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Abstract

Over the years, the development and growing popularity of the Multi-Criteria
Decision Aiding field has brought many models and algorithms capable of solv-
ing various decision problems. Although the greater variety of methods has
undoubtedly enriched the literature on the subject, the lack of a compre-
hensive comparison of different approaches has caused an increased difficulty
in selecting an appropriate algorithm for the considered problem. This is-
sue is important from the perspective of both decision makers and analysts,
who strive to obtain high-quality recommendations, and the selection of an al-
gorithm is one of the crucial steps in the decision aiding process. Address-
ing this problem was the main goal of this doctoral dissertation. As part
of the research, several comparative analyses of methods and models were
conducted, followed by the provision of observations and conclusions facili-
tating the selection of an appropriate approach based on the specificity of the
considered problem. Moreover, new algorithms and models were proposed
based on stochastic analysis and adapted to various assumptions regarding
the decision-maker’s preferences. Quality measures were also proposed, which
allowed for the examination of the quality, robustness, and expressiveness
of the approaches considered. Lastly, an approach to the preference learning
problem using nature-inspired optimization algorithms was proposed.
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Chapter 1

Introduction

Multiple Criteria Decision Analysis (MCDA) concentrates on research and
systematization of knowledge on solving decision problems in which alter-
natives are evaluated using more than one criterion. Research in this area
aims to provide best practices that constitute the decision-making process.
The most commonly used approach is to synergize information on the eval-
uation of alternatives based on individual criteria and preferences obtained
from the Decision Maker (DM) and then to provide valuable conclusions and
recommendations. To achieve this ultimate goal, over the years, many tech-
niques, models, methods, and algorithms have been developed, improving
the decision support process and thus enriching the literature on the subject.

The decision-making process consists of many steps, among which it is es-
sential to determine the type of problem, to elicit the DM’s preferences,
and to select an appropriate decision support model or method. The devel-
opment and popularization of the field have led to many practical applications
of MCDA, solving real-world problems such as software evaluation [5], en-
vironmental management [6], energy policy [7], health care [8], conservation
prioritization and planning [9], sports players’ evaluation [10], energy systems
analysis [11], and sustainability of insulating materials [12].

According to [13], in MCDA, four basic types of problems are distin-
guished, which are: choice (α), sorting (β), ranking (γ), and description (δ)
problems; each of them aims at a different structure of recommendations
about the considered alternatives. In the choice problem, one or a few best
decision variants are selected; the idea of the sorting problem is to assign
alternatives to preferentially-ordered classes; the ranking problem orders the
alternatives from most to least preferred; and the description problem pro-
vides information about the consequences of choosing a particular action.

In the context of preference elicitation, the multitude of problems and
methods for solving them goes hand in hand with the variety of possibilities
for expressing preferences by the DM. [14] distinguished input and output-
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oriented preference information. Input-oriented preferential statements can
refer to the intra-criterion preferences, which assess the significance of dif-
ferences in the ratings obtained by different alternatives concering a given
criterion, and to the inter-criterion preferences, which define weights and
trade-offs between the importance of individual criteria. On the other hand,
expressed preferences may also refer to desired output, showing holistically
the DM’s attitude towards the alternatives considered. The most common
ways of expressing preferences in this way are comparisons between pairs
of actions [15], indicating which one is preferred by the DM, and assigning
example alternatives to predefined decision classes [16]. It is commonly be-
lieved that this type of preference representation is less cognitively demanding
and more intuitive for DMs. Moreover, it does not require detailed domain
knowledge and familiarity with specific decision support methods. Another
advantage is that the holistic preferences expressed in this way are compatible
with many different approaches, which makes them universal.

The development of the MCDA field and the introduction of new methods
and algorithms have made it possible to obtain more robust and qualitative
recommendations and to solve more sophisticated problems. On the other
hand, it has also made the work of decision analysts more demanding, be-
cause selecting a method tailored to the considered problem has become more
difficult. The lack of analyses examining the characteristics and comparing
different approaches constitutes a gap in the literature, and filling it was the
main motivation for this study. In turn, the research hypothesis of this disser-
tation assumes that based on the results of the experimental analysis of the
properties of decision support models and methods, it is possible to formulate
guidelines for decision analysts that will facilitate the selection of adequate
and qualitative approaches to the considered problems.

This dissertation focuses on presenting the analyzed decision support
models and methods, the diversity in their ability to solve specific problems,
provide different quality of recommendations, and consider different assump-
tions regarding recommendation expectations. These approaches were ana-
lyzed in terms of different features that are desirable in the field of MCDA,
such as predictive abilities, robustness, expressiveness, and solving preference
learning problems. A number of quality measures were proposed, which were
then used to conduct an experimental comparative analysis. The scheme
of the experiments that were conducted was also described in detail, and
the results that were obtained were discussed. Finally, based on the results,
guidelines for decision analysts were developed to facilitate their work.

The remainder of this doctoral thesis is organized in the following way.
Chapter 2 presents the necessary theoretical background; in particular, it de-
scribes the considered decision problems and the methods used to solve them.
Chapter 3 describes the obtained results of the conducted research work.
Chapter 4 contains a summary of the research.
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Chapter 2

Theoretical background

This chapter describes the basic theories and issues in the field of MCDA,
which are essential for a better understanding of this dissertation and for
defining its scope. The information included here concerns the decision prob-
lems considered, as well as the algorithms and models analyzed. It also de-
scribes the different perspectives on the quality of models, which were the
focus of the conducted analyses.

2.1 Considered problems

In MCDA, decision problems are usually defined by providing a set of decision
alternatives together with their evaluation on various criteria. At the stage
of defining the problem, it is also necessary to determine its type, and thus
the expected structure of the received results. To solve this problem and
obtain satisfactory results, it is also essential to provide knowledge about
the DM’s preferences so that the resulting recommendations can accurately
reflect them.

The set of alternatives A = {a1, . . . , an} represents all the possible ac-
tions, alternatives, and options available to the DM when considering the
problem being solved. It can be provided as a complete set of already ex-
isting actions considered in a specific decision-making context. Another ap-
proach is to represent the set of alternatives indirectly by specifying a range
of values, constraints, and trade-offs between ratings on particular criteria.
This approach is typically used for design problems in which arbitrary alter-
natives can be generated with specified characteristics that satisfy assump-
tions and constraints specific to the domain of the problem under consid-
eration. Regardless of how the set of actions is defined, it also determines
the space of all possible solutions, i.e., all possible assignments of alterna-
tives to classes, all possible rankings, or all subsets of selected alternatives,
depending on the nature of the problem.
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The set of criteria G = {g1, . . . , gm} contains all the attributes that are
important for the specific decision-making process. To consider a multi-
criteria problem, it should contain m ≥ 2 criteria, which describe various
features of individual actions. These attributes should not be redundant,
i.e., they should not refer to the same aspects of the alternatives. In addition,
they should be easily interpretable since they often constitute the basis for
expressing preferences. Moreover, the DM should be able to indicate the
nature of individual criteria, i.e., determine their type:

• gain – the higher the performance of an alternative, the more it is pre-
ferred;

• cost – the lower the performance of an alternative, the more it is pre-
ferred;

• non-monotonic – there is no monotonic relationship between the inten-
sity of preferences and the attribute values obtained by the alternatives.

In most cases considered in this paper, criteria are treated independently,
but it is also possible to define more sophisticated ways of representing DM
preferences, e.g., by taking into account inter-criteria interactions. The value
of the alternative for the j-th criterion is typically denoted as gj(a).

Information about DM’s preferences is crucial to improve the quality
of the recommendations received. The better and more accurately they re-
flect perceptions of alternatives, the more accurate recommendations can
be expected. DMs can express their preferences in various ways, referring
to specific elements of the problem as well as to specific aspects of the ap-
proach used. Indications regarding the algorithm used (e.g., “the weight
of criterion g3 in model M should take the value of 0.4”, “the veto thresh-
old v1 for criterion g1 should be 10”) are usually easy to apply directly
to a given approach, but they require advanced knowledge and full under-
standing of the specific decision-making procedure and also prevent the use
of this information in other approaches. On the other hand, information
directly related to the alternatives (“a3 is preferred over a7”, “a5 should be
assigned to at least class C2”, “a4 should be among the top 10 alternatives
in the ranking”) and/or evaluation criteria (“criterion g5 is more important
than g3”, “a2 and a4 are indifference according to criterion g1”) are easy
to interpret, do not require much effort and domain knowledge from the DM,
and are universal for various decision support algorithms.

In the research described in this dissertation, problems with a pre-defined
set of alternatives were considered, containing from a dozen to several hun-
dred (in case of preference learning problems) alternatives, and evaluated
using two to nine attributes. Within the problems considered, the types
of criteria, the presence or absence of preference monotonicity, and possible
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inter-criteria interactions were indicated. The preference information was tai-
lored to the expected recommendation structure, i.e., pairwise comparisons
of alternatives were provided for the ranking and choice problems, as well as
example class assignments for the sorting problems.

2.2 Models and algorithms

This section provides an introduction to the models and algorithms whose
study and comparison were the subject of this dissertation. The most im-
portant assumptions concerning the discussed approaches, their applications,
and variants are presented. It is also shown why their comparison is an im-
portant research issue.

The UTA-like methods

Basic assumptions

The concept of the UTA (UTilités Additives) method, proposed by [15],
based on the Multiple Attribute Value Theory (MAVT), uses the prefer-
ence disaggregation-aggregation paradigm, as described in [17]. The con-
cept of preference disaggregation assumes the use of example DM’s decisions
to develop a decision model consistent with the DM’s preferences. On the
other hand, the aggregation paradigm assumes that the utility of a given
alternative is directly indicated by the marginal utilities on the individual
criteria. In the case of UTA, the global utility score of the alternatives
is determined by Additive Value Function (AVF), which aggregates marginal
scores by adding them up. Global utility values are usually denoted as U(a),
and MVF as a function of the value of the alternative on a specific criterion:
uj(gj(a)). Thus, the AVF value is determined as the sum of the MVF values:
U(a) =

∑m
j=1 uj(gj(a)).

In the standard approach, two main assumptions are also used: normal-
ization and monotonicity of MVFs. Normalization assumes that all functions
uj(a) have the lowest value equal to 0 and that the sum of their highest val-
ues is 1. These assumptions ensure that the values of the AVF will be in the
range [0, 1], where 0 denotes the least and 1 is the most preferred, potentially
existing alternative. Monotonicity, in turn, assumes that the function uj(a)
is consistent with the type of the j-th criterion, i.e., it is non-increasing in the
case of a cost criterion and non-decreasing in the case of a gain criterion.

The basic version of the model assumes that the marginal functions are
defined for the interval containing all possible values for a given criterion.
In addition to satisfying the properties resulting from the above assumptions,
the functions are piecewise linear, so they consist of γj ≥ 1 intervals of equal
length, separated by characteristic points for which the function values are
explicitly determined. On the other hand, the evaluation of the function
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within the intervals is determined based on linear interpolation of the func-
tion values for two characteristic points that are the boundaries of a specific
interval. Such a formulation of the function results in the fact that, on the
one hand, it maintains great flexibility in shaping the DM’s preferences with
respect to a specific criterion. At the same time, it allows for the represen-
tation of monotonicity and normalization constraints in the form of linear
constraints.

It is worth noting that in addition to reducing the model assumptions
to linear constraints, this formulation of the model also allows the DM’s pref-
erences to be expressed in the same way. In the case of a pairwise comparison
of alternatives, if the DM indicates that a is preferred over b , denoted as:
a ≻DM b, an additional linear constraint can be introduced: U(a) ≥ U(b)+ε,
where ε is a small, constant positive value. This constraint ensures that the
desired preference relation for this pair of alternatives will be preserved in the
resulting model. Similarly, if the DM indicates an indifference between a pair
of alternatives, then a constraint U(a) = U(b) is added, which ensures that
both alternatives obtain the same global utility value.

In the case of sorting problems, the conducted research used the UTADIS
model proposed in [18], which introduces a threshold-based approach by en-
riching the model with additional threshold values (t0, . . . , tp), symbolizing
the boundaries between decision classes. Due to the assumed preferential or-
der of classes, which is a feature of multi-criteria sorting problems, the thresh-
old values must also satisfy the monotonicity constraints, i.e., tl − tl−1 ≥ ε.
They should also split the interval of all possible global utility scores into
smaller sub-intervals that unambiguously assign the utility value to a spe-
cific class. Threshold values defined in this way allow for an effective solution
of sorting problems. Given the preferential information provided by the DM,
if the reference assignment indicates that alternative a should be assigned
to class Cl, then it is necessary to introduce constraints that ensure that
the value of U(a) is between tl−1 and tl. This approach allows preferential
information to be included directly in the assumptions of the decision model.

Both the linear constraints resulting from the model assumptions and from
the DM’s preferences define the space of all feasible solutions, denoted as UR.
In the case of inconsistency within the DM’s preferences or between the pref-
erences and the model assumptions, it may happen that there will be no
solution satisfying all of the constraints – then UR = ∅. To deal with such
situations, the original proposal by [15] introduced σ(a) variables, symboliz-
ing “potential error relative to the utility”, which allowed for the acceptance
of solutions that were not fully consistent with the DM’s preferences, but
rather were a compromise solution in which the sum of errors was mini-
mized. Another approach to this problem might be to point out the source
of the inconsistency to the DM and then elicit preferences leading to a feasible
solution. On the other hand, it also happens that the set contains an infinite
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number of feasible solutions, which provides an opportunity to analyze the
properties and relationships occurring in the models included in the set. The
most popular tools for analyzing the mentioned aspects of the set of all solu-
tions consistent with DM’s preferences are Robust Ordinal Regression (ROR)
and Stochastic Ordinal Regression (SOR).

Robust Ordinal Regression

According to [19], robust ordinal regression considers all solutions compat-
ible with the DM’s preferences and provides information about the neces-
sary (compatible with all models) and possible (compatible with at least
one model) “consequences of applying all compatible preference models to
the considered set of alternatives”. Using robustness analysis, inferences are
drawn about possible and necessary relations in a set of solutions, e.g., about
preferences between pairs of alternatives or assignments to decision classes.
To verify a hypothesis concerning a possible property of all feasible solutions,
it is enough to find at least one solution that confirms it. On the other hand,
to check the validity of the necessary relation, one must prove by contradic-
tion that there is no model consistent with the DM’s preferences that does
not satisfy the given properties.

Regardless of the issue or relationship under consideration, ROR enables
the verification of hypotheses and obtaining qualitative information about
all solutions, which allows for checking the possibility or necessity of a given
phenomenon, resulting from both the structure and assumptions of the model
and the DM’s preferences. This information is useful for better understanding
the possible consequences of the decisions made and can support the inter-
active recommendation building process in cooperation with the DM. The
decision maker can react to the feedback received on the ROR results, e.g.,
by indicating desirable and unacceptable relations in the expected outcome
of the procedure. Based on the DM’s indications, the preferential information
can be updated, which should lead to more satisfactory recommendations.

Furthermore, ROR is also used in some approaches to select a represen-
tative model to provide univocal recommendations. The most popular ap-
proach is to use observed relationships through procedures that try to empha-
size their significance and highlight them in the obtained outcome. Moreover,
the information provided by ROR can also be used to formulate conclusions
about the robustness of recommendations and expressiveness of models.

Stochastic Ordinal Regression

SOR, similarly to ROR, also attempts to describe phenomena occurring
in the set of all solutions. However, unlike ROR, it does not focus on the
qualitative analysis of the necessity or possibility of relations but tries to cap-
ture them in a quantitative aspect. Stochastic analysis examines how often
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a given relation occurs in the set of all compatible models. Thanks to this,
it is possible to indicate the most popular relations occurring between pairs
of alternatives or alternatives and decision classes.

Accurately assessing the frequency of occurrence of phenomena in a set
of infinite elements using analytical methods is difficult. For this reason, algo-
rithms from the class of Monte Carlo (MC) methods are used, which are one
of the most popular approaches to this problem. They use random sampling
of the solution space, and based on the obtained subset, approximate values
of specific measures are determined. One of the approaches to generating
uniformly distributed points over bounded regions called hit-and-run (HAR)
algorithm, was first proposed by [20]. The algorithm consists of iteratively
generating a sequence of points in N-dimensional space. Each subsequent
point is obtained by randomly selecting a line passing through the previ-
ous point, and then randomly selecting a point from the selected segment,
bounded by a feasible space of points. This algorithm allows for efficiently
obtaining a set of uniformly distributed samples from any convex polytope,
and this is exactly the shape of the solution space defined based on the as-
sumptions of the described model. For this reason, it can be successfully used
to perform stochastic analysis of the solution space of multi-criteria decision
support problems solved by methods from the UTA family.

The SOR results provide important information about the set of feasible
solutions and are used in a similar way to the ROR outcomes. Quantita-
tive aspects of the phenomena occurring in the solution space are useful
from the perspective of procedures exploiting this information and are used
to define adequate quality measures that allow assessing how well-selected
univocal recommendations represent the entire solution space.

Construction of univocal recommendations

The literature on this topic provides many strategies for creating unambigu-
ous recommendations based on the UTA-like approach, which is used to solve
the selection, ranking and sorting problems. They can be classified according
to the way of building recommendations as follows:

• Representative utility function. This is a basic approach to solving
the above-mentioned problem. This concept assumes building recom-
mendations based on one, arbitrarily selected AVF, found in the set
of all feasible solutions. This is usually done by defining an appropri-
ate objective function, which, in combination with linear constraints
imposed by the model assumptions, constitutes the Linear Program-
ming (LP) problem. Various functions are known that try to capture
the most discriminant, parsimonious, benevolent or aggressive AVF.
Due to the convexity of the solution space, it is also possible to obtain
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a unique model by selecting many feasible models arbitrarily or ran-
domly and then averaging them. It is also possible to determine the cen-
tral solution, for example, by introducing additional constraints and
variables into the model. Finally, it is also possible to exploit outcomes
from ROR and SOR to emphasize relationships and class assignments
that occur most frequently in the set of all solutions, making univocal
recommendations representative in the context of the entire set of solu-
tions. However, what all these approaches have in common is that the
recommendations are derived directly from one of the feasible models.

• Decision rules. These rules, unlike representative feature selection,
do not use a single AVF to directly obtain recommendations, but take
into account knowledge about several solutions or statistics derived
from the analysis of the entire solution space. These approaches cre-
ate decision rules that shape recommendations based on various aspects
of the evaluations of alternatives, e.g., extreme utility values of alterna-
tives, highest and lowest positions in the obtained rankings, or extreme
assignments to classes in the entire feasible solution set. They can also
apply information from the ROR and SOR results to the generated
recommendations, e.g., by assigning alternatives to the most probable
classes or positions in the rankings. It is worth noting that there may
be no feasible model that provides recommendations identical to those
obtained by applying a given decision rule. For this reason, one can per-
ceive these approaches as a certain extension of the space of potential
solutions.

• Scoring procedures. These approaches, like decision rules, also at-
tempt to take into account a more complex perspective on the DM’s
preferences than using a single solution that satisfies all the model con-
straints. They mainly use the results of stochastic and robustness anal-
ysis to determine the score for each alternative and then, based on the
obtained evaluations, generate recommendations. Scoring procedures
use the results of stochastic and robustness analysis to determine score
for each alternative and then provide recommendations based on them.
They are often based on indices estimating the frequency of prefer-
ence relations for pairs of alternatives or taking into account the ratio
of models for which a specific assignment to a decision class occurred.

• Most robust solution. This concept is also based on the use of LP,
but in a different way than to find acceptable or optimal AVF parame-
ters. This approach consists of exploiting the results of Stochastic Or-
dinal Regression. It gives information about the percentage of models
in which a preference or indifference relation holds for a pair of alterna-
tives or how often an alternative is assigned to a specific class. Depend-
ing on the problem considered, the task of LP is to find a ranking or as-
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signment of alternatives to classes that maximizes the aggregate values
of statistics derived from stochastic analysis. Modeling is usually done
by introducing binary variables that determine the position of an al-
ternative in a ranking or assign it to a specific class. These variables
are included in constraints indicating the uniqueness of the assignment
to the class or ranking position and the compatibility of the relation
with DM’s preferences. On the other hand, in the objective function,
they are assigned weights adequate to the statistics derived from SOR.
This method allows obtaining a compromise ranking, choice, or sort-
ing solution that is maximally acceptable among all feasible models.
Hence, it can be considered as the most robust solution.

Model modifications

With the development of the MCDA field, a multitude of different approaches
have been proposed, based on the UTA concept. As mentioned above, var-
ious procedures extending the basic approach allow obtaining different uni-
vocal solutions. In addition to them, extensions of the model representing
preferences have also been proposed, which can be observed, among others,
in MCDA-MSS - software supporting the selection of an adequate approach
to the considered problem, proposed by [21], which provides a collection
of over 200 decision support methods, 27 of which contain “UTA” in their
name, indicating a connection with the approach described above.

One of them is UTAGMS-INT, proposed by [22], which addresses one
of the issues of the basic approach, i.e. the inability to represent interactions
between criteria occurring in DM preferences. The authors proposed to ex-
tend the AVF with additional functions representing positive and negative
interactions occurring for pairs of criteria. In this way, it allows modeling
more demanding scenarios concerning DM’s preferences. The method works
in two stages: in the first stage, it identifies pairs of interacting criteria, based
on the provided preference information by solving the Mixed-Integer Linear
Programming (MILP) problem. In the second phase, it provides an extended
additive value function, which can then be used to evaluate alternatives and
provide valuable recommendations and conclusions.

Other models based on UTA focus on a different issue, which is the in-
ability to reflect non-monotonic preferences for individual criteria, resulting
directly from the constraints imposed on the model. One of them is the
approach described in [23], which, at the stage of solving the linear pro-
gramming problem, abandons the constraints related to the monotonicity
of marginal functions and the normalization of the achievable global utility.
Instead, it introduces bound constraints, which limit the range of MVF val-
ues, but allow them to take any shape, preserving their piecewise-linear na-
ture. This procedure allows for the representation of non-monotonic prefer-
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ences for individual criteria, and the resulting model can be easily normal-
ized a posteriori to be consistent with the normalization assumptions used
in the basic UTA method.

Another approach to modeling nonmonotonicity was proposed in [24].
In this case, the non-monotonic nature of preferences was modeled as a com-
position of two value functions with opposite preference directions – non-
increasing for cost type marginal function component and non-decreasing for
its opposite counterpart – gain type. As a result of the composition of these
functions, it was possible to provide non-monotonic MVFs, which then also
had to be normalized in accordance with the assumptions of UTA. Never-
theless, the remaining elements of the method are fully compatible with the
assumptions of the above-mentioned model.

Choquet Integral

A slightly different approach, which also provides recommendations based
on the estimation of the utility of alternatives, is the Choquet Integral model,
which was first published in [25] and named after its inventor. This function
aggregates the evaluations of alternatives for individual criteria while allowing
for the representation of complex interactions using non-additive measures.
In order to obtain a model, it is necessary to determine the values of the
model parameters, called capacities, which represent the importance of the
evaluations of different subsets of the set of all considered criteria – starting
from single attributes to combinations of all available criteria.

The basic assumption of the method is that the strength of the criteria
coalition is indicated by the minimum value that the alternative obtained
for these criteria. The comprehensive value for an alternative is therefore
determined as the product of subsequent capacities (µM ) assigned to the
subsets of criteria and the lengths of the intervals between the values obtained
by the alternative: ChM (a) =

∑m
j=1[g(j)(a)− g(j−1)(a)] · µM (G(j)), where (·)

is a permutation of criteria indices that sorts the values obtained by the
alternative on the criteria from smallest to largest, and G(j) contains the
subset of criteria: {g(j)(a), . . . , g(m)(a)}. In this way, each successive term
of the sum is the result of multiplying the interval between the ratings on the
criteria with increasingly higher ratings and the capacity for increasingly
smaller subsets of criteria. The last term is equal to the difference between the
two highest evaluations of an alternative among all criteria and the capacity
for the subset containing the criterion with the highest rating.

Moreover, capacities satisfy monotonicity and normalization constraints:
µM (∅) = 0, µM (G) = 1, µM (G1) ≤ µM (G2), for each G1 ⊆ G2 ⊆ G. Fur-
thermore, the model requires that the evaluation of individual criteria be rep-
resented by values from the same scale. In particular, if they take values in
the range [0, 1], then the comprehensive value of alternatives also takes val-
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ues in this range, which is identical to the range of obtainable comprehensive
values in methods from the UTA family. In addition, it is also possible to en-
rich the model with additional parameters constituting boundary values for
decision classes, allowing the adaptation of the approach to solving multi-
criteria sorting problems in a threshold-based manner. Finally, it is also
worth mentioning that preference information can be modeled analogously
to the UTA method, i.e., by comparing the utility of alternatives in the case
of indicating a preference for one alternative over another or assigning an al-
ternative to the desired class by limiting its comprehensive value to the range
between the thresholds of the relevant class.

It is worth noting that several applications use the Choquet integral in de-
cision support problems, such as the evaluation of research institutions de-
scribed in [26] and customer segmentation proposed in [27]. Nevertheless,
finding optimal values of capacities is challenging, especially in the case
of problems with a large number of criteria, as the number of model pa-
rameters grows exponentially with the number of attributes on which the al-
ternatives are evaluated. In such cases, a simplified 2-additive version of the
model may be helpful, in which capacities are explicitly determined only for
the subsets containing one and two criteria.

2.3 Analyzed issues of algorithms and solutions

This section presents the issues that were analyzed in the publications that
contribute to this dissertation. Issues such as accuracy, robustness, and ex-
pressiveness will be discussed. In addition, the issue of Preference Learn-
ing (PL) will be presented.

Accuracy of a solution

One of the most important determinants of the quality of recommenda-
tions suggested by the decision support approach is their accuracy. How-
ever, it should be clearly noted that it should not be associated with and
interpreted in the same way as the concept of accuracy known from other
fields, such as Machine Learning (ML). In these domains, accuracy is usually
measured by aggregating the results of comparisons between expected out-
puts and predictions obtained using a given method. However, this requires
knowledge of the “ground truth” about the analyzed data, which is often un-
available or even impossible in the case of decision-making problems. In the
problems considered, the DM’s preferences are not explicitly expressed, but
rather inferred based on incomplete knowledge about them. The role of dis-
covering “ground truth” is on the side of decision support models, hence the
difficulty in assessing the quality of the recommendations they provide.
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Nevertheless, there are different approaches that attempt to determine
the accuracy of specific models and procedures. Naturally, this would be
possible if the expected recommendations were completely known a priori –
in which case it would be possible to compare the recommendations with
them. Another approach is to perform a retrospective analysis on already
solved decision problems, in which the DM was fully satisfied with the rec-
ommendations obtained. In such a case, it is possible to provide the same
input data to different models and procedures and then compare the recom-
mendations to those that were acceptable to the DM.

In the context of accuracy, experimental analysis offers greater possibil-
ities than in the case of analyzing this aspect for real decision problems.
In this case, it is possible to create an artificial DM that is able to provide
complete and consistent preferential information which can be easily trans-
formed into a form containing the expected recommendations. The prefer-
ences of the artificial DM can also be provided in different ways. On the
one hand, it is possible to use any decision model for this purpose, whose
recommendations are then transformed into the DM’s preferential informa-
tion. On the other hand, it is possible to generate completely random sample
decisions, which are then fed to the methods. Finally, it is possible to pro-
vide random, but also guided or biased information that may simultaneously
reflect the DM’s consistent belief system but also introduce some inaccura-
cies, thus simulating real-world use cases of these methods where preferential
information is often inconsistent.

Turning to the quality measures used, they are oriented to the type
of problem being considered. For sorting problems, traditional measures
are used to compute the fraction of alternatives for which the expected and
predicted decision classes are the same. For the choice problem, a commonly
used quality measure is the Hit Ratio [28], which returns 1 in case of a cor-
rect prediction of the expected best alternative and 0 otherwise. In the case
of experimental analysis and repeated experiments, the average value of this
measure can indicate the probability of the method making a correct choice.
In the case of ranking problems, measures based on similarity of rankings are
used, such as rank correlation coefficients proposed by [29] and [30]. In addi-
tion, there are measures oriented to the differences in the comparison of two
rankings: expected and predicted. These measures examine how much the
rankings differ in terms of the assignments of alternatives to ranking positions
and vice versa.

Robustness of recommendation

As stated in [31], the term robustness can be perceived in various ways and re-
late to different phenomena and features of decision support models. Bernard
Roy points out that “depending on the situation, this notion can be related
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to, or integrated into, the notions of flexibility, stability, sensitivity, and even
equity”. In general, robustness refers to all the features of the decision-
making process related to various uncertainties. These uncertainties may
concern input data, preferential information, a specific decision support pro-
cedure, and the usefulness of proposed recommendations in the future. The
proposed decision-making process can be described as robust if it copes with
these issues and allows for obtaining valuable conclusions.

In the context of this work, which is focused on methods and procedures
providing univocal recommendations, the main emphasis is placed on ob-
taining robust solutions, and the study of this aspect mainly refers to the
recommendations provided by the methods. This dissertation does not con-
sider the issue of robustness in the context of the provided input data or the
uncertainty associated with the DM’s preferences. Therefore, this work offers
a dual perspective on the robustness of various decision support approaches
and the results they obtain.

First, the research includes the robustness analysis by verifying the con-
sistency and representativeness of the recommendations provided. The anal-
yses conducted attempt to see to what extent the results obtained by the
individual procedures aimed at selecting univocal recommendations are con-
firmed by all other feasible solutions for the assumed preference representa-
tion model. This makes it possible to draw conclusions about the robustness
of these recommendations by determining the level of credibility they ob-
tained in comparison to other solutions.

On the other hand, the self-consistency of all feasible solutions is also
examined. Assuming no uncertainty regarding the input data and the DM’s
preferences, checking such properties allows us to determine the quality of the
model and increases confidence in the recommendations it provides. In both
cases, SOR and ROR are indispensable, providing the features and statistics
obtained by the models when they are applied to the considered problem.

The quality measures considered verify, on the one hand, to what ex-
tent the provided recommendations, such as positions and relations between
alternatives in a ranking or their assignments to classes in a sorting, are con-
firmed among all other possible solutions. On the other hand, statistics on the
frequency of occurrence of specific phenomena can be successfully used to es-
timate the robustness of individual models, e.g., by evaluating entropy-based
measures for all possible pairwise comparisons or assignments to classes.

Expressiveness of a preference model

The concept of expressiveness refers to the model’s ability to reproduce
and represent DM’s preferences, expressed in an indirect way. The analy-
sis of this issue allows us to determine the degree of universality of a given
model and its applicability to various problems. Models with high expres-

14



siveness are able to represent richer DM’s preferences, which are also exposed
to a greater risk of containing inconsistencies.

For this reason, it can be said that this issue is closely related to the ro-
bustness described earlier. The fundamental difference between them is that
expressiveness concentrates on the ability to represent DM’s beliefs and ig-
nores the aspect of the quality of the recommendations provided, the study
of which is the domain of robustness. Moreover, it can be said that these
aspects of the models are opposed because the more flexible the model with
respect to the inaccuracy of the information provided, the more it is exposed
to problems related to the robustness of recommendations.

The assessment of the ability to express DM’s preferences and solve var-
ious decision problems is problematic from a theoretical point of view. In-
stead, an empirical approach is used, which verifies for what kind of problems
a specific model is able to reproduce DM’s beliefs. This proves that in this
context, conducting an experimental analysis of the properties of models
is crucial to investigate and understand this phenomenon.

Ability to solve preference learning problems

According to [32], PL is a subfield of machine learning focused on predict-
ing or inferring preferences. As stated in [33], PL problems are challenging
due to the need to deal with large amounts of incomplete and inconsistent
preference information and to provide interpretable outcomes. These mod-
els, similarly to machine learning, should generalize well to knowledge about
complex preferences. They should be resistant to biased data and enable the
delivery of valuable and robust recommendations, even in the case of strong
inconsistencies in both the input data and the model itself. Moreover, among
entities formulating decision-making problems, the requirement for full ex-
plainability of recommendations generated by intelligent decision support
systems has recently become popular [34].

In general, the majority of MCDA methods and procedures are designed
to provide high-quality and interpretable recommendations and solve prob-
lems involving a relatively small number of alternatives. On the other hand,
approaches used in ML are often oriented towards training and prediction
on large datasets, neglecting the aspect of understandability of the deliv-
ered judgments. For this reason, researchers are interested in the possibil-
ity of combining and synergizing the features of these approaches to obtain
procedures that have the capacity for both explainability and scalability of
recommendations.

The research literature in the field of MCDA contains several studies
and proposals of methods that are able to effectively address PL problems.
In [35] the authors introduced a statistical framework for PL classification
with monotonicity constraints, [36] proposed an optimization approach us-
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ing an additive value function model enriched to handle inter-criteria inter-
actions, and [37] presented several approaches to optimize the parameters
of a sorting model with class profiles.

In the case of PL problems, the traditional approach to determining the
values of model parameters by solving the LP problem is difficult to imple-
ment due to the large number of constraints resulting from the rich preferen-
tial information. Moreover, inconsistencies and contradictions of preferences
with model assumptions make obtaining a model fully consistent with DM’s
beliefs in this way time-consuming and often impossible. For this reason, dif-
ferent approaches are used to solve this problem. Instead of obtaining fully
compatible solutions, the aim is to obtain the most satisfactory recommen-
dations possible, reflecting as closely as possible the DM’s information.

One way to provide models capable of solving PL problems is to optimize
the parameters of models used in popular methods for solving multi-criteria
sorting problems, which can be achieved using e.g. logistic regression [38]
or artificial neural networks [39]. However, development and research consid-
ering these aspects are limited and there are many unexplored ways to opti-
mize models. In particular, it is possible to use nature-inspired metaheuristics
and other optimization approaches, which have been proven to give excellent
results in various applications.

To assess the consistency of the recommendation with the DM’s beliefs,
one should also use a quality measure related to the accuracy of the solution,
thus measuring the ability to infer preferences. It should be remembered that
for real-world decision problems, knowledge about the desired ranks of alter-
natives or class assignments is limited and often unavailable. Nevertheless,
experimental analysis, using artificially generated decision scenarios, allows
for verification of the quality of the delivered solutions based on both the
reference and validation subsets of alternatives. Ultimately, the higher the
ability of a method to correctly assess non-reference alternatives, the higher
the ability to generalize knowledge about the DM’s preferences and to solve
challenging PL problems.
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Chapter 3

Results of comparative
analyses

This chapter contains a description of the research work conducted, based on
the experimental analysis of the properties of models and decision support
procedures, along with the obtained results.

3.1 Predictive performance and robustness
concerns of value-based preference
disaggregation ranking and choice methods

As previously mentioned, the MCDA field’s development has brought many
models and procedures, allowing the solving of multi-criteria decision prob-
lems. In particular, many approaches have emerged that are oriented towards
solving the ranking and selection problem by providing univocal recommen-
dations. Various models and procedures, based on different assumptions
about the way and richness of preference representation, have positively
impacted the field and contributed to further development. Among them,
one can distinguish approaches based on complete preferential information,
which requires high cognitive effort and domain knowledge from the DM.
An alternative concept is to provide incomplete holistic judgments, which is
an intuitive and relatively simple way to express the DM’s beliefs.

Unfortunately, incomplete preferential information often leads to multi-
ple or infinitely many solutions and recommendations compatible with in-
direct statements which reflect DM’s preferences. The multiplicity of solu-
tions results in ambiguous recommendations, which, due to difficulty and
low interpretability, do not provide valuable answers to the questions posed
by the decision maker. This issue can be addressed in various ways. One of
them is to use the preference elicitation leading to enrichment of the provided
information, but this leads to additional costs and is not always possible. For
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this reason, another effective way to address this issue is to construct or de-
rive univocal recommendations that provide a precise answer to the DM’s
dilemma.

Despite the availability of many concepts and proposals presenting ap-
proaches to obtaining univocal recommendations, the scientific literature has
so far demonstrated the lack of a comprehensive approach allowing for their
comparison and indicating in what circumstances the use of a given proce-
dure may be beneficial. This became the motivation for the research de-
scribed in the publication P1, which proposes a comprehensive review of the
approaches described in the literature and their comparison by conducting
a series of computational experiments and then analyzing the results to de-
termine the properties of the examined decision-making procedures and the
recommendations obtained.

The research included thirty-five different approaches extending the UTA
method and capable of solving ranking and choice problems. The compared
decision algorithms represent four groups of methods. The first group aimed
at selecting a representative value function, which was achieved by mod-
ifying the goal function and introducing additional parameters to the LP
model. The group included methods with various interpretation of repre-
sentativeness, e.g. as the selection of most discriminant, central, average,
aggressive, benevolent, parsimonious or robust AVF. The second group used
decision rule-based approaches. These methods based their rules on charac-
teristics of individual alternatives, such as the best or worst comprehensive
score of an alternative among all feasible solutions or the frequency of obtain-
ing a specific position in the resulting ranking. Another group used scoring
functions to evaluate alternatives and then create a ranking based on them.
Scoring functions exploited the relationships between pairs of alternatives –
in particular, extreme differences in utilities between alternatives and differ-
ences in the frequency of outranking relationships. The last group includes
methods oriented towards constructing a robust ranking. They use informa-
tion obtained from the stochastic analysis to maximize the support of the
provided recommendations among all compatible solutions, using LP tech-
niques. The publication contains a detailed description and mathematical
notation of existing approaches in the literature, along with an explanation
of their motivation.

The experimental analysis scheme assumed examining the properties and
quality of solutions obtained by individual methods, depending on the char-
acteristics of the problems considered. The problems differed in the num-
ber of decision alternatives (M ∈ {6, 8, 10, 12, 14}), the number of criteria
(E ∈ {3, 4, 5}), the richness of preferential information (the number of pair-
wise comparisons – C ∈ {4, 6, 8, 10}) and the ability to adapt the shape
of marginal functions (the number of characteristic points – P ∈ {2, 3, 4}).
The experimental setup assumed solving problems created based on each
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combination of the above parameters. This allowed to provide results taking
into account diverse problems of different difficulty levels. For each com-
bination, 1000 problem instances were considered in order to increase the
reliability of the obtained results. Overall, the conducted experiments in-
cluded solving 180,000 decision problems using all considered procedures.

The performance of each of the considered methods was quantified us-
ing seven quality measures, four of which were oriented towards the quality
of representing the DM’s actual preferences and three towards the robust-
ness of the proposed recommendations. It was assumed that each of these
subgroups should be distinguished by one measure oriented towards solving
the choice problem, while the remaining ones concerned the ranking prob-
lem. The measures assessing the quality of preference mapping were based on
the correlation of rankings (Kendall’s τ), the similarity in individual ranking
positions (Normalized Hit Ratio – NHR, Rank Agreement Measure – RAM )
or the differences in positions for individual alternatives (Rank Difference
Measure – RDM ). On the other hand, the measures oriented toward assess-
ing the robustness of recommendations exploited the information provided
by the SOR, indicating the dominant phenomena in all feasible solutions.
In particular, on the indices measuring the frequency of alternatives’ as-
signments to individual ranking positions (First Rank Acceptability Index
– FRAI, Mean Rank Acceptability Index – MRAI ) and checking how often
specific relations occur for pairs of alternatives (Mean Pariwise Relation Ac-
ceptability Index – MPRI ).

Having completed the experiments, their results were analyzed in detail
to identify the best approaches, distinguishing between the type of prob-
lem (ranking or choice), the aspect analyzed (correct representation of DM’s
preferences or all feasible solutions), and the parameters of the considered
problem (number of alternatives, number of criteria, etc.). For each quality
measure, a separate analysis was performed, and the individual procedures
were compared. To determine the statistical significance of the observed re-
lationships, a statistical test was used, specifically the Wilcoxon signed-rank
test [40] with a p-value equal to 0.05.

Both quality measures oriented towards the choice problem (NHR, FRAI)
confirmed that the best procedure in their context was one of the approaches
from the decision rule group –BESTRAI. This procedure was based on a rule
that selected the best action from among the entire collection of alternatives
based on the lexicographic objective and the results of stochastic analysis.
The primary aim sorted alternatives according to the best possible position
in any of the feasible rankings, and the secondary aim broke ties by favoring
actions with a higher Rank Acceptability Index (RAI : A ×N → R ∈ [0, 1])
value for a given position, which is the approximate frequency of a given al-
ternative at a specific position in the ranking, among all rankings compatible
with the DM’s preferences.
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In the case of ranking problems, the remaining quality measures consis-
tently indicated that the best results were provided by approaches from the
group providing recommendations by constructing robust rankings. These
methods can be classified into two subgroups according to the information
provided by the SOR, which they exploit to build recommendations. The
first subgroup of methods is based on the above-mentioned RAI values and
shares a common prefix in their name (RANK-), as these values focus on the
relations between alternatives and ranking positions. The second subgroup
(REL-) uses Pairwise Winning Index (PWI : A × A → R ∈ [0, 1]) values,
which represent the share of all compatible AVFs for which a preference
relation holds between one alternative and another.

The common feature of all the approaches discussed is the method of ob-
taining recommendations by solving the MILP problem, which assigns al-
ternatives to specific ranking positions using binary variables. It is worth
noting that for each of the considered approaches and accompanying MILP
problems, the assumptions of the UTA method are neglected. Instead, they
rely exclusively on the results of stochastic analysis, incorporating, depend-
ing on the procedure, the values of RAI or PWI into the objective function
as weights of the binary variables representing the assignment of the alter-
native to the rank position. These methods also differ in formulating the
objective function, presenting different approaches to aggregating the values
of stochastic indices for individual alternatives to obtain a uniform eval-
uation of the entire ranking. In detail, three types of aggregation in the
objective function are distinguished and introduced as suffixes to the names
of the procedures – summation (-SUM), product (-PROD), and maximin
(-MM) problems. It is also worth noting that these methods also had their
counterparts marked with an additional suffix (-IND), which allowed for
the reflection of indifference relations by assigning more than one alternative
to a given ranking position. Nevertheless, these method variants achieved
comparable but statistically significantly worse results.

Going deeper into the details of the analysis, from the perspective of qual-
ity measures focused on pairwise relations (Kendall’s τ , MPRI) and mini-
mization of rank differences (RDM), the best average results were obtained
by methods from the REL- group. On the other hand, quality measures
emphasizing the correct positioning of alternatives in the ranking positions
(RAM, MRAI) confirmed the dominance of procedures from the RANK-
group.

Among the classical approaches based on selecting a representative AVF,
taking into account all quality measures, the best results were obtained by the
REPROC method, which also enriched the UTA model with information
provided by SOR. This was done by solving the maximin problem, focused
on maximizing the differences in comprehensive values for such pairs of alter-
natives for which the preference relation occurred more often in the sample
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set. Among the decision rules, apart from the aforementioned BESTRAI,
which dominated the quality measures related to the choice problem, the
EXPRANK method, which consists of evaluating and sorting the alter-
natives with respect to the expected position calculated on the basis of all
feasible rankings, kept the best results for all five measures related to the
ranking problem. For scoring methods, MINPOI performed best in choice
problems, and SUMPOI in ranking problems. Both methods assign a score
to an alternative based on the obtained differences in the values of Prefer-
ence Outranking Index (POI : A × A → R ∈ [0, 1]) compared to all other
alternatives, with the former aggregating these values by minimization and
the latter by summation.

It is also worth noting that the conducted analyses, apart from the global
perspective aggregating quality measures among all considered problems, also
confirmed the priority of the above-mentioned methods, regardless of the
specific parameters of the problem, such as the problem’s size or the amount
of preferential information. Thus, the clear indication of the best procedures,
taking into account the considered aspects of the quality of the recommen-
dations provided, confirmed the hypothesis put forward in this thesis.

3.2 Predictive performance and robustness
concerns of value-based preference
disaggregation sorting methods

Similarly to the ranking and choice problems, decision support methods ori-
ented towards solving the multi-criteria sorting problems face similar chal-
lenges. It should be emphasized again that there are many MCDA proce-
dures for solving this type of problem, which can be categorized accord-
ing to the type of preferential information required. Low cognitive cost
and high interpretability make procedures adopting the preference disag-
gregation paradigm, based on the DM-provided example decisions, popular
in this respect. In the context of multi-criteria sorting, the DM’s decisions are
usually expressed as assignments of reference alternatives to decision classes.
One of the most popular sorting methods operating in this paradigm and
accepting exemplary class assignments is UTADIS, which provides recom-
mendations based on AVF and threshold values separating ranges of com-
prehensive values that unambiguously assign alternatives to specific classes.

The incompleteness of preference information implies a potentially infinite
number of solutions which, although fully consistent with DM’s expressed be-
liefs, may lead to different recommendations. As previously mentioned, con-
clusions derived from the robustness analysis, which provides a holistic view
of the relationships and features of the complete set of all feasible solutions,
are difficult for a DM to interpret without domain knowledge. To deal with
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this issue, some procedures propose preference elicitation, which makes the
decision support process more demanding and is not always possible; there-
fore, another popular tool to facilitate the understanding of the problem
solution is to provide univocal recommendations that are easy to interpret
and address the DM’s doubts about the choices made.

The popularity of this approach has led to the emergence of many com-
peting procedures offering different perspectives on the selection of a repre-
sentative sorting model. However, the scientific literature has not provided
a clear answer to the question about the usefulness of individual approaches
and how to select an adequate procedure for the problem under considera-
tion. This question is crucial for decision analysts whose task is to identify
the appropriate tools to solve a given problem. In this context, it is worth
noting the important contribution of [41], which compares four different pro-
cedures providing univocal recommendations. Nevertheless, this work does
not cover a large number of other relevant approaches in this context; hence,
the conclusions drawn from this publication are limited. To address this liter-
ature gap, a comparative experimental analysis was conducted and described
in the publication P2.

In addition to presenting the formal definition of the model and the is-
sues related to ROR and SOR, the research work included a detailed de-
scription and mathematical formulation behind fourteen different approaches
to obtaining univocal recommendations based on the UTADIS model. The
analysis performed included procedures providing recommendations based
on a selected representative value function. Depending on the method, most
discriminant [42], parsimonious [43], average [44, 45], central [42, 41], and
robust [42] models were selected.

In addition, four robust approaches based on stochastic outcomes were
also described, including three novel approaches presented in the mentioned
publication. These approaches were based on stochastically derived Class
Acceptability Indices (CAI : A × C → R ∈ [0, 1]), which provide informa-
tion about the fraction of all feasible models in which an alternative was
assigned to a particular class, and Assignment-based Pairwise Outranking
Indices (APOI : A × A → R ∈ [0, 1]), which specify the fraction of com-
patible models in which an outranking relation holds for a pair of alterna-
tives. These procedures were designed to find an AVF that best reflected
the relations satisfied in the largest possible number of all feasible solutions,
constituting their representative form providing univocal recommendations.
Moreover, for all fourteen considered approaches, an illustrative study was
also provided, presenting their performance on the practical multi-criteria
sorting problem.

The experimental setting was designed to capture three different aspects
of the solutions that were obtained. One of them was classification accu-
racy, defining how often the examined methods correctly recommended class
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assignments for non-reference alternatives that were not included in the pro-
vided preferential information. To measure accuracy, it was necessary to de-
fine complete reference information containing the assignment of all alterna-
tives to specific classes. For this purpose, for each of the considered problems,
a value function and threshold values were randomly selected, representing
the DM’s internal belief system. The second quality measure was oriented
towards assessing the robustness of the solution by checking the compatibility
of non-reference class assignments with other feasible solutions, using CAI
values derived from stochastic analysis. The third aspect considered was the
similarity between the reference model and the model obtained by a given
approach, which was assessed by comparing the corresponding marginal func-
tions, comprehensive values, and thresholds.

The considered problems differed in the number of classes (p ∈ {2, 3, 4, 5}),
the number of criteria (m ∈ {3, 5, 7, 9}), the number of characteristic points
in MVFs (γj ∈ {2, 4, 6}) and the number of reference assignments per class
(R ∈ {3, 5, 7, 10}). The setting formulated in this way made it possible to ex-
amine the methods in the context of solving problems of varying complexity.
For each combination of parameters, 100 different problem instances were
solved to provide more reliable outcomes and conclusions, which in total
resulted in solving 19200 problem instances.

The highest accuracy in reproducing desired class assignments was ob-
tained by the centralACUTADIS approach, determining the analytical cen-
ter of the polytope that represents the space of all feasible solutions. The sta-
tistically significant advantage over the other methods was confirmed by the
Wilcoxon signed-rank test with p-value = 0.05, comparing it with the other
methods. Given the comparison, the next method was CENTROID, which
determines the average solution from all samples used to perform SOR. In the
next positions, we can observe novel approaches (CAI,APOI, COMB) and
another approach to finding the central solution –CHEBYSHEV that seeks
the central solution, i.e., the center of the largest Euclidean ball contained
in the polytope. Moreover, the performed multivariate analysis confirmed
the dominance of ACUTADIS over the others while emphasizing greater
differences in the obtained mean values of the quality measure for problems
of greater complexity, i.e., with a larger number of criteria, alternatives, and
characteristics points and a lower richness of preference information.

The group of the above-mentioned six best solutions remained the same
for the Mean Class Acceptability Index (MCAI) analysis, averaging the CAI
values corresponding to the assignments of the alternatives to the classes
provided by a particular method. In the case of this measure, all three novel
approaches performed best, led by CAI, which attempted to obtain a model
with the greatest possible support among all feasible solutions in terms of as-
signing alternatives to specific classes. Among the methods based on search-
ing for a representative value of a function, the best performing one was
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CENTROID approach, followed byUTACHEB andACUTADIS. In this
case, the statistically significant advantage of CAI over the other methods
was also confirmed in the multivariate analysis taking into account subsets
of results with specific problem characteristics.

Taking into account the similarity of the reference model and the solution
used to create the recommendations, the best results were obtained by the
three approaches mentioned above oriented on the central and average rep-
resentative models. It is worth mentioning REPDIS, which was also one
of the leading ones in this context. This method emphasizes the advantage
of alternatives, which SOR revealed as those assigned more often to a higher
priority class than others. It should be noted that from the DM’s perspec-
tive, the quality and robustness of the recommendations provided are much
more important aspects. Hence, the similarity of the models provides limited
indications of the benefits of using a given procedure.

The presented results allow for the formulation of clear recommenda-
tions regarding the selection of an adequate procedure for building univocal
recommendations. In this context, the conducted research provides suffi-
cient evidence to confirm the research hypothesis. Moreover, the three novel
approaches introduced allow for the obtaining of representative and robust
solutions, which is an additional contribution to the literature on the subject.

3.3 Recommendation robustness and model
expressiveness in view of value-based sorting
methods

In addition to the procedures addressing the selection of univocal recom-
mendations, an important aspect is the structure of the model used and its
ability to represent the DM’s preferences. One of the most popular models
for solving multi-criteria sorting problems is the UTADIS, operating in the
preference disaggregation paradigm and providing recommendations using
a threshold-based procedure for assigning alternatives to preferentially or-
dered classes. It is widely used due to its intuitive form of representing DM’s
beliefs, expressed through exemplary assignments of alternatives to classes,
and providing explainable and easy-to-interpret recommendations.

When dealing with value-based sorting models operating in the pref-
erence disaggregation paradigm, one may encounter two important issues
to address. On the one hand, indirect preferences are not always consistent
with the assumed model, which may result in the lack of feasible solutions.
On the other hand, in the case of achieving full compatibility between the
method and preference information, many feasible models may provide am-
biguous recommendations. These issues can be linked to the concepts of the
expressiveness of models and the robustness of recommendations, respec-
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tively. In this context, robustness concerns the credibility of the model and
the recommendations it provides, whereas expressiveness reflects the model’s
ability to reproduce the DM’s preferences and, thus, its flexibility towards
inaccurate or inconsistent statements about the DM’s beliefs. Both of these
aspects can be seen as competing, since the more expressive models have
richer possibilities of representing preferences, which may result in reduced
robustness. Therefore, it is important to maintain a balance between these
two phenomena in order to provide correct and as robust as possible rec-
ommendations. The UTADIS model’s assumptions mean that it provides
recommendations for problems assuming monotonic preferences for individ-
ual criteria and treats all attribute values of the alternatives independently.
It is worth noting that there are problems for which such a representation
model is insufficient, which has led researchers to propose several modifica-
tions to the basic model described in the scientific literature.

The UTAGMS-INT approach presented in [22] proposed a modification
of the basic UTA method commonly used to solve ranking problems, enrich-
ing the model based on AVF with additional functions representing positive
and negative values related to interactions occurring for pairs of criteria.
In this way, the authors changed the approach to the evaluation of alter-
natives, allowing for the reflection of the dependence of DM’s preferences
on multiple criteria simultaneously. The adaptation of LP problem formu-
lation was handled in two ways. In order to maintain the greatest possible
interpretability of the model, during the first phase, the smallest possible
subset of criterion pairs was identified, for which it was necessary to enrich
the representation of preferences with the mentioned synergy and redundancy
functions. In turn, the second phase allowed for obtaining recommendations
using robustness analysis. Moreover, by introducing additional parameters,
the model allowed determining the maximum value of the influence of the
introduced interactions on evaluating the utility of alternatives and limit-
ing the maximum number of interactions in which a single criterion can be
involved. In the publication P4 discussing issues related to models with di-
verse assumptions about the preference structure, it was proposed to adopt
the UTAGMS-INT approach to multi-criteria sorting problems by introduc-
ing threshold values that allow to determine the assignment of alternatives
to classes.

The second trend of modifications to UTADIS concerned the introduc-
tion of the possibility of reflecting the non-monotonic nature of preferences
with respect to individual criteria for evaluating alternatives. One of the
first approaches to solving this problem was UTA-NM introduced in [46],
which modified the UTA-Star variant of the model proposed in [47] while
maintaining all the assumptions concerning the solution except for the afore-
mentioned monotonicity of preferences with respect to the criteria. However,
as the author noted, this approach was highly inefficient due to the long time
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of optimization of the LP model, even for trivial decision problems. An-
other approach was proposed by [23], which, in the phase of formulating LP
problem, avoided assumptions regarding both monotonicity and normaliza-
tion of marginal functions, replacing them with boundary constraints. This
enabled a consistent interpretation of the obtained comprehensive scores and
relations between alternatives with the results obtained by other methods
from the UTA family. Another model requiring post-normalization of the
obtained model was the approach proposed in [24]. This method modeled
the DM’s non-monotonic preferences by doubling the marginal functions for
each criterion, treating each of them bidirectionally - as a gain and a cost
simultaneously, by providing a non-decreasing and non-increasing MVF, re-
spectively. Such a formulation of the problem did not guarantee that the best
and the worst possible decision alternatives would obtain a comprehensive
value equal to 1 and 0, respectively; hence, for this procedure, it was also
necessary to normalize the model and the recommendations provided.

In total, the described study included a detailed presentation of the six
models considered. In addition to the basic UTADIS concept, the proper-
ties of two approaches adapting the UTAGMS-INT approach to the sorting
problem were investigated, one of which limited the number of possible in-
teractions to a maximum of one per criterion (UTADIS-INT-1) and the
other without any limit in this respect (UTADIS-INT-∞). In addition,
three approaches accepting non-monotonic preferences were proposed, two
of which were adapted from the model presented in [23]. The first proposed
procedure (UTADIS-NM-1) enriched the proposed model with threshold
values in order to adapt the procedure to the sorting problem. This model,
in its original form, tried to capture the concept of searching for the most
discriminant value function on the one hand, and minimize slope changes
in piecewise linear MVF on the other, which was supposed to discourage the
model from radical, non-monotonic changes in preferences. The second pro-
posal (UTADIS-NM-2) ignored this aspect, focusing only on maximizing
the discriminative ability of the solution. The last approach (UTADIS-NM-
3) introduced a marginal modification to the original model described in [24],
which proposed a solution to problems with multiple decision attributes.

The publication also describes tools explaining preference models that
were used for subsequent analysis of the results, such as ROR and SOR.
Robustness analysis focused on verifying the set of classes to which, based on
the used model and DM’s preferences, it was possible to assign an alternative,
which enabled determining the set of all Possible Class Assignments (PCA)
for a given alternative. On the other hand, stochastic analysis based on
statistical analysis of a sampled subset of all feasible solutions, provided
Class Acceptability Indices (CAI), indicating how often a given alternative
is assigned to a particular class. The determined values formed the basis for
defining the model quality measures described below.
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The aim of the comparative experimental analysis was to examine the
characteristics of individual models regarding robustness and expressiveness
as well as the trade-off between these two important issues. The simula-
tion design included a solution for which the sample assignments of non-
dominated alternatives to classes provided by the DM were generated com-
pletely randomly to avoid biased results and lower the quality of the con-
clusions drawn from the study. The considered decision problems differed
in the number of classes (from 2 to 5), criteria (from 2 to 5), the number
of characteristic points in MVFs (from 2 to 5), and the number of reference
assignments provided as input (from 1 to 5 for each decision class). The non-
dominated set of alternatives constituting the input was determined in two
ways: either it was generated using an iterative algorithm drawing attribute
values from a uniform distribution while maintaining the lack of dominance
relations in the set or by drawing a point from the unit m-sphere and then
changing the point coordinates to the attribute values. The multivariate
analysis assumed the solution of 64,000 problems of varying structure and
difficulty by all six models considered. Then, the models were evaluated
using seven quality measures, two of which focused on the expressiveness
of the model and five on the robustness of the model and the recommenda-
tions provided.

The measure addressing the question of the model’s expressiveness was
Preference recoverability, which assigned 1 if it succeeded in recovering the
DM’s preferences and 0 otherwise. Averaging the values of this measure al-
lowed us to answer the question of how well the model can represent inconsis-
tent information about DM’s beliefs. The second measure focused on the size
of the slack variable (δ∗), which determined the minimal distance between
the comprehensive value of an alternative and the boundary value of the
class to which the model was forced to assign it by appropriate constraints.
The formulation of all six models providing univocal recommendations as-
sumed maximization of this value in different ways. Hence, their comparison
provided an additional premise proving the expressiveness of the model.

When considering the robustness of the models, the quality measures
focused on, on the one hand, assessing the level of agreement between all
feasible solutions and, on the other hand, on how well they were represented
by the returned univocal recommendations. The first two quality measures
(Average possible class assignments, Certain assignment ratio) captured the
qualitative results of the ROR analysis, checking the stability of the recom-
mendation, measured by the number of classes to which the model could
assign individual non-reference alternatives. In this context, the most robust
model with the lowest possible uncertainty level would provide the possible
and necessary assignment of an alternative to a single decision class. The
next quality measure (Entropy class acceptability index ) used the quantita-
tive results from SOR, validating the entropy measure based on CAI of the
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alternatives. The last two measures aimed at evaluating univocal recommen-
dations, on the one hand, checked the mean acceptability of the decisions
made (Mean class acceptability index ), and on the other hand, the stabil-
ity of class assignments with respect to potential modifications of threshold
values (Certain class assignments).

The results of the analyses confirmed the highest expressiveness in the
INT-∞ model, followed by NM approaches and INT-1, while the UTADIS
model, as the most constrained one, gave the least chance of reproducing
problems. On the other hand, considering the problems that UTADIS was
able to solve, it provided the most robust recommendations, the significance
of which was confirmed by all five quality measures. For the remaining prob-
lems solved by both INT approaches and all NM models, the most robust
solutions turned out to be those provided by INT-1, which was also the least
expressive of those mentioned. Further, when comparing INT-∞ with all
non-monotonic approaches, it obtained better robustness results than the
others on average, but when making a more detailed analysis, it turned out
that this statement is not always true. As concluded from the results, the ad-
vantage of INT-∞ was noticeable only for problems for which the provided
recommendations involved at most two active pairs of interacting criteria.
In the case of three or more active synergy functions, more robust results are
expected from the NM group of methods. Moreover, within the group of mod-
els addressing non-monotonicity of preferences, the NM-2 model turned out
to obtain the most robust results, although its advantage was not as evident
as in the case of the other comparisons discussed earlier. Similar to the pre-
viously discussed publications, the significance of all observed relationships
was confirmed by the Wilcoxon signed-rank test with a p-value of 0.05.

The analysis confirmed that more expressive models generally provide
less robust recommendations. In order to support the work of analysts,
this publication proposes a solution to the problem of selecting an adequate
model by using the proposed framework. First, the most robust approach
(UTADIS) should be used, and if it is impossible to obtain a compatible so-
lution, more sophisticated models should be considered, starting from INT-1
and INT-∞, with the proviso that they should only be used if the obtained
recommendations involve at most two pairs of interacting criteria. If they
are also unable to provide a feasible solution, then the NM-2 model should
be used, and if that fails too, preference elicitation in cooperation with the
DM is necessary. Nevertheless, it should be clearly stated that the proposed
framework should be used only when information about the nature of prefer-
ences for individual criteria is unavailable and there is no way to determine
it. In the case of an explicit DM’s indications about the non-monotonicity
of preferences or the need to express interactions, the decision analyst should
select an adequate decision model that meets the DM’s expectations.
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The contribution of this publication is threefold. First, it has adapted
models that modify the basic assumptions of the UTADIS approach and
proposed an experimental setting that examines the properties of model ex-
pressiveness and recommendation robustness along with seven quality mea-
sures. Second, the study that was conducted experimentally provided evi-
dence of the opposite nature of expressiveness and robustness. Third, it has
provided a framework that proclaims guidelines for decision analysts and
facilitates the selection of an adequate model for the considered problem,
which is also the ultimate goal of this dissertation and confirms the research
hypothesis.

3.4 Nature-inspired preference learning
Choquistic approaches

One of the most critical issues discussed in the contemporary scientific litera-
ture on decision support approaches is Preference Learning problems, which,
in their essence, combine issues known from MCDA and ML [32]. On the
one hand, similarly to MCDA problems, they are based on the provided,
indirect, and incomplete preference information about decision alternatives
and retain a solution structure similar to MCDA problems, such as ranking
or sorting of alternatives. Decision-making procedures are also typically intu-
itive and easy to interpret, and they provide the tools and evidence to support
the recommendations and conclusions provided. Unfortunately, they often
lose the quality of the derived solutions with the increase in the complex-
ity of the problem and the data provided. On the other hand, ML-based
approaches are capable of providing high-quality predictions even for large
datasets. However, due to sophisticated, non-linear methods, the explain-
ability of the judgments made is limited. The optimal Preference Learning
solution would, therefore, be to use an approach that combines the best
features of both concepts by providing a solution that is correct, accurate,
robust, and easy to interpret, even for a large dataset with incomplete and
often inconsistent preferential information.

One approach that may prove helpful in this context is the Choquet
integral model, which has already been used to solve Preference Learning
problems in [38]. This model calculates comprehensive scores of alternatives
based on a non-additive, fuzzy measure that provides importance weights
for all subsets of criteria in the considered problem, which allows for the
capture of advanced preferences related to inter-criteria interactions. The
obtained comprehensive values of alternatives, together with thresholds, al-
low for obtaining an unambiguous classification of individual alternatives,
which, combined with the complexity and large possibilities of representing
preferences by the model, allows for solving challenging multi-criteria sort-
ing problems. Nevertheless, as noted in the aforementioned publication, the
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problem of selecting appropriate model parameters (capacities) in the case of
a large data set and rich preferential information, is too complex for the stan-
dard model optimization approach based on the LP problem formulation. For
this purpose, a technique for solving such complex problems called Cutting-
plane method, was used, which in the optimization phase initially ignores and
then gradually introduces subsequent constraints resulting from the provided
preferential information, in this case, pairwise comparisons of alternatives.
The proposed approach allows for solutions that are not fully compatible
with all provided statements, which is a common practice when solving ML
and PL problems, as obtaining a feasible solution using a given model is of-
ten very difficult or impossible, and could also indicate its overfitting and
reduced predictive capabilities. However, there exist many other optimiza-
tion techniques that can effectively address the problem of determining the
parameters’ values of the Choquet integral model, the investigation of which
was the subject of the research work described in publication P3.

The publication, together with supplementary materials, contains a de-
tailed definition of the problem, including a description of symbols and con-
cepts, and, most importantly, a formal definition of the Choquet integral
model, which is the basis for the threshold-based sorting procedure, together
with an explanation and a practical demonstration of how the procedure
evaluates and assesses alternatives. The publication also proposes eight dif-
ferent approaches to searching for an accurate model, inspired by well-known
and commonly used optimization techniques. Two implement the classical
approach to optimizing model parameters, frequently used in MCDA, by for-
mulating and solving the Mathematical Programming problem. To reduce
the complexity of the problem and the time needed to obtain a solution,
the bagging-inspired approach [48] was used so that instead of solving the
entire mathematical optimization problem by minimizing the number of er-
rors (MNR) or the maximum error (MMR) across all preference-reflecting
recommendations, these approaches solved many simple problems, which in-
volved only a subset of the preference statements as input. In addition, each
of the three methods has a given patience parameter, which indicates how
long the algorithm should try to stick to the current solution in the absence
of improvement over several iterations. If the number of iterations without
improvement in the quality of the solution exceeds the parameter value, then
the search starts with a newly drawn model.

The next group of methods included three procedures inspired by a local
search in the solution space. The operation of all methods was based on the
neighborhood relation, which was true for a pair of solutions for which the Eu-
clidean distance between vectors containing all model parameters was smaller
than the assumed radius. For these approaches to work, it was also necessary
to introduce the loss and regret functions. Regret symbolizes the difference
between the comprehensive value of the alternative and the range of values
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assigned to the desired class. If the alternative is correctly assigned by the
model, then regret is equal to 0, and otherwise, it reaches positive values.
In turn, the model’s loss function aggregates the regret values for all reference
alternatives, by averaging them, hence models with the lowest possible loss
function value are preferred. These concepts are important for understanding
the above-mentioned methods, which differ from each other in their approach
to accepting a newly selected, neighboring solution. The first one (GLS)
generates one new solution in each iteration and accepts it if its loss func-
tion is lower than the previously chosen one. The second approach (SLS)
generates multiple neighboring solutions simultaneously, selects the best can-
didate, and accepts it based on the same rule. The last approach (SAN),
implementing the Simulated Annealing approach [49], generates one neighbor
and then accepts it unconditionally in case of improvement of the solution
quality or in case of deterioration, with a certain probability, depending on
the difference of the loss function between the compared models.

The last group of methods are nature-inspired metaheuristics, which al-
low for optimization by considering and evolving multiple solutions simulta-
neously. The first one is the Genetic Algorithm (GEN) [50], based on the
concept of natural selection, which, by mutating, crossing, and selecting the
population of solutions, creates subsequent generations of models. By us-
ing evolutionary pressure, this approach can lead to gradual improvement
and find better solutions. The second approach is Fish School Search (FSS)
described in [51], inspired by the movement of schools of fish searching for
food, the specificity of which is used to search for better solutions. The last
concept is Particle Swarm Optimization (PSO), introduced in [52], inspired
by the dynamics of movements in large swarms of birds. It assumes that each
particle iteratively moves through the solution space according to a vector
representing its velocity, which is attracted by the best solution found so far
by the given particle and by the whole swarm.

