | 0.0674 | 0.0617 | 0.0596
CAI 0.0831 | 0.0814 | 0.0792 | 0.0835
APOI 0.0833 | 0.0808 | 0.0787 | 0.0822
COMB 0.0833 | 0.0808 | 0.0786 | 0.0822
ROBUST-ITER 0.0990 | 0.0947 | 0.0942 | 0.0954
ROBUST-COMP 0.1113 0.0971 0.0927 0.0901

Table 21: Average differences between class thresholds for various numbers of characteristic points.

Procedure 2 4 6

UTADISMP1 0.0238 | 0.0761 | 0.0785
UTADISMP2 0.0264 | 0.0733 | 0.0767
UTADISMP3 0.0282 | 0.0676 | 0.0620
UTADIS-JLS 0.0234 | 0.1157 | 0.1620
CHEBYSHEV 0.0214 | 0.0602 | 0.0566
MSCVF 0.0803 | 0.0712
ACUTADIS 0.0180 | 0.0540 | 0.0508
CENTROID 0.0181 | 0.0615 | 0.0587
REPDIS 0.0386 | 0.0807 | 0.0860
CAI 0.0221 | 0.0914 | 0.1319
APOI 0.0227 | 0.0917 | 0.1292
COMB 0.0227 | 0.0918 | 0.1292
ROBUST-ITER 0.0507 | 0.1092 | 0.1275
ROBUST-COMP 0.0462 | 0.1120 | 0.1352
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Table 22: Average differences between class thresholds for various numbers of reference alternatives per class.

Procedure 3 5 7 10

UTADISMP1 0.0771 | 0.0623 | 0.0536 | 0.0447
UTADISMP2 0.0755 | 0.0614 | 0.0535 | 0.0449
UTADISMP3 0.0657 | 0.0537 | 0.0485 | 0.0425
UTADIS-JLS 0.1380 | 0.1063 | 0.0868 | 0.0704
CHEBYSHEV 0.0565 | 0.0472 | 0.0430 | 0.0376
MSCVF 0.0934 | 0.0764 | 0.0702 | 0.0632
ACUTADIS 0.0498 | 0.0421 | 0.0380 | 0.0337
CENTROID 0.0568 | 0.0475 | 0.0424 | 0.0377
REPDIS 0.0865 | 0.0714 | 0.0623 | 0.0536
CAI 0.1016 | 0.0862 | 0.0736 | 0.0658
APOI 0.1009 | 0.0853 | 0.0732 | 0.0655
COMB 0.1009 | 0.0853 | 0.0732 | 0.0655
ROBUST-ITER 0.1396 | 0.1009 | 0.0791 | 0.0636
ROBUST-COMP 0.1400 | 0.1013 | 0.0825 | 0.0674

Table 23: Coefficients of solutions obtained for the linear regression problems for the average difference from the thresholds of the reference
models depending on the defined dimensions for individual procedures.

Procedure No. of classes | No. of criteria | No. of ch. points | No. of ref. alt. | Intercept
UTADISMP1 -0.016560 -0.002237 0.013671 -0.004507 0.104303
UTADISMP2 -0.014172 -0.002145 0.012584 -0.004244 0.097485
UTADISMP3 -0.005290 -0.003843 0.008430 -0.003177 0.080309
UTADIS-JLS -0.026804 -0.002264 0.034660 -0.009425 0.128048
CHEBYSHEV -0.007782 -0.003346 0.008778 -0.002597 0.074495
MSCVF -0.009914 -0.004530 -0.004550 -0.004089 0.185982
ACUTADIS -0.008207 -0.002878 0.008198 -0.002219 0.067990
CENTROID -0.008175 -0.003141 0.010150 -0.002636 0.069441
REPDIS -0.020774 -0.004104 0.011866 -0.004586 0.146961
CAI -0.030461 -0.000043 0.027457 -0.005076 0.110568
APOI -0.030681 -0.000271 0.026619 -0.005001 0.115014
COMB -0.030655 -0.000265 0.026625 -0.004996 0.114836
ROBUST-ITER -0.043315 -0.000578 0.019208 -0.010544 0.239967
ROBUST-COMP -0.037290 -0.003400 0.022253 -0.009983 0.222106

Figure 7: The Hasse diagram indicating the statistically significant differences in terms of the differences from the thresholds of the reference
models based on the Wilcoxon test with p-value equal to 0.05.
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ABSTRACT

We introduce various algorithms for learning the parameters of a
threshold-based sorting procedure powered by the Choquet integral.
This model accounts for interactions between monotonic criteria
and facilitates categorizing decision alternatives into predefined,
preferentially ordered classes. We focus on developing heuristic
preference learning methods capable of efficiently processing large
datasets of classification examples. Specifically, we utilize Local
Search, Simulated Annealing, and nature-inspired approaches such
as Genetic Algorithm, Fish School Search, and Particle Swarm Opti-
mization. We demonstrate the effectiveness of the proposed model
through a case study. Additionally, we present an experimental
comparison of the recommendation accuracy achieved by these
algorithms on a suite of benchmark sorting problems.
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1 INTRODUCTION

Preference learning is a subfield of machine learning focused on
predicting or inferring preferences [10]. It primarily addresses in-
stance ranking or sorting challenges [1]. They involve allocating
alternatives to preference-ordered categories based on multiple
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criteria. The significant challenges in preference learning include
dealing with incomplete, inconsistent preference information in the
form of desired assignments for a subset of alternatives, scalability
to large preference sets, and ensuring high interpretability of the
applied models [16].

This study explores the parameterization of a sorting procedure
using the Choquet integral [7]. This model facilitates the aggrega-
tion of individual criteria while accounting for complex interactions
(e.g., complementarity or redundancy) via non-additive measures.
For this purpose, it incorporates meaningful preference parame-
ters, called capacities, assigning weights to individual criteria and
their combinations [11]. Its flexibility and general applicability
make it a powerful tool in various application fields across econom-
ics, operations research, and decision theory. For example studies,
see [3, 5, 25, 31].

However, applying the Choquet integral is challenging due to
the need to determine capacities for all criteria subsets [30]. To
mitigate the cognitive load of specifying numerous parameters,
various preference learning techniques have been proposed [15].
They include logistic regression adaptations [29], convex quadratic
programming [22], and neural network approaches [23]. Yet, these
methods primarily incorporate a two-additive Choquet integral,
capturing only pairwise criteria interactions. Other recent works
focus on more advanced representations of interactions [9, 14, 20],
focusing on sparse, compact, or contextual model variants.

This paper presents a comprehensive suite of algorithms for
learning the Choquet integral model parameters within a threshold-
based sorting framework. We focus on learning from large sets
of assignment examples and deriving compatible capacities for
all subsets of criteria. The proposed methods are based on linear
programming and adapted metaheuristics, including local search
variants, simulated annealing, genetic algorithms, fish school search,
and particle swarm optimization. The model’s interpretability is
showcased through parameter illustration for a real-world problem.
Then, predictive performance is evaluated using a set of monotonic
learning benchmarks, with classification accuracy and Area Under
the Curve as metrics. The influence of learning and testing set sizes
on outcomes is also examined.

2 PROBLEM DEFINITION

This section delineates the Choquet integral, the scope of sorting,
and the form of Decision Maker’s (DM’s) preferences.

Let us consider a multiple criteria sorting problem involving as-
signing n alternatives in set A = {aj, ..., an}, evaluated on a family
of m criteria G = {g1,...,gm}, to one of predefined, preferentially
ordered classes from set C = {Cy,...,Cp}, where C, is preferred
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to Cj for each I € {1,...,p — 1}. The performance of an alternative
a; on criteria g; : A — R is denoted by g;(a;). Without loss of
generality, we assume that g (a;) € [0, 1] and all criteria are of gain
type, i.e., the greater the performance g;(a;), the more preferred it
is for the DM.

The Choquet integral. The Choquet integral is based on the con-
cept of fuzzy or non-additive measure (also called capacity) [7].
Given a set of criteria G, a fuzzy measure incorporated into pref-
erence model M is defined for each subset of G, as a set function
LM 26 5 [0, 1] with the following normalization and monotonic-
ity assumptions:

um(@) =0, pum(G) =1, 1)
1M (G1) < pm(Ga), for each G1 € G € G. (2)
Then, the Choquet integral is defined as a function Chy; : A — R:

m
Chp(@) = Y [9(5)(@) = 9j-1) (@] - im(G(j)), ()
j=1
where (+) is a permutation of {1,...,m}, such that: g)(a) =0 <
91)(@) < ... < g(m)(a), and G(j) = {g(1)(a),...,g(j)(a)}. When
gj(a) € [0,1] for each j € {1,...,m}, then Chys(a) € [0,1]. To
support the understanding of the above notation, the supplementary
material illustrates calculating the Choquet integral value for an
example alternative.

Threshold-based sorting procedure. To perform the assignment,
we use a score-driven threshold-based sorting procedure [12]. In
this study, the score is expressed as the Choquet integral Chp(a) :
A — R € [0,1]. Moreover, p + 1 separating class thresholds
(to,t1, - - -, tp) complete model M, such that:

to =0, tl—tl,IZé‘,lel,...,p, tp_lﬁl—é‘, tp>1,
(4)

where ¢ value is an arbitrarily small positive value. The assignment
of alternative a; to class C; is implied by the following conditions:

Iv(a;) =1 < t;j_1 < Chp(aj) < 1. (5)

Hence Iyy : A —» N € {1,..., p} is the index of a class to which a;
is assigned using model M.

Preference information. We assume the DM provides desired as-
signments for a subset of reference alternatives AR C A. This can
be modelled using function Ipyy : AR 5N e {1,...,p}.

Model evaluation. When learning the parameters of model M,
some approaches need to evaluate M using a loss function. For this
purpose, we use the regret function ry; : AR — R € [0,1] [23]:

rM(a?) = max{tIDM(dj)—l - ChM(a:()r 0, ChM(af) - tIDM(af) }
(6)
It is equal to zero when the score of a} falls into the range associ-
ated with the class specified by the DM. Otherwise, it captures the
distance from the nearest threshold of the desired class. Then, the
loss function L(M) : M — R € [0, 1] for model M aggregates the
regrets for all reference alternatives:

L = = 3 r(a)). ™)

R
A |a;€AR
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The lesser L(M), the more preferred model M as it better fits the
DM’s indirect preferences, i.e.:

My = My < L(M;) < L(My). (8)

3 PREFERENCE LEARNING APPROACHES

This section describes novel preference learning approaches that
aim to find sorting model M that best reflects the DM’s prefer-
ences, thus minimizing L(M). They represent various streams of
algorithms. In particular, we consider a) local and global search
methods, b) single solution and population-based techniques as
well as ensemble approaches, or c) linear programming and nature-
inspired techniques. The interest in mathematical programming
derives from their prevailing role in decision analysis [2]. In turn,
the remaining methods proved their ability to efficiently search a
continuous, constrained space of solutions. They also make use of
convexity, ensuring that a linear combination of two feasible solu-
tions leads to a valid solution (e.g., crossover in genetic algorithm
or motion direction combination in particle swarm optimization).

3.1 Mathematical Programming

The first group of methods is based on Linear Programming (LP).
They differ in terms of the optimized objective function.

3.1.1  Minimize maximum regret [MMR]. The first approach mini-
mizes the highest value of regret rys(a}) across all reference alter-
natives, marked as e, i.e.:

Minimize e,
egs. (1)-(6),
tIDM(a:f)_l —ChM(a;-k) <e Va:.‘ EAR,
ChM(a;‘) - tIDM(a;f) +e<e, V(Z;f< € AR,
e>0.

st (A5 9

3.1.2  Minimize the number of misclassified alternatives [MNR].
The other approach minimizes the number of alternatives for which
the regret is positive, i.e., rM(a;f) > 0. For this, we introduce binary
variables be,; indicating the misclassification of a} € AR:

Minimize ), be,,
a;eAR
egs. (1)-(6),
st tIDM(a;)—l - ChM(a;k) < bc’p Va;k € AR, (EAR
o ChM(a:f) = tIDM(a;j) +e< bei, Va:f € AR, MNR
be, € {0,1}, Va; € AR,
(10)

3.1.3  General approach. The solution to each of the above math-
ematical programming problems requires determining 2™ capac-
ities ppg, p + 1 threshold values, and 1 real or |AR| binary values
capturing variously defined misclassification errors. Their values
must satisfy the desired properties of capacities yp for all subsets of
G and constraints implied by the assignments of reference alterna-
tives. When the number of variables and constraints is high, finding
an optimal solution within a limited time may be impossible.

To address this problem, we apply a bagging-inspired approach
[6]. The procedure incorporating [MMR] is described as Algorithm
1. It requires two parameters — S € N indicating the number
of models to be aggregated and p € (0,1] indicating the frac-
tion of reference alternatives that should be used for training a
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Algorithm 1 MMR-based search [MMR]

Input: S - no. of models, p — proportion of ref. alts. to select
1: m* — best model found
2. M[0...S— 1] - empty array of S models

3t |AR[-p

4: 00

5: while not stopping condition do

6: TR « | t] randomly selected alternatives from AR
7. m e« MMR(TR)

8: if i < S then

9: Ml[i] « m

10: else if m > M[S — 1] then

11: M[S—1] «m

12: end if

13: M « sort(M)
14: if M[0] > m* then

15: m* — M[0]

16: end if

17: if getWeighted AverageModel(M) > m* then
18: m* « getWeightedAverageModel (M)

19: end if

20: ie—i+1

21: end while
22: return m*

single model. The algorithm iteratively creates subsequent mod-
els and then checks whether the found models are better than
the existing ones based on the loss function value. The follow-
ing symbols appear in the algorithm: TR is a subset of randomly
selected alternatives from AR without replacement, MMR(TR) re-
turns the model obtained by solving the LP problem defined in
Section 3.1.1, sort(M) sorts the array of models M according to
values L(M[i]) for each i € {0,...,S — 1} in the ascending order,
and getWeighted AverageModel (M) determines a model that is the
weighted average of all models in M, where the weight of model
M[i] is wi = (L(M[i]) + )~ L

’

St wi - i (G)

HMaog (G") = T , for each G’ C G,
Zi:() wi
5-1 (11)
Zi:() wi th[i]
By = —agop foreachleo,....p.
7 Zi:o Wi

This way, higher-quality models have a more significant impact
on the average solution. At the same time, the algorithm can also
choose one of the solutions directly produced by MMR(TR). A sim-
ilar algorithm can be defined for [MNR] when using MNR(TX)
rather than MMR (TR ).

3.2 Local Search

Another suite of approaches performs an optimization through
effective exploration and exploitation of the solution space consis-
tent with Egs. (1)-(6). To sample models, we use the Hit-And-Run
(HAR) algorithm [26] implemented in [8]. It generates a sequence
of feasible models that asymptotically approach a uniform distri-
bution. At this stage, we do not impose any constraints implied by
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the DM’s assignment example. To define the following algorithms,
we assume that function getRandomModel() uses HAR to generate
a random model respecting Egs. (1)-(6).

Let us start with defining the neighborhood relation between
models M; and My representing the underlying parameter values:

o1 = [ (Go), - - iy (Galgi_q)s fongy s - -+ Epag, 1
Uy = [yMZ(G()),. "’IJMZ(GZ‘G‘—I)’ t0M2>""tPM2]'

They are deemed neighbors (N, (M, Mz, r) = 1) when the Euclidean
distance between v1 and vz is not greater than r (radius), being the
algorithm’s parameter, i.e.:

(12)

Ny (My, My, 7) = {1’ o eall <. (13)
0, otherwise.
Function generateNeighbor(m,r) creates neighbor m’ of model m
with the maximum distance of r. First, it generates a random vector
(point) from the n-dimensional unit sphere and scales its length by
a random factor k € (0, r]. Then, it is added to the initial solution
vector vy, to obtain the neighboring solution v,,’. Such a solution is
not guaranteed to be feasible. In this case, we use the crop strategy
to reduce the vector’s length so that the resulting solution is located
on or close to the feasible solution space boundary.
The subsequently presented variants of local search attempt
to find the optimal solution by iteratively searching neighboring
solutions of the currently selected one.

3.2.1 Greedy Local Search [GLS]. In the greedy version of local
search [28], we accept neighbor mp of the current model m when-
ever L(mp) < L(m). To prevent getting stuck in the local optimum
in the case of no improvement for a long time during the search, we
use the parameter Sy specifying the maximum number of neigh-
bors to be verified. If the method fails to find a better model in Sy
iterations, the best solution found m* is updated (if necessary), and
the algorithm continues by starting with a new, randomly selected
model. The pseudocode of [GLS] is described as Algorithm 2.

3.2.2 Steep Local Search [SLS]. The steep variant of local search
[28] generates Sy neighbors of the current solution and selects the
one providing the most significant improvement in model quality.
Similar to GLS, if no newly generated model provides a lower
loss function value, the best-found solution m* is updated, and
the search is repeated from the randomly generated solution. This
strategy is expected to converge to the local optima faster than GLS.
However, it needs to examine Sy neighbors in each iteration. This
number is usually smaller in GLS, which can facilitate the search
process.

3.2.3 Simulated Annealing [SAN]. Simulated Annealing [18] ap-
plies a different acceptance criterion. Specifically, neighbor mp
is accepted as a new solution when its quality is better than the
initial solution m. However, mp can also be accepted with a certain
probability even when being worse than m. Then, the probability
depends on the quality difference between m and my as well as
parameter t, called temperature. Overall, the acceptance probability
can be defined as follows:
1, if L(my) < L(m),

P(m e mN) =4 Liny)-L(m) ) (14)
e 7 , otherwise.
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Algorithm 2 Greedy Local Search [GLS]

Input: Sy — number of neighbors, r — neighborhood radius
1: m < getRandomModel()

2 m'e—m

3: while not stopping condition do
4 p<20

5 while p < Sy do

6: mp « generateNeigbor(m,r)
7 if my > m then

8 m <« my

9 break

10: end if

11: pep+1

12: end while

13: if m > m* then

14: m* «—m

15: end if

16: if p == Sy then

17: m « getRandomModel()
18: end if

19: end while
20: return m*

The value of ¢ is initially set to initial temperature ts, and then
successively decreased. This reduces the probability of accepting
a worse solution and increases the pressure to obtain better ones.
After each iteration, the value of ¢ is multiplied by t,., indicating
the temperature decrease ratio. When t reaches a value lesser than
minimum temperature tpmin, the search re-starts with a random
model and t = t;. Note that for this algorithm, unlike the previous
two approaches, we consider only one neighbor model in each iter-
ation. Therefore, the Sy parameter is not used here. The algorithm
returns the best solution found during the search.

3.3 Genetic Algorithm

The genetic algorithm [GEN], a pioneering nature-inspired meta-
heuristic [19], is employed for preference learning, as described in
Algorithm 3. It comprises a series of steps executed iteratively, simu-
lating successive generations of individuals and applying evolution-
ary processes. In what follows, we detail functions and parameters
integrated into [GEN]:

e generatePopulation(S) returns S random models using the
getRandomModel () function;

e selection(Mp, ss, ts) chooses 2 out of S individuals from array
M), using one of the following procedures:

RWS Roulette wheel selection [21] with the probability of selecting

individual m; being proportional to m
TS Tournament selection [24] with tg individuals drawn and the
one with the lowest L(m) among them being selected.

e crossover(my, my, sc, pc) returns an individual resulting from
getWeighted AverageModel([m1, my]) with probability pc and
weights determined using one of the two schema:

AC Average Crossover with both weights equal to 0.5;
RC Random Crossover with weights equal to @ and 1 — &, where
a € [0,1] is a random value;
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otherwise, the function returns an individual identical to m;.

o mutation(mo, Sy, PM, 'y) Mmakes small changes to an individual
to increase diversity in the solution pool. With probability py, it
applies one of two strategies to individual m,:

NM Neighbor Mutation generating a neighbor model, using gene-
rateNeighbor(mo, rp1);

SWM Single Weight Mutation changing only one parameter 31 (G”)
for a randomly selected G’ ¢ G # 0, by checking lower
(ijV}3 (G’)) and upper (ylL\],IB (G")) bounds that meet the con-
straints, and selecting a random value in [ykfi (G, y%B (GH;

otherwise, the function returns m, without modifying it.

elitismSelection(Mp, M,) returns S models with the lowest L(m)

values among 2 - S individuals from My and M,;

bestIndividual(Mp) returns the model with the lowest L(m)

value among S individuals from Mp;

st indicates how many generations without improvement are

acceptable; if this happens, the algorithm restarts from a random

population of individuals (models).

Algorithm 3 Genetic Algorithm [GEN]

Input: S - population size, st — max. stagnation, ss — selection
strategy, ts — tournament size, pc — crossover probability, sc -
crossover strategy, pys — mutation probability, sp; — mutation
strategy, r) — mutation range

1: m* — best model found

2: while not stopping condition do

3: Mp[0,...,5 — 1] « generatePopulation(S)
4: Sterr <— 0

5: while st.;r < st do

6: i<—20

7 My[0...S — 1] — empty array of S models
8: while i < S do

9: mi, mg «— selection(Mp,ss, ts)

10: mo < crossover(mi, ma,sc, pc)

11: Mo [i] < mutation(mo, sy, Py, M)
12: ie—i+1

13: end while

14: My — elitismSelection(Mp,Mo)

15: m « bestIndividual (Mp)

16: if m > m* then

17: m* «—m; steqr — 0

18: else

19: Stetr < Stepr + 1
20: end if
21: end while

22: end while
23: return m*

3.4 Fish School Search

Fish School Search draws inspiration from the social behavior ob-
served in certain fish species, with solutions evolving through a sim-
ulation of school dynamics. The algorithm searches for the best
model by repeating a sequence of fish movements, which can be
divided into:

o individual - here, each fish independently explores its immediate
surroundings in search of “food", metaphorically representing
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an opportunity to enhance the model’s quality. Success in this
endeavor leads to an increase in the fish’s weight;

o collective-instinctive — this phase mimics the successful individual
movements of other fish, specifically those that resulted in fitness
improvements.

o collective-volitive — the school’s radius is adjusted based on the
collective performance, expanding or contracting in response
to the overall increase or decrease in the school’s mass, respec-
tively. This adjustment reflects the school’s aggregate success in
finding better solutions, aiming to boost the group’s exploratory
capabilities.

Our implementation of [FSS] is largely based on [4], and the detailed

procedure is outlined in Algorithm 4. In what follows, we delve

into the algorithm’s key components and discuss the adaptations
made to enhance its performance:

e The generateFishPopulation(S) function creates models simi-
larly to generatePopulation(S), but with the addition of gen-
erating S fishes. Each fish is assigned a weight W;, initialized
following the approach outlined in [4].

o The three Movement operators are implemented in a manner

consistent with those described in [4]. After each movement, m*

is updated if the new solution obtained is better. Additionally,

for all three operators, if a model movement leads to a constraint
violation, a crop strategy is employed to rectify this.

For individual Movement, the fitness function is f(m) = —L(m),

implying that a reduction in L(m) results in increased fitness.

To compute the movement vector, a new model m’ is generated

via m’ = getNeighbor(m, s;ng), and the displacement vector is

calculated as vy = vy — Uy

The feeding operator has been slightly adapted with respect to

[4]. While fish weight increases following model improvement af-

ter individualMovement, it decreases otherwise, being multiplied

by wg,, where wy, € (0,1).

Given the absence of a fixed number of iterations, adjustments

were made to how the values of input parameters s;,; and s,;

diminish over time. The decay rates s;,4, and sy, are chosen

from within the interval (0, 1) to ensure a gradual reduction in
both parameters’ values.

Algorithm 4 Fish School Search [FSS]

Input: S - population size, s;pq,,,,, — initial individual movement
step, Sind,, — individual movement decrease ratio, syo;,,,., ~

initial volitive movement step, s, — volitive movement de-

crease ratio, wy,j. — Weights scale, wy, — weight decrease ratio

m* - best model found

F[0,...,S — 1] « generateFishPopulation(S)

Sind <~ Sindstare>  Svol < Svolsiars

: while not stopping condition do

individualMovement (F, s;jpq)

feeding(F, wg,)

collectivelnstinctiveMovement (F)

colectiveVolitiveMovement (F, s,0p)

Sind <~ Sind " Sindg,>  Svol < Swol * Svoly,

. end while

: return m*

h - A A T A
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[
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3.5 Particle Swarm Optimization

Particle Swarm Optimization, initially introduced in [17], draws
inspiration from the dynamics observed within large flocks of birds.
It posits that each particle in the swarm adjusts its trajectory based
on a velocity vector, which is influenced by cognitive and social
components. The procedural framework of [PSO] is detailed in
Algorithm 5 and encompasses the following steps:

o generateParticlePopulation(S,v,) returns S particles that con-
tain the current model m, the best found model mp, the best
globally found model mg, and a velocity vector v whose length
does not exceed vy;
updateBestParticleModel(P) updates the best model found so
far by a given particle — if P[i];, > P[ilm,, then P[i];, <
P[i]m; this model is also assigned to m*, if P[i], > m*;
updateBestGlobalModel (P) updates the best model found so far
by all of the particles — if m;, = Plilm,, then P[i]lm, < mj,
where mj, is the best model among P[i]m,,;
moveParticles(P, w, c1, c2) updates the velocity vector and then
the model parameters. We assume that P[i]m, P[ilm, Plilm,
contain a vector representation of the individual models. For
random values rq,r2 € [0, 1], the update formulas are as follows:
= Pli]ly & w-P[i]y+c1-r1- (P[i]mp =P[i]lm)+ca 12" (P[i]mg -
Pli]m);
= Pli]lm < Pli]lm + P[i]o;
As in [FSS], when the model fails to meet the constraints after
movement, we use the crop strategy to shorten the model’s shift-
vector.

Algorithm 5 Particle Swarm Optimization [PSO]

Input: S - population size, v, - initial velocity radius, w, c1,c2 —
velocity vector modification coefficients

: m* — best model found

P[0,...,S — 1] « generateParticlePopulation(S,v,)

: while not stopping condition do

updateBestParticleModel (P)

updateBestGlobalModel (P)

moveParticles(P, w, c1,¢2)

: end while

[ N T~ NS B T I

: return m*

4 POST-OPTIMIZATION TECHNIQUES

In this section, we present two post-optimization strategies de-
signed to: (a) enhance the model’s accuracy by identifying optimal
threshold values, and (b) minimize L(m) using the backpropaga-
tion algorithm. These techniques are applied across all discussed
algorithms — the former is utilized during the optimization phase
for each model obtained, and the latter is employed for the final,
optimal model m* produced by a particular method.

4.1 Heuristic to optimize threshold values

The values of separating class thresholds ¢,/ = 1,...,p — 1, can
be optimized by preference learning algorithms similarly to capc-
ities y#(G’). Then, they are modified as an inherent part of the
optimized solutions in line with the operations of the specific algo-
rithm (e.g., mutation and crossover for [GEN]). Alternatively, the
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methods can learn only the Choquet integral parameters, while the
following approach can determine the thresholds:

e Given capacities‘iyy, for each combination of {t{, e tI’J_l }, cal-

culate the classification accuracy over a; € AR,
o Select the combination {t;*, Lo t;‘_l} which provides the highest
accuracy and assign it to model M.
Even though each threshold tl’ can take any value in [0, 1], we
can limit the search space to values Ch(a;) + € for each a} € AR,
Searching such a space for small p and reasonable sizes of AR
is fast and guarantees the best possible outcome regarding the

model accuracy. We applied this technique to each algorithm during
experiments whenever a new solution appeared.

4.2 Backpropagation

For model M and alternative a?, we can determine the prediction

loss function Iy;(a; , where:

) = (e’
i’ 2

tpm(a;) -1~ Chm(ay), if Chyr(a}) < tr, (at)-10
ryg(a) = {Chy(a?) - Hpy(a)s 1 Ch(a)) >t (ar),
0, otherwise.
(15)
This approach facilitates the calculation of the gradient for the
model parameters pp(G’), enabling the application of the back-
propagation algorithm commonly utilized in optimizing neural
networks [13]. Consistent with its principles, the model parameters
are updated in the following manner:
8l (a)

, YG'cG#0. (16)
Sum(G’)

(G = (G = Y g
a;eAR

When updating individual parameters, there is a risk of constraint
violations. To address this, we adopt a strategy where parameter 7 is
progressively decreased to ensure model validity. This adjustment
process continues until either a predefined processing time limit is
reached or 7 diminishes to a minimal threshold of 10712, suggesting
that further model enhancements are infeasible without breach-
ing constraints. Notably, this methodology is equally applicable to
threshold adjustments, although it is employed post-optimization
of upm(G').

Our preliminary investigations revealed that allocating 5% of
each algorithm’s optimization duration to implementing the back-
propagation scheme yields superior solutions. The supplementary
material includes details.

5 EXPERIMENTAL ANALYSIS

This section presents the experimental analysis framework and the
results that highlight the performance of the evaluated preference
learning methods.

5.1 Benchmark problems

We evaluated the proposed algorithms using five benchmark datasets:

two (Breast Cancer [BCC] (|A| = 286, m = 7) and Computer Pro-
cessing Units [CPU] (JA| = 209, m = 6)) sourced from the UCI
repository, and three (Employee Selection [ESL] (|A| = 488, m = 4),
Employee Rejection/Acceptance [ERA] (|A| = 1000, m = 4), and
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Table 1: Analyzed hyperparameter values.

Algorithms Hyperparameters values
MMR, MNR S€ {1,510}, p € {0.05,0.1,0.25,05 1}
SN € {10, 25, 100, 250}
GLS, SLS r € {0.01,0.025,0.1,0.25, 1.0}
tmin =107°, r € {0.01,0.025,0.1,0.25, 1.0}
SAN
ts € {10,100,1000}, tg, € {0.95,0.99,0.995}
S € {25,100,250}, st =10,
(ss: ts) € {(RWS, 0), (TS, 2), (TS, 5)},
GEN pc €{0.8,1.0}, sc € {AC,RC},
v € {0.2,0.5,0.8}
(sm,rm) € {(NM,0.01), (SWM, 0.0) }
S € {25, 100, 250},
FSS Sindgare € {0.01,0.05}, Svolsrare = 2 * Sindsrare
Sindy, = Svol,, € 10.95,0.99}
Weeale € {10,50},  wg, € {0.01,0.02,0.05}
S € {25,100, 250}, vy € {0.01,0.1}, (w,c1,c2) €
PSO {(0.8,0.1,0.1), (0.6,0.2,0.2), (0.4, 0.3,0.3),
(0.2,0.4,0.4), (0,0.25,0.75), (0, 0.75, 0.25) }

Lecturers Evaluation [LEV] (JA| = 1000, m = 4)) obtained from the
WEKA machine learning framework.

Consistent with previous studies in [23, 27, 29], we addressed
the binary classification problem and applied min-max normaliza-
tion to scale the values of individual criteria to the range [0, 1]. To
demonstrate the capabilities of each method, we conducted a com-
parative analysis across three scenarios for each dataset, varying
the distribution of alternatives between the AR (reference set) and
AT (test set) subsets in the ratios of 20 — 80, 50 — 50, and 80 — 20.

In the supplementary material, we illustrate using three algo-
rithms (GEN, FSS, and PSO) to the ESL problem. We demonstrate
how they minimize the loss function in a single run and discuss the
obtained model parameter values.

5.2 Quality measures

To evaluate the algorithms, we used the following two performance
measures:

o Area Under Curve [auc] is the percentage of accurately replicated
comparisons among pairs of test alternatives a;, a; € AT = A\AR
that were anticipated to be categorized into distinct classes:

ZaithM(ai)=1 ZakJDM(ak)=2 cm(ai, ax)

auc(M) = . aj,ar € AT,
lai : Ipm(ai) = 1 - lag : Ipm(ag) =2 0 °F
1, ifCh i) <Ch ,
em(ai, a) = ' M(.al) m(ar) capap € AT
0, otherwise,
(17)

e Classification accuracy [acc] reflect the model’s average profi-
ciency in correctly classifying test alternatives a € AT into their
respective classes. This metric is determined by the proportion of
alternatives correctly assigned to the class specified by the DM
out of the total number of alternatives evaluated:

la € AT : Iy(a) = IDM(a)|.

acc(M) = AT

(18)
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Table 2: Average and standard deviation of acc obtained by
GEN, FSS, and PSO for three datasets, various pgr values, and
30 seconds of optimization.