Two post-optimization techniques have also been proposed. One of them
selects such threshold values that maximize classification accuracy for refer-
ence alternatives. The other uses an approach inspired by the backpropa-
gation algorithm, which is commonly used for training neural networks [53].
This idea consists of updating the model parameters in such a way as to re-
duce the regret for each of the considered reference alternatives. A pre-
liminary analysis was also conducted to confirm this technique’s usefulness
and determine the optimal proportion of time spent on its operation in re-
lation to the time spent on optimization using one of the eight algorithms.
Additionally, to protect the optimization procedures and backpropagation al-
gorithm from obtaining solutions that are inconsistent with the monotonicity
and normalization assumptions of Choquet integral capacities, they are pre-
vented by shortening the solution shift vector so that the resulting model is
compatible with the Choquet integral assumptions.
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The experimental analysis comparing the proposed approaches included
the evaluation of the algorithms on five benchmark binary classification prob-
lems, containing from 4 to 7 criteria and from over 200 to 1000 alterna-
tives, with three different ratios (20-80, 50-50, 80-20) of assigning alternatives
to reference and non-reference subsets, respectively. The analysis measured
two indicators of model quality: acc representing the classification accuracy,
and auc indicating the ratio of correctly reflected pairwise comparisons for
non-reference alternatives that were originally assigned to different classes.

It should be emphasized that each of the considered algorithms provided
the possibility of influencing a diverse number of hyperparameters. For this
reason, the study was divided into two phases. In the first phase, for each
combination including the algorithm, the considered benchmark problem,
and the proportion of the division of alternatives, the optimization of the al-
gorithm hyperparameters was carried out, using 10-fold Monte Carlo Cross-
Validation and setting the algorithm stop condition and post-optimization
techniques to ten seconds. This phase aimed to select the best set of hy-
perparameters, for which the number of combinations varied from a dozen
for mathematical programming approaches to over two hundred for the ge-
netic algorithm. The second phase, aimed at comparing the proposed al-
gorithms, performed 100-fold Monte Carlo Cross-Validation for algorithms
with selected hyperparameter values, with a 30-second execution timeout.

The analysis of the average values for both quality measures consistently
confirmed that regardless of the considered split ratio, the best results were
obtained by nature-inspired approaches, consistently outperforming the other
approaches according to the average position in the algorithm rankings cre-
ated for each benchmark dataset. In particular, for problems with the lowest
preferential information richness, containing 20% of alternatives with refer-
ence assignment, the best results were obtained by PSO, followed by GEN,
and FSS. For the 50-50 split, the best performing algorithm was GEN, fol-
lowed by PSO, while FSS obtained results comparable to those of the SLS
approach. The results for problems with 80% of the reference alternatives
highlighted the even greater dominance of GEN over the other approaches
and showed a comparable quality of solutions generated by PSO and FSS.

The conducted research provides a new perspective on the optimization
of the Choquet Integral model parameters in the context of its application
in preference learning problems, along with the description of eight dedicated
algorithms. Moreover, a comparative experimental analysis framework was
proposed, assuming two phases of experiments and examining two different
aspects of the recommendations provided. The results clearly indicated the
dominance of nature-inspired approaches over the other methods considered.
Finally, the conclusions from the conducted analysis provide guidelines for
selecting an adequate approach to the problem, depending on the availability
of information about preferences, which confirms the dissertation hypothesis.
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Chapter 4

Summary

The increasing interest in MCDA methods, which indirectly process DM’s
statements and capture preferences in a holistic manner, has led to the devel-
opment of numerous approaches consistent with the disaggregation paradigm.
The popularity of these approaches is a direct result of their great usefulness
and simplicity, high interpretability and universality, and the low cognitive
effort required by the DM. Undoubtedly, the recent developments in this
field have made a significant contribution to the scientific literature on de-
cision support. However, this also means that the role of decision analysts
has become more crucial than ever. They are now faced with the increas-
ingly important task of selecting the right tools to effectively solve real-world
problems and formulate valuable recommendations.

Analyzing issues related to the accuracy, robustness, expressiveness, in-
tuitiveness, and interpretability of models is an important research aspect
because it reveals the strengths and weaknesses of individual approaches.
Observations of these aspects in an experimental environment, considering
many problems with different characteristics, allow for the determination
of the credibility of specific methods and indicate the circumstances in which
a given decision procedure should be used. This may constitute a premise
for formulating guidelines that, based on the characteristics of the prob-
lem under consideration, can support the process of selecting an adequate
decision-making procedure. The research work aimed to demonstrate that
it is possible to formulate such guidelines based on the results of an ex-
perimental comparative analysis of models and methods exploiting holistic
DM’s preferences.

One of the challenges posed in this dissertation concerned providing highly
interpretable and, at the same time, qualitative recommendations for multi-
criteria choice, ranking, and sorting problems. Considering this issue, the
scope was set on the family of UTA methods capable of providing univo-
cal recommendations. Their diversity, as well as the lack of comprehensive
consideration and comparison of these approaches in the scientific literature,
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made it essential to address this issue. The conducted experimental analy-
ses revealed features indicating the accuracy and robustness of the provided
recommendations.

For the ranking and choice problems, thirty-five procedures originating
from four method streams were compared based on seven quality indicators.
The analysis was focused on the compliance of the provided recommendations
with the DM’s preferences, the compatibility of the provided univocal solu-
tion with the set of all feasible models, and the internal consistency of the
entire space of compatible models and the recommendations they provide.
The multivariate evaluation allowed for obtaining conclusions that clearly
identify procedures that give significantly better results than the others, tak-
ing into account the analyzed priority indicator of decisions made. More
specifically, the results confirmed the high usefulness of the procedures based
on the exploitation of the Stochastic Ordinal Regression results for both types
of problems considered. The conclusions provided allowed the formulation
of a set of guidelines that facilitate the process of selecting an appropriate
procedure for a specific multi-criteria problem.

A similar study was proposed for procedures oriented toward solving the
sorting problem. Fourteen procedures were compared, including three novel
approaches, focused on finding solutions based on the results of stochas-
tic analysis, providing observations on all feasible solutions. Five quality
measures were proposed, covering such aspects as the consistency of recom-
mendations with DM’s preferences, the credibility of recommended decisions
by assessing their representativeness, and the similarity of the derived so-
lution to the reference model representing DM’s beliefs. The results of the
experimental analysis proved that the novel procedures provided the most ro-
bust recommendations. On the other hand, the methods dedicated to central
and average solutions, with the approach of determining the analytical center
of the polygon constituting all feasible solutions, most accurately reproduced
the DM’s preferences. Regardless of the structure and size of the considered
sorting problem, the derived results of multivariate analysis clearly confirm
the advantage of the approaches mentioned above, constituting a basis for
formulating recommendations for decision analysts.

The next issue considered was the comparison of different models solv-
ing sorting problems in the disaggregation preference paradigm. The scope
of the study included examining the properties of one of the most popular
representatives of this paradigm – the UTADIS model along with five modi-
fications of this model, introducing the possibility of representing preferences
with respect to inter-criteria interactions and their non-monotonic nature.
The analysis performed included the assessment of the model expressiveness
and verification of the robustness of the results provided by the models. The
study reveals the contradictory nature of these two issues, showing that the
more expressive the model is, the less robust recommendations it offers.
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In order to provide qualitative statements representing DM’s beliefs, the
research results suggest applying models, starting from the most robust, ba-
sic UTADIS model. In case of a lack of ability to fully reflect DM’s prefer-
ences, the framework further indicates models expressing inter-criteria inter-
actions, assuming their limited use to a maximum of two active synergies for
pairs of criteria. Otherwise, a non-monotonic approach should be used, and
in case of further inability to represent DM’s preferences, preference elicita-
tion should be performed. Moreover, the developed guidelines should only
be applied when the DM’s attitude toward interacting and non-monotonic
preferences is unknown and difficult to determine.

The last issue considered in this dissertation is a comparative analysis
of approaches to solving Preference Learning problems in the context of pro-
viding solutions to the binary classification problem. The desired features
of the provided solutions are: high accuracy and interpretability, the abil-
ity to efficiently process large data sets, and robustness to inconsistencies
contained in preferential information. The Choquet integral model, capable
of representing interacting DM’s preferences, was chosen to represent prefer-
ences in this context. The experimental analysis included the study of dif-
ferent approaches to solve the problem of establishing the model parameters’
values. Their determination is an important aspect because standard meth-
ods based on Linear Programming formulation are time-consuming.

In the conducted research, eight different optimization approaches were
proposed and compared, along with two post-optimization techniques. Their
evaluation was based on experimental comparative analysis using five bench-
mark datasets and assessment on two quality measures, reflecting the accu-
racy of statements referring to unambiguous assignments to classes and the
relations for pairs of alternatives from different decision classes. The results
confirmed the superiority of procedures based on nature-inspired metaheuris-
tics over classical approaches based on mathematical programming and im-
plementing local search strategies in both aspects. In particular, the Particle
Swarm Optimization methods are recommended for problems with poor DM
preference representation, and the Genetic Algorithm should be used in the
remaining cases. Such clear guidelines provide grounds for selecting an ade-
quate method for model optimization under time-constrained conditions.

The common feature of all the research conducted was their experimental
nature, providing empirical evidence of differences in the broadly understood
quality of solutions offered by specific procedures. Additionally, to increase
the comprehensibility of the presented issues, each of the discussed studies
was enriched with a detailed description of the considered procedures, models,
and decision support methods, along with a practical visualization of their
application based on an illustrative study. The study identified the most
important aspects to consider when selecting an adequate decision aiding
procedure.
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Moreover, the high usability and effectiveness of the proposed compara-
tive experimental analyses have been proven. This approach provided many
observations and evidence regarding qualitative aspects of approaches ori-
ented towards providing representative, univocal preferences, the contrasting
nature of expressiveness of models, and the robustness of recommendations
dependent on the assumptions of a specific preference disaggregation model
and the accuracy of statements provided by various Choquet integral model
optimization procedures addressing preference learning problems.

In addition to the analyses performed, newly proposed procedures and
algorithms, as well as adaptations of existing approaches to the problems
being solved, have contributed significantly to the state-of-the-art knowledge
in the field of MCDA. Furthermore, several quality measures related to var-
ious features of methods and recommendations have been proposed, which
facilitate the consideration and empirical capture of different aspects desired
in decision support approaches.

Noticing and measuring the similarities and differences between the var-
ious procedures, models, and algorithms allowed for the formulation of com-
prehensive guidelines indicating the best approaches in the domains and types
of problems. It should be strongly emphasized that the presented conclusions
and the guidelines derived from them are applicable only under the condition
of maintaining specific features of the decision-making process, the consid-
ered problem, and, in some cases, the characteristics of the solutions ob-
tained. Overall, the conducted research fulfilled the research objectives. The
provided conclusions, results, and the above-mentioned formulated guidelines
confirm the research hypothesis.

Future research directions may include further development of evidence-
based guidelines for decision analysts to support their work. It would also
be desirable to create universal principles for evaluating newly proposed ap-
proaches, allowing them to be presented along with indications of their ad-
vantages and evidence of their high utility in a given context. These principles
could include a comprehensive set of diverge measures focused on particular
quality aspects of the models, along with a specific collection of benchmark
datasets, in order to achieve repeatability of the analysis and increase the
credibility of the presented results. Lastly, it would be beneficial to cre-
ate a universal decision support meta-procedure, capable of recommending
an appropriate method based on limited information about the considered
problem, without detailed indications regarding the characteristics of the al-
ternatives, criteria, and the DM’s preferences. Such a method would fit into
the above-mentioned paradigm of preference disaggregation, deriving recom-
mendations based on indirect statements and reducing the cognitive effort
needed to apply such an approach.
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a b s t r a c t 

We account for the preference disaggregation setting given multiple criteria ranking and choice prob- 

lems. An assumed preference model is a set of additive value functions compatible with the Decision 

Maker’s pairwise comparisons of reference alternatives. The incompleteness of such indirect preferences 

implies the multiplicity of feasible functions and the ambiguity in indicating the most preferred alterna- 

tive or ordering alternatives from the best to the worst. We review approaches that construct a univocal 

recommendation under such scenarios. They represent four groups of methods: procedures selecting a 

representative value function, decision rules, scoring methods, and mathematical models for constructing 

a robust ranking. The use of all thirty-five approaches is illustrated on a simple decision problem. Then, 

they are compared in an extensive computational study in terms of their abilities to reconstruct the DMs’ 

true preferences and robustness of delivered recommendations given the support they are given in the 

set of all compatible models. The results are quantified in terms of seven performance measures. Their 

analysis indicates that in the context of choice, it is beneficial to consider the rank acceptabilities for 

the best ranks. For ranking problems, the most advantageous outcomes are attained by procedures that 

emphasize the most frequent relations or positions in the feasible polyhedron. Apart from the average 

results, we discuss how the performance of all approaches changes for different parameterizations of the 

decision problem and preference model. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multiple criteria ranking and choice are among the most fre- 

quent real-world decision problems [18] . The former aims at order- 

ing the set of alternatives from the best to the worst, whereas the 

latter is oriented towards selecting a small subset of the most pre- 

ferred options. Both types of problems are solved using a relative 

comparison approach that combines two sorts of information: a 

dominance relation and Decision Maker’s (DM’s) preferences [30] . 

The preference information enriches the dominance, making the 

alternatives more comparable given the conflicting nature of the 

criteria. 

The preferences about the problem and model parameters used 

in the Multiple Criteria Decision Aiding (MCDA) methods may be 
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complete or incomplete [11,13,48] . The complete preferences guar- 

antee precision and direct impact of the DMs on how their value 

systems are represented within the method. Their use is advised 

when the DMs have a thorough understanding of the employed 

MCDA approach and the respective model parameters and feel con- 

fident about providing precise inputs. On the contrary, the incom- 

plete preferences take the form of imprecise statements that are 

translated into constraints on admissible parameter values of an 

assumed preference model [48] . Alternatively, they may emerge as 

incomplete holistic judgments concerning a small subset of refer- 

ence alternatives [26] . In this way, the DMs are not forced to pro- 

vide exact estimates of the parameter values. Moreover, the use 

of incomplete preferences requires lesser cognitive effort on the 

part of DMs, allowing them to exercise their decisions [11] . How- 

ever, this is at the cost of trusting the mechanism of disaggregat- 

ing holistic statements into the compatible parameter values, the 

ambiguity of representing the DM’s preferences by the assumed 

model, and, typically, accepting some level of equivocality in the 

suggested recommendation. 

In this paper, we focus on the most popular preference disag- 

gregation method, called UTA [25] . It incorporates pairwise com- 

https://doi.org/10.1016/j.omega.2022.102715 
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parisons of reference alternatives to infer a set of compatible ad- 

ditive value functions. For this purpose, it employs dedicated lin- 

ear programming techniques [51] . Usually, among many functions 

consistent with the DM’s preferences, a single one is selected to 

impose a complete order on the set of alternatives or identify the 

most preferred option. The UTA method has been appreciated in 

the MCDA community for using a highly interpretable preference 

model that differentiates between inter- and intra-criteria attrac- 

tiveness and exhibiting a direct link between the input preferences 

and output recommendation. Such engaging characteristics moti- 

vated its use in real-life decision problems concerning, e.g., mar- 

keting and development of new products [42] , environmental man- 

agement [50] , energy policy [44] , project portfolio selection [59] , 

e-government benchmarking [49] , or pharmaceutical strategy de- 

termination [38] . 

The basic variant of UTA has been extended in numerous ways. 

When it comes to the accepted preference information, the en- 

riched approaches accept other types of holistic judgments, in- 

cluding preference intensities [15] , rank-related requirements [32] , 

and uncertain pairwise comparisons [10] . Moreover, some ac- 

tive learning strategies have been proposed to maximize the in- 

formation gain from the provided indirect preference informa- 

tion and minimize the number of iterations needed to arrive at 

a sufficiently decisive recommendation [8,9] . As far as the em- 

ployed preference model is concerned, the revised variants of 

UTA accept general [21] , recursive exponential [2] , polynomial, or 

splined [53] marginal functions instead of piecewise linear ones. 

Other model-oriented developments admit data-driven selection of 

characteristic points [29] , non-monotonicity of per-criterion prefer- 

ences [17,45] , and interactions between criteria [23,24] . The prefer- 

ence disaggregation procedures were also extended to define vari- 

ous errors quantifying the consistency between the supplied and 

obtained comparisons or rankings [51] . Moreover, some consis- 

tency restoration procedures were devised to suggest which DM’s 

statements should be modified or withdrawn [21] . 

Further methodological advancements have been devoted to ro- 

bustness analysis, providing dedicated explanations, and address- 

ing various structures and types of decision problems. The robust 

methods exploit the multiplicity of compatible value functions to 

quantify the necessary, possible [21] , extreme [30] , and probabilis- 

tic [34] consequences of their application on the set of alterna- 

tives. Other robustness indices for quantifying the stability of both 

an additive value model (e.g., the average range of the preferen- 

tial parameters and average stability index) and recommended re- 

sults have been proposed in [40] . Furthermore, techniques for gen- 

erating dedicated explanations of such outcomes were introduced 

in [28] , whereas measures for quantifying the stability of results 

were proposed in [8,54] . Also, [12] adopted UTA to handle crite- 

ria organized in hierarchical structures, whereas [51] adjusted it to 

problems under uncertainty. Finally, group decision methods were 

elaborated for arriving at a consensus recommendation in a pref- 

erence disaggregation setting [19,41] . A plethora of real-world ap- 

plications and methodological extensions confirm the usefulness 

and importance of UTA. However, the major problem related to the 

practical use of incomplete preferences in UTA derives from multi- 

ple or even infinitely many instances of the preference model com- 

patible with the DM’s indirect statements. It is so because their 

application on the set of alternatives potentially leads to ambigu- 

ous recommendations [21] . In general, preference information can 

be completed by eliciting additional preference judgments. How- 

ever, in many scenarios, the possibility of continuing such an elici- 

tation process is limited [9,48] . As a result, the robustness analysis 

methods mentioned above often leave the problem far from being 

solved, failing to provide a complete ranking or indicate the most 

preferred alternative. Moreover, the analysis of multiple preference 

model instances is too abstract for many users who, in turn, are 

used to analyzing a synthetic, precise solution to the problem at 

hand [31] . 

This paper deals with methods that derive a univocal recom- 

mendation in the preference disaggregation setting. We review ap- 

proaches that support the DMs in concluding which alternative 

is the most preferred or ordering alternatives from the most to 

the least preferred, even if their preferences are incomplete. These 

techniques can be divided into four groups. First, we can select a 

single value function representing the feasible polyhedron [3,31] . 

The procedures serving this purpose are based on different prin- 

ciples, identifying the most discriminant [3] , average [25] , cen- 

tral [4] , benevolent [5] , parsimonious [22] , or robust [31,34] model. 

However, they all deliver a function that can be displayed to the 

DM and derive a precise recommendation. The second group com- 

prises decision rules that implement arbitrary criteria for devel- 

oping a univocal outcome [33,48] . Examples include maximax and 

minimax rules, maximization of expected value or likelihood, and 

minimization of regret or unlikelihood. The third subset includes 

scoring procedures that exploit the outcomes of robustness anal- 

ysis for deriving a comprehensive measure of desirability. In this 

case, the intermediate results concern pairwise value differences 

between alternatives [39] or the shares of value functions confirm- 

ing the advantage of some options over others [33] . Finally, the last 

stream proposes mathematical programming models for construct- 

ing a complete ranking based on the stochastic results [58] . They 

maximize the support given to the elementary pairwise relations 

or assignments of alternatives to specific ranks by all compatible 

value functions. Overall, we describe 35 procedures that find use 

in the context of multiple criteria ranking and/or choice. 

The scientific literature offers limited guidance as to which 

methods for deriving a univocal recommendation should be 

used [48] . The arguments that can be taken into account when 

conducting such a selection are diverse. The first builds on whether 

the recommendation is associated with singling out a compatible 

preference model instance [31,58] . Then, we can refer to the or- 

dinal [58] or cardinal [3,39] character of the scale leading to the 

ranking or choice. We may also consider if the robustness concern 

is incorporated in the process by referring to the outcomes ob- 

tained with all feasible models [31,39,58] . The computational cost 

may be accounted for because the execution of some procedures 

is time-consuming [31,34] , and others are hardly applicable for 

large sets of alternatives due to the low efficiency of contemporary 

solvers [58] . Furthermore, some researchers point out that the suit- 

ability of methods may differ depending on the problem context. 

For example, when modest stakes are involved, one may consider 

some central estimates; however, more precautionary procedures 

should prevail with high stakes [48] . 

The above aspects are evident from the description of each 

method. Their consideration may lead to a subjective selection of 

the most suitable procedure for a given problem. In this paper, 

we add a pair of more objective features that may be accounted 

for when deciding on which approach for constructing a univo- 

cal recommendation should be used. On the one hand, we refer to 

the ability to reconstruct the entire ranking or indicate the most 

preferred alternatives based on incomplete preference information. 

On the other hand, we verify the robustness of provided recom- 

mendation in terms of the support all compatible value functions 

give it. These general ideas are materialized with seven measures, 

making the comparison of all procedures meaningful. The results 

are derived from an extensive computational study involving prob- 

lems with different numbers of alternatives, criteria, characteristic 

points of marginal value functions, and pairwise comparisons of 

reference alternatives. In the experiment, we focus on additively 

rational DMs whose pairwise comparisons are consistent with an 

assumed model and relatively small MCDA problems for which 

both the choice and ranking recommendation may be of interest 
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to the DMs. We discuss the average results attained for all scenar- 

ios and the performance trends observable with increasing prob- 

lem’s complexity, preference model’s flexibility, and availability of 

holistic judgments. 

The paper’s remainder is organized in the following way. 

Section 2 reminds UTA and its robust extensions. In Section 3 , 

we discuss various procedures for constructing a univocal rank- 

ing and choice recommendations in a preference disaggrega- 

tion setting. Their use is illustrated on a didactic example 

in the e-Appendix (supplementary material available online). 

Section 4 presents the results of an extensive experimental study. 

The last section concludes the paper. 

2. Reminder on UTA and robustness analysis 

The following notation is used in the paper: 

• A = { a 1 , a 2 , . . . , a i , . . . , a n } – a finite set of n alternatives; each 

evaluated in terms of m criteria; 
• A 

R = { a ∗
1 
, a ∗

2 
, . . . a ∗r } – a finite set of r reference alternatives; 

A 

R ⊆ A ; 
• G = { g 1 , g 2 , . . . , g j , . . . , g m 

} – a finite set of m evaluation criteria, 

g j : A → R for all j ∈ J = { 1 , . . . , m } ; without loss of generality, 

we assume that all of criteria in G are of gain type; 
• X j = { g j (a i ) , a i ∈ A } – a finite set of performances of all alterna- 

tives in A on criterion g j ; 

• x 1 
j 
, x 2 

j 
, . . . , x 

n j (A ) 

j 
– the ordered values of X j , x k −1 

j 
< x k 

j 
, k = 

2 , . . . , n j (A ) , where n j (A ) = | X j | and n j (A ) ≤ n ; 
• rank : A → N ∈ { 1 , . . . , n } – a function indicating the alterna- 

tive’s rank. 

To compute a comprehensive score of alternative a ∈ A , 

UTA [25] considers an Additive Value Function (AVF) [35] : 

U(a ) = 

m ∑ 

j=1 

u j (g j (a )) , ∀ a ∈ A (1) 

where u j , j = 1 , . . . , m , are Marginal Value Function (MVF) being 

piecewise linear monotonic and defined by a pre-defined number 

γ j of equally distributed characteristic points β1 
j 
, β2 

j 
, . . . , βγ j , such 

that: 

βs 
j = x 1 j + (x 

n j (A ) 

j 
− x 1 j ) 

s − 1 

γ j − 1 

, j = 1 , . . . , m, s = 1 , . . . , γ j . (2) 

A comprehensive value is normalized in the [0 , 1] range by as- 

suming that u j (β
1 
j 
) = 0 , for j = 1 , . . . , m , and 

∑ 

j=1 , ... ,m 

u j (β
γ j 

j 
) = 1 . 

To enable control over the difference between marginal values as- 

signed to the subsequent characteristic points, we consider the ρ
variable defined as follows: 

u j (β
s 
j ) − u j (β

s −1 
j 

) ≥ ρ, j = 1 , . . . , m, s = 2 , . . . , γ j . (3) 

In the basic setting, ρ is set to zero. The marginal value for per- 

formance x k 
j 
∈ [ βs 

j 
, βs +1 

j 
] can be computed using a linear interpola- 

tion: 

u j (x k j ) = u j (β
s 
j ) + (u j (β

s +1 
j 

) − u j (β
s 
j )) 

x k 
j 
− βs 

j 

βs +1 
j 

− βs 
j 

, j = 1 , . . . , m, k 

= 1 , . . . , n j (A ) . (4) 

UTA infers the parameters of AVF from the DM’s pairwise compar- 

isons of reference alternatives a ∗, b ∗ ∈ A 

R , indicating either indiffer- 

ence ( a ∗ ∼ b ∗) or preference ( a ∗ 
 b ∗) relation. Such holistic judg- 

ments are reproduced via preference disaggregation as follows: 

∀ a ∗,b ∗∈ A R a 
∗ ∼ b ∗ ⇒ U(a ∗) − U(b ∗) = 0 , (5) 

∀ a ∗,b ∗∈ A R a 
∗ 
 b ∗ ⇒ U(a ∗) − U(b ∗) ≥ δ, (6) 

where δ is an arbitrarily small positive value, implying U(a ∗) > 

U(b ∗) . In the original UTA method [25] , the comprehensive value 

of alternative a ∈ A is expressed as U 

′ (a ) = U(a ) + σ (a ) , where 

σ (a ) ≥ 0 is a potential error relative to U 

′ (a ) . Alternatively, in the 

UTASTAR method [52] – an improved variant of UTA – it is ex- 

pressed as U 

′ (a ) = U(a ) − σ+ (a ) + σ−(a ) , where σ+ (a ) , σ−(a ) ≥ 0 

are the over- and underestimation errors. The following linear pro- 

gram minimizing the sum of deviations is solved to estimate a 

value function: 

Minimize F = 

∑ 

a ∗∈ A R 
σ (a ∗) for UTA or F = 

∑ 

a ∗∈ A R 
σ+ (a ∗) 

+ σ−(a ∗) for UTASTAR , (7) 

subject to: 

u j (β
1 
j 
) = 0 , j = 1 , . . . , m, ∑ m 

j=1 u j (β
γ j 

j 
) = 1 , 

}
(E N ) 

u j (β
s 
j 
) − u j (β

s −1 
j 

) ≥ ρ, j = 1 , . . . , m, s = 2 , . . . , γ j , 
}
(E M ) 

U 

′ (a ∗) − U 

′ (b ∗) = 0 , for a ∗, b ∗ ∈ A 

R : a ∗ ∼ b ∗, 
U 

′ (a ∗) − U 

′ (b ∗) ≥ δ, for a ∗, b ∗ ∈ A 

R : a ∗ 
 b ∗, 
σ (a ∗) ≥ 0 for UTA or σ+ (a ∗) , σ−(a ∗) ≥ 0 for UTASTAR . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(E A 
R 

UTA ) 

(8) 

Then, the stability analysis of the provided results is conducted. 

If the optimum F ∗ is equal to zero, then the polyhedron of com- 

patible value functions is non-empty. The polyhedron of near- 

optimal solutions is defined by E A 
R 

UTA 
∪ F ≤ F ∗ + k (F ∗) , where k (F ∗) 

is a threshold being a small proportion of F ∗. As noted in [40] , in 

most applications of UTA, one usually seeks value functions that 

are free of errors ( F ∗ = 0 ), and no relaxation from the minimal 

error is allowed ( k (F ∗) = 0 ). In case the optimal solution is non- 

unique, the original postulate of UTA is to partially explore the 

polyhedron by first finding the functions that either maximize or 

minimize u j (β
γ j 

j 
) , for j = 1 , . . . , m , and then averaging thus ob- 

tained extreme functions into the final solution. For details and 

other possible exploitation algorithms, see [51] . 

To make the presentation of other UTA-like methods more 

straightforward, we will use a simplified notation, where a set U 

R 

of compatible AVF [21] is defined by the following set of linear 

constraints: 

E N , E M , 

U(a ∗) − U(b ∗) = 0 , for a ∗, b ∗ ∈ A 

R : a ∗ ∼ b ∗, 
U(a ∗) − U(b ∗) ≥ δ, for a ∗, b ∗ ∈ A 

R : a ∗ 
 b ∗. 

} 

(E A 
R 

) (9) 

When E A 
R 

is feasible, U 

R consists of at least one compatible AVF. 

Typically, when the compatible AVF is non-unique, there are in- 

finitely many such functions. This paper assumes that the DM’s 

preference information is consistent with an assumed additive 

value model, and hence U 

R is non-empty. For the exemplary al- 

gorithms dealing with the potential inconsistency, see [3,21,51] . 

In what follows, we discuss the approaches for robustness anal- 

ysis, whose results will be exploited by some procedures con- 

structing a univocal recommendation. Robust Ordinal Regression 

(ROR) exploits U 

R to verify the stability of the recommendation. In 

particular, the necessary relation � 

N holds if a weak preference re- 

lation � is unanimously confirmed by all compatible AVF, i.e. [21] : 

∀ a,b∈ A a � 

N b ⇐⇒ ∀ U ∈ U 

R : U(a ) ≥ U(b) . (10) 

Its truth is verified by solving the following Linear Programming 

(LP) problem: 

Minimize U(a ) − U(b) , s.t. E A 
R 

. (11) 

Let us denote its optimal solution by D (a, b) , indicating the min- 

imal value difference between a and b. In case D (a, b) ≥ 0 , then 
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a � 

N b. Otherwise, there exists at least one compatible value func- 

tions such that U(b) > U(a ) , and hence ¬ (a � 

N b) . 

In Stochastic Ordinal Regression (SOR), U 

R is exploited with the 

Monte Carlo simulations to derive a large set S ⊆ U 

R of uniformly 

distributed AVF that are representative for all feasible preference 

model instances [34] . The results obtained for these models are 

summarized in the form of stochastic acceptabilities [37] , which 

are estimates of actual shares of compatible value functions con- 

firming a specific outcome: 

• Rank Acceptability Index ( RAI(a, k ) ) is the share of all compati- 

ble AVF that rank alternative a ∈ A at k -th position, i.e.: 

∀ a ∈ A ∀ k ∈{ 1 , ... ,n } RAI(a, k ) = 

|{ U ∈ S : rank (a ) = k }| 
| S| ; (12) 

• Pairwise Winning Index ( P W I(a, b) ) is the share of all compat- 

ible AVF for which alternative a is strictly preferred to alterna- 

tive b, i.e.: 

∀ a,b∈ A P W I(a, b) = 

|{ U ∈ S : U(a ) > U(b) }| 
| S| ; (13) 

• Pairwise Outranking Index ( P OI(a, b) ) is the share of all com- 

patible AVF for which alternative a is weakly preferred to alter- 

native b, i.e.: 

∀ a,b∈ A P OI(a, b) = 

|{ U ∈ S : U(a ) ≥ U(b) }| 
| S| ; (14) 

• Pairwise Indifference Index ( P I I (a, b) ) is the share of all compat- 

ible AVF for which alternative a is indifferent with alternative b, 

i.e.: 

∀ a,b∈ A P I I (a, b) = 

|{ U ∈ S : U(a ) = U(b) }| 
| S| . (15) 

The above relation can be revised to an approximate indiffer- 

ence, which represents a scenario when the comprehensive val- 

ues of two alternatives differ by no more than a pre-defined 

threshold [58] . 

Note that ∀ a ∈ A 
∑ n 

k =1 RAI(a, k ) = 1 and ∀ a,b∈ A P W I(a, b) = 1 −
P OI(b, a ) . In this paper, we sample from set U 

R using the Hit-And- 

Run (HAR) algorithm [56] implemented in [7] . 

3. Methods for constructing a univocal recommendation 

This section reviews thirty-five methods for constructing a uni- 

vocal ranking and choice recommendation in a preference disag- 

gregation setting. The underlying assumption is that the space of 

compatible AVF is non-empty. 

3.1. Selection of a representative value function 

In this section, we review different procedures for selecting a 

representative value function in the context of UTA. For this pur- 

pose, they optimize different objective functions subject to the 

constraint set E A 
R 

that defines a set of compatible value functions. 

The selected function can be displayed to the DMs, who can ana- 

lyze the shapes of MVF, criteria weights, and alternatives’ compre- 

hensive scores, leading to a univocal recommendation. 

Let us start with the max-min formulations that seek the most 

discriminant AVF. This idea was first implemented in UTAMP1 [3] , 

which postulates maximizing the minimal difference between 

comprehensive values of reference alternatives related by the pref- 

erence relation, i.e.: 

Maximize δ, s.t. E A 
R 

. (16) 

This approach highlights the DM’s indirect preferences, repro- 

ducing them boldly and robustly. Another procedure, called 

UTAMP2 [3] , optimizes δ along with the difference between 

marginal values assigned to all pairs of consecutive characteristic 

points, i.e.: 

Maximize δ + ρ, s.t. E A 
R 

, (17) 

where ρ ≥ 0 . The method favors strictly monotonic MVF with 

steeper linear components and greater slopes. 

The procedure underlying the selection of a parsimonious AVF 

aims at MVF, which minimally deviate from the linearity [6,31] . 

The model corresponding to this idea is called a Minimal Slope 

Change Value Function ( UTAMSCVF ). It can be obtained by solving 

the following Linear Programming (LP) model, which is applicable 

when at least three characteristic points are considered: 

Minimize φ

s.t. 

E A 
R 

u j (β
k 
j 
) − u j (β

k −1 
j 

) 

βk 
j 
− βk −1 

j 

−
u j (β

k −1 
j 

) − u j (β
k −2 
j 

) 

βk −1 
j 

− βk −2 
j 

≤ φ

u j (β
k −1 
j 

) − u j (β
k −2 
j 

) 

βk −1 
j 

− βk −2 
j 

−
u j (β

k 
j 
) − u j (β

k −1 
j 

) 

βk 
j 
− βk −1 

j 

≤ φ

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

for j = 1 , . . . , m, k = 3 , . . . , γ j 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(E A 
R 

MSCV F ) (18) 

A different idea consists in finding a model that sheds a pos- 

itive light on all alternatives considered jointly. Such a benevo- 

lent procedure, called Maximal Sum of the Scores Value Function 

( UTAMSVF ) [6] , maximizes a sum of comprehensive values for all 

reference alternatives: 

Maximize 
∑ 

a ∗∈ A R 
U(a ∗) , s.t. E A 

R 

. (19) 

Another group of procedures derive a representative subset of AVF 

and average them to approximate the centroid of the polyhedron 

of feasible models. In UTAJLS , 2 · m AVF are generated by optimiz- 

ing the maximal share of each MVF. We revise this idea by opti- 

mizing the sum of marginal values associated with all characteris- 

tic points on a given criterion, i.e., for j = 1 , . . . , m : 

Maximize / Minimize 

γ j ∑ 

k =1 

u j (β
k 
j ) , s.t. E A 

R 

. (20) 

In this way, we consider extreme models representing the max- 

imal and minimal impacts that each criterion has on the com- 

prehensive score. They can also be interpreted as the most con- 

cave (when maximizing) or the most convex (when minimizing) 

marginal functions. 

An alternative procedure, called UTAAVE , averages a large sam- 

ple S = { U 

1 , U 

2 , . . . U 

| S| } of compatible AVF considered in SOR 

hence obtaining a more accurate approximation of the central so- 

lution: 

u j (β
s 
j ) = 

1 

| S| 
| S| ∑ 

i =1 

u 

i 
j (β

s 
j ) , j = 1 , . . . , m, s = 1 , . . . , γ j . (21) 

A central model can be looked for directly, without considering a 

sample of feasible AVF. UTACHEB is an adaptation of the procedure 

proposed in [14] for sorting problems. It seeks for the center de- 

fined as a mid-point of the largest Euclidean ball that fits in the 

polyhedron of feasible models: 
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Maximize r, 

s.t. 

E N , 

u j (β
s 
j 
) − u j (β

s −1 
j 

) − r ≥ 0 , for j = 1 , . . . , m, s = 2 , . . . , γ j , 

U(a ∗) − U(b ∗) = 0 , for a ∗, b ∗ ∈ A 

R : a ∗ ∼ b ∗, 
U(a ∗) − U(b ∗) − c i r ≥ 0 , for a ∗, b ∗ ∈ A 

R : a ∗ 
 b ∗, 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(E A 
R 

CC ) 

(22) 

where c i is the Euclidean norm of the decision variables’ (except 

r) coefficients in the constraint in which they occur [14] . The cen- 

trality of such a model derives from being equally distant from all 

essential monotonicity and preference disaggregation constraints. 

In the same spirit, ACUTA selects an analytic center of the feasi- 

ble polyhedron [4] . It is identified by maximizing the logarithmic 

barrier function of the slacks ( d a ∗,b ∗ , d j,s ) involved in the essential 

constraints of E A 
R 
, using Newton’s method: 

Maximize 
∑ 

∀ 
a ∗ ,b ∗∈ A R : a 

∗
b ∗
log d a ∗,b ∗ + 

m ∑ 

j=1 

γ j ∑ 

s =2 

log d j,s , 

s.t. 

E N , 

u j (β
s 
j 
) − u j (β

s −1 
j 

) = d j,s , for j = 1 , . . . , m, s = 2 , . . . , γ j 

U(a ∗) − U(b ∗) = 0 , for a ∗, b ∗ ∈ A 

R : a ∗ ∼ b ∗, 
U(a ∗) − U(b ∗) = d a ∗,b ∗ , for a ∗, b ∗ ∈ A 

R : a ∗ 
 b ∗. 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(E A 
R 
AC ) 

(23) 

The solution of the above model is always unique. The last stream 

of procedures aims at selecting AVF that is representative in the 

sense of robustness preoccupation. UTAROB emphasizes the nec- 

essary consequences of applying all compatible AVF on the set of 

alternatives [31] . In the first stage, it maximizes the minimal value 

difference for pairs of alternatives related by 
N , which is evidence 

of a robust advantage of some alternatives over others: 

Maximize ω, 

s.t. 
E A 

R 
, 

U(a ) − U(b) ≥ ω ∀ a,b∈ A (a � 

N b) ∧ ¬ (b � 

→ ,N a ) . 

}
(E A 

R 

ROB I 
) 

(24) 

Then, it minimizes a value difference for pairs that are incompara- 

ble in terms of � 

N , suggesting that their order in the ranking de- 

pends on the compatible AVF. This is conducted while respecting 

the optimization of the previous target (i.e., setting ω = ω 

∗): 

Minimize λ, 

s.t. 

E A 
R 

ROB I 
, 

ω = ω 

∗, 
U(c) − U(d) ≤ λ, ∀ c,d∈ A ¬ (c � 

N d) ∧ ¬ (d � 

N c) , 
U(d) − U(c) ≤ λ, ∀ c,d∈ A ¬ (c � 

N d) ∧ ¬ (d � 

N c) . 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(E A 
R 

ROB II 
) 

(25) 

In turn, REPROC exploits the results of SOR. It emphasizes the 

advantage of alternatives that are more preferred over others for 

a more significant share of compatible AVF [34] . This is attained 

by maximizing the minimal value difference for pairs a, b ∈ A such 

that P W I(a, b) > P W I(b, a ) , i.e.: 

Maximize κ, 

s.t. 
E A 

R 
, 

U(a ) − U(b) ≥ κ(a, b) , ∀ a,b∈ A P W I(a, b) > P W I(b, a ) , 
κ(a, b) ≥ κ, ∀ a,b∈ A P W I(a, b) > P W I(b, a ) . 

} 

(E A 
R 

PWI I 
) 

(26) 

In the second stage, we optimize the sum of elementary value dif- 

ferences κ(a, b) , while respecting the results of the first stage by 

setting κ = κ∗, i.e.: 

Maximize 
∑ 

∀ a,b∈ A P W I(a,b) >P W I(b,a ) 

κ(a, b) , s.t. E A 
R 

PW I I 
∪ κ = κ∗. (27) 

3.2. Decision rules 

Decision rules have been elaborated to impose a complete rank- 

ing or arbitrarily indicate the most preferred alternative in case 

there is no agreement concerning the recommended decision in 

set U 

R . Their name should not be confused with “if-then” rules 

that are used in MCDA as a preference model [20] . The recom- 

mendation is suggested without singling out a compatible prefer- 

ence model instance, referring, in turn, to the extreme or expected 

scores, value differences, or ranks. In what follows, we formulate 

all rules in a way that favors alternatives with greater scores. 

The first group of decision rules derives the recommendation 

from the ranges of comprehensive values that alternatives attain in 

the feasible polyhedron. In MAXIMAX , the alternatives are ranked 

according to their highest possible values, i.e.: 

Maximize U(a ) , s.t. E A 
R 

. (28) 

Hence, each alternative is let to select a value function that is the 

most advantageous for it. As a result, there is no common basis for 

the comparison because these functions may differ from one alter- 

native to another. Analogously, in MAXIMIN , the ranking is deter- 

mined by the lowest possible values, i.e.: 

Minimize U(a ) , s.t. E A 
R 

. (29) 

Thus, this rule favors alternatives that are the best in the least ad- 

vantageous scenario compatible with the DM’s preferences. Please 

note that UTAAVE can be seen as a decision rule, which considers 

expected values rather than extreme ones while assuming a uni- 

form distribution of compatible AVF. 

Other decision rules consider how favorable is the performance 

of alternatives relative to others. The most prevailing procedure 

among them is called MM-REGRET . It first considers the maximal 

loss of value for each pair of alternatives, indicating how much the 

value of other alternatives can exceed that of the potentially se- 

lected option, i.e.: 

Maximize U(b) − U(a ) , s.t. E A 
R 

. (30) 

Let us call the optimal solution of the above model by 

r egr et(a, b) = −D (a, b) . Intuitively, the greater r egr et(a, b) , the 

more significant the loss when choosing a rather than b. The com- 

prehensive score for alternative a ∈ A is derived from its worst- 

case comparison against some other alternative b ∈ A \ { a } . Over- 

all, to favor alternatives with the greatest maximal regrets, we or- 

der them from the best to the worst by considering the following 

scores: 

Sc M M −RE GRE T (a ) = − max 
b∈ A \{ a } 

r egr et(a, b) . (31) 

The remaining three rules build on the outcomes of SOR 

concerning the stability of ranks attained by alternatives in U 

R . 

EXPRANK derives the comprehensive score of each alternative 

from its expected rank in the feasible polyhedron, i.e., 
∑ n 

k =1 −k ·
RAI(a, k ) [33] . While this rule represents an average performance 

given incomplete preference information, the remaining two pro- 

cedures stand for the optimistic and pessimistic scenarios. 

The BESTRAI rule is a generalization of the maximal likelihood 

principle to ranking problems. Specifically, the alternatives are or- 

dered by their best possible ranks and, in case of a draw, by the 
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highest probability of attaining these most favorable ranks. Such 

scores can be synthetically represented as: 

Sc BEST RAI (a ) = −BestRank (a ) + RAI(a, BestRank (a )) , 

× where BestRank (a ) = min 

k =1 , ... ,n 
{ RAI(a, k ) > 0 } . (32) 

Note that this rule ranks at the top potentially optimal alterna- 

tives and, in addition, favors those that attain the first ranks for 

the greatest share of compatible AVF. 

Analogously, WORSTRAI generalizes the minimal unlikelihood 

principle by ordering alternatives according to their worst ranks, 

and breaking the ties, by favoring options with lower probabili- 

ties of attaining these unfavorable ranks. Such scores can be repre- 

sented as: 

Sc WORST RAI (a ) = −W orstRank (a ) − RAI(a, W orstRank (a )) , 

× where W orstRank (a ) = max 
k =1 , ... ,n 

{ RAI(a, k ) > 0 } . (33) 

This rule ranks at the bottom the alternatives, which are ranked 

last for the most significant share of compatible AVF. 

3.3. Scoring procedures 

The role of scoring procedures is to exploit the outcomes of 

comparisons for all pairs of alternatives to derive a comprehensive 

measure of desirability for each alternative. Hence, similarly to the 

decision rules, a cardinal scale is driving the recommendation, but 

no single model is associated with it. 

The first group of approaches prioritizes the alternatives by 

exploiting the minimal differences between their comprehensive 

scores. Note that such a score for pair a, b ∈ A is denoted by D (a, b) 

(see Section 2 ). Such differences are called intensities of dom- 

inance, and hence the respective approaches are considered as 

dominance measuring methods. In what follows, we discuss a pair 

of procedures, called AP1 and AP2 , proposed in [1] . AP1 orders the 

alternatives according to a comprehensive dominance measure de- 

fined as a sum of dominance intensities of one alternative over the 

remaining ones, i.e.: 

Sc AP1 (a ) = 

∑ 

b∈ A \{ a } 
D (a, b) . (34) 

In AP2 , the dominating and dominated measures are considered 

jointly to combine the arguments in favor of each alternative’s 

strength and weakness, i.e.: 

Sc AP2 (a ) = 

∑ 

b∈ A \{ a } 
D (a, b) − D (b, a ) . (35) 

Thus, the more an alternative dominates others, and the less the 

remaining ones dominate it, the higher its position in the compre- 

hensive ranking. 

Similar idea has been implemented in dominance measuring 

extensions, called DME1 and DME2 [39] . The motivation for their 

development derived from the observation that AP1 involves a 

trade-off between positive and negative values of dominating mea- 

sures, whereas AP2 duplicates the dominated measures. To address 

these problems, in DME1 , one considers the positive and negative 

dominating ( α+ 
a and α−

a ) and dominated ( β+ 
a and β−

a ) measures: 

α+ 
a = 

∑ 

b∈ A \{ a }∧ D (a,b) > 0 

D (a, b) and α−
a = 

∑ 

b∈ A \{ a }∧ D (a,b) < 0 

D (a, b) , (36) 

β+ 
a = 

∑ 

b∈ A \{ a }∧ D (b,a ) > 0 

D (b, a ) and β−
a = 

∑ 

b∈ A \{ a }∧ D (b,a ) < 0 

D (b, a ) . (37) 

Note that a is necessarily strictly preferred to b if D (a, b) > 0 , while 

being ranked lower for all U ∈ U 

R when D (b, a ) > 0 . A total score 

of dominance intensity is computed as the difference between pro- 

portions representing both the strength of a given alternative dom- 

inating the remaining ones and its weakness derived from being 

dominated by others, i.e.: 

Sc DME1 (a ) = 

α+ 
a 

α+ 
a − α−

a 

− β+ 
a 

β+ 
a − β−

a 

. (38) 

In this way, the stronger the intensity of preference of a over oth- 

ers and the weaker the preference intensity of others over a , the 

more preferred is a . The DME2 procedure is similar in the sense 

of exploiting dominance measures, but they are transformed into 

preference intensities ( P I; also called – dominance probabilities). 

Specifically, P I(a, b) = 1 , if D (a, b) ≥ 0 (indicating the evident ad- 

vantage of a over b); P I(a, b) = 0 , if D (b, a ) ≥ 0 (indicating a clear 

weakness of a compared to b), and P I(a, b) = 

−D (b,a ) 
−D (b,a ) −D (a,b) 

, oth- 

erwise (i.e., when the results of a comparison between a and b

are ambiguous). The alternatives are ordered in the non-increasing 

order according to the following dominance probability measure 

that captures the comprehensive strength of alternative’s prefer- 

ence over all remaining options: 

Sc DME2 (a ) = 

∑ 

b∈ A \{ a } 
P I(a, b) . (39) 

The other group of scoring procedures exploits the results of 

pairwise comparisons capturing the share of compatible value 

functions confirming the preference of some alternatives over the 

others [33] . Specifically, we refer to the difference of P OIs for all 

pairs of alternatives while aggregating them using different opera- 

tors: 

• MAXPOI derives the maximal P OI difference, capturing the 

most favorable pairwise comparison for alternative a ∈ A : 

Sc MAXPOI (a ) = max 
b∈ A \{ a } 

[ P OI(a, b) − P OI(b, a )] ; (40) 

• MINPOI computes the minimal P OI difference, reflecting the 

least advantageous pairwise comparison for alternative a ∈ A : 

Sc MINPOI (a ) = min 

b∈ A \{ a } 
[ P OI(a, b) − P OI(b, a )] ; (41) 

• SUMPOI aggregates P OIs supporting each alternative’s strength 

and weakness, hence indicating its average performance against 

all remaining alternatives: 

Sc SUMPOI (a ) = 

∑ 

b∈ A \{ a } 
[ P OI(a, b) − P OI(b, a )] . (42) 

Intuitively, in the above three procedures, the alternatives de- 

rive their scores from the comparison with the best, the worst, or 

all alternatives. Moreover, the potential ties are broken by apply- 

ing the same procedure limited in scope to a subset of alternatives 

attaining the same score. 

3.4. Construction of a robust ranking 

The methods for constructing a robust ranking exploit the 

probabilistic information provided by the stochastic acceptabilities. 

They do not infer a representative value function nor associate a 

score with any alternative. In turn, they aim at figuring the order 

supported by a large share of compatible AVF. 

The first group of models constructs a ranking by solving an 

assignment problem of alternatives to ranks [58] . For this purpose, 

they consider binary variables x ik ∈ { 0 , 1 } such that x ik = 1 means 

that alternative a i is assigned to k -th position. The most straight- 

forward method, denoted by RANK-SUM-IND , maximizes the sum 

6 



M. Kadzi ́nski, M. Wójcik and K. Ciomek Omega 113 (2022) 102715 

of RAIs supporting the constructed ranking, while respecting that 

each alternative is assigned to one rank, i.e.: 

Maximize 

n ∑ 

i =1 

n ∑ 

k =1 

RAI(a i , k ) · x ik , (43) 

s.t. 
n ∑ 

k =1 

x ik = 1 , ∀ i = 1 , . . . , n. 

}
(E RAI ) (44) 

A revised model, called RANK-SUM , additionally assumes that ex- 

actly one alternative must be assigned to each rank, hence pre- 

venting the indifference relation. It leaves the same objective func- 

tion as the former model, thus maximizing the average probability, 

but considers an enriched set of constraints: 

E RAI ∪ 

∑ n 
i =1 x ik = 1 , ∀ k = 1 , . . . , n. 

}
(E IND 

RAI ) (45) 

Another model, called RANK-PROD , considers the joint probability 

of the entire ranking by maximizing the product of RAIs associated 

with the assignments of alternatives to their respective ranks. The 

linear form of the considered model is as follows: 

Maximize 

n ∑ 

i =1 

n ∑ 

k =1 

log(RAI(a i , k )) · x ik , s.t. E IND 
RAI . (46) 

The last model exploiting RAIs, called RANK-MM , maximizes the 

minimal support of any assignment: 

Maximize f RAI 
MM 

, s.t. E IND 
RAI ∪ f RAI 

MM 

≤ RAI(a i , k ) + (1 − x ik ) , ∀ i 

= 1 , . . . , n, ∀ k = 1 , . . . , n. (47) 

It is also possible to consider the variants of the last two models 

that admit an indifference relation. 

The second group of models – also originally proposed in [58] –

constructs a ranking by determining pairwise preference relations. 

The approaches that do not admit indifference consider binary 

variables y i j ∈ { 0 , 1 } such that y i j = 1 means that alternative a i is 

strictly preferred to alternative a j . The considered set of constraints 

ensure that the relation imposed on the set of alternatives is com- 

plete, asymmetric, irreflexive, and transitive: 

y i j + y ji = 1 , ∀ i � = j, 
y ii = 0 , ∀ i = 1 , ..., n, 

y i j ≥ y ik + y k j − 1 . 5 , ∀ k � = i, j. 

} 

(E PW I ) (48) 

Then, three different objectives can be optimized to maximize the 

support given by P W Is to the ranking constructed from the rela- 

tions assigned to pairs of alternatives: 

• for REL-SUM – the sum of preference probabilities, i.e., 

Maximize 
n ∑ 

i =1 

n ∑ 

j=1 

P W I(a i , a j ) · y i j , s.t. E PW I ; 

• for REL-PROD – the joint probability, i.e., 

Maximize 
n ∑ 

i =1 

n ∑ 

j=1 

log (P W I(a i , a j )) · y i j , s.t. E PW I ; 

• for REL-MM – the minimal probability of an established prefer- 

ence, i.e.: 

Maximize f PW I 
MM 

, s.t. E PW I ∪ f PW I 
MM 

≤ P W I(a i , a j ) + (1 − y i j ) , 

∀ i = 1 , . . . , n, ∀ j = 1 , . . . , n. 

For the counterparts of the above models that tolerate indiffer- 

ence, one needs to consider binary variables y w 

i j 
∈ { 0 , 1 } such that 

y w 

i j 
= 1 implies weak preference of a i over a j , and z i j such that 

z i j = 1 when a i and a j are indifferent. The considered set of con- 

straints ensure that the weak preference is complete and transitive. 

In contrast, indifference is instantiated when the weak preference 

holds for an ordered pair of alternatives and its inverse counter- 

part: 

y w 

i j 
+ y w 

ji 
≥ 1 , ∀ i = 1 , ..., n − 1 , j = i + 1 , ..., n, 

y w 

i j 
≥ y w 

ik 
+ y w 

k j 
− 1 . 5 , ∀ k � = i, j, 

z i j = y w 

i j 
+ y w 

ji 
− 1 , ∀ i = 1 , ..., n − 1 , j = i + 1 , ..., n. 

⎫ ⎬ 

⎭ 

(E REL −IND ) 

(49) 

The three objectives maximizing the support given by P W Is and 

P I I s to the constructed ranking are as follows: 

• for REL-SUM-IND – an additive objective related to the sum of 

probabilities of established relations: 

Maximize 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

P W I(a i , a j ) · (y w 

i j − z i j ) 

+ P W I(a j , a i ) · (y w 

ji − z i j ) + P I I (a i , a j ) · z i j , s.t. E REL −IND . 

(50) 

• for REL-PROD-IND – a multiplicative objective related to the 

product of probabilities of established relations that can be 

translated into the following linear form: 

Maximize 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

log (P W I(a i , a j )) · (y w 

i j − z i j ) 

+ log (P W I(a j , a i )) · (y w 

ji − z i j ) 

+ log (P I I (a i , a j )) · z i j , s.t. E REL −IND . (51) 

Technically, in the above objective function, the stochastic ac- 

ceptabilities are increased by an arbitrarily small positive value 

ε to avoid an undefined value of log(0) . 
• for REL-MM-IND – the max-min objective optimizing the least 

probability of an established relation: 

Maximize f REL 
MM 

(52) 

s.t. 

E REL −IND , 

f REL 
MM 

≤ P W I(a i , a j ) · (y w 

i j 
− z i j ) + P W I(a j , a i ) · (y w 

ji 
− z i j ) 

+ P I I (a i , a j ) · z i j , i = 1 , ..., n − 1 , j = 1 , ..., n. 

⎫ ⎬ 

⎭ 

The last group adopts the ranking techniques originally proposed 

as part of other MCDA methods to a new context. In this regard, 

we propose to use distillation procedures known from ELECTRE 

III [46,47] for exploiting a valued preference relation formed by 

P OIs rather than an outranking relation constructed via concor- 

dance and discordance tests. We consider the downward and up- 

ward distillations, denoted by DOWN-DIST and UP-DIST . Their de- 

tailed formulations can be found in [47] . Let us note that DOWN- 

DIST constructs a ranking in a top-down fashion, retaining alter- 

natives with the greatest quality first and iteratively applying the 

same procedure until all alternatives are added to the preorder. 

The quality is interpreted as the difference between strength and 

weakness. Roughly, for alternative a ∈ A , they are interpreted as 

the numbers of other alternatives b ∈ A \ { a } such that P OI(a, b) is 

significantly large and substantially greater than P OI(b, a ) or vice 

versa. In turn, UP-DIST is conducted analogously with the proviso 

that the preorder is constructed bottom-up, and the alternatives 

with the least quality are retained first. 

Using all 35 methods for constructing a univocal recommenda- 

tion is illustrated in a simple didactic example in the e-Appendix. 

This description emphasizes the specificity of all methods by refer- 

ring to the results they exploit and the objectives they optimize. 

The reference to a particular, small problem and precise obtained 

results gives a better chance of comprehending the discussed pro- 

cedures. 

7
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4. Computational experiments 

This section is devoted to the computational experiments per- 

formed to verify the quality of procedures for constructing a uni- 

vocal recommendation. First, we define the measures employed to 

compare the 35 considered approaches. Second, we specify an ex- 

perimental setting. Finally, we discuss the average results across 

all considered problem instances and some trends when the value 

of a single problem- or model-related parameter is changed. The 

extreme (minimal and maximal) results for all measures are dis- 

cussed in the e-Appendix. Note that whenever we claim that some 

procedures are the best or the worst, perform favorably or poorly, 

such conclusions are limited by the considered experimental set- 

ting, in particular, the decision problem characteristics and the way 

of simulating the DM’s preferences. 

4.1. Comparative measures 

The performance of procedures for selecting a single sorting 

model will be quantified in terms of seven measures. On the one 

hand, they capture the similarity between the DM’s simulated ref- 

erence model and the recommendation derived with various pro- 

cedures in the context of choice or ranking based on incomplete 

and indirect preference information. On the other hand, they re- 

fer to the robustness of provided recommendations in view of the 

support they are given in the set of all compatible AVF. 

First, we refer to the measures quantifying the similarity be- 

tween the true DM’s ranking and the recommendation obtained 

with procedure P . They are recalled after [33] , where detailed 

definitions and explanations can be found. We denote the high- 

est ( r ∗(M, a ) ) and the lowest ( r ∗(M, a ) ) ranks attained by alterna- 

tive a ∈ A according to the DM ( M = DM) or procedure P ( M = P ). 

If there are no shared ranks, then each a ∈ A is assigned pre- 

cisely to a single rank, and hence r ∗(M, a ) = r ∗(M, a ) . Otherwise, 

r ∗(M, a ) < r ∗(M, a ) for at least two alternatives a ∈ A . For exam- 

ple, the ranking: a 
 b ∼ c 
 d translates into the following po- 

sitions: r ∗(M, a ) = r ∗(M, a ) = 1 , r ∗(M, b) = r ∗(M, c) = 2 , r ∗(M, b) = 

r ∗(M, c) = 3 , and r ∗(M, d) = r ∗(M, d) = 4 . Such an interpretation 

corresponds to acting with prudence, i.e., avoiding arbitrary tie- 

breaking by assigning, e.g., the best or the worst admissible rank to 

all indifferent alternatives contained in the same equivalence class. 

A subset of alternatives that according to M ∈ { DM, P } are ranked 

in the r-the position is denoted by: 

M(r) = { a ∈ A : r ∗(M, a ) ≤ r ≤ r ∗(M, a ) } , for r = 1 , . . . , n. (53) 

To compare alternatives a, b ∈ A according to M, we use function 

p(M, a, b) . It is equal to 1 if a is preferred to b, 0.5 when a and b

are indifferent, and 0 when a is worse than b. 

The only measure that considers the similarity of recommenda- 

tions in the context of the choice problem is Normalized Hit Ratio 

( NHR ). It compares the subsets of alternatives that are ranked at 

the top according to DM and procedure P , similarly to the Jaccard’s 

coefficient: 

NHR (DM, P ) = 

| DM(r = 1) ∩ P (r = 1) | 
| DM( r = 1) ∪ P (r = 1) | ∈ [0 , 1] . (54) 

If the same subset of alternatives is ranked first by the DM and P , 

then NHR is equal to one. When there is no intersection between 

the two subsets, then NHR is zero. The remaining three similarity 

measures consider the entire rankings. 

The Kendall’s τ quantifies the similarity given the pairwise re- 

lations observed for all pairs of alternatives. It computes the com- 

prehensive distance between these relations and normalizes it to 

the [ −1 , 1] interval as follows: 

τ (DM, P, n ) = 1 − 2 ·

∑ 

(a,b) ∈ A ×A 

| p(DM, a, b) − p(P, a, b) | 
n · (n − 1) 

. (55) 

Note that the distance between relations observed for a, b ∈ A is 

the least when these relations are the same and the greatest when 

comparing preference with inverse preference. As a result, if the 

relations for all pairs of alternatives are the same, τ is equal to 1, 

whereas if one ranking is inverted with respect to the other, τ = 

−1 . 
In turn, Rank Difference Measure ( RDM) quantifies the similar- 

ity between the attained ranks. For alternative a ∈ A , the respective 
difference in the ranks assigned by the DM and procedure P can be 
computed as follows: 

rdm (DM, P, a ) = 

∑ r ∗(DM,a ) 
r 1 = r ∗(DM,a ) 

∑ r ∗(P,a ) 
r 2 = r ∗(P,a ) 

| r 1 − r 2 | 
[ r ∗(DM, a ) − r ∗(DM, a ) + 1] · [ r ∗(P, a ) − r ∗(P, a ) + 1] 

. 

(56) 

For example, consider alternative a ∈ A with r ∗(DM, a ) = 

r ∗(DM, a ) = 2 , and two procedures P 1 and P 2 such that 

r ∗(P 1 , a ) = r ∗(P 1 , a ) = 4 and r ∗(P 2 , a ) = 3 < r ∗(P 2 , a ) = 6 . Then, 

rdm (DM, P 1 , a ) = | 2 − 4 | / (1 · 1) = 2 and rdm (DM, P 2 , a ) = 

[ | 2 − 3 | + | 2 − 4 | + | 2 − 5 | + | 2 − 6 | ] / (1 · 4) = 2 . 5 . Further, RDM

aggregates these differences for all alternatives and normalizes 

them to the [0,1] interval: 

RDM(DM, P, n ) = 1 −

∑ 

a ∈ A 
rdm (DM, P, a ) 

max rank 
di f f 

(n ) 
∈ [0 , 1] , (57) 

where max rank 
di f f 

(n ) is (n/ 2) · n when n is even or (n/ 2) · (n − 1) if 

n is odd. Overall, RDM is equal to one, when all alternatives attain 

exactly the same rank(s), and it is equal to zero, when the differ- 

ences between their positions are the greatest possible. 

The last similarity measure is called Rank Agreement Measure 

( RAM). It generalizes NHR to all ranks, hence investigating if ex- 

actly the same subsets of alternatives attain the same positions 

r = 1 , . . . , n : 

RAM(DM, P, n ) = 

1 

n 

·
n ∑ 

r=1 

| DM(r) ∩ P (r) | 
| DM(r) ∪ P (r) | ∈ [0 , 1] . (58) 

In the case of a perfect agreement, RAM is equal to 1. On the con- 

trary, when each alternative a ∈ A attains a different rank according 

to the DM and procedure P , RAM is 0. 

To investigate the robustness of the recommendation delivered 

by procedure P , we define three measures. They capture the sup- 

port that is offered to such a univocal recommendation by all 

compatible value functions U 

R . Such support is quantified by the 

stochastic acceptabilities derived from SOR. As far as the choice 

recommendation is concerned, we refer to the First Rank Accept- 

ability Index ( F RAI), which quantifies an average share of compati- 

ble AVF that assign the first position to the alternatives ranked at 

the very top by procedure P , i.e.: 

F RAI(P ) = 

1 

| P (r = 1) | ·
∑ 

a ∈ P(r=1) 

RAI(a, 1) ∈ [0 , 1] . (59) 

When a single alternative is unanimously the most preferred ac- 

cording to P , F RAI reflects the probability that this alternative is 

ranked first in U 

R . F RAI is equal to 1 if all feasible models rank 

such an alternative at the top, whereas it is equal to 0 if none com- 

patible AVF indicates it as the most preferred option. 

Mean Rank Acceptability Index ( MRAI) generalizes F RAI to all 

ranks by investigating an average RAI-based support that is given 

to the ranks ( r = r ∗(P, a ) , . . . , r ∗(P, a ) ) assigned to each alternative 

a ∈ A by procedure P : 

MRAI (P, n ) = 

1 

n 

·
∑ 

a ∈ A 

∑ r ∗(P,a ) 
r = r ∗(P,a ) 

RAI (a, r) 

r ∗(P, a ) − r ∗(P, a ) + 1 

∈ [0 , 1] . (60) 

Consequently, MRAI is equal to 1 when all alternatives are ranked 

at the same position(s) by procedure P and all compatible AVF. On 
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the contrary, MRAI is 0, when there is no feasible model supporting 

the rank attained by any alternative according to P . 

In turn, Mean Pairwise Relation Acceptability Index ( MP RI) inves- 

tigates the support that is given to the pairwise relations observed 

for all pairs of alternatives in the ranking determined with P . Let us 

denote such a support for pair (a, b) ∈ A × A by P RI(P, a, b) . When 

a is preferred to b according to P , P RI is equal to P W I(a, b) ; if a 

and b are indifferent, we consider P I I (a, b) , and in case b is ranked 

better than a , P RI(P, a, b) is set to P W I(b, a ) . Then, MP RI is an av- 

erage P RI-based support that is given to all pairs of alternatives: 

MP RI(P, n ) = 2 ·

∑ 

a,b∈ A ∧ a � = b 
P RI(P, a, b) 

n · (n − 1) 
∈ [0 , 1] . (61) 

Note that MP RI is equal to 1 if all compatible AVF compare all pairs 

of alternatives in the same way as procedure P . On the other ex- 

treme, MP RI is 0 when no feasible model supports the relation ob- 

served in P for any pair of alternatives. 

4.2. Experimental setting 

When generating instances of test problems, we considered var- 

ious settings for the dimensionality of data: 

• the number of alternatives – M ∈ { 6 , 8 , 10 , 12 , 14 } ; 
• the number of criteria – E ∈ { 3 , 4 , 5 } ; 
• the number of characteristic points for each criterion g j – P ∈ 

{ 2 , 3 , 4 } ; 
• the number of pairwise comparisons provided by the DM – C ∈ 

{ 4 , 6 , 8 , 10 } . 
In this way, we focus on MCDA problems with a small size for 

which both the choice and ranking recommendation may be of in- 

terest to the DMs. For each combination of parameter values, we 

averaged the results over 10 0 0 problem instances with randomly 

drawn performances [14] . Hence we considered 5 · 3 · 3 · 4 · 10 0 0 = 

180 , 0 0 0 instances in total. In general, some considered parame- 

ter combinations represent less plausible scenarios (e.g., eliciting a 

limited number of pairwise comparisons for a problem with nu- 

merous alternatives, criteria, and characteristic points, or consider- 

ing rich preference information when the values of other problem 

dimensions are small). However, we did not filter them so that the 

subsequent analysis of the impact of values of a single parame- 

ter on the attained results is more reliable and independent of the 

values assigned to other parameters. 