Alg. || pr BCC CPU ESL
0.2 || 0.7234 % 0.0249 | 0.9036 + 0.0326 | 0.9197 % 0.0112
GEN || 0.5 || 0.7278 £ 0.0287 | 0.9411 + 0.0281 | 0.9228 + 0.0139
0.8 || 0.7355 % 0.0540 | 0.9488 + 0.0315 | 0.9271 =+ 0.0246
0.2 || 0.7265 % 0.0277 | 0.9053 + 0.0305 | 0.9211 + 0.0118
FSS 0.5 || 0.7271 £ 0.0271 | 0.9214 + 0.0243 | 0.9241 + 0.0135
0.8 || 0.7370 £ 0.0569 | 0.9257 +0.0362 | 0.9271 % 0.0242
0.2 || 0.7271 + 0.0223 | 0.9054 + 0.0334 | 0.9209 % 0.0126
PSO 0.5 || 0.7297 £ 0.0272 | 0.9301 + 0.0239 | 0.9261 + 0.0141
0.8 || 0.7336 % 0.0589 | 0.9260 + 0.0358 | 0.9286 =+ 0.0253

5.3 Experimental setup
The experimental analysis was divided into two phases:

e Hyperparameter Optimization — Preliminary Analysis: The objec-
tive was to identify the optimal hyperparameter values for each
combination (d, pg, alg), where d is one of the five datasets, pr
denotes the proportion of the reference set AR size relative to
|A], and alg signifies one of the eight algorithms. Table 1 shows
the hyperparameters for each algorithm. To select the best set-
ting, 10-fold Monte Carlo Cross Validation was used for each
combination (d, pR, alg). This approach creates 10 different prob-
lems by randomly dividing all alternatives into reference (AR)
and test (AT) subsets, without replacement, per the assumed pg.
The assignments for AR constituted preference information and
enabled the evaluation of solutions at the optimization stage. In
turn, the assignments for AT were unknown to the algorithms,
being used to estimate the quality of the obtained models in line
with acc and auc. Subsequently, for each (d, pg, alg), a set of hy-
perparameters was chosen that yielded the highest average value

of w. Across all considered scenarios, the execution
timeout was set to 10 seconds.

o Comparative Analysis of Algorithms: In this phase, we conducted
a 100-fold Monte Carlo Cross-Validation for each (d, pg, alg)
combination using the chosen hyperparameters. We assumed a
30-second execution timeout for each algorithm.

5.4 Results

This section discusses the most interesting experimental results.

5.4.1 Impact of the reference set size (pr) on model quality. In-
creasing |AR| enriches the model with more detailed preference
information, enhancing its ability to align with the incoming data
and reducing the likelihood of learning from biased information.
However, this also elevates the complexity of the optimization task
and extends the computational time required for model evaluation.
Table 2 displays the mean acc values for p, € {0.2,0.5,0.8}
across three algorithms and three datasets. For all pairs of scenarios
except one, there are slight improvements in acc with an increase
in |AR|, suggesting that enriching the model with more preference
information positively influences the quality measures. Notably, for
BCC and ESL, the standard deviations also rise with an increase
in |AR|, hinting at enhanced result stability when pg = 0.2. The
observations for auc values align with these findings.
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5.4.2  Comparison of algorithm performance. Tables 3 and 4 display
the average auc and acc values achieved by all algorithms across
various problems, with a reference set proportion pg = 0.8, along
with their respective rankings. We denote in bold the algorithms for
which the differences to the best performer were not statistically
significant. The standout performers were:

e GEN: Exhibiting the best average ranks for both auc (r%8, =
1.2) and acc (1% = 2.6) across all datasets. GEN secured the
best average auc values for nearly all problems except one and
maintained strong performance in acc, ranking in the upper half.
However, its advantage is not statistically significant for some
benchmarks, even though it shares the top place with various
approaches. Its least favorable outcomes were observed for CPU
and BCC, suggesting a potential preference for problems with
a larger set of alternatives.

PSO and FSS: Both algorithms demonstrated comparable per-
formance, with average ranks of 3.8 for auc and 3.8 and 4.0
for acc, respectively, trailing only behind GEN. The Wilcoxon
Signed-Rank Test, with a = 0.05, revealed statistically significant
superior auc scores for FSS over PSO on ESL (0.9839 vs. 0.9830,
p-value = 0.029) and highlighted PSO’s advantage in auc for BCC
(0.7432 vs. 0.7393, p-value = 0.009) and LEV (0.8879 vs. 0.8853, p-
value = 0.009). When considering p, € {0.2,0.5}, the statistically
significant advantage of PSO and FSS was confirmed for eight
out of 20 other combinations (d, p,, acc/auc); the inverse was
true only for (LEV, 0.5, auc), hence slightly favoring PSO. The
detailed results are presented in the supplementary material.

Examining the performance of other approaches reveals that their
798 and r%:2 ranks are significantly lower. The algorithms employ-
ing Mathematical Programming have excelled in specific quality
metrics and datasets, such as MNR outperforming others in auc
for CPU, and MMR leading in acc for both BCC and CPU. De-
spite these achievements, Mathematical Programming and Local
Search strategies generally occupy the lowest average rank posi-
tions. Specifically, MMR and MNR show the weakest performance
in auc, while GLS, SLS, and SAN fall behind in acc.

Within the Local Search algorithms, SLS emerged as the top
performer based on r%8 . Delving into dataset-specific analyses,
the Wilcoxon Test, with & = 0.05, reveals that SLS’s superiority is
statistically validated only against SAN for CPU, achieving 0.9917
compared to SAN’s 0.9833 (p-value = 6.82 - 10~13). Conversely,
for LEV, SAN significantly outperforms SLS, with scores of 0.8895
against 0.8860 (p-value = 1.98-10~>). Regarding acc, GLS appears to
lead in this group. However, its superiority over SAN is statistically
significant only for CPU (0.9483 vs. 0.9279, p-value = 7.56 - 1077),
and over SLS solely for LEV (0.8269 vs. 0.8218, p-value = 0.006).
Notably, for LEV, SAN surpasses GLS (0.8301 vs. 0.8269, p-value
= 0.033). Therefore, determining the most effective method among
these three is challenging, with the choice heavily influenced by
the specific dataset.

The analogous results attained by several state-of-the-art prefer-
ence learning methods are reported in [23]. Our best-performing
methods prove better than many variants of linear regression, rule-
based algorithms, or outranking- and value-based methods incor-
porating mathematical programming. They are also competitive to
Choquistic regression [29], outperforming it on many datasets in
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Table 3: Average and standard deviation of auc for 80% train data and 20% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (r%8)

MMR || 0.7430 £0.0669 (3) | 0.9911 +£0.0085 (4) | 0.9737 £0.0145 (8) | 0.7258 £0.0370 (8) | 0.8702 +0.0333 (8) 6.2
MNR || 0.7301 £0.0705 (8) | 0.9927 £0.0071 (1) | 0.9750 £0.0125 (7) | 0.7515+0.0349 (7) | 0.8802 +0.0277 (7) 6.0

GLS || 0.7366 +0.0657 (5) | 0.9907 £0.0102 (5) | 0.9802+0.0110 (6) | 0.7562 % 0.0320 (4) | 0.8852 +0.0231 (6) 5.2

SLS || 0.7366 +0.0662 (6) | 0.9917 £0.0091 (3) | 0.9806+0.0095 (5) | 0.7540+0.0335 (5) | 0.8860 % 0.0226 (4) 4.6

SAN 0.7357 £ 0.0682 (7) | 0.9833+0.0147 (7) | 0.9811 +0.0097 (4) | 0.7532+0.0318 (6) | 0.8895 £0.0237 (2) 5.2

GEN || 0.7440 £0.0663 (1) | 0.9924 £ 0.0076 (2) | 0.9842 +0.0086 (1) | 0.7634 £ 0.0300 (1) | 0.8901 +0.0227 (1) 1.2

FSS || 0.7393 £0.0648 (4) | 0.9840 +0.0129 (6) | 0.9839 £0.0082 (2) | 0.7591 +0.0286 (2) | 0.8853 +0.0226 (5) 3.8

PSO || 0.7432 £0.0658 (2) | 0.9826 +0.0136 (8) | 0.9830 £0.0093 (3) | 0.7583 £0.0322 (3) | 0.8879 +£0.0229 (3) 3.8

Table 4: Average and standard deviation of acc for 80% train data and 20% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (r98)

MMR || 0.7411 £0.0572 (1) | 0.9660 £ 0.0238 (1) | 0.9201+0.0265 (7) | 0.6846+0.0388 (8) | 0.8065 % 0.0320 (8) 5.0
MNR | 0.7355£0.0612 (3) | 0.9507 +£0.0296 (2) | 0.9169 +0.0262 (8) | 0.7085+0.0313 (5) | 0.8221£0.0277 (5) 4.6

GLS || 0.7316 £0.0566 (6) | 0.9483+0.0332 (5) | 0.9241+0.0250 (4) | 0.7053+0.0288 (7) | 0.8269+0.0232 (3) 5.0

SLS || 0.7304+0.0522 (7) | 0.9495+0.0318 (3) | 0.9213+0.0253 (6) | 0.7087 +0.0310 (4) | 0.8218 £ 0.0249 (6) 5.2

SAN || 0.7257 £0.0571 (8) | 0.9279 +0.0395 (6) | 0.9223 £0.0244 (5) | 0.7074 £ 0.0292 (6) | 0.8301 £0.0236 (2) 5.4

GEN || 0.7355+0.0540 (3) | 0.94880.0315 (4) | 0.9271£0.0246 (2) | 0.7162 £0.0296 (3) | 0.8304 £0.0242 (1) 2.6

FSS || 0.7370 £0.0569 (2) | 0.9257 +£0.0362 (8) | 0.9271 £0.0242 (2) | 0.7176 £0.0253 (1) | 0.8213 £0.0242 (7) 4.0

PSO || 0.7336 +0.0589 (5) | 0.9260 +0.0358 (7) | 0.9286 £0.0253 (1) | 0.7166 £ 0.0293 (2) | 0.8254 +0.0252 (4) 3.8

auc. These observations confirm the high potential of the delineated
research direction. However, the most advanced deep preference
learning methods using complex preference models attain slightly
better outcomes on all benchmark problems [23].

For the other reference set proportions (pr) (see supplementary
material for tables with the detailed results), the average auc rank
values for pg = 0.5 resemble those in Table 3, albeit with certain
variations. Notably, SLS shows the most significant improvement,
dropping from 798, = 4.6 to %> = 4.0. In turn, FSS experiences the
largest decline in its average rank (from 3.8 to 4.2). For pg = 0.2,
SLS sees a marked decrease to r3;2, = 5.2. Also, PSO emerges as
the highest-ranked algorithm, surpassing GEN with 1.8 versus 2.4
and achieving the best average auc across the BCC, ESL, and ERA
datasets. In terms of acc, GEN retains the lowest average rank
(r%> = 2.6), but falls behind PSO at r);2 with 3.2 versus 1.8. FSS
consistently ranks third across different pg values (r%;, = 4.2 and
92 = 3.6). Identifying clear patterns for the other methods proves
challenging, aside from SAN consistently recording the lowest
average rank among all approaches. The supplementary material

discusses the detailed outcomes of statistical tests.

6 CONCLUSIONS

We introduced the Choquet integral as a preference model for ad-
dressing sorting problems. It is adept at capturing interactions
among the monotonic criteria. Recognizing the limitations of con-
ventional optimization approaches, especially their inefficiency
with a vast array of capacities and model constraints, we explored al-
ternative methods for parameter estimation. We proposed eight opti-
mization algorithms, encompassing two mathematical programming-
based, three local search, and three nature-inspired techniques
that emulate evolutionary processes or the collective behaviors
observed in various animal species. Additionally, we detailed two
post-optimization strategies to enhance the quality of the optimal

solution yielded by each algorithm. An illustrative example was
provided to elucidate the algorithms’ functionality and the inter-
pretation of model parameters.

We conducted comprehensive computational experiments on
five benchmark datasets, varying in attributes and alternatives, to
assess the model quality in terms of classification accuracy and
preference reconstruction between alternative pairs. The experi-
mental analysis was conducted in two phases: (a) identifying the
optimal hyperparameters for each algorithm and problem and (b)
evaluating the performance of models generated by different meth-
ods. The Genetic Algorithm emerged as the most effective, closely
followed by Fish School Search and Particle Swarm Optimization.

Future research directions include refining the current algo-
rithms with alternative strategies for managing constraint space
violations, incorporating ensemble meta-algorithms like bagging
or boosting to enhance performance, and expanding the algorith-
mic suite with additional nature-inspired metaheuristics suitable
for constrained continuous optimization. Moreover, extending the
experimental analysis to include more benchmarks, artificially gen-
erated datasets, a more exhaustive exploration of hyperparameter
spaces, and evaluating algorithm performance under varied stop-
ping conditions would be beneficial.
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1 ILLUSTRATIVE STUDY

This section first illustrates how to calculate the value of the Cho-
quet integral for an example alternative using a model with es-
tablished capacities. Furthermore, it showcases examples of the
optimization processes undertaken by individual algorithms, high-
lighting the progression of learning through visualizations. It delves
into the interpretation of model parameters and includes a discus-
sion on how the model classifies a non-reference alternative into a
specific class.

1.1 Determining the Choquet integral value

To illustrate the use of the Choquet integral, we consider a three-
criteria problem. Figure 1 shows the capacities of the Choquet inte-
gral for each subset of criteria. They indicate:
e a synergy (positive interaction) for a pair (g1, g2) since
rm({g1,92}) > pm({g1}) + pm({g21);
¢ aredundancy (negative interaction) for a pair (g2, g3) since
im({g2,93}) < pm({g2}) + um({g3});
e no interaction for a pair (g1, g3) since
pm({91,93}) = pm({91}) + pm({93})-
Let us consider the following performances of alternative a: g1 (a) =
0.5, g2(a) = 0.9, and g3(a) = 0.3. The Choquet integral value is
computed according to the following equation:

m

Char(a) = D19y (@) = 9(j-1) (@] - (G ).

Jj=1

When considering the performances on various subsets of criteria,
they are as strong as their weakest (least) element. This fact is

reflected in Figure 2. It shows that a attains performance of 0.3 for
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Figure 1: Capacities of the Choquet integral used in the ex-
ample.

all three criteria ({g1, g2, g3 }), 0.5 for a pair {g1, g2}, and 0.9 for {g2 }.
Hence, we order the criteria indices in line with the non-decreasing
performances gj(a), j = 1,2,3. Since g3(a) = 0.3 < g1(a) = 0.5 <
g2(a) = 0.9, we get (-) = (3,1,2). Moreover, according to the
model’s assumptions, we assume g(g) (a) = 0. Then, the Choquet
integral for alternative a can be computed as follows:

Chpy(a) = [g3(a) = g(0y(@)] - pm ({91, 92, 93})
+[g1(a) —g3(a)] - pm ({91, 92})
+[92(a) = g1(a)] - pm({g2}),
which is equivalent to:
Chpr(a) = (0.3 =0) -1+ (0.5 0.3) - 0.8+ (0.9 = 0.5) - 0.35
=0.3+0.16+0.14 = 0.6.
Each subsequent component of the above sum is calculated based

on the minimum performance of the alternative for a given subset
of criteria and the capacity associated with this subset.

1.2 Learning progress for optimization
algorithms

This section demonstrates the optimization process through the
outcomes of three distinct approaches (GEN, FSS, PSO) applied to
a two-class sorting problem derived from the Employee Selection
[ESL] dataset. Preference information was provided as expected
class assignments for all 488 alternatives.

The objective of executing these algorithms was to assess the
quality of both intermediate and final models produced. A uniform
stopping condition of 30 seconds was set for all algorithms. The
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Figure 2: Performances of alternative a on the three criteria
and associated model capacities used in the example.

primary goal for each algorithm was to minimize the loss function
value, L(m™), of the best solution m* identified up to that point. The
progression of loss function improvements over processing time is
depicted in Figure 3, with the initial assumption that L(m*) equals
infinity from t = 0 seconds until the discovery of the first m*.

le-3

1.54 —— GEN

FSS
— PSO

1.4+

1.34

L(m")

1.24
“—\_\_\_\_\_\:
1.14

1.04

t[s]

Figure 3: The change of loss function L(m™) value over time
for three preference learning algorithms.

The GEN algorithm commenced its optimization by generating
the initial m* model at 1.57 seconds into the execution. This delay
is attributed to the evaluation of a relatively large initial popula-
tion size (S = 250) required to identify the first optimal individual.
Notably, the loss function value, L(m*), for GEN exhibited a con-
sistent decline throughout the optimization period. It achieved the
second-best outcome at the 10-second mark (L(m*) = 1.192 - 1073)
and the best result at the conclusion of the 30-second execution
window (L(m*) = 1.098 - 1073). The intervals marking successive
enhancements in L(m™) appeared to be quite uniform, suggesting
a correlation with the computational effort allocated for generating
successive generations.

The FSS algorithm produced its initial solution at 0.48 seconds,
followed by a series of significant advancements that led to a loss
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function value of L(m*) = 1.3- 1073 shortly after 4.5 seconds. How-
ever, it then experienced a period exceeding 12 seconds during
which it could not enhance its optimal model m*. After this hiatus,
the algorithm gradually reduced the loss function value, culminat-
ing in L(m*) = 1.206 - 1073 by the end of the execution period.
Despite these incremental improvements, FSS achieved the least
favorable outcomes compared to the other algorithms.

PSO distinguished itself by identifying an initial optimal model
m™* merely 0.23 seconds into the process, with a loss function value
of 1.372 - 1073, The most significant reductions in L(m*) were
achieved within the initial 1.38 seconds, leading to a solution charac-
terized by L(m*) = 1.153- 1073, Subsequently, the model’s progress
plateaued, registering only marginal improvements over the ensu-
ing 27.4 seconds, which diminished the loss by a mere 1.31 - 1077,
This phase likely involved some particles refining the vicinity of the
previously identified optimal solution, while others continued to
explore the broader solution space. This exploration phase yielded
positive results at 28.79 seconds when the algorithm unveiled its
optimal solution, marked by L(m*) = 1.146 - 10~3. Following this
discovery, the model experienced minimal enhancements for over
a second before the algorithm concluded.

1.3 Model parameters

Table 1 presents L(m”*) indicating the performance of the model,
alongside fourteen model parameters p(G’), G’ ¢ G # 0, and
a single threshold #; for each method, presented in three variations:

(a) first ever obtained m*;
(b) m* attained after 10 seconds of algorithm execution;
(c) m* obtained upon completion of the algorithm execution.

The remaining model parameters resulting from the constraints
are common to all variants, i.e., p(0) = 0, u(G) = 1, tp = 0, and
to =1+e¢.

The variation in parameter magnitudes is more pronounced be-
tween models (a) and (b). Specifically, in models derived using the
GEN algorithm, the average deviation among u(G’),G’ ¢ G # 0
is approximately 0.053, whereas the average discrepancy between
parameters in models (b) and (c) is around 0.039. The disparity
is even more significant in models generated by PSO, with differ-
ences amounting to 0.059 and 0.007, respectively. This trend aligns
with the intuition that the most substantial changes in L(m*) occur
in the initial moments of the algorithm’s execution, diminishing
over time as the incremental improvements in subsequent models
become less significant. As the optimization process advances, iden-
tifying superior models becomes more and more challenging, and
the magnitude of enhancements diminishes. This characteristic is
commonly observed in optimization strategies.

Notably, criterion g4 emerges as the most important factor in the
GEN models. This is evidenced by p({g4}) achieving the highest
values across all single-criterion subsets in all three model variants.
Conversely, among subsets comprising three criteria, ({g1, g2, 93})
registers the lowest value, suggesting that the Ch(a) is most nega-
tively affected when g4(a) is low. Similarly, for subsets containing
two criteria, the combinations ({91, g4}), ({92, 94 }), and p({g3, g4 })
yield the highest values, with the sole exception being p({g3,ga}) =
0.3940 in model (a). However, this value sees a significant increase
in subsequent, better performing models (b) and (c), culminating in
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Table 1: Model parameters m*, t;, and L(m™) for each algorithm and model variant.

Algorithm _ Model L(m") 191} p(g2}) p(gsh)  pUgad) | p{91.92}) pUg1gsD) n{91,94}) p(Hg2.95) p({92.94}) p({g3.94}) | p({91.92.93}) p{g1.92.94}) p({91,93.94}) p({g2.93,94}) h
(@ |[1.275-107° || 0.0516  0.1907  0.1195 0.2375 | 0.2884 0.4586 0.5067 0.4978 05744 0.3940 05653 0.6248 0.7138 0.6397 05923
GEN (b) || 1.192-1073 || 0.1162  0.1760  0.1323  0.2982 | 0.3311 0.4219 05478 0.4001 05517 0.5022 0.6056 0.7098 0.7327 0.7330 0.6009
(c) 1.098 - 1073 0.1319 0.1758 0.1528 0.2706 0.3767 0.4864 0.6404 0.4391 0.5714 0.5636 0.6287 0.7312 0.7840 0.8012 0.6118
(a) 1.343-107 0.2716 0.0456 0.4007 0.4096 0.3242 0.5815 0.6614 0.4267 0.4959 0.5608 0.6640 0.7435 0.8000 0.7973 0.6163
FSS (b) 1.300- 1073 0.1796 0.1765 0.1491 0.2868 0.3350 0.3939 0.6055 0.4141 0.6096 0.5973 0.6388 0.8224 0.7542 0.8388 0.6120
(c) 1.206 - 1073 0.1419 0.1321 0.1810 0.1847 0.4663 0.5492 0.6258 0.5220 0.5330 0.5650 0.6106 0.8334 0.7706 0.7983 0.6157
(a) 1.372-107 0.2622 0.2748 0.3803 0.1404 0.4268 0.5106 0.7961 0.4768 0.5395 0.7716 0.5564 0.9282 0.9191 0.8094 0.6322
PSO (b) 1.153 1072 0.2090 0.2154 0.1987 0.1404 0.4192 0.5442 0.7094 0.5539 0.5659 0.7327 0.6515 0.8550 0.8601 0.8414 0.6263
(c) 1.146 - 1072 0.2062 0.2312 0.2084 0.1453 0.4253 0.5551 0.7110 0.5625 0.5877 0.7331 0.6602 0.8646 0.8604 0.8443 0.6270

0.6287 in model (c). Similarly, g; is perceived as the least important
criterion in this case.

1.3.1 Interactions between criteria. When using the Choquet inte-
gral, it is possible to determine both the nature (positive or nega-
tive) and the magnitude of interactions among subsets of criteria,
thereby capturing complex relationships. Such nuanced interac-
tions are beyond the scope of strictly additive models, such as the
Additive Value Function (AVF), where the additive principle dic-
tates that for any two disjoint subsets of criteria G1, G2 C G (i.e.,
G1 N G2 = 0), the value u(Gy U Gy) is always equal to the sum
1#(G1) + p(Gg). This principle does not hold in non-additive models
like the one under consideration, enabling the evaluation of the
difference u(G1 U Gz) — (u(G1) + p(G2)). This difference provides
insight into the strength and character of the interactions between
the subsets.

For model (c) derived using GEN, the interaction for the sub-
set {g1,94} is calculated as p({g1,94}) — (p({g1}) + u({g4})) =
0.6404 — (0.1319 + 0.2706) = 0.2379. This value represents the
most significant interaction among the 2-criteria subsets within
this model. Conversely, the minimal interaction value is observed
for the subset comprising criteria g; and g2, amounting to 0.0690.
Despite being considerably lower, this value still signifies a positive
interaction between these criteria.

In the case of the best model produced by FSS, all 2-criteria in-
teractions exhibit positive values. This model attributes the highest
and lowest interaction strengths to the same pairs of criteria as the
GEN model (0.2993 and 0.1923, respectively). However, model (c)
generated by PSO identifies pair {g1, g2} as having the least inter-
action, with a value of ({91, g2}) = —0.012, suggesting a negative
interaction between these features. Additionally, this model high-
lights a different pair, {g3, g4}, as having the maximum synergy,
with an interaction strength of ({g3,g4}) = 0.3795.

1.4 Assigning alternatives to classes

This section illustrates the computation of Ch(b) for a given model
M and the subsequent classification of an alternative into a deci-
sion class. We will elucidate this process using models (a) and (c)
obtained with GEN. Consider an alternative b characterized by the
following performances: g1 (b) = 0.7, g2(b) = 0.5, g3(b) = 0.4, and
ga(b) =0.8.

This section illustrates the classification of an example alterna-
tive into a decision class. We will elucidate this process using models
(a) and (c) obtained with GEN. Consider an alternative b charac-
terized by the following performances: g1 (b) = 0.7, g2(b) = 0.5,
g3(b) = 0.4, and g4(b) = 0.8.

Similar to the example presented in Section 1.1, it is first nec-
essary to determine the order of criteria indices aligning with the
non-decreasing order of performances g;(b), j = 1, 2,3, 4. For the
considered alternative b, it is (-) = (3,2, 1,4), and g(g) (b) = 0. For
alternative b, the value of the Choquet integral is computed as
follows:

Chp(b) = [g3(b) = g(0)(D)] - pm(G)
+[92(b) —93(B)] - pm ({91, 92, 94})
+[91(0) —92(B)] - pm ({91, 94})
+[94(b) = 91(D)] - pp({ga}),

which is equivalent to:

Chp(b) = 0.4 - up(G) +0.1 - upr({91, g2, 94})
+0.2 - pipr ({91, 94}) + 0.1+ ppr({ga}).

For the two models mentioned above, these values are ChGEN(a) (b) =
0.5876 and Chggn., (b) = 0.6283, respectively. For model (a), this
leads to assigning b to class Cy, as t1 = 0.5923 > Chgen, (b). In
turn, for model (c), 1 = 0.6118 < Chggn,, (b), and therefore, b is
assigned to Cs.

2 PRELIMINARY ANALYSIS OF THE
USEFULNESS OF BACKPROPAGATION

To verify the usefulness of the backpropagation postoptimization
technique, we performed a 10-fold Monte Carlo Cross Validation
for all five datasets and eight algorithms, assuming pr = 0.8. The
execution timeout was set to 10 seconds, and the subject of the
comparison were the results obtained by the algorithms in four
variants — without backpropagation (marked as 0%) and using this
technique for 5%, 10%, and 20% of the assumed execution time. The
average values of auc and acc obtained by all algorithms in the four
scenarios are presented in Table 6.

For both measures, the best average results were achieved by the
approach in which 5% of the execution time was allocated to back-
propagation optimization of the best-found model. However, the
advantage over the variant with 10% timeshare devoted to backprop-
agation is negligible. The average values indicate the superiority
of these two settings over the variant without post-optimization.
Furthermore, the Wilcoxon signed-rank test shows a statistically
significant advantage for 5% setting over 0% counterpart in the
context of both quality measures (the p-values are 0.015 for auc
and 0.035 for acc). Additionally, for 20%, the auc values are, on av-
erage, worse than for the variants in which less time was spent on
backpropagation and comparable to the results without backpropa-
gation. This may indicate a tendency for the results to deteriorate
with increasing time spent on post-optimization. For this reason,
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Table 2: Average and standard deviation of auc for 20% train data and 80% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (r%2)
MMR || 0.7291£0.0179 (7) | 0.9794 £0.0157 (2) | 0.9707 £0.0081 (8) | 0.7376 +0.0171 (8) | 0.8659 +0.0156 (8) 6.6
MNR || 0.7054 +0.0309 (8) | 0.9828 +£0.0197 (1) | 0.9727 £0.0065 (7) | 0.7469 +0.0207 (7) | 0.8674 +0.0197 (7) 6.0
GLS || 0.7341+0.0179 (4) | 0.9692+0.0193 (8) | 0.9778 +0.0052 (4) | 0.7486 + 0.0156 (5) | 0.8792 + 0.0089 (4) 5.0
SLS || 0.7324 £0.0185 (6) | 0.9713+0.0169 (7) | 0.9760 +0.0058 (5) | 0.7523 +0.0131 (3) | 0.8791 +0.0098 (5) 5.2
SAN 0.7329 £ 0.0201 (5) | 0.9713+0.0165 (6) | 0.9755+0.0056 (6) | 0.7508 +0.0137 (4) | 0.8794 +0.0097 (3) 4.8
GEN || 0.7342+0.0179 (3) | 0.9736+0.0143 (3) | 0.9781+0.0049 (3) | 0.7542 +0.0133 (2) | 0.8837 £0.0078 (1) 2.4
FSS || 0.7346£0.0194 (2) | 0.9735+0.0150 (5) | 0.9799 +£0.0052 (2) | 0.7473+£0.0172 (6) | 0.8751+0.0106 (6) 4.2
PSO || 0.7378 £0.0189 (1) | 0.9735+0.0146 (4) | 0.9805 +0.0051 (1) | 0.7546 + 0.0133 (1) | 0.8830 +0.0087 (2) 1.8
Table 3: Average and standard deviation of acc for 20% train data and 80% test data for five datasets.
Algorithm BCC CPU ESL ERA LEV Avg. rank (r%2)
MMR || 0.7232 £0.0267 (5) | 0.9352+£0.0337 (1) | 0.9167 £0.0121 (7) | 0.6885 +0.0204 (8) | 0.8001 + 0.0200 (8) 5.8
MNR || 0.7066 +0.0396 (8) | 0.9284 +0.0426 (2) | 0.9114+0.0150 (8) | 0.7066 + 0.0198 (2) | 0.8095 +0.0201 (7) 5.4
GLS || 0.7250 £0.0220 (3) | 0.8962+0.0367 (8) | 0.9194+0.0119 (4) | 0.7011+0.0164 (6) | 0.8150 +0.0148 (5) 5.2
SLS || 0.7212+£0.0234 (7) | 0.9026 +0.0350 (6) | 0.9185+0.0115 (5) | 0.7052 £0.0158 (4) | 0.8174 +0.0137 (3) 5.0
SAN || 0.7216 £0.0226 (6) | 0.9008 +0.0327 (7) | 0.9179 £0.0121 (6) | 0.6994 +0.0158 (7) | 0.8152 £0.0139 (4) 6.0
GEN || 0.7234+0.0249 (4) | 0.9036+£0.0326 (5) | 0.9197 £0.0112 (3) | 0.7060 +0.0151 (3) | 0.8197 £0.0120 (1) 3.2
FSS || 0.7265 +0.0277 (2) | 0.9053 +0.0305 (4) | 0.9211 £0.0118 (1) | 0.7029 +0.0177 (5) | 0.8124 +0.0139 (6) 3.6
PSO || 0.7271 £0.0223 (1) | 0.9054+0.0334 (3) | 0.9209 +£0.0126 (2) | 0.7087 £ 0.0165 (1) | 0.8179 £ 0.0137 (2) 1.8
Table 4: Average and standard deviation of auc for 50% train data and 50% test data for five datasets.
Algorithm BCC CPU ESL ERA LEV Avg. rank (%)
MMR || 07334 0.0307 (6) | 0.9885+0.0112 (3) | 0.9731+0.0081 (8) | 0.7337 +0.0246 (8) | 0.8683 +0.0166 (8) 6.6
MNR || 0.7222 +0.0343 (8) | 0.9916 £ 0.0065 (1) | 0.9746 +0.0066 (7) | 0.7500 +0.0257 (7) | 0.8736 +0.0244 (7) 6.0
GLS || 0.7349 £0.0334 (4) | 0.9859+0.0116 (6) | 0.9788 +0.0065 (5) | 0.7551+0.0174 (6) | 0.8856 +0.0119 (4) 5.0
SLS || 0.7340 +£0.0293 (5) | 0.9875+0.0096 (4) | 0.9789 +0.0061 (4) | 0.7559 +0.0165 (4) | 0.8861+0.0120 (3) 4.0
SAN || 0.7320 £0.0315 (7) | 0.9855+0.0098 (7) | 0.9784 +0.0059 (6) | 0.7553+£0.0173 (5) | 0.8863+0.0115 (2) 5.4
GEN || 0.7388 £0.0296 (1) | 0.9893 £0.0101 (2) | 0.9815+0.0052 (2) | 0.7629 £0.0155 (1) | 0.8899 £0.0106 (1) 1.4
FSS 0.7355 +0.0315 (3) | 0.9834+0.0088 (8) | 0.9819 £0.0052 (1) | 0.7598 +£0.0147 (3) | 0.8843 +0.0115 (6) 4.2
PSO || 0.7372 £0.0302 (2) | 0.9860 +0.0085 (5) | 0.9815+0.0052 (3) | 0.7611+0.0142 (2) | 0.8850 +0.0115 (5) 3.4
Table 5: Average and standard deviation of acc for 50% train data and 50% test data for five datasets.
Algorithm BCC CPU ESL ERA LEV Avg. rank (r32.)
MMR || 0.7307 £ 0.0262 (1) | 0.9585 % 0.0226 (1) | 0.9198 +0.0137 (5) | 0.6885+0.0280 (8) | 0.8021 +0.0211 (8) 4.6
MNR || 0.7157 +0.0336 (8) | 0.9514+0.0237 (2) | 0.9158 +0.0156 (8) | 0.7105+0.0222 (4) | 0.8167 +0.0198 (7) 5.8
GLS 0.7247 £0.0331  (5) | 0.9305+0.0273 (5) | 0.9192+0.0161 (6) | 0.7063 +0.0170 (7) | 0.8206 +0.0165 (4) 5.4
SLS || 0.7246 +0.0270 (6) | 0.9366 +0.0305 (4) | 0.9200 +0.0138 (4) | 0.7089 +0.0172 (5) | 0.8247 +0.0133 (2) 4.2
SAN 0.7246 £ 0.0291  (6) | 0.9298 £0.0287 (7) | 0.9185+0.0137 (7) | 0.7081 +0.0164 (6) | 0.8230 +£0.0132 (3) 5.8
GEN || 0.7278 £ 0.0287 (3) | 0.9411+0.0281 (3) | 0.9228+0.0139 (3) | 0.7158 £0.0165 (3) | 0.8276 £ 0.0125 (1) 2.6
FSS || 0.7271 £0.0271 (4) | 0.9214+0.0243 (8) | 0.9241+0.0135 (2) | 0.7163 £0.0168 (2) | 0.8206 +0.0144 (5) 4.2
PSO || 0.7297 £0.0272 (2) | 0.9301+0.0239 (6) | 0.9261 +£0.0141 (1) | 0.7172 £ 0.0169 (1) | 0.8204 +0.0145 (6) 3.2

Table 6: Comparison of the average values of auc and acc

3 COMPARISON OF ALGORITHMS’

for approaches without and with backpropagation post-

optimization.
Measure 0% 5% 10% 20%
auc 0.8647 | 0.8667 | 0.8664 | 0.8646
acc 0.8095 | 0.8173 | 0.8172 | 0.8168

we decided to include this technique in the experimental analysis,
devoting 5% of algorithm execution time to this approach.