For each instance, we randomly generated AVF serving as the 

DM’s reference model. To ensure its consistency with an assumed 

model, the number of characteristic points γ j for the respective 

MVFs was equal to P in the considered problem setting. This func- 

tion was used to rank M alternatives evaluated in terms of E crite- 

ria. For this ranking, C pairs of alternatives were randomly selected, 

and the relations observed for them were supplied as a simu- 

lated DM’s indirect and incomplete preference information. Then, 

for each instance, we performed robustness analysis in the spirit 

of ROR and SOR. Finally, 35 methods for constructing a univocal 

recommendation were run, and their respective recommendations 

were compared with the DM’s true model. Note that UTAMSCFV 

was not run for instances with P = 2 characteristic points as its 

objective function makes sense only when the MVF are piecewise 

linear. Overall, we performed 6,24 million executions of all proce- 

dures. 

4.3. Results 

4.3.1. Similarity between the DM’s simulated model and the derived 

recommendation 

In this section, we discuss the similarities in recommendations 

provided by the reference model and the procedures exploiting in- 

complete preference information. The values of NHR, Kendall’s τ , 

RDM, and RAM averaged over all considered problem instances are 

provided in Table 1 . 

Let us start by discussing the agreement for the most pre- 

ferred alternatives. The difference between the best and worst- 

performing procedures in terms of NHR is large (over 0.25). This 

means the best procedures can correctly identify the most pre- 

ferred alternative in 25% more scenarios than average worst per- 

formers. The most advantageous NHR is attained by BESTRAI 

(0.7671). This method is specifically oriented toward identifying 

the most preferred alternative because it derives the ranking from 

the analysis of stochastic acceptabilities for the best rank of each 

alternative. As a result, the alternative attaining the first posi- 

tion for the most significant share of compatible value functions 

is ranked at the very top. Its advantage over all remaining ap- 

proaches is statistically significant. This is confirmed by the Hasse 

diagram presented in Fig. 1 , indicating a partial order established 

based on the Wilcoxon test for paired samples with p-value equal 

to 0.05 [9] . 

Only slightly worse results are attained by methods that con- 

struct a robust ranking by exploiting the stochastic acceptabilities 

for pairwise relations. They include all six REL procedures that em- 

phasize the most frequent relations in the set of feasible models 

( NHR equal to 0.7657 or 0.7654). As a result, the best-ranked al- 

ternative is most likely the one that is preferred to the remaining 

ones for the majority of compatible value functions. Though mod- 

eled slightly differently, similar objectives are considered by MIN- 

POI (0.7656) and REPROC (0.7654). The computational process un- 

derlying MINPOI is based on a simple scoring function. Hence it 

is computationally less complex than the REL methods. Moreover, 

REPROC associates a value function with the provided recommen- 

dation. Advantageous results are also attained by UTAAVE (0.7650). 

By averaging a large sample of feasible models, it ranks an alter- 

native with the greatest expected comprehensive value at the top. 

The differences between these nine approaches are not statistically 

significant (see Fig. 1 ). 

The best performing procedures exploit the outcomes derived 

with SOR. This also holds for the next group attaining favorable 

results in terms of average NHR. Among them, the best outcomes 

are attained by RANK-SUM. Its advantage over the remaining RANK 

procedures is statistically significant: RANK-SUM 
 RANK-PROD 

RANK-SUM-IND 
 RANK-MM, with an average advantage of RANK- 

SUM over RANK-MM being more than 0.03. In general, these pro- 

cedures aim at assigning an alternative that is most frequently 

ranked at the top. However, as confirmed by the slight differences, 

the form of an optimized objective function impacts the attained 

results. Other NHR values confirm that it is slightly more advan- 

tageous to consider expected values than ranks (UTAAVE vs. EX- 

PRANK), the worst-case pairwise comparison rather than all pair- 

wise comparisons at once (MINPOI vs. SUMPOI), and construct the 

entire ranking at once rather than in subsequent iterations (the 

REL methods vs. UP-DIST and DOWN-DIST). 

The best results among the procedures that do not take ro- 

bustness concern into account are attained by ACUTA (0.7492) and 

UTACHEB (0.7427). For example, their advantage in terms of aver- 

age NHR over UTAMP2 and UTAMP1 is about 0.08 and 0.13, respec- 

tively. The latter two approaches are among the bottom ones. This 

confirms the validity of selecting a central rather than the most 

discriminant model. When it comes to the methods exploiting 

dominance intensities, AP2 attains better results than AP1, DME1, 

and DME2. The worst NHR-based results are attained by UTAMSVF 

(0.5291) and MAXIMAX (0.5028). Both exploit the greatest com- 

prehensive values attained by alternatives, though UTAMSVF opti- 

mizes them for all alternatives jointly, whereas MAXIMAX finds the 

most advantageous value function for each alternative considered 

individually. Let us emphasize that the results reported for UTAM- 
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Table 1 

Average values of measures quantifying similarity between the DM’s simulated model and the derived recommendation over 

all problem instances ( ∗ – UTAMSCVF was run for instances with at least three characteristic points). 

Method NHR τ RDM RAM Method NHR τ RDM RAM 

UTAMP1 0.6180 0.7218 0.7859 0.4116 DME1 0.6960 0.7536 0.8072 0.4448 

UTAMP2 0.6658 0.7492 0.8047 0.4415 DME2 0.7197 0.7969 0.8382 0.4776 

UTAMSVF 0.5291 0.6519 0.7356 0.3590 MAXPOI 0.7130 0.7844 0.8290 0.4704 

UTAJLS 0.6881 0.7815 0.8278 0.4809 MINPOI 0.7656 0.7843 0.8289 0.4704 

UTAAVE 0.7650 0.8266 0.8605 0.5330 SUMPOI 0.7612 0.8253 0.8592 0.5226 

UTACHEB 0.7427 0.8083 0.8472 0.5108 RANK-SUM-IND 0.7546 0.8174 0.8548 0.5329 

ACUTA 0.7492 0.8123 0.8501 0.5165 RANK-SUM 0.7650 0.8184 0.8569 0.5473 

UTAROB 0.6515 0.7447 0.8017 0.4326 RANK-PROD 0.7639 0.8181 0.8566 0.5472 

REPROC 0.7654 0.8269 0.8607 0.5334 RANK-MM 0.7329 0.8104 0.8506 0.5299 

MAXIMAX 0.5028 0.7040 0.7724 0.3941 REL-SUM 0.7657 0.8271 0.8608 0.5337 

MAXIMIN 0.6735 0.7048 0.7730 0.3938 REL-PROD 0.7657 0.8271 0.8608 0.5336 

MM-REGRET 0.6815 0.7094 0.7760 0.4011 REL-MM 0.7657 0.8271 0.8608 0.5336 

EXPRANK 0.7612 0.8253 0.8592 0.5226 REL-SUM-IND 0.7654 0.8269 0.8606 0.5330 

BESTRAI 0.7671 0.7749 0.8214 0.4521 REL-PROD-IND 0.7654 0.8269 0.8606 0.5331 

WORSTRAI 0.6972 0.7750 0.8215 0.4517 REL-MM-IND 0.7654 0.8268 0.8606 0.5329 

AP1 0.7093 0.7691 0.8178 0.4551 DOWN-DIST 0.7542 0.8192 0.8547 0.5151 

AP2 0.7233 0.7967 0.8384 0.4893 UP-DIST 0.7574 0.8191 0.8546 0.5150 

UTAMSCVF ( ∗) 0.6014 0.6836 0.7569 0.3864 

Fig. 1. The Hasse diagram indicating the statistically significant differences in terms of NHR based on the Wilcoxon test with p-value equal to 0.05. 
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Fig. 2. Boxplot for Normalized Hit Ratio. 

SCVF are derived from the analysis of problem instances with at 

least three characteristic points. However, even when considering 

only these instances, this procedure attains the NHR values better 

than UTAMSVF and MAXIMAX. 

The respective boxplots for NHR are presented in Fig. 2 . They 

confirm the stability of results attained by the best performing 

procedures. In fact, the box’s length for many approaches is zero, 

which derives from Q1 and Q3 being equal to the median that, in 

turn, is equal to one. This means that for at least 75% problem set- 

tings, these methods attained the maximal NHR score. Some indi- 

vidual observations indicate fractional values (e.g., 1/2, 1/3, or 1/6), 

which correspond to the instances for which these procedures rank 

a few alternatives at the top, but only one of them is the DM’s 

true most preferred alternative. On the contrary, the results for the 

worst performers, such as UTAMSVF or MAXIMAX, indicate greater 

variability of results. For these methods, the median is equal to 0.5, 

but Q3 is already equal to zero. 

The ranking-oriented measures quantifying the similarity be- 

tween the reference and resulting models will be discussed jointly. 

The analysis of Kendall’s τ , RDM, and RAM (see Table 1 ) lead to 

similar conclusions. In the main paper, we focus on the average 

results. The respective boxplots and Hasse diagrams with statisti- 

cally significant differences for the three measures are presented 

in the e-Appendix. 

The best performing procedures in terms of rank similarity 

measures include procedures for constructing a robust ranking 

by solving dedicated mathematical programming models. They in- 

clude: 

• the REL procedures – 0.8268–0.8271 in terms of Kendall’s τ , 

0.8606–0.8608 for RDM, and 0.5329–0.5337 for RAM; in partic- 

ular, REL-SUM, REL-PROD, and REL-MM attain statistically sig- 

nificant better results given Kendall’s τ and RDM than all other 

methods; these results mean that they reproduce correctly over 

91% pairwise relations and reveal over 86% consistency in terms 

of the differences between ranks attained by all alternatives; 

note that even though the differences between the REL meth- 

ods are marginal, the approaches that do not admit indifference 

attain statistically better results than their IND counterparts; 

the favorable performance of the REL procedures in terms of 

Kendall’s τ is consistent with the findings discussed in [58] ; 
• the RANK-SUM and RANK-PROD procedures – 0.8181–0.8184 

in terms of Kendall’s τ , 0.8566–0.8569 for RDM, and 0.5472–

0.5473 for RAM; in particular, they attain statistically significant 

better results in terms of RAM than all other approaches; the 

high values of RAM confirm that the similarity in terms of the 

share of alternatives attaining the same positions in the refer- 

ence and resulting rankings is over 53% of the maximal possible 

consistency. 

The differences in the top-ranked approaches for the above 

measures are understandable given their context and operational 

procedures. In fact, the REL procedures focus on emphasizing the 

most supported pairwise relations, which aligns with the pairwise 

perspective considered by Kendall’s τ and RDM. In turn, the RANK 

methods emphasize the most frequent rank assignments, which is 

consistent with the focus on ranks implemented by RAM. 

Favorable performances in terms of all three measures are at- 

tained by REPROC and UTAAVE. They are very close to the best- 

performing methods in Kendall’s τ and RDM and just slightly 

worse given RAM. Nonetheless, these differences, even if marginal, 

are significant. In general, such statistically sound differences in 

rank similarity performances are observed for a greater number of 

method pairs in the upper half of the ranking than in the case of 

NHR. 

An interesting observation concerns relatively good results at- 

tained by methods that focus on the stability of outcomes for all 

pairs of alternatives or all ranks. This is confirmed by the positions 

between ninth and thirteenth attained by SUMPOI and EXPRANK. 

They quantify the average strength from all pairwise relation ac- 

ceptabilities or all ranks. Moreover, they are vastly better than their 

counterparts focusing only on the extreme outcomes, i.e., MAXPOI 

and MINPOI or BESTRAI and WORSTRAI. The latter methods de- 

rive rankings from the analysis of the most or the least favorable 

pairwise comparisons or ranks in the set of all compatible value 

functions. 

Similar to NHR, the best results among approaches that do 

not incorporate robustness analysis are attained by UTACHEB and 

ACUTA. For example, ACUTA scores 0.8123 for Kendall’s τ , 0.8501 

for RDM, and 0.5165 for RAM. Both methods prove to be signifi- 

cantly better in terms of all three measures than procedures se- 

lecting a representative value function averaging only the extreme 

model (UTAJLS) or emphasizing the differences between compre- 

hensive values of alternatives compared by the DM (UTAMP1 and 

UTAMP2) or related by the necessary preference (UTAROB). These 

methods are also outperformed by the approaches exploiting dom- 

inance intensities. Among them, the more advanced variants, called 

AP2 and DME2, attain better results than their simplified counter- 

parts, AP1 and DME1. 

In general, the lower halves of the rankings indicating statisti- 

cally significant differences are the same for the three measures. 

In particular, they all agree that MM-REGRET is preferred to MAX- 
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Table 2 

Average values of measures quantifying the robustness of recommendation derived by different meth- 

ods over all problem instances ( ∗ – UTAMSCVF was run for instances with at least three characteristic 

points). 

Method MRAI MPRI FRAI Method MRAI MPRI FRAI 

UTAMP1 0.4115 0.8535 0.6181 DME1 0.4453 0.8724 0.6965 

UTAMP2 0.4408 0.8744 0.6647 DME2 0.4778 0.8984 0.7201 

UTAMSVF 0.3590 0.8152 0.5298 MAXPOI 0.4701 0.8921 0.7127 

UTAJLS 0.4807 0.8907 0.6884 MINPOI 0.4702 0.8921 0.7664 

UTAAVE 0.5327 0.9132 0.7658 SUMPOI 0.5229 0.9127 0.7618 

UTACHEB 0.5106 0.9040 0.7437 RANK-SUM-IND 0.5334 0.8961 0.7556 

ACUTA 0.5160 0.9060 0.7485 RANK-SUM 0.5481 0.9093 0.7659 

UTAROB 0.4319 0.8690 0.6512 RANK-PROD 0.5478 0.9091 0.7647 

REPROC 0.5334 0.9134 0.7660 RANK-MM 0.5307 0.9053 0.7345 

MAXIMAX 0.3936 0.8292 0.5027 REL-SUM 0.5336 0.9135 0.7664 

MAXIMIN 0.3938 0.8373 0.6739 REL-PROD 0.5336 0.9135 0.7664 

MM-REGRET 0.4010 0.8377 0.6822 REL-MM 0.5336 0.9135 0.7663 

EXPRANK 0.5229 0.9126 0.7617 REL-SUM-IND 0.5331 0.9132 0.7660 

BESTRAI 0.4517 0.8867 0.7681 REL-PROD-IND 0.5331 0.9132 0.7660 

WORSTRAI 0.4515 0.8867 0.6967 REL-MM-IND 0.5330 0.9132 0.7660 

AP1 0.4552 0.8845 0.7100 DOWN-DIST 0.5152 0.8935 0.7546 

AP2 0.4893 0.8984 0.7238 UP-DIST 0.5152 0.8936 0.7579 

UTAMSCVF ( ∗) 0.3863 0.8418 0.6011 

IMIN and MINIMAX, which are, in turn, better than UTAMSVF. 

Nonetheless, these approaches are among the four worst perform- 

ers given Kendall’s τ , RAM, and RDM. This proves the limited 

usefulness of approaches exploiting the ranges of comprehensive 

values attained by the alternatives in the feasible polyhedron in 

reconstructing the entire ranking. Specifically, UTAMSVF is worse 

than the best performing procedures by over 0.17 for Kendall’s τ , 

0.12 for RDM, and almost 0.19 for RAM. Such great differences con- 

firm the importance of selecting an appropriate method when con- 

structing a ranking based on incomplete preference information. 

When considering problem instances with at least three charac- 

teristic points, UTAMSCVF is better than MAXIMIN, MINIMAX, and 

UTAMSVF for all measures. Moreover, it proves to be better than 

MM-REGRET for RAM and RDM and better than UTAMP1 for RAM. 

The same relative comparisons are confirmed concerning the ro- 

bustness of provided recommendations. This suggests that finding 

a parsimonious model that minimally deviates from the linearity is 

insufficient for reconstructing the DM’s preferences generated us- 

ing a potentially highly non-linear model. 

4.3.2. Robustness of provided recommendations 

In this section, we discuss the robustness of recommendations 

provided by the considered procedures understood in terms of the 

support all compatible value functions give them. The values of 

MRAI, MPRI, and FRAI averaged over all problem instances are pro- 

vided in Table 2 . In the main paper, we present the boxplot (see 

Fig. 3 ) and the Hasse diagram emphasizing statistically significant 

differences (see Fig. 4 ) only for MRAI. For the other two measures, 

the respective figures can be found in the e-Appendix. 

The best average results in terms of MRAI are achieved by 

RANK-SUM (0.5481) and RANK-PROD (0.5478). This means that 

the position attained by each alternative in the ranking deter- 

mined with these procedures is supported by almost 55% com- 

patible value functions. Their advantage over the remaining ap- 

proaches is statistically significant. In particular, it is over 0.014 

greater when compared to REL-SUM, REL-PROD, and REL-MM and 

their IND counterparts. Such a beneficial performance of the two 

RANK procedures derives from optimizing the support given to 

the rank assignments in the objective functions, which is consis- 

tent with the robustness measure captured by MRAI. However, a 

slightly worse performance of RANK-MM and RANK-SUM-IND con- 

firms that the form of both an objective function and constraints 

influences the attained results (see Fig. 4 ). 

When it comes to the best performers given MPRI, they include 

REL-SUM, REL-PROD, REL-MM (0.9135), and their IND counterparts 

(0.9132). Such high values indicate that the relations established 

by these procedures for each pair of alternatives are supported, on 

average, by over 91% compatible value functions. When compared 

to the MRAI values, this means that the robustness of constructed 

rankings can be very high when considering pairwise comparisons, 

but the alternatives are not necessarily ranked in the same posi- 

tions as in the feasible polyhedron. Slightly worse results attained 

by the best RANK procedures (0.9093 for RANK-SUM and 0.9091 

for RANK-PROD) confirm that it is more beneficial to emphasize 

the robust results concerning the same perspective as captured by 

a specific measure. In the case of MPRI, these are relations hold- 

ing for all pairs of alternatives, as done by the REL methods. Again, 

the performance of RANK-MM and RANK-SUM-IND is significantly 

worse than for the remaining methods constructing a robust rank- 

ing. 

Among the procedures selecting a representative value func- 

tion, the best results are attained by REPROC, which emphasizes 

the advantages derived from the analysis of P W Is. This proce- 

dure is ranked sixth in terms of MRAI and fourth given MPRI, 

being only marginally worse than the best performers. However, 

it outperforms many procedures that exploit the same stochas- 

tic acceptabilities, including the REL methods admitting indiffer- 

ence, SUMPOI, and both distillations. UTAAVE and ACUTA also at- 

tain highly favorable outcomes. The former exploits expected com- 

prehensive values, outperforming the methods that build on the 

expected ranks (EXPRANK) or averages from the extreme models 

(UTAJLS). Furthermore, ACUTA proves to be better than UTACHEB, 

which suggests that the recommendation associated with the ana- 

lytic center is more robust than the ranking corresponding to the 

Chebyshev center. 

The differences between the best and the worst performing 

procedures are great. For MRAI – it is close to 0.2, and for MPRI 

– it is almost 0.1. Also, the rankings indicating the statistically 

significant differences are conclusive, leaving only a few pairs of 

methods incomparable (see, e.g., Fig. 4 ). Most of these incompara- 

bilities concern approaches that exploit the same results, though 

in a slightly different way. In the lower half of the rankings for 

both measures, these pairs include (DOWN-DIST, UP-DIST), (MIN- 

POI, MAX-POI), (BESTRAI, WORSTRAI), and (MAXIMAX, MAXIMIN). 

This suggests that the robustness of the entire ranking is similar 

irrespective if it is constructed up-down or bottom-up, based on 

the most or the least advantageous pairwise comparisons, when 
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Fig. 3. Boxplot for Mean Rank Acceptability Index. 

accounting for the best or the worst ranks, or when considering 

the greatest or the least comprehensive values. 

Let us remind that BESTRAI and MINPOI were among the lead- 

ers when it comes to indicating the DM’s true most preferred alter- 

native. However, the robustness of the rankings determined with 

these procedures is poor. For example, the average support given 

to all ranks or pairwise relations for BESTRAI is lower by almost 

0.1 and 0.03 than for the best-performing methods in MRAI and 

MPRI, respectively. Hence focusing on the extreme attainments in 

the set of feasible models may be suitable for identifying the best 

alternative. However, it is not sufficient for reconstructing the en- 

tire ranking nor producing a highly robust ranking. 

The group of methods attaining the worst results in terms 

of MRAI and MPRI is the same. These include techniques se- 

lecting the most discriminant value function (UTAMP1, UTAMP2, 

and UTAROB), decision rules based on extreme outcomes (MM- 

REGRET, MAXIMIN, and MAXIMAX), and the benevolent proce- 

dure maximizing the sum of comprehensive values for all alterna- 

tives (UTAMSVF). The results attained by UTAMSVF are significantly 

worse than for all remaining methods. 

The boxplot for MRAI is presented in Fig. 3 . It indicates that all 

procedures attain the maximal consistency for at least one prob- 

lem instance ( MRAI = 1 ). When it comes to the least results, they 

range between 0.17 for RANK-SUM and RANK-PROD to zero for 

UTAMSVF. In general, the robustness of results depends on the con- 

sidered problem instance. Relatively high variability is confirmed 

by the differences between Q3 and Q1 , ranging between 0.25 and 

0.3 for all methods. The average best performers attain the most 

stable outcomes. Still, a similar level of results’ stability across all 

methods implies that the conclusions derived from the analysis of 

median, first and third quartiles are the same as for the mean. 

The best average result in terms of FRAI is attained by BE- 

STRAI (0.7671). This means that the alternative ranked at the top 

by this procedure is also indicated as the most preferred by almost 

77% compatible value functions. It is followed by the REL proce- 

dures, MINPOI, and REPROC. These methods exploit the results of 

stochastic analysis for all pairs of alternatives, aiming to indicate 

as the most favorable option this alternative which is more pre- 

ferred to all remaining ones for the majority of feasible models. 

Note that these approaches also proved to be the most advanta- 

geous in terms of reproducing the true pairwise relations in the 

entire ranking (see Kendall’s τ and MPRI). When it comes to FRAI, 

they attain significantly better results than the RANK procedures. 

One could expect the opposite because FRAI captures the support 

given to the alternative ranked in the first place by all compati- 

ble value functions, and the RANK methods proved the best given 

MRAI. However, the first rank is only one out of many positions, 

specific in the sense that the conditions for attaining it can be 

easily defined with respect to pairwise comparisons. This gives a 

chance to the REL methods to outperform their RANK counterparts. 

Still, RANK-SUM and RANK-PROD need to be seen among the over- 

all good performers because they scored the best in terms of RAM 

and MRAI and are only marginally worse than the best methods 

given NHR and FRAI. 

As far as other procedures are concerned, high FRAI values are 

attained by UTAAVE, EXPRANK, and SUMPOI. In these cases, the 

average support given to the most preferred alternatives among 

all feasible models ranges between 76 . 17% and 76 . 58% . These pro- 

cedures rank at the top an option that attains the greatest aver- 

age comprehensive value, the highest expected rank, or the best 

POI-based support in all pairwise comparisons, respectively. When 

comparing with the robustness of the entire ranking, slightly bet- 

ter relative performance in terms of FRAI is attained by both dis- 

tillation procedures. In particular, UP-DIST and DOWN-DIST were 

worse given MPRI than ACUTA, UTACHEB, DME2, and AP2, whereas 

the ranking is inverse when considering FRAI. 

MAXIMAX (0.5027) and MSVF (0.5298) performed the worst 

given FRAI. In this case, the order is reversed compared to the 

measures quantifying the robustness of the entire ranking. How- 

ever, both procedures are vastly outperformed even by the third 

worse method, i.e., UTAMP1 (0.6181). The results for FRAI confirm 

the benefits of constructing the recommendation based on stochas- 

tic acceptabilities. Among eight bottom-ranked procedures, none 

incorporates the shares of feasible models in its operational steps. 

4.3.3. Performance trends 

In this section, we consider the impact that different parameter- 

izations of the problem and preference model have on the perfor- 

mance of the considered methods. For this purpose, we report the 

values of performance measures for various numbers of alterna- 

tives ( M), criteria ( E), characteristic points ( P ), and pairwise com- 

parisons provided by the DM ( C). In the main paper, we discuss the 

observed trends for NHR and MRAI. In this way, we consider mea- 

sures that are representative for choice (NHR) and ranking (MRAI) 

as well as for the consistency with the DM’s true model (NHR) 

and robustness of results (MRAI). The detailed outcomes given the 
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Fig. 4. The Hasse diagram indicating the statistically significant differences in terms 

of MRAI based on the Wilcoxon test with p-value equal to 0.05. 

remaining measures are provided in the e-Appendix. Since the 

changes observed for them are analogous, we do not elaborate on 

them in detail. 

In Table 3 , we present the values of NHR attained by 35 meth- 

ods for different problem settings. When it comes to the impact 

of the number of alternatives, with greater M, the results become 

worse. For example, BESTRAI correctly identifies the most preferred 

alternative in 86 . 54% scenarios for M = 6 , whereas for M = 14 –

such a consistency drops to 70 . 08% . A similar trend is observed for 

all procedures. This is understandable given an increased complex- 

ity of indicating the DM’s true most preferred alternatives based 

on incomplete preferences when more alternatives are considered. 

When considering the outcomes for different neighboring val- 

ues of M, the greatest deterioration of NHR can be observed when 

passing from M = 6 to 8 (on average, 0.0866). On the contrary, the 

smallest decrease of 0.0265 can be observed between M = 12 and 

14. Hence, when the set of alternatives is very small, adding ad- 

ditional ones increases the problem complexity of identifying the 

best option more than in the scenarios where the share of new 

alternatives is smaller. 

The rankings of different procedures are consistent irrespective 

of the number of alternatives. In particular, BESTRAI attains the 

best results for all considered values of M, and its performance 

deterioration is the least with the increase of M. In turn, MAXI- 

MAX and UTAMSVF are ranked at the bottom for all considered 

numbers of alternatives. Moreover, when moving from M = 6 to 

14, their performance drop is twice as big as for the best methods 

(e.g., compare the difference of 0.3449 for MAXIMAX and 0.1646 

for BESTRAI). 

Also, the increase in the number of criteria has a negative im- 

pact on NHR attained by all procedures. For example, for BESTRAI, 

the consistency in terms of indicating the most preferred alter- 

native drops from 79 . 51% for E = 3 through 76 . 47% for E = 4 to 

74 . 14% for E = 5 . With more criteria, the preference model be- 

comes more flexible, and the set of compatible value functions be- 

comes larger. As a result, the variety of choice recommendations 

delivered by the set of feasible models is greater, and it becomes 

more challenging to identify the most preferred option correctly. 

More significant differences are observed for fewer criteria. The 

performance decrease when moving from E = 3 to 4 is the least 

for the REL methods ( 0 . 0292 − 0 . 0293 ), MINPOI (0.0293), and RE- 

PROC (0.0294). The change from 4 to 5 criteria had the least sig- 

nificant impact on RANK-SUM and RANK-PROD (0.0204). In gen- 

eral, the impact of E on the attained results is smaller than in the 

case of M. The greatest difference between the extreme considered 

numbers of criteria is observed for UTAMSCVF (0.1221). 

The greater number of characteristic points has, in general, a 

negative impact on the methods’ ability to correctly identify the 

DM’s true most preferred alternative. However, this trend is evi- 

dent for all procedures only when moving from P = 2 to 3 char- 

acteristic points. For example, for BESTRAI, the average NHR value 

drops from 79 . 00% to 75 . 44% . Nevertheless, for some approaches, 

the change in P from 3 to 4 leads to better outcomes. For example, 

for DOWN-DIST and EXPRANK, the mean NHR increases by 0.005 

and 0.0035, respectively. Overall, the correct indication of the top- 

ranked alternative is easier when marginal value functions are lin- 

ear. However, when considering various piecewise linear functions, 

the trend depends on the specific procedure. The increase in the 

preference model’s flexibility is much greater when adding a sin- 

gle breakpoint in the mid-range compared to the scenario where 

additional characteristic points are included allowing the modeling 

of even more complex curvatures of marginal functions. 

The problem characteristic that positively impacts the efficiency 

of indicating the most preferred alternative is the number of pairs 

of reference alternatives compared by the DM. For example, for BE- 

STRAI, the mean NHR is equal to 71 . 37% for C = 4 and 81 . 54% for 
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Table 3 

Average Normalized Hit Ratios (NHRs) for different numbers of alternatives, criteria, characteristic points, and pairwise comparisons. 

Alternatives Criteria Characteristic points Pairwise comparisons 

METHOD AVG 6 8 10 12 14 3 4 5 2 3 4 4 6 8 10 

UTAMP1 0.6180 0.7692 0.6545 0.5934 0.5489 0.5242 0.6612 0.6114 0.5815 0.6951 0.5957 0.5633 0.5099 0.5937 0.6559 0.7126 

UTAMP2 0.6658 0.7982 0.6970 0.6430 0.6069 0.5841 0.7204 0.6592 0.6179 0.7319 0.6481 0.6176 0.5784 0.6451 0.6955 0.7443 

UTAMSCVF 0.6014 0.7639 0.6465 0.5665 0.5280 0.5020 0.6666 0.5930 0.5445 0.5982 0.6045 0.5024 0.5794 0.6347 0.6890 

UTAMSVF 0.5291 0.7209 0.5743 0.4962 0.4468 0.4075 0.5782 0.5216 0.4877 0.5820 0.5153 0.4902 0.4178 0.5031 0.5676 0.6280 

UTAJLS 0.6881 0.8144 0.7196 0.6641 0.6348 0.6076 0.7370 0.6850 0.6424 0.7642 0.6760 0.6241 0.6092 0.6695 0.7156 0.7582 

UTAAVE 0.7650 0.8643 0.7921 0.7475 0.7239 0.6970 0.7930 0.7623 0.7396 0.7868 0.7526 0.7555 0.7105 0.7517 0.7835 0.8141 

UTACHEB 0.7427 0.8500 0.7706 0.7263 0.6948 0.6719 0.7755 0.7404 0.7123 0.7669 0.7275 0.7337 0.6894 0.7294 0.7601 0.7919 

ACUTA 0.7492 0.8552 0.7761 0.7309 0.7026 0.6813 0.7775 0.7468 0.7234 0.7694 0.7358 0.7426 0.6965 0.7370 0.7660 0.7974 

UTAROB 0.6515 0.7810 0.6776 0.6249 0.5945 0.5797 0.7050 0.6456 0.6040 0.7148 0.6295 0.6103 0.5681 0.6311 0.6800 0.7269 

REPROC 0.7654 0.8652 0.7928 0.7486 0.7236 0.6966 0.7926 0.7632 0.7403 0.7878 0.7530 0.7553 0.7104 0.7532 0.7829 0.8150 

MAXIMAX 0.5028 0.7153 0.5556 0.4656 0.4069 0.3704 0.5517 0.4992 0.4575 0.6312 0.4676 0.4096 0.3820 0.4714 0.5457 0.6120 

MAXIMIN 0.6735 0.8086 0.7113 0.6523 0.6129 0.5826 0.7201 0.6677 0.6329 0.7112 0.6711 0.6383 0.6008 0.6560 0.6985 0.7388 

MM-REGRET 0.6815 0.8167 0.7198 0.6599 0.6216 0.5895 0.7307 0.6753 0.6385 0.7396 0.6666 0.6382 0.6051 0.6633 0.7076 0.7500 

EXPRANK 0.7612 0.8629 0.7888 0.7455 0.7183 0.6905 0.7890 0.7584 0.7362 0.7814 0.7494 0.7528 0.7061 0.7479 0.7790 0.8118 

BESTRAI 0.7671 0.8654 0.7936 0.7507 0.7249 0.7008 0.7951 0.7647 0.7414 0.7900 0.7544 0.7568 0.7137 0.7551 0.7841 0.8154 

WORSTRAI 0.6972 0.8213 0.7275 0.6750 0.6430 0.6191 0.7355 0.6921 0.6639 0.7218 0.6838 0.6860 0.6323 0.6800 0.7196 0.7569 

AP1 0.7093 0.8263 0.7388 0.6879 0.6591 0.6343 0.7527 0.7044 0.6707 0.7469 0.6979 0.6830 0.6477 0.6911 0.7311 0.7671 

AP2 0.7233 0.8284 0.7498 0.7061 0.6781 0.6540 0.7633 0.7200 0.6865 0.7744 0.7070 0.6885 0.6638 0.7084 0.7429 0.7780 

DME1 0.6960 0.8154 0.7266 0.6733 0.6441 0.6205 0.7482 0.6921 0.6477 0.7472 0.6842 0.6566 0.6200 0.6766 0.7241 0.7632 

DME2 0.7197 0.8275 0.7464 0.6997 0.6741 0.6508 0.7636 0.7162 0.6793 0.7626 0.7069 0.6897 0.6600 0.7023 0.7408 0.7757 

MAXPOI 0.7130 0.8331 0.7406 0.6932 0.6619 0.6362 0.7544 0.7092 0.6754 0.7462 0.6984 0.6945 0.6499 0.6964 0.7352 0.7705 

MINPOI 0.7656 0.8653 0.7930 0.7487 0.7238 0.6974 0.7929 0.7636 0.7405 0.7879 0.7534 0.7556 0.7108 0.7534 0.7829 0.8154 

SUMPOI 0.7612 0.8630 0.7888 0.7455 0.7183 0.6905 0.7890 0.7584 0.7363 0.7815 0.7494 0.7528 0.7061 0.7479 0.7790 0.8118 

RANK-SUM-IND 0.7546 0.8615 0.7866 0.7369 0.7084 0.6797 0.7847 0.7516 0.7275 0.7765 0.7406 0.7468 0.6964 0.7411 0.7737 0.8073 

RANK-SUM 0.7650 0.8643 0.7919 0.7478 0.7231 0.6979 0.7934 0.7610 0.7406 0.7866 0.7524 0.7560 0.7108 0.7529 0.7826 0.8136 

RANK-PROD 0.7639 0.8643 0.7909 0.7462 0.7218 0.6961 0.7925 0.7598 0.7393 0.7858 0.7508 0.7550 0.7101 0.7514 0.7812 0.8127 

RANK-MM 0.7330 0.8566 0.7767 0.7169 0.6737 0.6408 0.7696 0.7287 0.7005 0.7611 0.7171 0.7207 0.6697 0.7190 0.7520 0.7910 

REL-SUM 0.7657 0.8653 0.7930 0.7488 0.7239 0.6974 0.7929 0.7637 0.7405 0.7880 0.7534 0.7556 0.7109 0.7535 0.7829 0.8154 

REL-PROD 0.7657 0.8653 0.7929 0.7488 0.7239 0.6975 0.7929 0.7637 0.7405 0.7880 0.7535 0.7556 0.7108 0.7535 0.7829 0.8154 

REL-MM 0.7657 0.8653 0.7930 0.7488 0.7239 0.6976 0.7929 0.7637 0.7405 0.7880 0.7535 0.7557 0.7110 0.7535 0.7829 0.8154 

REL-SUM-IND 0.7654 0.8651 0.7929 0.7483 0.7233 0.6972 0.7924 0.7631 0.7406 0.7875 0.7532 0.7555 0.7103 0.7531 0.7830 0.8151 

REL-PROD-IND 0.7654 0.8651 0.7929 0.7483 0.7233 0.6973 0.7924 0.7631 0.7406 0.7875 0.7532 0.7555 0.7103 0.7531 0.7830 0.8151 

REL-MM-IND 0.7654 0.8651 0.7929 0.7481 0.7236 0.6972 0.7926 0.7633 0.7402 0.7876 0.7529 0.7556 0.7107 0.7526 0.7831 0.8151 

DOWN-DIST 0.7542 0.8570 0.7835 0.7361 0.7109 0.6832 0.7821 0.7512 0.7292 0.7735 0.7420 0.7470 0.6978 0.7413 0.7718 0.8057 

UP-DIST 0.7574 0.8586 0.7855 0.7409 0.7136 0.6885 0.7862 0.7543 0.7317 0.7794 0.7445 0.7484 0.7017 0.7443 0.7757 0.8079 
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C = 10 . When moving from 4 to 6 pairwise comparisons, the av- 

erage increase for all procedures is 0.0506; between C = 6 and 8 

– it is 0.0381, and when considering 10 rather than 8 reference 

pairs, the improvement is by 0.0379. On the one hand, the general 

increasing trend is understandable given the additional informa- 

tion gain offered by each pairwise comparison. The space of fea- 

sible models becomes more constrained, and the variability of al- 

ternatives that could be judged as the DM’s most preferred alter- 

natives becomes lesser. On the other hand, the increase in NHR 

becomes smaller when accounting for richer preference informa- 

tion. Hence the benefit offered by each additional pairwise com- 

parison in terms of correctly identifying the most preferred al- 

ternative becomes lesser when numerous comparisons have been 

already elicited. This is consistent with the findings presented 

in [8,9] where the increase in the robustness of results offered by 

initially provided pairwise comparisons is significantly greater than 

by the preference statements supplied when the set of compatible 

value functions is already significantly constrained. This effect is 

additionally strengthened in the study by the random selection of 

reference pairs. There already exist algorithms for selecting such 

pairs to maximize the potential information gain (see, e.g., [8,9] ). 

A more general conclusion is that care should be taken to elicit 

the diverse comparisons reliably reflecting the DM’s policy. 

The average MRAI results obtained for different problem set- 

tings are presented in Table 4 . The increase in the number of al- 

ternatives implies significant deterioration of MRAI for all proce- 

dures. For most of them, when moving from M = 6 to 14 alterna- 

tives, the average MRAI becomes over twice lesser. For example, for 

EXPRANK, the results attained for the extreme considered M values 

are 74 . 79% and 37 . 12% . This can be easily explained because larger 

M translates into a greater number of possible rankings. As a re- 

sult, with the same amount of preference information, the support 

given to the alternatives’ positions in the set of compatible value 

functions becomes lesser for problems involving more alternatives. 

The rankings of different approaches are very alike irrespec- 

tive of M. Specifically, RANK-SUM achieves the highest average 

MRAI for all considered numbers of alternatives, followed closely 

by RANK-PROD. Their advantage over the remaining methods in- 

creases for greater M. For example, when 6 alternatives are consid- 

ered, the difference between RANK-SUM and REL-SUM is 0.0045, 

whereas in the case of 14 alternatives – it is already 0.0212. This 

suggests that the competitive advantage of the procedures directly 

optimizing the support given to different ranking positions be- 

comes more evident when the number of alternatives is greater. 

Similarly, increasing the number of criteria leads to lower MRAI 

values for all methods. The performance deterioration is not as 

rapid as for different numbers of alternatives. For example, for 

RANK-SUM, average support given to the ranks to which the al- 

ternatives are assigned in the set of all compatible value functions 

drops from 59 . 28% for E = 3 through 54 . 14% for E = 4 to 51 . 00% for 

E = 5 . The least absolute and relative deterioration in the robust- 

ness of assigned ranks is observed for DOWN-DIST and UP-DIST. 

It implies that both distillation procedures performed better for 

problems with 5 criteria than ACUTA and UTACHEB, even though 

the relation is inverse when 3 criteria are considered. A similar ef- 

fect can be observed for DME2, which recorded the highest relative 

decrease in the average MRAI. As a result, the robustness of ranks 

delivered by DME2 is worse than for MIN-POI and MAX-POI for 

problems involving 5 criteria, even if it was clearly higher when 

accounting for 3 criteria. This observation emphasizes the impor- 

tance of directly exploiting the stochastic acceptabilities for more 

complex problems than relying on the dominance intensities that 

capture only the extreme value differences in the set of compatible 

value functions. 

As far as the number of characteristic points is concerned, its 

impact on MRAI is negative for all methods when moving from 

linear to piecewise linear marginal value functions. However, when 

comparing the results attained for P = 3 and P = 4 , the trend de- 

pends on the specific approach. For most procedures, it is still de- 

creasing. However, the absolute difference is smaller than when 

moving from P = 2 to 3. For other methods, including, e.g., the REL 

procedures, UTACHEB, and EXPRANK, there is even a marginal in- 

crease in MRAI. 

The greatest relative deteriorations are observed for methods 

that identify the most discriminant models (e.g., UTAMP1) or de- 

rive their recommendations from analyzing extreme comprehen- 

sive values (MAXIMIN and MAXIMAX). This is understandable be- 

cause with a greater number of characteristic points, the marginal 

value functions become more flexible, and the space of all feasible 

models becomes larger. As a result, such extreme results may be- 

come more distant from the regularities – captured by the stochas- 

tic acceptability indices – observed in the entire set of all com- 

patible values functions. In turn, the smallest relative decreases of 

MRAI are noted for procedures that exploit P W Is or RAIs when 

constructing a recommendation. In particular, for UP-DIST, DOWN- 

DIST, SUM-POI, and EXPRANK, the number of characteristic points 

has no direct impact on the way these procedures work. It in- 

directly influences their operational steps by increasing the vari- 

ability of results and decreasing stochastic acceptabilities’ stability 

when more characteristic points are allowed. 

The number of pairwise comparisons is again the only pa- 

rameter that, when increasing, positively affects the performance 

of all procedures. This is particularly visible for procedures such 

as UTAMP1, UTAMSVF, MAXIMAX, MAXIMIN, MM-REGRET, and 

UTAMSCVF that cope badly when the DM compares only a few 

pairs. For example, UTAMP1 attained the highest relative increase 

of MRAI from 0.3180 for C = 4 comparisons to 0.4994 for C = 10 . 

When additional preference information is available, the compati- 

ble rankings receive greater support in the set of all feasible mod- 

els. This is related to the shrink of the feasible polyhedron when 

indirect preferences become more complete. The least relative in- 

crease in MRAI is noted for procedures such as RANK-SUM and 

RANK-PROD. These methods can produce robust rankings even if 

the number of pairwise comparisons is low and the space for im- 

provement is much lesser than for the underperforming meth- 

ods. Still, the robustness of their recommendations increases sig- 

nificantly when preference information becomes richer. For exam- 

ple, the average support given to the ranks produced by RANK- 

SUM increases from 0.4788 for C = 4 through 0.5279 and 0.5716 

for the intermediate numbers of pairwise comparisons to 0.6139 

for C = 10 . 

5. Summary and future research 

We considered the preference disaggregation setting in the con- 

text of multiple criteria ranking and choice. We assume the De- 

cision Maker specifies pairwise comparisons of reference alterna- 

tives, translated into parameters of an additive value function. The 

indirectness and incompleteness of such preference information 

imply the multiplicity of feasible models. In this case, the neces- 

sary preference relation is unlikely to help determine a complete 

ranking or the most preferred alternative. In such scenarios, it is 

necessary to seek other ways to arrive at a sufficiently decisive and 

conclusive recommendation. 

We reviewed thirty-five methods for constructing a univo- 

cal recommendation given an indetermination of the preference 

model. They are divided into four sub-groups with the proviso that 

some procedures may be assigned into more than one category. 

These include (i) methods for selecting a representative value func- 

tion, (ii) decision rules, (iii) scoring procedures, and (iv) approaches 

for constructing a robust ranking. Only procedures from the first 

group associate a feasible model with the provided recommenda- 
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Table 4 

Average Mean Rank Acceptability Indices (MRAIs) for different numbers of alternatives, criteria, characteristic points, and pairwise comparisons. 

Alternatives Criteria Characteristic points Pairwise comparisons 

METHOD AVG 6 8 10 12 14 3 4 5 2 3 4 4 6 8 10 

UTAMP1 0.4115 0.6360 0.4632 0.3714 0.3134 0.2734 0.4595 0.4037 0.3713 0.4864 0.3878 0.3602 0.3180 0.3852 0.4433 0.4994 

UTAMP2 0.4408 0.6657 0.4955 0.4024 0.3407 0.2995 0.4963 0.4322 0.3937 0.5055 0.4248 0.3919 0.3554 0.4155 0.4699 0.5221 

UTAMSCVF 0.3863 0.6340 0.4404 0.3396 0.2783 0.2390 0.4412 0.3769 0.3407 0.3844 0.3881 0.3015 0.3605 0.4147 0.4683 

UTAMSVF 0.3590 0.6066 0.4082 0.3116 0.2531 0.2156 0.4012 0.3513 0.3245 0.4033 0.3450 0.3288 0.2787 0.3324 0.3854 0.4395 

UTAJLS 0.4807 0.7083 0.5405 0.4435 0.3786 0.3328 0.5322 0.4746 0.4355 0.5435 0.4657 0.4330 0.4007 0.4570 0.5081 0.5571 

UTAAVE 0.5327 0.7538 0.5970 0.4997 0.4308 0.3821 0.5755 0.5261 0.4964 0.5662 0.5151 0.5167 0.4599 0.5116 0.5574 0.6019 

UTACHEB 0.5106 0.7333 0.5720 0.4757 0.4093 0.3626 0.5573 0.5037 0.4708 0.5494 0.4900 0.4923 0.4415 0.4897 0.5337 0.5774 

ACUTA 0.5160 0.7393 0.5781 0.4815 0.4142 0.3671 0.5598 0.5091 0.4793 0.5518 0.4976 0.4987 0.4471 0.4953 0.5391 0.5826 

UTAROB 0.4319 0.6482 0.4815 0.3935 0.3370 0.2991 0.4876 0.4240 0.3840 0.4990 0.4089 0.3877 0.3507 0.4071 0.4593 0.5104 

REPROC 0.5334 0.7544 0.5979 0.5007 0.4315 0.3824 0.5762 0.5268 0.4971 0.5671 0.5158 0.5173 0.4606 0.5124 0.5581 0.6025 

MAXIMAX 0.3936 0.6386 0.4491 0.3486 0.2866 0.2453 0.4408 0.3862 0.3538 0.4560 0.3796 0.3453 0.3051 0.3666 0.4241 0.4788 

MAXIMIN 0.3938 0.6383 0.4487 0.3491 0.2877 0.2453 0.4408 0.3864 0.3541 0.4563 0.3807 0.3443 0.3049 0.3673 0.4243 0.4787 

MM-REGRET 0.4010 0.6445 0.4570 0.3567 0.2949 0.2515 0.4459 0.3935 0.3635 0.4575 0.3839 0.3615 0.3130 0.3756 0.4310 0.4843 

EXPRANK 0.5229 0.7479 0.5866 0.4887 0.4200 0.3712 0.5640 0.5167 0.4880 0.5540 0.5059 0.5087 0.4495 0.5014 0.5477 0.5929 

BESTRAI 0.4517 0.6966 0.5083 0.4091 0.3443 0.3000 0.4930 0.4452 0.4167 0.4835 0.4354 0.4361 0.3802 0.4280 0.4750 0.5234 

WORSTRAI 0.4515 0.6962 0.5082 0.4084 0.3444 0.3003 0.4928 0.4444 0.4173 0.4836 0.4349 0.4360 0.3800 0.4278 0.4751 0.5231 

AP1 0.4552 0.6918 0.5152 0.4147 0.3500 0.3044 0.5076 0.4480 0.4101 0.5134 0.4360 0.4162 0.3765 0.4310 0.4814 0.5319 

AP2 0.4893 0.7099 0.5475 0.4533 0.3902 0.3455 0.5433 0.4824 0.4421 0.5526 0.4690 0.4462 0.4136 0.4665 0.5148 0.5622 

DME1 0.4453 0.6761 0.4999 0.4052 0.3440 0.3015 0.5091 0.4372 0.3897 0.5139 0.4287 0.3934 0.3582 0.4189 0.4756 0.5286 

DME2 0.4778 0.6987 0.5332 0.4413 0.3796 0.3362 0.5317 0.4711 0.4306 0.5321 0.4603 0.4410 0.4024 0.4550 0.5031 0.5506 

MAXPOI 0.4701 0.7093 0.5276 0.4288 0.3644 0.3205 0.5160 0.4633 0.4312 0.5108 0.4508 0.4488 0.3986 0.4470 0.4940 0.5409 

MINPOI 0.4702 0.7093 0.5281 0.4291 0.3644 0.3200 0.5161 0.4636 0.4309 0.5103 0.4510 0.4491 0.3989 0.4472 0.4938 0.5408 

SUMPOI 0.5229 0.7479 0.5866 0.4887 0.4200 0.3712 0.5640 0.5167 0.4880 0.5541 0.5059 0.5087 0.4495 0.5014 0.5477 0.5929 

RANK-SUM-IND 0.5334 0.7550 0.5989 0.5010 0.4310 0.3809 0.5767 0.5269 0.4965 0.5673 0.5156 0.5171 0.4596 0.5121 0.5586 0.6032 

RANK-SUM 0.5481 0.7590 0.6092 0.5169 0.4512 0.4041 0.5928 0.5414 0.5100 0.5870 0.5296 0.5277 0.4788 0.5279 0.5716 0.6139 

RANK-PROD 0.5478 0.7589 0.6090 0.5167 0.4509 0.4038 0.5926 0.5412 0.5098 0.5867 0.5293 0.5275 0.4786 0.5277 0.5714 0.6137 

RANK-MM 0.5307 0.7557 0.5993 0.4991 0.4261 0.3736 0.5777 0.5238 0.4907 0.5715 0.5113 0.5093 0.4584 0.5097 0.5554 0.5994 

REL-SUM 0.5336 0.7545 0.5980 0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609 0.5126 0.5583 0.6026 

REL-PROD 0.5336 0.7545 0.5980 0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609 0.5126 0.5583 0.6026 

REL-MM 0.5336 0.7545 0.5980 0.5009 0.4318 0.3829 0.5765 0.5271 0.4973 0.5672 0.5161 0.5175 0.4609 0.5126 0.5583 0.6026 

REL-SUM-IND 0.5331 0.7540 0.5975 0.5004 0.4313 0.3824 0.5754 0.5268 0.4972 0.5663 0.5157 0.5173 0.4607 0.5122 0.5578 0.6018 

REL-PROD-IND 0.5331 0.7540 0.5975 0.5005 0.4313 0.3824 0.5754 0.5268 0.4972 0.5663 0.5157 0.5173 0.4607 0.5122 0.5578 0.6018 

REL-MM-IND 0.5330 0.7540 0.5975 0.5003 0.4311 0.3820 0.5752 0.5267 0.4971 0.5662 0.5156 0.5172 0.4605 0.5121 0.5577 0.6017 

DOWN-DIST 0.5152 0.7420 0.5793 0.4802 0.4115 0.3628 0.5553 0.5091 0.4811 0.5453 0.4985 0.5017 0.4414 0.4935 0.5402 0.5856 

UP-DIST 0.5152 0.7420 0.5794 0.4807 0.4112 0.3627 0.5553 0.5092 0.4811 0.5456 0.4984 0.5016 0.4415 0.4936 0.5400 0.5857 
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Fig. 5. A decision tree supporting the selection of the measure and the best performing method depending on the characteristics of the problem. 

tion. In the methods from the first three groups, the scale leading 

the recommendation is cardinal, whereas for the last group – it is 

ordinal. All methods except a few oriented toward selecting a rep- 

resentative model account for the robustness of results obtained in 

the set of compatible value functions. However, these outcomes are 

different, referring to the extreme value differences (dominance in- 

tensities), stability of pairwise relations, or robustness of ranks at- 

tained by alternatives. Moreover, even if the general aim of some 

methods is the same, they differ in terms of how this objective is 

implemented. For example, in the case of selecting a representa- 

tive model, one may opt for the most discriminant, average, cen- 

tral, benevolent, aggressive, parsimonious, or robust value function. 

In turn, constructing a robust ranking may be conducted using 

upward or downward distillations, or mathematical programming 

models maximizing the sum, product, or minimal support quanti- 

fied with stochastic acceptabilities. 

The performance of all methods was compared on problem in- 

stances with different complexities. The outcomes of an extensive 

study were quantified in terms of seven measures. By referring to 

their specificity, we can design a decision tree facilitating the selec- 

tion of the best performing procedure based on the experimental 

outcomes (see Fig. 5 ). The tree refers to four characteristics im- 

portant for the practice of decision aiding. The major one points 

out to maximizing either the similarity between the DM’s true 

preferences and the recommendation suggested by the method or 

the robustness of the delivered recommendation in terms of the 

support it is given in the set of compatible value functions. The 

other essential feature distinguishes between the choice and rank- 

ing problems. When dealing with choice, the focus is always on 

identifying the most preferred alternative. In the case of ranking 

problems, we can differentiate between the analysis of pairwise re- 

lations or ranks assigned to alternatives. The former is focused on 

one-against-one comparisons, whereas the latter refers to the per- 

formance of individual alternatives derived from their comparisons 

with all remaining options. Finally, given the rank-oriented per- 

spective in the context of reconstruction of the DM’s preferences, 

it may be interesting to consider if alternatives attain precisely the 

same ranks in the true and predicted rankings or account for the 

differences between the ranks associated with the alternatives in 

the two rankings. 

There is a consistency in indicating the best performing pro- 

cedures for the three groups of measures. First, when it comes to 

identifying the DM’s true most preferred alternative (NHR) and the 

support given to the top-ranked alternative by all feasible mod- 

els (FRAI), the best results are attained by BESTRAI. It investigates 

the best ranks attained by all alternatives along with the shares 

of compatible value functions confirming such a favorable result. 

Thus, BESTRAI is recommended for use in the context of choice 

problems. Second, concerning the reproduction of the relations in 

the DM’s true ranking (Kendall’s τ and RDM) and the support 

given to the pairwise relations by all compatible models (MPRI), 

the best outcome are attained by the REL procedures. They con- 

struct a ranking by emphasizing the relations confirmed by the 

greatest share of value functions consistent with the DM’s prefer- 

ences. Hence, when dealing with ranking problems with the in- 

terest of either reconstructing the DM’s pairwise preferences or 

maximizing the robustness of recommendation for all pairs of al- 

ternatives, we advise employing REL-SUM, REL-PROD, or REL-MM. 

Third, as far as reconstructing the positions in the DM’s true rank- 

ing (RAM) and the support given to the assigned ranks in the feasi- 

ble polyhedron (MRAI) are concerned, the most advantageous per- 

formance is observed for RANK-SUM and RANK-PROD. These meth- 

ods construct a ranking by placing the alternatives in these po- 

sitions that they attained most frequently in the set of compat- 

ible preference model instances. The above conclusions are con- 

strained by the considered experimental setting (e.g., relatively 

small MCDA problems and additively rational DMs). Such a limi- 

tation concerns all experimental studies whose feasibility requires 

making arbitrary assumptions and fixing a finite number of pa- 

rameter values specifying the relevant problem instances. Never- 

theless, the likelihood of the conclusions presented in this paper 

is strengthened by a broad spectrum of considered problem char- 

acteristics and analyzing a significant number of 180,0 0 0 problem 

instances. 

Even though the best performers differ from one measure to 

another, the subsets of methods attaining favorable results are con- 

sistent given all measures. They include the approaches that con- 

struct a robust ranking based on stochastic acceptabilities, meth- 

ods that exhibit the expected results, and procedures selecting rep- 

resentative value functions that emphasize the robustness preoc- 

cupation (REPROC), average the indications of all feasible models 

(UTAAVE) or can be deemed as central in the feasible polyhedron 

(ACUTA and UTACHEB). The exception in this regard can be noted 

for BESTRAI and MINPOI. They deal exceptionally well in the con- 

text of choice but fail to provide satisfactory results when consider- 

ing the entire rankings. The least favorable outcomes were attained 

by simple decision rules based on the extreme outcomes in the 

set of feasible models, procedures selecting a representative value 

function that is benevolent, parsimonious, or the most discrimi- 

nant, and methods exploiting the dominance intensities. This con- 

firms that an increased computational effort at the stage of con- 

structing a decision recommendation pays off to increase both its 
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robustness and the chances for reconstructing the DM’s true pref- 

erences. 

The experimental study indicated that the consistency between 

the reference and resulting models, as well as the robustness of 

recommendations delivered by all methods, decreased with greater 

numbers of alternatives and criteria, lesser number of character- 

istic points, and when moving from linear to piecewise linear 

marginal value functions. Such trends can be explained given a 

greater complexity of problems involving more alternatives and 

criteria, higher flexibility of additive value functions and greater 

variability of rankings with more criteria and characteristic points, 

and more constrained space of feasible models when additional 

pairwise comparisons are available. More significant absolute dif- 

ferences in the performance measures were observed in the lower 

scale range of different parameters of a decision problem or a rank- 

ing model (e.g., when passing from 6 to 8 alternatives, from 3 to 4 

criteria, from 2 to 3 characteristic points, of from 4 to 6 pairwise 

comparisons). In turn, the differences in the upper parts of the pa- 

rameter scales were lesser (e.g., when passing from 12 to 14 alter- 

natives, from 4 to 5 criteria, from 3 to 4 characteristic points, or 

from 8 to 10 pairwise comparisons). In general, the relative perfor- 

mances of all procedures were the same irrespective of the prob- 

lems’ and models’ parameterization. Some slight differences were 

related to the operational steps of different methods. For example, 

the approaches that do not build their recommendations on the 

robustness of results tend to perform worse for greater problem 

instances or with more flexible preference models. 

The universal setting adopted in the UTA-like methods makes 

the findings of this paper of interest to researchers in other 

fields, including choice modeling (CM) [43] and preference learning 

(PL) [16] . On the one hand, CM, an essential subfield of economics 

and marketing, employs consumers’ revealed or stated preferences 

in the form of pairwise comparisons (discrete choice). These are 

used to construct a preference model – often via linear program- 

ming – that is typically a utility function [55,57] . The model re- 

veals the importance of various attributes and trade-offs between 

characteristics, allowing to value products, goods, or services that 

the consumers have not directly judged [27] . In this perspective, 

both its form and usefulness are similar to those learned by the 

UTA-like methods, even though the typical contexts of use (e.g., 

refining new product development, estimating the willingness to 

pay, or testing product viability) are different. On the other hand, 

PL, an important subfield of machine learning and artificial intelli- 

gence, also uses holistic observed preferences to infer models pre- 

dicting the preference for previously unseen items, objects, or in- 

stances. The prevailing PL methods search for utility functions by 

solving regression problems. However, unlike UTA-like methods, 

they are typically used in the context of large sets of preference 

statements, e.g., in the search engine or recommender system en- 

vironments [11] . 

We envisage the following directions for future research. First, 

it is possible to develop more procedures for constructing a univo- 

cal recommendation. In this regard, an exciting idea consists in in- 

corporating the robust optimization objectives from [58] into pro- 

cedures selecting a representative value function. Such procedures 

may be applicable to scenarios where the Decision Maker needs to 

consider a concrete instance of the preference model along with 

the recommended decision. Also, the pairwise stochastic accept- 

abilities can be exploited with other approaches as, e.g., proposed 

in [36] , where the eigenvector method was applied in the context 

of robust efficiency results. Second, a limitation of our study con- 

sisted of assuming that the set of compatible value functions was 

non-empty. While some approaches (e.g., those exploiting the out- 

comes of robustness analysis) are applicable only under such a set- 

ting, others can also be used when an additive value model can- 

not perfectly reproduce all DM’s pairwise comparisons. Therefore, 

it would be interesting to adjust some methods to the case of in- 

compatibility and conduct a simulation study focusing specifically 

on such a context, similarly to what has been in [3] . Third, some 

methods presented in this paper are universal, being applicable to 

results obtained with any preference model. However, the selection 

of procedures for deriving a representative parameter set in the 

context of outranking methods or representative set of rules appli- 

cable with the Rough Set Theory is scarce. Hence novel approaches 

can be elaborated and subsequently compared in terms of their 

predictive accuracy or robustness preoccupation. Finally, an appeal- 

ing direction for future research consists of elaborating preference 

learning algorithms for constructing a recommendation based on 

large sets of inconsistent pairwise comparisons. In this paper, we 

considered problem instances with sizes typical for MCDA. How- 

ever, adjusting the preference disaggregation algorithms to the era 

of big data becomes more and more critical given an increasing 

range of applications where the extensive collections of prefer- 

ences are already available or observed from the users’ behavior 

rather than directly elicited from the DMs. 
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1. Illustrative study

In this section, we illustrate the use of 35 methods for constructing a univocal recommendation. For this purpose, we

consider a problem of ranking six cars that are evaluated in terms of the following five criteria: price (g1; cost), power

(g2; gain), acceleration (g3; cost); fuel consumption (g4, cost), and CO2 emission (g5; cost). For the performances, see

Table 1. To simulate the DM’s policy, we have drawn Marginal Value Functions (MVFs) for the reference model (see

Figure 1). The ranks, marginal and comprehensive values attained by all alternatives are provided in Table 1. To perform

the analysis, we assume the DM provides the following four randomly selected pairwise comparisons derived from the

reference ranking: a3 � a5, a6 � a1, a3 � a2, and a4 � a2.

Table 1: Performances of six cars on five criteria and their marginal and comprehensive values according to the reference model.

Performances Reference model
Alternative g1 g2 g3 g4 g5 Rank u1 u2 u3 u4 u5 U
a1 (Audi A3) 22080 105 11.4 5.8 119 4 0.4191 0.0000 0.0000 0.0337 0.0775 0.5304
a2 (Audi A4) 28100 160 8.6 9.6 164 6 0.1201 0.2095 0.1395 0.0000 0.0000 0.4691
a3 (BMW 118) 24650 143 9.0 4.5 119 1 0.2834 0.1526 0.1213 0.0555 0.0775 0.6903
a4 (BMW 320) 32700 177 7.9 6.7 128 5 0.0000 0.2665 0.1713 0.0186 0.0626 0.5190
a5 (Volvo C30) 22750 136 9.4 7.6 151 2 0.3837 0.1247 0.1032 0.0100 0.0233 0.6450
a6 (Volvo S40) 27350 180 7.9 8.4 164 3 0.1407 0.2765 0.1713 0.0060 0.0000 0.5946

In what follows, we use MVFs with γj = 3 characteristic points. The set of compatible Additive Value Func-

tions (AVFs) is non-empty. Let us first discuss the intermediate results exploited by some procedures that construct a

univocal recommendation. In Table 2, we present the dominance intensities, i.e., minimal value differences for all pairs

of alternatives. In case D(a, b) ≥ 0, a is necessarily weakly preferred to b. Such a robust relation holds for the following

pairs: (a3, a2), (a3, a5), (a4, a2), (a6, a1), (a6, a2), and (ai, ai) for i = 1, . . . , 6.

Table 2: Dominance intensities for all pairs of alternatives and scores of alternatives according to AP1, AP2, DME1, and DME2.

Dominance intensities Scores according to four procedures
D(a, b) a1 a2 a3 a4 a5 a6 AP1 AP2 DME1 DME2
a1 0.0000 -0.9998 -0.9999 -0.9999 -0.9998 -0.9998 -4.9992 -3.5140 -6.73E-05 1.0535
a2 -0.4922 0.0000 -0.6710 -0.8107 -0.5128 -0.5138 -3.0005 -1.6288 -0.0001 1.0906
a3 -0.1744 0.0001 0.0000 -0.6238 0.0001 -0.5137 -1.3116 2.3957 0.0002 3.9161
a4 -0.3188 0.0001 -0.6193 0.0000 -0.3771 -0.3621 -1.6771 2.0774 5.96E-05 3.5251
a5 -0.5000 -0.3721 -0.7462 -0.8202 0.0000 -0.6976 -3.1360 -0.8788 -4.43E-05 1.9062
a6 0.0001 5.52E-17 -0.6710 -0.5000 -0.3676 0.0000 -1.5385 1.5485 6.50E-05 3.5085

The set of compatible AVFs can also be exploited with the Monte Carlo simulation to obtain stochastic acceptabilities.

In Tables 3 and 4, we present PWIs and RAIs, respectively, estimated based on 10, 000 value functions. Clearly, for

all pairs a, b ∈ A such that a %N b, PWI(a, b) = 1. However, the share of feasible models confirming the advantage of

some alternatives over others is also great for other pairs (see, e.g., (a3, a1), (a4, a1), and (a4, a5)). For another pairs, the

preference probabilities are more balanced (see, e.g., (a1, a2) and (a3, a4)). We distinguish in bold PWIs corresponding
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to the relations observed in the complete reference ranking. Similarly, in Table 4, we emphasize RAIs for the positions

attained by each alternative in the DM’s ranking. Some alternatives (see a2, a3, and a6) have a relatively strong support

for their true positions in the set of compatible AVFs. However, the distribution of ranks probabilities is less focused for

other alternatives, with a4 and a5 attaining five different positions depending on the selected model. Limited support

offered to some elements of the true DM’s ranking is related to the fact that it is unknown to the method, being supplied

with incomplete preference information concerning only four pairs of alternatives.

Table 3: Pairwise winning indices (PWIs) for all pairs of alternatives and scores of alternatives according to SUMPOI, MAXPOI, and MINPOI.

Pairwise Winning Indices Scores according to three procedures
Alternative a1 a2 a3 a4 a5 a6 SUMPOI MAXPOI MINPOI
a1 0.000 0.484 0.000 0.034 0.300 0.000 -3.364 -0.032 -1
a2 0.516 0.000 0.000 0.000 0.327 0.000 -3,314 0.032 -1
a3 1.000 1.000 0.000 0.587 1.000 0.769 3.712 1 0.174
a4 0.966 1.000 0.413 0.000 0.902 0.777 3.116 1 -0.174
a5 0.700 0.673 0.000 0.098 0.000 0.169 -1.72 0.4 -1
a6 1.000 1.000 0.231 0.223 0.831 0.000 1.57 1 -0.554

Table 4: Rank Acceptability Indices (RAIs) for all alternatives and ranks, and scores of alternatives according to EXPRANK, BESTRAI, and
WORSTRAI.

Rank Acceptability Indices Scores according to three procedures
Rank 1 2 3 4 5 6 EXPRANK BESTRAI WORSTRAI
a1 0.000 0.000 0.016 0.259 0.252 0.473 -5.182 -2.984 -6.473
a2 0.000 0.000 0.000 0.249 0.345 0.406 -5.157 -3.751 -6.406
a3 0.555 0.246 0.199 0.000 0.000 0.000 -1.644 -0.445 -3.199
a4 0.363 0.436 0.119 0.060 0.022 0.000 -1.942 -0.637 -5.022
a5 0.000 0.051 0.161 0.286 0.381 0.121 -4.360 -1.949 -6.121
a6 0.082 0.267 0.505 0.146 0.000 0.000 -2.715 -0.918 -4.146

The rankings obtained with all 35 methods are provided in Table 5. UTAMSCVF was the only approach that

reproduced the DM’s true ranking. The majority of methods (19 out of 35; e.g., ACUTA, EXPRANK, and RANK-SUM)

returned the same ranking: a3 � a4 � a6 � a5 � a2 � a1. Only a few methods (e.g., UTAMSVF, DOWN-DIST, and

UP-DIST) admitted indifference relation, e.g., by ranking both a3 and a4 at the top.

Table 5: Rankings attained by six alternatives in the reference ranking and recommendations provided by the 35 considered methods.

Method a1 a2 a3 a4 a5 a6 Method a1 a2 a3 a4 a5 a6
REFERENCE 4 6 1 5 2 3 AP1 6 4 1 3 5 2
UTAMP1 6 4 2 1 5 3 AP2 6 5 1 2 4 3
UTAMP2 6 5 1 2 4 3 DME1 5 6 1 3 4 2
UTAMSCVF 4 6 1 5 2 3 DME2 6 5 1 2 4 3
UTAMSVF 6 5 1 1 4 3 MAXPOI 6 5 2 1 4 3
UTAJLS 5 6 3 1 4 2 MINPOI 6 5 1 2 4 3
UTAAVE 6 5 1 2 4 3 SUMPOI 6 5 1 2 4 3
UTACHEB 4 5 3 1 6 2 RANK-SUM-IND 5 5 1 2 4 3
ACUTA 6 5 1 2 4 3 RANK-SUM 6 5 1 2 4 3
UTAROB 6 5 3 1 4 2 RANK-PROD 6 5 1 2 4 3
REPROC 6 5 1 2 4 3 RANK-MM 6 5 1 2 4 3
MAXIMAX 6 5 1 2 4 3 REL-SUM 6 5 1 2 4 3
MAXIMIN 5 4 3 2 6 1 REL-PROD 6 5 1 2 4 3
MM-REGRET 6 4 2 1 5 3 REL-MM 6 5 1 2 4 3
EXPRANK 6 5 1 2 4 3 REL-SUM-IND 6 5 1 2 4 3
BESTRAI 5 6 1 2 4 3 REL-PROD-IND 6 5 1 2 4 3
WORSTRAI 6 5 1 3 4 2 REL-MM-IND 6 5 1 2 4 3
DOWN-DIST 5 5 1 1 4 3 UP-DIST 5 5 1 1 4 3

The MVFs and the respective comprehensive values derived with the ten methods that select a representative value

function are shown in Figure 1 and Table 6. The MVFs returned by UTAMP1 and UTAMP2 are very similar, leading to

the same rankings. This is understandable given their objective functions that maximize the minimal value difference for

pairs of reference alternatives compared by the DM. For UTAMP1, the optimal δ is equal to 0.361, whereas for UTAMP2

– it is only slightly lower (0.3596). This is because the latter approach compromised this objective against a slightly

greater minimal slope ρ of MVFs.

The UTAMSCVF method aims at inferring a parsimonious model. This was perfectly attained because MVFs are
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Figure 1: Reference model and representative marginal value functions obtained with ten methods.

linear (see Figure 1), assigning the greatest share in the comprehensive value to g1, and neglecting the impact of both

g3 and g5. In turn, UTAMSVF maximized the sum of scores assigned to all reference alternatives. As a result, they are

close to one, and the discrimination between alternatives is poor. This was attained by assigning the greatest impact to

g3 and almost nullifying the importance of the remaining four criteria.

Even though UTAJLS and UTAAVE apply a similar idea of selecting an average model, their results differ. Due to

considering only the extreme models, UTAJLS assigned slightly greater impact to g1, g2, and g4, whereas UTAAVE –

considering a large sample of uniformly distributed models – attributed significant shares in the comprehensive value to

g2 and g3. Moreover, for UTAAVE, the MVFs are closer to being linear, whereas for UTAJLS – they are either concave

or convex on all criteria. For this study, the average model built on Stochastic Ordinal Regression (SOR) is similar to an

analytic center of the feasible polyhedron determined by ACUTA. The rankings of these two methods are the same, and

the comprehensive scores for six alternatives differ by at most 0.04. The MVFs corresponding to the Chebyshev center

are very characteristic in the sense of attributing the same marginal values to the middle breakpoints on all criteria and

four out of five best performances. As a result, the impacts of various criteria are more balanced, which is consistent with

the objective of finding the center of the hypersphere inscribed in the simplex.

The remaining two procedures for selecting a representative value function emphasize the robustness of results.

UTAROB exploits the necessary relation by making the value differences for alternatives compared in the same way

by all feasible functions as large as possible. Indeed, such a minimal difference is large, being equal to 0.3314 (see, e.g.,
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Table 6: Comprehensive values for all alternatives according to the reference model and the representative value functions selected by ten
methods.

Method a1 a2 a3 a4 a5 a6
REFERENCE 0.5304 0.4591 0.6903 0.5190 0.6450 0.5946
UTAMP1 0.3223 0.4688 0.8298 0.8298 0.4688 0.6833
UTAMP2 0.3234 0.4690 0.8286 0.8286 0.4690 0.6830
UTAMSCVF 0.6114 0.4411 0.7256 0.4421 0.6457 0.6124
UTAMSVF 0.0010 0.9990 1.0000 1.0000 0.9990 0.9995
UTAJLS 0.4137 0.4088 0.5985 0.6888 0.4868 0.6404
UTAAVE 0.4373 0.4701 0.7499 0.7251 0.5177 0.6468
UTACHEB 0.4247 0.4099 0.6142 0.7233 0.4027 0.6502
ACUTA 0.4387 0.4410 0.7668 0.7527 0.4792 0.6179
UTAROB 0.3675 0.3675 0.6989 0.8758 0.3675 0.6989
REPROC 0.4160 0.5149 0.9103 0.8114 0.6137 0.7126

(a3, a5), (a4, a2), and (a6, a2)). The other objective aiming at neglecting the difference for pairs which are not related by

%N led to very similar comprehensive scores for two subsets of alternatives: (a1, a2, a5) and (a3, a6). A more detailed

information captured by PWIs is handled by REPROC. It maximizes the values difference for pairs a, b ∈ A such that

PWI(a, b) > PWI(b, a). The number of such pairs is greater than those related by the necessary preference. As a result,

the optimal value of the objective function is lesser (0.0988) (see, e.g., (a2, a1), (a5, a2), and (a3, a4)). Each alternative

that proved to be better than other for a larger share of compatible AVFs is ranked better in the representative ranking

determined by REPROC (see, e.g., PWI(a5, a2) = 0.673 > PWI(a2, a5) = 0.327).

The results of three value-based decision rules are presented in Table 7. They provide ambiguous recommendations.

In particular, MAXIMAX ranks a3 at the top because of its excellent comprehensive value equal to one in the most

advantageous scenario. Furthermore, according to MINIMAX, a6 is the most favorable option as it has the greatest

minimal comprehensive value (0.3290). Finally, MM-REGRET indicates a4 as the best because its greatest regret to the

most preferred alternative is the least (0.6193).

Table 7: Scores attained by six alternatives according to three value-based decision rules.

Method a1 a2 a3 a4 a5 a6
MAXIMAX 0.8211 0.9999 1.0000 1.0000 0.9999 0.9999
MINIMAX 7.14E-05 0.1535 0.2727 0.3088 1.35E-16 0.3290
MM-REGRET -0.9999 -0.8107 -0.6238 -0.6193 -0.8202 -0.6710

The three rank-based decision rules agree concerning the most preferred alternatives. The scores assigned to a3 by

EXPRANK, BESTRAI, and WORSTRAI are −1.644, −0.445, and −3.199, respectively. For the scores of all alternatives,

see Table 4. Such favorable evaluations of a3 derive from attaining:

• the best position (1.644) in an average case (the expected rank for the second-best alternative a4 is 1.942);

• the first rank in the best case with RAI(a3, 1) = 0.555, being greater than for other potentially optimal alternatives

a4 (RAI(a4, 1) = 0.363) and a6 (RAI(a6, 1) = 0.082);

• the third rank in the worst case (with RAI(a3, 3) = 0.199), which is better than for the five remaining alternatives

attaining positions from fourth (see a6) to sixth (see a1, a2, and a5) in the least advantageous scenario.

The outcomes for scoring procedures exploiting dominance intensities are provided in Table 2. AP1 assigns the best

score to a3 because its regrets to other alternatives are relatively small, ranging from −0.6238 to 0.0001. On the contrary,

a1 is vastly worse than all other alternatives in the worst-case scenario, with regrets ranging from −0.0998 to −0.9999.

AP1 just sums up such regrets over comparisons with all remaining alternatives and favors those for which such a sum

of regrets is the least. In turn, AP2 puts together this information with the regrets of all remaining alternatives to a

given one. Hence it combines the arguments in favor of each alternative’s strength and weakness captured by dominance

intensities. Since, in general, other alternatives lose more to a3 than vice versa, the AP2 score for a3 is highly positive,

putting its ahead of a4 and a6 for which the balance is also greater than zero. Note that the sum of AP2 scores for all

alternatives is zero because the strength of some alternatives counts as a weakness of some other option.

DME1 considers the same intermediate results as AP2. However, it aggregates them into ratios between positive

and negative values in the row and column corresponding to a given alternative in the dominance intensity matrix (see

4



Table 2). Since there are only a few positive values in this matrix, the ratios and final scores are close to zero. Similar to

AP1 and AP2, DME1 ranks a3 at the top with the score of 0.0002, but the positions of the remaining alternative differ.

When it comes to DME2, it considers preference intensities for all pairs a, b ∈ A, deriving them from the comparison of

D(a, b) and D(b, a). Such comparisons are again the most advantageous for a3 (3.9161), which is necessarily preferred to

a2 and a5 (here, preference intensities are equal to one) while being marginally less favorable in terms of regrets only when

compared to a4. On the other extreme, a1 attains the lowest DME2 score (1.0535) because it is necessarily outranked by

a6 and loses more in terms of dominance intensities to all remaining alternatives than each of them loses to a1.

The scores derived with three POI-based procedures are provided in Table 3. They consider the differences between

POI(a, b) and POI(b, a) for all pairs a, b ∈ A, while transforming them into scores differently using sum, min, or max

operators. According to SUMPOI and MINPOI, a3 is ranked first, because the comprehensive balance of its POIs is

strongly positive (3.712) and its minimal POI advantage over some other alternative is 0.174. For MAXPOI, a3, a4,

and a6 attain the same maximal POI difference of one. However, when reducing the POI-based pairwise comparisons

only to these three alternatives, a4 proves to the best, because of its large advantage over a6 (POI(a4, a6)−POI(a6, a4)

= 0.777− 0.223 = 0.554 is greater than POI(a3, a4)− POI(a4, a3) = 0.174 and POI(a3, a6)− POI(a6, a3) = 0.538).

The remaining methods for constructing a univocal recommendation exploit stochastic acceptabilities. RANK-SUM,

RANK-PROD, and RANK-MM derived the same ranking (a3 � a4 � a6 � a5 � a2 � a1) by maximizing the support

given to the assignments of alternatives to ranks based on RAIs. For RANK-SUM, the sum of such supports is 2.6

(RAI(a3, 1) +RAI(a4, 2) +RAI(a6, 3) +RAI(a5, 4) +RAI(a2, 5) +RAI(a1, 6) = 2.6), for RANK-PROD – their product

is 0.0057, and for RANK-MM – the minimal support is 0.286 corresponding to the assignment of a5 to fourth rank

(RAI(a5, 4) = 0.286). The order for RANK-SUM-IND is different in terms of assigning a1 and a2 to the same position.

This is because such an indifference allowed to maximize the sum ofRAI-based supports due to high values ofRAI(a1, 6) =

0.473 and RAI(a2, 6) = 0.406.

All mathematical programming models constructing a univocal ranking based on PWIs led to the same solution

as RANK-SUM. This means that for this particular problem, it was equivalent to consider the supports provided by

stochastic acceptabilities to the assignments of alternatives to ranks and pairwise relations. None PWI-based procedure

opted for an indifference relation for any pair of alternatives as such shared ranks were not observed for any compatible

value function in the sample of 10, 000 compatible AVFs. Let us just note that the sum of supports to the ranking derived

with REL-SUM was 12.721 (PWI(a3, a4) + PWI(a3, a6) + . . . + PWI(a2, a1) = 12.721), whereas the minimal support

optimized by REL-MM was 0.516 corresponding to PWI(a2, a1). Consequently, similar to REPROC, each alternative

preferred to others for a greater share of compatible AVFs is ranked better in the constructed ranking.

The upward and downward distillations applied to the POI matrix constructed the same ranking, admitting indiffer-

ence relations between a3 and a4 at the very top and a1 and a2 at the very bottom. When DOWN-DIST considers all

alternatives jointly in the first iteration, a3 and a4 have the same greatest qualities equal to three. This is because their

POIs over a1, a2, and a5 are very high and significantly greater than the inverse POIs. However, in the internal distilla-

tion, it is not possible to distinguish among a3 and a4, because POI(a3, a4) is not significantly greater than POI(a4, a3).

In the same spirit, when UP-DIST considers all alternatives, a1 and a2 have the same least quality equal to −3. This is

because the POIs of a3, a4, and a6 over these these two alternatives are very high. Again, in the internal distillation, it

is impossible to differentiate a1 and a2, because POI(a1, a2) and POI(a2, a1) are alike.

2. Boxplots

In this section, we present boxplots for the performance measures. For NHR and MRAI, they are provided and discussed

in the main paper. Figures 2–6 represent such boxplots for the remaining five measures (Kendall’s τ , RDM, RAM, MPRI,

and FRAI). Their discussion would be similar to this provided in the main paper for other measures.
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Figure 2: Boxplot for Kendall’s τ .
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Figure 3: Boxplot for Rank Difference Measure.

3. The Hasse diagrams representing statistically significant differences

In this section, we present the Hasse diagrams representing statistically significant differences between the considered

methods. For NHR and MRAI, they are provided and discussed in the main paper. Figures 7–11 represent such diagrams

for the remaining five measures (Kendall’s τ , RDM, RAM, MPRI, and FRAI).
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Figure 4: Boxplot for Rank Agreement Measure.
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Figure 5: Boxplot for Mean Pairwise Relation Acceptability Index.

4. Experimental results – the extreme performance of the procedures exploiting incomplete preference

information

In the main paper, we discussed the experimental results while focussing on the average performance across all considered

problem instances. In this section, we refer to the best and the worst performances given the seven measures as well as

their relation with the mean attainments. The extreme performances can be observed in the respective boxplots presented

in the main paper for NHR and MRAI and in the e-Appendix for Kendall’s τ , RDM, RAM, MPRI, and FRAI.

4.1. Similarity between the DM’s simulated model and the derived recommendation

In this section, we discuss the similarities in recommendations provided by the reference model and the procedures

exploiting incomplete preference information. When it comes to NHR, all methods attained the worst (i.e., 0) and the

best (i.e., 1) possible values for some problem instances. In fact, twelve out of 35 methods (e.g., UTAAVE, RANK-

SUM, or REL-PROD) obtained only the extreme values for all generated instances. This can be explained as follows.

According to the DM’s models, there was a unique true most preferred alternative for all considered scenarios. The high

discrimination capacity of some methods implied that they generated rankings without shared positions. Then, when the

top-ranked alternative was the true most preferred option, NHR was equal to one, whereas if the two alternatives did

not align, NHR was zero. However, some other methods tend to rank at least two alternatives at the very top. If one of

them was the true most preferred option, then NHR took values between zero and one. For example, for some problems
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Figure 6: Boxplot for First Rank Acceptability Index.

instances, MAXIMAX and UTAMSVF – characterized by low discrimination power – ranked twelve alternatives at the

top. Moreover, the outlying observations presented on the NHR boxplot (see main paper) for REPROC confirm that for

some problems, the method ranked the true most preferred alternative first as one out of two, three, four, five, or six

alternatives (leading to NHR ranging from 1/2 to 1/6).

The method for which NHR = 0 was observed least frequently (i.e., for 16.24% of the considered instances) is UP-

DIST. In this regard, it was followed by RANK-SUM (18%), DOWN-DIST (20.99%), and BESTRAI (23.27%). However,

the latter approach accomplished the best average NHR value. This is mainly due to attaining NHR∈ (0, 1) only for 0.05%

considered instances. For other well-performing procedures, such ambiguous hit was observed for a more significant share

of problems (for UP-DIST – around 15%, for RANK-SUM – 13%, and for DOWN-DIST – 7%). This, in turn, lowered

their average performance in terms of NHR. The procedures that most often failed to identify the true most preferred

alternatives were UTAMSCVF (almost 40%), UTAMP1 (over 35%), and UTMSVF (over 34%).

The analysis of results for 35 procedures confirms that the shares of problem instances with NHR equal to zero or

one strongly correlate with the average NHR values (see Figure 12). The Pearson’s correlation coefficients are −0.748 for

the shares of problems leading to NHR = 0 and 0.963 for problems with NHR = 1. This is an expected result given a

low share of problems (2.84%) for which NHR values between zero and one were observed. Hence, in general, the greater

the ratio of instances for which the method attained NHR = 1 and the lesser the share of problems with NHR = 0, the

better the average performance of the method in terms of this choice-oriented measure.

The extreme results for ranking-oriented measures quantifying the similarity between the reference and resulting

models will be discussed jointly. Each method reproduced the entire true DM’s ranking for some considered problem

instances. Then, they attained the maximal values for Kendall’s τ , RDM, and RAM. Such a scenario was observed most

often (from 13.87% to 14.03% of the considered instances) for the RANK methods that emphasize the highest RAI values.

On the contrary, the reproduction of the complete ranking was the least frequent for UTAMSVF (6.20%) and the decision

rules such as MAXIMAX (6.33%), MAXIMIN (6.62%), and MM-REGRET (6.84%). The correlation between the shares

of instances for which the DM’s ranking is fully reproduced and the average values of the ranking-oriented performance

measures is high (see Figure 13). The precise values of the Pearson’s correlation coefficients are 0.856 for Kendall’s τ ,

0.854 for RDM, and 0.907 for RAM with p-values lesser than 10−9 for each of the three measures.

The relation between the minimal and average values for Kendall’s τ , RDM, and RAM is presented in Figure 14. For

Kendall’s τ , the Pearson’s correlation coefficient between these values is 0.667 with p-value of 1.22 · 10−5. The respective

coefficient for RDM is 0.688 (p-value = 4.88 · 10−6). The worst minimal values of Kendall’s τ and RDM were attained

by UTAMSVF (−0.5 and 0, respectively) and UTAMSCVF (−0.467 and 0, respectively). The highest most pessimistic

values of Kendall’s τ were observed for DME2 (0.0), MAXPOI (−0.071), WORSTRAI (−0.071), and AP2 (−0.111),

whereas the greatest values of RDM in the worst-case scenario were noted for DME2 and UP-DIST (0.333) followed by

SUMPOI (0.28), EXPRANK (0.28), and DOWN-DIST (0.26). The REL methods – which proved to be the best in the
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average case given the two measures – attained −0.2 for Kendall’s τ and 0.2 for RDM in the most pessimistic scenario.

In the case of RAM, all methods obtained the lowest value of zero for some considered problem instances. The

respective shares of scenarios for which no single alternative was assigned to its position in the DM’s true ranking are

presented in Figure 15. These shares are marginal for RANK-SUM (0.21% of problems), UP-DIST, DOWN-DIST (0.26%),

RANK-SUM-IND (0.69%), RANK-PROD (0.72%), and the REL methods (0.81%). Interestingly, even if MAXIMAX

attained the least average RAM values, the measure was equal to zero for this method only for 1.42% of instances.

On the contrary, UTAJLS – a clearly better average performer in terms of RAM – obtained RAM = 0 for nearly 2% of

problem instances. The lowest possible RAM values were again noted most often for UTAMSCVF (5.07%) and UTAMSVF

(4.16%). Also, there is a strong negative correlation between the shares of instances with the lowest possible RAM values

and the mean values of this measure (the Pearson’s correlation coefficient is −0.8333 with p-value of 5.41 · 10−10).

The performances of UP-DIST and DOWN-DIST deserve special attention. When it comes to the average case, they

were always placed in the upper half of the ranking for the three measures. However, they reconstructed the entire ranking

relatively rarely, only for 8.2% of considered problem instances. At the same time, they belong to the best procedures

when it comes to the worst attained values of Kendall’s τ and RDM. In general, their results are the most stable, which

is confirmed by the lowest standard deviations among all methods given the three ranking-oriented measures.

4.2. Robustness of provided recommendations

In this section, we discuss the robustness of recommendations provided by the considered procedures understood in terms

of the support all compatible value functions give them. Attaining the highest possible value for MRAI and MPRI is

possible only if all compatible value functions confirm the same ranks (in the case of MRAI) and pairwise relations (in the

case of MPRI). Hence, the possibility of attaining MRAI or MPRI equal to one depends on the problem characteristics.

Due to the incompleteness of DM’s preference information, the methods are rarely given a chance to do so. The highest

share of problem instances with the maximal MRAI or MPRI values is equal to 1.08%, observed for 22 out of 35 procedures

(including, e.g., UTAAVE, UTACHEB, ACUTA, and the REL and RANK procedures; see Figure 16). The sole outlier

for which this share is significantly lower (0.77%) is UTAMSCVF.

The correlation between the lowest and mean values of MRAI (0.951) and MPRI (0.922) is high. It is confirmed by

Figure 17, which exhibits the worst value attained by 35 procedures given the two measures. UTAMSVF is the only

method that attained the lowest possible MRAI of zero. Conversely, RANK-SUM-IND and RANK-PROD achieved the

highest minimal MRAI scores (0.17), followed by the REL procedures (0.14). The REL methods that excluded indifference

in the delivered ranking achieved the highest minimum MPRI values (0.720), followed by UTA-AVE (0.719). Noteworthy,

REPROC – placed just before the REL methods in the average case – attained a relatively poor lowest value of MPRI

(0.583), placing it in the lower half of the ranking in this regard.

The results related to the extreme performances given FRAI are presented in Figure 18. It confirms that all methods

achieved the highest possible value of FRAI for some problem instances. For most procedures, this happened for 17.06%

of considered instances (i.e., all problems for which all sampled value functions ranked the same alternative at the

top). For some other methods, mainly including procedures leading to the selection of some extreme models such as

UTAMSCVF (13.38%), MAXIMAX (14.99%), and UTAMSVF (15.66%), these shares are slightly lower. The Pearson’s

correlation coefficient between the maximal and average values of FRAI is 0.699. The worst possible value of FRAI was

attained for at least one problem instance by 19 out of 35 procedures, including, e.g., UTAMP, MAXIMIN, AP, and DME

methods. Then, no sampled compatible value function confirmed the alternative selected by these approaches as the

most preferred one, hence leading to FRAI = 0. This occurred most commonly for MAXIMAX (2.03% of the considered

problem instances), UTAMSVF (1.46%), and MM-REGRET (1.14%). The remaining methods always recommended the

alternative that appeared at the top for at least one sampled compatible value function. The best results in the most

pessimistic scenario given FRAI were attained by BESTRAI (0.173) and the RANK methods (from 0.131 to 0.144).
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5. Performance trends

In this section, we present detailed results for performance trends. Such trends for NHR and MRAI were provided and

discussed in the main paper. In Tables 8–12, we report them for the remaining five measures (Kendall’s τ , RDM, RAM,

MPRI, and FRAI). However, their discussion would be similar to this provided in the main paper.
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Figure 7: The Hasse diagram indicating the statistically significant differences in terms of Kendall’s τ based on the Wilcoxon test with p-value
equal to 0.05.

11



UTAMP1

MM-REGRET

MAXIMAX MAXIMIN

UTAMSVF

UTAMP2

UTAROB

UTAJLS

BESTRAI WORSTRAI

AP1

DME1

UTAAVE

EXPRANKSUMPOI

RANK-SUM

RANK-PROD

UTACHEB

AP2 DME2

MAXPOI MINPOI

ACUTA

REPROC

REL-MM-IND

RANK-SUM-IND DOWN-DIST UP-DIST

RANK-MM

REL-SUM

REL-SUM-INDREL-PROD-IND

REL-PROD REL-MM

Figure 8: The Hasse diagram indicating the statistically significant differences in terms of RDM based on the Wilcoxon test with p-value equal
to 0.05.
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performance of 35 procedures.
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Figure 13: The relation between the average Kendall’s τ , RDM, and RAM values and the share of models leading to the maximal values of
these performance measures based on the results attained by 35 procedures.
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Figure 15: The relation between the average RAM values and the share of models leading to the least possible value of this measure based on
the results attained by 35 procedures.
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a b s t r a c t

We consider preference disaggregation in the context of multiple criteria sorting. The value function
parameters and thresholds separating the classes are inferred from the Decision Maker’s (DM’s)
assignment examples. Given the multiplicity of sorting models compatible with indirect preferences,
selecting a single, representative one can be conducted differently. We review several procedures
for this purpose, aiming to identify the most discriminant, average, central, parsimonious, or robust
models. Also, we present three novel procedures that implement the robust assignment rule in
practice. They exploit stochastic acceptabilities and maximize the support given to the resulting
assignments by all feasible sorting models. The performance of fourteen procedures is verified on
problem instances with different complexities. The results of an experimental study indicate the most
efficient procedures in terms of classification accuracy, reproducing the DM’s model, and delivering
the most robust assignments. These include approaches identifying differently interpreted centers of
the feasible polyhedron and robust methods introduced in this paper. Moreover, we discuss how the
performance of all procedures is affected by different numbers of classes, criteria, characteristic points,
and reference assignments.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In multiple criteria sorting problems, alternatives need to be
assigned to preference-ordered classes [1]. Each of them is pre-
defined and associated with a precise semantic, implying the
same subsequent treatment of alternatives placed in a given
category. The presence of multiple, potentially conflicting criteria
makes such ordinal classification problems challenging. For this
reason, the field of Multiple Criteria Decision Aiding (MCDA) of-
fers a variety of methods that support the Decision Makers (DMs)
in carrying forward the solution process (see, e.g., [2]). They are
helpful in problem structuring, preference elicitation, construc-
tion and exploitation of the preference model, and explaining the
recommended assignments [3]. In recent years, the approaches
adopting a preference disaggregation perspective have been pre-
vailing [4]. They construct a sorting model using a regression-like
scheme based on the DM’s decision examples. Such approaches
facilitate the solution process by lowering the cognitive effort on

∗ Correspondence to: Institute of Computing Science, Poznań University of
Technology, Piotrowo 2, 60-965 Poznań, Poland.

E-mail addresses: michal.wojcik@cs.put.poznan.pl (M. Wójcik),
milosz.kadzinski@cs.put.poznan.pl (M. Kadziński), k.ciomek@gmail.com
(K. Ciomek).

the part of DMs and not requiring specialized knowledge required
when directly specifying values of decision model parameters.

The most popular preference disaggregation sorting method
is UTADIS [5]. It accepts indirect preference information in the
form of assignment examples, specifying the desired classification
for a subset of reference alternatives [6]. Such holistic state-
ments are translated into compatible parameters of an additive
value function and thresholds separating the classes on a scale
of a comprehensive value [7]. UTADIS has been appreciated in
the MCDA community for using an intuitive sorting procedure
with highly interpretable alternatives’ scores and class thresholds,
while at the same time being free of statistic hypotheses and
restrictions [8,9]. Also, it handles both qualitative and quan-
titative criteria, differentiates between inter- and intra-criteria
attractiveness, and provides means for interaction with the DMs
who might review the model by changing or enriching their
preferences [10]. Such appealing features have motivated the
practical use of UTADIS for solving real-world decision problems
concerning, e.g., credit risk assessment [11], supplier classifica-
tion [12], sorting activities in civil construction [13], and adoption
of green chemistry principles in nanotechnology [10].

The basic variant of UTADIS has been extended in numer-
ous ways. In particular, it was generalized to an example-based
procedure where the classes are delimited implicitly by decision

https://doi.org/10.1016/j.knosys.2023.110871
0950-7051/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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examples rather than class thresholds [14]. Furthermore, a se-
quential classification technique, called M.H.DIS, was introduced
in [15] to consider the assignment of not yet classified alterna-
tives to the most preferred class in a stepwise fashion. Moreover,
UTADIS was advanced to a robustness analysis framework, where
a multiplicity of compatible sorting models are exploited to verify
the stability of classification. In Robust Ordinal Regression (ROR),
all such models are translated into the necessary and possi-
ble results using mathematical programming [14,16]. In turn, in
Stochastic Ordinal Regression (SOR) – the Monte Carlo simula-
tions derive a large, representative set of such models whose
results are summarized in the form of stochastic acceptabili-
ties [17]. Then, in Bayesian Ordinal Regression (BOR), a posterior
distribution over a set of all potential sorting models is derived to
emphasize the differences in the models’ abilities to reconstruct
the DM’s assignment examples [18]. Also, many works proposed
dedicated techniques for dealing with the inconsistency of as-
signment examples. They aim at restoring the consistency [19],
minimize a misclassification error [7], use preference models
compatible with different preferential reducts [10], or incorporate
contingent, inter-related models that altogether reconstruct the
holistic preference information [20,21]. In the same spirit, some
optimization techniques were devised for handling large sets of
assignment examples [22–24].

Further methodological advancements have been devoted to
supporting preference elicitation, tolerating uncertain perfor-
mances, enriching incorporated models, and addressing various
structures and types of handled decision problems. In [25], one
proposed active learning strategies that minimize the number
of assignment examples needed for arriving at a sufficiently
robust recommendation. Also, [26] tolerated hesitancy regarding
assignment examples and the performance of alternatives using
probability linguistic term sets. Moreover, [27] introduced a uni-
fied framework handling preference information in the form of
assignment-based pairwise comparisons and constraints on the
category sizes [28,29] along with assignment examples, whereas
[22] accounted for valued desired classifications and [18] handled
potentially uncertain assignments. An additive value function
used in UTADIS was extended to admit interactions between
criteria [30], non-monotonicity [23,31–33] or polynomial char-
acter [34] of marginal value functions. Furthermore, [35] adapted
the method to a hierarchical structure of criteria, whereas [33,36]
considered a multi-decision classification problem with many
inter-related decision attributes. Finally, dedicated group decision
methods were devised for handling preferences of multiple DMs
and either arriving at a collective recommendation [37,38] or
investigating the spaces of consensus and disagreement observed
in the group [39].

Various real-world applications and methodological develop-
ments confirm the status of UTADIS as one of the essential meth-
ods in MCDA. This paper deals with procedures for selecting
a single instance of the threshold-based value-driven sorting
model. Since the polyhedron of all functions and thresholds com-
patible with the stated indirect preference information can be
quite large [14,16], such a selection can be performed differently.
Whichever the choice or construction procedure, exhibiting a
single representative sorting model allows the DM to analyze
the shapes of marginal functions, the trade-offs between crite-
ria, the dispersion of class thresholds, the comprehensive values
of individual alternatives, and margins of safety in the recom-
mended univocal assignments [40]. A single model is, therefore,
a synthetic and intuitive solution to the sorting problem, sup-
porting the validity of the derived recommendation or motivating
reactions from DMs.

We contribute to the literature in a three-fold way. First, we
review different concepts underlying the selection of a repre-
sentative sorting model in the context of UTADIS. The primary

idea consists of choosing the most discriminant model in terms
of the differences between comprehensive values of reference
alternatives assigned to different classes and/or marginal values
associated with consecutive characteristic points of per-criterion
functions [41]. Furthermore, we discuss the concept of controlling
the slope of marginal functions [42]. Another methodological
stream is oriented toward identifying a central model with the
proviso that the concept of centrality is interpreted in various
ways [43,44]. Moreover, we refer to the mean models obtained
by averaging either the extreme models compatible with the
DM’s preferences [45] or a large sample of uniformly distributed
ones [10]. The last postulate builds on the outcomes of robustness
analysis by making use of necessary, possible [40] or stochastic
results [17] to define the targets that should be emphasized in
the representative case.

Our second contribution consists of proposing novel proce-
dures for selecting a single sorting model representative in the
sense of robustness preoccupation. Specifically, we refer to the
outcomes of Stochastic Ordinal Regression in the form of Class
Acceptability Indices (CAIs) and Assignment-based Pairwise Out-
ranking Indices (APOIs) [17]. They quantify the shares of compat-
ible sorting models, confirming a given alternative’s assignment
to a particular class or supporting one alternative being assigned
to a class that is at least as good as another. The representative
model emphasizes the most frequent classifications of all alterna-
tives, the most common assignment-based preference relations
for all pairs of alternatives, or both of these objectives at once.
Similar to [40], we refer to the ‘‘one for all, all for one’’ motto
by representing all compatible sorting models, which contribute
to the definition of a representative one. However, we build on
more informative and detailed outcomes in the form of stochastic
acceptabilities [46] rather than the possible and necessary assign-
ments that need to be confirmed by at least one or all compatible
models, respectively. We illustrate all procedures, including the
existing and newly introduced ones, on a single decision problem
to clarify their operational steps.

The third contribution consists of a thorough experimental
evaluation of the fourteen discussed procedures. The problem of
choosing the ‘‘best’’ sorting model in the preference disaggre-
gation methods is ill-defined. However, one can consider some
objective criteria for the meaningful comparison of various pro-
cedures. In particular, we account for five measures that make
sense in the context of both using incomplete preference in-
formation concerning a subset of reference alternatives and the
multiplicity of sorting models compatible with the DM’s assign-
ments examples. They concern (i) the ability to reconstruct ref-
erence classification for all alternatives, (ii) the robustness of
derived assignments in terms of the support they are given by
all compatible models, and (iii) the capability of restoring the
preference model in terms of per-criterion marginal value func-
tions, alternatives’ comprehensive values, and class thresholds.
The experiment involves problems with different numbers of
classes, criteria, characteristic points of marginal functions, and
reference alternatives assigned by the DM to each class. We
discuss the average results attained over all considered settings
and the trends observed with the increasing model’s complexity
and availability of preference information.

Our study can be seen as a significant extension of the ex-
periments discussed in [44], where only four procedures have
been collated in a similar context. Compared to [44], we include
additional methods that account for the shape of Marginal Value
Functions (MVFs), determine an average model, or emphasize the
robustness of recommendations obtained with a set of all feasible
models in six different ways. Also, we consider a more compre-
hensive set of parameter values characterizing decision problems.
In this way, we provide richer insights into the performance
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trends. Finally, we refer to a more extensive set of measures
capturing the capability of restoring the preference model.

The paper’s remainder is organized in the following. Section 2
reminds UTADIS and its robust counterparts. In Section 3, we
discuss various procedures for selecting a representative sorting
model. The eAppendix (supplementary material available online)
illustrates their use in a didactic example. In Section 4, we present
the results of an extensive experimental comparison of different
approaches. The last section concludes the paper.

2. Reminder on UTADIS and robustness analysis

The following notation is used in the paper:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;
each of them is evaluated in terms of m criteria;

• AR
= {a∗

1, a
∗

2, . . . , a
∗
r } – a finite set of r reference alterna-

tives; AR
⊆ A;

• G = {g1, g2, . . . , gj, . . . , gm} – a finite set of m evaluation
criteria, gj : A → R for all j ∈ J = {1, . . . ,m}; without loss
of generality, we assume that all of the criteria in G are of
gain type;

• Xj = {gj(ai), ai ∈ A} – a finite set of performances of all
alternatives in A on criterion gj;

• x1j , x
2
j , . . . , x

nj(A)
j – the ordered values of Xj, xk−1

j < xkj , k =

2, . . . , nj(A), where nj(A) = |Xj| and nj(A) ≤ n; thus, X =
m∏
j=1

Xj is the performance space; note that Xj can also be

enriched with the extreme values of the performance scale
that are not attained by any alternative;

• C1, C2, . . . , Cp – p pre-defined and preference-ordered class-
es so that Cl is preferred to Cl−1 for l = 2, . . . , p.

To compute the desirability of each alternative a ∈ A, UTADIS
[5] considers an Additive Value Function (AVF) [47]:

U(a) =

m∑
j=1

uj(gj(a)), ∀a ∈ A, (1)

where uj, j = 1, . . . ,m, are MVFs being piece-wise linear mono-
tonic and defined by a pre-defined number γj of equally dis-
tributed characteristic points β1

j , β
2
j , . . . , β

γj
j , with the extreme

points set to β1
j = x1j and β

γj
j = x

nj(A)
j , and:

βs
j = x1j + (x

nj(A)
j − x1j )

s − 1
γj − 1

, j = 1, . . . ,m, s = 1, . . . , γj. (2)

A comprehensive value is normalized in the [0, 1] range by as-

suming that uj(β1
j ) = 0, for j = 1, . . . ,m, and

m∑
j=1

uj(β
γj
j ) = 1.

To enable control over the difference between marginal values
assigned to the subsequent characteristic points, we consider
variable ρ ≥ 0 introduced as follows:

uj(βs
j ) − uj(βs−1

j ) ≥ ρ, j = 1, . . . ,m, s = 2, . . . , γj. (3)

In the basic setting, ρ is set to 0, which implies fulfillment
of the weak monotonicity constraints. The marginal value for
performance xkj ∈ [βs

j , β
s+1
j ] can be computed using a linear

interpolation:

uj(xkj ) = uj(βs
j ) + (uj(βs+1

j ) − uj(βs
j ))

xkj − βs
j

βs+1
j − βs

j

,

j = 1, . . . ,m, k = 1, . . . , nj(A).

(4)

UTADIS incorporates a threshold-based sorting procedure, where
each class Cl is delimited by the lower tl−1 and upper tl thresholds

defined on a scale of a comprehensive value U . For simplicity, we
do not consider the lower threshold of the least preferred class
C1 and the upper threshold of the most preferred class Cp, which
could be arbitrarily fixed to t0 = 0 and tp > 1. Hence, to derive
the assignment for alternative a ∈ A, U(a) is compared with a
vector of p− 1 thresholds t = [t1, . . . , tl−1, tl, . . . , tp−1] such that
t1 ≥ ε, tl−tl−1 ≥ ε, for l = 2, . . . , p−1, and tp−1+ε ≤ 1, where ε

is an arbitrarily small positive value. Due to the threshold-based
division of the scale of possible comprehensive values U into
disjoint class intervals, each value and, thus, each alternative is
assigned to exactly one class in a given model.

In UTADIS, the parameters of an assumed sorting model are
inferred from the DM’s indirect preference information. It consists
of the desired class assignments for reference alternatives in AR.
Assigning an alternative a to class Cl can be written as a →

DM Cl,
where l ∈ {1, . . . , p}. It can also be defined with function I , which
indicates to which of the p classes a given alternative is assigned:

∀a∗
∈ AR, a∗

→
DM Cl : IDM (a∗) = l. (5)

In this paper, we consider only precise assignment examples.
They are reproduced via preference disaggregation that ensures
a comprehensive value of each reference alternative a∗

∈ AR

is within the range [tl−1, tl) delimited by the lower and upper
thresholds corresponding to its desired class Cl, i.e.:

∀a∗
∈ AR

: IDM (a∗) = l ∈ {1, . . . , p − 1} H⇒ tl − U(a∗) ≥ δ + ε,

(6)

∀a∗
∈ AR

: IDM (a∗) = l ∈ {2, . . . , p} H⇒ U(a∗) − tl−1 ≥ δ,

(7)

where δ ≥ 0. Overall, a set UR of compatible AVFs and class
thresholds is defined by the following set EAR of linear con-
straints:

uj(β1
j ) = 0, j = 1, . . . ,m,

m∑
j=1

uj(β
γj
j ) = 1,

⎫⎪⎬⎪⎭ (EN )

uj(βs
j ) − uj(βs−1

j ) ≥ ρ, j = 1, . . . ,m, s = 2, . . . , γj,

t1 ≥ ε,

tl − tl−1 ≥ ε, l = 2, . . . , p − 1,
tp−1 + ε ≤ 1,

⎫⎬⎭ (ET )

∀a∗
∈ AR

: IDM (a∗) = l ∈ {1, . . . , p − 1} H⇒ tl − U(a∗) ≥ δ + ε,

∀a∗
∈ AR

: IDM (a∗) = l ∈ {2, . . . , p} H⇒ U(a∗) − tl−1 ≥ δ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(EAR )

(8)

where ρ ≥ 0, δ ≥ 0, and ε is a small positive constant that
transforms non-strict inequalities into strict ones (in our imple-
mentation, we set its value to 10−6). Please note that constraints
ensuring the monotonicity of the thresholds (tl − tl−1 ≥ ε) are
redundant when the DM assigns at least one alternative to each
class. However, we keep them for the clarity of presentation and
comprehensiveness of the model under all scenarios.

Since the DM’s preference information is incomplete, when
EAR is feasible, UR typically consists of infinitely many sorting
models. To choose one of them, one needs to optimize an ob-
jective function. In Section 3, we discuss fourteen procedures
that differ mainly with respect to considering various objectives
and/or incorporating additional variables and constraints. Some
methods optimize ρ and/or δ, which are then treated as variables.
In general, ρ and δ allow for controlling the difference between
marginal values assigned to the successive characteristic points
and the distances of alternatives’ comprehensive values from the
class limits, respectively. If ρ or δ are not optimized, they are
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treated as constants and set to zero. In this way, we ensure non-
strict monotonicity of marginal value functions or reproduction
of the assignment examples.

In what follows, we discuss the approaches for robustness
analysis, whose results will be exploited by some procedures. ROR
verifies the possibility or necessity of certain relationships based
on a set of all compatible sorting models. This requires checking
the consistency of the basic constraint set EAR with additional
constraints representing a verified hypothesis. For this purpose,
the relations between the pairs of alternatives in individual mod-
els were specified. One of them is the weak assignment-based
preference ≿→, defined as follows:

∀a, b ∈ A and U ∈ UR
: a ≿→

U b ⇐⇒ IU (a) ≥ IU (b), (9)

where IU (a) is the index of class to which a is assigned by function
U . When IU (a) = l, then a →

U Cl. Hence a ≿→

U b means that,
according to U , the class of a is at least as good as the class of
b. If ≿→

U is confirmed for all compatible sorting models, then this
relation is necessary according to ROR, i.e.:

∀a, b ∈ A : a ≿→,N b ⇐⇒ ∀U ∈ UR
: a ≿→

U b. (10)

Note that if ¬(a ≿→,N b), there exists at least one compatible
sorting model in UR that assigns b to a more preferred class
than a. Relation ∼

→

U for a single model U along with its robust
counterpart ∼

→,N based on a set of models UR can be defined
analogously by checking whether one alternative is assigned to
the same class as another (IU (a) = IU (b)). In the same spirit,
relations ≻

→

U and ≻
→,N reflect the assignment to a strictly more

preferred class (IU (a) > IU (b)). The truth of these relations is
verified using linear programming [17,40].

In SOR, UR is exploited with the Monte Carlo simulations
to derive a set S ⊆ UR of uniformly distributed compatible
sorting models. Specifically, we sample from a convex polyhedron
defined by constraint set EAR with δ = ρ = 0 and ε set to a
small positive value (in our case, 10−6). In practice, S ⊂ UR and
|S| ≪ |UR

|. The results obtained for these models are summarized
in the form of four stochastic acceptabilities: Class Acceptability
Indices (CAIs) and Assignment-based Pair-wise Winning (APWI),
Outranking (APOI) and Equality (APEI) Indices. CAI ∈ [0, 1] quan-
tifies the share of compatible sorting models assigning a ∈ A to
class Cl. Its approximation CAI ′ is defined as follows, i.e.:

∀a ∈ A ∀l ∈ {1, . . . , p} : CAI ′(a, Cl) =
|{U ∈ S : IU (a) = l}|

|S|
. (11)

Furthermore, APWI : A × A → [0, 1] is defined as the share
of all models in UR, which classify one alternative into a more
preferred class than another alternative. Its approximation APWI ′
is computed in the following way:

∀a, b ∈ A : APWI ′(a, b) =
|{U ∈ S : IU (a) > IU (b)}|

|S|
. (12)

The remaining pairwise indices, i.e., APOIs and APEIs, are defined
analogously by referring to the shares of models confirming that
one alternative is assigned to a class, respectively, at least as
good (IU (a) ≥ IU (b)) or the same (IU (a) = IU (b)) as another.
In this paper, we sample from set UR using the Hit-And-Run
(HAR) algorithm [48] implemented in [49]. Note that even if the
stochastic acceptability indices are defined in the range between
0 and 1, for clarity of presentation, they can also be expressed in
percentages between 0% and 100%.

3. Procedures for selecting a representative sorting model

In this section, we review different concepts underlying the
selection of a representative sorting model in the context of
UTADIS. Their most distinctive feature is optimizing a unique

objective function subject to the constraint set EAR that defines
a set of all compatible value functions and class thresholds. Some
procedures focus only on selecting a value function. In this case,
the thresholds are set in equal distances between extreme com-
prehensive values of reference alternatives assigned to each class.
This is consistent with selecting the most discriminating function,
emphasizing the derived assignments as sharply as possible given
a value function model.

The three methods introduced in this paper are distinguished
as CAI, APOI, and COMB. They exploit stochastic acceptability
indices of class assignments and assignment-based pairwise re-
lations. Moreover, UTADISMP3 and MSCVF adjust to the sorting
context the procedures that have been so far used for ranking
problems [50]. The remaining nine methods have been proposed
before in the preference disaggregation literature, and a suitable
reference is provided for each of them.

3.1. The most discriminant models

Let us start with the max–min formulations that seek the most
discriminant model parameters. In the context of multiple criteria
ranking, this idea was first implemented in UTAMP1 [41]. When it
comes to sorting, UTADISMP1 [40,44] postulates maximizing the
minimal difference between comprehensive values of reference
alternatives and their respective class thresholds, i.e.:

Maximize δ, s.t. EAR . (13)

In this way, the gap between all consecutive classes is maximized,
yielding a model that is away from the boundaries of the poly-
hedron of all compatible sorting models [43]. As a result, the
DM’s assignment examples are reproduced in a bold and robust
way [44].

Another procedure is motivated by the ranking method, called
UTAMP2 [41]. Apart from optimizing δ, i.e., the distances between
the comprehensive values and class thresholds, it maximizes the
difference between marginal values assigned to all pairs of con-
secutive characteristic points. The problem solved by UTADISMP2
is the following:

Maximize δ + ρ, s.t. EAR , (14)

where ρ ≥ 0. The method has similar features to UTADISMP1,
while favoring steeper linear components of marginal value func-
tions. This prevents weakly monotonic functions with level parts
or even neglecting some criteria whose marginal functions take
zero values for all performances. The ρ component is considered
alone in UTADISMP3, highlighting the differences in values of
marginal functions even more:

Maximize ρ, s.t. EAR . (15)

3.2. Parsimonious decision model

UTADISMP3 impacts the shape of marginal value functions
by desiring the most discriminant ones. In turn, [42] postulated
selecting as linear MVFs as possible, i.e., functions minimally
deviating from the linearity. The model corresponding to this idea
is called a Minimal Slope Change Value Function, in short, MSCVF.
It can be obtained by solving the following Linear Programming
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(LP) model:

Minimize φ,

s.t.

EAR

uj(βk
j )−uj(β

k−1
j )

βk
j −βk−1

j

−
uj(β

k−1
j )−uj(β

k−2
j )

βk−1
j −βk−2

j
≤ φ

uj(β
k−1
j )−uj(β

k−2
j )

βk−1
j −βk−2

j

−
uj(βk

j )−uj(β
k−1
j )

βk
j −βk−1

j
≤ φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for j = 1, . . . ,m,

k = 3, . . . , γ j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(EAR

MSCVF )

(16)

Note that using MSCVF makes sense when at least three charac-
teristic points are considered on a given criterion. The above idea
can be interpreted as favoring a parsimonious decision model
consistent with the Occam razor principle. It says that ‘‘entities
must not be multiplied beyond necessity’’, which can be intu-
itively interpreted as: ‘‘the simplest explanation is most likely the
correct one’’ [51].

Both UTADISMP3 and MSCVF aim for specific shapes of marg-
inal value functions. The former tries to maximize the differ-
ence between consecutive points, while functions are as linear
as possible in the latter. However, it is not always possible to
achieve this goal due to other constraints. In that case, the pro-
cedure looks for the closest acceptable solution. Therefore, these
methods can be considered flexible and adaptable to the existing
conditions.

3.3. Average models

Another appealing idea consists of conducting a post-optimal-
ity analysis, deriving a set of representative sorting models, and
averaging them to form an approximation of the polyhedron’s
centroid model [44]. It has been implemented in two different
ways.

UTADIS-JLS was motivated by the system of 2m extreme so-
lutions originally considered in the context of ranking prob-
lems [45]. Each of them is obtained by minimizing or maximizing
the greatest value attained by MVF for each criterion, i.e.:

Maximize / Minimize uj(β
γj
j ), s.t. EAR . (17)

Note that uj(β
γj
j ) can be interpreted as a weight or a trade-off

constant of criterion gj.
A disadvantage of UTADIS-JLS consists of accounting only for

the extreme models. In [10], the concept of finding an ‘‘aver-
age’’ model was generalized by considering a large sample S =

{U1,U2, . . . , U |S|
} of models considered in SOR. The CENTROID

procedure is not based on optimization. It derives an average of
all samples that can be considered a stochastic approximation of
the central solution. This applies to both characteristic points of
MVFs and class threshold values:

tl =
1
|S|

|S|∑
i=1

t il , l = 1, . . . , p − 1,

uj(βs
j ) =

1
|S|

|S|∑
i=1

ui
j(β

s
j ), j = 1, . . . ,m, s = 1, . . . , γ j.

(18)

It is worth noting that since the space of possible solutions (UR)
is convex, the average model also satisfies all constraints [14].
In [52], it is called a barycenter solution. Such average models are
claimed to be more robust and less vulnerable to changes in the
DM’s assignment examples [44]. Moreover, procedures based on

an analogous idea exhibit favorable performance in the context
of multiple criteria ranking [50,52].

3.4. Central models

Opting for an average model can be seen as a particular im-
plementation of selecting a central model. However, the concept
of centrality can be interpreted in different ways, two of which
– denoted CHEBYSHEV and ACUTADIS – are discussed in this
subsection. The Chebyshev center of a polyhedron is a mid-
point of the largest Euclidean ball that fits in a polyhedron. A
model corresponding to such a center was proposed in [44]. To
determine it, one needs to maximize variable r that is inscribed
in each monotonicity and assignment-based constraint:

Maximize r,

s.t.

EN , ET ,

uj(βs
j ) − uj(βs−1

j ) −
√
2r ≥ 0,

j = 1, . . . ,m, s = 2, . . . , γj,

∀a∗

i ∈ AR
: IDM (a∗

i ) = l ∈ {1, . . . , p − 1}
H⇒ tl − U(a∗

i ) − bir ≥ ε,

∀a∗

i ∈ AR
: IDM (a∗

i ) = l ∈ {2, . . . , p}
H⇒ U(a∗

i ) − tl−1 − cir ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(EAR

CC )
(19)

where
√
2, bi, and ci are the Euclidean norms of the decision

variables’ coefficients (except r) in constraint in which they
occur [44]. For example, consider the inequality that ensures the
monotonicity of the MVFs at the consecutive characteristic points.
In each of these inequalities, only uj(βs

j ) and uj(βs−1
j ) have non-

zero coefficients of 1 and −1, respectively. Thus,
∥(0, . . . , 0, 1, −1, 0, . . . , 0)∥2 =

√
12 + (−1)2 =

√
2. The values

of bi and ci in the remaining inequalities can be determined anal-
ogously. Let us emphasize that since these norms are constants,
the constraints remain linear. Such a solution can be considered
central because it is equally distant from all essential inequality
constraints.

ACUTADIS postulates selecting an analytic center rather than
the Chebyshev one. It was initially proposed for ranking problems
and adjusted to the scope of sorting in [40]. It corresponds to the
model maximizing the logarithmic barrier function of the slacks
(di− , di+ , djs) involved in the essential constraints of EAR [44]:

Maximize
∑
a∗

i ∈A
R

(log di− + log di+ ) +

m∑
j=1

γj∑
s=2

log djs,

s.t.

EN , ET ,

uj(βs
j ) − uj(βs−1

j ) = djs, j = 1, . . . ,m, s = 2, . . . , γj,

∀a∗

i ∈ AR
: IDM (a∗

i ) = l ∈ {1, . . . , p − 1}
H⇒ tl − U(a∗) − di− = ε,

∀a∗

i ∈ AR
: IDM (a∗

i ) = l ∈ {2, . . . , p}
H⇒ U(a∗

i ) − tl−1 − di+ = 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(EAR

AC )

(20)

The above non-linear problem can be solved using Newton’s
method [43], always leading to a unique solution, if any exists.

3.5. Robust models based on exact outcomes

The methods for robustness analysis were developed to exploit
a set of all compatible models [14,16]. The derived outcomes re-
flect the stability of the sorting recommendation. However, their
use for real-world decision aiding indicated that it is not easy for
some users to comprehend such robust results and an abstract
concept of infinitely many compatible models. This motivated
the development of procedures for selecting a representative
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Maximize ι,

s.t.
EAR ,

U(a) − U(b) − ι ≥ U(c) − U(d),
U(a) − U(b) − ι ≥ U(d) − U(c),

}
∀a, b, c, d ∈ A : (a ≿→,N b) ∧ ¬(b ≿→,N a) ∧ (c ∼

→,N d).

⎫⎬⎭ (EAR
R−compromise)

(23)

Box I.

sorting model that can be exhibited to the DMs. The primary
idea consisted of representing all compatible sorting models that
contribute to the definition of a representative one. In this way,
one does not lose the advantage of knowing all compatible ones
while gaining a model instance that can be used to analyze the
impact of different criteria, separation of decision classes, and
robustness in the sense of distances of alternatives’ values from
class thresholds.

In [40], two objectives were defined to emphasize the ro-
bustness concerns. They are based on exact robust outcomes
computed with mathematical programming. On the one hand, for
all pairs of alternatives such that one of them is assigned to a class
at least as good as another for all feasible models and for at least
one of them it is assigned to a class strictly better, the difference
between their comprehensive values should be maximized:

Maximize ω,

s.t.
EAR ,

U(a) − U(b) ≥ ω

∀a, b ∈ A : (a ≿→,N b) ∧ ¬(b ≿→,N a).

⎫⎬⎭ (EAR
R−iterativeI

)

(21)

On the other hand, the value difference should be minimized for
all pairs of alternatives necessarily assigned to the same class.
This can be conducted while respecting the optimization of the
previous target (i.e., setting ω = ω∗):

Minimize λ,

s.t.

EAR
R−iterativeI

,

ω = ω∗,

U(c) − U(d) ≤ λ ∀c, d ∈ A : (c ∼
→,N d),

U(d) − U(c) ≤ λ ∀c, d ∈ A : (c ∼
→,N d).

⎫⎪⎪⎬⎪⎪⎭ (EAR
R−iterativeII

)

(22)

In the above iterative procedure, called ROBUST-ITER, the main
objective is to maximize the value differences for those pairs
of alternatives where there is a one-sided weak preference nec-
essary relation. Once this is achieved, the secondary goal is to
minimize the differences among those pairs where alternatives
are assigned to the same class by all U ∈ UR.

An alternative approach is ROBUST-COMP, where a compro-
mise solution is selected to attain both objectives simultaneously
by maximizing the difference between the first and the second
goal is given in Box I. The results of ROBUST-ITER and ROBUST-
COMP will typically be different because they attain the two
targets in various ways.

3.6. Robust models based on stochastic outcomes

A sorting model that is representative in terms of the robust-
ness preoccupation can also be selected based on the stochastic
outcomes computed by SOR. The idea implemented in REPDIS
consists of emphasizing the advantage of these alternatives, which
are assigned to a better class than others for a greater share of

compatible sorting models, i.e., APWI ′(a, b) > APWI ′(b, a). This
can be attained by maximizing the minimal value difference for
pairs of alternatives satisfying the above condition:

Maximize ω,

s.t.

EAR ,

U(a) − U(b) ≥ ω(a, b),
∀a, b ∈ A : APWI ′(a, b) > APWI ′(b, a),
ω(a, b) ≥ ω,

∀a, b ∈ A : APWI ′(a, b) > APWI ′(b, a).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (EAR
APWI ′I

) (24)

In the second stage, one can optimize the sum of elementary
value differences ω(a, b), while respecting the results of the first
stage by setting ω = ω∗, i.e.: Maximize

Maximize
∑

∀a,b∈A: APWI ′(a,b)>APWI ′(b,a)

ω(a, b) s.t. EAR
APWI ′I

∪ {ω = ω∗
}.

In what follows, we discuss three novel approaches that ex-
ploit the stochastic acceptability indices for selecting a single, ro-
bust sorting model. These models are inspired by the procedures
for deriving the robust rankings proposed in [53]. Apart from
handling ordinal classification problems and suitably exploiting
sorting-specific results, the notable differences include (a) infer-
ring a representative, feasible sorting model rather than con-
structing only the most robust recommendation and (b) ensuring
the DM’s preference information is reproduced.

The first method, called CAI, aims at maximizing the CAI ′(ai, Cl)
corresponding to the class assignment Cl suggested for each
alternative a ∈ A by a given sorting model U ∈ UR, denoted
by a →

U Cl. Due to the intrinsic nature of CAIs, maximization
involves the product of values for individual alternatives instead
of a sum. The main reason is that the relationships between CAIs
should be compared in terms of a ratio rather than a difference.
For example, CAI ′(a, C1) = 0.25 and CAI ′(a, C2) = 0.75 indicate
that a → C2 occurred three times more often than a → C1 in the
space of compatible sorting models. The objective function can be
formulated as follows:

U∗
= argmaxU∈UR

∏
∀ai∈A: ai→UCl

CAI ′(ai, Cl).

We will replace the above non-linear form with its linear coun-
terpart. Specifically, we replace the product of numbers with
the sum of their logarithms (note that CAI ′ values are computed
beforehand). The objective function needs to build on CAIs that
correspond to the class assignments of alternatives suggested
by the selected model. This is ensured by introducing binary
variables xil that should be equal to one when ai →

U Cl is
satisfied. After these transformations, the following problem is

6
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obtained:

Maximize κcai =

∑
ai∈A

p∑
l=1

xil log CAI ′(ai, Cl),

s.t.

EAR ,

∀ai ∈ A ∀l ∈ {2, . . . , p} : U(ai) − tl−1 − δ − Mxil ≥ −M,

∀ai ∈ A ∀l ∈ {1, . . . , p − 1} : tl − U(ai) − δ − Mxil ≥ ε − M,

∀ai ∈ A :

p∑
l=1

xil = 1,

∀ai ∈ A ∀l ∈ {1, . . . , p} : xil ∈ {0, 1},
∀ai ∈ A ∀l ∈ {1, . . . , p} : CAI ′(ai, Cl) = 0 H⇒ xil = 0,
∀ai ∈ A ∀l ∈ {1, . . . , p} : ai →

DM Cl H⇒ xil = 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(EAR

CAII
)

(25)

where M ≫ 1 is a large constant. Note that for any inequality
in the form: X − Mb ≥ −M , where X is an expression whose
value can be determined and b is a binary variable, b may be
equal to one only if X ≥ 0. Hence, variable xil will be equal to
one when the conditions justifying IU (ai) = l, i.e., U(ai) ≥ tl−1
and tl > U(ai), are met. Then, other variables xih, h ̸= l, will be set

to zero, hence satisfying the following constraint
p∑

l=1

xil = 1. To

avoid situations where CAI ′(ai, Cl) = 0 is included in the objective
function, and thus the logarithm value is undefined, we forbid the
corresponding class assignments by setting xil = 0. Finally, we
ensure that all DM’s classification examples are reproduced.

Solving the above Mixed-Integer Linear Programming (MILP)
problem allows identifying a sorting model that best represents
the entire space in terms of assignments of alternatives to classes,
measured with CAIs. As a secondary objective, we will regularize
the model to balance the maximal shares of all criteria in the
comprehensive value, hence advocating for a more central func-
tion. Specifically, we will minimize the deviations between the
greatest marginal values for all pairs of criteria:

Minimize ξ,

s.t.

EAR
CAII

,

κcai = κ∗

cai,

∀i, j ∈ {1, . . . ,m} ∧ i ̸= j : ui(β
γi
i ) − uj(β

γj
j ) ≤ ξ,

∀i, j ∈ {1, . . . ,m} ∧ i ̸= j : uj(β
γj
j ) − ui(β

γi
i ) ≤ ξ .

⎫⎪⎪⎬⎪⎪⎭ (EAR
CAIII

)

(26)

This secondary target will also be considered in the context of the
following two procedures. Since the model used for this purpose
will be the same, we will not repeat it to save space.

An analogous approach, called APOI, can be formulated based
on the analysis of the stability of assignment-based relations for
all pairs of alternatives rather than class assignments of indi-
vidual alternatives. In particular, we will consider the following
stochastic acceptabilities for all (ai, aj) ∈ A × A:

• APWI ′(ai, aj) indicating the share of models for which ai is
assigned to a more preferred class than aj, i.e., IU (ai) >

IU (aj);
• APEI ′(ai, aj) indicating the share of models for which ai is

assigned to the same class as aj, i.e., IU (ai) = IU (aj);
• APWI ′(aj, ai) indicating the share of models for which ai is

assigned to a less preferred class than aj, i.e., IU (ai) < IU (aj).

Overall, we aim at identifying the model emphasizing the assi-
gnment-based pairwise relations captured with APWI ′s and APEI ′s

in the best way, i.e.:

U∗
= argmaxU∈UR

∏
(ai,aj)∈A×A:i̸=j

⎧⎨⎩
APWI ′(ai, aj) if IU (ai) > IU (aj),
APEI ′(ai, aj) if IU (ai) = IU (aj),
APWI ′(aj, ai) if IU (ai) < IU (aj).

Similar to the CAI procedure, we introduce the binary variables
corresponding to the three possible relations for each pair of
alternatives (ai, aj) ∈ A × A, i ̸= j: vij corresponding to a scenario
with ai being assigned to a more preferred class than aj (for the
inverse situation, we consider vji) and eij standing for ai and aj
being assigned to the same class. After transforming the product
of elementary objectives into the sum of respective logarithms,
the following model can be formulated:

Maximize κapoi =

∑
(ai,aj)∈A×A:i̸=j

vij log APWI ′(ai, aj)

+

∑
(ai,aj)∈A×A:i̸=j

eij log APEI ′(ai, aj)

+

∑
(ai,aj)∈A×A:i̸=j

vji log APWI ′(aj, ai),

s.t.

EAR
CAII

∀(ai, aj) ∈ A × A ∧ i ̸= j :

p∑
l=1

lxil −
p∑

l=1

lxjl − Mvij ≥ 0.5 − M,

∀(ai, aj) ∈ A × A ∧ i ̸= j :

p∑
l=1

lxil −
p∑

l=1

lxjl − Mvij ≤ 0.5,

∀(ai, aj) ∈ A × A ∧ i ̸= j : vij + eij + vji = 1,
∀(ai, aj) ∈ A × A ∧ i ̸= j : vij, eij, vji ∈ {0, 1},
∀(ai, aj) ∈ A × A ∧ i ̸= j : APWI ′(ai, aj) = 0 H⇒ vij = 0,
∀(ai, aj) ∈ A × A ∧ i ̸= j : APEI ′(ai, aj) = 0 H⇒ eij = 0,
∀ai ∈ A ∀l ∈ {1, . . . , p} : ai →

DM Cl H⇒ xil = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(EAR
APOII )

(27)

The role of M is the same as in the CAI procedure. The first
three constraints mentioned above enforce vij = 0 when ai is not
assigned to a class better than aj. However, if ai is assigned to a
more preferred class than aj, then the second constraint enforces
vij = 1. In case both vij = 0 and vji = 0, the third constraint
implies eij = 1. The three variables are used to select the factor
in the maximization function for each pair of alternatives. In this
way, the optimization focuses on assigning alternatives to classes
to reflect as closely as possible the relationships between pairs of
alternatives in the entire set of sorting models compatible with
DM’s preferences. Again, we incorporate constraints that prohibit
relations confirmed by none compatible model in the stochastic
analysis.

The joint focus on reproducing the most frequent assignments
of individual alternatives and the most supported assignment-
based preference relations is reflected in the COMB procedure. It
combines the objective functions considered in CAI and APOI un-
der a unified framework, hence reconciling the two perspectives:

Maximize κcomb =

∑
ai∈A

p∑
l=1

xil log CAI ′(ai, Cl)

+

∑
(ai,aj)∈A:i̸=j

vij log APWI ′(ai, aj)

+

∑
(ai,aj)∈A:i̸=j

eij log APEI ′(ai, aj)

+

∑
(ai,aj)∈A:i̸=j

vji log APWI ′(aj, ai), s.t. EAR
APOII .

(28)
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Still, the idea of reflecting the outcomes of SOR in a single model
that can be exhibited to the DM is maintained.

To illustrate how the procedures for selecting a represen-
tative sorting model work, we consider an example problem
concerning the evaluation of 30 major European cities in imple-
menting green policy [54]. Such an illustration aims to remind
the operational steps and emphasize the peculiar features of the
typical solutions returned by all procedures in a specific study.
Also, we demonstrate that they may lead to various models
and recommendations even if operating on the same data and
incorporating the same preference model. Moreover, such an ex-
ample, exhibiting a deeper analysis of a single problem, makes the
results of the subsequent experimental comparison (in particular,
measure values) more understandable. In turn, the experimental
section focuses on the average case performance across all con-
sidered problem instances. The results of the illustrative study are
presented in eAppendix 1.

4. Computational experiments

This section is devoted to the computational experiments per-
formed to examine the quality and characteristics of procedures
for selecting a representative sorting model. We define the mea-
sures used to compare the 14 approaches and the features of
problem instances considered during the tests. The results ob-
tained for each measure are discussed in detail, given the average
outcomes across all considered settings and performance trends
observed when changing some parameter values. Moreover, we
assess the statistical significance of the differences observed be-
tween the results attained by various pairs of methods using
appropriate tests. Finally, we use the linear regression model
to identify the average impact of changes in individual problem
parameters on the measured values.

4.1. Comparative measures

The performance of the procedures for selecting a single sort-
ing model will be quantified in terms of five measures. The
results will be used to compare individual methods in three
main aspects. First, they show how the assignments used to
simulate the decision-making policy are reflected in the results
based on incomplete preference information. In this way, we
quantify the predictive accuracy. Second, we consider how repre-
sentative the recommended assignments are for the compatible
sorting models. Thus, we refer to the robustness of the recom-
mendation delivered by each approach given the multiplicity of
outcomes obtained with a set of models consistent with the
DM’s preferences. The third goal is to compare the structure of
models, i.e., marginal value functions, comprehensive values of
alternatives, and thresholds. This provides conclusions about the
similarity between the DM’s decision policy and the preference
model that attempts to capture it.

Let us denote a set of all non-reference alternatives that the
DM has not classified by AT

= A \ AR. The reference model
composed of marginal value functions, comprehensive values,
and class thresholds is denoted by UREF , and the analogous model
returned by procedure P is UP .