PERFORMANCE

This section displays the average auc and acc values achieved by all
algorithms across various problems, with reference set proportions
pr = 0.2 (see Tables 2 and 3) and pg = 0.5 (see Tables 4 and 5).
Similar to the main paper, we denote in bold the algorithms for
which the differences to the best performer were not statistically
significant.

For all considered proportions p,, the algorithms recorded the
highest auc scores for the CPU and ESL datasets. Conversely, the
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Table 7: The comparison of differences in auc for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
20% train data and 80% test data for five datasets.
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Table 8: The comparison of differences in acc for all pairs of
algorithms using Wilcoxon signed rank test (p-value) for 20%
train data and 80% test data for five datasets.

Alg.1 | Alg. 2 BCC CPU ESL ERA LEV Alg. 1| Alg. 2 BCC CPU ESL ERA LEV
PSO || <(0.002) ? <(<1077) |2 ? PSO || ? ? ? <(0.033) ?
FSS || ? ? <(<107Y) | =(<107%) | = (<10710) FSS || ? ? <(0.040) | ? = (< 107%)
SLS || ? ? (<1070 | ? > (< 10710) SLS || ? ? > (0.043) | ? > (0.032)

GEN | GLS | ? > (0.003) | ? = (<107%) | = (<1071 GEN | GLS || ? > (0.031) ? (<1073 | = (<1074
SAN || ? ? =(<1077) | »(<107Y) | = (<1077) SAN || ? ? = (0.015) | > (<107%) | > (<1073)
MNR || > (<107%) | <(<107%) | > (< 10711) | > (0.002) > (< 10711 MNR || > (<107%) | <(<107%) | »(<1077) | ? > (< 107%)
MMR || > (<1073) | <(0.001) | >(<1071%) | > (<10713) | » (< 10717) MMR || ? <(<107%) | = (0.010) | > (<1071%) | » (< 1071%)
FSS || > (0.002) ? ? ~(<107°) | ~(<107%) FSS || ? ? ? > (0.005) > (0.001)
SLS || = (<107% |? (< 1071%) | ? = (< 107%) SLS || > (0.006) | ? > (0.017) | > (0.023) ?

pso | GLS ||~ (< 107%) | = (0.002) | > (<107%) | - (<107%) | > (<107%) pso | GLS || ? (<1073 |2 > (<1079) | = (0.023)
SAN || ~(<107%) | ? (<1071 | = (<1073) | = (< 1079) SAN || > (0.021) | > (0.044) > (0.006) | > (<1077) | > (0.019)

MNR || = (<107P) | <(<107%) | » (< 1075) | » (< 1073) | » (< 10710)
MMR || > (<107%) | <(0.002) | > (<107'7) | > (<10713) | » (< 10719)

SLS || ? ? > (< 10719) | < (0.006) < (< 1073)

GLS || ? > (0.009) | »(<107%) |? < (< 1073)
FSS | SAN || > (0.025) ? > (<10710) | 2 < (<1073)

MNR || > (<107%) | <(<107%) | = (<1071%) | ? = (0.001)

> (<10710) | = (<107°) | = (< 1077)
< (<1073 | > (0.002) ?
SAN || ? ? ? ? ?
MNR || > (< 10712) | <(<107%) | > (< 107) | > (0.021) > (< 1077)
MMR || > (0.007) <(<1073) | = (<107 | = (<1071 | = (< 10713)

? ? > (<107%) | <(0.043) ?
GLS | MNR || > (<107%) | <(<1077) | = (< 1071) | ? =(<1077)
MMR || »(<1073) | <(<107%) | = (<1078) | = (< 1078) | » (< 1071%)
MNR [ = (<107 B) [ (<1070 [ ~(<107%) [? =(<1077)
MMR || > (0.002) <(<107Y | = (<107%) | = (< 10719 | = (< 1071%)
MNR | MMR || < (< 107TT) | > (0.005) | = (0.006) =(<107%) [?

MMR || > (<1073 | <(0.001)
GLS |2 ?

SLS

SAN

ERA and BCC datasets emerged as the most challenging, exhibiting
vastly lower mean auc values. A similar pattern is observed for acc
scores, albeit with marginally lower absolute figures. An intriguing
aspect to consider is the variation across datasets, reflected in the
range of mean values achieved by the algorithms. For CPU and ESL,
the disparity between the highest and lowest mean auc values was
relatively narrow. In contrast, for LEV and ERA, the differences
were more pronounced. This suggests that benchmark datasets
with a larger set of alternatives may offer a better opportunity
to highlight significant distinctions between algorithms in terms
of auc. However, a parallel examination of acc values does not
universally support these findings. Here, the greatest variances
were observed for CPU and ERA, with the smallest differences
noted for ESL and BCC.

To reflect a comprehensive picture enabling the comparison of
algorithms in the considered scenarios, Tables 7-12 summarize the
results verifying the statistical significance of differences for all
pairs of algorithms, for both quality measures, taking into account
the analyzed distributions of alternatives to the reference and test
sets — pr € {0.2,0.5,0.8}. The symbols in the tables indicate whether
and which algorithm in a given pair attained significantly better
results according to the Wilcoxon Signed-Rank Test with & = 0.05.
The p-value of the test performed is provided in round brackets.

Among all problems with known assignments for p, = 20% of
the alternatives, PSO outperformed other approaches, achieving
both r%2. and r%2 of 1.8. For all problems except CPU, the aver-
age values obtained by PSO were among the best two, and none
of the other methods statistically significantly outperformed this

MNR || > (<1079 | <(<107%) | = (<1077) | ? > (< 1073)
MMR || ? <(<107%) | = (<1073 | = (<1071) | » (< 10713)
SLS || > (0.010) | ? > (0.003) | ? <(<1073)
GLS | ? > (0.006) > (0.043) | ? ?

FSS | SAN || > (0.013) |? > (0.001) | > (0.035) <(0.029)
MNR || > (<107%) | <(<107%) | = (<107%) | ? ?

MMR || ? <(<107%) | = (<1073 | = (<1077) | »(<1078)
GLS | ? > (0.044) ? > (0.005) > (0.007)
og | SAN || ? ? ? > (< 1073) | > (0.044)
MNR || > (0.002) | <(<107%) | >~ (<107%) | ? > (< 107%)
MMR || ? <(<107% | = (0.029) | >(<107%) | > (<10713)
SAN | > (0.039) |? ? ? ?
GLS | MNR || > (<107%) | <(<1078) | » (< 1076) | <(0.003) > (0.007)

MMR || ? < (<1071 | = (0.022) | > (<107%) | > (<10719)
MNR [ = (<1078 [ <(<107%) [ =(<107%) [ < (< 1073) | > (0.012)

MMR || ? < (<1071 | 2 > (<107%) | = (< 10710)
MNR | MMR || <(<107% [ ? <(<107%) [ ~(<107%) [ >(<107%

SAN

algorithm. Considering CPU, it was second only to the mathemat-
ical programming approaches, which performed the worst in all
other problems, except the acc for the ERA problem, where MNR
achieved competitive results.

The second choice is GEN, with average rankings of 2.4 for auc
and 3.2 for acc. This approach achieved the best results for LEV
and was among the best methods for ERA on auc and BCC on
acc. In other cases, it was among the best three algorithms, with
one exception of acc for the CPU problem (0.9036), where it was
significantly inferior to MMR (0.9352, p-value < 10~?) and MNR
(0.9284, p-value < 107°),

The following best-performing approach was FSS with r;2, = 4.2
and r9.2 = 3.6. It obtained one of the best results for ESL, but in
other cases, it was inferior to other approaches. For example, for
LEV, it performed significantly worse performance than GEN, PSO,
SAN, and SLS for both measures, as well as for GLS on auc (0.8751
vs. 0.8792, p-value < 10_3).

Among the group of local search approaches, the results for
auc are similar, and in the case of SAN and SLS, no significant
differences were observed. In turn, GLS (0.9778) outperformed both
of these methods on ESL (p-value < 1073 for both comparisons),
and for ERA (0.7486), it performed significantly worse (p-value
= 0.002 for SLS and 0.043 for SAN). In turn, for acc, SLS obtained
the best average ranking of r%;2 = 5.0, outperforming both methods
on ERA and LEV, as well as GLS on the CPU problem (0.9026 vs.
0.8962, p-value = 0.044).

For problems in which half of the alternatives provided refer-
ence assignments (p, = 0.5), the advantage of GEN over the other
algorithms is evident. Taking into account auc, for two problems,
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Table 9: The comparison of differences in auc for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
50% train data and 50% test data for five datasets.

Alg. 1| Alg. 2 BCC CPU ESL ERA LEV
PSO || ? (<1076 |2 > (0.023) > (<1079
FSS || = (0.004) | »(<107%) | <(0.012) > (<1073) | > (< 10710)
SLS || = (<1073) | = (<1073) | » (<1071 | = (< 1077) | = (< 1078)
GEN | GLS || »(0.008) |»>(<107%) | >(<1071%) | » (<1078 | > (<1079)
SAN || = (<1074 | = (<107°) | »(<107B) | » (< 1077) | » (< 107%)
MNR || > (<1077 | ? > (<10710) | = (<1077) | » (< 10712)
MMR || > (<1073 | ? > (<1077 | = (<10717) | = (< 10717)
ESS [[? > (< 1073) | <(0.028) ? ?
SLS || > (0.021) | < (0.006) >(<1077) | =(<1073) | ?
GLS || > (0.036) | ? (<1078 | = (<107 |?
SAN || »(<1073) | ? (<1071 | = (< 107%) | <(0.026)
MNR || = (<107%) | <(<107%) | = (<107Y7) | = (< 107%) | » (< 1079)
MMR || = (0.012) | < (0.020) > (<1071 | = (< 10719) | = (< 1071%)
SLS || ? <(<107% | > (<1071 | > (0.006) <(0.018)
GLS || ? <(<107%) | =(<1071) | = (<1073 | ?

ESS | SAN || > (0.006) | < (0.006) > (<10713) | = (< 1073) | <(0.006)
MNR || > (<1077) | < (<1071 | = (<1071%) | (< 107%) | » (< 107%)

PSO

MMR || ? <(<107%) | = (<10717) | » (< 10710) | = (< 1071%)
GLS || ? ? ? ? ?

aLg | SAN |2 > (0.006) ? ? ?
MNR || = (<107%) | <(<1075) | = (<1071 | ? = (< 107%)
MMR || ? ? > (<10713) | = (<1071 | = (< 10717)
SAN [[? ? ? ? ?

GLS | MNR || > (<1079 | <(<107%) | ~(<107%) |? > (< 107%)
MMR || ? < (0.016) > (<107 | = (<10713) | » (< 10719)
MNR [ ~(<1077) [ <(<1077) [ ~(<107%) [? > (< 107%)

SAN -12 -14 -16
MMR || ? < (0.007) =(<107%%) | = (<1071 | = (< 1071°)

MNR | MMR || < (< 107°) | > (0.020) > (0.028) ~(<1077) |~ (<107%)

Table 10: The comparison of differences in acc for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
50% train data and 50% test data for five datasets.

Alg. 1| Alg. 2 BCC CPU ESL ERA LEV
pPSO [[? >(<107%) [ <(<107%) |? > (< 1077)
ESS || ? > (< 1078) | <(0.042) ? > (< 107%)
SLS || ? > (0.041) > (0.002) > (< 1073) | = (0.002)

GEN | GLS || ? (<1074 | = (<1073 | =(<1077) | = (<1079
SAN || ? (<1074 | = (<107%) | = (<107%) | = (< 107%)
MNR || =(0.001) | <(<1073) | = (<107%) | > (0.024) = (< 107%)
MMR || ? <(<107%) | > (0.009) > (< 10713) | » (< 10719)

FSS || ? > (0.001) > (0.029) ? ?
SLS || > (0.007) | < (0.006) > (<107%) | = (<107°) | <(<1073)
GLS || > (0.013) |? (<1070 | =(<1077) | ?

PSO 1 gan || 0.013) | ? > (<1077) | = (<107%) | <(0.032)
MNR || > (<107%) | <(<1078) | = (< 10719 | >~ (0.009) ?
MMR || ? < (<1071 | = (<1079 | = (< 10713) | » (< 1071)
SLS || > (0.048) [ <(<107% [>(<1073) |~ (<107%) [ <(<1073)
GLS || ? <(<1073) | =(<107%) | ~(<107%) |2

FSS | SAN || ? < (0.004) =(<107%) | =(<107%) |2
MNR || > (<1073) | <(<10713) | = (<107%) | > (0.014) = (0.032)
MMR || ? < (<107 | = (<107%) | = (<107B) | = (< 10712)
GLS [[? > (0.018) ? = (0.033) > (< 1073)

o5 | SAN | > (0.020) ? ? > (0.042)
MNR || > (0.018) | <(<107%) | >(<1073) |? > (< 1073)

?

MMR || <(0.010) | <(<1078) | ?
SAN [ ? ? ? ?
GLS | MNR || ? <(<1077) | = (0.006) < (0.025) ?
MMR || <(0.018) | < (<1071 | ? (<1078 | > (<1071
MNR || = (0.026) | <(<1077) | > (0.018) <(0.023) = (0.005)
MMR || <(0.035) | <(<1071) | ? (<1077 | > (< 1071%)
MNR | MMR || < (< 10~%) | < (0.003) < (0.002) - (<1078 | ~(<107%)

(<1078 | = (<10719)
? ?

SAN

Michat Wéjcik and Mitosz Kadzinski

it was significantly better than all the others (p-values < 0.023 for
ERA and < 107 for LEV), and for the next two (BCC and CPU), it
ranked among the best methods. The only exception was the ESL
problem, for which GEN was second only to FSS (0.9815 vs. 0.9819,
p-value = 0.012). Similarly, for acc, GEN scored the best rgfc =2.6,
and it was only surpassed by MNR and MMR for CPU (p-values
< 1073) and FSS and PSO for ESL (p-values < 0.042).

PSO (r%:>. = 3.4) achieved slightly worse results than GEN. How-
ever, in the case of auc, it was among the best algorithms — when
considering the statistical significance of differences — only for the
BCC problem. For the remaining four datasets, GEN turned out to
be better on all of them, and additionally, FSS for the ESL dataset. In
the case of acc, for BCC and ERA problems, it significantly outper-
formed local search and mathematical programming approaches
(except MMR in the case of BCC, where no significant differences
were noticed). Moreover, considering the ESL problem, PSO has
gained a significant advantage over all other algorithms. However,
for the remaining two problems, it performed worse, scoring the
sixth average value among all approaches. Similar phenomena can
also be observed for FSS, which was usually slightly inferior to PSO
on both quality measures, except for auc for ESL, where it achieved
a significantly better result (0.9819 vs. 0.9815, p-value = 0.028) and
acc for LEV, where the difference was not significant.

Among local search approaches, SLS shows the best ranking,
with %> = 4.0 and r%;>. = 4.2, while for the remaining methods,
the average ranking ranged from 5.0 to 5.8. It is also worth not-
ing that none of these methods is among the leading algorithms
for any problem. When considering auc, the results did not differ
significantly from each other; the only exception was the values
for CPU, where SLS confirmed its advantage over SAN (0.9875 vs.
0.9855, p-value = 0.006). However, for acc, the advantage of SLS
over the others becomes more visible, as it outperforms GLS and
SAN on the CPU and LEV problems, as well as GLS on the ERA
problem (0.7089 vs. 0.7063, p-value = 0.033).

When comparing MNR and MMR, the former gains a significant
advantage over the latter on auc on four out of five datasets and
scores the best on CPU among all algorithms. The exception is
BCC, where MMR is better (0.7334 vs. 0.7222, p-value < 107°). On
the other hand, for acc, MMR reveals a better average ranking of
93 = 4.6 compared to MNR and rJ;>, = 5.8 and obtaining the best
results among all approaches for BCC and CPU datasets. Apart
from these two problems, it is statistically significantly better than
MNR on ESL. For ERA and LEV, the situation is reversed, and MNR
achieves significantly better results. Nevertheless, apart from the
CPU problem, one of these methods always scores the worst among
all analyzed approaches.
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Table 11: The comparison of differences in auc for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
80% train data and 20% test data for five datasets.

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

Table 12: The comparison of differences in acc for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
80% train data and 20% test data for five datasets.

Alg. 1| Alg. 2 BCC CPU ESL ERA LEV Alg.1 | Alg. 2 BCC CPU ESL ERA LEV
PSO || ? > (<107 13) | > (0.004) > (< 1073) | > (0.002) PSO [[? (<1078 |2 ? > (0.007)
FSS || = (0.016) | ~(<10712) | ? =(<107%) | = (<107%) FSS || ? (<1078 | ? ? = (<107°)
SLS || = (0.002) |? (<1071 | = (<1077) | = (< 107%) SLS || ? ? = (< 1073) | = (0.005) = (<107°)
GEN | GLS || - (0.006) |? (<1071 | - (<107%) | = (<1077) GEN | GLS || ? ? > (0.014) | > (<1075) | > (0.018)
SAN || = (0.007) | = (<1071 | =(<107) | = (<1077) | ? SAN || +(0.006) | > (<107%) | »(<1073) | > (<107%) | ?
MNR || > (0.001) |? = (<1071) | - (<1076) | = (< 1077) MNR || ? ? = (<1077) | = (0.005) | > (<1073
MMR | ? ? = (<1071 | > (<1071 | > (< 1071) MMR || <(0.042) | <(<1075%) | »(<1073) | > (<1071%) | > (< 1079
FSS > (0.009) ? < (0.029) ? > (0.009) FSS ? ? ? ? ?
SLS || = (<107%) | <(<1071) | - (< 107%) | > (0.013) | > (0.015) SLS || 2 <(<107% | = (<1073) | = (0.001) | ?
pso | GLS || =(0.002) | <(<1071%) | (< 107%) |2 ~(<107%) pso | OLS || ? <(<1077) | = (0.006) | = (<1074 |?
SAN || = (<107%) | ? =(<107%) | = (< 107%) | <(0.026) SAN | = (0.018) |? = (<1073) | = (< 1073) | <(0.013)
MNR | > (0.003) | <(<107%) | = (<107%%) | > (0.009) = (<107 MNR | 2 (<107 | > (< 1076) | > (0.006) 2
MMR || ? <(<107%) | = (<107 | = (<1071 | > (< 10710) MMR || < (0.017) | <(<10712) | » (<107%) | > (< 10710 | > (< 1076)
SLS || ? <(< 10_:;) = (< 10_;0) > (0.002) 1 ? SLS || = (0.031) | (<109 |=(<103) | = (<1073) | ?
GLS |2 21070 | - (<107 | - (0.0239) 7 B GLS | »(0.047) | <(<107%) |+ (0.013) | > (<1075 | <(0.012)
FSS | SAN | ? ? L | <107 - (<107 ] < (<1075 FSS | SAN || = (0.001) |2 (<1074 | = (<1073) | < (<1074
MNR || ? <(<1077) | > (<107'%) | > (0.001) ? MNR || ? 2(<107%) | = (<1078 | = (<1073 | 2
MMR || <(0.036) | <(<107°) | = (<1071%) | = (< 1071) | = (< 107%) MMR || 2 (< 1078y | = (< 107%) | = (< 1071 | » (< 107%)
o | P ! P GIS |2 ? 7 ? X (0.006)
SLS ' S I 2 (<1079 SAN | 2 s (<1077) |2 ? <(<107%)
MNR || ? ? - (<10710) | 2 ? SLS | ViR | 2 ; - 0008) |2 ,
2 11 -13 -9 ! : B ! :
MMR || <(0.002) |7 | m (<107 | » (<1077 | > (< 107) MMR | <(0.003) | <(<10-% |2 - (< 1077) | = (< 1074
SAN | ? ~(<10°%) |? ? (<1079 &
10 SAN || ? ~(<10°% |2 ? <(0.033)
GLS | MNR || ? ? = (<10710) | ? ? 4
13 1 iy GLS | MNR || ? ? -(<107% | 2 ?
MMR || < (0.005) ? =(<1077) | = (<1071 | = (< 107°%) 4 5 _7
MNR 2 =0 s <102 (<10 MMR || < (0.005) < (<10 5) - (0A042)3 =(<107°) | (<10 3)
SAN | VMR || < (0.003) | < (< 1075) | = (< 10-13) | = (< 10711) | = (< 10-12) SAN 1\1\//1[1\1\/111; < (0'011426 <(< 10712 ; (<107 2 10-6 = (< 1079)
MNR | MMR || < (0.007) | 7 7 S0 [ = (<107 < (<1077 | < (<107 ) | 7 (<1079 | > (<107)
MNR | MMR || ? <(<107% | ? =(<107°%) | = (<107%)
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Abstract

We adopt an experiment-oriented perspective to investigate two essential characteristics — expressiveness and ro-
bustness — of multiple criteria sorting methods. We focus on the approaches from the family of UTADIS, learning
the parameters of a value-driven threshold-based model from the Decision Maker’s assignment examples. Even if the
considered properties are crucial for the methods’ reliability and usefulness in real-world scenarios, their verification
through explicit numerical tests has been so far neglected. On the one hand, expressiveness captures the models’
flexibility to reproduce different preferences, including simple and complex ones, meaningfully and accurately. On
the other hand, robustness reflects the ability to deliver valid recommendations and ensure proper conclusiveness
given the multiplicity of compatible preference model instances. We consider different variants of UTADIS, from
assuming monotonic and preferentially independent criteria to more advanced settings that relax the monotonicity
constraints or represent interactions. The experimental results capture the trade-off between the considered quality
dimensions, indicating that richer models are characterized by greater expressiveness and lesser robustness. We also
formulate a comprehensive framework indicating when some variant should be used, given the nature of supplied
preferences or problem characteristics. These findings aid decision analysts in making robust recommendations in
different contexts and help refine preference modeling assumptions. The framework’s practical use is illustrated in

a case study involving sorting mobile phone models into pre-defined preference-ordered classes.

Keywords: Multiple criteria decision aiding, Sorting, Model expressiveness, Recommendation robustness,

Interactions, Non-monotonicity

1. Introduction

Multiple Criteria Decision Aiding (MCDA) aims at developing approaches that support solving complex decision
problems [18]. This complexity derives from the multiplicity of alternative ways to attain a decision goal and
pertinent factors relevant to their assessment [25]. The essence of MCDA tools consists of processing an objective
problem’s description and the stakeholders’ subjective preferences to make recommendations.

Over the last decades, hundreds of MCDA methods have been proposed [6, 22, 51]. They all have been conceived
with specific intentions on when they might be helpful and how they should perform. When it comes to the
former aspect, the relevant characteristics can be divided into four major categories. First, the methods tackle
problems with distinct types and structures. Second, they apply various preference models to faithfully represent
the stakeholders’ judgments and aggregate the performances on multiple criteria. Third, they vary in type and
modality of preferences and frequency of the elicitation process. Fourth, they apply different strategies for exploiting

the preference relation induced by the model to compute the recommendation. Such objective features are often
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used to select an appropriate method for a given decision problem. However, the aspects related to the performance
of MCDA methods are often neglected. Nonetheless, checking experimentally whether these tools conform to what
was expected from them is worthwhile.

This paper focuses on multiple criteria sorting, i.e., assigning alternatives to pre-defined, preference-ordered
classes [1]. In particular, we consider a preference disaggregation setting where the parameters of an assumed
model are induced from the assignment examples provided by the Decision Makers (DMs) [13]. Such holistic
judgments specify desired classifications for a subset of reference alternatives, representing the DMs’ decision policy
and value system. Even if preference disaggregation approaches are considered more user-friendly due to reducing
cognitive effort, their use implies two significant problems. On the one hand, the indirect preferences may be
incompatible with an assumed model, leading to an empty space of feasible parameters [38]. On the other hand,
when the method can represent the supplied information, typically multiple consistent model instances or feasible
parameter sets exist and may lead to various recommendations on the set of non-reference alternatives [19, 48].

In the context of preference disaggregation sorting methods, only a few studies verified some of their desirable
properties through explicit numerical tests. In particular, The and Mousseau [46] considered the inference pro-
cedures for ELECTRE TRI-B. They analyzed the amount of indirect information needed to infer the parameters
reliably, the method’s ability to detect inconsistencies, and the results’ stability given various objective functions.
Additionally, Vetschera et al. [47] investigated the properties of two methods, case-based distance sorting and simple
additive weighting, to capture the impact of various problem dimensions on three characteristics: a) compatibility
reflecting the size of the space of feasible parameters, b) robustness capturing the tendency of alternatives to be
assigned to the same class for all feasible parameters, and c¢) validity interpreted as the probability of alternatives
being sorted in the right class. Further, Doumpos et al. [14] considered five value-based sorting procedures to
examine their predictive abilities and relation with the robust recommendations that can be formulated based on
the DM’s reference judgments. The latter study has been extended in [48] regarding the number of accounted
procedures and investigated measures.

We aim to adopt an experiment-oriented perspective to the methods from the family of UTADIS [8, 42, 49].
They apply a value-driven threshold-based sorting procedure in which the comprehensive quality of each alternative
is quantified using an additive value function, and the value ranges for all classes are delimited by the lower
and upper thresholds [19, 44]. Such a model adequately represents how individuals make classification decisions
for different options. Consequently, it is appreciated in the MCDA community for the intuitiveness and high
interpretability of the delivered results. Therefore, the UTADIS methods have already been applied to solve
real problems such as supplier classification [36], credit risk assessment [50], classification of securities [9], and
subcontractor assessment [39].

The basic variant of UTADIS assumes the monotonicity of per-criterion preferences and the condition of prefer-
ential independence [8, 42]. The former implies that all criteria must be gain- or cost-type, and therefore, preferences
are represented by non-decreasing or non-increasing marginal value functions. The latter conjectures that the impact
of one attribute on an alternative’s comprehensive score should not be influenced by the alternative’s performance
on other attributes. However, various extensions of value-based methods have been proposed to relax the limitations
mentioned above. On the one hand, some procedures are oriented toward admitting non-monotonicity of marginal
functions [16, 30]. On the other hand, the interactions between criteria can be incorporated into an additive value
model using the bonuses and penalties related to observing specific combinations of performances on a subset of
criteria [21]. These modifications can influence the vital properties of the underlying sorting approaches, deciding
upon their suitability for being used in real-world problems with incomplete preference information. In particular,
we expect richer models to be applicable in a greater variety of decision settings but lead to less stable results.
However, these hypotheses need to be verified experimentally.

Our main contribution consists of performing an extensive computational study investigating the fundamen-
tal properties of six variants of UTADIS (some of them newly proposed). These characteristics are crucial for

the methods’ reliability and usefulness in real-world scenarios [29]. To capture a trade-off between the flexibility



of value-based preference models and their ability to reproduce the DM’s indirect preferences, we will assess the
expressiveness. This feature refers to the model’s ability to capture the actual preferences of individuals in a mean-
ingful and accurate way. A practically helpful preference model should be flexible enough to accommodate different
preferences, including simple and complex ones. This means it should not impose overly restrictive assumptions
limiting its applicability. Also, it should minimize errors and discrepancies between actual choices and preferences
it intends to represent or predict.

While expressiveness is valuable, overly complex models may deliver recommendations that lack conclusiveness.
Therefore, striking a balance between expressiveness and robustness is essential. Thus, we will also verify the
methods’ robustness, understood as the ability to ensure that the representations, predictions, or recommendations
they deliver are valid and accurate under different conditions. Specifically, we will investigate the stability of
outcomes computed with various methods based on the same preferences given the respective set of compatible
model instances. The consistency of results produced with a more robust model enhances the trust of the DMs,
making the respective recommendations more likely to be implemented in real-world decision-making [2, 30].

The conducted experiment involves a broad range of problems characterized by various numbers of classes,
criteria, characteristic points of marginal functions, and reference alternatives per class, and algorithms used to
simulate performances of non-dominated alternatives. We consider seven measures to quantify expressiveness and
robustness. Regarding the former, we focus on the proportion of scenarios for which the indirect preferences
are fully consistent with an assumed model [29] and the misclassification error [19]. As for the latter, we build
five metrics referring to the precision of possible assignments for all alternatives [19] and the variability of class
acceptability indices [31]. The possible classifications are confirmed by at least one compatible model instance. In
turn, the stochastic acceptabilities represent the shares of feasible instances suggesting specific assignments, serving
as the base for the entropy-inspired measures. Analyzing the expressiveness and robustness provides insights into
the usefulness of UTADIS variants in different decision-aiding contexts and the amount of preference information
needed from the DMs to restore their views faithfully. These insights can be used by the decision analysts, who
are responsible for interacting with the DM as well as operating and selecting the methods when facing a decision
problem.

Our experimental results enable the formulation of guidelines for selecting the appropriate model based on the
nature of supplied preferences. The framework outlines the necessary steps to improve recommendations’ robustness
in different contexts and to revise the preference modeling assumptions, particularly concerning non-monotonicity
and interactions. Its use is illustrated in the problem of sorting mobile phone models based on the preferences of
three DMs. Nevertheless, we also formulate some taxonomy-based guidelines on selecting an appropriate variant of
UTADIS based on the characteristics of the tackled decision problem. They refer to the features regarding problem
formulation, preference model, and preference information.

The paper’s remainder is organized in the following way. Section 2 reminds the primary UTADIS method and
defines modified variants of this approach. In Section 3, we discuss the concepts of expressiveness and robustness
along with proposed quality measures, experimental settings, and analysis of the obtained results. In Section 4, we
discuss frameworks to support the choice of an appropriate method. Section 5 illustrates the use of the framework.

The last section concludes the paper and outlines promising future research directions.

2. Reminder on the UTADIS method and its extensions

In this section, we present variants of the UTADIS method. We start from the basic approach and then demonstrate
how to relax the constraints on monotonicity or preferential independence. Also, we discuss the robustness analysis
methods whose results will subsequently serve to define the measures relevant to the experimental verification. We

use the following notation:

e A={aj,as,...,a;...,a,} — a finite set of n alternatives, each evaluated in terms of m criteria;



o AR ={af a},... a*} — afinite set of r reference alternatives; A® C A; for each reference alternative, the DM

provides a desired assignment;

e G={91,92,.--,9j,---,9m} — a finite set of m criteria, g; : A = R for all j € J = {1,...,m}; without loss of

generality, for now, we assume that all criteria in G are of gain type;
o X; ={gj(ai),a; € A} — a finite set of performances of all alternatives in A on criterion g;;

o zj,a3, ... ,x?j(A) — the ordered values of X;, 257" < a¥ k= 2,...,n;(A), where n;(A) = |X;| and n;(A) < n;

thus, X = H;nzl X is the performance space; note that X; can also be enriched with the extreme values of

the performance scale that are not attained by any alternative;

o (1,Cs,...,C, — p pre-defined and preference-ordered classes so that C; is preferred to Cj—; for I =2,...,p.

2.1. Basic model

The first considered preference disaggregation method is UTADIS, proposed in [8]. For each alternative a € A,
this approach quantifies a comprehensive quality using an Additive Value Function (AVF) [33]:

Ua) = u;(gi(a)), (1)
j=1

where uj, j = 1,...,m, are Marginal Value Functions (MVFs). These are piecewise linear, monotonic functions,

defined on the set of y; pre-defined and equally distributed characteristic points ﬁ}, J2~, ..., 8% such that:

A s—1

(A) _ le) ,
v~ 1

B;:mjl+(x?] j=1...,m,s=1,...,7. (2)

To ensure that comprehensive values U(a),Va € A, are normalized to the [0, 1] range, the following constraints are

m
incorporated: wu; (le) =0,forj=1,...,m,and ) u; (B]’) = 1. For gain-type criteria, MVFs are assumed to be
j=1
non-decreasing, which is modeled as follows:

uj(ﬂ;)iuj(ﬂj_l)z(ljzla"'am75:23"'7’7j' (3)
To determine the marginal values for z% €[5, ﬁ;“], linear interpolation is used:

o -5

uj(@5) = ui (85) + (u (8;71) — Uj(ﬁi))mH T
J J

s Ji=1....m, k=1,...,n;(A). (4)
To assign alternatives to pre-defined, preference-ordered classes, UTADIS applies a threshold-based value-driven
procedure. In this approach, each class Cj is delimited by the lower ¢;_; and upper ¢; thresholds (see Figure 1). For
simplicity, we omit the lower limit of the least-preferred class C; and the upper limit of the most-preferred class
Cp. Hence, the model includes p — 1 thresholds ¢t = [t1,...,¢—1,%,...,tp—1]. To ensure the minimum width of the
range of values for each class, arbitrarily small positive value ¢ is introduced into the constraints ensuring adequate
relations between thresholds: ¢y > ¢, —t;—1 > ¢, forl=2,...,p—1,and t,_1 +e < 1.

We assume the DM provides the desired class assignment a* — C; for each reference alternative a* € AR.

Function I indicates to which class a* is assigned:
Va* € AR ot = C) — I(a*)=1. (5)

To construct a model defined above that would be compatible with the DM’s indirect preferences, we need to ensure

the comprehensive value of reference alternative a* € A% is within the range [t;_1,;), corresponding to the desired
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Figure 1: Threshold-based value-driven sorting procedure involving multiple criteria.
class Cy:
Va* € AR I(a")=1le{l,....p—1} = t;,-U(a*)>0d+e, (6)
Va* € AR [(a)=1e{2,....p}) = Ula")—ti_, >3, (7)

where § allows for controlling the distance of the alternatives’ comprehensive values from the thresholds limiting
the class to which they are assigned. Overall, a set of linear constraints EAR7 defining a set UT of all compatible

AVFs and class thresholds, can be formulated as follows:

ujsf})zozyjzl,...,m, }(EN)
Zj:luj(ﬂjj):]-a

h=e (EA") (8)
tl*tl_lzé‘,l:z,...,p*l, (ET)
1- tp—l > g,

Va* € AR: I(a*)=1€{l,...,p—1} = t;,—U(a*) > § +¢,
Va* € AR: I(a*)=1€{2,....p} = U(a*) —t;_1 >,

} (EPM)

where € is an arbitrarily small positive constant and § > 0. Note that the role of constant € is to transform strict
inequalities into their weak counterparts. Moreover, all sorting models for which § is non-negative are compatible
with the DM’s preferences as they ensure that for all a* € AT such that a* — Cy, U(a*) € [t;_1,t). When EAY s
feasible, U™ contains at least one and possibly infinitely many instances compatible with the model’s assumptions
and the DM’s preferences. As proven in [19], set 4% is convex.

To deliver a precise sorting recommendation that is compatible with the supplied assignment examples, one such
instance must be selected arbitrarily. This can be conducted in various ways [12, 14, 48]. We decided to choose the

most discriminant AVF, which can be obtained by maximizing §, representing the minimum difference between the



comprehensive values of reference alternatives and the corresponding class thresholds:

Maximize §, subject to EA", (9)
The variables in the model are as follows:
e uj(B;), j=1,...,m, s=1,...,7; — value of the marginal function for criterion g; at characteristic point 33;
e {;, l=1,...,p—1— thresholds separating intervals of comprehensive values associated with each class;

e 0 — the minimum difference between the comprehensive values of reference alternatives and the thresholds

associated with the corresponding class.

The objective function defined above is related to increasing confidence in the model’s ability to reflect DM’s pref-
erences when alternatives are further distant from the respective class thresholds. This way, we capture a solution
in which the differences between the comprehensive values of the reference alternatives are as far as possible from
the thresholds of the corresponding classes, hence representing DM’s preferences in the most robust manner. To
ensure comparability of results, unless otherwise explicitly stated, we will use the same objective function in the

remaining UTADIS variants.

2.2. Modeling non-monotonic marginal value functions

The basic variant of UTADIS assumes that all criteria are associated with pre-defined preference directions, and
hence the pre-criterion preferences are represented with monotonic MVFs. However, this assumption can be relaxed
to let the method construct possibly non-monotonic marginal functions. We denoted the variants in this stream
as the UTADIS-NM (NM) group. They are useful in scenarios where the knowledge of the preference for the
performances on each criterion is missing, and needs to be discovered from the DM’s indirect preferences.

The first variant, called UTADIS-NM-1, adopts the proposal formulated in [16] in the context of ranking
problems. It removes the monotonicity constraints, introducing the lower and upper bounds for all characteristic
points of MVFs:

Ui k R
JE% i (1) }Vj e{l,....m}Vk e {1,...,7} }(E;;}md) (10)

In this way, we avoid unbounded solution space and allow freedom regarding the shape of MVFs. The normalization
of AVF and threshold values is performed after optimization and obtaining a consistent solution. To implement
this model, it is necessary to calculate the slope change d)? of each MVF’s segment. It is defined as the difference

between the marginal values for two consecutive characteristic points divided by the distance between these points:

uy (BN)—u; (BF 7Y wy (BY ) —uy (BF ) < ok
I N vje {1 vk € {3 EA" 11
W@ wEhom e e (Y €tlymp ke {3} ¢ (Filope) ()
pyt—pk? pr—ph—t =

The understanding of the notation used when modeling the slope change is supported by the example marginal
value function illustrated in Figure 2. A set of linear constraints defining all consistent solutions and the objective

function for finding a precise recommendation by NM-1 are formulated as follows:

m Vi k
Zj:l k3 ¢j

0

.. . . R R AR
Minimize , subject to ET7EDM,E,;‘})und,E;‘}Ope }(ENM_l) (12)
This way, we prefer the most discriminant model (maximization of § in the denominator) for which the sum of slope
changes is as small as possible. Such an objective allows some degree of freedom in representing the per-criterion

preferences using non-monotonic functions. Therefore, it is less constrained and more flexible than the primary
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Figure 2: Illustration of the slope change for a marginal value function.

variant of UTADIS. Apart from the same variables used in UTADIS, the above model incorporates the following

additional ones:

° ;’?, j=1...m, k=3,...,7 — absolute value of the slope change of the marginal value function wu;
for criterion g;, based on the analysis of neighboring ranges ([3]’.“_2, Bf_l) and (ﬁ]k—l, ﬂj’“) delimited by three
consecutive characteristic points ﬂf_Q, ﬂf_l, and B]’-“.

Minimizing the variations in the slope of MVFs aligns with searching for the parsimonious explanation of indirect
judgments, being most likely the correct way [4, 16]. In this case, the simplest additive value model is assumed
to incorporate, if possible, monotonic MVFs, which are the most linear ones, i.e., minimizing the deviation from
the linearity. The goal is to avoid abrupt changes in MVFs, leading to unrealistic preference models (e.g., zigzag
functions changing direction in each characteristic point). Controlling variation in slope has been used before in [11]
to determine the minimum number of criteria sub-intervals and in [20] to obtain parsimonious preference models.
In the considered method, the complexity of the preference model is optimized against its discriminatory power.

Even if the objective function combining the above aims is non-linear, leading to a Linear-fractional Programming
(LFP) problem, it can be easily transformed to the Linear Programming (LP) problem [5]. The above approach
cannot be used with linear MVFs that involve only two characteristic points, as in this case, no slope change can
be represented. Therefore, for such scenarios, we only maximize 9.

A more complex objective function considered by NM-1 implies potential difficulties in comparing its outcomes
with the results produced by other variants of UTADIS. Therefore, we also propose a modification of the concept
presented in [16], called UTADIS-NM-2. It aims to infer the most discriminant sorting model, referring to the same
variables as in UTADIS:

Maximize 8, subject to ET, EPM pA”" } (Ef\?lcm) (13)

bound

Compared to NM-1, E:}:pe has been omitted because ¢§ is not optimized, and slope changes are not required to
define the model. Apart from ¢§ , the remaining parameters in both models are subject to the same constraints.
However, due to the different objective functions, both approaches may lead to different solutions and, hence,
various recommendations on the set of non-reference alternatives.

To present the process of normalizing the model obtained with NM-1 or NM-2, let us denote it by U’. It
consists of MVF's u}, class threshold values ¢}, and the minimum difference between the comprehensive values of
the reference alternatives and corresponding thresholds §’. In the first step, the minimum value in each MVF is

subtracted from the values assigned to all of its characteristic points:

Vie{l,...,m} uj(z) = uj(x) - ke{rlninﬂ{} wj(B)). (14)
s g

Then, the minimum value of each modified MVF equals zero. Decreasing the value of each MVF reduces the

comprehensive value of each alternative by exactly the same value. Thus, to keep the solution feasible, it is



necessary to reduce the threshold values in the same way, i.e., by subtracting the sum of the minimum values of

each u;:
m

vie{l,...,p—1} t;/:ti—; ke{rlr,l.i..n,«/j} u;(ﬂjk) (15)
The value of 6 does not change because the minimum distance of the thresholds and comprehensive values of the
reference alternatives remains unchanged, i.e., 8" = §.
The second step focuses on normalizing the values so that the maximum comprehensive value equals one. For this
purpose, all MVFs are divided by the sum of their maximum values, denoted as p. Then, we proceed analogously
with the values of thresholds and §:

m

= (R, 16
g ng kG{rﬁéﬁw} 1 (/Bj) (16)
Vie{l...om} w@)="2 vie{l,..p-1n="4 5= (17)

The latter is needed because reducing the comprehensive values of reference alternatives and thresholds will also
reduce the minimum distance between them. After the above transformations, the model is normalized to the [0, 1]
range, and hence ¢ has the same interpretation as for the primary variant of UTADIS.

We propose another variant admitting non-monotonicity, called UTADIS-NM-3, which is inspired by the ideas
presented in [30]. It represents preferences on each potentially non-monotonic criterion g; using a sum of two
monotonic functions, one non-decreasing ué-\ID and another non-increasing uyl, each adhering to standard weak

monotonicity constraints:

ND(ﬂ )*07 UND(ﬂr\U) < 1 j - 1 m, (EB )
?H(B;/J)_O7 ué\n(ﬁj)§17.]_l7a m, A
uj»VD(B;)—u?D(ijl) >0,j=1,....m,s=2,...,7;,

w3 — a8 <0, j=1,...,mys = 2,7, }(ENMB) o) 1s)
U](ﬂj) U’;VD(BJ)_FU’NI(/B) .]_1 m75:17~-~7’Yj7

\ (EXM-3)
0 <wu;(B5) <1, ]—1,...,m,s—1,...,’yj.

The composition of a pair of monotonic functions with opposing preference directions results in the potentially
non-monotonic MVF as shown by the example marginal value functions in Figure 3. Again, we select the most

discriminant model as the representative solution:

Maximize §, subject to ET, EPM Exyis } (ENM 3) (19)

non-decreasing marginal value function

ND
uNP(a)
non-monotonic marginal value function
gj(a) \ ufa)
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g(a)
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gj(“)
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non-increasing marginal value function

Figure 3: Example non-decreasing and non-increasing components resulting in a non-monotonic marginal value function.



Since the inferred parameter values may be outside the range between 0 and 1, a normalization process needs to
be conducted, similarly as for the NM-1 and NM-2 procedures (see Egs. (14)—(17)). Apart from the same variables
used in UTADIS, UTADIS-NM-3 incorporates the following additional ones:

° uND (6 ), g=1,...,m, s=1,...,7; — the value of the non-decreasing component of the marginal function

. . R
u; for criterion g; at characterlstlc point 7,

. uNl(ﬂ ), j=1,...,m, s=1,...,7; — the value of the non-increasing component of the marginal function u,

for criterion g; at characteristic point j3;.

2.8. Modeling interactions between criteria

Using AVF and, thus, the basic variant of UTADIS requires the fulfillment of preferential independence. It means
that the DM’s preferences over any subset of attributes are independent of its complement. However, in some deci-
sion scenarios, one needs to represent interactions between criteria and reflect a non-additive nature of preferences.
This option has been successfully implemented in [21] in the context of ranking problems. We adapt it to the
multiple criteria sorting, giving rise to the UTADIS-INT methods.

In this approach, the positive and negative interactions between all criteria pairs: g4, 9, € G : ¢ < r are modeled

using bonuses syn; and penalties syn, .. Then, the comprehensive value of alternative a € A is expressed as

q,r

=D ui(gi(a)) + Z Z syng . (gq(a
j=1 g=1 r=g
N

Functions syn* and syn™ need to satisfy the following normalization (E{1) and monotonicity (Ejlr) conditions:

follows: .

> syng.(g4(a), gr(a)). (20)

r=q+1

=

q=

syn;T( By =0,Vg,re{l,....m}:q<r,

;( By =0,Vqg,re{l,....m}:q<r,
synt, (87 B’YT)<,u)\qT, Vq,re{l ,m}iq<r,
(B

syng ,.(8g%, BY7) < pAgrs Vg, €{1,...,m} 1 q <,
“3(6%)
j:1
m—1 m
T = > syng(Bg", B, (Bir)
g=1 r=q+1
m—1 m
T = Z syn_ ( a B'Yr)
i1 g (Bixr)  (21)
T+t 17 =1,
-1
Z)‘q+ Z )‘qTSUer{l }a
r=q+1

q,re{(),l}, Vg, r € {1,...,m}:q<r,
Vgre{l,...,m}:g<randVs,ue{l,...,v} : s>vand Vt,v e {l,...,v} : t>v:
syn qr( ,Br) = syng . (By. BY),
( ﬁt)>syn o Zfaﬁf)» (EM )
q<ﬂq>+ur<ﬂ,«>+<synq,r< ;ﬂt)—syn;T( 580) INT
> uq(By) +ur(B7) + (syng . (By, BY) — syng .(By, By))-

Hence, both syn™ and syn~ attain zero when parameterized with the least preferred performances on the two
criteria, whereas their maximal value is constrained by constant u. Following [21], we use p = 1. Binary variable A, ,
indicates if an interaction is active for a given pair of criteria, and ¢ is the maximum number of active interactions
for each criterion. A comprehensive additive value function enriched with bonuses and penalties cannot take values
greater than one. Further, functions syn™ and syn™ are monotonic in both of their arguments (i.e., performances on
the respective criteria). That is, the bonuses for positively interacting criteria or penalties for negatively interacting

criteria cannot decrease with the increase of any performance. Moreover, the interaction coefficients cannot change



the relation between marginal values corresponding to more preferred performances on any pair of attributes. Note
that syn™ and syn~ are defined only for pairs of characteristic points. Since this is a two-dimensional function,
it is necessary to use bilinear interpolation to determine the value of these functions for any pair of performances.
The Mixed-Integer Linear Programming (MILP) problem that needs to be solved to select a representative model

instance can be formulated as follows:

Maximize § — 3 Agrs subject to  EA" Ennr }(Eﬁ‘;}) (22)
Vq,re{l,...,m}:q<r

The objective function formulated above represents a lexicographic objective, in which the primary aim is to
minimize the number of active interactions between all criteria pairs, and the secondary aim is to maximize the
value of §. The former is consistent with the original postulate formulated in [21] to explain the DM’s assignment
example using a compatible value function with as few interactions as possible. We intend to use interactions in
a parsimonious way. In particular, when the DM’s preference statements can be represented just by a simple additive
value function, then no interaction is considered. Further, if just a limited number of interaction components is
needed to fit the supplied preference information, in line with Ockham’s razor principle, entities should not be
multiplied beyond necessity, i.e., above a minimum required number of interacting pairs of criteria. Therefore,
similarly to NM-1, this approach infers a model that is as simple as possible and capable of correctly representing
the DM’s policy. As the secondary target, UTADIS-INT maximizes d, hence searching for the most discriminant
solution among all compatible models with the lowest possible number of active interactions. Let us emphasize that
by active interactions, we mean the interacting (either positively or negatively) criteria pairs.

Overall, UTADIS-INT uses the same variables as in UTADIS plus the following ones:

o synt ( ;,Bﬁ), gre{l,...omt:qg<mr, s=1,...,7, t = 1...,7 — the value of the positive interaction

function between criteria g, and gy, for a pair of performances 7, i

o syn_ (6:,65), ¢r € {l,...,m}:q <7, s=1,...,9, t =1...,7 — the value of the negative interaction

function between criteria g, and g,, for a pair of performances 37, t

o \r, ¢,7 €{1,...,m} : ¢ <r — a binary value indicating the activation of the positive or negative interaction

function for criteria pair g, and g,.

Additionally, for clarity, symbols 7, 71, and 7~ are introduced to represent the sums of the individual components
in the normalization constraints. The remaining symbols (u, €, and o) have pre-defined, constant values, so they
are not considered decision variables.

In what follows, we will consider two variants of UTADIS-INT, differing in terms of the maximal number of
criteria with which each attribute can interact. Specifically, UTADIS-INT-1 follows the assumption made in [21],
letting each criterion interact with at most one other attribute (o = 1). This ensures significant interpretability of
the inferred model. In turn, UTADIS-INT-0co postulates that the number of interacting criteria pairs is unlimited
(0 = 00). Effectively, this means that each criterion can interact with at most m — 1 other criteria.

Another popular model handling the interactions between criteria is the Choquet integral [17]. The advantages
of the considered value-based tool when compared with the non-additive integral derive from a) not requiring the
evaluations on all criteria to be expressed on the same scale to ensure full commensurability [3], b) the ability
to represent adequately more advanced interactions between couples of criteria that the Choquet integral cannot
handle [21], ¢) generalizing the 2-additive Choquet integral, which is a particular case of the applied model [21],
d) offering clear justification of the recommended decision (e.g., preference or assignment) in terms of values of model
parameters that are more interpretable than non-additive weights (capacity) [21], e) more significant potential for

increased predictive accuracy as proven by the extensive computational experiments in [35].
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2.4. Robustness analysis

The primary issue related to the practical use of incomplete preferences in UTADIS derives from multiple or even
infinitely many instances of the sorting model compatible with the DM’s indirect statements. The presentation of
all variants of UTADIS involved the selection of the most discriminant model among them. This was attained by
maximizing §, possibly coupled with other objectives, ensuring the parsimony of the selected model, e.g., in terms
of the shape of MVFs or the number of interacting pairs of criteria. Such a selection of a single representative
preference model instance consistutes an important stream in ordinal regression (see Figure 4).

However, a single J-maximizer model is not necessarily the only possible solution compatible with the DM’s
classification examples. Specifically, all models with § greater or equal to zero are feasible, being consistent with
the DM’s decision policy represented by the assignments of reference alternatives. The application of such models
on the set of non-reference alternatives potentially leads to ambiguous recommendations. In this perspective, it
may be relevant to conduct robustness analysis. As noted in [14], even when the compatible solution is unique or
the feasible space of models is empty due to inconsistencies or restrictive assumptions imposed by the model, the
robustness concern remains relevant, the same as in the highly noisy context of statistical learning theory.

Let us emphasize that the notion of robustness still remains vague in the entire Operations Research and Decision
Analysis domain [41]. Multiple meanings accorded to the term robust include flexibility, stability, sensitivity, and
even equity. Following the directions indicated by Roy [41], our treatment of robustness is closely tied to a capacity
for withstanding ”zones of ignorance” arising from the disparity between the model and real-life decision context.
To this aim, we account for various sensible versions of the problem formulation. Each version represents a reality
that should be considered, reflecting a combination of the options related to the model’s frailty points. Specifically,
we are interested in investigating the robustness of the provided conclusions, i.e., whether they are valid for all or
for the most plausible sets of compatible preference model instances.

Given their multiplicity in the context of the UTADIS variants, it is relevant to verify the robustness of sorting
results [12]. The need for carefully exploiting the set of multiple compatible models was first emphasized in [26].
The suggested approach was based on a heuristic post-optimality procedure seeking to identify some characteristic
alternative models corresponding to corner points of the feasible polyhedron. However, such techniques provide
only a limited view of the complete set of models compatible with the DM’s preferences. Therefore, the two
prevailing streams for robustness analysis in this context are Robust Ordinal Regression (ROR) and Stochastic
Ordinal Regression (SOR) (see Figure 4).

A single preference model instance Stochastic Ordinal Regression Robust Ordinal Regression
(e.g., the most discriminant) selected  based on a finite large set of model based on the set of all (possibly
from the set of all compatible instances sampled from the set of all infinitely many) compatible
preference model instances compatible preference model instances preference model instances
ufa) ufa) uy(a)
Ay
g@ |7 g(a) g(a)

BUBE OB BB B BB B BB B BB B BB B

Figure 4: Three main methodological streams in ordinal regression.

ROR computes the possible and necessary assignments for each alternative based on the analysis of all compatible
models [19, 34]. The former reflects the classifications attained for at least one feasible model U € U [19], i.e.:

Yae AVie{l,....p}: a=F C < WU ecUl:a—-yC, (23)

where a —y C; denotes that model U assigns alternative a to class Cj, i.e., Iy(a) = I. A set of all possible

11



assignments for a € A is denoted by:
PCAUR (a) = {Ol a *>P Cl} (24)

In turn, the necessary assignment needs to be confirmed by all feasible models U € U% [19], i.e.:
Yae AVie{l,....p}: a=NC —= YU eUl:a -y Cy. (25)

In particular, when U # (), all reference alternatives a* € A are necessarily assigned to the classes specified by
the DM.

Another approach, called SOR, provides quantitative information, estimating how often a given assignment
occurs in the set of all compatible model instances [31]. To exploit U, SOR uses the Monte Carlo simulation to
sample a sufficiently large subset of uniformly distributed sorting models S C U® (|S| < [U%|). For this purpose,
we employ the Hit-And-Run (HAR) algorithm [45] implemented in [7]. Then, Class Acceptability Index (CAI)
quantifies the share of all compatible model instances assigning each alternative to a given class. Its approximation

(CAI") based on the simulation results is computed as follows [31]:

_HUES Iu(@ =1

Vae AVl e{l,...,p}: CAI'(a,C)) 9]

(26)
CAI' takes values in the range between 0 and 1. However, it can also be interpreted as the percentage of the
feasible models, from 0% to 100%. Let us emphasize that the ideas underlying ROR and SOR can be adjusted to

all variants of UTADIS, as long as the respective space of feasible models is defined using the linear constraints.

3. Experimental analysis

This section is devoted to computational experiments verifying the characteristics of the six variants of UTADIS.
First, we define quality measures considered in the comparative analysis. Second, we describe how the experiment

was conducted. Third, we discuss the results given the expressiveness and robustness dimensions.

3.1. Quality measures

This section defines quality measures that capture the expressiveness of the preference model and the robustness
of the recommendation delivered by a specific method. They are adjusted to the scope of multiple criteria sorting
preference disaggregation approaches. The examples supporting the understanding of all measures are provided in

Section 5, devoted to a case study.

3.1.1. Expressiveness of the preference model

The model’s expressiveness reflects its ability to reconstruct the DM’s indirectly expressed preferences. We use the
following two measures to compare different approaches in this regard.

Preference recoverability (PR) is measured as a ratio of scenarios for which DM’s assignment examples are
entirely consistent with an assumed preference model. Then, at least one compatible value function and a set of
class thresholds exist with §* > 0 [29]. Higher PR values indicate the method’s ability to infer model parameters
consistent with a broader spectrum of sorting policies. This emphasizes greater flexibility of the model to fit the
DM’s indirect preferences.

Maximum delta (6*) indicates the minimum difference between the comprehensive value of the reference alterna-
tives and the lower and upper thresholds of the class to which it was assigned by the DM [29]. It reflects the ability
of the threshold-based value-driven procedure to discriminate between alternatives with various desired classifica-
tions. The higher the value of §*, the greater the model’s ability in robustly reproducing the DM’s preferences. For
each approach, §* is derived from the optimal problem solution that implicitly or explicitly maximizes its value in
the objective function. Normalizing each method’s results to the range between 0 and 1 ensures the comparability

of this parameter’s values between different approaches.
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3.1.2. Robustness of the sorting recommendation

Robustness captures the stability and credibility level of the recommendation suggested by a particular method,
given the multiplicity of model instances that can reproduce the DM’s assignment examples. In this aspect,
we distinguish five measures based on the analysis of results for non-reference (holdout) alternatives to prevent
overfitting concerns.

Average possible class assignment (APCA) is based on the average number of classes to which it is possible
to assign each non-reference alternative from AT = A\ AR [27]. To make the results for various problem sizes

comparable, this measure is normalized as follows:

Ay (a)| =1
p—1

1 |PC
APCAUR) =1 -
CAUT) =1 =1 2

; (27)

where p is the number of classes and PC Ay is defined in Eq. (24). The measure reaches a maximum value of 1
when all non-reference alternatives have non-empty and precise necessary assignments. In this case, the model’s
recommendations are unambiguous and most reliable. A minimum value of 0 indicates that each a € AT can be
assigned to any class. This means the variability of recommendations obtained in the set of compatible sorting
model instances is enormous.

Certain assignments ratio (CAR) reflects the share of non-reference alternatives assigned precisely to some

class by all compatible sorting model instances [27]:

_ Ha€ AT : |PCAyr(a)] = 1}]
|AT] '

CARUT) (28)
The maximum value of 1 indicates the complete model’s confidence regarding the assignments of all non-reference
alternatives. In turn, 0 denotes a hesitation in the recommended classification for all alternatives.

Entropy class acceptability index (ECAI) is based on Shannon’s concept of entropy [43]. It is calculated based
on CAIs for each a € AT [27):

p
ECAIu(a) = =Y CAI'(a,C))log, CAT' (a,C). (29)
=1

Note that EC Al,;;(a) = 0 if and only if there is class C; such that C AI'(a, C}) = 1, indicating the agreement in the
suggested recommendation for all sorting model instances. Conversely, the maximum possible value of EC Al (a)
is logy(p). It is obtained if CAI'(a,C)) = % for each I € {1,...,p}, suggesting the same support given to all
classes in the set of all compatible model instances. To aggregate the outcomes for all non-reference alternatives

and normalize the measure to the [0, 1] interval, we define ECALT as follows:

ﬁ > ECAILu(a). (30)

ECAIUR)=1-
logy (p) WEAT

Mean class acceptability index (MICAI) is the average value of C' AIs for all non-reference alternatives and the

classes they were univocally assigned to by a given method [14]:

MCAI(U):@ Y CAI'(a,C)). (31)

a€AT:a—yC)

A higher value of MCAI indicates greater support given to the method’s recommendation by all feasible model
instances. This measure captures how representative is the instance selected by a given approach for the entire
space of instances when considering the variety of assignments observed in this space.

Confirmed class assignment (CCA) builds on the ambiguity in setting the thresholds separating the classes by

a specific method. These thresholds are determined to encompass the comprehensive value of reference alternatives
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in a given class. However, this still leaves some freedom in placing them between the highest value of some reference
alternative in a less preferred class and the lowest value of some reference alternative in a more preferred class.
Non-reference alternatives with comprehensive values in the above range would change their assignments if the
thresholds were set differently, even for the same additive value model. Hence, we want to quantify the share of
non-reference alternatives with confirmed assignments, i.e., implied by scores between the extreme values associated
with reference alternatives in the assigned class. For this, we first determine the class boundaries, i.e., the lowest

(CEB) and highest (CUB) comprehensive values for reference alternatives in each class:

CFB =  min U(a) and CYP = max Ula). (32)

a€AR: a—C, a€AR:a—C;
Note that we set C¥Z to 0 and CIZJJ B o0 1 because the values of these extreme thresholds do not influence the assign-
ments of non-reference alternatives. Then, we compute the share of non-reference alternatives with comprehensive

values that guarantee their assignments would not change if the class thresholds were set differently:

_Jae AT a—y CACEE <U(a) < CYB|
- | AT .

CCA(U) (33)
If the measure reaches a maximum value of 1, then the assignments of all non-reference alternatives are confirmed
by reference ones. If CCA is equal to 0, the classification of each non-reference alternative could change if the
thresholds were set differently in the admissible range.

Overall, the first two measures describing the expressiveness of the preference models focus on their abilities
to reproduce the DM’s preferences (PR) and to highlight differences between comprehensive values of reference
alternatives from different classes (6*). The former aggregates the binary indication of the complete consistency
between the preference information and the model’s assumptions from all considered scenarios, whereas the latter
captures the quantitative information expressed on the conjoint interval scale only for settings for which all DM’s
assignment examples can be reproduced. The following five measures focus on the recommendations’ robustness.
Some build on the results of exact (APCA and CAR) or (ECAI) robustness analysis as conducted in ROR and
SOR, respectively, capturing the level of compliance between sorting results given the entire space of consistent
sorting models. However, they represent complementary perspectives, reflecting if some outcomes are ever possible
(APCA and CAR), to what degree they are possible (EC AI), if they are precise (APCA), and how imprecise they
are (CAR and ECAI). Other measures focus on the certainty of precise assignments recommended for non-reference
alternatives by some method (in our case, the most discriminant preference model instance) given other feasible
sorting results. This aspect is reflected by the support offered to these classifications in the set of all compatible
models (MCAI) and the share of alternatives for which the assignments would not change if other, though still
compatible, thresholds were set (CC A). This way, we verify the robustness of the recommendation delivered by the
specific method while changing the parameter values within the feasible space and assuming that the performances,
preferences, and model assumptions (e.g., characteristic points) are fixed. Overall, our robustness metrics build
on three important methodological streams in ordinal regression, i.e., selection of a representative model instance,
ROR, and SOR.

Such a broad spectrum of measures aims to provide different interpretations of expressiveness and robustness,
referring to various scenarios, information scales, and types of results. It also increases the reliability of subsequent
experimental analysis, which is not biased by an arbitrary selection of one interpretation. The fact that the results
for measures representing even the same dimension do not need to align helps address the nuances of applying

various methods and models and formulating more robust conclusions.

3.2. Simulation design

In the experimental comparison, we considered decision problems with the following dimensions:

e the number of classes — p € {2,3,4,5};
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the number of criteria — m € {2,3,4,5};

o the number of characteristic points for the marginal value function u; on each criterion g; — v; € {2,3,4,5};

the number of reference alternatives assigned by the DM to each of p classes — r € {1,2,3,4,5};

the algorithm used to generate performances of a non-dominated set of alternatives — ¢ € {sphere, random}.

In this way, we covered problems with different complexities, starting from simple problems with binary classification
and two conflicting criteria and ending up with more complex ones involving five classes and attributes. We also
allowed various flexibility of MVFs, from linear to piecewise linear ones with five characteristic points. To check
how well the methods and models cope with different amounts of DM’s preference information, we assumed various
numbers of assignment examples for each class.

To generate a non-dominated set of alternatives, we employed two procedures. The one called sphere randomly
selects points with all non-negative coordinates from the unit m-sphere and then assigns its values as some alterna-
tive’s performances. This procedure also makes it easier to notice preference dependencies. The other procedure,
called random, generates the performances for each alternative independently form a uniform distribution in the
range [0,1). In this case, the newly generated alternative is added to set A if and only if it neither dominates nor
is dominated by any member of A. This process continues until the pre-defined size of A is reached. Figure 5
shows example alternatives’ performances generated by both procedures for a bi-criteria problem. Using the two
approaches allows for considering problems with more diverse characteristics. Note that the lack of dominance in

set A makes solving these problems more challenging.
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Figure 5: Example performances of fifty alternatives generated by the sphere and random procedures for a bi-criteria problem.

Moreover, for each considered problem, we randomly generate |A”| = 25 non-reference alternatives, i.e., hold-
outs. This way, we mimic realistic scenarios where the DM typically provides preference information for less than
half of the considered alternatives (|A%| < |AT|). The results obtained for non-reference alternatives are used to
compute the quality measures, so their large number gives greater credibility to the obtained values. For each
combination of problem dimensions, we generated 100 instances. Overall, this gives 4-4-4-5-2-100 = 64,000
repetitions. Such a large number of analyzed problems allows for concluding the characteristics, similarities, and

differences between the considered variants of UTADIS. To generate each instance, we followed four steps:

e Using procedure ¢ € {sphere,random}, a set A of n = |AT| + |AT| (where |A®| = p - r) non-dominated

alternatives was generated, each with m performances from the range between 0 and 1.