Classification accuracy. To determine the quality of the sort-
ing model, we can verify how far the solution proposed by
the procedure is from the comprehensive DM’s preferences in
terms of recommended assignments. We focus only on the non-
reference alternatives because all procedures reproduce the as-
signments of reference solutions. Therefore, the classification
accuracy captures the proportion of alternatives in set AT for
which the recommended and reference assignments agree [44],

i.e.:

accuracy(UP ) =
|a : a ∈ AT

∧ IUP (a) = IUREF (a)|
|AT |

. (29)

Assignment acceptability. Another measure compares the as-
signments recommended by different procedures with the clas-
sification obtained in the entire set of sorting models. The as-
signment acceptability reflects average support given to the as-
signments recommended by a particular procedure for all non-
reference alternatives in terms of class acceptability indices CAI ′s
derived from the analysis of all feasible solutions, i.e.:

MCAI(UP ) =
1

|AT |

∑
a∈AT :a→UP Cla

CAI ′(a, Cla ) ∈ [0, 1]. (30)

The maximal MCAI value can be obtained when each non-refere-
nce alternative is assigned to the class with the highest CAI value.
As noted in [44], this approach to classification is based on the
robust assignment rule. The value defined in this way is marked
as MCAImax:

MCAImax =
1

|AT |

∑
a∈AT

max
l∈{1,...,p}

CAI ′(a, Cl) ∈ [0, 1]. (31)

In what follows, we consider an Absolute MCAI (MCAIabs =

MCAI(UP )), and the Relative MCAI, which makes the measure
values more interpretable by referring them to the best possible
solution that could be obtained for a given problem:

MCAIrel(UP ) =
MCAI(UP ) − MCAImax

MCAImax
=

MCAI(UP )
MCAImax

− 1. (32)

The advantage of accounting for the average value is its high
interpretability. For example, MCAI(UP ) = 0.7 indicates that the
assignment obtained with UP for each alternative is, on average,
supported by 70% of feasible models. Recommending precise
assignments confirmed by a large share of all feasible models is
a desirable property of sorting methods.

Clearly, other approaches to aggregating individual CAIs are
also possible. The basic ones include the product of all CAIs or a
minimum of CAIs confirming the assignment to a given class. The
obtained value may be challenging to interpret in the first case,
especially when the model assigns several alternatives to classes
with low CAIs. The product of several low values could obscure
the high certainty for the remaining assignments. In turn, the
measure based on the minimum does not reflect the distribution
of all CAIs. Then, models with significantly different acceptability
indices on most alternatives may be characterized with the same
measure value, failing to capture various robustness levels of the
delivered recommendations.

The following three measures focus on the similarity between
models rather than assignments. Hence they focus on the prox-
imity of models and their various components. Such a perspective
is complementary to the predictive performance and robustness
of the delivered recommendation.

Differences between marginal values. To capture the agree-
ment between the shapes of MVFs, we compare the marginal val-
ues assigned to all characteristic points except the least preferred.
The latter ones are, by definition, always assigned values equal to
zero. Such a measure – summarizing absolute value differences
– can be considered as the comprehensive distance between the
reference model UREF and UP obtained with procedure P:

∆REF
TO (UP ) =

1
m∑
j=1

(nA
j − 1)

m∑
j=1

nAj∑
k=2

|uUP

j (βk
j ) − uUREF

j (βk
j )|. (33)
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Another perspective concerns the distance of MVFs from a sorting
model that represents well the feasible space of all models. For
this purpose, we adopt the outcomes of the CENTROID procedure
(denoted with an upper script CENT , e.g., UCENT ), which is an
average of a large sample of uniformly distributed value functions
and class thresholds. It can be defined in the following way:

∆CENT
TO (UP ) =

1
m∑
j=1

(nA
j − 1)

m∑
j=1

nAj∑
k=2

|uUP

j (βk
j ) − uUCENT

j (βk
j )|. (34)

Such a measure indicates to what extent the solutions generated
by a given procedure deviate from the average solution. In this
case, the results need to be interpreted as a specific character-
istic of the models returned by various methods rather than a
performance measure indicating some good or bad approaches.

Differences between comprehensive values. Another mea-
sure refers to the aggregated results at the level that considers all
criteria jointly. Instead of comparing the MVFs, it summarizes the
differences between comprehensive values attained by all non-
reference alternatives for the reference and resulting models:

∆REF
CV (UP ) =

1
|AT |

∑
a∈AT

|UUP
(a) − UUREF

(a)|. (35)

Differences between threshold values. The last measure con-
cerns the similarity between separating class thresholds in the
reference and resulting models:

∆REF
TH (UP ) =

1
p − 1

p−1∑
l=1

|tU
P

l − tU
REF

l |. (36)

It captures if the method can reproduce the range width of
comprehensive values that justify an assignment to a given class
and their positions on the scale of AVF. The values of the above
measures for selected procedures based on the results of an
illustrative case study are available in eAppendix 2.

In our view, the predictive accuracy and the recommendation
robustness are more important than the similarity with the ref-
erence model. Accuracy – reflecting the fraction of predictions a
given model got right – is a fundamental metric for evaluating
classifiers in the Machine Learning (ML) context. In a preference
disaggregation setting, it captures how well sparse and incom-
plete preference information on a subset of reference alternatives
is used to reconstruct the DM’s comprehensive decision policy on
the entire set of alternatives. In turn, the robustness of outcomes
delivered by a given method indicates how well these results
represent the entire space of models compatible with incom-
plete assignment examples. This is more important in the MCDA
context when addressing uncertainty related to the existence of
multiple consistent sorting models, out of which one is used to
derive final recommendations. However, from the experimental
perspective, the robustness measures can also be interpreted in
relation to classification accuracy. Indeed, they build on the set of
all models compatible with the DM’s preference information. The
fact that only assignments of reference alternatives are available
to the method implies that each compatible model could have
served as the true one, and the same input preferences on the
reference set would be derived from it. In this perspective, MCAI
can be seen as an average classification accuracy while assuming
that each compatible sorting model was used as the true one.

The model similarity measures represent another perspective,
referring to the distances in the space of parameter values. In
a way, they capture if incomplete preferences are sufficient for
reconstructing the complete form of a model from which they
were derived. However, this aspect is less relevant for the practice

of decision-aiding. In the end, it is the recommendation that
matters most to the DM. In this regard, even if the differences
between parameter values are minor, the differences in provided
classifications can be substantial. Conversely, large differences in
parameter values may not imply inconsistencies in the suggested
assignments. Furthermore, preferences of real DMs are not de-
rived from a pre-defined additive value model combined with
precise class thresholds. Hence, the true reference model typically
does not exist in practical applications, even if the reference
decisions serving as the benchmark are often known. However, in
the experimental setting, the model similarity measures can still
support understanding the characteristics of various procedures
in view of measures focusing on other perspectives. For example,
small differences in model parameter values can allow explaining
a favorable predictive accuracy or robustness. In turn, some other
methods may attain decent results despite significant differences
in derived value functions and thresholds.

4.2. Experimental setting

When generating instances of test problems, we considered
various settings for the dimensionality of data:

• the number of classes – p ∈ {2, 3, 4, 5};
• the number of criteria – m ∈ {3, 5, 7, 9};
• the number of equally distributed characteristic points for

each criterion gj – γj ∈ {2, 4, 6};
• the number of reference alternatives assigned by the DM to

each of p classes – R ∈ {3, 5, 7, 10}.

In this way, we covered relatively simple problems with three
linear criteria and six reference alternatives in two classes, and
complex problems with 9 criteria associated with marginal func-
tions with 6 − 1 = 5 linear pieces and up to 50 reference
alternatives in five decision classes. The number of non-reference
alternatives from set AT is ten for each class. In this way, we
represent the realistic scenarios in which the set of reference
alternatives is at least as large as the test (non-reference) set.
Consequently, the greatest problem instances involved up to 100
alternatives. It is a high value when considering the typical MCDA
setting, which nevertheless still makes feasible the execution of
robustness analysis methods incorporated by some of the con-
sidered procedures. For each combination of parameter values,
we averaged the results over 100 problem instances. Hence we
considered 4 × 4 × 3 × 4 × 100 = 19,200 instances in total.

For each instance, we followed the procedure described in [44].
Hence, two pools of 1,000 alternatives were drawn, each with m
criteria values. The alternatives’ performances on each criterion
were drawn using the uniform distribution. This does not exclude
dominated alternatives. However, in the case of a sorting prob-
lem, even if the DM assigns the dominating alternative to some
class, it is usually impossible to determine to which class the
dominated alternative will be assigned precisely. It only allows
us to delimit the range of possible assignments.

The reference alternatives were randomly selected from the
first pool, and the test (non-reference) alternatives were chosen
from the other pool. The alternatives in these two pools were
evaluated with a randomly generated AVF serving as the DM’s
reference model. For simplicity, we assumed that the number
of equidistant characteristic points for the respective MVFs was
equal to γj in the considered problem setting. Then, the separat-
ing class thresholds t = [t1, . . . , tp−1] were set to respect the
following proportions of alternatives from the first (reference)
pool being assigned to particular classes: for p = 2 – 50-50,
for p = 3 – 30-40-30, for p = 4 – 20-30-30-20, and for
p = 5 – 15-20-30-20-15. Such divisions correspond to realistic
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scenarios in which extreme classes are less common than inter-
mediate ones. The threshold values were determined using the
interpolated values of the respective percentiles in the set of all
scores obtained in the reference set so as to divide it into the
given proportions. Specifically, they were set randomly in the
value range, guaranteeing pre-defined proportions. That is, for
2-class problems, t1 was determined as the 50-th percentile of
all scores; for 3-class problems, t1 is the 30-th percentile, and t2
is the 70-th percentile; for 4-class problems, thresholds take the
values of the 20-th, 50-th, and 80-th percentiles, and for 5-class
problems, the thresholds are the 15-th, 35-th, 65-th, and 85-
th percentiles, respectively. Such thresholds were used to derive
class assignments for alternatives contained in both pools. Finally,
depending on the considered setting, a pre-defined number of
alternatives were randomly selected for each class to construct
sets of reference and test alternatives. When put together, these
two sets (AR and AT ) formed a set of alternatives A that would
be normally considered by the DM facing a particular decision
problem.

The 14 methods were run for all problem instances except for
MSCVF for problems with γj = 2 characteristic points. In this case,
the marginal value functions for all methods are linear. For each
problem instance, the values of stochastic acceptability indices
were estimated based on 10,000 sorting models generated with
HAR.

4.3. Results

In this section, we discuss the results of an experimental
comparison of the 14 procedures for selecting a single, represen-
tative sorting model. For each measure, we consider the outcomes
averaged over all problem instances and the mean values of
the performance measures obtained for different values of each
problem dimension (p, m, γj, and R).

4.3.1. Classification accuracy
The accuracy of the classification is important and, in many

cases, the main evaluation criterion in the context of choosing the
best method. Average classification accuracies over all problem
instances are provided in Table 1. To check the significance of the
relationships between the results of each method, the Wilcoxon
signed-rank test [55] for paired samples with a p-value of 0.05
was performed. The test results are reflected in the Hasse dia-
gram in Fig. 1, which shows if there is a statistically significant
difference between the results of different approaches.

The difference between the best and worst performers is sub-
stantial (over 12%). The best accuracy was obtained by ACUTADIS
(0.8313), which identifies an analytic center of the polyhedron
using non-linear optimization. In general, seeking the central so-
lution is an excellent strategy to increase classification accuracy.
This is confirmed by the results attained by other approaches
implementing this concept, i.e., CENTROID (0.8134) and CHEBY-
SHEV (0.8099). Highly favorable results (between 0.8113 and
0.8119) are obtained by the approaches exploiting the stochastic
acceptability indices: CAI, APOI, and COMB. The advantageous
performance of these methods, along with the high position
of CENTROID, confirms the usefulness of conducting robustness
analysis with the Monte Carlo simulations. Slightly lesser classi-
fication accuracies were attained with the traditional procedures,
which are most often used in the context of UTADIS due to their
simplicity, i.e., UTADISMP1, UTADISMP2, and UTADIS-JLS. They
choose either the most discriminant model or an average model,
though, based on the analysis of extreme ones only.

One of the worst average accuracies was achieved by pro-
cedures focusing on the shape of the MVFs, i.e., MSCVF and
UTADISMP3. Note that the comparison of the mean value for the

Fig. 1. The Hasse diagram indicating the statistically significant differences in
terms of the classification accuracy based on the Wilcoxon test with p-value
equal to 0.05.

MSCVF is not appropriate because it has not been assessed for
problems with linear MVFs, so the mean value may be underes-
timated. In the context of this method, more significant obser-
vations can be made by comparing the values for the problems
with γj ∈ {4, 6}. The unfavorable performance of UTADISMP3
in terms of predictive accuracy and other measures is partially
due to penalizing non-linear MVFs, while the models of simulated
DMs are drawn randomly, typically involving non-linear marginal
functions. Nonetheless, it is interesting to note that UTADISMP2 –
additionally involving the discriminating component – performs
slightly better.

Both the mean values and the Hasse diagram shown in Fig. 1
confirm that procedures exploiting the exact outcomes of robust-
ness analysis achieved significantly worse results than UTADIS
MP3. ROBUST-ITER and ROBUST-COMP allowed for reproduc-
ing the correct assignment for over 10% less non-reference al-
ternatives than ACUTADIS. The objectives considered by these
approaches differ vastly from the best-performing methods. A
general conclusion from the experiment is that when one aims
to maximize classification accuracy, a sorting model should be
selected by exploiting the feasible polyhedron or considering the
robustness of shapes or recommendations delivered with a large
subset of all compatible models.

The number of classes significantly impacts the classification
accuracy attained by different approaches. Table 1 confirms that
the accuracies decrease for a greater number of classes. For exam-
ple, for UTADISMP2 – the accuracy ranges between 0.8108 for p =

2 and 0.7553 for p = 5. It is intuitive because, with more classes,
the sorting problem becomes more challenging, the sub-spaces of
feasible models corresponding to different classes are more con-
strained, and the class thresholds become closer to each other. As

10



M. Wójcik, M. Kadziński and K. Ciomek Knowledge-Based Systems 278 (2023) 110871

Table 1
Mean values and standard deviations of classification accuracy for all considered problem settings, different numbers of classes and criteria.
Procedure All settings Number of classes Number of criteria

mean std 2 3 4 5 3 5 7 9

UTADISMP1 0.7897 0.1252 0.8094 0.7852 0.7814 0.7829 0.8503 0.8023 0.7686 0.7376
UTADISMP2 0.7756 0.1210 0.8108 0.7760 0.7604 0.7553 0.8294 0.7872 0.7567 0.7292
UTADISMP3 0.7483 0.1231 0.8101 0.7494 0.7207 0.7132 0.7989 0.7569 0.7287 0.7088
UTADIS-JLS 0.7703 0.1345 0.7917 0.7621 0.7606 0.7669 0.8237 0.7859 0.7506 0.7211
CHEBYSHEV 0.8099 0.1124 0.8423 0.8074 0.7956 0.7942 0.8623 0.8204 0.7918 0.7650
MSCVF 0.7100 0.1304 0.7521 0.7097 0.6956 0.6828 0.7860 0.7234 0.6811 0.6496
ACUTADIS 0.8313 0.1040 0.8548 0.8288 0.8214 0.8203 0.8794 0.8424 0.8136 0.7899
CENTROID 0.8134 0.1140 0.8434 0.8129 0.7993 0.7979 0.8714 0.8255 0.7915 0.7650
REPDIS 0.7571 0.1207 0.7841 0.7545 0.7444 0.7456 0.8138 0.7684 0.7349 0.7114
CAI 0.8119 0.1145 0.8426 0.8118 0.7975 0.7958 0.8705 0.8242 0.7897 0.7632
APOI 0.8113 0.1151 0.8412 0.8114 0.7971 0.7952 0.8695 0.8234 0.7890 0.7631
COMB 0.8113 0.1150 0.8414 0.8115 0.7971 0.7953 0.8696 0.8236 0.7891 0.7631
ROBUST-ITER 0.7294 0.1330 0.7554 0.7207 0.7190 0.7226 0.8005 0.7445 0.7026 0.6703
ROBUST-COMP 0.7238 0.1348 0.7518 0.7179 0.7126 0.7130 0.7967 0.7381 0.6966 0.6639

a result, the comprehensive values of non-reference alternatives
have lower chances of fitting in the value range corresponding
to their expected class. The greatest decrease in performance is
observed between problems with 2 and 3 classes (from 2.42%
for UTADISMP1 to 6.07% for UTADISMP3). However, with the
increasing number of classes, these differences become lesser,
and when comparing the results for 4 and 5 for some procedures
– they are negligible, and for five procedures (e.g., UTADISMP1,
REPDIS, and ROBUST-ITER) – there is even a marginal increase
in performance. This suggests that, at this point, an increased
problem complexity implied by a higher number of classes is
well balanced by an added information value offered by more
assignment examples.

Compared to other methods, a marginal decrease in accuracy
with an increasing p is an additional advantage of ACUTADIS. This
procedure proves to be more robust to modifying p, increasing
its relative advantage over the remaining methods when more
classes are considered. In the same spirit, the underperformance
of MSCVF is more evident in instances involving more classes.

The number of criteria and characteristic points affect the
accuracies similarly to the number of classes. With the increase in
m and γj, the performance of all procedures deteriorates (see Ta-
bles 1 and 2). For example, for CHEBYSHEV, an average accuracy
ranges between 0.8623 and 0.7650 for 3 and 9 criteria, respec-
tively, and between 0.8526 and 0.7790 for 2 and 6 characteristic
points. Again, this is intuitive because, with more criteria and
characteristic points, the space of feasible models becomes more
significant, and MVFs become more flexible. The only exception
is observed in the improved performance of MSCVF when passing
from γj = 4 to 6. However, this can be attributed to an extremely
poor classification accuracy attained by this procedure already for
less flexible MVFs.

The average differences between accuracies for problems with
three and nine criteria range from 8.95 to 13.64% (see Table 1).
Hence, they are more substantial than between the extreme num-
bers of classes (e.g., for UTADISMP1 and UTADIS-JLS – even four
times greater). The sole exception in this regard is UTADISMP3.

The decrease in accuracy is visible between all subsequent
numbers of criteria. For all fourteen procedures, it is on average
4.68% between 3 and 5 criteria, 3.44% between 5 and 7 criteria,
and 2.74% between 7 and 9 criteria. As for the number of char-
acteristic points (see Table 2), there is a clear difference in the
accuracy of methods between linear and piecewise-linear MVFs.
The scores attained for MVFs with 2 and 6 characteristic points
differ from 4.53% for UTADISMP2 up to 14.73% for UTADIS-JLS.

Noteworthy, UTADIS-JLS achieved relatively high results (85.
02% compared to 86.96% accuracy achieved by the best method
– ACUTADIS) when using linear value functions. However, when

employing six characteristic points, the difference between these
two methods increased to over 10%. Such a difference is asso-
ciated with optimizing values assigned to the last characteristic
points for each MVF. For the linear functions, this contributes
to controlling their entire shapes and selecting more central
value functions. In turn, with greater γj, the marginal values of
intermediate characteristic points are not directly affected by
the optimized model. For MSCVF, the differences in accuracies
attained for MVFs with 4 and 6 points are negligible. This is due
to the characteristic of the method, which – regardless of the
number of points – tries to linearize the marginal functions as
much as possible.

The increase in the number of reference alternatives per class
positively affects the classification accuracy (see Table 2). For ex-
ample, for UTADISMP1, the accuracy ranges between 0.7069 and
0.8547 for, respectively, R = 3 and 10. A greater number of as-
signment examples makes the knowledge available to the meth-
ods more complete, offering additional arguments on the DM’s
sorting policy. From a mathematical viewpoint, additional indi-
rect statements constrain the space of feasible models, leaving
lesser freedom to the procedures for selecting a representative
model.

With limited preference information (see R = 3), ACUTADIS
has a clear advantage over the remaining methods (more than
2.5% over CENTROID). Generally, the margin between the stocha-
stic- (CENTROID, CAI, APOI, COMB) or centralization-based (ACU-
TADIS, CENTROID, CHEBYSHEV) and the remaining approaches
is greater with more sparse DM’s preferences. For example, for
R = 3 – the difference in accuracies of APOI and UTADISMP1 is
3.52%, whereas, for R = 10, it drops to 1.18%. This emphasizes
the usefulness of the best-performing approaches when only a
few assignment examples are available.

To investigate the impact of individual parameters on the
results more holistically and to compare the strength of the
influence of particular problem features on the measured values,
we conducted a linear regression analysis. In the definition of the
regression problem, the explanatory variables were the values of
four parameters determining the problem, and the expected value
was the average accuracy value for each method. The slope coef-
ficients of individual parameters and the intercept value shown
in Table 3 were determined separately for each method based on
the results obtained during the experiment.

Taking into account the methods’ specificities and the pre-
viously observed features, one group of approaches for which
the slope coefficients are very similar can be distinguished. The
regression models in Table 3 confirm the high similarity of the
results obtained by the methods exploiting stochastic analysis
outcomes. REPDIS, CAI, APOI, and COMB use acceptability indices
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Table 2
Average classification accuracy for different numbers of characteristic points and reference alternatives per class.
Procedure Number of ch. points Number of reference assignments

2 4 6 3 5 7 10

UTADISMP1 0.8446 0.7739 0.7507 0.7069 0.7772 0.8200 0.8547
UTADISMP2 0.7993 0.7735 0.7540 0.6948 0.7631 0.8042 0.8405
UTADISMP3 0.7869 0.7363 0.7217 0.6695 0.7340 0.7753 0.8145
UTADIS-JLS 0.8502 0.7579 0.7029 0.6695 0.7559 0.8061 0.8498
CHEBYSHEV 0.8526 0.7980 0.7790 0.7423 0.7987 0.8341 0.8644
MSCVF 0.7096 0.7105 0.6113 0.6986 0.7442 0.7861
ACUTADIS 0.8696 0.8184 0.8059 0.7713 0.8232 0.8520 0.8788
CENTROID 0.8673 0.7979 0.7748 0.7459 0.8021 0.8380 0.8674
REPDIS 0.8126 0.7376 0.7212 0.6763 0.7437 0.7848 0.8237
CAI 0.8662 0.7962 0.7733 0.7439 0.8007 0.8365 0.8665
APOI 0.8649 0.7958 0.7731 0.7421 0.8003 0.8362 0.8665
COMB 0.8650 0.7960 0.7731 0.7422 0.8004 0.8363 0.8665
ROBUST-ITER 0.7927 0.7098 0.6858 0.6397 0.7107 0.7588 0.8085
ROBUST-COMP 0.7905 0.7036 0.6774 0.6352 0.7057 0.7543 0.8001

Table 3
Coefficients of solutions obtained for the linear regression problem for average accuracy depending on the defined dimensions for
individual procedures.
Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept

UTADISMP1 −0.008322 −0.018596 −0.023477 0.020602 0.895558
UTADISMP2 −0.018225 −0.016563 −0.011330 0.020305 0.857199
UTADISMP3 −0.031941 −0.014931 −0.016284 0.020284 0.888062
UTADIS-JLS −0.007605 −0.017163 −0.036815 0.025072 0.890492
CHEBYSHEV −0.015584 −0.016025 −0.018392 0.017054 0.927554
MSCVF −0.022204 −0.022567 0.000432 0.024155 0.770027
ACUTADIS −0.011083 −0.014865 −0.015927 0.014911 0.929816
CENTROID −0.015004 −0.017669 −0.023124 0.016995 0.958154
REPDIS −0.012565 −0.017034 −0.022829 0.020548 0.866217
CAI −0.015500 −0.017815 −0.023215 0.017133 0.958832
APOI −0.015236 −0.017681 −0.022958 0.017357 0.954017
COMB −0.015265 −0.017689 −0.022991 0.017333 0.954538
ROBUST-ITER −0.010021 −0.021621 −0.026704 0.023687 0.853010
ROBUST-COMP −0.012159 −0.021994 −0.028258 0.023165 0.866598

for class assignments or pairwise comparisons. Apart from them,
the CENTROID approach also uses raw sampling results.

For the five methods mentioned above, adding more dimen-
sions to the problem decreases accuracy. An additional attribute
reduces it by an average of 1.7–1.8%, and another characteristic
point in MVFs by 2.3%. The REPDIS method is better than the
other approaches when changing the other two parameters. This
method is more robust in the case of an increased number of
classes (−1.2% vs. −1.5% for other methods), and its accuracy
increases more evidently when the number of available assign-
ments increases (accuracy increases by over 2% vs. 1.7% for other
methods). However, this may be because, on average, this method
performs much worse than the others, so it is easier to make
progress in correctly assigning alternatives when the problem
becomes more straightforward.

In the context of obtaining additional preference information,
the above regularity is confirmed for all other methods. Indication
of additional assignments to each class has the greatest posi-
tive impact on the average accuracy of the weakest approaches:
UTADIS-JLS (increase by 2.5%), MSCVF (2.4%), and ROBUST meth-
ods (2.3–2.4%). On the contrary, increased availability of prefer-
ences has the most negligible impact on the method with the best
average value – ACUTADIS (1.5%).

The stability of the results of MSCVF is noticeable when the
number of characteristic points changes. The pursuit of this
method to obtain the functions that are as linear as possible makes
its results practically insensitive to changing this parameter. It is
entirely different from UTADIS-JLS, which does not consider the
values for the internal MVFs at all, so in this case, the impact is
most significant (a 3.6% decrease in accuracy for each next point).

4.3.2. Assignment acceptability
Average assignment acceptabilities over all problem instances

are provided in Table 4. The ranking of procedures resulting from
the Wilcoxon paired test with p-value equal to 0.05 for both
absolute and relative MCAI are presented as the Hasse diagram
in Fig. 2. The difference between the best and worst-performing
procedures is enormous (almost 0.25). The procedures exploiting
stochastic acceptabilities attained the highest absolute MCAIs.
In particular, the CAI procedure emphasizes the most frequent
assignments when selecting a representative model. It success-
fully attains this target with an absolute MCAI equal to 0.8979
and its relative counterpart being close to zero. This means that
the CAI method identifies a model that classifies all alternatives
according to the robust assignment rule [44], i.e., it assigns each
alternative to a class associated with the highest CAI. Since, for
some problem instances, no model optimized such an objective
in a perfect way (in the experiment – this happened for 4 out
of 19,200 instances), the average relative MCAI for this method
is slightly above zero. The APOI and COMB methods are only
marginally worse in this regard (absolute MCAI equal to 0.8975).
This means that considering stochastic acceptabilities for the
assignment-based pairwise preference relations led to different
assignments for very few problem instances. This confirms that
the two perspectives are highly consistent in guiding the methods
to the most robust assignments.

Another group of methods that perform well in terms of as-
signing alternatives to their most frequent classes in the set of all
feasible models is composed of CENTROID (0.8968), CHEBYSHEV
(0.8620), and ACUTADIS (0.8449). Note that CAI, APOI, and COMB
have a competitive advantage over these methods in considering
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Fig. 2. The Hasse diagram indicating the statistically significant differences in
terms of the absolute and relative MCAI based on the Wilcoxon test with p-value
equal to 0.05.

the assignments of all alternatives, including non-reference ones,
already at the stage of identifying a representative model. When
such an approach is too costly in terms of required computa-
tional effort, one can opt for methods selecting a central model
that exploit only the information provided by the DM. Interest-
ingly, unlike for the classification accuracy, ACUTADIS performs
slightly worse than procedures selecting an average model or the
Chebyshev center.

The worst performers in terms of assignment acceptability are
the same as those for classification accuracy. The least robustness
of recommended assignments is observed for MSCVF (0.7161).
It is understandable, given that the objective function optimized
by this approach has nothing in common with alternatives’ as-
signments or the robustness of results. Moreover, this proce-
dure omitted the problems with linear MVFs. Surprisingly low
MCAIs are attained by ROBUST-ITER (0.7400) and ROBUST-COMP
(0.7272). These procedures build on the outcomes of robustness
analysis. However, they focus on the necessary and possible rela-
tions derived from mathematical programming. This proves that
such extreme, robust outcomes are often too scarce to provide
valuable insights and guide the procedures to select a model that
would be representative in terms of robustness preoccupation.
Since the space between the necessary and the possible may be

Table 4
Mean values and standard deviations of assignment acceptabilities for all
considered problem settings.
Procedure Absolute Relative

mean std mean std

UTADISMP1 0.8034 0.1058 −0.1060 0.1010
UTADISMP2 0.7902 0.1046 −0.1208 0.0998
UTADISMP3 0.7814 0.1005 −0.1312 0.0887
UTADIS-JLS 0.7766 0.1191 −0.1357 0.1193
CHEBYSHEV 0.8620 0.0669 −0.0407 0.0396
MSCVF 0.7161 0.1209 −0.2095 0.1202
ACUTADIS 0.8449 0.0760 −0.0594 0.0622
CENTROID 0.8968 0.0491 −0.0012 0.0025
REPDIS 0.7980 0.0902 −0.1123 0.0782
CAI 0.8979 0.0485 −1.4E−07 1.4E−05
APOI 0.8975 0.0491 −0.0005 0.0020
COMB 0.8975 0.0490 −0.0005 0.0018
ROBUST-ITER 0.7400 0.1251 −0.1773 0.1228
ROBUST-COMP 0.7272 0.1261 −0.1913 0.1256

quite large, using stochastic acceptabilities computed with the
Monte Carlo simulation and filling this gap is more beneficial for
most problem instances.

In Tables 5–8, we provide the average assignment acceptabil-
ities for different values of particular dimensions. In general, the
robustness of recommended assignments increases with fewer
classes, criteria, and characteristic points and a greater number
of reference alternatives per class. Hence, these trends are the
same as for the classification accuracy. They can be attributed to
the same reasons. Less flexible models and greater information
load lead to more constrained space of feasible models and more
robust sorting results. For example, for UTADISMP2 – the differ-
ence between extreme values for each dimension are as follows:
for p ∈ {2, 5} – 0.0359, for m ∈ {3, 9} – 0.0908, for γj ∈ {2, 6}
– 0.0221, and for R ∈ {3, 10} – 0.1539. This indicates that the
number of reference alternatives per class has the greatest impact
on the robustness of recommended assignments. In contrast, the
influence of the number of characteristic points is the least.

When it comes to absolute MCAIs attained for different num-
bers of classes (see Table 5), the greatest differences are observed
for problems with 2 and 3 classes. The deviation from the general
trend is noted for some procedures when comparing the results
for problems with 4 and 5 classes. As far as various procedures are
concerned, the performance of CAI, APOI, COMB, and CENTROID
is the most stable (e.g., for the last approach, absolute MCAI is
0.9099 for p = 2 and 0.8931 for p = 5). All these methods
share the component of performing the stochastic acceptability
analysis. The highest decrease in the quality of the generated
solutions can be seen for UTADISMP3. In the case of absolute
values, it falls from 0.8421 for 2 classes to 0.7446 for 5 classes.
This decrease is also the highest in the case of relative values.
For the problems with 2 classes, the deviation from the optimal
MCAI value for all alternatives was 0.0757, and with 5 classes, it
was over 2 times higher and equal to 0.1695. For the remaining
approaches, these relative values are more stable, and for some
of them (see, e.g., UTADISMP1 and REPDIS), they tend to perform
even slightly better when moving from three to five classes.

When the number of criteria increases, the trends for absolute
and relative MCAIs are more consistent (see Table 6). For all pro-
cedures, the robustness of recommended assignments decreases
in terms of absolute values and their distances from the best pos-
sible solution. Interestingly, a slight decrease in absolute values
is also noticeable for the CAI method, which, apart from a few
exceptions, always obtains the solution with the highest absolute
MCAI value possible. This may lead to the conclusion that a
greater number of attributes results in greater model flexibil-
ity. Herefore, the recommendations resulting from the stochastic
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Table 5
Average assignment acceptability for different numbers of classes.
Procedure Absolute Relative

2 3 4 5 2 3 4 5

UTADISMP1 0.8155 0.7949 0.7982 0.8048 −0.1048 −0.1120 −0.1060 −0.1013
UTADISMP2 0.8158 0.7857 0.7793 0.7799 −0.1039 −0.1223 −0.1274 −0.1295
UTADISMP3 0.8421 0.7840 0.7549 0.7446 −0.0757 −0.1247 −0.1551 −0.1695
UTADIS-JLS 0.8050 0.7675 0.7642 0.7698 −0.1154 −0.1424 −0.1442 −0.1410
CHEBYSHEV 0.8830 0.8592 0.8525 0.8535 −0.0310 −0.0403 −0.0449 −0.0464
MSCVF 0.7645 0.7175 0.6993 0.6831 −0.1728 −0.2058 −0.2210 −0.2385
ACUTADIS 0.8744 0.8410 0.8319 0.8321 −0.0399 −0.0602 −0.0676 −0.0702
CENTROID 0.9099 0.8936 0.8906 0.8931 −0.0009 −0.0013 −0.0014 −0.0013
REPDIS 0.8132 0.7910 0.7918 0.7959 −0.1079 −0.1168 −0.1131 −0.1112
CAI 0.9107 0.8947 0.8918 0.8943 0 −1.9E−08 −4.1E−07 −1.5E−07
APOI 0.9104 0.8942 0.8913 0.8939 −0.0003 −0.0006 −0.0006 −0.0005
COMB 0.9105 0.8943 0.8914 0.8939 −0.0003 −0.0006 −0.0005 −0.0004
ROBUST-ITER 0.7597 0.7298 0.7313 0.7390 −0.1661 −0.1854 −0.1818 −0.1757
ROBUST-COMP 0.7563 0.7205 0.7167 0.7153 −0.1698 −0.1954 −0.1978 −0.2021

Table 6
Average assignment acceptability for different numbers of criteria.
Procedure Absolute Relative

3 5 7 9 3 5 7 9

UTADISMP1 0.8593 0.8163 0.7830 0.7549 −0.0540 −0.0909 −0.1248 −0.1545
UTADISMP2 0.8379 0.8030 0.7727 0.7471 −0.0774 −0.1058 −0.1365 −0.1634
UTADISMP3 0.8163 0.7867 0.7686 0.7541 −0.1018 −0.1243 −0.1419 −0.1570
UTADIS-JLS 0.8231 0.7886 0.7607 0.7340 −0.0943 −0.1215 −0.1494 −0.1776
CHEBYSHEV 0.8821 0.8635 0.8549 0.8476 −0.0283 −0.0380 −0.0446 −0.0517
MSCVF 0.7896 0.7280 0.6876 0.6592 −0.1272 −0.1932 −0.2417 −0.2761
ACUTADIS 0.8794 0.8509 0.8323 0.8169 −0.0313 −0.0518 −0.0694 −0.0853
CENTROID 0.9065 0.8960 0.8930 0.8918 −0.0009 −0.0012 −0.0013 −0.0015
REPDIS 0.8301 0.8019 0.7853 0.7745 −0.0863 −0.1069 −0.1225 −0.1334
CAI 0.9073 0.8970 0.8941 0.8931 0 −1.7E−07 0 −4.1E−07
APOI 0.9069 0.8966 0.8937 0.8927 −0.0005 −0.0005 −0.0005 −0.0006
COMB 0.9069 0.8967 0.8937 0.8927 −0.0004 −0.0004 −0.0005 −0.0005
ROBUST-ITER 0.8081 0.7561 0.7134 0.6823 −0.1114 −0.1586 −0.2031 −0.2359
ROBUST-COMP 0.7957 0.7405 0.7009 0.6717 −0.1250 −0.1758 −0.2167 −0.2477

analysis give less robust conclusions. In the case of CAI, however,
these changes are much smaller than in the case of, e.g., ROBUST-
COMP or MSCVF. For these two approaches and problems with 9
criteria, the mean relative loss to the optimum is nearly twice as
large as for the problems with 3 criteria.

The general trend of decreasing absolute MCAIs with a greater
number of characteristic points is visible in Table 7. However, it
is not valid for all procedures. For the best-performing methods,
including CAI, APOI, COMB, CHEBYSHEV, and CENTROID, it is in-
verse. For example, the absolute MCAIs for CAI are 0.8849, 0.8942,
and 0.9145 for γj = 2, 4, 6. For the approaches exploiting the
stochastic acceptabilities, one may interpret that more flexible
MVFs offer greater chances for better fitting the models to reflect
the CAIs and APOIs. Even though for the procedures identifying
the Chebyshev and analytic centers, the absolute MCAIs increased
when moving from linear to piecewise linear MVFs, their relative
counterparts marginally deteriorated.

With a more significant number of reference alternatives per
class, the trends of increasing absolute MCAI and decreasing loss
to the most robust assignment are unanimously confirmed for all
procedures (see Table 8). For example, for CHEBYSHEV, its ab-
solute assignment acceptability increases from 0.8105 to 0.9044
when moving from R = 3 to 10, and its relative loss decreases
from 0.0572 to 0.0277. With additional preference information,
the entropy of class acceptability indices gets lower, and hence
the feasible models become more similar in terms of the sug-
gested sorting recommendations [25]. Consequently, irrespective
of the applied procedure, the chances of selecting a model whose
assignments are highly robust get higher.

The results of the linear regression analysis for the relative and
absolute assignment acceptabilities are available in eAppendix 3.

4.3.3. Differences between marginal and comprehensive values and
class thresholds

In this section, we discuss the results for the remaining three
measures jointly because the underlying rankings are similar
to a large extent. This is understandable because all measures
concern the similarity between the models derived with dif-
ferent approaches and the reference model, even if they refer
to its various components. We present the average differences
between marginal and comprehensive values and class thresholds
in Table 9. In addition, for the marginal values, we report the
difference to an average solution obtained with CENTROID, in the
space of all models consistent with DM’s preferences.

For all these measures, we performed Wilcoxon signed-rank
tests to investigate the statistical significance of the observed
differences with a p-value of 0.05. Moreover, the coefficients of
the influence of individual problem features on the results were
determined by solving the linear regression problem. The tables
with regression coefficients and the Hasse diagrams reflecting
the relationships resulting from the statistical test outcomes are
available in eAppendix 4.

Given all three measures, the most significant similarity to
the reference model is observed for the outcomes of ACUTADIS,
CENTROID, and CHEBYSHEV. For example, for ACUTADIS, the
distance from the reference model in terms of marginal values
is 0.0417; for comprehensive values – it is 0.0502, and for class
thresholds – 0.0409. For the procedures identifying an average
solution and the Chebyshev center, the measure values are only
slightly higher. The distances of the function returned by ACU-
TADIS and CHEBYSHEV from the centroid solution are very low,
suggesting that the three procedures return similar models. For
UTADIS-JLS, which implements an analogous selection rule to
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Table 7
Average assignment acceptability for different numbers of characteristic points.
Procedure Absolute Relative

2 4 6 2 4 6

UTADISMP1 0.8484 0.7966 0.7650 −0.0428 −0.1108 −0.1645
UTADISMP2 0.7949 0.8029 0.7728 −0.1032 −0.1034 −0.1557
UTADISMP3 0.7828 0.7711 0.7904 −0.1175 −0.1393 −0.1369
UTADIS-JLS 0.8460 0.7667 0.7171 −0.0457 −0.1444 −0.2171
CHEBYSHEV 0.8568 0.8540 0.8753 −0.0328 −0.0457 −0.0434
MSCVF 0.7160 0.7162 −0.2013 −0.2178
ACUTADIS 0.8646 0.8326 0.8374 −0.0237 −0.0698 −0.0848
CENTROID 0.8842 0.8931 0.9132 −0.0009 −0.0014 −0.0014
REPDIS 0.8199 0.7847 0.7893 −0.0753 −0.1235 −0.1379
CAI 0.8849 0.8942 0.9145 −3.2E−07 −1.1E−07 0
APOI 0.8844 0.8938 0.9142 −0.0007 −0.0005 −0.0003
COMB 0.8844 0.8939 0.9142 −0.0006 −0.0005 −0.0003
ROBUST-ITER 0.7972 0.7262 0.6965 −0.1020 −0.1902 −0.2396
ROBUST-COMP 0.7883 0.7105 0.6828 −0.1119 −0.2075 −0.2545

Table 8
Average assignment acceptability for different numbers of reference alternatives per class.
Procedure Absolute Relative

3 5 7 10 3 5 7 10

UTADISMP1 0.7170 0.7914 0.8344 0.8707 −0.1641 −0.1119 −0.0843 −0.0639
UTADISMP2 0.7040 0.7776 0.8211 0.8579 −0.1794 −0.1274 −0.0987 −0.0776
UTADISMP3 0.7110 0.7695 0.8052 0.8399 −0.1735 −0.1375 −0.1168 −0.0971
UTADIS-JLS 0.6785 0.7624 0.8102 0.8553 −0.2085 −0.1439 −0.1104 −0.0802
CHEBYSHEV 0.8105 0.8535 0.8797 0.9044 −0.0572 −0.0430 −0.0348 −0.0277
MSCVF 0.6232 0.7041 0.7479 0.7893 −0.2865 −0.2164 −0.1828 −0.1524
ACUTADIS 0.7939 0.8367 0.8618 0.8870 −0.0756 −0.0614 −0.0543 −0.0464
CENTROID 0.8575 0.8903 0.9102 0.9293 −0.0019 −0.0013 −0.0010 −0.0007
REPDIS 0.7288 0.7875 0.8213 0.8542 −0.1517 −0.1167 −0.0989 −0.0818
CAI 0.8591 0.8914 0.9111 0.9299 −5.3E−07 −5.3E−08 0 0
APOI 0.8580 0.8911 0.9110 0.9299 −0.0013 −0.0004 −0.0002 −0.0001
COMB 0.8581 0.8911 0.9110 0.9299 −0.0012 −0.0004 −0.0002 −0.0001
ROBUST-ITER 0.6480 0.7213 0.7704 0.8202 −0.2452 −0.1908 −0.1547 −0.1183
ROBUST-COMP 0.6378 0.7087 0.7581 0.8042 −0.2570 −0.2048 −0.1680 −0.1354

CENTROID, such a distance is higher. This is also reflected in more
substantial differences from the DM’s reference model. Therefore,
it is apparent that averaging only extreme models does not lead
to obtaining an average solution.

Favorable results in terms of differences between marginal and
comprehensive values are attained with REPDIS. However, when
considering the class thresholds, these differences are higher.
It is intuitive because REPDIS does not optimize the threshold
values, focusing only on selecting a representative value function.
Still, REPDIS proves better in terms of the three measures than
the remaining methods exploiting the stochastic acceptabilities.
For example, for CAI, the distance from the reference model in
terms of marginal values is 0.0642; for comprehensive values
– it is 0.0916, and for class thresholds – 0.0818, being 1.5–2
times higher than for the best-rated ACUTADIS. This confirms that
aiming to reproduce the most common results attained in the set
of all compatible sorting models does not ideally allow replicating
a single reference model.

The group of UTADISMP methods and ROBUST-ITER achieve
intermediate results. In the case of UTADISMP1 and ROBUST-ITER,
both procedures attain the same values in terms of distances built
on marginal and comprehensive values. This is because they aim
to identify the most discriminant models. While UTADISMP1 ex-
ploits only the DM’s preference information, ROBUST-ITER refers
to the necessary assignment-based preference relation in the set
of all alternatives. However, this relation is heavily influenced by
the DM’s assignment examples because all reference alternatives
from the more preferred classes are necessarily preferred to the
alternatives assigned to the least preferred classes. Still, the nec-
essary relation can be richer, involving pairs that are compared

in the same way by all feasible models, even if this is not a
direct consequence of the DM’s statements. Also, the differences
between these methods can be typically observed for the measure
values related to class thresholds. This is because UTADISMP1
directly optimizes their values, while ROBUST-ITER is focused
only on the parameters of the AVF. Furthermore, UTADISMP2
constructed models that are, on average, slightly more similar to
the reference ones than UTADISMP1, whereas the similarity re-
sults for ROBUST-COMP are marginally worse than for its iterative
counterpart.

UTADIS-JLS achieves a relatively good approximation of the
marginal values compared to the reference and the centroid mod-
els. Therefore, averaging the extreme models can be beneficial if
the primary aim is to understand how the DM evaluates partic-
ular criteria. However, this approach achieves the worst results
for the similarity measures based on comprehensive values and
thresholds.

Finally, the worst-performing methods include CAI, APOI,
COMB, MSCVF, and ROBUST-COMP. For the three methods ex-
ploiting the acceptability indices, it can be concluded that al-
though they usually obtain models that differ significantly from
the reference one, they create consistent and representative solu-
tions in the context of preference information provided by DM. In
turn, MSCVF and ROBUST-COMP fail to offer satisfactory results
given all analyzed aspects.

The differences between the reference and resulting models
obtained for different values of each problem dimension (p, m,
γj, and R) together with linear regression models and Hasse
diagrams resulting from the Wilcoxon signed-rank tests are dis-
cussed in the eAppendix.
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Table 9
Average value and standard deviation of differences between marginal values, comprehensive values, and class thresholds from the
reference model (in case of marginal values, also the differences from the centroid model).
Procedure Marginal values Comprehensive Class

Reference Centroid values thresholds

mean std mean std mean std mean std

UTADISMP1 0.0582 0.0439 0.0493 0.0412 0.0811 0.0709 0.0594 0.0602
UTADISMP2 0.0606 0.0412 0.0516 0.0396 0.0803 0.0679 0.0588 0.0572
UTADISMP3 0.0607 0.0362 0.0424 0.0269 0.0655 0.0367 0.0526 0.0440
UTADIS-JLS 0.0558 0.0403 0.0426 0.0330 0.0997 0.0887 0.1004 0.1024
CHEBYSHEV 0.0459 0.0313 0.0207 0.0174 0.0553 0.0375 0.0461 0.0436
MSCVF 0.0628 0.0384 0.0547 0.0312 0.0870 0.0421 0.0758 0.0551
ACUTADIS 0.0417 0.0286 0.0239 0.0158 0.0502 0.0337 0.0409 0.0395
CENTROID 0.0445 0.0291 0 0 0.0545 0.0380 0.0461 0.0449
REPDIS 0.0492 0.0357 0.0256 0.0262 0.0622 0.0519 0.0684 0.0680
CAI 0.0642 0.0375 0.0463 0.0256 0.0916 0.0801 0.0818 0.0877
APOI 0.0644 0.0377 0.0465 0.0256 0.0908 0.0790 0.0812 0.0868
COMB 0.0644 0.0377 0.0465 0.0256 0.0908 0.0790 0.0812 0.0868
ROBUST-ITER 0.0582 0.0439 0.0493 0.0412 0.0811 0.0709 0.0958 0.1023
ROBUST-COMP 0.0614 0.0454 0.0541 0.0425 0.0853 0.0741 0.0978 0.1035

5. Summary and future research

We considered preference disaggregation in the context of
multiple criteria sorting. We assumed the classification is driven
by an additive value function and thresholds separating the
categories. The parameters of such a model are inferred from
the Decision Maker’s assignment examples. Using such indirect
and incomplete preference information leads to infinitely many
compatible sorting models, potentially implying different assign-
ments for the non-reference alternatives. Given the multiplicity
of feasible models, selecting a single, representative one can be
conducted in different ways.

We reviewed several procedures for such a selection. They aim
to identify the most discriminant, average, central, parsimonious,
or robust model. These ideas differ regarding the exploited in-
formation and aspects to be emphasized that translate into the
relevant constraints and an objective function. Our core contribu-
tion is proposing three novel procedures that assign the alterna-
tives according to the robust classification rule. For this purpose,
they exploit class acceptability indices and/or assignment-based
pairwise acceptabilities and maximize the support given to the
resulting assignments by all feasible sorting models. The use of
all approaches, including the existing and novel ones, was illus-
trated in a study concerning the green performance assessment
of European cities.

In the extensive experimental study, we compared the per-
formance of all procedures on problem instances with different
complexities. The results were quantified in terms of five mea-
sures. When it comes to reproducing the assignments generated
by a simulated Decision Maker’s model and the parameters of this
model, involving marginal and comprehensive values as well as
class thresholds, the best performers are the same. They include
the procedures that determine a central sorting model with the
proviso that it can be an analytic center, the Chebyshev center,
or an average determined based on a large sample of compatible
models. When it comes to approximating the unknown model
parameters, favorable results were also attained by the most
discriminant procedures.

We performed a related experiment whose initial results –
derived from the analysis of a smaller set of problems – were
not included in the paper due to their extremely high correlation
in terms of the ranking of methods imposed by the classification
accuracy. Namely, for each simulated DM’s value function, we
drew different sets of reference alternatives and verified how

well each procedure performs, predicting the classification for the
non-reference alternatives across different reference sets. Such a
measure reflects how strongly the arbitrary choice of reference
alternatives influences each method’s performance. An observed
high similarity of outcomes was expected. The results reported
in the main paper for each problem setting were averaged across
100 instances with various performances and simulated DMs.
With so many repetitions, whether we derive the mean predic-
tive performance from analyzing various instances or the same
instances with different reference sets does not influence the
methods’ average performance.

The novel approaches exploiting stochastic acceptabilities pro-
ved to be the best in emphasizing the robustness of results in
a univocal recommendation. This is, however, at the increased
computational cost related to conducting robustness analysis for
all alternatives and solving a more challenging optimization prob-
lem. Overall, the results returned by the three procedures were
highly similar, with CAI attaining only slightly better results than
APOI and COMB. Even if the idea underlying these methods is
very alike, they exploit various results and optimize different
objectives. Hence such a high similarity or even the same out-
comes delivered for most problems could not be predicted before
conducting the experiments. Based on the obtained experimen-
tal results, we recommend using CAI when the DM focuses on
robustness.

The favorable performance of CAI, APOI, and COMB in ensuring
high robustness could have been anticipated. Their aim consists
in providing the best possible representation of the recommen-
dations feasible in the entire space of compatible sorting models.
Given that each of them is consistent with the DM’s incomplete
preference information and could have served as the reference
model, high robustness is also related to average high classifi-
cation accuracy. Indeed, the experiments confirmed the novel
procedures attained favorable results in terms of classification
accuracy.

The center-oriented procedures also achieved high robustness
of results. Moreover, CENTROID and ACUTADIS attained higher
predictive accuracy than CAI. Among them, CENTROID ensures
lower computational costs, requiring no optimization. Finally,
focusing only on the shape of marginal value functions, as in the
UTADISMP methods, or exploiting the exact, necessary results, as
in the ROBUST approaches, did not lead to favorable outcomes
given any considered measure.
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The favorable performance of center-oriented procedures re-
garding predictive accuracy and robustness can be explained
by referring to the model similarity measures. These methods
returned models very close to the reference ones in terms of
comprehensive and marginal values and class thresholds. In this
perspective, they can be considered the best candidates for de-
fault choices in the applications of UTADIS-like methods when
the DM cares about all measures. On the contrary, the models
constructed by CAI, APOI, and COMB were among the least similar
to the reference ones. Specifically, they were in the bottom four
for value-based measures and the bottom half of the ranking
for threshold-oriented metrics. This aspect is less relevant for
the practice of decision-aiding. However, it confirms that even if
the parameter values of various models differ significantly, they
may nevertheless provide similar recommendations based on the
incomplete DM’s preferences. This emphasizes the importance of
informativeness and trustworthiness of the information supplied
at the method’s input. Also, when solving real-world problems,
the form of the abstract DM’s model is unknown, making the
comparison with its values infeasible. The above speaks in favor
of using the novel procedures proposed in this paper as they
ensure high predictive capabilities and results’ robustness despite
not reproducing the reference parameter values closely.

When limiting the analysis of results only to the four ap-
proaches considered in [44], our findings are largely consistent.
The statistically significant rankings reported in [44] given both
the classification accuracy and the assignments’ acceptability
indicate the following order: ACUTADIS (called analytic cen-
ter in [44]), CHEBYSHEV (Chebyshev center), UTADISMP1 (max–
min), and UTADIS-JLS (post-optimality). We confirmed the same
ranking given the prediction performance and observed inverse
positions, with marginal differences, only for the center-based
approaches when it comes to the recommendation robustness.

The experimental study indicated that the classification accu-
racy of procedures and assignment acceptability of their recom-
mendation decreased with more classes, criteria, and character-
istic points and fewer reference alternatives per class. These out-
comes can be justified given a more significant challenge posed
by the classification problems with more classes, higher flexibility
of a preference model with more criteria and breakpoints, and
greater information gain offered by additional assignment exam-
ples. This is consistent with the findings reported in [44,56] given
both performance trends and the positive association between
predictive performance and recommendation robustness.

The average differences between the reference and deliv-
ered models given values of parameters such as marginal values
assigned to particular characteristic points, alternatives’ com-
prehensive values, or class thresholds exhibit slightly different
trends. They become lower with more classes (also implying more
assignment examples) and reference assignments per class and
higher with more characteristic points. Regarding the impact of
the number of criteria, the observed regularities were unclear and
differed from one approach to another.

Due to a broader range of parameter values considered in this
paper compared to [44], we gained more insights into how they
affect the reported measures. In most cases, the trend of change in
values of all measures was non-linear with respect to considered
values of different dimensions. Specifically, greater modifications
were observed in the lower scale range of different parameters of
a decision problem or a sorting model (e.g., when passing from
2 to 3 classes, from 3 to 5 criteria, from 2 to 4 characteristic
points, of from 3 to 5 reference assignments per class). In turn, the
differences in the upper parts of the parameter scales were lesser
(e.g., when passing from 4 to 5 classes, from 7 to 9 criteria, from
4 to 6 characteristic points, of from 7 to 10 reference assignments
per class).

We envisage the following directions for future research. Firs-
tly, in this paper, we focused only on analyzing procedures for
selecting a representative sorting model in case of compatibility
with the DM’s preference information. However, it would be use-
ful to extend the study in terms of both simulating artificial DMs’
policies with the models that do not ensure such a compatibility
(e.g., by allowing some errors in making the classifications sug-
gested by a simulated model) as well as considering procedures
that are specifically oriented toward selecting a representative
model in case of inconsistency [7,41]. This would reflect how
much each method is influenced by the errors and inconsisten-
cies and even quantify if it can correct them. Nonetheless, this
requires studying a completely different set of methods han-
dling inconsistency between the provided preferences and an
assumed model. In the same spirit, it would be interesting to ver-
ify the conclusions for other preference models (e.g., the Choquet
integral [57,58]) or uncertain preference information [18,59].

Second, when generating the assignment examples in the
experimental study, we simulated realistic scenarios in which
extreme classes were less common than intermediate ones. We
could also consider other distributions, e.g., assuming that all
classes are represented by the same number of reference alterna-
tives or just simulating a certain number of assignments without
influencing their distribution and hence tolerating very unbal-
anced ones. However, each setting requires a separate report
spanning tens of pages. Also, our initial experiments on a limited
set of instances confirmed that even if the absolute values of
classification accuracy or robustness-oriented measure differ, the
relative rankings of methods are not influenced.

Third, it would be interesting to design the procedures com-
promising between deriving central and robust models. This
would allow them to score well in classification accuracy, re-
producing the unknown DM’s model, and in the support given
to their recommendation in the set of all compatible models.
Also, we may construct the most robust recommendation without
exhibiting any feasible model and including constraints related
to using a threshold-based value-driven sorting procedure as
in the approaches proposed in this paper. In this way, we can
investigate how restrictive the underlying model assumptions are
in constructing a robust recommendation.

Finally, a similar review and results of an experimental study
in the context of multiple criteria ranking can be found in [50].
The variety of procedures applicable in this context is wider,
including procedures to construct a representative value function,
decision rules, scoring methods, and approaches for constructing
the most robust recommendation without exhibiting the model.
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Selection of a representative sorting model in a preference disaggregation setting:
a review of existing procedures, new proposals, and experimental comparison
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Abstract

The eAppendix contains additional material not included in the main paper. First, we report the results of the illustrative

study demonstrating the use of fourteen procedures on the same problem. Then, we discuss the values of the performance

measures for selected procedures based on the results of an illustrative study. Furthermore, we present the results of the

linear regression analysis for the relative and absolute assignment acceptabilities. Finally, we elaborate on the results

concerning all measures quantifying the similarity between the models derived with different approaches and the reference

model.

Keywords: Multiple criteria decision aiding, Preference disaggregation, Sorting, Representative model, Robustness

analysis, Computational study

1. Illustrative study

To illustrate how the procedures for selecting a representative sorting model work, we consider an example problem

concerning the evaluation of 30 major European cities in implementing green policy. In the considered study, each city

is rated in terms of the following four criteria: CO2 emissions (g1), energy consumption (g2), water management (g3),

and waste and land use (g4). The performances on the scale between 0 and 10 were determined by considering various

indicators. They are given in Table 1. We will employ UTADIS to assign the cities to three classes: C1, C2, and C3,

where C3 is the most preferred category. We assume that a marginal function for each criterion has three characteristic

points (γj = 3 for j = 1, . . . , 4). Moreover, they are defined over the [0, 10] range, and thus β1
j = 0, β2

j = 5, and β3
j = 10.

Then, we drew three reference alternatives for each class to form the DM’s indirect preference supplied as the input for

UTADIS: a15, a20, a27 → C1, a7, a18, a19 → C2, and a1, a8, a10 → C3. To simulate the DM’s policy, we randomly selected

an additive value function with marginal functions depicted in Figure 1. All alternatives were assessed given this function

(see Table 1 for marginal and comprehensive values). Subsequently, a pair of thresholds (t1 = 0.3977 and t2 = 0.6543) was

selected to delimit the three preference-ordered classes, and derive the assignments with the DM’s reference model (see

Table 1). The threshold values were chosen randomly in such value ranges, which guaranteed that each class received ten

alternatives. The reference alternatives are marked in red, and their labels are provided under the axis in Figure 2. Some

procedures discussed in the previous section make use of robust results. In particular, we employed Hit-And-Run (HAR)

for deriving CAI ′s (see Table 1) and APWI ′s (see Table 2). They were computed based on 10, 000 compatible sorting

models.

In what follows, we discuss the results obtained with 14 procedures for selecting a representative sorting model.

The respective MVFs are illustrated in Figure 3. For precise marginal values assigned to the characteristic points and

class thresholds, see Table 3. Tables 4 and 5 show the comprehensive values and class assignments determined with all

approaches. To save space, we provide detailed results only for nine non-reference cities, for which at least one method

recommended a class that differed from the one assigned by the reference model. For the remaining twelve alternatives,

all 14 procedures recommended an assignment compatible with the indication of the reference model.
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Table 1: Evaluation of decision alternatives (cities) on four criteria, their marginal and comprehensive values according to a reference model,
and Class Acceptability Indices CAI′(ai, Cl) for all alternatives and classes.

Performances Reference values Class acceptabilities
Alternative g1 g2 g3 g4 u1 u2 u3 u4 U(a) C1 C2 C3

a1 (Oslo) 9.58 8.71 6.85 8.23 0.0691 0.2384 0.1896 0.1992 0.6963 0.000 0.000 1.000
a2 (Stockholm) 8.99 7.61 7.14 7.99 0.0616 0.2240 0.2074 0.1872 0.6802 0.000 0.029 0.971
a3 (Zurich) 8.48 6.92 8.88 8.82 0.0552 0.2149 0.3142 0.2286 0.8129 0.000 0.000 1.000
a4 (Copenhagen) 8.35 8.69 8.88 8.05 0.0535 0.2381 0.3142 0.1902 0.7960 0.000 0.000 1.000
a5 (Brussels) 8.32 6.19 9.05 7.26 0.0532 0.2054 0.3246 0.1508 0.7339 0.000 0.000 1.000
a6 (Paris) 7.81 4.66 8.55 6.72 0.0467 0.1769 0.2939 0.1239 0.6414 0.000 0.056 0.944
a7 (Rome) 7.57 6.40 6.88 5.96 0.0437 0.2081 0.1915 0.0859 0.5292 0.000 1.000 0.000
a8 (Vienna) 7.53 7.76 9.13 8.60 0.0432 0.2259 0.3295 0.2177 0.8163 0.000 0.000 1.000
a9 (Madrid) 7.51 5.52 8.59 5.85 0.0429 0.1966 0.2964 0.0804 0.6163 0.000 0.124 0.876
a10 (London) 7.34 5.64 8.58 7.16 0.0408 0.1982 0.2958 0.1458 0.6805 0.000 0.000 1.000
a11 (Helsinki) 7.30 4.49 7.92 8.69 0.0403 0.1704 0.2553 0.2222 0.6881 0.000 0.200 0.800
a12 (Amsterdam) 7.10 7.08 9.21 8.98 0.0378 0.2170 0.3344 0.2366 0.8258 0.000 0.000 1.000
a13 (Berlin) 6.75 5.48 9.12 8.63 0.0334 0.1961 0.3289 0.2192 0.7775 0.000 0.000 1.000
a14 (Ljubljana) 6.67 2.23 4.19 5.95 0.0323 0.0846 0.0638 0.0854 0.2662 1.000 0.000 0.000
a15 (Riga) 5.55 3.53 6.43 5.72 0.0182 0.1340 0.1639 0.0739 0.3900 1.000 0.000 0.000
a16 (Istanbul) 4.86 5.55 5.59 4.86 0.0110 0.1970 0.1124 0.0370 0.3573 1.000 0.000 0.000
a17 (Athens) 4.85 4.94 7.26 5.33 0.0109 0.1875 0.2148 0.0545 0.4677 0.088 0.912 0.000
a18 (Budapest) 4.85 2.43 6.97 6.27 0.0109 0.0922 0.1970 0.1014 0.4016 0.000 1.000 0.000
a19 (Dublin) 4.77 4.55 7.14 6.38 0.0108 0.1727 0.2074 0.1069 0.4978 0.000 1.000 0.000
a20 (Warsaw) 4.65 5.29 4.90 5.17 0.0105 0.1936 0.0747 0.0465 0.3252 1.000 0.000 0.000
a21 (Bratislava) 4.54 4.19 7.65 5.60 0.0102 0.1590 0.2387 0.0680 0.4759 0.001 0.999 0.000
a22 (Lisbon) 4.05 5.77 5.42 5.34 0.0091 0.1999 0.1019 0.0550 0.3659 1.000 0.000 0.000
a23 (Vilnius) 3.91 2.39 7.71 7.31 0.0088 0.0907 0.2424 0.1533 0.4952 0.000 0.935 0.065
a24 (Bucharest) 3.65 3.42 4.07 3.62 0.0082 0.1298 0.0620 0.0275 0.2276 1.000 0.000 0.000
a25 (Prague) 3.44 3.26 8.39 6.30 0.0078 0.1237 0.2841 0.1029 0.5185 0.000 0.849 0.151
a26 (Tallinn) 3.40 1.70 7.90 6.15 0.0077 0.0645 0.2541 0.0954 0.4216 0.008 0.991 0.001
a27 (Zagreb) 3.20 4.34 4.43 4.04 0.0072 0.1647 0.0675 0.0307 0.2701 1.000 0.000 0.000
a28 (Belgrade) 3.15 4.65 3.90 4.30 0.0071 0.1765 0.0594 0.0327 0.2757 1.000 0.000 0.000
a29 (Sofia) 2.95 2.16 1.83 3.32 0.0067 0.0820 0.0279 0.0252 0.1418 1.000 0.000 0.000
a30 (Kiev) 2.49 1.50 5.96 1.43 0.0056 0.0569 0.1351 0.0109 0.2085 1.000 0.000 0.000

Table 2: Part of the matrix with the APWI′ values.

ai

aj . . . a9 a10 a11 . . . a24 a25 a26 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a9 . . . 0.000 0.000 0.171 . . . 1.000 0.725 0.880 . . .
a10 . . . 0.124 0.000 0.200 . . . 1.000 0.849 0.999 . . .
a11 . . . 0.095 0.000 0.000 . . . 1.000 0.649 0.800 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a24 . . . 0.000 0.000 0.000 . . . 0.000 0.000 0.000 . . .
a25 . . . 0.000 0.000 0.000 . . . 1.000 0.000 0.158 . . .
a26 . . . 0.000 0.000 0.000 . . . 0.992 0.000 0.000 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The UTADISMP1 method aims at reproducing the DM’s preferences by maximizing the difference between compre-

hensive values of reference alternatives and the thresholds of their desired classes. This objective implies that due to

the existence of reference alternatives with comprehensive values close to the thresholds (e.g., a15 and a18), the resulting

marginal functions and class thresholds differ from the reference ones. Indeed, maximizing the difference between these

values and thresholds often requires assigning positive marginal values only in the last segments (see Figure 3). Moreover,

the operational procedure underlying UTADISMP1 implies that non-reference alternatives with very similar performance

profiles to reference alternatives are assigned to the same class. This can be observed for, e.g., a19 and a17 or a6 and a10.

The models obtained with UTADISMP2 and UTADISMP3 are the same. This is understandable since both procedures

account for maximizing the minimal slope of MVFs, while UTADISMP2 additionally considers the same objective as

UTADISMP1. The evidence of maximizing the differences between marginal values assigned to successive characteristic

points is visible in Table 3. For all criteria, uj(5) has the same value (0.10763), and in three cases, uj(10) is exactly twice

as large (0.21526), hence satisfying the monotonicity constraints with a large margin (ρ). In this case, the slacks for other

constraints were rather marginal. For example, comprehensive values of two reference alternatives U(a15) = 0.4770076

and U(a18) = 0.4770096 are very close to threshold t1 = 0.4770086, though being assigned to different classes: C1 and

C2, respectively. A characteristic consequence of maximizing ρ is that for many problems, the solutions obtained by these

two methods have a relatively even distribution of the maximal values of MVFs and their curvatures are close to being
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Figure 1: Marginal value functions in the reference model.

Figure 2: Comprehensive values for all alternatives in relation to class thresholds in the reference model.

linear.

An explicit mechanism for deriving the marginal functions which minimally deviate from linearity is implemented in

MSCVF. For the considered problem, it obtained an ideal model, satisfying the following condition: ∀j ∈ {1, 2, 3, 4} :
uj(10)−uj(5)

10−5 =
uj(5)−uj(0)

5−0 for all criteria, which translated to the lowest possible objective function’s value (φ = 0). The

linear MVFs are visible in Figure 3. Obviously, attaining such parsimony is not possible for all problems as it depends

on the alternatives’ performances and reference assignments.

UTADIS-JLS is a heuristic approach that constructs a representative model by averaging the extreme compatible

ones that maximize and minimize the greatest value of the individual MVFs. For the considered problem, this led to

non-negligible maximal shares of all MVFs with the predominant role of g3 (u3(10) = 0.3571) and g4 (u4(10) = 0.3779)

and well-distributed class thresholds (t1 = 0.3999624 and t2 = 0.603032). Interestingly, in the final model, u4(5) = 0.0,

which means that this marginal value was equal to zero in the eight intermediate models. Analyzing the results obtained

with other methods, many solutions repeat this pattern. This suggests that low scores (below 5.0) w.r.t. waste and land

use (g4) may have no or negligible impact on the recommended class assignments. As a result, Kiev (g4(a30) = 1.43) and

Istanbul (g4(a16) = 4.86) are often scored equally on u4, despite a noticeable difference in their performances.

The CENTROID method is similar to UTADIS-JLS in terms of deriving an average model. However, when doing so,

it considers a large sample of uniformly distributed models. The marginal value functions obtained with CENTROID

confirm that the extreme models considered by UTADIS-JLS are not representative of the entire feasible polyhedron. In

3
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Figure 3: Marginal value function obtained with 14 procedures for selecting a representative sorting model.

particular, the maximal shares of u2 and u3 are greater, whereas the impact of u4 is reduced (even though u4(5) is not

zeroed in this case). A detailed analysis of the derived model confirms that incomplete indirect preference information

(in this case, concerning 9 out of 30 alternatives) does not allow for reproducing the reference model accurately, even

if the assignment examples are perfectly reproduced. When comparing the two models in Figure 3, one can observe

the overestimation of the maximum value for g1 (u1REFERENCE
(10) = 0.0744 and u1CENTROID

(10) = 0.1663) and g3

(u3REFERENCE
(10) = 0.3829 and u3CENTROID

(10) = 0.4868) and the underestimation for g2 (u2REFERENCE
(10) = 0.2553

and u2CENTROID
(10) = 0.1494) and g4 (u4REFERENCE

(10) = 0.2875 and u4CENTROID
(10) = 0.1975).

In the CHEBYSEV method, the “central” model is determined in a more formalized way as the center of the hyper-

sphere inscribed in the polyhedron defining the set of all compatible sorting models. For this purpose, the constraints

incorporate variable r representing the value of the hypersphere radius. The obtained MVFs are similar to those obtained

with UTADISMP2 in the sense of assigning the same marginal values to mid-points on all criteria (uj(5)). Also, the

values assigned to the end points u1(10) and u2(10) are exactly twice as large. This is due to optimizing variable r,

which is responsible for maximizing the minimal differences between marginal values assigned to successive characteristic

points. In addition, this variable is also used in constraints reproducing the class assignments, as the hypersphere radius

depends on these constraints too. As a result, the comprehensive values of reference alternatives also highly diverge from

the thresholds, which is mainly attained thanks to high maximal shares on u3 and u4.

In the same spirit, ACUTADIS derives a central model corresponding to an analytic center of the polyhedron. The
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Table 3: Marginal values assigned to characteristic points and class thresholds obtained by 14 procedures for selecting a representative sorting
model.
Method u1(5) u1(10) u2(5) u2(10) u3(5) u3(10) u4(5) u4(10) t1 t2
REFERENCE 0.0113 0.0744 0.1898 0.2553 0.0762 0.3829 0.0380 0.2875 0.397722 0.654317
UTADISMP1 0.0000 0.0000 0.0000 0.0897 0.0000 0.7118 0.0000 0.1985 0.281516 0.408793
UTADISMP2 0.1076 0.2153 0.1076 0.2153 0.1076 0.2153 0.1076 0.3542 0.477009 0.678257
UTADISMP3 0.1076 0.2153 0.1076 0.2153 0.1076 0.2153 0.1076 0.3542 0.477009 0.678257
UTADIS-JLS 0.0948 0.1722 0.0177 0.0927 0.1250 0.3571 0.0000 0.3779 0.399624 0.603032
CHEBYSHEV 0.0229 0.0459 0.0229 0.0459 0.0229 0.5405 0.0229 0.3678 0.328974 0.500873
MSCVF 0.0524 0.1047 0.1270 0.2540 0.0000 0.0000 0.3206 0.6413 0.514602 0.624040
ACUTADIS 0.0527 0.1453 0.0466 0.1390 0.0519 0.3731 0.0527 0.3426 0.352980 0.539950
CENTROID 0.0801 0.1663 0.0511 0.1494 0.0654 0.4868 0.0715 0.1975 0.419456 0.591524
REPDIS 1.2e−5 1.2e−5 0.0000 6.8e−6 0.0000 1.6e−5 0.999959 0.999965 0.999978 0.999985
CAI 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
APOI 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
COMB 0.0000 0.2500 0.0195 0.2500 0.0000 0.2500 0.0000 0.2500 0.148776 0.354549
ROBUST-ITER 0.0000 0.0000 0.0000 0.0897 0.0000 0.7118 0.0000 0.1985 0.232163 0.359440
ROBUST-COMP 0.0000 1.6e−6 0.0000 0.0000 0.999978 0.999987 0.0000 1.1e−5 0.999984 0.999986

Table 4: Comprehensive values for a subset of non-reference alternatives assigned by 14 procedures for selecting a representative sorting model.
Method a6 a9 a11 a17 a21 a22 a23 a25 a26

REFERENCE 0.6414 0.6163 0.6881 0.4677 0.4759 0.3659 0.4952 0.5185 0.4216
UTADISMP1 0.5737 0.5542 0.5622 0.3348 0.4011 0.0871 0.4775 0.5342 0.4585
UTADISMP2 0.6449 0.6149 0.7139 0.4909 0.4898 0.4525 0.5231 0.4966 0.4442
UTADISMP3 0.6449 0.6149 0.7139 0.4909 0.4898 0.4525 0.5231 0.4966 0.4442
UTADIS-JLS 0.5746 0.5151 0.6858 0.3643 0.3943 0.2763 0.5080 0.4574 0.4170
CHEBYSHEV 0.5891 0.5358 0.6567 0.3475 0.4016 0.1578 0.5146 0.5172 0.4488
MSCVF 0.6311 0.5940 0.7478 0.5181 0.5131 0.5314 0.5704 0.5228 0.4732
ACUTADIS 0.5805 0.5399 0.6433 0.3661 0.3965 0.2548 0.4761 0.4644 0.4092
CENTROID 0.6556 0.6456 0.6417 0.4639 0.4909 0.3120 0.5106 0.5438 0.4821
REPDIS 0.999985 0.999984 0.999985 0.999979 0.999979 0.999972 0.999980 0.999980 0.999978
CAI 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
APOI 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
COMB 0.4222 0.3910 0.4630 0.1488 0.1788 0.0930 0.2603 0.2472 0.2091
ROBUST-ITER 0.5737 0.5542 0.5622 0.3348 0.4011 0.0871 0.4775 0.5342 0.4585
ROBUST-COMP 0.999989 0.999987 0.999992 0.999983 0.999984 0.999980 0.999988 0.999987 0.999986

underlying optimization model is non-linear, considering the sum of logarithms of the slack variables involved in each

inequality. The obtained MVFs are strictly increasing, the class thresholds are well-separated, and u3 and u4 have about

2.5 times greater impact on the comprehensive values than u1 and u2. ACUTADIS is also one out of only four methods

that made only a single mistake in classifying the non-reference alternatives. The incorrectly rated city is Paris (a6),

which is relatively similar to London (a10) assigned by the DM to C3. The latter alternative is distant from the lower

threshold of its desired class (U(a10) = 0.6143 and t2 = 0.5399). This implies that the comprehensive value of Paris also

fits in the range associated with the most preferred class.

The REPDIS procedure returned a model which builds the comprehensive scores based on just a single criterion (in

this case – g4). Hence, the maximal share of u4 is equal to one, whereas the marginal value assigned to u4(5) is very close to

one (0.999974). As a result, the differences between comprehensive values of a large set of alternatives, as well as between

class thresholds, are extremely small. This is an undesired effect from the viewpoint of the results’ interpretability. It

suggests that for this particular problem, the objectives built on the analysis of APWI ′s proved too challenging to let the

method emphasize the value differences for all pairs of alternatives simultaneously. To maximize its objective function

while considering the conflicting sub-objectives, REPDIS opted to balance the alternatives’ comprehensive assessments.

The same problem can be observed for ROBUST-COMP with the proviso that in this case, criterion g3 was used as the

sole one from which alternatives derived positive values. A side effect of such minor differences is that when comparing

the classification suggested by such models for non-reference alternatives and the ones derived with the DM’s simulated

model, there is no match for many pairs. In the case of ROBUST-COMP, such mistakes are observed for 5 out of 21

cities.

ROBUST-ITER and ROBUST-COMP take into account the necessary assignment-based preference relations. While

ROBUST-COMP attempts to consider the two objectives relevant to this approach at once, ROBUST-ITER optimizes

them one after another. For the illustrative study, such an approach led to a more intuitive and interpretable model. In

fact, the model obtained after considering the first objective was not modified when subsequently optimizing the other

5



Table 5: Class assignments for a subset of non-references alternatives determined with 14 procedures for selecting a representative sorting
model.

Method a6 a9 a11 a17 a21 a22 a23 a25 a26

REFERENCE 2 2 3 2 2 1 2 2 2
UTADISMP1 3 3 3 2 2 1 3 3 3
UTADISMP2 2 2 3 2 2 1 2 2 1
UTADISMP3 2 2 3 2 2 1 2 2 1
UTADIS-JLS 2 2 3 1 1 1 2 2 2
CHEBYSHEV 3 3 3 2 2 1 3 3 2
MSCVF 3 2 3 2 1 2 2 2 1
ACUTADIS 3 2 3 2 2 1 2 2 2
CENTROID 3 3 3 2 2 1 2 2 2
REPDIS 2 2 2 2 2 1 2 2 2
CAI 3 3 3 2 2 1 2 2 2
APOI 3 3 3 2 2 1 2 2 2
COMB 3 3 3 2 2 1 2 2 2
ROBUST-ITER 3 3 3 2 3 1 3 3 3
ROBUST-COMP 3 3 3 1 2 1 3 3 2

objective. Hence, the resulting model was determined solely by maximizing the value differences for pairs of alternatives

related by the necessary assignment-based preference relation (e.g., (a7, a15) among reference alternatives and (a25, a24)

among non-reference alternatives). The value differences for pairs always assigned to the same class were just a side

effect of the primary optimization. Clearly, this observation does not hold for all decision problems because the secondary

objective can often break ties when selecting among models that optimize the primary objective equally well. When it

comes to the assignments of non-reference alternatives, ROBUST-ITER misclassified 6 out of 21 cities compared to the

assignments provided by the DM’s reference model.

The three novel approaches proposed in this paper (CAI, APOI, and COMB) selected the same model for the considered

problem. Putting the objective functions of CAI and APOI together, COMB often returns a result that matches the

solution of either model. However, such a perfect agreement between CAI and APOI is less common. Nevertheless, it

can be justified because they build their outcomes on the stochastic acceptability indices, even if CAI focuses on the class

assignments and APOI considers assignment-based pairwise relations. Still, such a high similarity between the models

returned by these methods – confirmed also in the experimental section – could not be predicted beforehand, without

verifying how these approaches work in practice.

When it comes to the considered study, the model discovered by these approaches is characterized by equal maximal

shares of all criteria (0.25) and a positive marginal value assigned to the mid-point only for u2. Such a balanced distribution

implied relatively low comprehensive values of all alternatives (see Table 4) and low thresholds separating the classes

(t1 = 0.148776 and t2 = 0.354549). To explain the operational procedure of CAI and APOI, let us focus on Riga and

Athens. According to Stochastic Ordinal Regression (SOR), Riga is assigned to C1 by all models (CAI ′(a15, C1) = 1.0).

For Athens, there is an ambiguity in the assignments (CAI ′(a17, C1) = 0.088 and CAI ′(a17, C2) = 0.912). As a result,

they are assigned to a class better than Riga for the vast majority (91.2%) of models (APOI ′(a15, a17) = 0.088 and

APOI ′(a17, a15) = 1). Hence to optimize the objective functions’ values and emphasize the most frequent results in the

representative models, the novel procedures opt for assigning Riga to C1 and Athens to C2, even if it was challenging to

separate these two alternatives (U(a15) = 0.1487745, U(a17) = 0.1487765, and t1 = 0.1487755).

2. Measure values for selected procedures based on the results of the illustrative study

In this section, we report selected measure values for a few procedures based on the results of the illustrative study.

Classification accuracy. When considering the results reported in Table 5 for 9 non-reference alternatives and re-

membering that the classification of the remaining 12 test options agreed with the references one, the classification

accuracy obtained by UTADISMP2 was accuracy(UUTADISMP2) = 20
21 = 0.9524 and for CHEBYSHEV – it was

accuracy(UCHEBY SHEV ) = 17
21 = 0.8095. The former procedure misclassified only a26, whereas for the latter – four

non-reference alternatives (a6, a9, a23, and a25) were classified incorrectly w.r.t. the reference assignment.

Assignment acceptability. When considering CAI ′s reported in Table 1, for 21 non-reference alternatives, MCAImax is

equal to 0.9656. In fact, the maximal CAI ′ was lesser than one only for 9 alternatives. Four approaches (CENTROID, CAI,

APOI, and COMB) identified a solution with MCAIabs = MCAImax. Consequently, for these methods, MCAIrel(U
P ) =
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0. Hence these procedures perfectly reflect the most robust assignments. Note that this value is lower for the reference

model, which assigns alternatives a6 and a9 to class C2. However, their class acceptabilities for class C3 are higher

than for C2 (e.g., for a6 – CAI ′(a6, C2) = 0.056 and CAI ′(a6, C3) = 0.944). As a result, for the reference model,

MCAIabs(U
REF ) = 0.8875 and MCAIrel(U

REF ) = 0.8875
0.9656 − 1 = −0.0809. This example emphasizes that MCAI

captures whether a given procedure reconstructs the most common results observed for all compatible sorting models

rather than the reconstruction of the reference assignments.

Differences between marginal values. When considering the results reported in Table 3, the model which is the

closest to the reference one in terms of ∆REF
TO was obtained with ACUTADIS (∆REF

TO (UACUTADIS) = 0.0595). On

the other extreme, REPDIS identified the furthest solution from the reference model (0.3331). As far as the compar-

ison with an average model is concerned, the outcome of the CENTROID procedure is, by definition, the same (i.e.,

∆CENT
TO (UCENTROID) = 0.0). However, other methods which also aimed to identify a central model attained quite fa-

vorable scores too: for ACUTADIS – ∆CENT
TO (UACUTADIS) = 0.0443, for UTADIS-JLS – 0.0690, and for CHEBYSHEV

– 0.0781. Again, for REPDIS, the distance was vast (0.3413).

Differences between comprehensive values. Part of the results needed to compute the differences between com-

prehensive values for the illustrative study is available in Table 4. Taking into account the comprehensive values of 21

non-reference alternatives, the closest model to the reference one was obtained with CENTROID (∆REF
CV (UCENTROID) =

0.0265). In turn, the furthest distance can be attributed to ROBUST-COMP (∆REF
CV (UROBUST−COMP ) = 0.4287).

Differences between threshold values. For the illustrative example, the difference between threshold values can be de-

termined based on Table 3. For UTADIS-JLS, the threshold values are the closest to the reference model (∆REF
TH (UUTADIS−JLS) =

0.0266). On the other extreme, they are the furthest for REPDIS and ROBUST-COMP (for both of them, ∆REF
TH (UP ) =

0.4740). Indeed, the separation between classes was very poor for these methods, and all thresholds were close to one.

3. Linear regression solutions obtained for the assignment acceptabilities

Linear regression allows for further analysis of trends in the context of individual procedures. First, we focus on the

relative assignment acceptabilities. The coefficients of solutions obtained for the relative MCAI are presented in Table 6.

Table 6: Coefficients of solutions obtained for the linear regression problem for average relative MCAI depending on the defined dimensions
for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 0.001629 -0.016765 -0.030410 0.013842 0.023974
UTADISMP2 -0.008175 -0.014437 -0.013143 0.014108 -0.041136
UTADISMP3 -0.031191 -0.009152 -0.004839 0.010618 -0.014165
UTADIS-JLS -0.007858 -0.013888 -0.042860 0.017717 0.035798
CHEBYSHEV -0.005071 -0.003836 -0.002640 0.004089 -0.014888
MSCVF -0.021215 -0.024763 -0.008259 0.018436 -0.060628
ACUTADIS -0.009831 -0.008980 -0.015267 0.004029 0.064738
CENTROID -0.000146 -0.000110 -0.000115 0.000163 -0.000610
REPDIS -0.000623 -0.007850 -0.015653 0.009646 -0.060658
CAI -0.000000 -0.000000 0.000000 0.000000 -0.000000
APOI -0.000039 -0.000020 0.000096 0.000171 -0.001702
COMB -0.000041 -0.000021 0.000082 0.000152 -0.001464
ROBUST-ITER -0.002523 -0.020901 -0.034387 0.017789 -0.016656
ROBUST-COMP -0.009931 -0.020450 -0.035637 0.017098 0.001854

There is a high similarity in the results obtained for the methods based on stochastic analysis. Due to the objective

function converging with the measure definition, CAI reaches its maximum value regardless of the problem size. Hence

the coefficients are equal to 0. This regularity is also visible for APOI, COMB, and CENTROID, for which the slope

coefficients are very close to 0. The exception is REPDIS, whose average values are sensitive, especially to the change

in the number of characteristic points. The decrease in relative MCAI by almost 1.6% may be because REPDIS focuses

only on emphasizing the relationship between pairs of alternatives and not on whether they will be assigned to the most

common class in sampling models.

Unique among all the methods is the positive effect of increasing the number of classes for UTADISMP1. Although

the increase in the regression’s slope coefficient is not substantial (0.16%), other methods working similarly, such as

UTADISMP2 and UTADISMP3, show significant decreases. For UTADISMP3, we observe the largest decrease among all
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methods. It is equal to 3.1% for each newly introduced class. In both cases, these effects are likely caused by more classes

introducing more assignments. The crucial aspect for UTADISMP1 is that there is a quadratic growth in the number of

constraints highlighting the discriminatory nature of this approach, depending on the number of assignments provided

by the DM. The decrease for UTADISMP3 is likely due to focusing solely on maximizing the minimum slope between

two consecutive points. The other slopes are not optimized in any way, and the more assignments and classes, the more

challenging it becomes to recreate the most robust classification properly.

The ROBUST procedures respond the worst to the increase in the number of characteristic points and almost the

worst to the increase in the number of criteria. Both features introduce more flexibility to the models, reducing the

number of necessary relations in the set of alternatives. Fewer such relations imply fewer constraints for constructing the

objective function and a wider choice of the resulting model. Consequently, the derived model may not reflect the most

popular dependencies occurring in the entire space of consistent solutions.

The MCAI-based results confirm the relationship between the strength of the impact of the number of assignments

provided and the average results obtained by the methods. The worse the method’s average results, the more significant

the positive impact of the increase in the number of reference alternatives (see Table 4 and Figure 2). Adding one al-

ternative per class, on average, increases the relative MCAI by around 1.7–1.8% for the weakest ROBUST methods. In

contrast, for CHEBYSHEV, which is one of the best procedures, it only increases by 0.4%.

Table 7 presents the slope coefficients obtained from solving the linear regression problem for the absolute MCAI

measure. Since the CAI method obtained the maximum MCAI relative value equal to 0 for almost all cases, the absolute

values of this method are also the highest achievable ones. For this reason, the slope coefficients for CAI can be viewed

as the maximum achievable Absolute coefficients, and they can serve as a benchmark when evaluating other procedures.

Thus, it is evident that the increase in the complexity of MVFs and reference assignments positively affects the robustness

of the recommendation of the robust assignment rule. In turn, an increase in the number of classes and criteria decreases

the best possible MCAI values, but not as much as for the other factors. Again, other approaches based on acceptability

indices and the CENTROID method perform similarly to CAI.

Regarding the increase in the number of classes, only UTADISMP1 is more resistant to it than the procedures

mentioned above. For this approach, the number of classes matters little as the procedure emphasizes the correct

separation of classes irrespective of how many categories are considered. UTADISMP1 is more sensitive to changing the

number of criteria. Adding one criterion, in this case, results in an average 1.7% drop in Absolute MCAI, which is large

compared to the CAI with only a 0.2% drop. Only MSCVF (2.2%) and the group of ROBUST methods (2.1%) recorded

more significant declines.

Table 7: Coefficients of solutions obstained for the linear regression problem for average absolute MCAI depending on the defined dimensions
for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 -0.002868 -0.017331 -0.020834 0.021358 0.867229
UTADISMP2 -0.011423 -0.015128 -0.005519 0.021423 0.809100
UTADISMP3 -0.032175 -0.010236 0.001899 0.017977 0.835487
UTADIS-JLS -0.010897 -0.014758 -0.032217 0.024559 0.878676
CHEBYSHEV -0.009519 -0.005601 0.004618 0.013091 0.828673
MSCVF -0.026236 -0.021589 0.000087 0.023000 0.793282
ACUTADIS -0.013617 -0.010300 -0.006802 0.012953 0.900571
CENTROID -0.005335 -0.002359 0.007266 0.010007 0.838038
REPDIS -0.005126 -0.009175 -0.007657 0.017424 0.792688
CAI -0.005212 -0.002266 0.007381 0.009879 0.838452
APOI -0.005249 -0.002279 0.007453 0.010017 0.837100
COMB -0.005250 -0.002281 0.007443 0.010002 0.837287
ROBUST-ITER -0.006047 -0.021004 -0.025165 0.024151 0.836867
ROBUST-COMP -0.012680 -0.020583 -0.026393 0.023389 0.854476

Despite the decrease in relative MCAI value with the increase in the number of MVF segments for almost all methods,

many show slight increases in the context of absolute MCAI. This is because the increase in the highest achievable values

was significant (0.7%), and the relative decreases for, e.g., CHEBYSHEV and UTADISMP3 were not that high. For this

reason, these two methods obtained higher absolute results when more characteristic points were considered.

The relationships between the obtained scores and the number of reference alternatives that were observed for other
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measures are also present in this case. Again, the best-performing methods obtained the lowest average profit from

considering additional information from the DM – the value for CAI increased by only less than 1%. In turn, the

UTADISMP methods achieved improvement between 1.8 and 2.1% and the ROBUST methods between 2.3 and 2.4%.

These outcomes again underline the superiority of methods incorporating stochastic analysis to obtain more robust results,

especially when the availability of DM’s preferences is limited.

4. Experimental results concerning differences between marginal and comprehensive values and class

thresholds

In this section, we consider the outcomes concerning the differences between the reference and resulting models obtained

for different values of each problem dimension (p, m, γj , and R).

4.1. Differences between marginal values

An increase in the number of classes has a positive effect on reproducing the DM’s preference model in terms of marginal

values (see Table 8). This is confirmed for all procedures. The monotonicity of the decrease in differences is the greatest

between 2- and 3-class problems. Furthermore, UTADISMP1 and ROBUST-ITER (both attain 0.1009 for 2-class and

0.0313 for 5-class instances) improve most significantly with the increase of p. For 2-class problems, these two perform

the worst, whereas, for 5-class problems, their results are only slightly inferior to REPDIS (0.291) and center-based

approaches (0.0253 for ACUTADIS, 0.280 for CENTROID, and 0.0287 for CHEBYSHEV).

Table 8: Average differences between marginal values for various numbers of classes.
Reference Centroid

Procedure 2 3 4 5 2 3 4 5
UTADISMP1 0.1009 0.0591 0.0413 0.0313 0.0933 0.0495 0.0318 0.0227
UTADISMP2 0.0971 0.0616 0.0466 0.0370 0.0867 0.0522 0.0381 0.0293
UTADISMP3 0.0819 0.0648 0.0531 0.0430 0.0495 0.0463 0.0401 0.0337
UTADIS-JLS 0.0841 0.0601 0.0446 0.0345 0.0611 0.0457 0.0356 0.0279
CHEBYSHEV 0.0697 0.0484 0.0368 0.0287 0.0320 0.0222 0.0163 0.0123
MSCVF 0.0953 0.0645 0.0496 0.0417 0.0832 0.0550 0.0432 0.0374
ACUTADIS 0.0650 0.0440 0.0326 0.0253 0.0336 0.0255 0.0202 0.0162
CENTROID 0.0672 0.0469 0.0358 0.0280 0 0 0 0
REPDIS 0.0777 0.0519 0.0381 0.0291 0.0471 0.0268 0.0170 0.0117
CAI 0.0883 0.0697 0.0553 0.0434 0.0633 0.0510 0.0399 0.0309
APOI 0.0886 0.0698 0.0556 0.0436 0.0634 0.0511 0.0401 0.0312
COMB 0.0886 0.0698 0.0556 0.0436 0.0634 0.0511 0.0401 0.0312
ROBUST-ITER 0.1009 0.0591 0.0413 0.0313 0.0933 0.0495 0.0318 0.0227
ROBUST-COMP 0.0981 0.0628 0.0470 0.0374 0.0884 0.0546 0.0408 0.0326

A higher number of criteria also reduces a gap between marginal values (see Table 9). This is understandable because,

with more criteria, their shares in the comprehensive values decrease, leading to lesser differences between the compared

models. The most substantial differences for the extreme numbers of criteria can be observed for UTADISMP3 and

UTADIS-JLS. For both approaches, the mean differences between marginal values decreased more than two times when

comparing problems with three and nine criteria (for UTADISMP3 - from 0.0873 to 0.0421, and for UTADIS-JLS – from

0.0822 to 0.0390). With a greater number of criteria, their solutions become more similar to the central models, which

approximate the DM’s preferences up to a satisfactory level.

The increasing number of characteristic points affects the performance of procedures differently (see Table 10). For

most methods (including ROBUST-ITER, UTADISMP1, ROBUST-COMP, UTADIS-JLS, REPDIS, CAI, APOI, and

COMB), an increase of γj leads to a more significant difference between marginal values – and thus a deterioration in the

quality of reconstructing the reference AVF (e.g., for UTADIS-JLS – the distance increases from 0.0420 to 0.0686). The

center-oriented approaches (CENTROID, ACUTADIS, and CHEBYSHEV) maintain the stability of distances of their

models from the reference one for different numbers of characteristic points.

The decrease in the average differences between marginal values can be observed for UTADISMP2 (0.0625 to 0.0600)

and UTADISMP3 (0.0645 to 0.0569). Both approaches maximize the differences between marginal values assigned to

the consecutive points. The greater the share of such values among variables optimized by the methods, the better the

results achieved by these procedures. A similar trend is observed for MSCVF, which is also focused on optimizing the
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Table 9: Average differences between marginal values for various numbers of criteria.
Reference Centroid

Procedure 3 5 7 9 3 5 7 9
UTADISMP1 0.0748 0.0596 0.0516 0.0467 0.0594 0.0509 0.0454 0.0416
UTADISMP2 0.0825 0.0619 0.0519 0.0461 0.0681 0.0524 0.0452 0.0406
UTADISMP3 0.0873 0.0632 0.0502 0.0421 0.0636 0.0438 0.0342 0.0279
UTADIS-JLS 0.0822 0.0566 0.0455 0.0390 0.0644 0.0423 0.0340 0.0295
CHEBYSHEV 0.0621 0.0474 0.0395 0.0346 0.0296 0.0215 0.0172 0.0146
MSCVF 0.0837 0.0645 0.0548 0.0481 0.0670 0.0567 0.0503 0.0448
ACUTADIS 0.0560 0.0430 0.0362 0.0316 0.0328 0.0247 0.0204 0.0176
CENTROID 0.0591 0.0459 0.0388 0.0342 0 0 0 0
REPDIS 0.0681 0.0497 0.0420 0.0371 0.0381 0.0246 0.0208 0.0191
CAI 0.0897 0.0669 0.0542 0.0459 0.0663 0.0478 0.0385 0.0325
APOI 0.0901 0.0670 0.0544 0.0460 0.0668 0.0479 0.0387 0.0325
COMB 0.0901 0.0670 0.0544 0.0460 0.0668 0.0479 0.0387 0.0325
ROBUST-ITER 0.0748 0.0596 0.0516 0.0467 0.0593 0.0509 0.0454 0.0416
ROBUST-COMP 0.0824 0.0627 0.0532 0.0471 0.0711 0.0555 0.0471 0.0427

shape of MVFs. However, since the latter approach is applicable for settings with more than two characteristic points, in

this case, the observation is confirmed only for the results obtained for instances with four and six breakpoints.

Table 10: Average differences between marginal values for various numbers of characteristic points.
Reference Centroid

Procedure 2 4 6 2 4 6
UTADISMP1 0.0526 0.0606 0.0613 0.0391 0.0514 0.0576
UTADISMP2 0.0625 0.0593 0.0600 0.0537 0.0466 0.0544
UTADISMP3 0.0645 0.0607 0.0569 0.0571 0.0398 0.0303
UTADIS-JLS 0.0420 0.0570 0.0686 0.0249 0.0453 0.0576
CHEBYSHEV 0.0446 0.0469 0.0462 0.0272 0.0206 0.0144
MSCVF 0.0664 0.0591 0.0574 0.0521
ACUTADIS 0.0416 0.0424 0.0410 0.0225 0.0262 0.0229
CENTROID 0.0393 0.0474 0.0467 0 0 0
REPDIS 0.0426 0.0522 0.0528 0.0214 0.0262 0.0293
CAI 0.0508 0.0690 0.0727 0.0362 0.0494 0.0532
APOI 0.0510 0.0693 0.0729 0.0367 0.0495 0.0532
COMB 0.0510 0.0693 0.0729 0.0367 0.0495 0.0532
ROBUST-ITER 0.0526 0.0606 0.0613 0.0391 0.0514 0.0575
ROBUST-COMP 0.0526 0.0638 0.0677 0.0414 0.0566 0.0643

The impact of different numbers of reference alternatives per class is reported in Table 11. With richer preference

information, the differences between marginal values become lesser for all procedures. Again, the change in the number of

reference alternatives has the greatest impact on the performance of UTADISMP1 and ROBUST-ITER (compare 8.26%

for R = 3 and 4.01% for R = 10). Interestingly, for CAI, APOI, and COMB, the relative distances from the centroid

solution are stable for different values of R. However, their distances from the reference model decrease when additional

assignment examples become available.

Table 11: Average differences between marginal values for various numbers of reference alternatives per class.
Reference Centroid

Procedure 3 5 7 10 3 5 7 10
UTADISMP1 0.0826 0.0609 0.0491 0.0401 0.0749 0.0516 0.0399 0.0309
UTADISMP2 0.0824 0.0629 0.0527 0.0443 0.0738 0.0536 0.0434 0.0355
UTADISMP3 0.0749 0.0641 0.0558 0.0480 0.0503 0.0446 0.0398 0.0349
UTADIS-JLS 0.0745 0.0590 0.0493 0.0405 0.0573 0.0450 0.0373 0.0307
CHEBYSHEV 0.0594 0.0484 0.0410 0.0349 0.0272 0.0217 0.0184 0.0156
MSCVF 0.0843 0.0646 0.0549 0.0473 0.0746 0.0559 0.0473 0.0410
ACUTADIS 0.0535 0.0440 0.0373 0.0320 0.0268 0.0246 0.0228 0.0213
CENTROID 0.0577 0.0467 0.0397 0.0339 0 0 0 0
REPDIS 0.0621 0.0513 0.0449 0.0385 0.0286 0.0265 0.0249 0.0225
CAI 0.0742 0.0668 0.0604 0.0553 0.0492 0.0481 0.0452 0.0426
APOI 0.0747 0.0670 0.0606 0.0553 0.0497 0.0482 0.0454 0.0426
COMB 0.0746 0.0670 0.0606 0.0553 0.0497 0.0481 0.0454 0.0426
ROBUST-ITER 0.0826 0.0609 0.0491 0.0401 0.0749 0.0516 0.0399 0.0309
ROBUST-COMP 0.0821 0.0644 0.0535 0.0454 0.0757 0.0565 0.0459 0.0384

Tables 12 and 13 show the results of solving the linear regression problems in terms of differences with the reference and

CENTROID model. When it comes to the former, the most significant differences are visible in the case of an increase in
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the number of classes. Across all methods, they are 2 to 5 times more important than adding another criterion, and 3 to 6

times more important than adding another reference alternative to each class. This is likely because the new assignments

are provided from different ranges, significantly reducing the solution space. However, the situation is different when the

number of reference alternatives per class is increased. Then, additional assignments are similar to the already known

ones, which does not reduce the space of feasible models considerably.

Table 12: Coefficients of solutions obtained for the linear regression problems for the average difference from the marginal values of the reference
models depending on the defined dimensions for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 -0.022675 -0.004616 0.002178 -0.005895 0.193353
UTADISMP2 -0.019523 -0.005965 -0.000635 -0.005255 0.200092
UTADISMP3 -0.012856 -0.007416 -0.001889 -0.003792 0.181453
UTADIS-JLS -0.016422 -0.007032 0.006650 -0.004739 0.158525
CHEBYSHEV -0.013490 -0.004521 0.000384 -0.003430 0.140136
MSCVF -0.017546 -0.005818 -0.003662 -0.005094 0.209241
ACUTADIS -0.013055 -0.003989 -0.000155 -0.003024 0.130845
CENTROID -0.012886 -0.004084 0.001849 -0.003324 0.127481
REPDIS -0.015961 -0.005042 0.002545 -0.003288 0.145710
CAI -0.014912 -0.007195 0.005490 -0.002695 0.154426
APOI -0.014893 -0.007242 0.005461 -0.002748 0.155309
COMB -0.014890 -0.007241 0.005464 -0.002745 0.155254
ROBUST-ITER -0.022672 -0.004616 0.002174 -0.005894 0.193345
ROBUST-COMP -0.019806 -0.005773 0.003783 -0.005118 0.182168

Table 13: Coefficients of solutions obtained for the linear regression problems for the average difference from the marginal values of the
CENTROID models depending on the defined dimensions for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 -0.022940 -0.002933 0.004617 -0.006064 0.166660
UTADISMP2 -0.018645 -0.004489 0.000177 -0.005278 0.176035
UTADISMP3 -0.005375 -0.005834 -0.006701 -0.002189 0.136704
UTADIS-JLS -0.010969 -0.005645 0.008170 -0.003709 0.105339
CHEBYSHEV -0.006511 -0.002461 -0.003195 -0.001621 0.081169
MSCVF -0.014934 -0.003655 -0.002642 -0.004609 0.170932
ACUTADIS -0.005781 -0.002485 0.000107 -0.000782 0.063473
CENTROID 0.000000 0.000000 0.000000 0.000000 0.000000
REPDIS -0.011595 -0.003041 0.001975 -0.000869 0.081989
CAI -0.010826 -0.005538 0.004251 -0.000981 0.106513
APOI -0.010776 -0.005600 0.004140 -0.001034 0.107687
COMB -0.010774 -0.005595 0.004141 -0.001035 0.107645
ROBUST-ITER -0.022934 -0.002932 0.004615 -0.006065 0.166642
ROBUST-COMP -0.018109 -0.004693 0.005713 -0.005162 0.155052

The Hasse diagrams presented in Figures 4 and 5 show the results of the Wilcoxon signed-rank tests for paired samples

with a p-value equals 0.05. The performances of various methods in terms of these measures were discussed in the main

paper. Therefore, we note only the most peculiar features. ACUTADIS returns solutions that are more similar to the

reference ones than those obtained with CHEBYSHEV. However, when comparing the similarity with respect to the

centroid solution, the order between these procedures is inverse. Then, ROBUST-COMP is the most distant from the

average model. Nevertheless, in the context of the reference model, it is better than stochastic methods: CAI, APOI,

and COMB. Surprisingly, these approaches perform poorly compared to CENTROID, given that their models are based

on the same sampling data. This shows that the average solution can differ significantly from the solution recreating the

most popular acceptability indices in the whole space of consistent models.

4.2. Differences between comprehensive values

A greater number of classes has a positive effect on reproducing the original comprehensive values assigned by the DM

to alternatives (see Table 14). The ACUTADIS method turns out to be the best irrespective of p (0.0727 for 2-class

and 0.0337 for 5-class problem instances). On the contrary, the most considerable relative differences can be observed

for UTADISMP1 and ROBUST-ITER (the difference between comprehensive decreases from 0.1434 to 0.0434 when

moving from 2 to 5 classes). These two methods have one of the worst results for 2-class problems, but with 5 classes,

only ACUTADIS and central-based methods (CENTROID, CHEBYSHEV) achieved better average values. Exactly the
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Figure 4: The Hasse diagram indicating the statistically significant differences in terms of the differences from the marginal values of the
reference models based on the Wilcoxon test with p-value equal to 0.05.

opposite situation can be observed for UTADISMP3, which gives way only to the three mentioned methods for 2-class

dilemmas, and with 5 classes, it is worse than more than half of the approaches.

Table 14: Average differences between comprehensive values for various numbers of classes.
Procedure 2 3 4 5
UTADISMP1 0.1434 0.0807 0.0568 0.0434
UTADISMP2 0.1380 0.0791 0.0579 0.0460
UTADISMP3 0.0835 0.0695 0.0587 0.0501
UTADIS-JLS 0.1531 0.1054 0.0790 0.0611
CHEBYSHEV 0.0773 0.0589 0.0470 0.0381
MSCVF 0.1178 0.0887 0.0748 0.0665
ACUTADIS 0.0727 0.0532 0.0412 0.0337
CENTROID 0.0760 0.0580 0.0463 0.0378
REPDIS 0.0935 0.0661 0.0497 0.0394
CAI 0.1553 0.0938 0.0664 0.0511
APOI 0.1541 0.0933 0.0649 0.0508
COMB 0.1541 0.0933 0.0650 0.0508
ROBUST-ITER 0.1434 0.0806 0.0568 0.0434
ROBUST-COMP 0.1383 0.0853 0.0646 0.0529

An increase in the number of criteria differently influences the results of particular methods (see Table 15). A greater

number of performance dimensions positively affects the performance of UTADISMP3, MSCVF, CHEBYSHEV, ACU-

TADIS, CENTROID, and REPDIS. The greatest relative differences between 3- and 9-attribute problems are observed

for UTADISMP3 (from 7.22% to 5.98%) and REPDIS (from 7.05% to 5.85%). In general, these methods optimize the

shape of MCVFs or exploit the geometry of the polyhedron of all feasible models. On the contrary, with a more sig-

nificant number of criteria, the average difference from the reference model in terms of comprehensive values increases

for UTADISMP1, UTADISMP2, CAI, APOI, COMB, and ROBUST-ITER. These approaches focus on optimizing the

comprehensive values of alternatives, usually making them as discriminatory as possible, though based on differently

formulated objectives.

Table 16 shows that for the vast majority of procedures, adding characteristic points leads to an increased difference

between comprehensive values. The most significant increase is observed between instances with two and four charac-

teristic points (e.g., for UTADIS-JLS – the respective values are 0.0280 and 0.1109). The central-based approaches also

record relatively large increases for the above instances, but this increase is already minimal when moving from four to
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Figure 5: The Hasse diagram indicating the statistically significant differences in terms of the differences from the marginal values of the
CENTROID models based on the Wilcoxon test with p-value equal to 0.05.

Table 15: Average differences between comprehensive values for various numbers of criteria.
Procedure 3 5 7 9
UTADISMP1 0.0790 0.0801 0.0813 0.0838
UTADISMP2 0.0790 0.0793 0.0802 0.0825
UTADISMP3 0.0722 0.0672 0.0626 0.0598
UTADIS-JLS 0.1017 0.0941 0.0985 0.1043
CHEBYSHEV 0.0588 0.0561 0.0534 0.0530
MSCVF 0.0923 0.0876 0.0850 0.0829
ACUTADIS 0.0541 0.0507 0.0486 0.0475
CENTROID 0.0569 0.0553 0.0532 0.0528
REPDIS 0.0705 0.0611 0.0586 0.0585
CAI 0.0892 0.0907 0.0914 0.0952
APOI 0.0890 0.0899 0.0905 0.0937
COMB 0.0889 0.0899 0.0905 0.0937
ROBUST-ITER 0.0790 0.0801 0.0812 0.0839
ROBUST-COMP 0.0896 0.0851 0.0826 0.0839

six breakpoints. Though slightly greater in terms of absolute values, the same effect can be observed for the methods

that select the most discriminant model. In general, these results confirm that the move from linear MVFs to functions

with three linear pieces increases the flexibility of the models more substantially than the change from three to five linear

pieces.

A greater number of reference alternatives per class lets all procedures construct the models that are more similar to

the reference one in terms of comprehensive values (see Table 17). The largest relative decreases in differences – from

0.1165 to 0.0556 – are achieved by UTADISMP1 and ROBUST-ITER. On the contrary, a minor reduction in terms of

similarities between comprehensive values is observed for CAI, APOI, and COMB (from 0.1115 to 0.0750 for CAI and

from 0.1102 to 0.0745 for APOI and COMB). It is apparent that the narrowing of the space of coherent models with

additional preferential information makes solutions of discriminative approaches more and more similar to the reference

model. On the other hand, although the methods based on the stochastic analysis of the solution space reproduce

preferential information well, the resulting model differs from the one used by DM.

Table 18 shows the slope coefficients resulting from linear regression, indicating the impact of individual parameters

on the difference between the comprehensive values. Again, the number of classes is the essential factor. Including one

additional class in the problem yields some methods to reduce the distance by as much as 3.3%. Only in the case of

UTADIS-JLS, the influence of the number of characteristic points is slightly more significant. In this case, adding another

characteristic point and making MVFs more flexible significantly increases the distance from reference comprehensive

values. Again, the weakness of this method can be attributed to focusing only on the extreme characteristic points.

UTADIS-JLS is also the worst procedure in this context, whereas ACUTADIS, CENTROID, and CHEBYSHEV
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Table 16: Average differences between comprehensive values for various numbers of characteristic points.
Procedure 2 4 6
UTADISMP1 0.0359 0.0960 0.1113
UTADISMP2 0.0404 0.0917 0.1087
UTADISMP3 0.0413 0.0781 0.0770
UTADIS-JLS 0.0280 0.1109 0.1601
CHEBYSHEV 0.0300 0.0676 0.0684
MSCVF 0.0900 0.0840
ACUTADIS 0.0279 0.0611 0.0617
CENTROID 0.0262 0.0678 0.0696
REPDIS 0.0280 0.0761 0.0824
CAI 0.0329 0.1003 0.1417
APOI 0.0331 0.1003 0.1389
COMB 0.0331 0.1003 0.1389
ROBUST-ITER 0.0359 0.0960 0.1113
ROBUST-COMP 0.0355 0.1009 0.1195

Table 17: Average differences between comprehensive values for various numbers of reference alternatives per class.
Procedure 3 5 7 10
UTADISMP1 0.1165 0.0839 0.0682 0.0556
UTADISMP2 0.1130 0.0826 0.0689 0.0566
UTADISMP3 0.0788 0.0680 0.0615 0.0536
UTADIS-JLS 0.1365 0.1056 0.0862 0.0704
CHEBYSHEV 0.0689 0.0573 0.0508 0.0443
MSCVF 0.1091 0.0888 0.0794 0.0706
ACUTADIS 0.0615 0.0521 0.0464 0.0409
CENTROID 0.0680 0.0566 0.0500 0.0436
REPDIS 0.0754 0.0642 0.0584 0.0507
CAI 0.1115 0.0962 0.0839 0.0750
APOI 0.1102 0.0950 0.0833 0.0745
COMB 0.1102 0.0950 0.0833 0.0745
ROBUST-ITER 0.1165 0.0839 0.0682 0.0556
ROBUST-COMP 0.1156 0.0883 0.0739 0.0632

perform most favorably. This relation is visible in the Hasse diagram shown in Figure 6. It is worth noting the high

position of UTADISMP3 in the ranking, as it performs worse only than the central models and REPDIS. Apparently,

maximizing slopes gives a relatively good approximation of comprehensive values, despite the different shapes of the

MVFs and poor achievements in terms of classification accuracy. However, this aspect is not crucial in most problems.

In turn, it is more important to reconstruct the preferences and DM’s classification policy than to correctly reproduce

comprehensive values.

4.3. Differences between class thresholds

For all considered procedures, the average difference between class thresholds decreases as the number of classes increases

(see Table 19). However, the level of this reduction ranges between methods. The greatest discrepancies from around

0.18 to around 0.05 are observed for methods based on robustness analysis (ROBUST-ITER and ROBUST-COMP). This

is related to the fact that we consider more assignment examples with a greater number of classes. These, in turn, imply

additional constraints, leading to enriched necessary inference that leaves lesser flexibility to the class thresholds when

optimized by the methods. Though slightly less substantial in absolute terms, a similar trend can be observed for the

CAI-based approaches. The least improvement with the increase of p can be observed for UTADISMP3 and MSCVF.

These approaches do not optimize the threshold values, adhering instead to a default procedure that sets the thresholds

at equal distances from the extremely evaluated reference alternatives for each class.

Analogously, the average difference between class thresholds for most procedures decreases as more criteria are con-

sidered (see Table 20). However, some methods, such as UTADIS-JLS, CAI, APOI, COMB, and ROBUST-ITER, do not

follow this trend for all analyzed values of m. In general, a greater number of attributes makes the trade-offs between the

criteria smaller. This, in turn, implies that selecting class thresholds and MVFs that ensure the reconstruction of DM’s

preferences is more challenging due to lesser flexibility.

The results reported in Table 21 reveal a significant impact of the number of characteristic points on deviation in

threshold values of the reference model. Again, the most significant differences can be observed between instances with two

and four breakpoints. However, when collating the outcomes for four and six characteristic points, for some approaches

14



Table 18: Coefficients of solutions obtained for the linear regression problems for the average difference from the comprehensive values of the
reference models depending on the defined dimensions for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 -0.032393 0.000785 0.018870 -0.008374 0.166579
UTADISMP2 -0.029732 0.000569 0.017078 -0.007731 0.160913
UTADISMP3 -0.011100 -0.002104 0.008918 -0.003521 0.103271
UTADIS-JLS -0.030218 0.000618 0.033025 -0.009231 0.127304
CHEBYSHEV -0.012960 -0.001004 0.009598 -0.003416 0.089665
MSCVF -0.016752 -0.001532 -0.002988 -0.005272 0.202681
ACUTADIS -0.012876 -0.001095 0.008455 -0.002864 0.085938
CENTROID -0.012622 -0.000723 0.010858 -0.003396 0.080843
REPDIS -0.017890 -0.001929 0.013600 -0.003420 0.103332
CAI -0.033990 0.000945 0.027208 -0.005178 0.128469
APOI -0.033838 0.000744 0.026463 -0.005049 0.130438
COMB -0.033827 0.000756 0.026460 -0.005049 0.130338
ROBUST-ITER -0.032386 0.000783 0.018865 -0.008372 0.166564
ROBUST-COMP -0.027688 -0.000983 0.020991 -0.007240 0.149364

Table 19: Average differences between class thresholds for various numbers of classes.
Procedure 2 3 4 5
UTADISMP1 0.0884 0.0634 0.0475 0.0385
UTADISMP2 0.0836 0.0622 0.0486 0.0409
UTADISMP3 0.0595 0.0569 0.0497 0.0443
UTADIS-JLS 0.1459 0.1079 0.0827 0.0650
CHEBYSHEV 0.0583 0.0497 0.0411 0.0352
MSCVF 0.0928 0.0783 0.0693 0.0628
ACUTADIS 0.0547 0.0440 0.0346 0.0304
CENTROID 0.0592 0.0496 0.0407 0.0349
REPDIS 0.1066 0.0707 0.0533 0.0431
CAI 0.1390 0.0837 0.0586 0.0458
APOI 0.1389 0.0835 0.0570 0.0454
COMB 0.1388 0.0835 0.0571 0.0455
ROBUST-ITER 0.1828 0.0904 0.0624 0.0477
ROBUST-COMP 0.1720 0.0944 0.0685 0.0563

such as CHEBYSHEV, ACUTADIS, CENTROID, UTADISMP3, and MSCVF, the differences are negligible, or even the

trend becomes inverse. For the first three methods mentioned above, this observation confirms that for various levels of

flexibility of MVFs, the center-oriented methods are stable and reproduce the DM’s preference model well. Furthermore,

the stability of threshold-based similarity values for MSCVF and UTADISMP3 is likely because these methods emphasize

the shape of the MVFs. MSCVF aims for functions that are as linear as possible, and UTADISMP3 opts for the highest

possible and, therefore, equal distances between consecutive points.

The impact of the number of reference alternatives per class on the difference between class thresholds in the reference

and resulting models is reported in Table 22. Clearly, these differences decrease for all methods with additional assignment

examples. On the one hand, the most considerable reduction between instances with three and ten reference alternatives

per class is observed for the ROBUST methods. This corresponds with the trend already explained for different numbers

of classes. On the other hand, the least reductions between the extreme R values are noted for the stochastic and central-

based procedures. The former approaches perform rather poorly when few reference alternatives are available, and the

space of compatible sorting models is large. In turn, the latter ones achieve stable, good performance regardless of the

number of reference alternatives, and the enriched preference information helps them reproduce the reference model even

more faithfully.

Table 23 indicates that the performance of procedures concerning changes in individual parameters is similar. The

distance from the reference thresholds decreases most when more classes and fewer characteristic points are considered.

Modifying these dimensions implies additional restrictions resulting from more assignments or reducing the model’s

flexibility. The most sensitive to the changes mentioned above are the ROBUST methods, the stochastic approaches, and

the UTADIS-JLS. In turn, the slope coefficients are low for the procedures that aim at central or the most discriminating

models. Hence they are more resilient to changes, at least in the context of restoring the threshold values. The stability of

results attained by these methods allowed them to stay ahead of the other approaches regardless of the problem setting.

This is confirmed by Figure 7, exhibiting the statistically significant differences derived from the Wilcoxon signed-rank

test.
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Figure 6: The Hasse diagram indicating the statistically significant differences in terms of the differences from the comprehensive values of the
reference models based on the Wilcoxon test with p-value equal to 0.05.

Table 20: Average differences between class thresholds for various numbers of criteria.
Procedure 3 5 7 9
UTADISMP1 0.0681 0.0597 0.0553 0.0547
UTADISMP2 0.0671 0.0592 0.0548 0.0542
UTADISMP3 0.0661 0.0546 0.0467 0.0431
UTADIS-JLS 0.1143 0.0938 0.0944 0.0990
CHEBYSHEV 0.0581 0.0477 0.0402 0.0383
MSCVF 0.0914 0.0780 0.0698 0.0640
ACUTADIS 0.0513 0.0422 0.0363 0.0340
CENTROID 0.0573 0.0478 0.0406 0.0388
REPDIS 0.0850 0.0674 0.0617 0.0596
CAI 0.0831 0.0814 0.0792 0.0835
APOI 0.0833 0.0808 0.0787 0.0822
COMB 0.0833 0.0808 0.0786 0.0822
ROBUST-ITER 0.0990 0.0947 0.0942 0.0954
ROBUST-COMP 0.1113 0.0971 0.0927 0.0901

Table 21: Average differences between class thresholds for various numbers of characteristic points.
Procedure 2 4 6
UTADISMP1 0.0238 0.0761 0.0785
UTADISMP2 0.0264 0.0733 0.0767
UTADISMP3 0.0282 0.0676 0.0620
UTADIS-JLS 0.0234 0.1157 0.1620
CHEBYSHEV 0.0214 0.0602 0.0566
MSCVF 0.0803 0.0712
ACUTADIS 0.0180 0.0540 0.0508
CENTROID 0.0181 0.0615 0.0587
REPDIS 0.0386 0.0807 0.0860
CAI 0.0221 0.0914 0.1319
APOI 0.0227 0.0917 0.1292
COMB 0.0227 0.0918 0.1292
ROBUST-ITER 0.0507 0.1092 0.1275
ROBUST-COMP 0.0462 0.1120 0.1352
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Table 22: Average differences between class thresholds for various numbers of reference alternatives per class.
Procedure 3 5 7 10
UTADISMP1 0.0771 0.0623 0.0536 0.0447
UTADISMP2 0.0755 0.0614 0.0535 0.0449
UTADISMP3 0.0657 0.0537 0.0485 0.0425
UTADIS-JLS 0.1380 0.1063 0.0868 0.0704
CHEBYSHEV 0.0565 0.0472 0.0430 0.0376
MSCVF 0.0934 0.0764 0.0702 0.0632
ACUTADIS 0.0498 0.0421 0.0380 0.0337
CENTROID 0.0568 0.0475 0.0424 0.0377
REPDIS 0.0865 0.0714 0.0623 0.0536
CAI 0.1016 0.0862 0.0736 0.0658
APOI 0.1009 0.0853 0.0732 0.0655
COMB 0.1009 0.0853 0.0732 0.0655
ROBUST-ITER 0.1396 0.1009 0.0791 0.0636
ROBUST-COMP 0.1400 0.1013 0.0825 0.0674

Table 23: Coefficients of solutions obtained for the linear regression problems for the average difference from the thresholds of the reference
models depending on the defined dimensions for individual procedures.

Procedure No. of classes No. of criteria No. of ch. points No. of ref. alt. Intercept
UTADISMP1 -0.016560 -0.002237 0.013671 -0.004507 0.104303
UTADISMP2 -0.014172 -0.002145 0.012584 -0.004244 0.097485
UTADISMP3 -0.005290 -0.003843 0.008430 -0.003177 0.080309
UTADIS-JLS -0.026804 -0.002264 0.034660 -0.009425 0.128048
CHEBYSHEV -0.007782 -0.003346 0.008778 -0.002597 0.074495
MSCVF -0.009914 -0.004530 -0.004550 -0.004089 0.185982
ACUTADIS -0.008207 -0.002878 0.008198 -0.002219 0.067990
CENTROID -0.008175 -0.003141 0.010150 -0.002636 0.069441
REPDIS -0.020774 -0.004104 0.011866 -0.004586 0.146961
CAI -0.030461 -0.000043 0.027457 -0.005076 0.110568
APOI -0.030681 -0.000271 0.026619 -0.005001 0.115014
COMB -0.030655 -0.000265 0.026625 -0.004996 0.114836
ROBUST-ITER -0.043315 -0.000578 0.019208 -0.010544 0.239967
ROBUST-COMP -0.037290 -0.003400 0.022253 -0.009983 0.222106
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UTADISMP3

CHEBYSHEV

ACUTADIS
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Figure 7: The Hasse diagram indicating the statistically significant differences in terms of the differences from the thresholds of the reference
models based on the Wilcoxon test with p-value equal to 0.05.

17





Publication [P3]

M. Wójcik and M. Kadziński, “Nature-inspired Preference Learning Algo-
rithms Using the Choquet Integral”, in Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO ’24, (New York, NY, USA),
p. 440–448, Association for Computing Machinery, 2024

DOI: 10.1145/3638529.3654054.

135

https://doi.org/10.1145/3638529.3654054




Nature-inspired Preference Learning Algorithms
Using the Choquet Integral

Michał Wójcik∗
michal.wojcik@cs.put.poznan.pl

Faculty of Computing and Telecommunication,
Poznań University of Technology

Poznań, Poland

Miłosz Kadziński
milosz.kadzinski@cs.put.poznan.pl

Faculty of Computing and Telecommunication,
Poznań University of Technology

Poznań, Poland

ABSTRACT
We introduce various algorithms for learning the parameters of a
threshold-based sorting procedure powered by the Choquet integral.
This model accounts for interactions between monotonic criteria
and facilitates categorizing decision alternatives into predefined,
preferentially ordered classes. We focus on developing heuristic
preference learning methods capable of efficiently processing large
datasets of classification examples. Specifically, we utilize Local
Search, Simulated Annealing, and nature-inspired approaches such
as Genetic Algorithm, Fish School Search, and Particle Swarm Opti-
mization. We demonstrate the effectiveness of the proposed model
through a case study. Additionally, we present an experimental
comparison of the recommendation accuracy achieved by these
algorithms on a suite of benchmark sorting problems.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Theory of computation→ Evolutionary
algorithms.

KEYWORDS
Preference learning, Choquet integral, Evolutionary algorithm, Par-
ticle swarm optimization, Fish school search
ACM Reference Format:
Michał Wójcik and Miłosz Kadziński. 2024. Nature-inspired Preference
Learning Algorithms Using the Choquet Integral. In Genetic and Evolu-
tionary Computation Conference (GECCO ’24), July 14–18, 2024, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3638529.3654054

1 INTRODUCTION
Preference learning is a subfield of machine learning focused on
predicting or inferring preferences [10]. It primarily addresses in-
stance ranking or sorting challenges [1]. They involve allocating
alternatives to preference-ordered categories based on multiple
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criteria. The significant challenges in preference learning include
dealing with incomplete, inconsistent preference information in the
form of desired assignments for a subset of alternatives, scalability
to large preference sets, and ensuring high interpretability of the
applied models [16].

This study explores the parameterization of a sorting procedure
using the Choquet integral [7]. This model facilitates the aggrega-
tion of individual criteria while accounting for complex interactions
(e.g., complementarity or redundancy) via non-additive measures.
For this purpose, it incorporates meaningful preference parame-
ters, called capacities, assigning weights to individual criteria and
their combinations [11]. Its flexibility and general applicability
make it a powerful tool in various application fields across econom-
ics, operations research, and decision theory. For example studies,
see [3, 5, 25, 31].

However, applying the Choquet integral is challenging due to
the need to determine capacities for all criteria subsets [30]. To
mitigate the cognitive load of specifying numerous parameters,
various preference learning techniques have been proposed [15].
They include logistic regression adaptations [29], convex quadratic
programming [22], and neural network approaches [23]. Yet, these
methods primarily incorporate a two-additive Choquet integral,
capturing only pairwise criteria interactions. Other recent works
focus on more advanced representations of interactions [9, 14, 20],
focusing on sparse, compact, or contextual model variants.

This paper presents a comprehensive suite of algorithms for
learning the Choquet integral model parameters within a threshold-
based sorting framework. We focus on learning from large sets
of assignment examples and deriving compatible capacities for
all subsets of criteria. The proposed methods are based on linear
programming and adapted metaheuristics, including local search
variants, simulated annealing, genetic algorithms, fish school search,
and particle swarm optimization. The model’s interpretability is
showcased through parameter illustration for a real-world problem.
Then, predictive performance is evaluated using a set of monotonic
learning benchmarks, with classification accuracy and Area Under
the Curve as metrics. The influence of learning and testing set sizes
on outcomes is also examined.

2 PROBLEM DEFINITION
This section delineates the Choquet integral, the scope of sorting,
and the form of Decision Maker’s (DM’s) preferences.

Let us consider a multiple criteria sorting problem involving as-
signing 𝑛 alternatives in set𝐴 = {𝑎1, . . . , 𝑎𝑛}, evaluated on a family
of𝑚 criteria 𝐺 = {𝑔1, . . . , 𝑔𝑚}, to one of predefined, preferentially
ordered classes from set 𝐶 = {𝐶1, . . . ,𝐶𝑝 }, where 𝐶𝑙+1 is preferred
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to 𝐶𝑙 for each 𝑙 ∈ {1, . . . , 𝑝 − 1}. The performance of an alternative
𝑎𝑖 on criteria 𝑔 𝑗 : 𝐴 → R is denoted by 𝑔 𝑗 (𝑎𝑖 ). Without loss of
generality, we assume that 𝑔 𝑗 (𝑎𝑖 ) ∈ [0, 1] and all criteria are of gain
type, i.e., the greater the performance 𝑔 𝑗 (𝑎𝑖 ), the more preferred it
is for the DM.

The Choquet integral. The Choquet integral is based on the con-
cept of fuzzy or non-additive measure (also called capacity) [7].
Given a set of criteria 𝐺 , a fuzzy measure incorporated into pref-
erence model 𝑀 is defined for each subset of 𝐺 , as a set function
𝜇𝑀 : 2𝐺 → [0, 1] with the following normalization and monotonic-
ity assumptions:

𝜇𝑀 (∅) = 0, 𝜇𝑀 (𝐺) = 1, (1)

𝜇𝑀 (𝐺1) ≤ 𝜇𝑀 (𝐺2), for each 𝐺1 ⊆ 𝐺2 ⊆ 𝐺. (2)
Then, the Choquet integral is defined as a function 𝐶ℎ𝑀 : 𝐴→ R:

𝐶ℎ𝑀 (𝑎) =
𝑚∑︁
𝑗=1
[𝑔( 𝑗 ) (𝑎) − 𝑔( 𝑗−1) (𝑎)] · 𝜇𝑀 (𝐺 ( 𝑗 ) ), (3)

where (·) is a permutation of {1, . . . ,𝑚}, such that: 𝑔(0) (𝑎) = 0 ≤
𝑔(1) (𝑎) ≤ . . . ≤ 𝑔(𝑚) (𝑎), and𝐺 ( 𝑗 ) = {𝑔(1) (𝑎), . . . , 𝑔( 𝑗 ) (𝑎)}. When
𝑔 𝑗 (𝑎) ∈ [0, 1] for each 𝑗 ∈ {1, . . . ,𝑚}, then 𝐶ℎ𝑀 (𝑎) ∈ [0, 1]. To
support the understanding of the above notation, the supplementary
material illustrates calculating the Choquet integral value for an
example alternative.

Threshold-based sorting procedure. To perform the assignment,
we use a score-driven threshold-based sorting procedure [12]. In
this study, the score is expressed as the Choquet integral 𝐶ℎ𝑀 (𝑎) :
𝐴 → R ∈ [0, 1]. Moreover, 𝑝 + 1 separating class thresholds
(𝑡0, 𝑡1, . . . , 𝑡𝑝 ) complete model𝑀 , such that:

𝑡0 = 0, 𝑡𝑙 −𝑡𝑙−1 ≥ 𝜀, 𝑙 ∈ 1, . . . , 𝑝, 𝑡𝑝−1 ≤ 1−𝜀, 𝑡𝑝 > 1,
(4)

where 𝜀 value is an arbitrarily small positive value. The assignment
of alternative 𝑎𝑖 to class 𝐶𝑙 is implied by the following conditions:

𝐼𝑀 (𝑎𝑖 ) = 𝑙 ⇐⇒ 𝑡𝑙−1 ≤ 𝐶ℎ𝑀 (𝑎𝑖 ) < 𝑡𝑙 . (5)

Hence 𝐼𝑀 : 𝐴→ N ∈ {1, . . . , 𝑝} is the index of a class to which 𝑎𝑖
is assigned using model𝑀 .

Preference information. We assume the DM provides desired as-
signments for a subset of reference alternatives 𝐴𝑅 ⊆ 𝐴. This can
be modelled using function 𝐼𝐷𝑀 : 𝐴𝑅 → N ∈ {1, . . . , 𝑝}.

Model evaluation. When learning the parameters of model 𝑀 ,
some approaches need to evaluate𝑀 using a loss function. For this
purpose, we use the regret function 𝑟𝑀 : 𝐴𝑅 → R ∈ [0, 1] [23]:
𝑟𝑀 (𝑎∗𝑖 ) =𝑚𝑎𝑥{𝑡𝐼𝐷𝑀 (𝑎∗𝑖 )−1 −𝐶ℎ𝑀 (𝑎

∗
𝑖 ), 0, 𝐶ℎ𝑀 (𝑎∗𝑖 ) − 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 ) }.

(6)
It is equal to zero when the score of 𝑎∗𝑖 falls into the range associ-
ated with the class specified by the DM. Otherwise, it captures the
distance from the nearest threshold of the desired class. Then, the
loss function 𝐿(𝑀) : 𝑀 → R ∈ [0, 1] for model 𝑀 aggregates the
regrets for all reference alternatives:

𝐿(𝑀) = 1
|𝐴𝑅 |

∑︁
𝑎∗𝑖 ∈𝐴𝑅

𝑟𝑀 (𝑎∗𝑖 ) . (7)

The lesser 𝐿(𝑀), the more preferred model 𝑀 as it better fits the
DM’s indirect preferences, i.e.:

𝑀1 ≻ 𝑀2 ⇐⇒ 𝐿(𝑀1) < 𝐿(𝑀2). (8)

3 PREFERENCE LEARNING APPROACHES
This section describes novel preference learning approaches that
aim to find sorting model 𝑀 that best reflects the DM’s prefer-
ences, thus minimizing 𝐿(𝑀). They represent various streams of
algorithms. In particular, we consider a) local and global search
methods, b) single solution and population-based techniques as
well as ensemble approaches, or c) linear programming and nature-
inspired techniques. The interest in mathematical programming
derives from their prevailing role in decision analysis [2]. In turn,
the remaining methods proved their ability to efficiently search a
continuous, constrained space of solutions. They also make use of
convexity, ensuring that a linear combination of two feasible solu-
tions leads to a valid solution (e.g., crossover in genetic algorithm
or motion direction combination in particle swarm optimization).

3.1 Mathematical Programming
The first group of methods is based on Linear Programming (LP).
They differ in terms of the optimized objective function.

3.1.1 Minimize maximum regret [MMR]. The first approach mini-
mizes the highest value of regret 𝑟𝑀 (𝑎∗𝑖 ) across all reference alter-
natives, marked as 𝑒 , i.e.:

Minimize 𝑒 ,

𝑠 .𝑡 .

eqs. (1)-(6),
𝑡𝐼𝐷𝑀 (𝑎∗𝑖 )−1 −𝐶ℎ𝑀 (𝑎

∗
𝑖 ) ≤ 𝑒, ∀𝑎∗𝑖 ∈ 𝐴𝑅,

𝐶ℎ𝑀 (𝑎∗𝑖 ) − 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 ) + 𝜀 ≤ 𝑒, ∀𝑎∗𝑖 ∈ 𝐴𝑅,

𝑒 ≥ 0.



(𝐸𝐴𝑅

𝑀𝑀𝑅) (9)

3.1.2 Minimize the number of misclassified alternatives [MNR].
The other approach minimizes the number of alternatives for which
the regret is positive, i.e., 𝑟𝑀 (𝑎∗𝑖 ) > 0. For this, we introduce binary
variables 𝑏𝑒𝑖 indicating the misclassification of 𝑎∗𝑖 ∈ 𝐴𝑅 :

Minimize
∑

𝑎∗𝑖 ∈𝐴𝑅
𝑏𝑒𝑖 ,

𝑠 .𝑡 .

eqs. (1)-(6),
𝑡𝐼𝐷𝑀 (𝑎∗𝑖 )−1 −𝐶ℎ𝑀 (𝑎

∗
𝑖 ) ≤ 𝑏𝑒𝑖 , ∀𝑎∗𝑖 ∈ 𝐴𝑅,

𝐶ℎ𝑀 (𝑎∗𝑖 ) − 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 ) + 𝜀 ≤ 𝑏𝑒𝑖 , ∀𝑎∗𝑖 ∈ 𝐴𝑅,

𝑏𝑒𝑖 ∈ {0, 1}, ∀𝑎∗𝑖 ∈ 𝐴𝑅 .



(𝐸𝐴𝑅

𝑀𝑁𝑅)

(10)

3.1.3 General approach. The solution to each of the above math-
ematical programming problems requires determining 2𝑚 capac-
ities 𝜇𝑀 , 𝑝 + 1 threshold values, and 1 real or |𝐴𝑅 | binary values
capturing variously defined misclassification errors. Their values
must satisfy the desired properties of capacities 𝜇𝑀 for all subsets of
𝐺 and constraints implied by the assignments of reference alterna-
tives. When the number of variables and constraints is high, finding
an optimal solution within a limited time may be impossible.