15



o A subset of |A%| alternatives was randomly selected from A to create a reference set.

e To generate reference assignments and simulate the DM’s decision policy, alternatives from AT were ran-
domly distributed into p subsets Agl,Agz, ey Agp, each containing r alternatives. Each alternative in Agl,
l =1,...,p, was assigned to class C;. Please note that the procedure for generating the performances of
alternatives guarantees that the considered assignments are based on the weakest possible assumption, i.e.,

they do not violate the dominance relation.

e For each criterion gj, the values of ; characteristic points were determined so that 5]1 =0, B]j =1, and the

remaining points were set at equal intervals between them.

3.8. Results

This section describes the obtained results. We compare different variants of UTADIS in terms of expressiveness
and robustness, and discuss the impact of various problem dimensions. For each setting, the statistical significance
of the observed differences was verified using the Wilcoxon signed-rank test [24] for paired samples with a p-value
of 0.05.

3.8.1. Preference recoverability

Reproducibility of DM’s preferences is one of the most intuitive factors reflecting the expressiveness of a model.
The higher the ratio of scenarios with fully reproduced sets of assignment examples, the richer the variety of
problems and respective decision policies a given procedure applies to. Tables 1 and 2 show the PR values, both
comprehensive and broken down into analyzed problem dimensions. Figure 6 reveals the proportion of problems
that different subsets of UTADIS variants have solved. Since all three non-monotonic approaches solved the same
subset of problems, their results are grouped under the NM name. In addition, when both approaches modeling
interactions between criteria could find a consistent solution for the same problem instances, they are labeled as

the INT group in Figure 6.

Table 1: Preference recoverability ratio for all problem instances and sub-groups with different numbers of classes and criteria.

PR Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
UTADIS 0.485 0.784 | 0.536 | 0.366 | 0.254 0.300 | 0.465 | 0.556 | 0.619
NM 0.621 0.899 | 0.693 | 0.515 | 0.376 0.407 | 0.596 | 0.704 | 0.775
INT-1 0.597 0.851 | 0.641 | 0.500 | 0.395 0.396 | 0.588 | 0.679 | 0.725
INT-00 0.757 0.898 | 0.780 | 0.703 | 0.647 0.396 | 0.819 | 0.885 | 0.928

Table 2: Preference recoverability ratio for sub-groups of problem instances with different numbers of characteristic points, reference
assignments per class, and performance generation algorithms.

PR Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
UTADIS 0.271 | 0.450 | 0.568 | 0.651 0.898 | 0.620 | 0.420 | 0.283 | 0.203 || 0.565 0.404

NM 0.361 | 0.586 | 0.723 | 0.812 || 0.969 | 0.777 | 0.590 | 0.440 | 0.326 || 0.616 0.625
INT-1 0.349 | 0.592 | 0.690 | 0.757 0.941 | 0.727 | 0.544 | 0.430 | 0.342 0.715 0.479
INT-0c0 0.556 | 0.794 | 0.825 | 0.852 || 0.966 | 0.839 | 0.730 | 0.653 | 0.597 || 0.798 0.716

Let us focus first on the comprehensive results. More than 75% of all problem instances were solved by INT-co.
This model offers the greatest flexibility among all considered variants, and its advantage in preference recoverability
is significant. The NM group delivered a solution for 62.1% of simulated scenarios and INT-1 — for 59.7%. UTADIS
performed the worst, solving less than half of the considered problems (48.5%). This is due to more restrictive
assumptions of the primary model. As confirmed by Figure 6, all problem instances solved by UTADIS were also
successfully solved by the remaining approaches. Adding the possibility of representing non-monotonic per-criteria
preferences or at least one interaction for each criterion leads to a consistent solution for an additional several

percent of instances. Note that when comparing the performance of NM and INT-oco approaches, NM was able to
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Figure 6: Preference recoverability ratio attained by different subsets of methods for all problem instances and sub-groups with various
characteristics of the considered problems.

solve around 3.4% of instances that INT-oco could not handle (see Figure 6). In comparison, the inverse observation
holds for about 19% of considered problems. No methodological variant was capable of reproducing all assignment
examples in about 21% simulated scenarios.

Let us now pass to considering the impact of various problem dimensions. Table 1 shows that increasing the
number of classes p decreased the fraction of problems that could be handled by each method. The most significant
deterioration is visible for UTADIS, which was able to solve over 78% of 2-class problems and about 25% of 5-
class problems. The performance of INT-oco was the least sensitive to changing p — from nearly 90% for binary
classification problems to less than 65% for problems with five classes. Despite the advantage of NM over INT-1
for 2-, 3- and 4-class problems, the latter could reproduce almost 2% more 5-class problems.

The inverse trend can be observed when changing the number of criteria m. There is a 2-fold increase in
recoverable problem instances between two and five criteria. Note that when m = 2, it is possible to introduce
only one interaction. Then, the results of INT-1 and INT-co were the same and their adaptability to DM’s indirect
preferences was limited (PR = 39.6%). In turn, the NM approaches were marginally better, providing a consistent
solution for 40.7% instances. For a greater number of attributes, the advantage of the NM group over INT-1 is still
visible. However, INT-co outperforms all remaining variants of UTADIS, taking advantage of the greater flexibility
in representing interactions between all criteria pairs.

The change in the shares of problem instances handled by different methods with the increase in the number
of characteristic points is best visible in Figure 6. There is a significant decrease in the fraction of problems solved
exclusively by INT-oo, from 16.2% for v; = 2 to 3.2% for v; = 5. For the NM group, the trend is inverse — these

approaches exclusively solved 0.7% problems with linear MVFs and 4.7% for functions involving five characteristic
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points. This tendency is also confirmed by Table 6, where the difference between these two approaches for 2-
point MVFs is almost 20% (55.6% for INT-oco and 36.1% for NM), while for 5-point problems it drops to 4%
(85.2% and 81.2%, respectively). Thus, increasing the flexibility of MVFs has a more significant impact on the
performance of non-monotonic approaches than on INT-oco. Moreover, additional constraints on the monotonicity
of the interaction-oriented functions syn (see EjLy) limit the improvement of recoverability for the INT methods.

A greater number of assignment examples for each class (r) implies a decrease in preference recoverability for
each method (see Table 2). Figure 6 shows that the number of problem instances unsolvable by any approach
increased from 1.7% for problems with one assignment per class to 37% when r = 5. This is due to additional
constraints introduced by more assignment examples, reducing the space of potential solutions. For problems with
poor knowledge of DM’s preferences, the differences between the methods are relatively small. In this case, even
the basic UTADIS model could deliver a solution for almost 90% instances. The NM group coped best with such
problems, providing a consistent solution for 96.9% of problems. INT-oo fared slightly worse, reaching 96.6%, while
INT-1 scored 94.1%. The increase in indirect preference information had the greatest impact on the UTADIS
and NM methods. They were able to correctly reproduce, respectively, 20.3% and 32.6% of the problems with five
reference assignments per class. The impact was slightly less for INT-1, which solved 34.2% instances, while INT-o0o
could handle 59.7% of problems. Thus, if the DM provides more assignment examples, in some cases, INT-oo may
be the only possible choice.

Table 2 shows that the UTADIS and INT methods were better at dealing with problems where performances
were generated by sphere rather than random sampling. In both cases, INT-co performed best, solving almost 80%
of problems generated with m-sphere approach and over 70% instances with randomly drawn performances. INT-1
outperformed the NM approaches when using sphere, scoring 71.5%. However, it performed worse for random,
scoring 47.9%. In turn, NM reached 61.6% and 62.5%, respectively. The primary UTADIS method performed the
worst, providing a consistent solution for 56.5% and 40.4% instances, respectively.

Overall, INT-co proved the best at reproducing diverse DM preferences. Nevertheless, the NM methods are
slightly better in the case of simple problems with two classes, two criteria, and poor knowledge of DM’s preferences.
In some cases, the NM approaches perform slightly worse than INT-1, e.g., when the number of classes or reference
assignments is the greatest. UTADIS is inferior in preference reproducibility, delivering a consistent model for

significantly fewer instances for any combination of problem dimensions.

3.8.2. Analysis for problem instances handled by all methods

The first group of analyzed problem instances are those for which UTADIS found a feasible solution. Then, all
other methods also managed to deliver results compatible with all DM’s assignment examples. Such a selection of
a subset of problems makes it possible to compare all methods in terms of quality measures other than preference
recoverability. This selection criterion determines the distortion of the proportions between the different variants
of problems. Overall, 48.5% of all problems were selected, and their characteristics can be seen in Figure 7. The
advantage of problems with a small number of reference classes and assignments and a larger number of criteria
and characteristic points can be noticed. Moreover, the sphere algorithm generated more problems solved by the

primary variant of UTADIS.
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Figure 7: Characteristics of problem instances for which all methods delivered a feasible solution.



The analysis of §* complements the conclusions formulated based on PR. The average results for the entire
subset of problem instances and the sub-groups with common characteristics are presented in Tables 3 and 4. Since
these instances were recoverable by UTADIS and the primary goal for both methods from the INT group is to
minimize the number of interactions between criteria in the objective function, the results for UTADIS and INT
are the same for all quality measures.

As for §*, NM-3 obtained the best results, regardless of the problem size. NM-2 follows it. Both methods
optimize the value of § but differ in their assumptions about the MVF shapes and the post-normalization steps.
The only scenarios for which NM-2 led to statistically comparable results involved MVF's with five characteristic
points. UTADIS and INT methods fared worse than NM-2, except for simple problems with linear MVF's and one
reference assignment per class. According to the Wilcoxon signed-rank test, the differences were not statistically
significant in these cases. NM-1 performed the worst, as it is the only one considering slope changes in the objective
function, which significantly impacts the 6* values. The trends observed for various problem dimensions are similar
as for the expressiveness expressed with PR. The value of §* decreased with more classes and assignments and
increased with more complex shapes of MVF. The only difference is in the influence of the number of criteria. For
UTADIS + INT and NM-1, §* increased slightly, and for NM-2 and NM-3, it decreased. However, these trends are
less significant than for other dimensions.

Table 3: Average §* values for all problem instances reproducible by all methods and their sub-groups with different numbers of classes
and criteria.

o* Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
UTADIS + INT 0.081 0.142 | 0.055 | 0.030 | 0.019 0.078 | 0.078 | 0.081 | 0.084
NM-1 0.030 0.050 | 0.022 | 0.013 | 0.009 0.026 | 0.030 | 0.031 | 0.031
NM-2 0.090 0.144 | 0.070 | 0.044 | 0.032 0.097 | 0.092 | 0.089 | 0.086
NM-3 0.099 0.162 0.074 | 0.046 | 0.033 0.102 0.103 | 0.099 0.094

Table 4: Average §* values for problem instances reproducible by all methods with different numbers of characteristic points, reference
assignments per class, and performance generation algorithms.

é* Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
UTADIS + INT 0.073 | 0.075 | 0.081 | 0.088 0.134 | 0.071 0.045 | 0.030 | 0.024 0.068 0.098
NM-1 0.014 | 0.032 | 0.032 | 0.033 0.044 | 0.026 | 0.020 | 0.017 | 0.016 0.023 0.040
NM-2 0.067 | 0.079 | 0.093 | 0.105 0.125 | 0.085 | 0.066 | 0.055 | 0.049 0.075 0.111
NM-3 0.093 | 0.093 | 0.099 | 0.105 0.138 | 0.096 | 0.071 | 0.058 | 0.051 0.080 0.126

A similar analysis was performed for the APCA measure. The respective results are presented in Tables 5
and 6. In this case, the models delivered by the NM methods implied the same set of possible assignments and
thus have equal APCA values. In all cases, the models for UTADIS and INT gave significantly more unambiguous
recommendations. Hence, the APCA values are several times higher than for the NM methods, regardless of the
problem characteristics. The most significant changes can be observed when increasing the number of characteristic
points — APCA for UTADIS + INT is more than twice larger for linear MVFs (0.335 vs. 0.158) and nine times
greater for MVFs with five characteristic points (0.081 vs. 0.009). A significantly greater value for the random
generation of performances obtained by UTADIS + INT is also noteworthy. For these methods, the average
recommendation robustness captured by APCA is almost twice as high as that for the sphere algorithm. The
observations regarding CAR and ECAI are analogous. Thus they are included in the eAppendix (supplementary
material available online). Generally, the trends for different problem characteristics are opposite to those observed
for the expressiveness measures. Their values increase with more classes or assignments and fewer criteria or
characteristic points. Also, since both APCA and CAR focus on the unambiguity of delivered recommendations,
in the eAppendix, we discuss the relation between their values in all simulation runs.

The MCALI values — built on the robustness of classifications suggested by the selected model instances — are

presented in Tables 7 and 8. Again, they confirm the advantage of UTADIS and INT over all non-monotonic
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Table 5: Average values of APCA for all problem instances reproducible by all methods and their sub-groups with different numbers of
classes and criteria.

APCA Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
UTADIS + INT 0.146 0.125 | 0.150 | 0.165 | 0.171 0.279 | 0.162 | 0.118 | 0.094
NM 0.039 0.036 | 0.038 | 0.045 | 0.043 0.114 | 0.045 | 0.024 | 0.012

Table 6: Average values of APCA for problem instances reproducible by all methods with different numbers of characteristic points,
reference assignments per class, and performances generation algorithms.

APCA Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
UTADIS 4 INT 0.335 | 0.165 | 0.115 | 0.081 0.106 | 0.155 | 0.172 | 0.181 | 0.185 0.106 0.201

NM 0.158 | 0.038 | 0.018 | 0.009 0.025 | 0.042 | 0.049 | 0.054 | 0.054 || 0.042 0.035

approaches. The exceptions are problems with two criteria, where NM-2 scores slightly better (0.851 vs. 0.828).
NM-2 is the leader among non-monotonic methods, performing distinctly better than NM-1. We can conclude that
maximizing § produces more robust results than optimizing it while limiting slope changes. This is also confirmed
by the advantage of NM-3 over NM-1. The exceptions to the last observation are instances with linear MVF. This
is understandable as NM-1 optimizes only d in this setting because there are no slope changes.

The trends for different problem dimensions are similar to those observed previously for APCA. The exception
is a decrease in MCAI with the number of classes. The more classes, the lower the values of CAI can be. For
example, for 2-class problems, the highest C'AI value for a given alternative must be at least 0.5, while for 5-class
problems, it is 0.2. This can cause a decrease in MCAI even if the methods still suggest the assignments supported
by the most significant number of feasible sorting instances. As for the previously considered robustness measures,
UTADIS and INT perform better for the random performance generation algorithm. In turn, the NM methods
attain greater APCA values for the sphere algorithm. Due to the high similarity of conclusions regarding CCA, the
results are discussed in eAppendix.

Table 7: Average values of MCAI for all problem instances reproducible by all methods and their sub-groups with different numbers of
classes and criteria.

MCAI Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
UTADIS + INT 0.754 0.818 | 0.746 | 0.697 | 0.658 0.828 | 0.766 | 0.743 | 0.720
NM-1 0.651 0.740 | 0.634 | 0.575 | 0.519 0.783 | 0.671 | 0.623 | 0.595
NM-2 0.713 0.771 | 0.700 | 0.663 | 0.636 0.851 | 0.741 | 0.686 | 0.651
NM-3 0.674 0.752 | 0.659 | 0.604 | 0.565 0.801 | 0.695 | 0.649 | 0.619

The analysis indicates that for problem instances reproducible by all methods, UTADIS achieves the most robust
recommendations while still being characterized by the lowest preference recoverability. This observation applies
to quality measures based on both stochastic analysis and the support given to the results implied by the selected

preference model instance.

3.8.8. Analysis for problem instances handled by the NM and INT approaches

To compare the models admitting the use of non-monotonic MVF's or the interactions between criteria, we analyzed
the results for problems for which both groups of methods delivered a feasible solution. This makes it possible to
unleash the potential of INT methods, which, in this case, consider interactions for at least one pair of criteria.
Overall, 10.2% of the initially considered problem instances were included in the analysis. These can be divided
into problems solved by all NM and INT methods (5%) and those solved by the NM approaches and INT-co (5.2%).
Tables 9-14 contain the average values of the quality measures consistent with this division. The upper part of
each table corresponds to the subset of problems solved by all NM and INT methods. In contrast, the lower part
exhibits the results for the subset of problems reproducible by the NM approaches and INT-co.

The proportions between sub-problems with particular feature values for both subsets are shown in Figures 8
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Table 8: Average values of MCAI for the problem instances reproducible by all methods with different numbers of characteristic points,
reference assignments per class, and performance generation algorithms.

MCAI Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
UTADIS + INT || 0.828 | 0.767 | 0.747 | 0.721 0.693 | 0.760 | 0.796 | 0.817 | 0.834 || 0.742 0.772
NM-1 0.809 | 0.666 | 0.624 | 0.597 || 0.594 | 0.641 | 0.688 | 0.725 | 0.750 || 0.676 0.616
NM-2 0.823 | 0.739 | 0.696 | 0.665 || 0.639 | 0.716 | 0.766 | 0.794 | 0.816 || 0.739 0.678
NM-3 0.788 | 0.697 | 0.657 | 0.625 || 0.597 | 0.677 | 0.723 | 0.758 | 0.783 || 0.694 0.646

and 9. In the first case, the shares of problem instances are balanced for all numbers of classes (from 21.3% for
5-class to 29.2% for 3-class problems) and criteria (from 23.2% for 2-criteria to 26% for 5-criteria problems). There
is a smaller representation of problems with linear MVFs (18.8%) and extreme numbers of preference information
pieces (13.6% for one assignment and 15% for five assignments per class). The other subset shows an increased
representation of higher numbers of classes, characteristic points, and assignments per class. In this case, there
are no problems involving only two criteria. This is because, for such problems, INT-1 and INT-co work the
same, having the possibility of establishing only one interaction. In both subsets, most instances had performances

generated using the random algorithm. This suggests that such problems are, on average, more challenging.
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Figure 8: Characteristics of problem instances for which all NM and INT methods delivered a feasible solution.
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Figure 9: Characteristics of problem instances for which all NM methods and INT-co delivered a feasible solution.

Regarding the obtained §* values, for the first subset of problem instances, the INT methods had a weaker
expressiveness than the NM methods. On the contrary, when considering only problems solved by INT-oco, this
method performed better than the NM approaches for most problem characteristics. The only exception is the
subset of problems with performances generated by the sphere algorithm, where the solutions obtained by INT-
oo are not statistically significantly better than those obtained by NM-2 and NM-3. These results confirm that
increasing the number of interactions in the INT approaches positively impacted expressiveness. The detailed
results — considering various problem characteristics — are available in Tables 9 and 10.

For the first group of problem instances, INT-co achieved better results than INT-1. For 2- and 3-criteria
problems, they got the same values because both methods find the same solution involving a single interaction for
one pair of criteria. For 4- and 5-criteria problems, both methods represented at most two additional interactions.
However, since INT-1 cannot involve the same criterion in multiple interactions, while INT-oco does not have such a
limitation, the average value of §* was significantly higher for INT-co. Among the NM methods, similar to instances
considered in Section 3.3.2, NM-3 achieved the best results.



Table 9: Average 6* values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

o Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
NM-1 0.012 0.012 | 0.013 | 0.011 | 0.010 0.004 | 0.012 | 0.014 | 0.016
NM-2 0.022 0.029 | 0.023 | 0.018 | 0.016 0.011 | 0.023 | 0.025 | 0.027
NM-3 0.024 0.034 | 0.025 | 0.020 | 0.018 0.011 | 0.025 | 0.028 | 0.030
INT-1 0.006 0.010 | 0.006 | 0.006 | 0.005 0.007 | 0.007 | 0.006 | 0.006
INT-00 0.009 0.011 | 0.008 | 0.008 | 0.009 0.007 | 0.007 | 0.010 | 0.012
NM-1 0.013 0.015 | 0.016 | 0.013 | 0.010 0.013 | 0.013 | 0.014
NM-2 0.022 0.038 | 0.025 | 0.019 | 0.016 0.022 | 0.022 | 0.022
NM-3 0.024 0.043 | 0.027 | 0.020 | 0.018 0.023 | 0.024 | 0.025
INT-00 0.032 0.047 | 0.034 | 0.028 | 0.027 0.030 | 0.032 | 0.033

Table 10: Average 6* values for the problem instances reproducible by the NM and INT methods with different numbers of characteristic
points, reference assignments per class, and performances generation algorithms.

o* Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
NM-1 0.006 | 0.012 | 0.013 | 0.015 0.003 | 0.011 | 0.013 | 0.013 | 0.014 0.003 0.017
NM-2 0.023 | 0.019 | 0.020 | 0.025 0.018 | 0.023 | 0.023 | 0.022 | 0.021 0.008 0.030
NM-3 0.028 | 0.022 | 0.021 | 0.026 0.021 | 0.026 | 0.024 | 0.024 | 0.022 0.009 0.034
INT-1 0.008 | 0.007 | 0.006 | 0.005 0.007 | 0.007 | 0.006 | 0.005 | 0.006 0.006 0.006
INT-o00 0.010 | 0.009 | 0.008 | 0.009 0.007 | 0.010 | 0.009 | 0.010 | 0.007 || 0.007 0.011
NM-1 0.007 | 0.014 | 0.016 | 0.016 0.006 | 0.012 | 0.014 | 0.015 | 0.015 0.003 0.014
NM-2 0.026 | 0.021 | 0.020 | 0.022 0.028 | 0.025 | 0.020 | 0.021 | 0.020 0.010 0.023
NM-3 0.029 | 0.023 | 0.022 | 0.023 0.033 | 0.027 | 0.022 | 0.023 | 0.022 0.011 0.025
INT-00 0.032 | 0.034 | 0.029 | 0.032 0.038 | 0.036 | 0.031 | 0.029 | 0.030 0.011 0.033

The APCA values for both considered groups of problem instances are presented in Tables 11 and 12. They
confirm the higher robustness of recommendations delivered by models incorporating interactions rather than non-
monotonicity. All NM methods attained the same average results, while INT-1 was at least as good as INT-oo,
regardless of the problem characteristics. Also, we observe a significant decrease in the average value of APCA
for INT-0co between the first and second group of problems (0.401 and 0.206). This means that a greater number
of active interactions increases the variability of possible results, hence decreasing their robustness. For the NM
methods, this loss is not so evident (0.196 vs. 0.170), suggesting a greater stability of results obtained with the
non-monotonic approaches with the increasing problem complexity.

When analyzing the trends for the average value of APCA for different numbers of criteria, we observe that
increasing the number of criteria (m) leads to decreasing APCA for the NM approaches. This is due to the greater
flexibility of the underlying preference models. In turn, for the INT approaches, we observe an increase in the
mean value of APCA with more attributes. This suggests that the number of active interactions did not grow
substantially for problems involving more criteria, hence not increasing the space of feasible solutions vastly and
the variability of possible results. Even if the INT methods produce, in general, more robust results, the NM
approaches are superior in this regard for problems with two criteria and interactions that are representable with
INT (0.353 vs. 0.248). Analogous conclusions can be drawn based on the analysis of CAR and ECAI For a detailed
discussion on these measures, see eAppendix.

Table 11: Average APCA values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

APCA Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
NM 0.196 0.245 | 0.207 | 0.186 | 0.146 0.353 | 0.222 | 0.137 | 0.091
INT-1 0.401 0.435 | 0.403 | 0.382 | 0.387 0.248 | 0.388 | 0.460 | 0.491
INT-00 0.373 0.419 | 0.386 | 0.354 | 0.332 0.248 | 0.388 | 0.425 | 0.418
NM 0.170 0.267 | 0.175 | 0.148 | 0.150 0.214 | 0.177 | 0.126
INT-00 0.206 0.404 | 0.225 | 0.164 | 0.152 0.192 | 0.211 | 0.213

Tables 13 and 14 show the average MCAI values for both subsets of considered problem instances. In the
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Table 12: Average APCA values for the problem instances reproducible by the NM and INT methods with different numbers of
characteristic points, reference assignments per class, and performances generation algorithms.

APCA Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
NM 0.392 | 0.233 | 0.139 | 0.065 0.296 | 0.195 | 0.158 | 0.190 | 0.177 || 0.331 0.108
INT-1 0.613 | 0.405 | 0.338 | 0.304 || 0.418 | 0.391 | 0.390 | 0.418 | 0.396 || 0.249 0.500
INT-0c0 0.588 | 0.379 | 0.313 | 0.267 || 0.416 | 0.366 | 0.353 | 0.375 | 0.375 0.242 0.459

NM 0.385 | 0.207 | 0.103 | 0.048 || 0.195 | 0.192 | 0.173 | 0.153 | 0.155 0.460 0.148
INT-00 0.500 | 0.198 | 0.123 | 0.072 0.330 | 0.234 | 0.181 | 0.187 | 0.185 0.451 0.187

first case, the precise recommendations suggested by the INT approaches achieved, on average, greater support
among the consistent model instances than the results offered by the NM methods. Once again, INT-1 with more
restrictive constraints led to slightly more robust recommendations than INT-co. We also observe similar trends to
those noted for APCA for a different number of criteria.

Among the NM methods, for both subsets of problems, the most robust results were obtained by NM-2, fol-
lowed by NM-3. For the more challenging subset of problem instances reproducible by INT-co, NM-2 performed
significantly better than INT-co. This is due to a noticeable decrease in the mean value between the two subsets
of problems for INT-oo (0.825 to 0.757) and a less intense decrease for NM-2 (0.816 to 0.798). This observation
strengthens the hypothesis about the negative impact of the number of interactions on the robustness of recom-
mended assignments. The detailed results for CCA are available in eAppendix.

Table 13: Average MCALI values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

MCAI Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5
NM-1 0.717 0.832 | 0.742 | 0.681 | 0.610 || 0.788 | 0.742 | 0.688 | 0.657
NM-2 0.816 0.896 | 0.837 | 0.789 | 0.739 0.890 | 0.844 | 0.793 | 0.745
NM-3 0.759 0.866 | 0.786 | 0.722 | 0.661 0.826 | 0.779 | 0.737 | 0.703
INT-1 0.836 0.894 | 0.856 | 0.814 | 0.776 0.799 | 0.810 | 0.854 | 0.874
INT-00 0.825 0.891 | 0.852 | 0.803 | 0.748 0.799 | 0.810 | 0.844 | 0.842
NM-1 0.715 0.869 | 0.749 | 0.689 | 0.648 0.753 | 0.717 | 0.681
NM-2 0.798 0.888 | 0.821 | 0.785 | 0.755 0.839 | 0.800 | 0.761
NM-3 0.741 0.871 | 0.776 | 0.718 | 0.680 0.772 | 0.744 | 0.711
INT-00 0.757 0.897 | 0.800 | 0.732 | 0.686 0.748 | 0.755 | 0.765

Table 14: Average MCAI values for the problem instances reproducible by the NM and INT methods with different numbers of
characteristic points, reference assignments per class, and performances generation algorithms.

MCAI Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere | random
NM-1 0.838 | 0.737 | 0.684 | 0.636 0.685 | 0.677 | 0.703 | 0.751 | 0.787 || 0.799 0.662
NM-2 0.885 | 0.847 | 0.797 | 0.746 0.791 | 0.791 | 0.807 | 0.839 | 0.861 0.898 0.762
NM-3 0.844 | 0.793 | 0.737 | 0.678 0.722 | 0.726 | 0.747 | 0.796 | 0.818 0.837 0.708
INT-1 0.892 | 0.845 | 0.817 | 0.800 0.776 | 0.817 | 0.844 | 0.862 | 0.871 0.804 0.856
INT-o00 0.887 | 0.837 | 0.806 | 0.782 0.775 | 0.807 | 0.829 | 0.845 | 0.864 0.803 0.839
NM-1 0.841 | 0.746 | 0.684 | 0.628 0.660 | 0.662 | 0.721 | 0.734 | 0.757 || 0.838 0.705
NM-2 0.871 | 0.826 | 0.782 | 0.740 0.739 | 0.760 | 0.805 | 0.815 | 0.831 0.887 0.791
NM-3 0.840 | 0.774 | 0.717 | 0.667 0.677 | 0.697 | 0.745 | 0.757 | 0.785 0.841 0.733
INT-00 0.872 | 0.766 | 0.736 | 0.685 0.741 | 0.728 | 0.737 | 0.777 | 0.792 0.846 0.750

In general, the INT approaches generated more robust recommendations than NM for problems that are too
complex for the primary UTADIS approach. Moreover, INT-1 slightly outperformed INT-co, regardless of the
quality measure analyzed. This confirms the validity of the strategy of activating the least possible number of
interactions per each criterion. Among the non-monotonic algorithms, the best performer was NM-2. It obtained
better results for measures based on acceptability indices. The premises indicating the dependence of robustness
on the number of interactions in the INT methods raise doubts. Hence, this topic will be considered in the next

section.
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3.8.4. Robustness and expressiveness in the context of the number of active interactions in the INT method

We aim to test the impact of the number of active interactions between pairs of criteria on the recommendation
robustness. For this purpose, we consider all problems reproducible simultaneously by the NM methods and INT-
0o. Undoubtedly, a higher number of active interactions increases the model’s expressiveness because it gives more
freedom in adjusting the impact of marginal functions and interactions on the comprehensive values of alternatives.
At the same time, due to the minimization of the number of active interactions in the objective function, it can
be presumed that solutions with a higher number of interactions apply to more demanding problems. This, in
turn, means that a direct comparison of quality measure values between solutions obtained using INT-co without
considering the number of active interactions may not be trustworthy. Hence, one needs to analyze each such subset
of problems separately.

Still, comparing these values to the results attained by other methods from the NM group is possible. Figure 10
shows the structure of the set of considered problems, and Table 15 exhibits the average values of quality measures
while dividing the set of problem instances based on the number of active interactions in the solution obtained by
INT-00. There is a clear advantage in the frequency of problems involving sets of alternatives whose performances
were generated by the random algorithm. Moreover, problems with greater complexity (i.e., with higher numbers

of classes, criteria, characteristic points, and reference assignments) occur more often.
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Figure 10: Characteristics of problem instances for which NM and INT-co with at least one active interaction delivered a feasible
solution.

Table 15 suggests that the subsets of problem instances for which the model delivered by INT-co has one or
two active interactions are of similar size. They jointly constitute about 93.5% of all considered instances. Due
to the small number of problems with more than two active interactions, the remaining solutions are grouped and
marked as 3+. Considering the 6* values, with the increasing number of interactions, the expressiveness of INT-co
increases too, whereas, for the NM group, it increases slightly for two interactions and then decreases rapidly for
three or more interactions. When comparing different methods, the INT model with only one active interaction is,
on average, less expressive than all non-monotonic approaches. Conversely, with two or more interactions needed,
it is significantly more flexible than the remaining methods.

Considering the quality measures that quantify the robustness by exploiting set U, i.e., APCA, CAR, and
ECALI in all three cases, INT-co generated more robust recommendations than the NM group when it needed at
most two active interactions. Both in terms of the possible class assignments and consensus between the compatible
sorting model instances, significant increases in robustness are seen for the NM methods between problems requiring
solutions with two and three interactions. This increase is much smaller for INT-co in the case of APCA and CAR,
and for ECAI, there is even a slight decrease.

The analysis of the remaining two measures leads to the same conclusions. The exception is observed for MCAI
in the case of two interactions. Then, NM-2 achieved an average value of 0.785, better than 0.758 attained by INT-
00. The observations above suggest that the minimum number of active interactions outputted by INT-co may
be essential for the robustness of delivered recommendations. If the number of interactions does not exceed two,
then the model with interactions leads to more robust recommendations. However, if there are more interactions,
then using one of the non-monotonic approaches is more beneficial. Still, the DM’s indications of non-monotonicity

of preferences and/or interactions between criteria should be critical in the method selection process. Choosing
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Table 15: Shares of problem instances and average values of six measures for different methods and different number of active interactions
in the solutions obtained with the INT-co method.