To address this problem, we apply a bagging-inspired approach
[6]. The procedure incorporating [MMR] is described as Algorithm
1. It requires two parameters – 𝑆 ∈ N+ indicating the number
of models to be aggregated and 𝑝 ∈ (0, 1] indicating the frac-
tion of reference alternatives that should be used for training a
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Algorithm 1MMR-based search [MMR]
Input: 𝑆 – no. of models, 𝑝 – proportion of ref. alts. to select
1: 𝑚∗ – best model found
2: 𝑀 [0 . . . 𝑆 − 1] – empty array of 𝑆 models
3: 𝑡 ← |𝐴𝑅 | · 𝑝
4: 𝑖 ← 0
5: while not stopping condition do
6: 𝑇𝑅 ← ⌊𝑡⌋ randomly selected alternatives from 𝐴𝑅

7: 𝑚 ← 𝑀𝑀𝑅(𝑇𝑅)
8: if 𝑖 < 𝑆 then
9: 𝑀 [𝑖] ←𝑚
10: else if 𝑚 ≻ 𝑀 [𝑆 − 1] then
11: 𝑀 [𝑆 − 1] ←𝑚
12: end if
13: 𝑀 ← 𝑠𝑜𝑟𝑡 (𝑀)
14: if 𝑀 [0] ≻𝑚∗ then
15: 𝑚∗ ← 𝑀 [0]
16: end if
17: if 𝑔𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀) ≻𝑚∗ then
18: 𝑚∗ ← 𝑔𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀)
19: end if
20: 𝑖 ← 𝑖 + 1
21: end while
22: return𝑚∗

single model. The algorithm iteratively creates subsequent mod-
els and then checks whether the found models are better than
the existing ones based on the loss function value. The follow-
ing symbols appear in the algorithm: 𝑇𝑅 is a subset of randomly
selected alternatives from 𝐴𝑅 without replacement, 𝑀𝑀𝑅(𝑇𝑅) re-
turns the model obtained by solving the LP problem defined in
Section 3.1.1, 𝑠𝑜𝑟𝑡 (𝑀) sorts the array of models 𝑀 according to
values 𝐿(𝑀 [𝑖]) for each 𝑖 ∈ {0, . . . , 𝑆 − 1} in the ascending order,
and 𝑔𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 (𝑀) determines a model that is the
weighted average of all models in 𝑀 , where the weight of model
𝑀 [𝑖] is𝑤𝑖 = (𝐿(𝑀 [𝑖]) + 𝜀)−1:

𝜇𝑀𝑎𝑣𝑔 (𝐺 ′) =
∑𝑆−1
𝑖=0 𝑤𝑖 · 𝜇𝑀 [𝑖 ] (𝐺 ′)∑𝑆−1

𝑖=0 𝑤𝑖
, for each 𝐺 ′ ⊆ 𝐺,

𝑡𝑙𝑀𝑎𝑣𝑔
=

∑𝑆−1
𝑖=0 𝑤𝑖 · 𝑡𝑙𝑀 [𝑖 ]∑𝑆−1

𝑖=0 𝑤𝑖
, for each 𝑙 ∈ 0, . . . , 𝑝 .

(11)

This way, higher-quality models have a more significant impact
on the average solution. At the same time, the algorithm can also
choose one of the solutions directly produced by𝑀𝑀𝑅(𝑇𝑅). A sim-
ilar algorithm can be defined for [MNR] when using 𝑀𝑁𝑅(𝑇𝑅)
rather than𝑀𝑀𝑅(𝑇𝑅).

3.2 Local Search
Another suite of approaches performs an optimization through
effective exploration and exploitation of the solution space consis-
tent with Eqs. (1)-(6). To sample models, we use the Hit-And-Run
(HAR) algorithm [26] implemented in [8]. It generates a sequence
of feasible models that asymptotically approach a uniform distri-
bution. At this stage, we do not impose any constraints implied by

the DM’s assignment example. To define the following algorithms,
we assume that function 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙 () uses HAR to generate
a random model respecting Eqs. (1)-(6).

Let us start with defining the neighborhood relation between
models𝑀1 and𝑀2 representing the underlying parameter values:

𝑣1 = [𝜇𝑀1 (𝐺0), . . . , 𝜇𝑀1 (𝐺2|𝐺 |−1), 𝑡0𝑀1
, . . . , 𝑡𝑝𝑀1

],
𝑣2 = [𝜇𝑀2 (𝐺0), . . . , 𝜇𝑀2 (𝐺2|𝐺 |−1), 𝑡0𝑀2

, . . . , 𝑡𝑝𝑀2
] . (12)

They are deemed neighbors (𝑁𝑟 (𝑀1, 𝑀2, 𝑟 ) = 1) when the Euclidean
distance between 𝑣1 and 𝑣2 is not greater than 𝑟 (radius), being the
algorithm’s parameter, i.e.:

𝑁𝑟 (𝑀1, 𝑀2, 𝑟 ) =
{
1, if | |𝑣1, 𝑣2 | | ≤ 𝑟,

0, otherwise.
(13)

Function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑚, 𝑟 ) creates neighbor𝑚′ of model𝑚
with the maximum distance of 𝑟 . First, it generates a random vector
(point) from the 𝑛-dimensional unit sphere and scales its length by
a random factor 𝑘 ∈ (0, 𝑟 ]. Then, it is added to the initial solution
vector 𝑣𝑚 to obtain the neighboring solution 𝑣𝑚′ . Such a solution is
not guaranteed to be feasible. In this case, we use the crop strategy
to reduce the vector’s length so that the resulting solution is located
on or close to the feasible solution space boundary.

The subsequently presented variants of local search attempt
to find the optimal solution by iteratively searching neighboring
solutions of the currently selected one.

3.2.1 Greedy Local Search [GLS]. In the greedy version of local
search [28], we accept neighbor𝑚𝑁 of the current model𝑚 when-
ever 𝐿(𝑚𝑁 ) < 𝐿(𝑚). To prevent getting stuck in the local optimum
in the case of no improvement for a long time during the search, we
use the parameter 𝑆𝑁 specifying the maximum number of neigh-
bors to be verified. If the method fails to find a better model in 𝑆𝑁
iterations, the best solution found𝑚∗ is updated (if necessary), and
the algorithm continues by starting with a new, randomly selected
model. The pseudocode of [GLS] is described as Algorithm 2.

3.2.2 Steep Local Search [SLS]. The steep variant of local search
[28] generates 𝑆𝑁 neighbors of the current solution and selects the
one providing the most significant improvement in model quality.
Similar to GLS, if no newly generated model provides a lower
loss function value, the best-found solution 𝑚∗ is updated, and
the search is repeated from the randomly generated solution. This
strategy is expected to converge to the local optima faster thanGLS.
However, it needs to examine 𝑆𝑁 neighbors in each iteration. This
number is usually smaller in GLS, which can facilitate the search
process.

3.2.3 Simulated Annealing [SAN]. Simulated Annealing [18] ap-
plies a different acceptance criterion. Specifically, neighbor 𝑚𝑁

is accepted as a new solution when its quality is better than the
initial solution𝑚. However,𝑚𝑁 can also be accepted with a certain
probability even when being worse than𝑚. Then, the probability
depends on the quality difference between𝑚 and𝑚𝑁 as well as
parameter 𝑡 , called temperature. Overall, the acceptance probability
can be defined as follows:

𝑃 (𝑚 ←𝑚𝑁 ) =
{
1, if 𝐿(𝑚𝑁 ) < 𝐿(𝑚),
𝑒−

𝐿 (𝑚𝑁 )−𝐿 (𝑚)
𝑡 , otherwise.

(14)
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Algorithm 2 Greedy Local Search [GLS]
Input: 𝑆𝑁 – number of neighbors, 𝑟 – neighborhood radius
1: 𝑚 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙 ()
2: 𝑚∗ ←𝑚
3: while not stopping condition do
4: 𝑝 ← 0
5: while 𝑝 < 𝑆𝑁 do
6: 𝑚𝑁 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔𝑏𝑜𝑟 (𝑚, 𝑟 )
7: if 𝑚𝑁 ≻𝑚 then
8: 𝑚 ←𝑚𝑁

9: break
10: end if
11: 𝑝 ← 𝑝 + 1
12: end while
13: if 𝑚 ≻𝑚∗ then
14: 𝑚∗ ←𝑚
15: end if
16: if 𝑝 == 𝑆𝑁 then
17: 𝑚 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙 ()
18: end if
19: end while
20: return𝑚∗

The value of 𝑡 is initially set to initial temperature 𝑡𝑠 , and then
successively decreased. This reduces the probability of accepting
a worse solution and increases the pressure to obtain better ones.
After each iteration, the value of 𝑡 is multiplied by 𝑡𝑑𝑟 , indicating
the temperature decrease ratio. When 𝑡 reaches a value lesser than
minimum temperature 𝑡𝑚𝑖𝑛 , the search re-starts with a random
model and 𝑡 = 𝑡𝑠 . Note that for this algorithm, unlike the previous
two approaches, we consider only one neighbor model in each iter-
ation. Therefore, the 𝑆𝑁 parameter is not used here. The algorithm
returns the best solution found during the search.

3.3 Genetic Algorithm
The genetic algorithm [GEN], a pioneering nature-inspired meta-
heuristic [19], is employed for preference learning, as described in
Algorithm 3. It comprises a series of steps executed iteratively, simu-
lating successive generations of individuals and applying evolution-
ary processes. In what follows, we detail functions and parameters
integrated into [GEN]:
• 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) returns 𝑆 random models using the
𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙 () function;
• 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑀𝑝 , 𝑠𝑆 , 𝑡𝑆 ) chooses 2 out of 𝑆 individuals from array
𝑀𝑝 using one of the following procedures:

RWS Roulette wheel selection [21] with the probability of selecting
individual𝑚𝑖 being proportional to 1

𝐿 (𝑚𝑖 )+𝜀 ;
TS Tournament selection [24] with 𝑡𝑆 individuals drawn and the

one with the lowest 𝐿(𝑚) among them being selected.
• 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑚1,𝑚2, 𝑠𝐶 , 𝑝𝐶 ) returns an individual resulting from
𝑔𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 ( [𝑚1,𝑚2]) with probability 𝑝𝐶 and
weights determined using one of the two schema:
AC Average Crossover with both weights equal to 0.5;
RC Random Crossover with weights equal to 𝛼 and 1 − 𝛼 , where

𝛼 ∈ [0, 1] is a random value;

otherwise, the function returns an individual identical to𝑚1.
• 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑚𝑜 , 𝑠𝑀 , 𝑝𝑀 , 𝑟𝑀 ) makes small changes to an individual
to increase diversity in the solution pool. With probability 𝑝𝑀 , it
applies one of two strategies to individual𝑚𝑜 :
NM Neighbor Mutation generating a neighbor model, using 𝑔𝑒𝑛𝑒-

𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑚𝑜 , 𝑟𝑀 );
SWM SingleWeightMutation changing only one parameter 𝜇𝑀 (𝐺 ′)

for a randomly selected 𝐺 ′ ⊂ 𝐺 ≠ ∅, by checking lower
(𝜇𝐿𝐵𝑀 (𝐺 ′)) and upper (𝜇𝑈𝐵

𝑀 (𝐺 ′)) bounds that meet the con-
straints, and selecting a randomvalue in [𝜇𝐿𝐵𝑀 (𝐺 ′), 𝜇𝑈𝐵

𝑀 (𝐺 ′)];
otherwise, the function returns𝑚𝑜 without modifying it.
• 𝑒𝑙𝑖𝑡𝑖𝑠𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑀𝑝 , 𝑀𝑜 ) returns 𝑆 models with the lowest 𝐿(𝑚)
values among 2 · 𝑆 individuals from𝑀𝑝 and𝑀𝑜 ;
• 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (𝑀𝑝 ) returns the model with the lowest 𝐿(𝑚)
value among 𝑆 individuals from𝑀𝑝 ;
• 𝑠𝑡 indicates how many generations without improvement are
acceptable; if this happens, the algorithm restarts from a random
population of individuals (models).

Algorithm 3 Genetic Algorithm [GEN]
Input: 𝑆 – population size, 𝑠𝑡 – max. stagnation, 𝑠𝑆 – selection

strategy, 𝑡𝑆 – tournament size, 𝑝𝐶 – crossover probability, 𝑠𝐶 –
crossover strategy, 𝑝𝑀 – mutation probability, 𝑠𝑀 – mutation
strategy, 𝑟𝑀 – mutation range

1: 𝑚∗ – best model found
2: while not stopping condition do
3: 𝑀𝑝 [0, . . . , 𝑆 − 1] ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆)
4: 𝑠𝑡𝑐𝑡𝑟 ← 0
5: while 𝑠𝑡𝑐𝑡𝑟 < 𝑠𝑡 do
6: 𝑖 ← 0
7: 𝑀𝑜 [0 . . . 𝑆 − 1] – empty array of 𝑆 models
8: while 𝑖 < 𝑆 do
9: 𝑚1,𝑚2 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑀𝑝 , 𝑠𝑆 , 𝑡𝑆 )
10: 𝑚𝑜 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑚1,𝑚2, 𝑠𝐶 , 𝑝𝐶 )
11: 𝑀𝑜 [𝑖] ←𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑚𝑜 , 𝑠𝑀 , 𝑝𝑀 , 𝑟𝑀 )
12: 𝑖 ← 𝑖 + 1
13: end while
14: 𝑀𝑝 ← 𝑒𝑙𝑖𝑡𝑖𝑠𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑀𝑝 , 𝑀𝑜 )
15: 𝑚 ← 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (𝑀𝑝 )
16: if 𝑚 ≻𝑚∗ then
17: 𝑚∗ ←𝑚; 𝑠𝑡𝑐𝑡𝑟 ← 0
18: else
19: 𝑠𝑡𝑐𝑡𝑟 ← 𝑠𝑡𝑐𝑡𝑟 + 1
20: end if
21: end while
22: end while
23: return𝑚∗

3.4 Fish School Search
Fish School Search draws inspiration from the social behavior ob-
served in certain fish species, with solutions evolving through a sim-
ulation of school dynamics. The algorithm searches for the best
model by repeating a sequence of fish movements, which can be
divided into:
• individual – here, each fish independently explores its immediate
surroundings in search of “food", metaphorically representing
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an opportunity to enhance the model’s quality. Success in this
endeavor leads to an increase in the fish’s weight;
• collective-instinctive – this phase mimics the successful individual
movements of other fish, specifically those that resulted in fitness
improvements.
• collective-volitive – the school’s radius is adjusted based on the
collective performance, expanding or contracting in response
to the overall increase or decrease in the school’s mass, respec-
tively. This adjustment reflects the school’s aggregate success in
finding better solutions, aiming to boost the group’s exploratory
capabilities.

Our implementation of [FSS] is largely based on [4], and the detailed
procedure is outlined in Algorithm 4. In what follows, we delve
into the algorithm’s key components and discuss the adaptations
made to enhance its performance:
• The 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑖𝑠ℎ𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) function creates models simi-
larly to 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆), but with the addition of gen-
erating 𝑆 fishes. Each fish is assigned a weight𝑊𝑖 , initialized
following the approach outlined in [4].
• The three 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 operators are implemented in a manner
consistent with those described in [4]. After each movement,𝑚∗
is updated if the new solution obtained is better. Additionally,
for all three operators, if a model movement leads to a constraint
violation, a crop strategy is employed to rectify this.
• For 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 , the fitness function is 𝑓 (𝑚) = −𝐿(𝑚),
implying that a reduction in 𝐿(𝑚) results in increased fitness.
To compute the movement vector, a new model𝑚′ is generated
via𝑚′ = 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑚, 𝑠𝑖𝑛𝑑 ), and the displacement vector is
calculated as 𝑣𝑑 = 𝑣𝑚′ − 𝑣𝑚 .
• The 𝑓 𝑒𝑒𝑑𝑖𝑛𝑔 operator has been slightly adapted with respect to
[4]. While fish weight increases following model improvement af-
ter 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 , it decreases otherwise, being multiplied
by𝑤𝑑𝑟 , where𝑤𝑑𝑟 ∈ (0, 1).
• Given the absence of a fixed number of iterations, adjustments
were made to how the values of input parameters 𝑠𝑖𝑛𝑑 and 𝑠𝑣𝑜𝑙
diminish over time. The decay rates 𝑠𝑖𝑛𝑑𝑑𝑟 and 𝑠𝑣𝑜𝑙𝑑𝑟 are chosen
from within the interval (0, 1) to ensure a gradual reduction in
both parameters’ values.

Algorithm 4 Fish School Search [FSS]
Input: 𝑆 – population size, 𝑠𝑖𝑛𝑑𝑠𝑡𝑎𝑟𝑡 – initial individual movement

step, 𝑠𝑖𝑛𝑑𝑑𝑟 – individual movement decrease ratio, 𝑠𝑣𝑜𝑙𝑠𝑡𝑎𝑟𝑡 –
initial volitive movement step, 𝑠𝑣𝑜𝑙𝑑𝑟 – volitive movement de-
crease ratio,𝑤𝑠𝑐𝑎𝑙𝑒 – weights scale,𝑤𝑑𝑟 – weight decrease ratio

1: 𝑚∗ – best model found
2: 𝐹 [0, . . . , 𝑆 − 1] ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑖𝑠ℎ𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆)
3: 𝑠𝑖𝑛𝑑 ← 𝑠𝑖𝑛𝑑𝑠𝑡𝑎𝑟𝑡 , 𝑠𝑣𝑜𝑙 ← 𝑠𝑣𝑜𝑙𝑠𝑡𝑎𝑟𝑡
4: while not stopping condition do
5: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐹, 𝑠𝑖𝑛𝑑 )
6: 𝑓 𝑒𝑒𝑑𝑖𝑛𝑔(𝐹,𝑤𝑑𝑟 )
7: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐹 )
8: 𝑐𝑜𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑉𝑜𝑙𝑖𝑡𝑖𝑣𝑒𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐹, 𝑠𝑣𝑜𝑙 )
9: 𝑠𝑖𝑛𝑑 ← 𝑠𝑖𝑛𝑑 · 𝑠𝑖𝑛𝑑𝑑𝑟 ; 𝑠𝑣𝑜𝑙 ← 𝑠𝑣𝑜𝑙 · 𝑠𝑣𝑜𝑙𝑑𝑟
10: end while
11: return𝑚∗

3.5 Particle Swarm Optimization
Particle Swarm Optimization, initially introduced in [17], draws
inspiration from the dynamics observed within large flocks of birds.
It posits that each particle in the swarm adjusts its trajectory based
on a velocity vector, which is influenced by cognitive and social
components. The procedural framework of [PSO] is detailed in
Algorithm 5 and encompasses the following steps:
• 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑣𝑟 ) returns 𝑆 particles that con-
tain the current model 𝑚, the best found model 𝑚𝑝 , the best
globally found model𝑚𝑔 , and a velocity vector 𝑣 whose length
does not exceed 𝑣𝑟 ;
• 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑀𝑜𝑑𝑒𝑙 (𝑃) updates the best model found so
far by a given particle – if 𝑃 [𝑖]𝑚 ≻ 𝑃 [𝑖]𝑚𝑝 , then 𝑃 [𝑖]𝑚𝑝 ←
𝑃 [𝑖]𝑚 ; this model is also assigned to𝑚∗, if 𝑃 [𝑖]𝑚 ≻𝑚∗;
• 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙 (𝑃) updates the best model found so far
by all of the particles – if 𝑚∗𝑝 ≻ 𝑃 [𝑖]𝑚𝑔 , then 𝑃 [𝑖]𝑚𝑔 ← 𝑚∗𝑝 ,
where𝑚∗𝑝 is the best model among 𝑃 [𝑖]𝑚𝑝 ;
• 𝑚𝑜𝑣𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑃,𝑤, 𝑐1, 𝑐2) updates the velocity vector and then
the model parameters. We assume that 𝑃 [𝑖]𝑚 , 𝑃 [𝑖]𝑚𝑝 𝑃 [𝑖]𝑚𝑔

contain a vector representation of the individual models. For
random values 𝑟1, 𝑟2 ∈ [0, 1], the update formulas are as follows:
– 𝑃 [𝑖]𝑣 ← 𝑤 ·𝑃 [𝑖]𝑣 +𝑐1 ·𝑟1 · (𝑃 [𝑖]𝑚𝑝 −𝑃 [𝑖]𝑚) +𝑐2 ·𝑟2 · (𝑃 [𝑖]𝑚𝑔 −
𝑃 [𝑖]𝑚);

– 𝑃 [𝑖]𝑚 ← 𝑃 [𝑖]𝑚 + 𝑃 [𝑖]𝑣 ;
As in [FSS], when the model fails to meet the constraints after
movement, we use the crop strategy to shorten the model’s shift-
vector.

Algorithm 5 Particle Swarm Optimization [PSO]
Input: 𝑆 – population size, 𝑣𝑟 – initial velocity radius, 𝑤, 𝑐1, 𝑐2 –

velocity vector modification coefficients
1: 𝑚∗ – best model found
2: 𝑃 [0, . . . , 𝑆 − 1] ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑣𝑟 )
3: while not stopping condition do
4: 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑀𝑜𝑑𝑒𝑙 (𝑃)
5: 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙 (𝑃)
6: 𝑚𝑜𝑣𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑃,𝑤, 𝑐1, 𝑐2)
7: end while
8: return𝑚∗

4 POST-OPTIMIZATION TECHNIQUES
In this section, we present two post-optimization strategies de-
signed to: (𝑎) enhance the model’s accuracy by identifying optimal
threshold values, and (𝑏) minimize 𝐿(𝑚) using the backpropaga-
tion algorithm. These techniques are applied across all discussed
algorithms – the former is utilized during the optimization phase
for each model obtained, and the latter is employed for the final,
optimal model𝑚∗ produced by a particular method.

4.1 Heuristic to optimize threshold values
The values of separating class thresholds 𝑡𝑙 , 𝑙 = 1, . . . , 𝑝 − 1, can
be optimized by preference learning algorithms similarly to capc-
ities 𝜇 (𝐺 ′). Then, they are modified as an inherent part of the
optimized solutions in line with the operations of the specific algo-
rithm (e.g., mutation and crossover for [GEN]). Alternatively, the
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methods can learn only the Choquet integral parameters, while the
following approach can determine the thresholds:
• Given capacities‘𝜇𝑀 , for each combination of {𝑡 ′1, . . . , 𝑡 ′𝑝−1}, cal-
culate the classification accuracy over 𝑎∗𝑖 ∈ 𝐴𝑅 ;
• Select the combination {𝑡 ′∗1 , . . . , 𝑡

′∗
𝑝−1}which provides the highest

accuracy and assign it to model𝑀 .
Even though each threshold 𝑡 ′

𝑙
can take any value in [0, 1], we

can limit the search space to values 𝐶ℎ(𝑎∗𝑖 ) ± 𝜖 for each 𝑎∗𝑖 ∈ 𝐴𝑅 .
Searching such a space for small 𝑝 and reasonable sizes of 𝐴𝑅

is fast and guarantees the best possible outcome regarding the
model accuracy. We applied this technique to each algorithm during
experiments whenever a new solution appeared.

4.2 Backpropagation
For model𝑀 and alternative 𝑎∗𝑖 , we can determine the prediction

loss function 𝑙𝑀 (𝑎∗𝑖 ) =
𝑟𝑆𝑀 (𝑎∗𝑖 )2

2 , where:

𝑟𝑆𝑀 (𝑎∗𝑖 ) =


𝑡𝐼𝐷𝑀 (𝑎∗𝑖 )−1 −𝐶ℎ𝑀 (𝑎

∗
𝑖 ), if 𝐶ℎ𝑀 (𝑎∗𝑖 ) < 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 )−1,

𝐶ℎ𝑀 (𝑎∗𝑖 ) − 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 ) , if 𝐶ℎ𝑀 (𝑎∗𝑖 ) > 𝑡𝐼𝐷𝑀 (𝑎∗𝑖 ) ,
0, otherwise.

(15)
This approach facilitates the calculation of the gradient for the
model parameters 𝜇𝑀 (𝐺 ′), enabling the application of the back-
propagation algorithm commonly utilized in optimizing neural
networks [13]. Consistent with its principles, the model parameters
are updated in the following manner:

𝜇𝑀 (𝐺 ′)′ = 𝜇𝑀 (𝐺 ′) −
∑︁

𝑎∗𝑖 ∈𝐴𝑅

𝜂
𝛿𝑙𝑀 (𝑎∗𝑖 )
𝛿𝜇𝑀 (𝐺 ′)

, ∀𝐺 ′ ⊂ 𝐺 ≠ ∅. (16)

When updating individual parameters, there is a risk of constraint
violations. To address this, we adopt a strategy where parameter 𝜂 is
progressively decreased to ensure model validity. This adjustment
process continues until either a predefined processing time limit is
reached or 𝜂 diminishes to a minimal threshold of 10−12, suggesting
that further model enhancements are infeasible without breach-
ing constraints. Notably, this methodology is equally applicable to
threshold adjustments, although it is employed post-optimization
of 𝜇𝑀 (𝐺 ′).

Our preliminary investigations revealed that allocating 5% of
each algorithm’s optimization duration to implementing the back-
propagation scheme yields superior solutions. The supplementary
material includes details.

5 EXPERIMENTAL ANALYSIS
This section presents the experimental analysis framework and the
results that highlight the performance of the evaluated preference
learning methods.

5.1 Benchmark problems
Weevaluated the proposed algorithms using five benchmark datasets:
two (Breast Cancer [BCC] (|𝐴| = 286,𝑚 = 7) and Computer Pro-
cessing Units [CPU] (|𝐴| = 209, 𝑚 = 6)) sourced from the UCI
repository, and three (Employee Selection [ESL] (|𝐴| = 488,𝑚 = 4),
Employee Rejection/Acceptance [ERA] (|𝐴| = 1000,𝑚 = 4), and

Table 1: Analyzed hyperparameter values.

Algorithms Hyperparameters values
MMR, MNR 𝑆 ∈ {1, 5, 10}, 𝑝 ∈ {0.05, 0.1, 0.25, 0.5, 1}
GLS, SLS 𝑆𝑁 ∈ {10, 25, 100, 250}

𝑟 ∈ {0.01, 0.025, 0.1, 0.25, 1.0}
SAN 𝑡𝑚𝑖𝑛 = 10−9, 𝑟 ∈ {0.01, 0.025, 0.1, 0.25, 1.0}

𝑡𝑠 ∈ {10, 100, 1000}, 𝑡𝑑𝑟 ∈ {0.95, 0.99, 0.995}

GEN

𝑆 ∈ {25, 100, 250}, 𝑠𝑡 = 10,
(𝑠𝑆 , 𝑡𝑆 ) ∈ {(RWS, 0), (TS, 2), (TS, 5)},
𝑝𝐶 ∈ {0.8, 1.0}, 𝑠𝐶 ∈ {AC,RC},

𝑝𝑀 ∈ {0.2, 0.5, 0.8}
(𝑠𝑀 , 𝑟𝑀 ) ∈ {(NM, 0.01), (SWM, 0.0)}

FSS

𝑆 ∈ {25, 100, 250},
𝑠𝑖𝑛𝑑𝑠𝑡𝑎𝑟𝑡 ∈ {0.01, 0.05}, 𝑠𝑣𝑜𝑙𝑠𝑡𝑎𝑟𝑡 = 2 · 𝑠𝑖𝑛𝑑𝑠𝑡𝑎𝑟𝑡

𝑠𝑖𝑛𝑑𝑑𝑟 = 𝑠𝑣𝑜𝑙𝑑𝑟 ∈ {0.95, 0.99}
𝑤𝑠𝑐𝑎𝑙𝑒 ∈ {10, 50}, 𝑤𝑑𝑟 ∈ {0.01, 0.02, 0.05}

PSO
𝑆 ∈ {25, 100, 250}, 𝑣𝑟 ∈ {0.01, 0.1}, (𝑤, 𝑐1, 𝑐2) ∈
{(0.8, 0.1, 0.1), (0.6, 0.2, 0.2), (0.4, 0.3, 0.3),
(0.2, 0.4, 0.4), (0, 0.25, 0.75), (0, 0.75, 0.25)}

Lecturers Evaluation [LEV] (|𝐴| = 1000,𝑚 = 4)) obtained from the
WEKA machine learning framework.

Consistent with previous studies in [23, 27, 29], we addressed
the binary classification problem and applied min-max normaliza-
tion to scale the values of individual criteria to the range [0, 1]. To
demonstrate the capabilities of each method, we conducted a com-
parative analysis across three scenarios for each dataset, varying
the distribution of alternatives between the 𝐴𝑅 (reference set) and
𝐴𝑇 (test set) subsets in the ratios of 20 − 80, 50 − 50, and 80 − 20.

In the supplementary material, we illustrate using three algo-
rithms (GEN, FSS, and PSO) to the ESL problem. We demonstrate
how they minimize the loss function in a single run and discuss the
obtained model parameter values.

5.2 Quality measures
To evaluate the algorithms, we used the following two performance
measures:

• Area Under Curve [auc] is the percentage of accurately replicated
comparisons among pairs of test alternatives 𝑎𝑖 , 𝑎𝑘 ∈ 𝐴𝑇 = 𝐴\𝐴𝑅

that were anticipated to be categorized into distinct classes:

𝑎𝑢𝑐 (𝑀) =
∑
𝑎𝑖 :𝐼𝐷𝑀 (𝑎𝑖 )=1

∑
𝑎𝑘 :𝐼𝐷𝑀 (𝑎𝑘 )=2 𝑐𝑀 (𝑎𝑖 , 𝑎𝑘 )

|𝑎𝑖 : 𝐼𝐷𝑀 (𝑎𝑖 ) = 1| · |𝑎𝑘 : 𝐼𝐷𝑀 (𝑎𝑘 ) = 2| , 𝑎𝑖 , 𝑎𝑘 ∈ 𝐴
𝑇 ,

𝑐𝑀 (𝑎𝑖 , 𝑎𝑘 ) =
{
1, if 𝐶ℎ𝑀 (𝑎𝑖 ) < 𝐶ℎ𝑀 (𝑎𝑘 ),
0, otherwise,

, 𝑎𝑖 , 𝑎𝑘 ∈ 𝐴𝑇 .
(17)

• Classification accuracy [acc] reflect the model’s average profi-
ciency in correctly classifying test alternatives 𝑎 ∈ 𝐴𝑇 into their
respective classes. This metric is determined by the proportion of
alternatives correctly assigned to the class specified by the DM
out of the total number of alternatives evaluated:

𝑎𝑐𝑐 (𝑀) = |𝑎 ∈ 𝐴
𝑇 : 𝐼𝑀 (𝑎) = 𝐼𝐷𝑀 (𝑎) |

|𝐴𝑇 | . (18)
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Table 2: Average and standard deviation of 𝑎𝑐𝑐 obtained by
GEN, FSS, and PSO for three datasets, various 𝑝𝑅 values, and
30 seconds of optimization.

Alg. 𝑝𝑅 BCC CPU ESL

GEN
0.2 0.7234 ± 0.0249 0.9036 ± 0.0326 0.9197 ± 0.0112
0.5 0.7278 ± 0.0287 0.9411 ± 0.0281 0.9228 ± 0.0139
0.8 0.7355 ± 0.0540 0.9488 ± 0.0315 0.9271 ± 0.0246

FSS
0.2 0.7265 ± 0.0277 0.9053 ± 0.0305 0.9211 ± 0.0118
0.5 0.7271 ± 0.0271 0.9214 ± 0.0243 0.9241 ± 0.0135
0.8 0.7370 ± 0.0569 0.9257 ± 0.0362 0.9271 ± 0.0242

PSO
0.2 0.7271 ± 0.0223 0.9054 ± 0.0334 0.9209 ± 0.0126
0.5 0.7297 ± 0.0272 0.9301 ± 0.0239 0.9261 ± 0.0141
0.8 0.7336 ± 0.0589 0.9260 ± 0.0358 0.9286 ± 0.0253

5.3 Experimental setup
The experimental analysis was divided into two phases:
• Hyperparameter Optimization – Preliminary Analysis: The objec-
tive was to identify the optimal hyperparameter values for each
combination (𝑑, 𝑝𝑅, 𝑎𝑙𝑔), where 𝑑 is one of the five datasets, 𝑝𝑅
denotes the proportion of the reference set 𝐴𝑅 size relative to
|𝐴|, and 𝑎𝑙𝑔 signifies one of the eight algorithms. Table 1 shows
the hyperparameters for each algorithm. To select the best set-
ting, 10-fold Monte Carlo Cross Validation was used for each
combination (𝑑, 𝑝𝑅, 𝑎𝑙𝑔). This approach creates 10 different prob-
lems by randomly dividing all alternatives into reference (𝐴𝑅 )
and test (𝐴𝑇 ) subsets, without replacement, per the assumed 𝑝𝑅 .
The assignments for 𝐴𝑅 constituted preference information and
enabled the evaluation of solutions at the optimization stage. In
turn, the assignments for 𝐴𝑇 were unknown to the algorithms,
being used to estimate the quality of the obtained models in line
with 𝑎𝑐𝑐 and 𝑎𝑢𝑐 . Subsequently, for each (𝑑, 𝑝𝑅, 𝑎𝑙𝑔), a set of hy-
perparameters was chosen that yielded the highest average value
of 𝑎𝑐𝑐 (𝑚)+𝑎𝑢𝑐 (𝑚)

2 . Across all considered scenarios, the execution
timeout was set to 10 seconds.
• Comparative Analysis of Algorithms: In this phase, we conducted
a 100-fold Monte Carlo Cross-Validation for each (𝑑, 𝑝𝑅, 𝑎𝑙𝑔)
combination using the chosen hyperparameters. We assumed a
30-second execution timeout for each algorithm.

5.4 Results
This section discusses the most interesting experimental results.

5.4.1 Impact of the reference set size (𝑝𝑅 ) on model quality. In-
creasing |𝐴𝑅 | enriches the model with more detailed preference
information, enhancing its ability to align with the incoming data
and reducing the likelihood of learning from biased information.
However, this also elevates the complexity of the optimization task
and extends the computational time required for model evaluation.

Table 2 displays the mean 𝑎𝑐𝑐 values for 𝑝𝑟 ∈ {0.2, 0.5, 0.8}
across three algorithms and three datasets. For all pairs of scenarios
except one, there are slight improvements in 𝑎𝑐𝑐 with an increase
in |𝐴𝑅 |, suggesting that enriching the model with more preference
information positively influences the quality measures. Notably, for
BCC and ESL, the standard deviations also rise with an increase
in |𝐴𝑅 |, hinting at enhanced result stability when 𝑝𝑅 = 0.2. The
observations for 𝑎𝑢𝑐 values align with these findings.

5.4.2 Comparison of algorithm performance. Tables 3 and 4 display
the average 𝑎𝑢𝑐 and 𝑎𝑐𝑐 values achieved by all algorithms across
various problems, with a reference set proportion 𝑝𝑅 = 0.8, along
with their respective rankings. We denote in bold the algorithms for
which the differences to the best performer were not statistically
significant. The standout performers were:

• GEN: Exhibiting the best average ranks for both 𝑎𝑢𝑐 (𝑟0.8𝑎𝑢𝑐 =
1.2) and 𝑎𝑐𝑐 (𝑟0.8𝑎𝑐𝑐 = 2.6) across all datasets. GEN secured the
best average 𝑎𝑢𝑐 values for nearly all problems except one and
maintained strong performance in 𝑎𝑐𝑐 , ranking in the upper half.
However, its advantage is not statistically significant for some
benchmarks, even though it shares the top place with various
approaches. Its least favorable outcomes were observed for CPU
and BCC, suggesting a potential preference for problems with
a larger set of alternatives.
• PSO and FSS: Both algorithms demonstrated comparable per-
formance, with average ranks of 3.8 for 𝑎𝑢𝑐 and 3.8 and 4.0
for 𝑎𝑐𝑐 , respectively, trailing only behind GEN. The Wilcoxon
Signed-Rank Test, with 𝛼 = 0.05, revealed statistically significant
superior 𝑎𝑢𝑐 scores for FSS over PSO on ESL (0.9839 vs. 0.9830,
𝑝-value = 0.029) and highlighted PSO’s advantage in 𝑎𝑢𝑐 for BCC
(0.7432 vs. 0.7393, 𝑝-value = 0.009) and LEV (0.8879 vs. 0.8853, 𝑝-
value = 0.009). When considering 𝑝𝑟 ∈ {0.2, 0.5}, the statistically
significant advantage of PSO and FSS was confirmed for eight
out of 20 other combinations (𝑑 , 𝑝𝑟 , 𝑎𝑐𝑐/𝑎𝑢𝑐); the inverse was
true only for (LEV, 0.5, 𝑎𝑢𝑐), hence slightly favoring PSO. The
detailed results are presented in the supplementary material.

Examining the performance of other approaches reveals that their
𝑟0.8𝑎𝑢𝑐 and 𝑟0.8𝑎𝑐𝑐 ranks are significantly lower. The algorithms employ-
ing Mathematical Programming have excelled in specific quality
metrics and datasets, such as MNR outperforming others in 𝑎𝑢𝑐
for CPU, and MMR leading in 𝑎𝑐𝑐 for both BCC and CPU. De-
spite these achievements, Mathematical Programming and Local
Search strategies generally occupy the lowest average rank posi-
tions. Specifically, MMR and MNR show the weakest performance
in 𝑎𝑢𝑐 , while GLS, SLS, and SAN fall behind in 𝑎𝑐𝑐 .

Within the Local Search algorithms, SLS emerged as the top
performer based on 𝑟0.8𝑎𝑢𝑐 . Delving into dataset-specific analyses,
the Wilcoxon Test, with 𝛼 = 0.05, reveals that SLS’s superiority is
statistically validated only against SAN for CPU, achieving 0.9917
compared to SAN’s 0.9833 (𝑝-value = 6.82 · 10−13). Conversely,
for LEV, SAN significantly outperforms SLS, with scores of 0.8895
against 0.8860 (𝑝-value = 1.98 ·10−5). Regarding 𝑎𝑐𝑐 , GLS appears to
lead in this group. However, its superiority over SAN is statistically
significant only for CPU (0.9483 vs. 0.9279, 𝑝-value = 7.56 · 10−7),
and over SLS solely for LEV (0.8269 vs. 0.8218, 𝑝-value = 0.006).
Notably, for LEV, SAN surpasses GLS (0.8301 vs. 0.8269, 𝑝-value
= 0.033). Therefore, determining the most effective method among
these three is challenging, with the choice heavily influenced by
the specific dataset.

The analogous results attained by several state-of-the-art prefer-
ence learning methods are reported in [23]. Our best-performing
methods prove better than many variants of linear regression, rule-
based algorithms, or outranking- and value-based methods incor-
porating mathematical programming. They are also competitive to
Choquistic regression [29], outperforming it on many datasets in
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Table 3: Average and standard deviation of 𝑎𝑢𝑐 for 80% train data and 20% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.8𝑎𝑢𝑐 )
MMR 0.7430 ± 0.0669 (3) 0.9911 ± 0.0085 (4) 0.9737 ± 0.0145 (8) 0.7258 ± 0.0370 (8) 0.8702 ± 0.0333 (8) 6.2
MNR 0.7301 ± 0.0705 (8) 0.9927 ± 0.0071 (1) 0.9750 ± 0.0125 (7) 0.7515 ± 0.0349 (7) 0.8802 ± 0.0277 (7) 6.0
GLS 0.7366 ± 0.0657 (5) 0.9907 ± 0.0102 (5) 0.9802 ± 0.0110 (6) 0.7562 ± 0.0320 (4) 0.8852 ± 0.0231 (6) 5.2
SLS 0.7366 ± 0.0662 (6) 0.9917 ± 0.0091 (3) 0.9806 ± 0.0095 (5) 0.7540 ± 0.0335 (5) 0.8860 ± 0.0226 (4) 4.6
SAN 0.7357 ± 0.0682 (7) 0.9833 ± 0.0147 (7) 0.9811 ± 0.0097 (4) 0.7532 ± 0.0318 (6) 0.8895 ± 0.0237 (2) 5.2
GEN 0.7440 ± 0.0663 (1) 0.9924 ± 0.0076 (2) 0.9842 ± 0.0086 (1) 0.7634 ± 0.0300 (1) 0.8901 ± 0.0227 (1) 1.2
FSS 0.7393 ± 0.0648 (4) 0.9840 ± 0.0129 (6) 0.9839 ± 0.0082 (2) 0.7591 ± 0.0286 (2) 0.8853 ± 0.0226 (5) 3.8
PSO 0.7432 ± 0.0658 (2) 0.9826 ± 0.0136 (8) 0.9830 ± 0.0093 (3) 0.7583 ± 0.0322 (3) 0.8879 ± 0.0229 (3) 3.8

Table 4: Average and standard deviation of 𝑎𝑐𝑐 for 80% train data and 20% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.8𝑎𝑐𝑐 )
MMR 0.7411 ± 0.0572 (1) 0.9660 ± 0.0238 (1) 0.9201 ± 0.0265 (7) 0.6846 ± 0.0388 (8) 0.8065 ± 0.0320 (8) 5.0
MNR 0.7355 ± 0.0612 (3) 0.9507 ± 0.0296 (2) 0.9169 ± 0.0262 (8) 0.7085 ± 0.0313 (5) 0.8221 ± 0.0277 (5) 4.6
GLS 0.7316 ± 0.0566 (6) 0.9483 ± 0.0332 (5) 0.9241 ± 0.0250 (4) 0.7053 ± 0.0288 (7) 0.8269 ± 0.0232 (3) 5.0
SLS 0.7304 ± 0.0522 (7) 0.9495 ± 0.0318 (3) 0.9213 ± 0.0253 (6) 0.7087 ± 0.0310 (4) 0.8218 ± 0.0249 (6) 5.2
SAN 0.7257 ± 0.0571 (8) 0.9279 ± 0.0395 (6) 0.9223 ± 0.0244 (5) 0.7074 ± 0.0292 (6) 0.8301 ± 0.0236 (2) 5.4
GEN 0.7355 ± 0.0540 (3) 0.9488 ± 0.0315 (4) 0.9271 ± 0.0246 (2) 0.7162 ± 0.0296 (3) 0.8304 ± 0.0242 (1) 2.6
FSS 0.7370 ± 0.0569 (2) 0.9257 ± 0.0362 (8) 0.9271 ± 0.0242 (2) 0.7176 ± 0.0253 (1) 0.8213 ± 0.0242 (7) 4.0
PSO 0.7336 ± 0.0589 (5) 0.9260 ± 0.0358 (7) 0.9286 ± 0.0253 (1) 0.7166 ± 0.0293 (2) 0.8254 ± 0.0252 (4) 3.8

𝑎𝑢𝑐 . These observations confirm the high potential of the delineated
research direction. However, the most advanced deep preference
learning methods using complex preference models attain slightly
better outcomes on all benchmark problems [23].

For the other reference set proportions (𝑝𝑅 ) (see supplementary
material for tables with the detailed results), the average 𝑎𝑢𝑐 rank
values for 𝑝𝑅 = 0.5 resemble those in Table 3, albeit with certain
variations. Notably, SLS shows the most significant improvement,
dropping from 𝑟0.8𝑎𝑢𝑐 = 4.6 to 𝑟0.5𝑎𝑢𝑐 = 4.0. In turn, FSS experiences the
largest decline in its average rank (from 3.8 to 4.2). For 𝑝𝑅 = 0.2,
SLS sees a marked decrease to 𝑟0.2𝑎𝑢𝑐 = 5.2. Also, PSO emerges as
the highest-ranked algorithm, surpassing GEN with 1.8 versus 2.4
and achieving the best average 𝑎𝑢𝑐 across the BCC, ESL, and ERA
datasets. In terms of 𝑎𝑐𝑐 , GEN retains the lowest average rank
(𝑟0.5𝑎𝑐𝑐 = 2.6), but falls behind PSO at 𝑟0.2𝑎𝑐𝑐 with 3.2 versus 1.8. FSS
consistently ranks third across different 𝑝𝑅 values (𝑟0.5𝑎𝑐𝑐 = 4.2 and
𝑟0.2𝑎𝑐𝑐 = 3.6). Identifying clear patterns for the other methods proves
challenging, aside from SAN consistently recording the lowest
average rank among all approaches. The supplementary material
discusses the detailed outcomes of statistical tests.

6 CONCLUSIONS
We introduced the Choquet integral as a preference model for ad-
dressing sorting problems. It is adept at capturing interactions
among the monotonic criteria. Recognizing the limitations of con-
ventional optimization approaches, especially their inefficiency
with a vast array of capacities andmodel constraints, we explored al-
ternativemethods for parameter estimation.We proposed eight opti-
mization algorithms, encompassing twomathematical programming-
based, three local search, and three nature-inspired techniques
that emulate evolutionary processes or the collective behaviors
observed in various animal species. Additionally, we detailed two
post-optimization strategies to enhance the quality of the optimal

solution yielded by each algorithm. An illustrative example was
provided to elucidate the algorithms’ functionality and the inter-
pretation of model parameters.

We conducted comprehensive computational experiments on
five benchmark datasets, varying in attributes and alternatives, to
assess the model quality in terms of classification accuracy and
preference reconstruction between alternative pairs. The experi-
mental analysis was conducted in two phases: (a) identifying the
optimal hyperparameters for each algorithm and problem and (b)
evaluating the performance of models generated by different meth-
ods. The Genetic Algorithm emerged as the most effective, closely
followed by Fish School Search and Particle Swarm Optimization.

Future research directions include refining the current algo-
rithms with alternative strategies for managing constraint space
violations, incorporating ensemble meta-algorithms like bagging
or boosting to enhance performance, and expanding the algorith-
mic suite with additional nature-inspired metaheuristics suitable
for constrained continuous optimization. Moreover, extending the
experimental analysis to include more benchmarks, artificially gen-
erated datasets, a more exhaustive exploration of hyperparameter
spaces, and evaluating algorithm performance under varied stop-
ping conditions would be beneficial.
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1 ILLUSTRATIVE STUDY
This section first illustrates how to calculate the value of the Cho-
quet integral for an example alternative using a model with es-
tablished capacities. Furthermore, it showcases examples of the
optimization processes undertaken by individual algorithms, high-
lighting the progression of learning through visualizations. It delves
into the interpretation of model parameters and includes a discus-
sion on how the model classifies a non-reference alternative into a
specific class.

1.1 Determining the Choquet integral value
To illustrate the use of the Choquet integral, we consider a three-
criteria problem. Figure 1 shows the capacities of the Choquet inte-
gral for each subset of criteria. They indicate:
• a synergy (positive interaction) for a pair (𝑔1, 𝑔2) since
𝜇𝑀 ({𝑔1, 𝑔2}) > 𝜇𝑀 ({𝑔1}) + 𝜇𝑀 ({𝑔2});
• a redundancy (negative interaction) for a pair (𝑔2, 𝑔3) since
𝜇𝑀 ({𝑔2, 𝑔3}) < 𝜇𝑀 ({𝑔2}) + 𝜇𝑀 ({𝑔3});
• no interaction for a pair (𝑔1, 𝑔3) since
𝜇𝑀 ({𝑔1, 𝑔3}) = 𝜇𝑀 ({𝑔1}) + 𝜇𝑀 ({𝑔3}).

Let us consider the following performances of alternative 𝑎: 𝑔1 (𝑎) =
0.5, 𝑔2 (𝑎) = 0.9, and 𝑔3 (𝑎) = 0.3. The Choquet integral value is
computed according to the following equation:

𝐶ℎ𝑀 (𝑎) =
𝑚∑︁
𝑗=1
[𝑔( 𝑗 ) (𝑎) − 𝑔( 𝑗−1) (𝑎)] · 𝜇𝑀 (𝐺 ( 𝑗 ) ).

When considering the performances on various subsets of criteria,
they are as strong as their weakest (least) element. This fact is
reflected in Figure 2. It shows that 𝑎 attains performance of 0.3 for
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μM(∅)=0

μM({g1})=0.4 μM({g2})=0.35 μM({g3})=0.45

μM({g1, g2})=0.8 μM({g1, g3})=0.85 μM({g2, g3})=0.7

μM(G) = 1

Figure 1: Capacities of the Choquet integral used in the ex-
ample.

all three criteria ({𝑔1, 𝑔2, 𝑔3}), 0.5 for a pair {𝑔1, 𝑔2}, and 0.9 for {𝑔2}.
Hence, we order the criteria indices in line with the non-decreasing
performances 𝑔 𝑗 (𝑎), 𝑗 = 1, 2, 3. Since 𝑔3 (𝑎) = 0.3 ≤ 𝑔1 (𝑎) = 0.5 ≤
𝑔2 (𝑎) = 0.9, we get (·) = (3, 1, 2). Moreover, according to the
model’s assumptions, we assume 𝑔(0) (𝑎) = 0. Then, the Choquet
integral for alternative 𝑎 can be computed as follows:

𝐶ℎ𝑀 (𝑎) = [𝑔3 (𝑎) − 𝑔(0) (𝑎)] · 𝜇𝑀 ({𝑔1, 𝑔2, 𝑔3})
+ [𝑔1 (𝑎) − 𝑔3 (𝑎)] · 𝜇𝑀 ({𝑔1, 𝑔2})
+ [𝑔2 (𝑎) − 𝑔1 (𝑎)] · 𝜇𝑀 ({𝑔2}),

which is equivalent to:
𝐶ℎ𝑀 (𝑎) = (0.3 − 0) · 1 + (0.5 − 0.3) · 0.8 + (0.9 − 0.5) · 0.35

= 0.3 + 0.16 + 0.14 = 0.6.
Each subsequent component of the above sum is calculated based
on the minimum performance of the alternative for a given subset
of criteria and the capacity associated with this subset.

1.2 Learning progress for optimization
algorithms

This section demonstrates the optimization process through the
outcomes of three distinct approaches (GEN, FSS, PSO) applied to
a two-class sorting problem derived from the Employee Selection
[ESL] dataset. Preference information was provided as expected
class assignments for all 488 alternatives.

The objective of executing these algorithms was to assess the
quality of both intermediate and final models produced. A uniform
stopping condition of 30 seconds was set for all algorithms. The
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Figure 2: Performances of alternative 𝑎 on the three criteria
and associated model capacities used in the example.

primary goal for each algorithm was to minimize the loss function
value, 𝐿(𝑚∗), of the best solution𝑚∗ identified up to that point. The
progression of loss function improvements over processing time is
depicted in Figure 3, with the initial assumption that 𝐿(𝑚∗) equals
infinity from 𝑡 = 0 seconds until the discovery of the first𝑚∗.
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Figure 3: The change of loss function 𝐿(𝑚∗) value over time
for three preference learning algorithms.

The GEN algorithm commenced its optimization by generating
the initial𝑚∗ model at 1.57 seconds into the execution. This delay
is attributed to the evaluation of a relatively large initial popula-
tion size (𝑆 = 250) required to identify the first optimal individual.
Notably, the loss function value, 𝐿(𝑚∗), for GEN exhibited a con-
sistent decline throughout the optimization period. It achieved the
second-best outcome at the 10-second mark (𝐿(𝑚∗) = 1.192 · 10−3)
and the best result at the conclusion of the 30-second execution
window (𝐿(𝑚∗) = 1.098 · 10−3). The intervals marking successive
enhancements in 𝐿(𝑚∗) appeared to be quite uniform, suggesting
a correlation with the computational effort allocated for generating
successive generations.

The FSS algorithm produced its initial solution at 0.48 seconds,
followed by a series of significant advancements that led to a loss

function value of 𝐿(𝑚∗) = 1.3 · 10−3 shortly after 4.5 seconds. How-
ever, it then experienced a period exceeding 12 seconds during
which it could not enhance its optimal model𝑚∗. After this hiatus,
the algorithm gradually reduced the loss function value, culminat-
ing in 𝐿(𝑚∗) = 1.206 · 10−3 by the end of the execution period.
Despite these incremental improvements, FSS achieved the least
favorable outcomes compared to the other algorithms.

PSO distinguished itself by identifying an initial optimal model
𝑚∗ merely 0.23 seconds into the process, with a loss function value
of 1.372 · 10−3. The most significant reductions in 𝐿(𝑚∗) were
achieved within the initial 1.38 seconds, leading to a solution charac-
terized by 𝐿(𝑚∗) = 1.153 · 10−3. Subsequently, the model’s progress
plateaued, registering only marginal improvements over the ensu-
ing 27.4 seconds, which diminished the loss by a mere 1.31 · 10−7.
This phase likely involved some particles refining the vicinity of the
previously identified optimal solution, while others continued to
explore the broader solution space. This exploration phase yielded
positive results at 28.79 seconds when the algorithm unveiled its
optimal solution, marked by 𝐿(𝑚∗) = 1.146 · 10−3. Following this
discovery, the model experienced minimal enhancements for over
a second before the algorithm concluded.

1.3 Model parameters
Table 1 presents 𝐿(𝑚∗) indicating the performance of the model,
alongside fourteen model parameters 𝜇 (𝐺 ′), 𝐺 ′ ⊂ 𝐺 ≠ ∅, and
a single threshold 𝑡1 for each method, presented in three variations:

(a) first ever obtained𝑚∗;
(b) 𝑚∗ attained after 10 seconds of algorithm execution;
(c) 𝑚∗ obtained upon completion of the algorithm execution.

The remaining model parameters resulting from the constraints
are common to all variants, i.e., 𝜇 (∅) = 0, 𝜇 (𝐺) = 1, 𝑡0 = 0, and
𝑡2 = 1 + 𝜀.

The variation in parameter magnitudes is more pronounced be-
tween models (a) and (b). Specifically, in models derived using the
GEN algorithm, the average deviation among 𝜇 (𝐺 ′),𝐺 ′ ⊂ 𝐺 ≠ ∅
is approximately 0.053, whereas the average discrepancy between
parameters in models (b) and (c) is around 0.039. The disparity
is even more significant in models generated by PSO, with differ-
ences amounting to 0.059 and 0.007, respectively. This trend aligns
with the intuition that the most substantial changes in 𝐿(𝑚∗) occur
in the initial moments of the algorithm’s execution, diminishing
over time as the incremental improvements in subsequent models
become less significant. As the optimization process advances, iden-
tifying superior models becomes more and more challenging, and
the magnitude of enhancements diminishes. This characteristic is
commonly observed in optimization strategies.

Notably, criterion 𝑔4 emerges as the most important factor in the
GEN models. This is evidenced by 𝜇 ({𝑔4}) achieving the highest
values across all single-criterion subsets in all three model variants.
Conversely, among subsets comprising three criteria, 𝜇 ({𝑔1, 𝑔2, 𝑔3})
registers the lowest value, suggesting that the 𝐶ℎ(𝑎) is most nega-
tively affected when 𝑔4 (𝑎) is low. Similarly, for subsets containing
two criteria, the combinations 𝜇 ({𝑔1, 𝑔4}), 𝜇 ({𝑔2, 𝑔4}), and 𝜇 ({𝑔3, 𝑔4})
yield the highest values, with the sole exception being 𝜇 ({𝑔3, 𝑔4}) =
0.3940 in model (a). However, this value sees a significant increase
in subsequent, better performing models (b) and (c), culminating in
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Table 1: Model parameters𝑚∗, 𝑡1, and 𝐿(𝑚∗) for each algorithm and model variant.

Algorithm Model 𝐿(𝑚∗) 𝜇 ({𝑔1}) 𝜇 ({𝑔2}) 𝜇 ({𝑔3}) 𝜇 ({𝑔4}) 𝜇 ({𝑔1, 𝑔2}) 𝜇 ({𝑔1, 𝑔3}) 𝜇 ({𝑔1, 𝑔4}) 𝜇 ({𝑔2, 𝑔3}) 𝜇 ({𝑔2, 𝑔4}) 𝜇 ({𝑔3, 𝑔4}) 𝜇 ({𝑔1, 𝑔2, 𝑔3}) 𝜇 ({𝑔1, 𝑔2, 𝑔4}) 𝜇 ({𝑔1, 𝑔3, 𝑔4}) 𝜇 ({𝑔2, 𝑔3, 𝑔4}) 𝑡1

GEN
(a) 1.275 · 10−3 0.0516 0.1907 0.1195 0.2375 0.2884 0.4586 0.5067 0.4978 0.5744 0.3940 0.5653 0.6248 0.7138 0.6397 0.5923
(b) 1.192 · 10−3 0.1162 0.1760 0.1323 0.2982 0.3311 0.4219 0.5478 0.4001 0.5517 0.5022 0.6056 0.7098 0.7327 0.7330 0.6009
(c) 1.098 · 10−3 0.1319 0.1758 0.1528 0.2706 0.3767 0.4864 0.6404 0.4391 0.5714 0.5636 0.6287 0.7312 0.7840 0.8012 0.6118

FSS
(a) 1.343 · 10−3 0.2716 0.0456 0.4007 0.4096 0.3242 0.5815 0.6614 0.4267 0.4959 0.5608 0.6640 0.7435 0.8000 0.7973 0.6163
(b) 1.300 · 10−3 0.1796 0.1765 0.1491 0.2868 0.3350 0.3939 0.6055 0.4141 0.6096 0.5973 0.6388 0.8224 0.7542 0.8388 0.6120
(c) 1.206 · 10−3 0.1419 0.1321 0.1810 0.1847 0.4663 0.5492 0.6258 0.5220 0.5330 0.5650 0.6106 0.8334 0.7706 0.7983 0.6157

PSO
(a) 1.372 · 10−3 0.2622 0.2748 0.3803 0.1404 0.4268 0.5106 0.7961 0.4768 0.5395 0.7716 0.5564 0.9282 0.9191 0.8094 0.6322
(b) 1.153 · 10−3 0.2090 0.2154 0.1987 0.1404 0.4192 0.5442 0.7094 0.5539 0.5659 0.7327 0.6515 0.8550 0.8601 0.8414 0.6263
(c) 1.146 · 10−3 0.2062 0.2312 0.2084 0.1453 0.4253 0.5551 0.7110 0.5625 0.5877 0.7331 0.6602 0.8646 0.8604 0.8443 0.6270

0.6287 in model (c). Similarly, 𝑔1 is perceived as the least important
criterion in this case.

1.3.1 Interactions between criteria. When using the Choquet inte-
gral, it is possible to determine both the nature (positive or nega-
tive) and the magnitude of interactions among subsets of criteria,
thereby capturing complex relationships. Such nuanced interac-
tions are beyond the scope of strictly additive models, such as the
Additive Value Function (AVF), where the additive principle dic-
tates that for any two disjoint subsets of criteria 𝐺1,𝐺2 ⊆ 𝐺 (i.e.,
𝐺1 ∩ 𝐺2 = ∅), the value 𝜇 (𝐺1 ∪ 𝐺2) is always equal to the sum
𝜇 (𝐺1) + 𝜇 (𝐺2). This principle does not hold in non-additive models
like the one under consideration, enabling the evaluation of the
difference 𝜇 (𝐺1 ∪𝐺2) − (𝜇 (𝐺1) + 𝜇 (𝐺2)). This difference provides
insight into the strength and character of the interactions between
the subsets.

For model (c) derived using GEN, the interaction for the sub-
set {𝑔1, 𝑔4} is calculated as 𝜇 ({𝑔1, 𝑔4}) − (𝜇 ({𝑔1}) + 𝜇 ({𝑔4})) =
0.6404 − (0.1319 + 0.2706) = 0.2379. This value represents the
most significant interaction among the 2-criteria subsets within
this model. Conversely, the minimal interaction value is observed
for the subset comprising criteria 𝑔1 and 𝑔2, amounting to 0.0690.
Despite being considerably lower, this value still signifies a positive
interaction between these criteria.

In the case of the best model produced by FSS, all 2-criteria in-
teractions exhibit positive values. This model attributes the highest
and lowest interaction strengths to the same pairs of criteria as the
GEN model (0.2993 and 0.1923, respectively). However, model (c)
generated by PSO identifies pair {𝑔1, 𝑔2} as having the least inter-
action, with a value of 𝜇 ({𝑔1, 𝑔2}) = −0.012, suggesting a negative
interaction between these features. Additionally, this model high-
lights a different pair, {𝑔3, 𝑔4}, as having the maximum synergy,
with an interaction strength of 𝜇 ({𝑔3, 𝑔4}) = 0.3795.

1.4 Assigning alternatives to classes
This section illustrates the computation of𝐶ℎ(𝑏) for a given model
𝑀 and the subsequent classification of an alternative into a deci-
sion class. We will elucidate this process using models (a) and (c)
obtained with GEN. Consider an alternative 𝑏 characterized by the
following performances: 𝑔1 (𝑏) = 0.7, 𝑔2 (𝑏) = 0.5, 𝑔3 (𝑏) = 0.4, and
𝑔4 (𝑏) = 0.8.

This section illustrates the classification of an example alterna-
tive into a decision class.Wewill elucidate this process usingmodels
(a) and (c) obtained with GEN. Consider an alternative 𝑏 charac-
terized by the following performances: 𝑔1 (𝑏) = 0.7, 𝑔2 (𝑏) = 0.5,
𝑔3 (𝑏) = 0.4, and 𝑔4 (𝑏) = 0.8.

Similar to the example presented in Section 1.1, it is first nec-
essary to determine the order of criteria indices aligning with the
non-decreasing order of performances 𝑔 𝑗 (𝑏), 𝑗 = 1, 2, 3, 4. For the
considered alternative 𝑏, it is (·) = (3, 2, 1, 4), and 𝑔(0) (𝑏) = 0. For
alternative 𝑏, the value of the Choquet integral is computed as
follows:

𝐶ℎ𝑀 (𝑏) = [𝑔3 (𝑏) − 𝑔(0) (𝑏)] · 𝜇𝑀 (𝐺)
+ [𝑔2 (𝑏) − 𝑔3 (𝑏)] · 𝜇𝑀 ({𝑔1, 𝑔2, 𝑔4})
+ [𝑔1 (𝑏) − 𝑔2 (𝑏)] · 𝜇𝑀 ({𝑔1, 𝑔4})
+ [𝑔4 (𝑏) − 𝑔1 (𝑏)] · 𝜇𝑀 ({𝑔4}),

which is equivalent to:

𝐶ℎ𝑀 (𝑏) = 0.4 · 𝜇𝑀 (𝐺) + 0.1 · 𝜇𝑀 ({𝑔1, 𝑔2, 𝑔4})
+0.2 · 𝜇𝑀 ({𝑔1, 𝑔4}) + 0.1 · 𝜇𝑀 ({𝑔4}) .

For the twomodelsmentioned above, these values are𝐶ℎ𝐺𝐸𝑁 (𝑎) (𝑏) =
0.5876 and 𝐶ℎ𝐺𝐸𝑁 (𝑐 ) (𝑏) = 0.6283, respectively. For model (a), this
leads to assigning 𝑏 to class 𝐶1, as 𝑡1 = 0.5923 > 𝐶ℎ𝐺𝐸𝑁 (𝑎) (𝑏). In
turn, for model (c), 𝑡1 = 0.6118 < 𝐶ℎ𝐺𝐸𝑁 (𝑐 ) (𝑏), and therefore, 𝑏 is
assigned to 𝐶2.

2 PRELIMINARY ANALYSIS OF THE
USEFULNESS OF BACKPROPAGATION

To verify the usefulness of the backpropagation postoptimization
technique, we performed a 10-fold Monte Carlo Cross Validation
for all five datasets and eight algorithms, assuming 𝑝𝑅 = 0.8. The
execution timeout was set to 10 seconds, and the subject of the
comparison were the results obtained by the algorithms in four
variants – without backpropagation (marked as 0%) and using this
technique for 5%, 10%, and 20% of the assumed execution time. The
average values of 𝑎𝑢𝑐 and 𝑎𝑐𝑐 obtained by all algorithms in the four
scenarios are presented in Table 6.

For both measures, the best average results were achieved by the
approach in which 5% of the execution time was allocated to back-
propagation optimization of the best-found model. However, the
advantage over the variant with 10% timeshare devoted to backprop-
agation is negligible. The average values indicate the superiority
of these two settings over the variant without post-optimization.
Furthermore, the Wilcoxon signed-rank test shows a statistically
significant advantage for 5% setting over 0% counterpart in the
context of both quality measures (the 𝑝-values are 0.015 for 𝑎𝑢𝑐
and 0.035 for 𝑎𝑐𝑐). Additionally, for 20%, the 𝑎𝑢𝑐 values are, on av-
erage, worse than for the variants in which less time was spent on
backpropagation and comparable to the results without backpropa-
gation. This may indicate a tendency for the results to deteriorate
with increasing time spent on post-optimization. For this reason,
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Table 2: Average and standard deviation of 𝑎𝑢𝑐 for 20% train data and 80% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.2𝑎𝑢𝑐 )
MMR 0.7291 ± 0.0179 (7) 0.9794 ± 0.0157 (2) 0.9707 ± 0.0081 (8) 0.7376 ± 0.0171 (8) 0.8659 ± 0.0156 (8) 6.6
MNR 0.7054 ± 0.0309 (8) 0.9828 ± 0.0197 (1) 0.9727 ± 0.0065 (7) 0.7469 ± 0.0207 (7) 0.8674 ± 0.0197 (7) 6.0
GLS 0.7341 ± 0.0179 (4) 0.9692 ± 0.0193 (8) 0.9778 ± 0.0052 (4) 0.7486 ± 0.0156 (5) 0.8792 ± 0.0089 (4) 5.0
SLS 0.7324 ± 0.0185 (6) 0.9713 ± 0.0169 (7) 0.9760 ± 0.0058 (5) 0.7523 ± 0.0131 (3) 0.8791 ± 0.0098 (5) 5.2
SAN 0.7329 ± 0.0201 (5) 0.9713 ± 0.0165 (6) 0.9755 ± 0.0056 (6) 0.7508 ± 0.0137 (4) 0.8794 ± 0.0097 (3) 4.8
GEN 0.7342 ± 0.0179 (3) 0.9736 ± 0.0143 (3) 0.9781 ± 0.0049 (3) 0.7542 ± 0.0133 (2) 0.8837 ± 0.0078 (1) 2.4
FSS 0.7346 ± 0.0194 (2) 0.9735 ± 0.0150 (5) 0.9799 ± 0.0052 (2) 0.7473 ± 0.0172 (6) 0.8751 ± 0.0106 (6) 4.2
PSO 0.7378 ± 0.0189 (1) 0.9735 ± 0.0146 (4) 0.9805 ± 0.0051 (1) 0.7546 ± 0.0133 (1) 0.8830 ± 0.0087 (2) 1.8

Table 3: Average and standard deviation of 𝑎𝑐𝑐 for 20% train data and 80% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.2𝑎𝑐𝑐 )
MMR 0.7232 ± 0.0267 (5) 0.9352 ± 0.0337 (1) 0.9167 ± 0.0121 (7) 0.6885 ± 0.0204 (8) 0.8001 ± 0.0200 (8) 5.8
MNR 0.7066 ± 0.0396 (8) 0.9284 ± 0.0426 (2) 0.9114 ± 0.0150 (8) 0.7066 ± 0.0198 (2) 0.8095 ± 0.0201 (7) 5.4
GLS 0.7250 ± 0.0220 (3) 0.8962 ± 0.0367 (8) 0.9194 ± 0.0119 (4) 0.7011 ± 0.0164 (6) 0.8150 ± 0.0148 (5) 5.2
SLS 0.7212 ± 0.0234 (7) 0.9026 ± 0.0350 (6) 0.9185 ± 0.0115 (5) 0.7052 ± 0.0158 (4) 0.8174 ± 0.0137 (3) 5.0
SAN 0.7216 ± 0.0226 (6) 0.9008 ± 0.0327 (7) 0.9179 ± 0.0121 (6) 0.6994 ± 0.0158 (7) 0.8152 ± 0.0139 (4) 6.0
GEN 0.7234 ± 0.0249 (4) 0.9036 ± 0.0326 (5) 0.9197 ± 0.0112 (3) 0.7060 ± 0.0151 (3) 0.8197 ± 0.0120 (1) 3.2
FSS 0.7265 ± 0.0277 (2) 0.9053 ± 0.0305 (4) 0.9211 ± 0.0118 (1) 0.7029 ± 0.0177 (5) 0.8124 ± 0.0139 (6) 3.6
PSO 0.7271 ± 0.0223 (1) 0.9054 ± 0.0334 (3) 0.9209 ± 0.0126 (2) 0.7087 ± 0.0165 (1) 0.8179 ± 0.0137 (2) 1.8

Table 4: Average and standard deviation of 𝑎𝑢𝑐 for 50% train data and 50% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.5𝑎𝑢𝑐 )
MMR 0.7334 ± 0.0307 (6) 0.9885 ± 0.0112 (3) 0.9731 ± 0.0081 (8) 0.7337 ± 0.0246 (8) 0.8683 ± 0.0166 (8) 6.6
MNR 0.7222 ± 0.0343 (8) 0.9916 ± 0.0065 (1) 0.9746 ± 0.0066 (7) 0.7500 ± 0.0257 (7) 0.8736 ± 0.0244 (7) 6.0
GLS 0.7349 ± 0.0334 (4) 0.9859 ± 0.0116 (6) 0.9788 ± 0.0065 (5) 0.7551 ± 0.0174 (6) 0.8856 ± 0.0119 (4) 5.0
SLS 0.7340 ± 0.0293 (5) 0.9875 ± 0.0096 (4) 0.9789 ± 0.0061 (4) 0.7559 ± 0.0165 (4) 0.8861 ± 0.0120 (3) 4.0
SAN 0.7320 ± 0.0315 (7) 0.9855 ± 0.0098 (7) 0.9784 ± 0.0059 (6) 0.7553 ± 0.0173 (5) 0.8863 ± 0.0115 (2) 5.4
GEN 0.7388 ± 0.0296 (1) 0.9893 ± 0.0101 (2) 0.9815 ± 0.0052 (2) 0.7629 ± 0.0155 (1) 0.8899 ± 0.0106 (1) 1.4
FSS 0.7355 ± 0.0315 (3) 0.9834 ± 0.0088 (8) 0.9819 ± 0.0052 (1) 0.7598 ± 0.0147 (3) 0.8843 ± 0.0115 (6) 4.2
PSO 0.7372 ± 0.0302 (2) 0.9860 ± 0.0085 (5) 0.9815 ± 0.0052 (3) 0.7611 ± 0.0142 (2) 0.8850 ± 0.0115 (5) 3.4

Table 5: Average and standard deviation of 𝑎𝑐𝑐 for 50% train data and 50% test data for five datasets.