Number of interactions 1 2 3+
% of considered problems 45.24% | 48.26% | 6.51%
6*

NM-1 0.011 0.014 0.008
NM-2 0.021 0.023 0.016
NM-3 0.024 0.025 0.017
INT-co 0.007 0.032 0.034
APCA

NM 0.204 0.135 0.410
INT-00 0.387 0.201 0.224
CAR

NM 0.159 0.104 0.315
INT-0co 0.317 0.153 0.203
ECAI

NM-1, NM-2 0.711 0.671 0.795
NM-3 0.660 0.604 0.758
INT-co 0.814 0.766 0.699
MCAI

NM-1 0.721 0.694 0.846
NM-2 0.821 0.785 0.876
NM-3 0.764 0.725 0.840
INT-00 0.830 0.758 0.736
CCA

NM-1 0.740 0.726 0.805
NM-2 0.704 0.689 0.782
NM-3 0.705 0.680 0.780
INT-co 0.812 0.738 0.689

a model based on the number of active interactions should only be considered when the DM does not opt for using

either approach because of the apparent characteristics of relevant attributes.

3.3.5. Robustness and expressiveness within the NM and INT methods
The shares of problem instances solved by either all NM approaches or both INT approaches are 3.37% and 6.19%,
respectively. The structure of problems reproducible by the NM group is represented in Figure 11. Once again,
there is a considerable predominance of problems with performances generated by the random algorithm. Problems
with fewer classes and criteria, more complex MVFs, and more reference assignments are also more common.
Table 16 shows the average measure values for the considered problem instances. They confirm previous obser-
vations. NM-3 can be considered the most flexible approach based on the analysis of 6*. Yet, the values of PR,
APCA, and CAR for all three NM methods are the same. However, the models used by NM-1 and NM-2 lead
to more robust results in terms of ECAIL Moreover, among these two approaches, NM-2 typically suggests a more
robust recommendation because it attains significantly higher MCAI values than NM-1. In turn, NM-1 is the best
for CCA, maximizing the number of non-reference alternatives with confirmed assignments. This fact correlates
with the low value of §* for NM-1, leading to narrower value ranges in which assignments are uncertain than for

other methods.
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Figure 11: The characteristics of problem instances reproducible by the NM methods.
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Table 16: Average values of six measures for problem instances reproducible by the NM methods.

Measure NM-1 | NM-2 | NM-3
o* 0.015 0.034 0.036
APCA 0.187 0.187 0.187
CAR 0.148 0.148 0.148
ECAI 0.641 0.641 0.588
MCAI 0.715 0.797 0.747
CCA 0.750 0.666 0.657

A similar analysis was performed for problem instances for which the solutions were generated exclusively by
the INT methods. This subset involves more instances with performances generated by the sphere algorithm,
higher numbers of classes and assignments, and three or four criteria or characteristic points (see Figure 12).
The quality measures shown in Table 17 are consistent with the previous observations. The * value indicates a
higher expressiveness of INT-oco, whereas all other measures confirm a statistically significant advantage of INT-1
in ensuring higher recommendation robustness. For both groups, NM and INT, more detailed data showing the
impact of various model parameters on the values of quality measures are also consistent with previous observations.

The relevant discussion is included in eAppendix.
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Figure 12: The characteristics of problem instances reproducible by the INT methods.

Table 17: Average values of six measures for problem instances reproducible by the INT methods.

Measure INT-1 INT-00
o* 2.26E-03 | 2.64E-03
APCA 0.323 0.306
CAR 0.248 0.232
ECAI 0.810 0.802
MCAI 0.813 0.806
CCA 0.820 0.810

The above analyses confirm that NM-2 is the most advantageous method among non-monotonic approaches.
It combines increased flexibility and the greatest robustness, suggesting recommendations highly consistent with
the results produced by a set of all compatible models. Due to the significantly higher robustness of the delivered
solutions, the recommended approach among the INT methods is INT-1. INT-oco should be used for more demanding

problems when more interactions between criteria are needed to reproduce the DM’s preferences.

4. Which is the most suitable UTADIS variant that should be used for a given problem?

This section presents two frameworks for recommending the appropriate variant of UTADIS for a particular problem.
One is based on the experimental results, hence referring to the concepts of expressiveness and robustness. The

other is taxonomy-based, taking into account the problem’s characteristics and the DM’s requirements.

4.1. Framework for recommending the adequate variant of UTADIS based on the experimental results

The conclusions from the experimental analysis led us to formulate a framework that supports selecting an adequate

model for a given problem. We assume that the ability to reproduce the DMs’ preferences is crucial to providing
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a solution consistent with their value system and that recommendations should be trustworthy in terms of their

robustness. Figure 13 shows a flowchart underlying the selection procedure.

Problem recoverable YES |
by UTADIS? > UTADIS

Problem recoverable
by INT-1?

The solution contains
< 3 active interactions

The solution contains
< 3 active interactions

Problem recoverable
by INT-?

Problem recoverable YES

NM-2

Y
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—

S

Reformulate
problem

—

NO

Figure 13: A framework for recommending an adequate variant of UTADIS for a given decision problem.

Its underlying idea is to recommend an approach that, in most cases, would deliver results that are as robust as
possible, given that all constraints resulting from the expressed preferences are satisfied. The first condition verifies
whether the assumed model is expressive enough to reproduce DM’s preferences. According to the experimental
analysis results, UTADIS was characterized by significantly better robustness than other methods. Hence, it should
be considered the first choice under the consistency setting. Its results should be the most conclusive and easy to
interpret for the user. If UTADIS could not reproduce the DM’s assignment examples, then INT-1 or INT-co (in
this order) should be employed because their recommendations’ robustness was higher than for the non-monotonic
approaches. However, this advantage stands true when the number of interactions does not exceed two. When
the interaction-oriented approaches cannot reproduce the preference information, one should check if the NM
group of methods can do so. In the case of a positive answer, the recommended method should be NM-2, as it
provides more robust recommendations than its counterparts. Let us emphasize that the framework’s application
is justified if the choice of the specific model is consulted between the analyst and the DM. Simply, the acceptance
of modifying the assumptions regarding preferential independence or monotonicity needs to make sense, given the

problem’s characteristics. Finally, suppose it is impossible to reproduce the preferences using any of the methods
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considered. In this case, one needs to reformulate the problem and/or the DM’s preferences using algorithmic
support or interacting with the DM [19, 38]. After modifying the problem’s input or assumptions (e.g., revising
some judgments to restore the consistency or accepting some level of inconsistency), the framework can be reapplied.

To remain concise, the formulated guidelines refer to sufficient expressiveness and the number of active in-
teractions, neglecting, e.g., the number of classes or criteria. However, the experimental results discussed in the
previous subsections supplement the framework, providing more detailed hints on the method selection based on
the parameters of the considered problem and quality measures exhibiting different interpretations of robustness,
provided that adequate reproducibility is guaranteed. For example, when considering problems reproducible by NM
and INT-oo, Tables 13 and 14 indicate that NM-2 outperformed INT-0o in terms of MCAI, especially for a large
number of classes, reference alternatives, and characteristic points. Therefore, when the DM’s assignment examples
need a complex model to be reproduced and one cares about the support given to the delivered assignments by all
compatible sorting models, we can opt for using NM-2 over INT-oc0.

The proposed framework is valid when there are no solid reasons or DM’s preference that would directly in-
dicate the need to introduce non-monotonic MVFs or interactions between criteria. Therefore, the framework’s
workflow should be perceived as a set of guidelines when no other arguments for using a specific method can be
expressed. Otherwise, an appropriate variant of UTADIS should be selected irrespective of the results attained in
the comparative study based on the agreement of the methods’ features with the problem characteristics and DM’s
requirements. To support dialogue in this scenario, in Section 4.2, we formulate a set of questions to enable the

selection of an appropriate UTADIS method.

4.2. Taxonomy-based framework for recommending the adequate variant of UTADIS based on the problem charac-

teristics

The variant of UTADIS appropriate for a given decision problem can also be selected based on the problem’s
characteristics and the DM’s requirements. A comprehensive framework for performing such a selection has been
proposed in [6]. In Table 18, we report the questions and answers that lead to selecting all UTADIS variants. They
refer to the features regarding problem formulation, preference model, and preference information. In particular,
the accounted UTADIS variants support sorting problems with completely ordered classes without cardinality
constraints, flat criteria structures, and deterministic performances on a complete family of criteria while applying
a cardinal scale to lead the assignments. Regarding the model, the performances are used quantitatively, compared
by the DM with respect to non-graded preference intensity, and aggregated while admitting full compensation. As

for the preferences, all variants accept indirect assignment examples.

Table 18: Questions and answers leading to the recommendation of all considered methods from the family of UTADIS.

Symbol Question Answer
Problem typology
Q-PT-1I What type of decision recommendation is requested? Sorting
Q-PT-II What order of classes is requested? Complete
Q-PT-IIT What scale leading the recommendation is requested? Cardinal
Q-PT-1IV What cardinality of classes is required? Without constraints
Q-PT-V What is the structure of the criteria used for the assessment? Flat
Q-PT-VI What is the type of performance of the criteria? Deterministic
Q-PT-VII  What is the completeness status of the criteria set? Complete
Preference model

How should the input information/performance e
Q-PM-1 data be used by the method(s)? / Quantitatively

What type of method that considers the quantitative information
Q-PM-II from thscle criteria performances should be selected? Performance-based

How should the comparison of the performances Performances are compared by the DM with
Q-PM-III L . -

on the criteria be performed? respect to non-graded intensity of preference

How much can the good performance on a criterion
Q-PM-TV compensate for the bad performance on another criterion? Fully

Preference information

Q-PI-I What type of preference information is provided? Indirect
Q-PI-II What type of indirect preferences would you like to account for? Assignments of reference alternatives to classes
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Table 19 presents the questions that lead to particular variants of UTADIS. Specifically, the traditional UTADIS
should be used under the assumptions of preferential independence between the criteria, for which the preference
for the performances is known and monotonic. The INT methods are recommended when interactions between
criteria should be considered. Then, the contribution of the performance on some criterion into the alternative’s
comprehensive evaluation may be affected by the performances on the remaining criteria. If a criterion can interact
with at most one other attribute, then INT-1 should be prioritized over INT-co. This assumption makes constructing
a sorting model more manageable and interpretation more straightforward. These two variants also require that the
order of preference for the performances on all criteria is known, meaning there is a clear, pre-defined correspondence
between attributes and class assignments. When the DM does not know a priori if such a monotonic dependency is
present and admits that it can be non-monotonic, the NM variants should be employed. To discriminate between
them, one needs to indicate whether a) sudden changes in the functions’ directions should be prevented, hence
minimizing slope changes and opting for the most parsimonious model (NM-1), b) the most discriminant model
should be prioritized, maximizing the difference between comprehensive values of alternatives from various classes
(NM-2), or c) it is desired to distinguish gain and cost components for the potentially non-monotonic criteria
(NM-3).

Table 19: Questions and answers leading to the recommendation of different methods from the family of UTADIS.

Symbol Question Answers (Methods)
Interactions between criteria
Q-INT-T Should interactions between criteria be considered Yes (INT-1, INT-00)
to reflect a non-additive nature of preferences? No (UTADIS, NM)
Q-INT-II  Can each criterion interact with more than one other attribute? Yes (INT-00), No (INT-1)
Potential non-monotonicity of preference directions
Q-NM-I What is the knowledge of the preference Known, monotonic (UTADIS, INT)
for the values of each criterion? To discover, potentially non-monotonic (NM)
Q-NM-IT When handling potential non-monotonicity, should sudden Yes (NM-1, NM-2)
changes in the functions’ directions be prevented? No (NM-3)
Q-NM-TTT When handling potential non-monotonicity, should obtaining Yes (NM-1, NM-3)
the most discriminant model be prioritized? No (NM-2)
Q-NM-TV Is it desired to distinguish pair of components with monotonic potentially =~ Yes (NM-3)
positive and negative relationships for the non-monotonic criteria? No (NM-1, NM-2)

5. A case study

To illustrate the applicability of the presented UTADIS methods and quality measures, we consider the problem of
sorting 30 mobile phone models into three classes: Cp, Cy and C5, where Cy is the least preferred and Cj is the
most preferred one. The alternatives are evaluated in terms of four criteria: g; — display size (inches), go — storage
(gigabytes), g3 — battery capacity (mAh), and g4 — price (Ukrainian Hryvnia — UAH). Their performances are given
in Table 20. The data comes from [40].

For each criterion, we selected the following four characteristic points: g1 — 5.1, 6.1, 7.1, 8.1; go — 64, 128, 256,
512; g3 — 2000, 3000, 4000, 5000; g4 — 15000, 30000, 45000, 60000. The extreme observed performances on each
criterion define the range of acceptable evaluations. In addition, the breakpoints for criteria gi, g3, and g4 were
selected according to Equal Width Binning [10]. Since there are only four possible performances on go, they were
all selected as characteristic points. In the basic definition of the problem, we considered the first three criteria to
be of a gain type and the last criterion — a cost type. We also admitted non-monotonicity in the case of display
size (g1). Finally, we considered three artificial DMs — DM;, DMy, and DMs, simulating a dialogue with each.
Their preferences are generated so that to illustrate the use of different variants of UTADIS and the proposed
frameworks for method selection while referring to the least possible number of DMs and interactions.

In the next step, nine reference alternatives were selected. They were then precisely classified by each DM. All
three DMs agreed to assign alternatives ag, a13 and agg to class Cy, as to Co, and a5 to C3. In the case of as, as,

a17, and ayg, they had conflicting preferences, but each of these alternatives was assigned to either Cy or C53. The
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Table 20: Performance table for the problem of sorting mobile phone models.

Alternative || g1 (display size) | g2 (storage) | gs (battery capacity) | ga (price)
al 8.00 512 4500 56082
as 7.30 256 4380 55338
as 6.10 512 2815 46503
a4 8.10 256 3577 44232
as 6.90 512 4500 39524
ag 6.80 128 5000 37630
ar 5.80 512 3190 36188
ag 6.10 128 2815 35507
ag 6.50 256 4000 34165
aio 6.70 512 4260 32530
ail 6.50 64 3969 32583
aia 6.58 512 4200 31656
ais 5.40 256 2227 31369
a4 6.10 256 4000 29927
ais 5.20 64 4500 25649
aie 6.20 128 2510 22760
air 6.78 256 4510 22587
ais 6.00 128 4080 21879
alg 6.67 128 5000 21435
a0 6.10 128 3140 17475
as1 7.60 256 4500 51460
a2 6.80 256 5000 39620
a3 6.50 512 3174 27190
a4 6.70 256 4200 29999
azs 6.67 256 4500 27999
a6 6.67 256 5000 27417
a7 5.99 64 4100 15048
ass 5.10 64 2510 15000
a9 6.20 128 2000 28543
aso 7.00 512 4260 60000
min 5.10 64 2000 15000
max 8.10 512 5000 60000

upper part of Table 21 summarizes the initially collected preference information. The remaining 21 alternatives not
listed in this section of the table were not evaluated by the DMs in the first step.

For each DM, we simulated two iterations so that the analysis of the results delivered by the primary UTADIS
model after the first iteration stimulated the provision of additional assignment examples, which are presented in the
lower part of Table 21. The class thresholds, alternatives’ comprehensive values, and assignments for all discussed
models are provided in Table 22. Also, for each iteration, we sampled 100, 000 uniformly distributed feasible model
instances in U

For illustrative purposes, we also determined the values of six quality measures capturing the models’ expres-

siveness and robustness of the delivered results (see Table 23). This way, the readers could better understand their
meaning while referring to an example sorting problem.
Analysis for DM;. Let us assume DM, supported by the decision analyst, opted for using a standard UTADIS.
Hence, he agreed that the impact of all criteria in a comprehensive score does not depend on any other attribute.
Moreover, he claimed that g1, g2, and g3 are gain criteria, with greater performance being more favorable, whereas
g4 is a cost criterion. The model compatible with the nine reference assignments of DM is denoted as UTADIS;
(see Table 22). The comprehensive value ranges for the three classes are as follows: [0,0.647), [0.647,0.842), and
[0.842,1]. There are 7, 11, and 12 alternatives in C;, Co, and Cj, respectively. However, the DM judged this
recommendation unsatisfactory because as3 was assigned to Cy. Counsidering its low price (27190 UAH) and large
capacity (512 GB), the DM opted for assigning ass to Cs (see Table 21). The new solution, denoted by UTADIS,,
was still delivered by the primary UTADIS model while respecting the pre-defined monotonicity constraints and
not violating preferential independence.

When comparing the MVFs obtained for DM in the two iterations (see Figure 14), there is a significant increase

in the maximal value for us (for 512 GB) and higher appreciation of prices in the 15000-30000 UAH range compared
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Table 21: Reference assignments provided by three DMs.

Alternative [ DM; | DMz [ DM3
P:itrst iterat?on -

a2 CQ 02 CQ

as Co Csy Co

as Csy Csy Co

as Cy Ch Cy

ai2 C3 Cs C3

a3 Cy Cy Cy

ai7 C3 Ca C3y

aig Ca Ca C3y

azo Cy Cy Cy
Second iteration

al Cl

a4 C1

ais Cs

as3 Cs

to the 30000-45000 UAH range. The comprehensive value for the new reference alternative as3 increased slightly
(from 0.812 to 0.820). Since the class thresholds were assigned lesser values, as3 is now assigned to the most
preferred class C3. The two non-reference alternatives whose classifications were affected by the model change are
a1 and a4 assigned to C3 and Cs, respectively.

When comparing the two models obtained for DMy, the value of 6* decreased after enriching the constraint set
with the one implied by the desired assignment of ass (see Table 23). The number of non-reference alternatives
decreased from 21 to 20. Among them, only two alternatives had a non-empty necessary assignment (ayg —" Cs,
asg =V C3). Thus, the value of CAR is equal to 22—1 and 22—0 in the two iterations. In addition, there is a slight
increase in the values of ECAI (from 0.618 to 0.630) and MCAI (from 0.621 to 0.665), confirming the positive

impact of additional references assignments on the robustness of delivered results.

0.3 1
u; 0.2 4 uz 1 us Ug 1

0.1 A UTADIS;

—— UTADIS;

a
0.0 | 23
5.1 6.1 7.1 8.1 64 128 256 512 2000 3000 4000 5000 15000 30000 45000 60000
g1 92 g3 9a

Figure 14: Marginal value functions obtained in the two iterations for DMj.

Analysis for DM,. The analysis for DM, starts while tolerating the preferential independence and pre-defined
preference directions for the four criteria. The model selected by the primary UTADIS method is presented in
Figure 15 and Table 22. The greatest share in the comprehensive value is associated with go, while g; and g4 have
a negligible impact on the alternatives’ scores. Also, the class thresholds were vastly different than for DM, with
the upper limits equal to 0.187 for C; and 0.493 for Cs. This affected the cardinalities of alternatives assigned to
each class: C; — 6, Cy — 16, and C3 — 8.

Table 24 presents the possible class assignments for all non-reference alternatives. Only aqq, as3, and azg have
non-empty necessary assignments; for ten alternatives — there are two possible classes, whereas for the remaining
eight options — all three classes are observed for at least one feasible sorting model. As a result, APCAUT) =
1 — 824100430 — (381, In Table 24, the bold values of C'AI'(a,C;) are associated with the class to which the
selected model assigns a given alternative. For 17 alternatives, this assignment is confirmed by most samples, and
only for alternatives a1, ais, aig, and agy — CAI' is higher for some other class. Still, their average is relatively
high (MCAI(U) = 0.783), confirming the high robustness of the suggested classification. Further, the analysis of
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Table 22: Threshold values, alternatives assignments, and comprehensive values obtained in each iteration for the three DMs.

DM DM- DM+ DMgs

Method UTADIS; UTADIS, UTADIS NM-1 NM-2 NM-3 UTADIS INT-1
Threshold

t1 0.647 0.538 0.187 0.547 0.571 0.478 0.442 0.176

to 0.842 0.726 0.493 0.636 0.810 0.674 0.714 0.682
Alternative

a 0.791 (C2) | 0.809 (C5) || 0.961(Cs) | 0.543(C1) | 0.508(C1) | 0.406(C1) || 0.611 (C2) | 0.388 (Ch)
a2 0.744 (C2) 0.632 (C2) 0.340 (C2) | 0.551 (C2) | 0.635 (C2) 0.551 (C2) 0.459 (C2) | 0.247 (C2)
as 0.744 (C2) 0.632 (C2) 0.646 (C3) | 0.640 (C3) | 0.873 (C3) 0.746 (C3) 0.459 (C2) | 0.247 (C2)
aq 0.844 (C3) 0.591 (C2) 0.207(C2) | 0.353(C1) | 0.205(C1) | 0.023(C1) 0.355 (C1) | 0.205 (C2)
as 1.000 (C3) 0.909 (C3) 0.955 (C3) | 0.716 (C3) 0.937 (C3) 0.949 (Cs) 0.697 (C2) | 0.612 (C2)
ag 0.744 (C2) 0.559 (C2) 0.344 (C2) | 0.578 (C2) | 0.635 (C2) 0.584 (C2) 0.610 (C2) | 0.442 (C2)
ar 0.746 (C2) 0.702 (C2) 0.693 (C3) | 0.753 (C3) | 0.764 (C2) 0.691 (C3) 0.541 (C2) | 0.342 (C2)
as 0.517 (C1) 0.361 (C1) 0.000 (C1) | 0.486 (C1) | 0.508 (C1) 0.406 (C1) 0.339 (C1) | 0.000 (C1)
ag 0.940 (C3) 0.780 (C3) 0.292 (C2) | 0.677 (C3) | 0.682 (C2) 0.530 (C2) 0.514 (C2) | 0.689 (C3)
alo 1.000 (C3) | 0.976 (C3) || 0.930 (C3) | 0.748 (Cs) | 0.906 (C3) | 0.898 (Cs) || 0.735 (Cs) | 0.897 (C3)
an 0.737 (C2) | 0.600 (C2) || 0.250 (Ca) | 0.594 (C2) | 0.477 (C1) | 0.508 (C2) || 0.385 (C1) | 0.628 (Ca)
a2 1.000 (C3) 0.984 (C3) 0.922 (C3) | 0.767 (C3) | 0.899 (C3) 0.868 (C3) 0.730 (C3) | 0.932 (C3)
a3 0.549 (C1) 0.444 (C1) 0.034 (C1) | 0.543 (C1) | 0.426 (C1) 0.301 (C1) 0.426 (C1) | 0.105 (C1)
aiq 0.940 (C3) 0.820 (C3) 0.280 (C2) | 0.740 (C3) | 0.682 (C2) 0.429 (C1) 0.580 (C2) | 0.859 (Cs)
ais 0.534 (C1) 0.447 (C1) 0.284 (C2) | 0.805 (C3) 0.212 (C1) 0.242 (C1) 0.408(C1) | 0.753(C3s)
aie 0.517 (C1) 0.414 (C1) 0.003 (C1) | 0.416 (C7) 0.508 (C1) 0.431 (C1) 0.426 (C1) | 0.000 (C1)
air 0.940 (C3) 0.820 (C3) 0.340 (C2) | 0.633 (C2) | 0.746 (C2) 0.602 (C2) 0.735 (C3) | 0.859 (C3)
ais 0.721 (C2) 0.611 (C2) 0.251 (C2) | 0.704 (C3) | 0.481 (Ch) 0.388 (C1) 0.431 (C1) | 0.753 (C3)
alg 0.744 (C2) 0.632 (C2) 0.340 (C2) | 0.599 (C2) | 0.635 (C2) 0.551 (C2) 0.730 (C3) | 0.753 (C3)
az0 0.549 (C1) | 0.444 (C1) || 0.034 (C1) | 0.543 (C7) | 0.508 (C1) | 0.406 (C7) || 0.426 (Cy) | 0.105 (Ch)
a1 0.818 (C2) | 0.649 (C2) || 0.350 (Ca) | 0.503 (C1) | 0.507 (C1) | 0.353 (C1) || 0.495 (Cz) | 0.247 (Cb)
a2 0.940 (C3) 0.728 (C3) 0.379 (C2) | 0.629 (C2) | 0.808 (C2) 0.607 (C2) 0.732 (C3) | 0.466 (C2)
as3 0.812(C2) 0.820(C3) 0.701 (C3) | 0.640 (C3) | 0.873 (C3) 0.848 (C3) 0.696 (C2) | 0.378 (C2)
a4 0.940 (C3) 0.820 (C3) 0.314 (C2) | 0.645 (C3) | 0.707 (C2) 0.581 (C2) 0.641 (C2) | 0.859 (Cs)
azs 0.940 (C3) 0.820 (C3) 0.336 (C2) | 0.650 (C3) 0.745 (C2) 0.574 (C2) 0.732 (C3) | 0.859 (Cs)
a6 0.940 (Cs) 0.820 (C3) 0.375 (C2) | 0.650 (C3) 0.808 (C2) 0.574 (C2) 0.884 (C3) | 0.859 (Cs)
a7 0.719 (C2) 0.609 (C2) 0.253 (C2) | 0.680 (C3) | 0.449 (Cy) 0.386 (C1) 0.436 (C1) | 0.753 (C3)
ass 0.284 (C1) 0.208 (C1) 0.000 (C1) | 0.564 (C2) | 0.112 (C1) 0.223 (C1) 0.237 (C1) | 0.000 (C1)
a9 0.517 (C1) 0.414 (Ch) 0.003 (C1) | 0.325 (C1) | 0.508 (C1) 0.431 (C1) 0.426 (C1) | 0.000 (C1)
aso 1.000 (C3) 1.000 (C5) 0.940 (C3) | 0.701 (C3) | 0.906 (C3) 0.975 (C3) 0.775 (C3) 1.000 (C3)

CAISs leads to the following entropy: > . r EC Al (a) = 6.9999. After normalizing it, we obtained the value

6.9999
log,(3)-21

high, suggesting that the variability of sorting recommendations in the set of feasible sorting model instances is

of the entropy-oriented quality measure: FCAI(UT) =1 — = 0.790. It should be perceived as relatively
rather low.

Nevertheless, the solution proposed by UTADIS was not approved by DMy due to overestimating a; and ay.
Hence, the DM stated that these two alternatives should be assigned to C; (see Table 21) mainly because he judged
a display size of at least eight inches too large. Note that this was not possible when using any model compatible
with the assumptions of the primary UTADIS method (see Table 24).

After including the two additional assignment examples, the UTADIS method could not find any feasible solution.
Hence, the DM — supported by the decision analyst — assumed that the non-monotonic shape of u; can be accepted
to increase the model’s flexibility while suitably representing his preferences. Indeed, he confirmed that it is
acceptable that the preference should be the least for small or large display sizes. In contrast, the most preferred
screens have intermediate sizes, ensuring a proper balance between usability, comfort, and conveniently storing the
phone in a pocket. For the remaining three criteria, MVFs were still required to respect the pre-defined preference
directions. The DM was offered three solutions, each obtained using a different approach from the NM group (see
Table 22 and Figure 15). He assessed that the recommendations obtained using NM-2 best reflected his preferences.

Figure 15 confirms the non-monotonic character of w;. In the case of NM-2, it assigns the highest scores to
phones with intermediate display sizes between 6.1 and 7.1 inches. In addition, compared to UTADIS, there is an
apparent decrease in the value for alternatives with the highest storage (g2) and battery (g3) capacities. The impact

of price (g4) was found negligible for all four models obtained based on the preferences of DMs. When comparing
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Table 23: Values of six quality measures for the sorting model instances selected in each iteration for the three DMs.

DM DM, DM DM3

Method UTADIS; | UTADIS, UTADIS | NM-1 | NM-2 | NM-3 UTADIS | INT-1
0* 0.098 0.094 0.153 0.004 0.063 0.072 0.016 0.071
APCA 0.238 0.225 0.381 0.158 0.158 0.158 0.476 0.150
CAR 0.095 0.100 0.143 0 0 0 0.143 0.050
ECAI 0.618 0.630 0.790 0.781 0.781 0.775 0.848 0.802
MCAI 0.621 0.665 0.783 0.449 0.894 0.796 0.898 0.862
CCA 0.619 0.450 0.381 0.947 0.842 0.632 0.905 0.850

Table 24: The possible assignments PC'A and class acceptability indices CAI’ for DMy when using the primary UTADIS model for
deriving the recommendation.

DM DMy

Method UTADIS

Alternative || PCA = (a) CAI'(a,C1) | CAT'(a,C2) | CAI'(a,C3) || ECAIL,(a)
a1 1Cs, Ca) 0 1.00E-05 1 5.84E-04
aq {C1, Ca2, C3} 0.035 0.791 0.174 0.876
ag {Cq, Ca2, C3} 0.118 0.881 2.40E-04 0.528
ar {Cq, Ca, C3} 6.00E-05 0.030 0.970 0.195
as {C1, Ca} 0.167 0.833 0 0.651
1o (O] 0 0 1 0.000
ail {C1, C2} 0.890 0.110 0 0.500
aiq {C1, C2} 0.306 0.694 0 0.889
a1s {Cy1, O} 0.937 0.063 0 0.339
a16 {Cy, O} 1 1.80E-04 0 0.002
a18 {C1, C2} 0.730 0.270 0 0.841
as1 {Cs, C3} 0 0.905 0.095 0.453
a22 {Cq, Ca2, C3} 0.002 0.933 0.064 0.365
a23 {03} 0 0 1 0.000
a24 {C1, C2} 0.034 0.966 0 0.214
P {C1, Ca} 0.005 0.995 0 0.045
a6 {C1, Ca, C3} 5.70E-04 0.898 0.101 0.480
a7 {C1, Ca, C3} 0.858 0.142 2.00E-05 0.590
asg {C1, C2, C3} 1 5.00E-05 3.00E-05 0.001
a9 {C1, C2, C3} 0.997 0.003 6.00E-05 0.030
aso {03} 0 0 1 0.000

the results obtained using UTADIS and NM-2, the latter proposed a less preferred class for more alternatives.
Specifically, apart from the change for reference alternatives a; and ay4, five additional alternatives (a11, a5, ais,

as1, ag7) were assigned to C, whereas another one option (a7) was placed in Cs.
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Figure 15: Marginal value functions obtained in the two iterations for DMs.

Analysis for DM3. When reproducing the nine reference assignments desired by DMs, UTADIS delivered the
model presented in Table 22 and Figure 16. It indicates that the classes are well-separated (¢; = 0.442 and
to = 0.714), and each criterion significantly impacts the alternatives’ comprehensive scores. Nevertheless, the DM
did not accept this solution as he felt that the preference for phones with a low price and a high battery capacity
was too low. Therefore, he indicated that ai; should be assigned to C's motivated by combining one of the highest

performances on g3 and one of the lowest on g4. In this case, UTADIS was unable to find a satisfying solution.
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In line with the experimental-based framework proposed in Section 4.1, we attempted to apply INT-1. It
suggested a model that respected the pre-defined monotonicity constraints but incorporated a positive interaction
between g3 and g4. The solution was approved by DM3 as it suitably represented the desired impact of battery
capacity and price on the phone’s comprehensive quality.

In general, the interaction component for pairs of criteria allows the introduction of additional dependencies
into the model that cannot be expressed in the standard UTADIS. In particular, one can increase or decrease the
preference for combinations of performances on two criteria using bonuses or penalties. In this case, DM3 wanted
to emphasize the positive perception of phones with both large battery capacity and low price, as the first model
did not properly reflect these preferences. In DM’s opinion, better performance on only one of the two criteria (gs
or g4) was less important than a favorable combination of both values of these attributes, hence the introduction
of synergy for these criteria. In a way, the DM desired to assign a bonus to models with large battery capacity
and low prices. The analysis of various phones confirmed that such combinations were possible, and hence, these
alternatives should be promoted by increasing their comprehensive values and ranks. The DM did not want to pay

more for a better battery, as he could have a decent one while spending less.
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Figure 16: Marginal value functions obtained in the two iterations for DMs.
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Figure 17: Positive interaction function syn;;, g4 between criteria g3 and g4 for results obtained by the INT-1 method for DM3.

The respective MVF's are given in Figure 16, and the three-dimensional plot of the syn;;” g4 interaction function

is shown in Figure 17. The latter has the greatest maximal impact on the alternatives’ comprehensive scores. Such
maximum scores of syn}. —are assigned to all alternatives with gs(a) > 4000 and g4(a) < 30000, which coincides

with the DM’s preferences. The introduction of synergy brought the desired effect and better reflected the DM’s
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value system. At the same, the importance of the individual criteria was reduced (e.g., the impact of u; and wuy
considered separately was found to be negligible).

Table 23 reveals an increase of 0*. This results from using a more expressive model than the primary UTADIS
method. At the same time, we observed a decrease in the values of all robustness measures. For example, the
possible assignments are now more diverse, as confirmed by the deterioration of APCA from 0.476 to 0.150,
and the number of necessary assignments decreased from three to one among all non-reference alternatives (CAR
decreased from 0.143 to 0.050). When it comes to CCA, for UTADIS — CCA(U) = 33 = 0.905 and for INT-1
- CCA(U) = %—g = 0.850. For the former, only the assignments of a1g and ag7 are unconfirmed by the reference
alternatives. This is because their comprehensive values of 0.431 and 0.436 are between CV5B = (0.426 (attained by
reference alternatives a3 and agy) and C£F = 0.459 (attained by reference alternatives as and a3). For INT-1,
the unconfirmed assignments are associated with three non-reference alternatives (a4 with the U = 0.205 between
CVPB =0.105 and C{P = 0.247, and ay; and ag with comprehensive values of 0.628 and 0.689 between CY 2 = 0.612
and CLP = 0.753).

The above examples showed the impact of DM’s indirect preferences on the attained sorting results. They also
emphasized the importance of collecting reliable assignment examples representing the DM’s value system. Also,
we illustrated how important it is to involve the DMs, possibly supported by an analyst, in the process of selecting

a model that would reflect their decision policy in the best way.

6. Conclusions

While many MCDA methods have been proposed over the years, the focus primarily has been on their objective
features, with less attention to their performance in practice. This paper aimed to address this gap by focusing on
the performance aspects of MCDA methods. We accounted for preference disaggregation approaches in the context
of multiple criteria sorting. Specifically, we considered the family of UTADIS methods, inferring a value-based
aggregation model and class thresholds from the DM’s reference assignments. These approaches are known for
their intuitiveness, interpretability, and convenience to exploit their outputs.

We discussed a basic variant of UTADIS, where an alternative’s score is computed using an additive value
function. Then, we extended it by suitably adapting proposals existing in the context of ranking problems. On the
one hand, we discussed how to incorporate the dependencies between criteria while accepting various assumptions
on the number of active interactions for each attribute. On the other hand, we presented how to discover the
preference directions for various criteria while tolerating that marginal functions may be non-monotonic. Overall,
we considered six variants of UTADIS that differed in their assumptions, influencing their performance.

We introduced the concepts reflecting the performance of multiple criteria sorting methods in real-world decision-
making — the model’s expressiveness and the robustness of the delivered recommendations. Expressiveness refers to
the ability of a method to accurately represent the preferences of DMs, while robustness stands for the stability and
validity of the recommendations across different conditions. We proposed seven measures capturing the performance
in these two dimensions. They were used to quantify the outputs of an extensive computational experiment. This
way, we proposed the sorting-based counterpart of the framework proposed in [29] in the context of ranking and
choice problems.

The best performance in terms of expressiveness was attained by the INT-oco method, which does not pose any
limits on the number of interacting criteria pairs. It was followed by the NM methods, admitting non-monotonicity.
The least expressive was the basic variant of UTADIS. Regarding robustness, the latter approach delivered the most
stable recommendations for the scenarios handled by all approaches. In the remaining cases, the best performer
depended on the number of interactions needed to ensure consistency with the DM’s preferences. When it was not
higher than two, it was better to use the interaction-oriented methods. Otherwise, the NM approaches led to more
robust results.

We used the above observations to support decision analysts in selecting the appropriate MCDA model. On

the one hand, the guidelines are based on the nature of supplied preferences for a specific decision problem. We
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aimed to attain the most robust recommendation derived from the model whose complexity is adjusted to the DM’s
assignment examples. On the other hand, the recommendations should always be confronted against the DM’s
requirements and problem characteristics. To support such a confrontation, we formulated a set of questions and
answers leading to the selection of various UTADIS variants. The essential ones refer to the features regarding
problem formulation and preference model.

We confirmed that expressiveness and robustness are conflicting. Moreover, the challenge of comprehensive
reproduction of DM’s indirect preference increased with more classes and reference assignments, fewer criteria and
characteristic points of marginal functions, and randomly generated performance of non-dominated alternatives. In
turn, the robustness of the recommendation is positively affected by richer preference information and negatively
impacted by a greater number of model parameters, which depends on the number of criteria and characteristic
points.

In our experimental study, the non-dominated alternatives were randomly assigned to the ordered classes.
Consequently, the model’s goodness of fit might be negatively influenced as the number of alternatives increases.
The relationship between the fit and the number of alternatives while controlling for the above factor, e.g., through
a systematic assignment mechanism respecting the relation between potential dominance and desired classes, is
worth exploring.

We envisage the following other directions for future research. First, it is possible to extend the analysis
to other value-based methods that handle interactions between criteria [35] or non-monotonicity of per-criteria
preferences [23]. Second, it would be interesting to account for the methods that tolerate inconsistency with the
DM’s preference information instead of being required to reproduce all assignment examples [28]. This way, we
could capture the trade-off between accepting some positive misclassification error and increasing the preference
model’s complexity. Third, in situations where preference information from multiple DMs is available, such as our
case study, it would be interesting to see how population-level insights could be exploited to improve individual-level
results [15]. Fourth, it is desired to consider outranking-based multiple criteria methods such as ELECTRE TRI-B or
TRI-C. However, modeling non-monotonicity with their use is still in its infancy [37]. Another challenge consists of
elaborating a value-driven method that simultaneously considers interactions and non-monotonicity. In this case,
the mathematical constraints would be non-linear, and hence one would need a heuristic optimization method.
Finally, it would be interesting to extend the experiments concerning the predictive accuracy presented in [14, 48]
to more advanced UTADIS variants that admit interactions and non-monotonicity. This would require knowing
or generating the ground truth (i.e., the actual assignments of hold-out alternatives) and investigating different
ways for selecting a single representative model (e.g., the most discriminant, average, central, parsimonious, or
robust) [32, 48]. The latter is essential as even in the context of the basic UTADIS variant, the reported differences
in the classification accuracy between the best and the worst-performing procedures were as significant as several

percent.
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1. Analysis of robustness for the problem instances handled by all methods

Tables 1 and 2 show the CAR, ECAI, and CCA values for the subset of problem instances handled by all methods.
The observations for CAR are analogous to those reported for APCA in the main paper. The only exception is the
opposite trend regarding the dependence of the measure on the increasing number of classes when CAR decreases slightly.
This difference is probably due to the increased difficulty of obtaining unambiguous recommendations confirmed by all
compatible models as the number of classes increases. CAR is also more restrictive because it rewards alternatives that
can be assigned to only one class. In turn, APCA offers greater granularity, rewarding models in which, e.g., an alternative
can be assigned to two out of five classes.

ECATI also confirms the advantage of UTADIS and INT over the NM approaches. The only noticeable difference is
that, unlike before, the results for NM-3 are worse than those obtained by NM-1 and NM-2. This is due to the different
distribution of all models in the space of consistent solutions 2/ that lowers consistency between the recommendations
they suggest.

Observations for CCA values also indicate an advantage of the primary UTADIS method over non-monotonic ap-
proaches in the analyzed subset of problem instances. Among the NM methods, NM-1 achieves the best results. This is
related to the attained §* values. Low §* means that the comprehensive values of the reference alternatives cover a large

portion of all possible comprehensive values, leaving only small value ranges for the uncertain assignments.

Table 1: Average CAR, ECAI, and CCA values for the problem instances handled by all methods and different numbers of classes and criteria.

Number of classes Number of criteria
Measure All settings 2 L 3 L 4 L 5 2 L 3 L 4 L 5
CAR i i i i i i
UTADIS + INT 0.115 0.125 | 0.116 | 0.107 | 0.094 0.219 | 0.129 | 0.093 | 0.074
NM 0.030 0.036 | 0.027 | 0.026 | 0.021 0.087 | 0.034 | 0.018 | 0.009
ECAI
UTADIS + INT 0.633 0.590 | 0.646 | 0.670 | 0.686 0.773 | 0.653 | 0.604 | 0.577
NM-1, NM-2 0.464 0.408 | 0.478 | 0.515 | 0.537 0.699 | 0.501 | 0.416 | 0.367
NM-3 0.416 0.375 | 0.427 | 0.454 | 0.469 0.635 | 0.446 | 0.372 | 0.328
CCA
UTADIS + INT 0.669 0.733 | 0.660 | 0.611 | 0.570 0.717 | 0.696 | 0.659 | 0.633
NM-1 0.635 0.685 | 0.631 | 0.589 | 0.560 0.677 | 0.665 | 0.632 | 0.596
NM-2 0.493 0.527 | 0.488 | 0.463 | 0.441 0.630 | 0.532 | 0.465 | 0.422
NM-3 0.484 0.520 | 0.477 | 0.454 | 0.430 0.606 | 0.521 | 0.463 | 0.416

2. Analysis of robustness for the problem instances handled by the NM and INT methods

The average values of CAR, ECAI, and CCA for the problem instances handled by all methods except UTADIS are shown
in Tables 3 and 4. Similarly to the observations made for APCA in the main paper, CAR and ECAI exhibit different
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665 3022.
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Table 2: Average CAR, ECAI, and CCA values for the problems instances handled by all methods and different numbers of characteristic
points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 L 3 L 4 L 5 1 L 2 L 3 L 4 L 5 sphere L random
AR = = = = = = = =
UTADIS + INT || 0.276 | 0.129 | 0.089 | 0.061 0.068 | 0.121 | 0.147 | 0.162 | 0.171 0.082 0.161
NM 0.125 | 0.028 | 0.012 | 0.006 || 0.014 | 0.031 | 0.041 | 0.047 | 0.049 || 0.032 0.027
ECAI
UTADIS + INT || 0.685 | 0.640 | 0.634 | 0.606 || 0.548 | 0.650 | 0.693 | 0.714 | 0.724 || 0.610 0.665
NM-1, NM-2 0.624 | 0.494 | 0.439 | 0.400 || 0.376 | 0.471 | 0.527 | 0.555 | 0.578 || 0.517 0.391
NM-3 0.569 | 0.443 | 0.394 | 0.353 || 0.328 | 0.423 | 0.477 | 0.509 | 0.533 || 0.464 0.349
CCA
UTADIS + INT 0.650 | 0.669 | 0.677 | 0.669 0.557 | 0.683 | 0.741 | 0.785 | 0.805 0.661 0.680
NM-1 0.569 | 0.641 | 0.648 | 0.648 || 0.460 | 0.682 | 0.751 | 0.791 | 0.812 || 0.656 0.606
NM-2 0.595 | 0.527 | 0.481 | 0.438 || 0.323 | 0.506 | 0.609 | 0.672 | 0.714 || 0.541 0.425
NM-3 0.580 | 0.518 | 0.474 | 0.429 || 0.313 | 0.502 | 0.598 | 0.662 | 0.704 || 0.528 0.423

trends for the NM and INT methods for various numbers of criteria. Also, for bi-criteria problems, the NM methods
lead to statistically significantly better values. Moreover, non-monotonic approaches have an advantage for the problem
instances with performances generated by the sphere algorithm.

The latter scenario is also the only one for which all NM approaches perform better in the context of CCA. In all
other cases, there is a slight advantage of INT-1 over INT-o0, or both approaches achieve the same results. This can be
observed for 2- and 3-criteria problems, where both methods provide the same results. Moreover, in all other cases, the
INT methods produce better results than the NM approaches.

Table 3: Average CAR, ECAI, and CCA values for the problem instances handled by the NM and INT methods, and different numbers of
classes and criteria.

Number of classes Number of criteria
Measure All settings 2 L 3 L 4 L 5 2 L 3 L 4 L 5
AR = = = = = =
NM 0.154 0.245 | 0.167 | 0.124 | 0.081 0.272 | 0.174 | 0.106 | 0.077
INT-1 0.328 0.435 | 0.345 | 0.283 | 0.256 0.194 | 0.316 | 0.379 | 0.409
INT-00 0.305 0.419 | 0.328 | 0.261 0.214 0.194 | 0.316 | 0.350 | 0.349
ECAI
NM-1, NM-2 0.705 0.733 | 0.712 | 0.701 | 0.671 0.829 | 0.739 | 0.667 | 0.599
NM-3 0.652 0.691 | 0.665 | 0.640 | 0.612 0.794 | 0.684 | 0.604 | 0.545
INT-1 0.823 0.814 | 0.833 | 0.823 | 0.817 0.757 | 0.804 | 0.850 | 0.872
INT-o00 0.810 0.808 | 0.827 | 0.810 | 0.791 0.757 | 0.804 | 0.837 | 0.838
CCA
NM-1 0.739 0.847 | 0.771 | 0.702 | 0.631 0.741 | 0.766 | 0.735 | 0.713
NM-2 0.701 0.811 | 0.739 | 0.661 | 0.588 0.744 | 0.733 | 0.692 | 0.642
NM-3 0.701 0.813 | 0.730 | 0.663 | 0.597 0.745 | 0.730 | 0.691 | 0.646
INT-1 0.821 0.888 | 0.857 | 0.777 | 0.758 0.747 | 0.805 | 0.849 | 0.873
INT-00 0.803 0.883 | 0.848 | 0.756 0.721 0.747 | 0.805 | 0.831 0.824

Tables 5 and 6 exhibit results for the problem instances for which INT-1 was unable to reproduce the DM’s preferences.
In the case of a larger number of active interactions, the advantage of INT-co over the NM methods in terms of CAR
and ECAI is not as strong as in the previous case. Similarly to APCA, there is an apparent decrease in the average
values of CAR for INT-co. Nevertheless, the advantage over non-monotonic approaches is still observable, regardless of
the analyzed problem dimension, except for 3-criteria problems. In this case, CAR and ECAI for INT-co are 0.154 and
0.737, while for NM-1 and NM-2, they are 0.166 and 0.742, respectively. However, the Wilcoxon signed-rank test with
p-value = 0.05 indicates that these differences are insufficient to conclude the advantage of NM approaches in this aspect.

Regarding the CCA values, the results obtained by INT-co and NM-1 should be considered statistically equivalent.
The results for these two methods differ in the strength of their trends depending on the problem dimension. For NM-
1, the decrease in the CCA value is more noticeable as the number of criteria increases and the number of reference
assignments decreases. For INT-oo, these differences are more significant when the number of classes and characteristic

points change. NM-2 and NM-3 are again clearly inferior, regardless of the analyzed dimension.



Table 4: Average CAR, ECAI, and CCA values for the problem instances handled by the NM and INT methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 L 3 L 4 L 5 1 L 2 L 3 L 4 L 5 sphere L random
CAR = = = = = = = =
NM 0.320 | 0.181 | 0.107 | 0.045 0.191 | 0.144 | 0.128 | 0.166 | 0.161 0.257 0.086
INT-1 0.532 | 0.335 | 0.264 | 0.235 0.302 | 0.299 | 0.322 | 0.368 | 0.358 || 0.206 0.408
INT-00 0.507 | 0.314 | 0.244 | 0.207 || 0.299 | 0.278 | 0.291 | 0.333 | 0.340 || 0.198 0.375
ECAI
NM-1, NM-2 || 0.781 | 0.744 | 0.685 | 0.621 0.729 | 0.688 | 0.690 | 0.712 | 0.725 0.835 0.620
NM-3 0.737 | 0.700 | 0.627 | 0.558 0.683 | 0.632 | 0.628 | 0.664 | 0.682 0.803 0.554
INT-1 0.861 | 0.821 | 0.805 | 0.815 0.800 | 0.818 | 0.823 | 0.838 | 0.829 0.750 0.870
INT-c0 0.852 | 0.811 | 0.794 | 0.796 0.799 | 0.806 | 0.808 | 0.819 | 0.821 0.747 0.852
CCA
NM-1 0.726 | 0.771 | 0.732 | 0.716 0.579 | 0.713 | 0.759 | 0.797 | 0.814 || 0.780 0.712
NM-2 0.724 | 0.728 | 0.699 | 0.653 0.556 | 0.657 | 0.711 | 0.767 | 0.803 || 0.787 0.645
NM-3 0.734 | 0.730 | 0.699 | 0.645 0.573 | 0.661 | 0.710 | 0.763 | 0.788 || 0.796 0.640
INT-1 0.804 | 0.821 | 0.817 | 0.837 || 0.677 | 0.794 | 0.844 | 0.877 | 0.882 0.763 0.859
INT-00 0.794 | 0.806 | 0.801 | 0.809 0.674 | 0.777 | 0.822 | 0.850 | 0.870 || 0.759 0.832

Table 5: Average CAR, ECAI, and CCA values for the problem instances handled by the NM methods and INT-oco and different numbers of
classes and criteria.

Number of classes Number of criteria
Measure All settings 2 L 3 L 4 L 5 2 L 3 L 4 L 5
CAR ) i i i i i
NM 0.130 0.267 | 0.143 | 0.108 | 0.087 0.166 | 0.137 | 0.094
INT-oc0 0.161 0.404 | 0.188 | 0.111 | 0.089 0.154 | 0.164 | 0.164
ECAI
NM-1, NM-2 0.688 0.702 | 0.685 | 0.686 | 0.685 0.742 | 0.689 | 0.639
NM-3 0.625 0.665 | 0.628 | 0.614 | 0.617 0.675 | 0.628 | 0.580
INT-00 0.759 0.820 | 0.775 | 0.749 | 0.730 0.737 | 0.765 | 0.771
CCA
NM-1 0.737 0.859 | 0.766 | 0.725 | 0.672 0.761 | 0.735 | 0.718
NM-2 0.701 0.805 | 0.732 | 0.692 | 0.642 0.740 | 0.705 | 0.665
NM-3 0.694 0.799 | 0.726 | 0.682 | 0.634 0.732 | 0.697 | 0.658
INT-o00 0.736 0.876 | 0.785 | 0.716 | 0.656 0.744 | 0.738 | 0.728

3. Robustness and expressiveness within the NM and INT groups of methods

3.1. Analysis for the problem instances handled by the NM methods

The average values of quality measures for the problem instances handled only by the NM methods are shown in Tables 7
and 8. The results confirm previous observations, i.e., the greatest flexibility of NM-3, associated with the highest ¢*
values, and the best robustness of recommendations obtained by NM-2, which is preceded only by NM-1 in the case of
CCA. This fact is related to the lower values of §* for NM-1, which causes the uncertainty intervals between extreme
reference assignments to neighboring classes to be much narrower, leading to greater CCA values than for NM-2. The
trends and relationships between individual methods are preserved regardless of the analyzed problem dimension. The
only exception is the CCA value for instances with performance generated by the sphere algorithm. Then, NM-1 obtains

significantly worse results than the other two approaches.

3.2. Analysis for the problem instances handled by the INT methods

Tables 9 and 10 show the average values of quality measures for the problem instances handled by the INT methods. The
0* values obtained by both approaches confirm the observations made in the preference recoverability analysis. That is,
INT-00 has higher expressiveness than INT-1. Conversely, the remaining quality measures confirm the higher robustness
of INT-1. Except for instances with low complexity (e.g., problems with two criteria or one reference assignment per
class) where both methods return the same results, INT-1 performs slightly better than INT-co. Hence, INT-1 should be

preferred over INT-oo if its use is possible.



Table 6: Average CAR, ECAI, and CCA values for the problem instances handled by the NM methods and INT-oco and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 L 3 L 4 L 5 1 L 2 L 3 L 4 L 5 sphere L random
CAR = = = = = = = =
NM 0.313 | 0.150 | 0.075 | 0.033 0.123 | 0.129 | 0.136 | 0.128 | 0.131 0.345 0.114
INT-00 0.433 | 0.148 | 0.082 | 0.042 0.242 | 0.175 | 0.137 | 0.154 | 0.154 || 0.384 0.144
ECAI
NM-1, NM-2 || 0.757 | 0.721 | 0.673 | 0.626 0.636 | 0.652 | 0.701 | 0.700 | 0.711 0.805 0.679
NM-3 0.718 | 0.663 | 0.603 | 0.550 || 0.565 | 0.591 | 0.637 | 0.636 | 0.653 || 0.767 0.614
INT-o00 0.844 | 0.745 | 0.741 | 0.722 0.761 | 0.746 | 0.743 | 0.773 | 0.773 || 0.825 0.754
CCA
NM-1 0.733 | 0.783 | 0.739 | 0.704 0.517 | 0.694 | 0.765 | 0.768 | 0.790 0.752 0.736
NM-2 0.735 | 0.738 | 0.700 | 0.653 0.530 | 0.633 | 0.723 | 0.736 | 0.767 || 0.736 0.699
NM-3 0.733 | 0.729 | 0.689 | 0.645 0.527 | 0.625 | 0.714 | 0.730 | 0.758 || 0.737 0.691
INT-00 0.810 | 0.741 | 0.724 | 0.690 || 0.660 | 0.695 | 0.724 | 0.770 | 0.781 0.809 0.731

Table 7: Average values of six performance measures for the problem instances handled by the NM methods and different numbers of classes
and criteria.

Number of classes Number of criteria
Measure All settings 2 L 3 L 4 L 5 2 L 3 L 4 L 5
= = = = = = =
NM-1 0.015 0.019 [ 0.016 [ 0.013 | 0.010 [[ 0.007 ] 0.020 [ 0.023 | 0.023
NM-2 0.034 0.050 [ 0.031 [ 0.022 | 0.016 [| 0.015 | 0.039 [ 0.052 | 0.052
NM-3 0.036 0.054 [ 0.032 [ 0.023 | 0.017 [| 0.015 | 0.044 [ 0.056 | 0.055
APCA
NM 0.187 [[ 0.186 ] 0.178 ] 0.182 [ 0.222 [[ 0.344 | 0.154 [ 0.043 [ 0.012
CAR
NM 0.148 [[ 0186 [ 0.139 [ 0.108 [ 0.132 [[ 0.270 [ 0.131 [ 0.032 | 0.008
ECAI
NM-1, NM-2 [[ 0.641 0.611 [ 0.639 [ 0.661 | 0.691 [[ 0.802 | 0.654 [ 0.504 | 0.419
NM-3 0.588 0.561 | 0.587 [ 0.606 | 0.630 [[ 0.746 | 0.599 [ 0.455 | 0.371
MCAI
NM-1 0.715 0.783 [ 0.703 ] 0.672 | 0.637 [[ 0.800 | 0.735 [ 0.653 | 0.584
NM-2 0.797 0.848 [ 0.789 [ 0.753 | 0.747 ]| 0.881 | 0.821 [ 0.735 | 0.662
NM-3 0.747 0.818 [ 0.738 [ 0.699 | 0.657 [| 0.817 | 0.778 [ 0.694 | 0.629
CCA
NM-1 0.750 0.843 ] 0.750 [ 0.665 | 0.637 [[ 0.761 | 0.781 [ 0.746 [ 0.709
NM-2 0.666 0.742 | 0.668 [ 0.599 | 0.567 || 0.755 | 0.710 [ 0.590 | 0.522
NM-3 0.657 0.732 | 0.654 [ 0.599 | 0.560 || 0.742 | 0.692 [ 0.599 | 0.511

4. The correlation between APCA and CAR

APCA and CAR are closely related, focussing on the unambiguity of delivered recommendations. For binary classification
problems; their values are equal. In general, APCA can be viewed as an upper bound on CAR. This is because the value
of APCA increases with each alternative whose |PCAyr(a)| is less than the number of classes p, while the value of CAR
increases only when |PC Ay = (a)| equals 1.

Considering all simulation experiments, 68.36% runs were associated with the same APCA and CAR values (for 8.78%
scenarios, these values were equal to 0, and only for 0.13% cases, they were equal to 1). For the remaining 31.64% runs,
APCA was greater than CAR. The average value of APCA across all runs was 0.126, and for CAR, it was 0.099. The
Pearson correlation coefficient — defined on a scale —1 and 1 — for both quality measures is 0.824. The values of these

measures obtained in all simulation runs are visible in Figure 1.



Table 8: Average values of six performance measures for the problem instances handled by the NM methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 L 3 L 4 L 5 1 L 2 L 3 L 4 L 5 sphere L random
= £ 2 = = = £ £ =
NM-1 0.003 | 0.015 | 0.016 | 0.017 [[ 0.008 [ 0.012 [ 0.016 [ 0.018 [ 0.019 [[ 0.004 0.016
NM-2 0.015 [ 0.029 [ 0.035 | 0.038 [ 0.024 | 0.028 [ 0.035 | 0.038 | 0.037 |[ 0.008 0.035
NM-3 0.015 [ 0.034 [ 0.037 | 0.039 [[ 0.026 | 0.030 [ 0.039 [ 0.039 | 0.039 |[ 0.009 0.037
APCA
NM 0.670 ] 0.268 | 0.134 [ 0.110 [[ 0.276 [ 0.232 [ 0.176 [ 0.167 [ 0.132 ][ 0.247 [ 0.184
CAR
NM 0.572 ] 0.215 [ 0.104 [ 0.080 [[ 0.160 [ 0.172 [ 0.140 [ 0.150 [ 0.123 ][ 0.190 [ 0.146
ECAI
NM-1, NM-2 [| 0.845 [ 0.700 [ 0.622 [ 0.588 [[ 0.714 | 0.657 | 0.640 | 0.616 | 0.617 [[ 0.812 0.632
NM-3 0.822 [ 0.653 [ 0.564 | 0.531 || 0.646 | 0.600 | 0.590 [ 0.568 | 0.566 |[ 0.761 0.578
MCAI
NM-1 0.894 [ 0.778 ] 0.697 | 0.663 ][ 0.689 | 0.688 [ 0.709 [ 0.730 | 0.749 ][ 0.782 0.712
NM-2 0.921 | 0.842 | 0.790 | 0.753 |[ 0.782 [ 0.771 [ 0.796 | 0.805 | 0.823 || 0.875 0.792
NM-3 0.904 [ 0.797 [ 0.740 | 0.695 [ 0.694 | 0.714 [ 0.751 [ 0.763 | 0.785 |[ 0.829 0.742
CCA
NM-1 0.737 [ 0.769 [ 0.762 | 0.727 ][ 0.548 | 0.729 [ 0.764 [ 0.791 | 0.806 [[ 0.775 0.7438
NM-2 0.732 [ 0.700 [ 0.669 | 0.629 || 0.506 | 0.632 [ 0.675 | 0.694 | 0.739 |[ 0.792 0.659
NM-3 0.733 ] 0.693 | 0.656 | 0.622 |[ 0.500 | 0.614 [ 0.665 | 0.698 | 0.725 |[ 0.821 0.648

Table 9: Average values of six performance measures for the problem instances handled by the INT methods and different numbers of classes
and criteria.

Number of classes Number of criteria
Measure All settings 2 L 3 L 4 L 5 2 L 3 L 4 L 5
= - - - = - -
INT-1 0.002 0.005 | 0.003 | 0.002 | 0.002 0.002 | 0.003 | 0.002 | 0.002
INT-0c0 0.003 0.005 | 0.003 | 0.002 | 0.002 0.002 | 0.003 | 0.003 | 0.003
APCA
INT-1 0.323 0.478 | 0.409 | 0.302 | 0.260 0.323 | 0.297 | 0.322 | 0.359
INT-0c0 0.306 0.474 | 0.393 | 0.282 | 0.241 0.323 | 0.298 | 0.293 | 0.317
CAR
INT-1 0.248 0.478 | 0.350 | 0.219 | 0.167 0.236 | 0.232 | 0.252 | 0.278
INT-co 0.232 0.474 | 0.333 | 0.201 0.150 0.236 | 0.232 0.227 | 0.238
ECAI
INT-1 0.810 0.823 | 0.836 | 0.808 | 0.796 0.818 | 0.794 | 0.807 | 0.829
INT-00 0.802 0.821 | 0.831 | 0.799 | 0.785 0.818 | 0.793 | 0.792 | 0.811
MCAI
INT-1 0.813 0.902 | 0.861 | 0.804 | 0.775 0.803 | 0.794 | 0.820 | 0.836
INT-00 0.806 0.902 | 0.858 | 0.796 | 0.765 0.803 | 0.794 | 0.810 | 0.819
CCA
INT-1 0.820 0.891 | 0.863 | 0.811 | 0.789 0.769 | 0.824 | 0.833 | 0.845
INT-0c0 0.810 0.889 | 0.855 | 0.802 | 0.775 0.769 | 0.824 | 0.815 | 0.822




Table 10: Average values of six performance measures for the problem instances handled by the INT methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure || 2 | 3 | 4 | 5 1 | 2 | 3 | 4 | 5 sphere | random
INT-1 0.004 | 0.002 | 0.002 | 0.002 || 0.003 | 0.003 | 0.002 | 0.002 | 0.002 || 0.002 0.005
INT-c0 0.005 | 0.003 | 0.002 | 0.002 || 0.003 | 0.003 | 0.003 | 0.003 | 0.002 || 0.002 0.006
APCA
INT-1 0.678 | 0.384 | 0.220 | 0.102 || 0.581 | 0.408 | 0.340 | 0.305 | 0.273 || 0.281 0.663
INT-oc0 0.656 | 0.349 | 0.212 | 0.101 0.581 | 0.401 | 0.320 | 0.285 | 0.254 || 0.265 0.629
CAR
INT-1 0.568 | 0.294 | 0.153 | 0.067 || 0.313 | 0.300 | 0.260 | 0.245 | 0.218 || 0.210 0.556
INT-0c0 0.546 | 0.263 | 0.147 | 0.066 || 0.313 | 0.294 | 0.241 | 0.226 | 0.201 0.196 0.523
ECAI
INT-1 0.867 | 0.837 | 0.797 | 0.746 || 0.814 | 0.820 | 0.817 | 0.812 | 0.799 || 0.800 0.891
INT-c0 0.858 | 0.820 | 0.793 | 0.744 || 0.814 | 0.815 | 0.808 | 0.801 | 0.791 0.792 0.880
MCAI
INT-1 0.895 | 0.836 | 0.793 | 0.743 || 0.727 | 0.799 | 0.816 | 0.819 | 0.818 || 0.804 0.885
INT-c0 0.889 | 0.823 | 0.790 | 0.740 || 0.727 | 0.796 | 0.808 | 0.812 | 0.810 || 0.797 0.875
CCA
INT-1 0.819 | 0.842 | 0.820 | 0.789 || 0.519 | 0.767 | 0.817 | 0.844 | 0.848 || 0.817 0.843
INT-oc0 0.806 | 0.823 | 0.815 | 0.788 || 0.519 | 0.759 | 0.806 | 0.829 | 0.839 || 0.808 0.825
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Figure 1: The relation between values of the APCA and CAR measures in all simulation runs.



Extended abstract in Polish

Eksperymentalna analiza wtasnosci
modeli i metod wspomagania
decyzji w konteksScie wykorzystania
holistycznych preferencji

Wprowadzenie

Jednym z fundamentalnych wyzwan, towarzyszacych ludzkoéci od poczatku
jej istnienia, jest rozwigzywanie réznorodnych problemoéw decyzyjnych. Moga
mieé¢ one charakter indywidualny i by¢ rozwazane przez jednostki albo gru-
powy, kiedy pozadane jest wypracowanie kompromisowego rozwigzania, sa-
tysfakcjonujacego wielu interesariuszy. Istnieja réznorodne sposoby radzenia
sobie z takimi dylematami; zdolnos¢ do logicznego my$lenia, intuicja, wiedza
ekspercka czy czynniki losowe moga wywieraé istotny wplyw na podejmowane
wybory. Zdarza sie, ze pomimo po$wigconego czasu i wysitku na dokladna
analize dostepnych opcji i konsekwencji ich wyboru, podejmowane sa btedne
decyzje, prowadzace do niezadowalajacych rezultatéw. Bezposrednia przy-
czyng takich decyzji moze byé np. brak zrozumienia istoty problemu, btedne
postrzeganie rozwazanych rozwiazan i priorytetéw przez decydenta czy nie-
prawidltowy dobér kryteriéw oceny. Jednym ze sposobéw na zminimalizowa-
nie ryzyka pomylek podczas rozwiazywania rzeczywistych i istotnych dyle-
matow, jest zastosowanie metod i praktyk wypracowanych w ramach rozwoju
Wielokryterialnego Wspomagania Decyzji (WWD). Jest to dziedzina zorien-
towana na badanie, rozwéj i systematyzowanie informacji, ktére pozwalaja
na skuteczne rozwigzywanie probleméw decyzyjnych, w ktérych preferencje
decydenta odzwierciedlaja jego stosunek do wielu, czesto sprzecznych ze soba,
kryteriéw oceny.
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Standardowe podejécie do problemu decyzyjnego, ktore jest powszech-
nie wykorzystywane w WWD, zaklada istnienie zbioru wariantéw decyzyj-
nych, nazywanych réowniez alternatywami, opcjami lub akcjami. Kazda z al-
ternatyw jest oceniona przy pomocy co najmniej dwoch, czesto wzajemnie
sprzecznych kryteriéw. Oprocz tego, konieczne jest okreslenie rodzaju rozwa-
zanego problemu, zwigzanego z oczekiwang forma rekomendacji. Wyrdznia
sie¢ cztery najpopularniejsze rodzaje — problem wyboru, ktérego rozwiaza-
nie powinno wskazywaé jednag lub wiecej najlepszych albo wyrédzniajacych
sie alternatyw; problem rankingu, dla ktérego konieczne jest uporzadkowa-
nie alternatyw od namniej do najbardziej pozadanej; problem sortowania,
dla ktérego decydent oczekuje przypisania kazdej z rozwazanych alternatyw
do jednej z wielu predefiniowanych klas, ktore sa uporzadkowane wzgledem
preferencji; problem opisu, ktéry dostarcza informacji na temat konsekwencji
podjecia okreslonych decyzji.

Rozwdéj dziedziny spowodowal, ze na przestrzeni ostatnich pieédziesieciu
lat, powstalo wiele opracowan podejmujacych rézne zagadnienia zwigzane
z procesami decyzyjnymi. Oferuja one réoznorodne narzedzia i procedury, kté-
rych gtéwnym celem jest ulatwienie podejmowania decyzji, a ponadto zagwa-
rantowanie, ze otrzymane odpowiedzi beda latwe w interpretacji oraz spdjne
z oczekiwaniami decydenta. Opracowane modele i metody wspomagania de-
cyzji tworzg kompleksowe rozwigzania, ktére umozliwiaja systematyczne po-
dejscie do przeprowadzenia kolejnych krokéw procesu decyzyjnego, takich jak
okreslenie rodzaju rozwazanego problemu i oczekiwanej formy utworzonych
rekomendacji, zdefiniowanie zbioru mozliwych alternatyw i istotnych kryte-
riéw ich ewaluacji oraz okreslenie sposobu wyrazania preferencji i podejscia
do ich reprezentacji.

Ze wzgledu na sposob uzyskiwania informacji na temat przekonan de-
cydenta, mozemy wyrozni¢ podejécia, ktore maja bezposérednie przetozenie
na wartosci parametréw i ksztalt okreslonego modelu. Taka koncepcja prze-
kazywania informacji preferencyjnej wymaga od decydenta zrozumienia spo-
sobu dziatania okreslonej procedury decyzyjnej i znaczenia poszczegdlnych
parametréw, co sprawia, ze skuteczne zastosowanie tego podejscia jest wyma-
gajace i nie gwarantuje dostarczenia wysokiej jakosci rekomendacji. Z tego po-
wodu, mozna zaobserwowaé rosnaca popularnosé¢ metod i procedur, ktére
bazuja na posredniej informacji preferencyjnej, wyrazajacej przekonania de-
cydenta na temat oczekiwanych relacji zachodzacych wéréd rozwazanych al-
ternatyw, ktére powinny zosta¢ odzwierciedlone w otrzymanych rekomen-
dacjach. Podejécia dostosowane do takiej formy przekazywania informacji
o przekonaniach decydenta, wpisuja sie w paradygmat dezagregacji preferen-
cji, ktory zaktada, ze model reprezentujacy preferencje moze zostaé¢ wywie-
dziony na podstawie przykladowych decyzji, odnoszacych sie do niekomplet-
nego podzbioru rozwazanych alternatyw.
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Wyrazone w ten sposéb holistyczne preferencje umozliwiaja decydentowi
wyrazenie swoich przekonan w sposéb intuicyjny i niewymagajacy specja-
listycznej wiedzy dziedzinowej. Ponadto, istnienie duzej liczby dostepnych
modeli i metod wspomagania decyzji, umozliwiajacych przetwarzanie tak
sformutowanych preferencji dowodzi, ze taka forma ekspresji decydenta jest
uniwersalna, a ponadto umozliwia wiarygodne poréwnanie potencjalu pre-
dykcyjnego wykorzystujacych ja podejé¢. Niestety, to istotne zagadnienie
badawcze jest bardzo czesto pomijane w literaturze naukowej. Publikacje
prezentujace nowe procedury decyzyjne zwykle wskazuja jedynie na prak-
tyczne zastosowania, w jakich dana metoda zostata wykorzystana, abstra-
hujac od przedstawienia poréwnania z istniejacymi, konkurencyjnymi podej-
Sciami, zdolynmi do rozwigzywania takich samych problemoéw.

Uzupelnienie tej istotnej luki badawczej stanowito jedna z motywacji ni-
niejszej pracy doktorskiej. Aby to umozliwié¢, przeprowadzono szereg badan,
skoncentrowanych na przedstawieniu analizowanych modeli i procedur wspo-
magania decyzji, a ponadto ukazaniu ich réznorodnoéci, przede wszystkim
ze wzgledu na jakos¢ dostarczanych rekomendacji, rodzaj rozwigzywanych
probleméw i spos6b wykorzystywania informacji preferencyjnej. Istniejace
metody wraz z nowymi propozycjami i adaptacjami niektérych modeli i pro-
cedur decyzyjnych, zostaly przeanalizowane pod katem wlasciwosci takich jak
trafnoéé rekomendacji, odpornos¢ oferowanego wyniku, ekspresywnosé¢ zato-
zonego modelu wiedzy i zdolno$¢ do zastosowania w problemach wykorzystu-
jacych uczenie preferencji. Zaproponowano réwniez szereg miar jakosci, ktore
zostaly wykorzystane do przeprowadzenia eksperymentalnej analizy poréw-
nawczej. Dodatkowo, praca zawiera szczegdlowy opis przeprowadzonych eks-
perymentow wraz z oméwieniem uzyskanych rezultatéw. Na ich podstawie,
opracowane zostaly wytyczne dla analitykéw decyzyjnych, utatwiajace ich
prace i wybér adekwatnej procedury decyzyjnej do rozwazanego problemu.

Jakosé¢ i odpornosé procedur dezagregujacych preferencje dla
problemoéw wielokryterialnego rankingu i wyboru

Jednym z najpopularniejszych podejsé opartych na paradygmacie dezagre-
gacji preferencji i rozwiazujacym problemy rankingu i wyboru jest metoda
UTA. Wykorzystuje ona model addytywnej funkcji wartosci (uzytecznosci)
do reprezentacji preferencji decydenta. Procedura ta zyskala popularnosé
ze wzgledu na akceptacje intuicyjnych stwierdzen okreélajacych preferencje
decydenta, w postaci poréwnan dla par alternatyw (np. alternatywa a jest
preferowana wzgledem b; alternatywa c jest co najmniej tak dobra jak d)
oraz przejrzysta i zrozumiala forme reprezentacji preferencji. Zatozenia me-
tody dotyczace normalizacji uzytecznosci alternatyw i monotonicznosci funk-
cji czastkowych, wraz z dostarczonymi przez decydenta poréwnaniami, moga
byé¢ bowiem w prosty sposéb reprezentowane jako ograniczenia w problemie
programowania liniowego.
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Ze wzgledu na zaktadang niekompletnoéé¢ informacji preferencyjnej, ktora
obejmuje wylacznie ranking zupelny lub czesciowy dla podzbioru wariatéow
referencyjnych, model ten moze wyznaczy¢ nieskoniczenie wiele rozwiazan,
ktére w pelni odzwierciedlaja preferencje decydenta, a jednoczesnie dostar-
czaja réznych rekomendacji. Narzedziem do analizy tak reprezentowanych
rozwigzan jest odporna regresja porzadkowa, dostarczajaca wnioskéw na te-
mat koniecznych i mozliwych relacji zachodzacych dla poszczegdlnych al-
ternatyw. Niestety, interpretacja tak przedstawionych rezultatéw moze byé
trudna do zrozumienia i tym samym nieakceptowalna przez decydenta ocze-
kujacego jasnych i wyjasnialnych wskazan co do rekomendowanych wyboréw.

Alternatywnym i powszechnie stosowanym podejsciem do tego zagad-
nienia jest wzbogacenie procedury decyzyjnej o dodatkowy krok polegajacy
na utworzeniu jednoznacznych rekomendacji w oparciu o dostarczony zbior
wszystkich kompatybilnych rozwiazan problemu. Literatura naukowa prezen-
tuje wiele roznych podejsé do tego zagadnienia, wprowadzajac miedzy innymi
metody wyboru reprezentatywnej funkcji wartoéci. Metody te uzyskuja re-
komendacje poprzez wykorzystanie pojedynczego modelu spdjnego z prefe-
rencjami decydenta. W zaleznosci od metody, moze to by¢ model oferujacy
rekomendacje podkreslajace ich centralny, $redni, odporny albo najbardziej
dyskryminujacy charakter. Kolejna grupa metod stosuje reguly decyzyjne
do zbudowania adekwatnych rekomendacji. Reguly te dostarczaja rankingi
w oparciu o miedzy innymi poréwnanie eksteremalnych wartosci uzytecznosci
uzyskiwanych przez poszczegélne alternatywy albo w oparciu o oczekiwana
pozycje w rankingu, wyznaczona na podstawie przeprowadzonej analizy sto-
chastycznej wszystkich spdjnych rozwigzan.

Istniejg takze procedury punktowania alternatyw, na przyktad w zwiazku
z licznymi relacjami przewyzszania innych wariantéw decyzyjnych, ktére sa
podkreslane przez wigkszo$¢ spdjnych rozwiazan problemu. Ostatnia grupa
metod dostarcza mozliwie najbardziej odpornych rekomendacji, zbudowa-
nych na podstawie wartoéci indeksow akceptowalnosci przypisania alterna-
tywy do okreélonej pozycji w rankingu oraz wskaznikéw ukazujacych jak cze-
sto w kompatybilnych rozwiazaniach zachodza okreslone relacje dla poszcze-
gblnych par alternatyw. Pomimo wielu propozycji metodologicznych dla tego
samego problemu, publikacje w dziedzinie WWD nie rozwazaly dotychczas
obszernej analizy poréwnwaczej zaproponowanych podej$é, ktéra mogtaby
dostarczy¢ przestanek do wyboru procedur posiadajacych najwiekszy poten-
cjal do uzyskiwania wartosciowych i trafnych rekomendacji. Z tego powodu,
w ramach niniejszej pracy badawczej, zaproponowano eksperymentalng ana-
lize jakosci i odpornosci tych procedur.

Przeprowadzone badania obejmowaly analize poréwnawcza tacznie trzy-
dziestu pieciu procedur dostarczajacych jednoznacznych rekomendacji, roz-
wigzujacych problemy wielokryterialnego rankingu i wyboru w oparciu o re-
zultaty uzyskane przez metode UTA. Zaproponowano lgcznie siedem miar
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jakoéci, sposréd ktérych cztery dostarczaty informacji na temat poprawno-
$ci odwzorowania preferencji decydenta, a trzy odzwierciedlaly odpornosé
dostarczanych rekomendacji. W kazdej z dwoch grup, jedna z miar jako-
$ci odnosita sie do problemu wyboru, podczas gdy pozostale wskazywaly
na jakos¢ procedury w kontekécie problemu tworzenia rankingu alternatyw.
Omowiono takze schemat wielowymiarowej analizy eksperymentalnej, sku-
pionej na zbadaniu jakoéci generowanych rozwiazan, w zaleznosci od para-
metréw rozwazanego problemu, takich jak liczba alternatyw (od 6 do 14),
liczba kryteriéw (od 3 do 5), liczba punktéw charakterystycznych dla funkeji
marginalnych (od 2 do 4) i liczba dostarczonych poréwnan dla par warian-
téw decyzyjnych (od 4 do 10). Zaprezentowano réwniez szczegblowy opis
praktycznego zastosowania porownywanych procedur na przyktadzie rzeczy-
wistego problemu rankingu, ktérego celem bylo dostarczenie preferencyjnie
uporzadkowanej kolekcji szesciu modeli samochodéw, w oparciu o ich ocene
dla pieciu réznych kryteriéw decyzyjnych.

W kontekscie problemu wyboru, analiza potwierdzila, ze najlepsze éred-
nie wyniki uzyskata procedura decyzyjna wykorzystujaca rezultaty analizy
stochastycznej rozwiazania, wskazujaca na alternatywe, ktéra byla najcze-
Sciej wybieranym wariantem decyzyjnym wsrod wszystkich akceptowalnych
rozwigzan problemu. Z kolei dla problemu rankingu, wiodacymi metodami
okazaly sie podejscia skupione na dostarczeniu rozwiazania, ktére w naj-
lepszy spos6b odzwierciedlato najpopularniejsze zaleznosci (poréwnania par
alternatyw, przypisania alternatyw do okres$lonych pozycji w rankingu) za-
chodzace w calej przestrzeni kompatybilnych rozwiazan. Ponadto, istotnosé
uzyskanych konkluzji zostata potwierdzona testem Wilcoxona dla par obser-
wacji i byly one prawdziwe bez wzgledu na rozwazane parametry problemu,
takie jak rozmiar, ksztalt funkcji marginalnych i bogactwo informacji prefe-
rencyjnej. Jednoznaczne wnioski pozwolity na sformutowanie wskazéwek do-
tyczacych wyboru procedur uzyskujacych srednio najlepsze rezultaty dla pro-
bleméw rankingu i wyboru, w zalezno$ci od rodzaju problemu i rozwazanego
aspektu jakosci dostarczanych rekomendacji.

Jakos$é i odpornosé procedur dezagregujacych preferencje dla
probleméw wielokryterialnego sortowania

Podobnie do oméwionej wcze$niej analizy porownawczej procedur dostar-
czajacych jednoznacznych rekomendacji dla probleméw rankingu i wyboru,
istnieja analogiczne podejscia dla rozwiazania problemu wielokryterialnego
sortowania. Wiele z nich dziata w oparciu o rezultaty uzyskane przez metode
UTADIS, adaptujaca podejécie UTA poprzez wykorzystanie posredniej in-
formacji preferencyjnej, wyrazonej jako przyktadowe przydzialy alternatyw
do klas oraz wzbogacenie modelu addytywnej funkcji uzytecznoéci o war-
tosci progowe separujace przedzialy uzytecznosci alternatyw wraz z funkcja
wykorzystujaca owe wartoéci do jednoznacznego przyporzadkowania warian-
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téw do klas decyzyjnych. Literatura badawcza nie przedstawila dotychczas
jednoznacznych wskazan co do jakosci rezultatow uzyskiwanych przez niniej-
sze procedury. W zwiazku z tym, réwniez to zagadnienie zostalo rozwazone
W niniejszej rozprawie.

Eksperymentalna analiza wlasnosci obejmowala czternascie procedur po-
zwalajacych na rozwigzanie probleméw wielokryterialnego sortowania po-
przez jednoznaczne przypisanie rozwazanych wariantéw do klas decyzyjnych.
Wszystkie rozpatrywane metody umozliwiaja wyzaczenie reprezentatywnej
instancji zalozonego modelu preferencji. Rozniag sie jednak co do sposobu
jego wyboru, podazajac choé¢by za idea rozwiazania najbardziej dyskryminu-
jacego, centralnego, sredniego, skapego czy odpornego. Trzy z rozwazanych
podejs¢ zostaly zaproponowane po raz pierwszy i stanowig dodatkowy wktad
pracy do literatury przedmiotu. Zakltadaja one wybranie modelu, ktorego
rekomendacje posiadaja najwieksze wsparacie w zbiorze wszystkich modeli
spéjnych z preferencjami decydenta. Zaprezentowano rowniez opis poszcze-
gbélnych metod, a takze przypadek uzycia ilustrujacy praktyczne zastosowanie
wszystkich procedur do rozwiazania rzeczywistego problemu sortowania trzy-
dziestu miast europejskich pod katem wdrazania polityki proekologiczne;j.

Ponownie, schemat zaproponowanych eksperymentéw zakladal zmierze-
nie Srednich warto$ci miar odnoszacych sie do istotnych aspektéw jakoscio-
wych dostarczanych rekomendacji, takich jak trafnosé klasyfikacji, odpornosé
uzyskanych rezultatow i ocene podobienistwa wywiedzionego modelu do jego
odpowiednika, ktéry byl wykorzystywany do zbudowania referencyjnych pre-
ferencji decydenta. Rezultaty przeprowadzonych eksperymentéw zostaly na-
stepnie poddane wielowymiarowej analizie, ktora opréocz identyfikacji najlep-
szych procedur, ocenila rowniez wplyw parametréw rozwazanego problemu
na jako$¢ uzyskanych rekomendacji. Analiza obejmowala problemy o réznej
zlozonosci, utworzone w oparciu o kombinacje nastepujacych parametréw:
liczba klas decyzyjnych (od 2 do 5), liczba kryteriéw (od 3 do 9), liczba
punktéw charakterystycznych dla funkcji marginalnych (od 2 do 6) i liczba
referencyjnych przypisan wariantéw do klas (od 3 do 10).

Procedura wyznaczajaca reprezentatywna funkcje wartosci poprzez zna-
lezienie analitycznego centrum hiperwieloscianu, reprezentujacego przestrzen
wszystkich kompatybilnych rozwigzan, dostarczata rozwiazan dla probleméw
wielokryterialnego sortowania, ktére charakteryzowaly sie najwyzsza $rednia
trafnoscia klasyfikacji. Z drugiej strony, trzy nowe zaproponowane procedury,
poszukujace rozwiazania, ktére najpelniej odzwierciedla najpopularniejsze
przypisania do klas w calym zbiorze spéjnych rekomendacji, uzyskiwaly éred-
nio najbardziej odporne rekomendacje. Przeprowadzona analiza statystyczna
potwierdzita istotno$é¢ zaobserwowanych zaleznosci, niezaleznie od parame-
trow charakteryzujacych rozwazane problemy decyzyjne. Zaprezentowane re-
zultaty umozliwity sformutowanie kolejnych wskazéwek dla analitykéw i tym
samym dostarczyly przestanek, potwierdzajacych hipotez¢ badawcza.
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Odpornosé rekomendacji i ekspresywno$¢ modeli w
podejsciach rozwigzujacych problemy wielokryterialnego
sortowania

Oproécz modyfikacji procedur decyzyjnych, pozwalajacych na uzyskanie jed-
noznacznych rekomendacji w oparciu o ten sam model reprezentacji pre-
ferencji, istnieje réwniez grupa procedur, ktore zmieniajg zalozenia wyko-
rzystywanego modelu. Model addytywnej funkcji wartosci, wykorzystywany
w metodach UTA i UTADIS, zaktada monotonicznosé preferencji wzgledem
poszczegdlnych kryteriow, a ponadto traktuje niezaleznie poszczegdlne kry-
teria oceny alternatyw i tym samym nie odzwierciedla zalezno$ci preferencji
decydenta od interakcji miedzykryterialnych. Istnieja jednak praktyczne pro-
blemy decyzyjne, dla ktorych konieczne jest odzwierciedlenie wspomnianego
niemonotonicznego charakteru preferencji lub zachodzacych interakcji. Model
addytywnej funkcji wartosci nie ma mozliwosci reprezentacji takich preferen-
cji, co powoduje, ze te metody sa niezdolne do dostarczenia jakoSciowych
rekomendacji dla rozwazanych probleméw.

Przeprowadzona analiza umozliwita identyfikacje jednego podejscia, ktore
wzbogacalo model addytywnej funkcji uzytecznosci o dodatkowe funkcje,
reprezentujace interakcje dla par kryteriéw oraz ujawnila dwa podejscia,
ktére wprowadzaja mozliwosé reprezentacji niemonotonicznosci preferencji
poprzez modyfikacje podstawowych zatozen modelu. Jednak wszystkie wy-
mienione wyzej modele byly zorientowane na rozwiazywanie probleméw ran-
kingu. Z tego powodu, w ramach przeprowadzonych prac badawczych, zapro-
ponowano adaptacje opisanych w literaturze metod, dostosowujac ich dzia-
tanie do rozwiazywania probleméw wielokryterialnego sortowania.

Analiza eksperymentalna obejmowala poréwnanie podstawowej proce-
dury UTADIS wraz z piecioma zaproponowanymi adaptacjami wyzej wy-
mienionych metod, sposréd ktérych dwie dotyczyly reprezentacji interak-
¢ji, a trzy umozliwialy uwzglednienie niemonotonicznych preferencji. Jednym
z badanych aspektéw byla ekspresywno$é¢ modeli, interpretowang jako zdol-
no$¢ do odzwierciedlania preferencji decydenta, niezaleznie od ich spdjnosci
i kompletnosci. Ponadto, zbadano réwniez odpornoéé¢ dostarczanych reko-
mendacji i modeli, poprzez zmierzenie ich stabilnoéci i zgodnosci z wszyst-
kimi kompatybilnymi rozwigzaniami problemu. Oba te zagadnienia sa czesto
postrzegane jako sprzeczne, ze wzgledu na to, ze metody charakteryzujace
sie wyzsza ekspresywnoécia bazuja na bardziej wyrafinowanych i skompliko-
wanych modelach reprezentacji preferencji. To z kolei powoduje, ze znacznie
czedciej moga one dostarczaé¢ niejednoznacznych rekomendacji, co moze po-
wodowaé obnizenie stabilnoéci i odpornosci proponowanych rozwigzan.

Wyniki przeprowadzonych analiz potwierdzily konkurencyjny charakter
tych dwéch zagadnien. Metody budujace rekomendacje w oparciu o bardziej
ekspresywne modele, uzyskuja nizsze rezultaty w kontekscie miar jakosci,
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ktére odnosza sie do ich odpornoéci i vice versa. Z tego powodu zapropono-
wano, aby do rozwigzywania probleméw wielokryterialnego sortowania wy-
korzystywaé¢ metody dostarczajace mozliwie najodporniejszych rekomenda-
cji, stopniowo przechodzac do bardziej ekspresywnych metod tylko w przy-
padku, gdy prostsze procedury nie sg w stanie skutecznie odzwierciedlaé prze-
konan decydenta. W przypadku rozwazanych metod, w pierwszej kolejnosci
jest to metoda UTADIS, dalej podejscia uwzgledniajace interakcje dla par
kryteriéw, a na konicu procedury odzwierciedlajace niemonotoniczny charka-
ter preferencji dla poszczegdlnych cech rozwazanych alternatyw.

Przeprowadzona analiza ujawnila jednak, ze odporno$é¢ metod uwzgled-
niajacych interakcje jest wyzsza od tej uzyskiwanej przez niemonotoniczne
procedury tylko wowczas, gdy liczba aktywnych interakcji nie przekracza
dwoéch. W przeciwnym przypadku, to metody zakladajace niemonotoniczny
ksztalt funkcji marginalnych dostarczaja bardziej odpornych rekomendac;ji.
Ponadto, jesli zadna z metod nie jest w stanie w pelni odzwierciedli¢ prefe-
rencji decydenta, wéwczas konieczna jest elicytacja informacji preferencyjne;j.
Nalezy rowniez odnotowaé, ze proponowany zbiér regut prowadzacy do wy-
boru najodporniejszej procedury, proponuje wlasciwy sposéb postepowania
tylko w sytuacji, gdy nie istnieja przestanki §wiadczace o niemonotonicznym
lub interakcyjnym charkaterze preferencji decydenta. Natomiast jesli takowe
przestanki istnieja, nalezy zastosowaé podejscie spdjne z dodatkowymi za-
tozeniami dotyczacymi preferencji. Mimo to, zaproponowane reguly réwniez
stanowig uzyteczne wskazéwki, ktére moga by¢ skutecznie wykorzystywane
przez analitykow wspotpracujacych z decydentami. Dodatkowo, aby utatwié
odbiér zaproponowanych regul postepowania, zilustrowano ich zastosowa-
nie na przyktadzie problemu sortowania trzydziestu modeli telefonéw komor-
kowych do trzech klas decyzyjnych, w kontekscie preferencji dostarczonych
przez trzech réoznych decydentéw.

Algorytmy wspomagajace uczenie preferencji modelu catki
Choquet inspirowane natura

Kolejnym istotnym kierunkiem rozwoju metod wspomagania decyzji sa po-
dejécia do problemu uczenia preferencji, ktérych gléwnym celem jest uzy-
skanie modelu skutecznie klasyfikujacego alternatywy do preferencyjnie upo-
rzadkowanych klas. Wynikiem takich metod powinny by¢ rozwiagzania, ktore
z jednej strony sa w stanie skutecznie reprezentowaé preferencje wyrazone
w oparciu o duze zbiory danych, mogace zawiera¢ niespdjne informacje pre-
ferencyjne, a z drugiej strony — dostarczaja rekomendacji, ktore sa tatwe
do interpretacji i uzasadnienia.

Jedna z metod wspomagania decyzji rozwazanych w literaturze przed-
miotu w tym kontekscie to model catki Choquet. Opiera on swoje dziala-
nie o parametry reprezentujace istotno$é¢ ocen uzyskanych dla okreslonych
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podzioréw kryteriow. Tak sformutowane zalozenia powoduja, ze metoda ta
jest zorientowana na odzwierciedlanie negatywnych i pozytywnych interakcji
miedzykryterialnych. Dzieki temu, ekspresywnos¢ catki Choquet jest znacz-
nie wyzsza niz dla mniej rozbudowanego modelu reprezentacji preferencji
w metodzie UTADIS. Jednak wyznaczenie optymalnych wartosci parame-
tréw modelu stanowi wyzwanie, a zastosowanie klasycznych podejéé opar-
tych o programowanie liniowe jest czesto nieefektywne. Rozmiar sformutowa-
nego problemu i zlozonosé ograniczen liniowych, wynikajacych z duzej liczby
dostarczonych informacji prefeerencyjnych, powoduja, ze czas potrzebny do
optymalizacji rozwigzania ulega wydtuzeniu. To z kolei sprawia, ze dla wielu
rzeczywistych zastosowan i rozwazanych w nich probleméw decyzyjnych, ta-
kie rozwiazanie jest nieakceptowalne.

Przeprowadzony przeglad literatury ujawnil istnienie réznych podejsé,
ktére umozliwiaja optymalizacje parametrow catki Choquet. Co prawda,
nie gwarantuja one uzyskania optymalnego rozwazania, ale w odréznieniu
od probleméw programowania liniowego, moga dostarczy¢ satysfakcjonujace
rezultaty w bardzo krétkim czasie. Do przeprowadzenia eksperymentalnej
analizy poréwnawczej, zaproponowano tacznie osiem podej$é zorientowanych
na optymalizacje parametrow wspomnianego modelu. Dwa sposréd nich wpro-
wadzaly pewne usprawnienia do sformulowanego problemu programowania
liniowego, pozwalajace na uzyskanie wartosciowych rekomendacji w krotkim
czasie. Kolejne trzy metody implementowaly rézne strategie oparte na kon-
cepcji lokalnego przeszukiwania przestrzeni rozwigzan, a ostatnie trzy po-
dejscia dostosowywaly metaheurystyki inspirowane zjawiskami zachodzacymi
w naturze, w szczegdlnosci zachowaniami stadnymi zwierzat i zjawiskiem se-
lekcji naturalnej, do rozwazanego problemu.

Prace badawcze obejmowaly zaprezentowanie modelu catki Choquet oraz
omoéwionych wyzej podejsé do rozwiazania problemu. Zaprezentowano takze
przyktad ilustrujacy ewaluacje wartosci catki dla przyktadowego wariantu de-
cyzyjnego, a ponadto sposéb dzialania rozwazanych algorytméw. Z kolei prze-
prowadzona analiza eksperymentalna skupiata sie w gléwnej mierze na traf-
nosci rezultatow binarnej klasyfikacji i poprawnym odzwierciedleniu relacji
preferencji dla par alternatyw pochodzacych z réznych klas. Obejmowalta
ona ewaluacje wszystkich osmiu podejs¢ z wykorzystaniem pieciu referencyj-
nych zestawéw danych, w podziale na trzy scenariusze o réznej liczbie in-
formacji preferencyjnych wyrazonych przez decydenta. Analiza potwierdzita,
ze najlepsze rezultaty osiagaja metaheurystyki inspirowane natura, ktére nie-
zaleznie od rozwazanej liczby dostarczonych preferencji, zajmowaly srednio
najwyzsze pozycje w rankingu rozwazanych metod. Dzieki temu, po raz ko-
lejny mozliwe byto zdefiniowanie wskazdéwek rekomendujacych zastosowanie
algorytmoéw, ktére najdoktadniej odzwierciedlaty preferencje decydenta.
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Podsumowanie

Rosnace zainteresowanie metodami WWD przyczynito sie do powstania wielu
podejéé¢ spojnych z paradygmatem dezagregacji preferencji, ktéry pozwala
na uzyskanie interpretowalnych rozwiazan na podstawie prostych, holistycz-
nych informacji preferencyjnych. Wzrost liczby opisanych w literaturze metod
nie dal jednak odpowiedzi na pytanie: ktéra z dostepnych procedur dostarcza
jakosciowych i odpornych rekomendacji w rozwazanym kontekscie decyzyj-
nym? Brak badan, ktére pomoglyby okreéli¢ uzytecznosé poszczegdlnych me-
tod wspomagania decyzji stanowi istotna luke w literaturze naukowej, ktorej
wypelnienie stato sie jednym z celéw niniejszej dysertacji.

W ramach przeprowadzonych badan, zrealizowano tacznie cztery ekspery-
mentalne analizy wtasnosci modeli i procedur wielokryterialnego wspomaga-
nia decyzji. Dotyczyly one dostarczenia jednoznacznych rekomendacji, odpor-
noéci rozwiazan, ekspresywnosci modeli, a ponadto ich zdolnosci do uczenia
si¢ preferencji. Opracowania rezultatéw przeprowadzonych badan obejmo-
waly szczegoltowy opis poréwnywanych metod wraz z prezentacja przypadkdw
uzycia, ilustrujacych praktyczne zasotosowanie rozwazanych modeli. Wérod
analizowanych podej$¢ do rozwiazywania problemdw, obok istniejacych me-
tod wspomagania decyzji, znajduja sie réwniez takie, ktére prezentuja nowe
propozycje albo adaptacje istniejacych procedur, ktére dostosowuja je do roz-
wazanego kontesktu decyzyjnego.

W celu uzyskania warto$ciowych wnioskéw i rekomendacji, zapropono-
wano szereg adekwatnych miar jakosci, odzwierciedlajacych pozadane cechy
generowanych rozwiazan, takie jak trafno$é¢ rekomendacji, odpornosé pre-
ferencji i ekspresywno$¢ modelu. Wykonane badania potwierdzity réwniez
uzytecznos¢ nowo proponowanych metod dostarczania jednoznacznych pre-
ferencji, udowodnily przeciwstawny charakter odpornosci rekomendacji i eks-
presywnosci modeli, a ponadto wykazaty, ze algorytmy optymalizacyjne moga
by¢ skutecznym narzedziem do rozwazywania probleméw uczenia preferencji.

Co jednak najistotniejsze, przeprowadzone analizy i zaproponowane eks-
perymentalne podejscie do badania wtasnosci modeli i metod, moga stanowié
istotne uzupelnienie publikacji wprowadzajacych nowe procedury wspoma-
gania decyzji, wzbogacajac je o wnioski plynace z poréwnania rozwiazan
uzyskiwanych przez rozwazane procedury. Same za$ wyniki analiz pozwo-
lity na uzyskanie przestanek, ktére usprawniaja dobdér adekwatnych metod
do rozwazanego problemu. Tym samym, ich skuteczne sformulowanie po-
twierdza hipoteze badawczg zawarta w niniejszej dysertacji.

Przyszle kierunki badan powinny obejmowaé przeprowadzenie kolejnych
eksperymentalnych analiz poréwnawczych, dostarczajacych przestanek dedy-
kowanych dla analitykéw decyzji, wskazujacych na uzyteczno$é okreslonych
metod w odniesieniu do innych zagadnien, ktére sg przedmiotem analiz pro-
wadzonych w ramach rozwoju obszaru WWD. Po drugie, nalezy rozwazy¢
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sformutowanie uniwersalnych kryteriéw i regul oceny nowo proponowanych
podejsé, co umozliwitoby wskazanie zalet proponowanych rozwiazan i do-
starczenie dowodéw na ich wysoks uzytecznos¢ w rozwazanym kontekscie
decyzyjnym. Zasady te powinny oferowaé¢ kompleksowe podejscie do analizy
i ewaluacji metod, na przyktad poprzez opracowanie kompletnego zbioru miar
jakosci oraz reprezentatywnej kolekcji referencyjnych zbioréw danych. Wyko-
rzystanie miar jakoséci do ewaluacji dostarczanych rozwiazan dla predefinio-
wanego zbioru probleméw, pozwolitoby na ustandaryzowanie procesu ewalu-
acji, co utatwiatoby poréwnywanie nowo wprowadzanych metod z dotychczas
opisanymi w literaturze. Pozadanym z perspektywy rozwoju dziedziny bytoby
takze opracowanie meta-procedur wspomagania decyzji, ktére zgodnie z pa-
radygmatem dezagregacji preferencji, poprzez holistyczng analize informacji
na temat rozwazanego problemu decyzyjnego, rekomendowalyby wykorzy-
stanie okreslonych metod wspomagania decyzji, umozliwiajacych skuteczne
zaadresowanie danego problemu.
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