Algorithm BCC CPU ESL ERA LEV Avg. rank (𝑟0.5𝑎𝑐𝑐 )
MMR 0.7307 ± 0.0262 (1) 0.9585 ± 0.0226 (1) 0.9198 ± 0.0137 (5) 0.6885 ± 0.0280 (8) 0.8021 ± 0.0211 (8) 4.6
MNR 0.7157 ± 0.0336 (8) 0.9514 ± 0.0237 (2) 0.9158 ± 0.0156 (8) 0.7105 ± 0.0222 (4) 0.8167 ± 0.0198 (7) 5.8
GLS 0.7247 ± 0.0331 (5) 0.9305 ± 0.0273 (5) 0.9192 ± 0.0161 (6) 0.7063 ± 0.0170 (7) 0.8206 ± 0.0165 (4) 5.4
SLS 0.7246 ± 0.0270 (6) 0.9366 ± 0.0305 (4) 0.9200 ± 0.0138 (4) 0.7089 ± 0.0172 (5) 0.8247 ± 0.0133 (2) 4.2
SAN 0.7246 ± 0.0291 (6) 0.9298 ± 0.0287 (7) 0.9185 ± 0.0137 (7) 0.7081 ± 0.0164 (6) 0.8230 ± 0.0132 (3) 5.8
GEN 0.7278 ± 0.0287 (3) 0.9411 ± 0.0281 (3) 0.9228 ± 0.0139 (3) 0.7158 ± 0.0165 (3) 0.8276 ± 0.0125 (1) 2.6
FSS 0.7271 ± 0.0271 (4) 0.9214 ± 0.0243 (8) 0.9241 ± 0.0135 (2) 0.7163 ± 0.0168 (2) 0.8206 ± 0.0144 (5) 4.2
PSO 0.7297 ± 0.0272 (2) 0.9301 ± 0.0239 (6) 0.9261 ± 0.0141 (1) 0.7172 ± 0.0169 (1) 0.8204 ± 0.0145 (6) 3.2

Table 6: Comparison of the average values of 𝑎𝑢𝑐 and 𝑎𝑐𝑐
for approaches without and with backpropagation post-
optimization.

Measure 0% 5% 10% 20%
𝑎𝑢𝑐 0.8647 0.8667 0.8664 0.8646
𝑎𝑐𝑐 0.8095 0.8173 0.8172 0.8168

we decided to include this technique in the experimental analysis,
devoting 5% of algorithm execution time to this approach.

3 COMPARISON OF ALGORITHMS’
PERFORMANCE

This section displays the average 𝑎𝑢𝑐 and 𝑎𝑐𝑐 values achieved by all
algorithms across various problems, with reference set proportions
𝑝𝑅 = 0.2 (see Tables 2 and 3) and 𝑝𝑅 = 0.5 (see Tables 4 and 5).
Similar to the main paper, we denote in bold the algorithms for
which the differences to the best performer were not statistically
significant.

For all considered proportions 𝑝𝑟 , the algorithms recorded the
highest 𝑎𝑢𝑐 scores for the CPU and ESL datasets. Conversely, the
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Table 7: The comparison of differences in 𝑎𝑢𝑐 for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
20% train data and 80% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ≺ (0.002) ? ≺ (< 10−7) ? ?
FSS ? ? ≺ (< 10−4) ≻ (< 10−4) ≻ (< 10−10)
SLS ? ? ≻ (< 10−6) ? ≻ (< 10−10)
GLS ? ≻ (0.003) ? ≻ (< 10−5) ≻ (< 10−11)
SAN ? ? ≻ (< 10−7) ≻ (< 10−4) ≻ (< 10−7)
MNR ≻ (< 10−14) ≺ (< 10−5) ≻ (< 10−11) ≻ (0.002) ≻ (< 10−11)
MMR ≻ (< 10−3) ≺ (0.001) ≻ (< 10−15) ≻ (< 10−13) ≻ (< 10−17)

PSO

FSS ≻ (0.002) ? ? ≻ (< 10−5) ≻ (< 10−8)
SLS ≻ (< 10−4) ? ≻ (< 10−12) ? ≻ (< 10−6)
GLS ≻ (< 10−3) ≻ (0.002) ≻ (< 10−8) ≻ (< 10−5) ≻ (< 10−6)
SAN ≻ (< 10−4) ? ≻ (< 10−11) ≻ (< 10−3) ≻ (< 10−5)
MNR ≻ (< 10−15) ≺ (< 10−6) ≻ (< 10−15) ≻ (< 10−3) ≻ (< 10−10)
MMR ≻ (< 10−9) ≺ (0.002) ≻ (< 10−17) ≻ (< 10−13) ≻ (< 10−16)

FSS

SLS ? ? ≻ (< 10−10) ≺ (0.006) ≺ (< 10−3)
GLS ? ≻ (0.009) ≻ (< 10−5) ? ≺ (< 10−3)
SAN ≻ (0.025) ? ≻ (< 10−10) ? ≺ (< 10−3)
MNR ≻ (< 10−14) ≺ (< 10−5) ≻ (< 10−15) ? ≻ (0.001)
MMR ≻ (< 10−3) ≺ (0.001) ≻ (< 10−16) ≻ (< 10−5) ≻ (< 10−7)

SLS

GLS ? ? ≺ (< 10−3) ≻ (0.002) ?
SAN ? ? ? ? ?
MNR ≻ (< 10−12) ≺ (< 10−6) ≻ (< 10−5) ≻ (0.021) ≻ (< 10−7)
MMR ≻ (0.007) ≺ (< 10−3) ≻ (< 10−11) ≻ (< 10−11) ≻ (< 10−13)

GLS
SAN ? ? ≻ (< 10−5) ≺ (0.043) ?
MNR ≻ (< 10−14) ≺ (< 10−7) ≻ (< 10−11) ? ≻ (< 10−7)
MMR ≻ (< 10−3) ≺ (< 10−4) ≻ (< 10−13) ≻ (< 10−8) ≻ (< 10−14)

SAN MNR ≻ (< 10−13) ≺ (< 10−6) ≻ (< 10−4) ? ≻ (< 10−7)
MMR ≻ (0.002) ≺ (< 10−4) ≻ (< 10−9) ≻ (< 10−10) ≻ (< 10−14)

MNR MMR ≺ (< 10−11) ≻ (0.005) ≻ (0.006) ≻ (< 10−4) ?

ERA and BCC datasets emerged as the most challenging, exhibiting
vastly lower mean 𝑎𝑢𝑐 values. A similar pattern is observed for 𝑎𝑐𝑐
scores, albeit with marginally lower absolute figures. An intriguing
aspect to consider is the variation across datasets, reflected in the
range of mean values achieved by the algorithms. For CPU and ESL,
the disparity between the highest and lowest mean 𝑎𝑢𝑐 values was
relatively narrow. In contrast, for LEV and ERA, the differences
were more pronounced. This suggests that benchmark datasets
with a larger set of alternatives may offer a better opportunity
to highlight significant distinctions between algorithms in terms
of 𝑎𝑢𝑐 . However, a parallel examination of 𝑎𝑐𝑐 values does not
universally support these findings. Here, the greatest variances
were observed for CPU and ERA, with the smallest differences
noted for ESL and BCC.

To reflect a comprehensive picture enabling the comparison of
algorithms in the considered scenarios, Tables 7–12 summarize the
results verifying the statistical significance of differences for all
pairs of algorithms, for both quality measures, taking into account
the analyzed distributions of alternatives to the reference and test
sets – 𝑝𝑟 ∈ {0.2, 0.5, 0.8}. The symbols in the tables indicate whether
and which algorithm in a given pair attained significantly better
results according to the Wilcoxon Signed-Rank Test with 𝛼 = 0.05.
The 𝑝-value of the test performed is provided in round brackets.

Among all problems with known assignments for 𝑝𝑟 = 20% of
the alternatives, PSO outperformed other approaches, achieving
both 𝑟0.2𝑎𝑢𝑐 and 𝑟0.2𝑎𝑐𝑐 of 1.8. For all problems except CPU, the aver-
age values obtained by PSO were among the best two, and none
of the other methods statistically significantly outperformed this

Table 8: The comparison of differences in 𝑎𝑐𝑐 for all pairs of
algorithms usingWilcoxon signed rank test (p-value) for 20%
train data and 80% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ? ? ? ≺ (0.033) ?
FSS ? ? ≺ (0.040) ? ≻ (< 10−5)
SLS ? ? ≻ (0.043) ? ≻ (0.032)
GLS ? ≻ (0.031) ? ≻ (< 10−3) ≻ (< 10−4)
SAN ? ? ≻ (0.015) ≻ (< 10−5) ≻ (< 10−3)
MNR ≻ (< 10−5) ≺ (< 10−6) ≻ (< 10−7) ? ≻ (< 10−5)
MMR ? ≺ (< 10−9) ≻ (0.010) ≻ (< 10−10) ≻ (< 10−14)

PSO

FSS ? ? ? ≻ (0.005) ≻ (0.001)
SLS ≻ (0.006) ? ≻ (0.017) ≻ (0.023) ?
GLS ? ≻ (< 10−3) ? ≻ (< 10−5) ≻ (0.023)
SAN ≻ (0.021) ≻ (0.044) ≻ (0.006) ≻ (< 10−7) ≻ (0.019)
MNR ≻ (< 10−6) ≺ (< 10−6) ≻ (< 10−7) ? ≻ (< 10−3)
MMR ? ≺ (< 10−9) ≻ (< 10−3) ≻ (< 10−11) ≻ (< 10−13)

FSS

SLS ≻ (0.010) ? ≻ (0.003) ? ≺ (< 10−3)
GLS ? ≻ (0.006) ≻ (0.043) ? ?
SAN ≻ (0.013) ? ≻ (0.001) ≻ (0.035) ≺ (0.029)
MNR ≻ (< 10−5) ≺ (< 10−5) ≻ (< 10−8) ? ?
MMR ? ≺ (< 10−9) ≻ (< 10−3) ≻ (< 10−7) ≻ (< 10−8)

SLS

GLS ? ≻ (0.044) ? ≻ (0.005) ≻ (0.007)
SAN ? ? ? ≻ (< 10−3) ≻ (0.044)
MNR ≻ (0.002) ≺ (< 10−6) ≻ (< 10−5) ? ≻ (< 10−3)
MMR ? ≺ (< 10−9) ≻ (0.029) ≻ (< 10−9) ≻ (< 10−12)

GLS
SAN ≻ (0.039) ? ? ? ?
MNR ≻ (< 10−5) ≺ (< 10−8) ≻ (< 10−6) ≺ (0.003) ≻ (0.007)
MMR ? ≺ (< 10−11) ≻ (0.022) ≻ (< 10−5) ≻ (< 10−10)

SAN MNR ≻ (< 10−4) ≺ (< 10−8) ≻ (< 10−5) ≺ (< 10−3) ≻ (0.012)
MMR ? ≺ (< 10−11) ? ≻ (< 10−5) ≻ (< 10−10)

MNR MMR ≺ (< 10−4) ? ≺ (< 10−3) ≻ (< 10−8) ≻ (< 10−4)

algorithm. Considering CPU, it was second only to the mathemat-
ical programming approaches, which performed the worst in all
other problems, except the 𝑎𝑐𝑐 for the ERA problem, where MNR
achieved competitive results.

The second choice is GEN, with average rankings of 2.4 for 𝑎𝑢𝑐
and 3.2 for 𝑎𝑐𝑐 . This approach achieved the best results for LEV
and was among the best methods for ERA on 𝑎𝑢𝑐 and BCC on
𝑎𝑐𝑐 . In other cases, it was among the best three algorithms, with
one exception of 𝑎𝑐𝑐 for the CPU problem (0.9036), where it was
significantly inferior to MMR (0.9352, p-value < 10−9) and MNR
(0.9284, p-value < 10−6).

The following best-performing approachwas FSS with 𝑟0.2𝑎𝑢𝑐 = 4.2
and 𝑟0.2𝑎𝑐𝑐 = 3.6. It obtained one of the best results for ESL, but in
other cases, it was inferior to other approaches. For example, for
LEV, it performed significantly worse performance than GEN, PSO,
SAN, and SLS for both measures, as well as for GLS on 𝑎𝑢𝑐 (0.8751
vs. 0.8792, p-value < 10−3).

Among the group of local search approaches, the results for
𝑎𝑢𝑐 are similar, and in the case of SAN and SLS, no significant
differences were observed. In turn,𝐺𝐿𝑆 (0.9778) outperformed both
of these methods on ESL (p-value < 10−3 for both comparisons),
and for ERA (0.7486), it performed significantly worse (p-value
= 0.002 for SLS and 0.043 for SAN). In turn, for 𝑎𝑐𝑐 , SLS obtained
the best average ranking of 𝑟0.2𝑎𝑐𝑐 = 5.0, outperforming both methods
on ERA and LEV, as well as GLS on the CPU problem (0.9026 vs.
0.8962, p-value = 0.044).

For problems in which half of the alternatives provided refer-
ence assignments (𝑝𝑟 = 0.5), the advantage of GEN over the other
algorithms is evident. Taking into account 𝑎𝑢𝑐 , for two problems,
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Table 9: The comparison of differences in 𝑎𝑢𝑐 for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
50% train data and 50% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ? ≻ (< 10−6) ? ≻ (0.023) ≻ (< 10−9)
FSS ≻ (0.004) ≻ (< 10−9) ≺ (0.012) ≻ (< 10−3) ≻ (< 10−10)
SLS ≻ (< 10−3) ≻ (< 10−3) ≻ (< 10−10) ≻ (< 10−7) ≻ (< 10−8)
GLS ≻ (0.008) ≻ (< 10−4) ≻ (< 10−12) ≻ (< 10−8) ≻ (< 10−8)
SAN ≻ (< 10−4) ≻ (< 10−5) ≻ (< 10−13) ≻ (< 10−7) ≻ (< 10−6)
MNR ≻ (< 10−9) ? ≻ (< 10−16) ≻ (< 10−7) ≻ (< 10−12)
MMR ≻ (< 10−3) ? ≻ (< 10−17) ≻ (< 10−17) ≻ (< 10−17)

PSO

FSS ? ≻ (< 10−3) ≺ (0.028) ? ?
SLS ≻ (0.021) ≺ (0.006) ≻ (< 10−7) ≻ (< 10−3) ?
GLS ≻ (0.036) ? ≻ (< 10−8) ≻ (< 10−5) ?
SAN ≻ (< 10−3) ? ≻ (< 10−10) ≻ (< 10−5) ≺ (0.026)
MNR ≻ (< 10−9) ≺ (< 10−6) ≻ (< 10−17) ≻ (< 10−5) ≻ (< 10−5)
MMR ≻ (0.012) ≺ (0.020) ≻ (< 10−16) ≻ (< 10−16) ≻ (< 10−15)

FSS

SLS ? ≺ (< 10−6) ≻ (< 10−10) ≻ (0.006) ≺ (0.018)
GLS ? ≺ (< 10−4) ≻ (< 10−11) ≻ (< 10−3) ?
SAN ≻ (0.006) ≺ (0.006) ≻ (< 10−13) ≻ (< 10−3) ≺ (0.006)
MNR ≻ (< 10−7) ≺ (< 10−11) ≻ (< 10−16) ≻ (< 10−4) ≻ (< 10−3)
MMR ? ≺ (< 10−5) ≻ (< 10−17) ≻ (< 10−16) ≻ (< 10−15)

SLS

GLS ? ? ? ? ?
SAN ? ≻ (0.006) ? ? ?
MNR ≻ (< 10−5) ≺ (< 10−5) ≻ (< 10−11) ? ≻ (< 10−6)
MMR ? ? ≻ (< 10−13) ≻ (< 10−14) ≻ (< 10−17)

GLS
SAN ? ? ? ? ?
MNR ≻ (< 10−6) ≺ (< 10−6) ≻ (< 10−9) ? ≻ (< 10−6)
MMR ? ≺ (0.016) ≻ (< 10−14) ≻ (< 10−13) ≻ (< 10−16)

SAN MNR ≻ (< 10−5) ≺ (< 10−7) ≻ (< 10−9) ? ≻ (< 10−6)
MMR ? ≺ (0.007) ≻ (< 10−12) ≻ (< 10−14) ≻ (< 10−16)

MNR MMR ≺ (< 10−5) ≻ (0.020) ≻ (0.028) ≻ (< 10−7) ≻ (< 10−3)

Table 10: The comparison of differences in 𝑎𝑐𝑐 for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
50% train data and 50% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ? ≻ (< 10−4) ≺ (< 10−3) ? ≻ (< 10−7)
FSS ? ≻ (< 10−8) ≺ (0.042) ? ≻ (< 10−6)
SLS ? ≻ (0.041) ≻ (0.002) ≻ (< 10−3) ≻ (0.002)
GLS ? ≻ (< 10−4) ≻ (< 10−3) ≻ (< 10−7) ≻ (< 10−6)
SAN ? ≻ (< 10−4) ≻ (< 10−5) ≻ (< 10−5) ≻ (< 10−4)
MNR ≻ (0.001) ≺ (< 10−3) ≻ (< 10−6) ≻ (0.024) ≻ (< 10−6)
MMR ? ≺ (< 10−6) ≻ (0.009) ≻ (< 10−13) ≻ (< 10−16)

PSO

FSS ? ≻ (0.001) ≻ (0.029) ? ?
SLS ≻ (0.007) ≺ (0.006) ≻ (< 10−5) ≻ (< 10−5) ≺ (< 10−3)
GLS ≻ (0.013) ? ≻ (< 10−6) ≻ (< 10−7) ?
SAN ≻ (0.013) ? ≻ (< 10−7) ≻ (< 10−5) ≺ (0.032)
MNR ≻ (< 10−4) ≺ (< 10−8) ≻ (< 10−10) ≻ (0.009) ?
MMR ? ≺ (< 10−11) ≻ (< 10−6) ≻ (< 10−13) ≻ (< 10−11)

FSS

SLS ≻ (0.048) ≺ (< 10−6) ≻ (< 10−3) ≻ (< 10−4) ≺ (< 10−3)
GLS ? ≺ (< 10−3) ≻ (< 10−4) ≻ (< 10−6) ?
SAN ? ≺ (0.004) ≻ (< 10−5) ≻ (< 10−4) ?
MNR ≻ (< 10−3) ≺ (< 10−13) ≻ (< 10−6) ≻ (0.014) ≻ (0.032)
MMR ? ≺ (< 10−14) ≻ (< 10−4) ≻ (< 10−13) ≻ (< 10−12)

SLS

GLS ? ≻ (0.018) ? ≻ (0.033) ≻ (< 10−3)
SAN ? ≻ (0.020) ? ? ≻ (0.042)
MNR ≻ (0.018) ≺ (< 10−5) ≻ (< 10−3) ? ≻ (< 10−3)
MMR ≺ (0.010) ≺ (< 10−8) ? ≻ (< 10−8) ≻ (< 10−15)

GLS
SAN ? ? ? ? ?
MNR ? ≺ (< 10−7) ≻ (0.006) ≺ (0.025) ?
MMR ≺ (0.018) ≺ (< 10−10) ? ≻ (< 10−8) ≻ (< 10−11)

SAN MNR ≻ (0.026) ≺ (< 10−7) ≻ (0.018) ≺ (0.023) ≻ (0.005)
MMR ≺ (0.035) ≺ (< 10−10) ? ≻ (< 10−9) ≻ (< 10−14)

MNR MMR ≺ (< 10−4) ≺ (0.003) ≺ (0.002) ≻ (< 10−8) ≻ (< 10−8)

it was significantly better than all the others (p-values ≤ 0.023 for
ERA and < 10−6 for LEV), and for the next two (BCC and CPU), it
ranked among the best methods. The only exception was the ESL
problem, for which GEN was second only to FSS (0.9815 vs. 0.9819,
p-value = 0.012). Similarly, for 𝑎𝑐𝑐 , GEN scored the best 𝑟0.5𝑎𝑐𝑐 = 2.6,
and it was only surpassed by MNR and MMR for CPU (p-values
< 10−3) and FSS and PSO for ESL (p-values ≤ 0.042).

PSO (𝑟0.5𝑎𝑢𝑐 = 3.4) achieved slightly worse results than GEN. How-
ever, in the case of 𝑎𝑢𝑐 , it was among the best algorithms – when
considering the statistical significance of differences – only for the
BCC problem. For the remaining four datasets, GEN turned out to
be better on all of them, and additionally, FSS for the ESL dataset. In
the case of 𝑎𝑐𝑐 , for BCC and ERA problems, it significantly outper-
formed local search and mathematical programming approaches
(except MMR in the case of BCC, where no significant differences
were noticed). Moreover, considering the ESL problem, PSO has
gained a significant advantage over all other algorithms. However,
for the remaining two problems, it performed worse, scoring the
sixth average value among all approaches. Similar phenomena can
also be observed for FSS, which was usually slightly inferior to PSO
on both quality measures, except for 𝑎𝑢𝑐 for ESL, where it achieved
a significantly better result (0.9819 vs. 0.9815, p-value = 0.028) and
𝑎𝑐𝑐 for LEV, where the difference was not significant.

Among local search approaches, SLS shows the best ranking,
with 𝑟0.5𝑎𝑢𝑐 = 4.0 and 𝑟0.5𝑎𝑐𝑐 = 4.2, while for the remaining methods,
the average ranking ranged from 5.0 to 5.8. It is also worth not-
ing that none of these methods is among the leading algorithms
for any problem. When considering 𝑎𝑢𝑐 , the results did not differ
significantly from each other; the only exception was the values
for CPU, where SLS confirmed its advantage over SAN (0.9875 vs.
0.9855, p-value = 0.006). However, for 𝑎𝑐𝑐 , the advantage of SLS
over the others becomes more visible, as it outperforms GLS and
SAN on the CPU and LEV problems, as well as GLS on the ERA
problem (0.7089 vs. 0.7063, p-value = 0.033).

When comparing MNR and MMR, the former gains a significant
advantage over the latter on 𝑎𝑢𝑐 on four out of five datasets and
scores the best on CPU among all algorithms. The exception is
BCC, where MMR is better (0.7334 vs. 0.7222, p-value < 10−5). On
the other hand, for 𝑎𝑐𝑐 , MMR reveals a better average ranking of
𝑟0.5𝑎𝑐𝑐 = 4.6 compared to MNR and 𝑟0.5𝑎𝑐𝑐 = 5.8 and obtaining the best
results among all approaches for BCC and CPU datasets. Apart
from these two problems, it is statistically significantly better than
MNR on ESL. For ERA and LEV, the situation is reversed, and MNR
achieves significantly better results. Nevertheless, apart from the
CPU problem, one of these methods always scores the worst among
all analyzed approaches.



Nature-inspired Preference Learning Algorithms Using the Choquet Integral – Appendix GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Table 11: The comparison of differences in 𝑎𝑢𝑐 for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
80% train data and 20% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ? ≻ (< 10−13) ≻ (0.004) ≻ (< 10−3) ≻ (0.002)
FSS ≻ (0.016) ≻ (< 10−12) ? ≻ (< 10−3) ≻ (< 10−6)
SLS ≻ (0.002) ? ≻ (< 10−11) ≻ (< 10−7) ≻ (< 10−6)
GLS ≻ (0.006) ? ≻ (< 10−10) ≻ (< 10−5) ≻ (< 10−7)
SAN ≻ (0.007) ≻ (< 10−12) ≻ (< 10−11) ≻ (< 10−7) ?
MNR ≻ (0.001) ? ≻ (< 10−16) ≻ (< 10−6) ≻ (< 10−7)
MMR ? ? ≻ (< 10−16) ≻ (< 10−16) ≻ (< 10−13)

PSO

FSS ≻ (0.009) ? ≺ (0.029) ? ≻ (0.009)
SLS ≻ (< 10−3) ≺ (< 10−12) ≻ (< 10−5) ≻ (0.013) ≻ (0.015)
GLS ≻ (0.002) ≺ (< 10−10) ≻ (< 10−5) ? ≻ (< 10−3)
SAN ≻ (< 10−3) ? ≻ (< 10−5) ≻ (< 10−3) ≺ (0.026)
MNR ≻ (0.003) ≺ (< 10−8) ≻ (< 10−15) ≻ (0.009) ≻ (< 10−4)
MMR ? ≺ (< 10−5) ≻ (< 10−14) ≻ (< 10−14) ≻ (< 10−10)

FSS

SLS ? ≺ (< 10−11) ≻ (< 10−10) ≻ (0.002) ?
GLS ? ≺ (< 10−10) ≻ (< 10−9) ≻ (0.023) ?
SAN ? ? ≻ (< 10−8) ≻ (< 10−3) ≺ (< 10−4)
MNR ? ≺ (< 10−7) ≻ (< 10−16) ≻ (0.001) ?
MMR ≺ (0.036) ≺ (< 10−5) ≻ (< 10−16) ≻ (< 10−15) ≻ (< 10−6)

SLS

GLS ? ? ? ? ?
SAN ? ≻ (< 10−12) ? ? ≺ (< 10−4)
MNR ? ? ≻ (< 10−10) ? ?
MMR ≺ (0.002) ? ≻ (< 10−11) ≻ (< 10−13) ≻ (< 10−9)

GLS
SAN ? ≻ (< 10−8) ? ? ≺ (< 10−6)
MNR ? ? ≻ (< 10−10) ? ?
MMR ≺ (0.005) ? ≻ (< 10−13) ≻ (< 10−14) ≻ (< 10−6)

SAN MNR ? ≺ (< 10−7) ≻ (< 10−12) ? ≻ (< 10−5)
MMR ≺ (0.003) ≺ (< 10−5) ≻ (< 10−13) ≻ (< 10−11) ≻ (< 10−12)

MNR MMR ≺ (0.007) ? ? ≻ (< 10−11) ≻ (< 10−3)

Table 12: The comparison of differences in 𝑎𝑐𝑐 for all pairs
of algorithms using Wilcoxon signed rank test (p-value) for
80% train data and 20% test data for five datasets.

Alg. 1 Alg. 2 BCC CPU ESL ERA LEV

GEN

PSO ? ≻ (< 10−8) ? ? ≻ (0.007)
FSS ? ≻ (< 10−8) ? ? ≻ (< 10−5)
SLS ? ? ≻ (< 10−3) ≻ (0.005) ≻ (< 10−5)
GLS ? ? ≻ (0.014) ≻ (< 10−5) ≻ (0.018)
SAN ≻ (0.006) ≻ (< 10−6) ≻ (< 10−3) ≻ (< 10−3) ?
MNR ? ? ≻ (< 10−7) ≻ (0.005) ≻ (< 10−3)
MMR ≺ (0.042) ≺ (< 10−5) ≻ (< 10−3) ≻ (< 10−10) ≻ (< 10−9)

PSO

FSS ? ? ? ? ?
SLS ? ≺ (< 10−9) ≻ (< 10−3) ≻ (0.001) ?
GLS ? ≺ (< 10−7) ≻ (0.006) ≻ (< 10−4) ?
SAN ≻ (0.018) ? ≻ (< 10−3) ≻ (< 10−3) ≺ (0.013)
MNR ? ≺ (< 10−6) ≻ (< 10−6) ≻ (0.006) ?
MMR ≺ (0.017) ≺ (< 10−12) ≻ (< 10−4) ≻ (< 10−10) ≻ (< 10−6)

FSS

SLS ≻ (0.031) ≺ (< 10−8) ≻ (< 10−3) ≻ (< 10−3) ?
GLS ≻ (0.047) ≺ (< 10−8) ≻ (0.013) ≻ (< 10−5) ≺ (0.012)
SAN ≻ (0.001) ? ≻ (< 10−4) ≻ (< 10−3) ≺ (< 10−4)
MNR ? ≺ (< 10−6) ≻ (< 10−6) ≻ (< 10−3) ?
MMR ? ≺ (< 10−13) ≻ (< 10−3) ≻ (< 10−11) ≻ (< 10−4)

SLS

GLS ? ? ? ? ≺ (0.006)
SAN ? ≻ (< 10−7) ? ? ≺ (< 10−5)
MNR ? ? ≻ (0.004) ? ?
MMR ≺ (0.003) ≺ (< 10−5) ? ≻ (< 10−7) ≻ (< 10−4)

GLS
SAN ? ≻ (< 10−6) ? ? ≺ (0.033)
MNR ? ? ≻ (< 10−4) ? ?
MMR ≺ (0.005) ≺ (< 10−4) ≻ (0.042) ≻ (< 10−5) ≻ (< 10−7)

SAN MNR ≺ (0.014) ≺ (< 10−5) ≻ (< 10−3) ? ≻ (< 10−3)
MMR ≺ (< 10−6) ≺ (< 10−11) ? ≻ (< 10−6) ≻ (< 10−9)

MNR MMR ? ≺ (< 10−4) ? ≻ (< 10−6) ≻ (< 10−4)
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Abstract

We adopt an experiment-oriented perspective to investigate two essential characteristics – expressiveness and ro-

bustness – of multiple criteria sorting methods. We focus on the approaches from the family of UTADIS, learning

the parameters of a value-driven threshold-based model from the Decision Maker’s assignment examples. Even if the

considered properties are crucial for the methods’ reliability and usefulness in real-world scenarios, their verification

through explicit numerical tests has been so far neglected. On the one hand, expressiveness captures the models’

flexibility to reproduce different preferences, including simple and complex ones, meaningfully and accurately. On

the other hand, robustness reflects the ability to deliver valid recommendations and ensure proper conclusiveness

given the multiplicity of compatible preference model instances. We consider different variants of UTADIS, from

assuming monotonic and preferentially independent criteria to more advanced settings that relax the monotonicity

constraints or represent interactions. The experimental results capture the trade-off between the considered quality

dimensions, indicating that richer models are characterized by greater expressiveness and lesser robustness. We also

formulate a comprehensive framework indicating when some variant should be used, given the nature of supplied

preferences or problem characteristics. These findings aid decision analysts in making robust recommendations in

different contexts and help refine preference modeling assumptions. The framework’s practical use is illustrated in

a case study involving sorting mobile phone models into pre-defined preference-ordered classes.

Keywords: Multiple criteria decision aiding, Sorting, Model expressiveness, Recommendation robustness,

Interactions, Non-monotonicity

1. Introduction

Multiple Criteria Decision Aiding (MCDA) aims at developing approaches that support solving complex decision

problems [18]. This complexity derives from the multiplicity of alternative ways to attain a decision goal and

pertinent factors relevant to their assessment [25]. The essence of MCDA tools consists of processing an objective

problem’s description and the stakeholders’ subjective preferences to make recommendations.

Over the last decades, hundreds of MCDA methods have been proposed [6, 22, 51]. They all have been conceived

with specific intentions on when they might be helpful and how they should perform. When it comes to the

former aspect, the relevant characteristics can be divided into four major categories. First, the methods tackle

problems with distinct types and structures. Second, they apply various preference models to faithfully represent

the stakeholders’ judgments and aggregate the performances on multiple criteria. Third, they vary in type and

modality of preferences and frequency of the elicitation process. Fourth, they apply different strategies for exploiting

the preference relation induced by the model to compute the recommendation. Such objective features are often
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used to select an appropriate method for a given decision problem. However, the aspects related to the performance

of MCDA methods are often neglected. Nonetheless, checking experimentally whether these tools conform to what

was expected from them is worthwhile.

This paper focuses on multiple criteria sorting, i.e., assigning alternatives to pre-defined, preference-ordered

classes [1]. In particular, we consider a preference disaggregation setting where the parameters of an assumed

model are induced from the assignment examples provided by the Decision Makers (DMs) [13]. Such holistic

judgments specify desired classifications for a subset of reference alternatives, representing the DMs’ decision policy

and value system. Even if preference disaggregation approaches are considered more user-friendly due to reducing

cognitive effort, their use implies two significant problems. On the one hand, the indirect preferences may be

incompatible with an assumed model, leading to an empty space of feasible parameters [38]. On the other hand,

when the method can represent the supplied information, typically multiple consistent model instances or feasible

parameter sets exist and may lead to various recommendations on the set of non-reference alternatives [19, 48].

In the context of preference disaggregation sorting methods, only a few studies verified some of their desirable

properties through explicit numerical tests. In particular, The and Mousseau [46] considered the inference pro-

cedures for ELECTRE TRI-B. They analyzed the amount of indirect information needed to infer the parameters

reliably, the method’s ability to detect inconsistencies, and the results’ stability given various objective functions.

Additionally, Vetschera et al. [47] investigated the properties of two methods, case-based distance sorting and simple

additive weighting, to capture the impact of various problem dimensions on three characteristics: a) compatibility

reflecting the size of the space of feasible parameters, b) robustness capturing the tendency of alternatives to be

assigned to the same class for all feasible parameters, and c) validity interpreted as the probability of alternatives

being sorted in the right class. Further, Doumpos et al. [14] considered five value-based sorting procedures to

examine their predictive abilities and relation with the robust recommendations that can be formulated based on

the DM’s reference judgments. The latter study has been extended in [48] regarding the number of accounted

procedures and investigated measures.

We aim to adopt an experiment-oriented perspective to the methods from the family of UTADIS [8, 42, 49].

They apply a value-driven threshold-based sorting procedure in which the comprehensive quality of each alternative

is quantified using an additive value function, and the value ranges for all classes are delimited by the lower

and upper thresholds [19, 44]. Such a model adequately represents how individuals make classification decisions

for different options. Consequently, it is appreciated in the MCDA community for the intuitiveness and high

interpretability of the delivered results. Therefore, the UTADIS methods have already been applied to solve

real problems such as supplier classification [36], credit risk assessment [50], classification of securities [9], and

subcontractor assessment [39].

The basic variant of UTADIS assumes the monotonicity of per-criterion preferences and the condition of prefer-

ential independence [8, 42]. The former implies that all criteria must be gain- or cost-type, and therefore, preferences

are represented by non-decreasing or non-increasing marginal value functions. The latter conjectures that the impact

of one attribute on an alternative’s comprehensive score should not be influenced by the alternative’s performance

on other attributes. However, various extensions of value-based methods have been proposed to relax the limitations

mentioned above. On the one hand, some procedures are oriented toward admitting non-monotonicity of marginal

functions [16, 30]. On the other hand, the interactions between criteria can be incorporated into an additive value

model using the bonuses and penalties related to observing specific combinations of performances on a subset of

criteria [21]. These modifications can influence the vital properties of the underlying sorting approaches, deciding

upon their suitability for being used in real-world problems with incomplete preference information. In particular,

we expect richer models to be applicable in a greater variety of decision settings but lead to less stable results.

However, these hypotheses need to be verified experimentally.

Our main contribution consists of performing an extensive computational study investigating the fundamen-

tal properties of six variants of UTADIS (some of them newly proposed). These characteristics are crucial for

the methods’ reliability and usefulness in real-world scenarios [29]. To capture a trade-off between the flexibility
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of value-based preference models and their ability to reproduce the DM’s indirect preferences, we will assess the

expressiveness. This feature refers to the model’s ability to capture the actual preferences of individuals in a mean-

ingful and accurate way. A practically helpful preference model should be flexible enough to accommodate different

preferences, including simple and complex ones. This means it should not impose overly restrictive assumptions

limiting its applicability. Also, it should minimize errors and discrepancies between actual choices and preferences

it intends to represent or predict.

While expressiveness is valuable, overly complex models may deliver recommendations that lack conclusiveness.

Therefore, striking a balance between expressiveness and robustness is essential. Thus, we will also verify the

methods’ robustness, understood as the ability to ensure that the representations, predictions, or recommendations

they deliver are valid and accurate under different conditions. Specifically, we will investigate the stability of

outcomes computed with various methods based on the same preferences given the respective set of compatible

model instances. The consistency of results produced with a more robust model enhances the trust of the DMs,

making the respective recommendations more likely to be implemented in real-world decision-making [2, 30].

The conducted experiment involves a broad range of problems characterized by various numbers of classes,

criteria, characteristic points of marginal functions, and reference alternatives per class, and algorithms used to

simulate performances of non-dominated alternatives. We consider seven measures to quantify expressiveness and

robustness. Regarding the former, we focus on the proportion of scenarios for which the indirect preferences

are fully consistent with an assumed model [29] and the misclassification error [19]. As for the latter, we build

five metrics referring to the precision of possible assignments for all alternatives [19] and the variability of class

acceptability indices [31]. The possible classifications are confirmed by at least one compatible model instance. In

turn, the stochastic acceptabilities represent the shares of feasible instances suggesting specific assignments, serving

as the base for the entropy-inspired measures. Analyzing the expressiveness and robustness provides insights into

the usefulness of UTADIS variants in different decision-aiding contexts and the amount of preference information

needed from the DMs to restore their views faithfully. These insights can be used by the decision analysts, who

are responsible for interacting with the DM as well as operating and selecting the methods when facing a decision

problem.

Our experimental results enable the formulation of guidelines for selecting the appropriate model based on the

nature of supplied preferences. The framework outlines the necessary steps to improve recommendations’ robustness

in different contexts and to revise the preference modeling assumptions, particularly concerning non-monotonicity

and interactions. Its use is illustrated in the problem of sorting mobile phone models based on the preferences of

three DMs. Nevertheless, we also formulate some taxonomy-based guidelines on selecting an appropriate variant of

UTADIS based on the characteristics of the tackled decision problem. They refer to the features regarding problem

formulation, preference model, and preference information.

The paper’s remainder is organized in the following way. Section 2 reminds the primary UTADIS method and

defines modified variants of this approach. In Section 3, we discuss the concepts of expressiveness and robustness

along with proposed quality measures, experimental settings, and analysis of the obtained results. In Section 4, we

discuss frameworks to support the choice of an appropriate method. Section 5 illustrates the use of the framework.

The last section concludes the paper and outlines promising future research directions.

2. Reminder on the UTADIS method and its extensions

In this section, we present variants of the UTADIS method. We start from the basic approach and then demonstrate

how to relax the constraints on monotonicity or preferential independence. Also, we discuss the robustness analysis

methods whose results will subsequently serve to define the measures relevant to the experimental verification. We

use the following notation:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives, each evaluated in terms of m criteria;
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• AR = {a∗1, a∗2, . . . , a∗r} – a finite set of r reference alternatives; AR ⊆ A; for each reference alternative, the DM

provides a desired assignment;

• G = {g1, g2, . . . , gj , . . . , gm} – a finite set of m criteria, gj : A → R for all j ∈ J = {1, . . . ,m}; without loss of

generality, for now, we assume that all criteria in G are of gain type;

• Xj = {gj(ai), ai ∈ A} – a finite set of performances of all alternatives in A on criterion gj ;

• x1
j , x

2
j , . . . , x

nj(A)
j – the ordered values of Xj , x

k−1
j < xk

j , k = 2, . . . , nj(A), where nj(A) = |Xj | and nj(A) ≤ n;

thus, X =
∏m

j=1 Xj is the performance space; note that Xj can also be enriched with the extreme values of

the performance scale that are not attained by any alternative;

• C1, C2, . . . , Cp – p pre-defined and preference-ordered classes so that Cl is preferred to Cl−1 for l = 2, . . . , p.

2.1. Basic model

The first considered preference disaggregation method is UTADIS, proposed in [8]. For each alternative a ∈ A,

this approach quantifies a comprehensive quality using an Additive Value Function (AVF) [33]:

U(a) =
m∑

j=1

uj(gj(a)), (1)

where uj , j = 1, . . . ,m, are Marginal Value Functions (MVFs). These are piecewise linear, monotonic functions,

defined on the set of γj pre-defined and equally distributed characteristic points β1
j , β

2
j , . . . , β

γj , such that:

βs
j = x1

j + (x
nj(A)
j − x1

j )
s− 1

γj − 1
, j = 1, . . . ,m, s = 1, . . . , γj . (2)

To ensure that comprehensive values U(a),∀a ∈ A, are normalized to the [0, 1] range, the following constraints are

incorporated: uj(β
1
j ) = 0, for j = 1, . . . ,m, and

m∑
j=1

uj(β
γj

j ) = 1. For gain-type criteria, MVFs are assumed to be

non-decreasing, which is modeled as follows:

uj(β
s
j ) − uj(β

s−1
j ) ≥ 0, j = 1, . . . ,m, s = 2, . . . , γj . (3)

To determine the marginal values for xk
j ∈ [βs

j , β
s+1
j ], linear interpolation is used:

uj(x
k
j ) = uj(β

s
j ) + (uj(β

s+1
j ) − uj(β

s
j ))

xk
j − βs

j

βs+1
j − βs

j

, j = 1, . . . ,m, k = 1, . . . , nj(A). (4)

To assign alternatives to pre-defined, preference-ordered classes, UTADIS applies a threshold-based value-driven

procedure. In this approach, each class Cl is delimited by the lower tl−1 and upper tl thresholds (see Figure 1). For

simplicity, we omit the lower limit of the least-preferred class C1 and the upper limit of the most-preferred class

Cp. Hence, the model includes p− 1 thresholds t = [t1, . . . , tl−1, tl, . . . , tp−1]. To ensure the minimum width of the

range of values for each class, arbitrarily small positive value ε is introduced into the constraints ensuring adequate

relations between thresholds: t1 ≥ ε, tl − tl−1 ≥ ε, for l = 2, . . . , p− 1, and tp−1 + ε ≤ 1.

We assume the DM provides the desired class assignment a∗ → Cl for each reference alternative a∗ ∈ AR.

Function I indicates to which class a∗ is assigned:

∀a∗ ∈ AR, a∗ → Cl ⇐⇒ I(a∗) = l. (5)

To construct a model defined above that would be compatible with the DM’s indirect preferences, we need to ensure

the comprehensive value of reference alternative a∗ ∈ AR is within the range [tl−1, tl), corresponding to the desired
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Figure 1: Threshold-based value-driven sorting procedure involving multiple criteria.

class Cl:

∀a∗ ∈ AR : I(a∗) = l ∈ {1, . . . , p− 1} =⇒ tl − U(a∗) ≥ δ + ε, (6)

∀a∗ ∈ AR : I(a∗) = l ∈ {2, . . . , p} =⇒ U(a∗) − tl−1 ≥ δ, (7)

where δ allows for controlling the distance of the alternatives’ comprehensive values from the thresholds limiting

the class to which they are assigned. Overall, a set of linear constraints EAR

, defining a set UR of all compatible

AVFs and class thresholds, can be formulated as follows:

uj(β
1
j ) = 0, j = 1, . . . ,m,∑m

j=1 uj(β
γj

j ) = 1,

}
(EN )

uj(β
s
j ) − uj(β

s−1
j ) ≥ 0, j = 1, . . . ,m, s = 2, . . . , γj ,

}
(EM )

t1 ≥ ε,

tl − tl−1 ≥ ε, l = 2, . . . , p− 1,

1 − tp−1 ≥ ε,





(ET )

∀a∗ ∈ AR : I(a∗) = l ∈ {1, . . . , p− 1} =⇒ tl − U(a∗) ≥ δ + ε,

∀a∗ ∈ AR : I(a∗) = l ∈ {2, . . . , p} =⇒ U(a∗) − tl−1 ≥ δ,

}
(EDM )





(EAR

) (8)

where ε is an arbitrarily small positive constant and δ ≥ 0. Note that the role of constant ε is to transform strict

inequalities into their weak counterparts. Moreover, all sorting models for which δ is non-negative are compatible

with the DM’s preferences as they ensure that for all a∗ ∈ AR such that a∗ → Cl, U(a∗) ∈ [tl−1, tl). When EAR

is

feasible, UR contains at least one and possibly infinitely many instances compatible with the model’s assumptions

and the DM’s preferences. As proven in [19], set UR is convex.

To deliver a precise sorting recommendation that is compatible with the supplied assignment examples, one such

instance must be selected arbitrarily. This can be conducted in various ways [12, 14, 48]. We decided to choose the

most discriminant AVF, which can be obtained by maximizing δ, representing the minimum difference between the
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comprehensive values of reference alternatives and the corresponding class thresholds:

Maximize δ, subject to EAR

. (9)

The variables in the model are as follows:

• uj(β
s
j ), j = 1, . . . ,m, s = 1, . . . , γj – value of the marginal function for criterion gj at characteristic point βs

j ;

• tl, l = 1, . . . , p− 1 – thresholds separating intervals of comprehensive values associated with each class;

• δ – the minimum difference between the comprehensive values of reference alternatives and the thresholds

associated with the corresponding class.

The objective function defined above is related to increasing confidence in the model’s ability to reflect DM’s pref-

erences when alternatives are further distant from the respective class thresholds. This way, we capture a solution

in which the differences between the comprehensive values of the reference alternatives are as far as possible from

the thresholds of the corresponding classes, hence representing DM’s preferences in the most robust manner. To

ensure comparability of results, unless otherwise explicitly stated, we will use the same objective function in the

remaining UTADIS variants.

2.2. Modeling non-monotonic marginal value functions

The basic variant of UTADIS assumes that all criteria are associated with pre-defined preference directions, and

hence the pre-criterion preferences are represented with monotonic MVFs. However, this assumption can be relaxed

to let the method construct possibly non-monotonic marginal functions. We denoted the variants in this stream

as the UTADIS-NM (NM) group. They are useful in scenarios where the knowledge of the preference for the

performances on each criterion is missing, and needs to be discovered from the DM’s indirect preferences.

The first variant, called UTADIS-NM-1, adopts the proposal formulated in [16] in the context of ranking

problems. It removes the monotonicity constraints, introducing the lower and upper bounds for all characteristic

points of MVFs:

uj(β
k
j ) ≥ 0,

uj(β
k
j ) ≤ 1.

}
∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . , γj}

}
(EAR

bound) (10)

In this way, we avoid unbounded solution space and allow freedom regarding the shape of MVFs. The normalization

of AVF and threshold values is performed after optimization and obtaining a consistent solution. To implement

this model, it is necessary to calculate the slope change ϕk
j of each MVF’s segment. It is defined as the difference

between the marginal values for two consecutive characteristic points divided by the distance between these points:

uj(β
k
j )−uj(β

k−1
j )

βk
j −βk−1

j

− uj(β
k−1
j )−uj(β

k−2
j )

βk−1
j −βk−2

j

≤ ϕk
j ,

uj(β
k−1
j )−uj(β

k−2
j )

βk−1
j −βk−2

j

− uj(β
k
j )−uj(β

k−1
j )

βk
j −βk−1

j

≤ ϕk
j .





∀j ∈ {1, . . . ,m},∀k ∈ {3, . . . , γj}





(EAR

slope) (11)

The understanding of the notation used when modeling the slope change is supported by the example marginal

value function illustrated in Figure 2. A set of linear constraints defining all consistent solutions and the objective

function for finding a precise recommendation by NM-1 are formulated as follows:

Minimize

∑m
j=1

∑γj

k=3 ϕ
k
j

δ
, subject to ET , EDM , EAR

bound, E
AR

slope

}
(EAR

NM-1) (12)

This way, we prefer the most discriminant model (maximization of δ in the denominator) for which the sum of slope

changes is as small as possible. Such an objective allows some degree of freedom in representing the per-criterion

preferences using non-monotonic functions. Therefore, it is less constrained and more flexible than the primary
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Figure 2: Illustration of the slope change for a marginal value function.

variant of UTADIS. Apart from the same variables used in UTADIS, the above model incorporates the following

additional ones:

• ϕk
j , j = 1, . . . ,m, k = 3, . . . , γj – absolute value of the slope change of the marginal value function uj

for criterion gj , based on the analysis of neighboring ranges (βk−2
j , βk−1

j ) and (βk−1
j , βk

j ) delimited by three

consecutive characteristic points βk−2
j , βk−1

j , and βk
j .

Minimizing the variations in the slope of MVFs aligns with searching for the parsimonious explanation of indirect

judgments, being most likely the correct way [4, 16]. In this case, the simplest additive value model is assumed

to incorporate, if possible, monotonic MVFs, which are the most linear ones, i.e., minimizing the deviation from

the linearity. The goal is to avoid abrupt changes in MVFs, leading to unrealistic preference models (e.g., zigzag

functions changing direction in each characteristic point). Controlling variation in slope has been used before in [11]

to determine the minimum number of criteria sub-intervals and in [20] to obtain parsimonious preference models.

In the considered method, the complexity of the preference model is optimized against its discriminatory power.

Even if the objective function combining the above aims is non-linear, leading to a Linear-fractional Programming

(LFP) problem, it can be easily transformed to the Linear Programming (LP) problem [5]. The above approach

cannot be used with linear MVFs that involve only two characteristic points, as in this case, no slope change can

be represented. Therefore, for such scenarios, we only maximize δ.

A more complex objective function considered by NM-1 implies potential difficulties in comparing its outcomes

with the results produced by other variants of UTADIS. Therefore, we also propose a modification of the concept

presented in [16], called UTADIS-NM-2. It aims to infer the most discriminant sorting model, referring to the same

variables as in UTADIS:

Maximize δ, subject to ET , EDM , EAR

bound

}
(EAR

NM-2) (13)

Compared to NM-1, EAR

slope has been omitted because ϕk
j is not optimized, and slope changes are not required to

define the model. Apart from ϕk
j , the remaining parameters in both models are subject to the same constraints.

However, due to the different objective functions, both approaches may lead to different solutions and, hence,

various recommendations on the set of non-reference alternatives.

To present the process of normalizing the model obtained with NM-1 or NM-2, let us denote it by U ′. It

consists of MVFs u′
j , class threshold values t′l, and the minimum difference between the comprehensive values of

the reference alternatives and corresponding thresholds δ′. In the first step, the minimum value in each MVF is

subtracted from the values assigned to all of its characteristic points:

∀j ∈ {1, . . . ,m} u′′
j (x) = u′

j(x) − min
k∈{1,...,γj}

u′
j(β

k
j ). (14)

Then, the minimum value of each modified MVF equals zero. Decreasing the value of each MVF reduces the

comprehensive value of each alternative by exactly the same value. Thus, to keep the solution feasible, it is
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necessary to reduce the threshold values in the same way, i.e., by subtracting the sum of the minimum values of

each u′
j :

∀l ∈ {1, . . . , p− 1} t′′l = t′l −
m∑

j=1

min
k∈{1,...,γj}

u′
j(β

k
j ). (15)

The value of δ does not change because the minimum distance of the thresholds and comprehensive values of the

reference alternatives remains unchanged, i.e., δ′′ = δ′.

The second step focuses on normalizing the values so that the maximum comprehensive value equals one. For this

purpose, all MVFs are divided by the sum of their maximum values, denoted as ρ. Then, we proceed analogously

with the values of thresholds and δ:

ρ =
m∑
j=1

max
k∈{1,...,γj}

u′′
j (βk

j ), (16)

∀j ∈ {1, . . . ,m} uj(x) =
u′′
j (x)

ρ , ∀l ∈ {1, . . . , p− 1} tl =
t′′l
ρ , δ = δ′′

ρ . (17)

The latter is needed because reducing the comprehensive values of reference alternatives and thresholds will also

reduce the minimum distance between them. After the above transformations, the model is normalized to the [0, 1]

range, and hence δ has the same interpretation as for the primary variant of UTADIS.

We propose another variant admitting non-monotonicity, called UTADIS-NM-3, which is inspired by the ideas

presented in [30]. It represents preferences on each potentially non-monotonic criterion gj using a sum of two

monotonic functions, one non-decreasing uND
j and another non-increasing uNI

j , each adhering to standard weak

monotonicity constraints:

uND
j (β1

j ) = 0, uND
j (β

γj

j ) ≤ 1, j = 1, . . . ,m,

uNI
j (β

γj

j ) = 0, uNI
j (β1

j ) ≤ 1, j = 1, . . . ,m,

}
(EB

NM-3)

uND
j (βs

j ) − uND
j (βs−1

j ) ≥ 0, j = 1, . . . ,m, s = 2, . . . , γj ,

uNI
j (βs

j ) − uNI
j (βs−1

j ) ≤ 0, j = 1, . . . ,m, s = 2, . . . , γj ,

}
(EM

NM-3)

uj(β
s
j ) = uND

j (βs
j ) + uNI

j (βs
j ), j = 1, . . . ,m, s = 1, . . . , γj ,

0 ≤ uj(β
s
j ) ≤ 1, j = 1, . . . ,m, s = 1, . . . , γj .

}
(EMVF

NM-3)





(ENM-3) (18)

The composition of a pair of monotonic functions with opposing preference directions results in the potentially

non-monotonic MVF as shown by the example marginal value functions in Figure 3. Again, we select the most

discriminant model as the representative solution:

Maximize δ, subject to ET , EDM , ENM-3

}
(EAR

NM-3) (19)

ujND(a) 

gj(a) 

βj1 βj2 βj3 βj4 βj5 

ujNI(a) 

gj(a) 

βj1 βj2 βj3 βj4 βj5 

uj(a) 

gj(a) 

βj1 βj2 βj3 βj4 βj5 

+ 

non-decreasing marginal value function 

non-increasing marginal value function 

non-monotonic marginal value function 

Figure 3: Example non-decreasing and non-increasing components resulting in a non-monotonic marginal value function.
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Since the inferred parameter values may be outside the range between 0 and 1, a normalization process needs to

be conducted, similarly as for the NM-1 and NM-2 procedures (see Eqs. (14)–(17)). Apart from the same variables

used in UTADIS, UTADIS-NM-3 incorporates the following additional ones:

• uND
j (βs

j ), j = 1, . . . ,m, s = 1, . . . , γj – the value of the non-decreasing component of the marginal function

uj for criterion gj at characteristic point βs
j ,

• uNI
j (βs

j ), j = 1, . . . ,m, s = 1, . . . , γj – the value of the non-increasing component of the marginal function uj

for criterion gj at characteristic point βs
j .

2.3. Modeling interactions between criteria

Using AVF and, thus, the basic variant of UTADIS requires the fulfillment of preferential independence. It means

that the DM’s preferences over any subset of attributes are independent of its complement. However, in some deci-

sion scenarios, one needs to represent interactions between criteria and reflect a non-additive nature of preferences.

This option has been successfully implemented in [21] in the context of ranking problems. We adapt it to the

multiple criteria sorting, giving rise to the UTADIS-INT methods.

In this approach, the positive and negative interactions between all criteria pairs: gq, gr ∈ G : q < r are modeled

using bonuses syn+
q,r and penalties syn−

q,r. Then, the comprehensive value of alternative a ∈ A is expressed as

follows:

U(a) =

m∑

j=1

uj(gj(a)) +

m−1∑

q=1

m∑

r=q+1

syn+
q,r(gq(a), gr(a)) −

m−1∑

q=1

m∑

r=q+1

syn−
q,r(gq(a), gr(a)). (20)

Functions syn+ and syn− need to satisfy the following normalization (EN
INT) and monotonicity (EM

INT) conditions:

syn+
q,r(β1

q , β
1
r ) = 0, ∀q, r ∈ {1, . . . ,m} : q < r,

syn−
q,r(β1

q , β
1
r ) = 0, ∀q, r ∈ {1, . . . ,m} : q < r,

syn+
q,r(β

γq
q , βγr

r ) ≤ µλq,r, ∀q, r ∈ {1, . . . ,m} : q < r,

syn−
q,r(β

γq
q , βγr

r ) ≤ µλq,r, ∀q, r ∈ {1, . . . ,m} : q < r,

τ =
m∑
j=1

uj(β
γj

j ),

τ+ =
m−1∑
q=1

m∑
r=q+1

syn+
q,r(β

γq
q , βγr

r ),

τ− =
m−1∑
q=1

m∑
r=q+1

syn−
q,r(β

γq
q , βγr

r ),

τ + τ+ − τ− = 1,
q−1∑
r=1

λr,q +
m∑

r=q+1
λq,r ≤ σ, ∀q ∈ {1, . . . ,m},

λq,r ∈ {0, 1}, ∀q, r ∈ {1, . . . ,m} : q < r,





(EN
INT)

∀q, r ∈ {1, . . . ,m} : q < r and ∀s, u ∈ {1, . . . , γq} : s ≥ u and ∀t, v ∈ {1, . . . , γr} : t ≥ v :

syn+
q,r(βs

q , β
t
r) ≥ syn+

q,r(βu
q , β

v
r ),

syn−
q,r(βs

q , β
t
r) ≥ syn−

q,r(βu
q , β

v
r ),

uq(βs
q) + ur(βt

r) + (syn+
q,r(βs

q , β
t
r) − syn−

q,r(βs
q , β

t
r))

≥ uq(βu
q ) + ur(βv

r ) + (syn+
q,r(βu

q , β
v
r ) − syn−

q,r(βu
q , β

v
r )).





(EM
INT)





(EINT) (21)

Hence, both syn+ and syn− attain zero when parameterized with the least preferred performances on the two

criteria, whereas their maximal value is constrained by constant µ. Following [21], we use µ = 1. Binary variable λq,r

indicates if an interaction is active for a given pair of criteria, and σ is the maximum number of active interactions

for each criterion. A comprehensive additive value function enriched with bonuses and penalties cannot take values

greater than one. Further, functions syn+ and syn− are monotonic in both of their arguments (i.e., performances on

the respective criteria). That is, the bonuses for positively interacting criteria or penalties for negatively interacting

criteria cannot decrease with the increase of any performance. Moreover, the interaction coefficients cannot change
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the relation between marginal values corresponding to more preferred performances on any pair of attributes. Note

that syn+ and syn− are defined only for pairs of characteristic points. Since this is a two-dimensional function,

it is necessary to use bilinear interpolation to determine the value of these functions for any pair of performances.

The Mixed-Integer Linear Programming (MILP) problem that needs to be solved to select a representative model

instance can be formulated as follows:

Maximize δ −
∑

∀q,r∈{1,...,m}:q<r

λq,r, subject to EAR

, EINT

}
(EAR

INT) (22)

The objective function formulated above represents a lexicographic objective, in which the primary aim is to

minimize the number of active interactions between all criteria pairs, and the secondary aim is to maximize the

value of δ. The former is consistent with the original postulate formulated in [21] to explain the DM’s assignment

example using a compatible value function with as few interactions as possible. We intend to use interactions in

a parsimonious way. In particular, when the DM’s preference statements can be represented just by a simple additive

value function, then no interaction is considered. Further, if just a limited number of interaction components is

needed to fit the supplied preference information, in line with Ockham’s razor principle, entities should not be

multiplied beyond necessity, i.e., above a minimum required number of interacting pairs of criteria. Therefore,

similarly to NM-1, this approach infers a model that is as simple as possible and capable of correctly representing

the DM’s policy. As the secondary target, UTADIS-INT maximizes δ, hence searching for the most discriminant

solution among all compatible models with the lowest possible number of active interactions. Let us emphasize that

by active interactions, we mean the interacting (either positively or negatively) criteria pairs.

Overall, UTADIS-INT uses the same variables as in UTADIS plus the following ones:

• syn+
q,r(βs

q , β
t
r), q, r ∈ {1, . . . ,m} : q < r, s = 1, . . . , γq, t = 1 . . . , γr – the value of the positive interaction

function between criteria gq and gr, for a pair of performances βs
q , βt

r,

• syn−
q,r(βs

q , β
t
r), q, r ∈ {1, . . . ,m} : q < r, s = 1, . . . , γq, t = 1 . . . , γr – the value of the negative interaction

function between criteria gq and gr, for a pair of performances βs
q , βt

r,

• λq,r, q, r ∈ {1, . . . ,m} : q < r – a binary value indicating the activation of the positive or negative interaction

function for criteria pair gq and gr.

Additionally, for clarity, symbols τ , τ+, and τ− are introduced to represent the sums of the individual components

in the normalization constraints. The remaining symbols (µ, ε, and σ) have pre-defined, constant values, so they

are not considered decision variables.

In what follows, we will consider two variants of UTADIS-INT, differing in terms of the maximal number of

criteria with which each attribute can interact. Specifically, UTADIS-INT-1 follows the assumption made in [21],

letting each criterion interact with at most one other attribute (σ = 1). This ensures significant interpretability of

the inferred model. In turn, UTADIS-INT-∞ postulates that the number of interacting criteria pairs is unlimited

(σ = ∞). Effectively, this means that each criterion can interact with at most m− 1 other criteria.

Another popular model handling the interactions between criteria is the Choquet integral [17]. The advantages

of the considered value-based tool when compared with the non-additive integral derive from a) not requiring the

evaluations on all criteria to be expressed on the same scale to ensure full commensurability [3], b) the ability

to represent adequately more advanced interactions between couples of criteria that the Choquet integral cannot

handle [21], c) generalizing the 2-additive Choquet integral, which is a particular case of the applied model [21],

d) offering clear justification of the recommended decision (e.g., preference or assignment) in terms of values of model

parameters that are more interpretable than non-additive weights (capacity) [21], e) more significant potential for

increased predictive accuracy as proven by the extensive computational experiments in [35].
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2.4. Robustness analysis

The primary issue related to the practical use of incomplete preferences in UTADIS derives from multiple or even

infinitely many instances of the sorting model compatible with the DM’s indirect statements. The presentation of

all variants of UTADIS involved the selection of the most discriminant model among them. This was attained by

maximizing δ, possibly coupled with other objectives, ensuring the parsimony of the selected model, e.g., in terms

of the shape of MVFs or the number of interacting pairs of criteria. Such a selection of a single representative

preference model instance consistutes an important stream in ordinal regression (see Figure 4).

However, a single δ-maximizer model is not necessarily the only possible solution compatible with the DM’s

classification examples. Specifically, all models with δ greater or equal to zero are feasible, being consistent with

the DM’s decision policy represented by the assignments of reference alternatives. The application of such models

on the set of non-reference alternatives potentially leads to ambiguous recommendations. In this perspective, it

may be relevant to conduct robustness analysis. As noted in [14], even when the compatible solution is unique or

the feasible space of models is empty due to inconsistencies or restrictive assumptions imposed by the model, the

robustness concern remains relevant, the same as in the highly noisy context of statistical learning theory.

Let us emphasize that the notion of robustness still remains vague in the entire Operations Research and Decision

Analysis domain [41]. Multiple meanings accorded to the term robust include flexibility, stability, sensitivity, and

even equity. Following the directions indicated by Roy [41], our treatment of robustness is closely tied to a capacity

for withstanding ”zones of ignorance” arising from the disparity between the model and real-life decision context.

To this aim, we account for various sensible versions of the problem formulation. Each version represents a reality

that should be considered, reflecting a combination of the options related to the model’s frailty points. Specifically,

we are interested in investigating the robustness of the provided conclusions, i.e., whether they are valid for all or

for the most plausible sets of compatible preference model instances.

Given their multiplicity in the context of the UTADIS variants, it is relevant to verify the robustness of sorting

results [12]. The need for carefully exploiting the set of multiple compatible models was first emphasized in [26].

The suggested approach was based on a heuristic post-optimality procedure seeking to identify some characteristic

alternative models corresponding to corner points of the feasible polyhedron. However, such techniques provide

only a limited view of the complete set of models compatible with the DM’s preferences. Therefore, the two

prevailing streams for robustness analysis in this context are Robust Ordinal Regression (ROR) and Stochastic

Ordinal Regression (SOR) (see Figure 4).

gj(a) 

uj(a) 

βj1 βj2 βj3 βj4 βj5 βj6 

gj(a) 

uj(a) 

βj1 βj2 βj3 βj4 βj5 βj6 

gj(a) 

uj(a) 

βj1 βj2 βj3 βj4 βj5 βj6 

A single preference model instance  
(e.g., the most discriminant) selected  

from the set of all compatible  
preference model instances 

Stochastic Ordinal Regression 
 based on a finite large set of model  
instances sampled from the set of all  

compatible preference model instances  

Robust Ordinal Regression 
 based on the set of all (possibly  

infinitely many) compatible  
preference model instances 

Figure 4: Three main methodological streams in ordinal regression.

ROR computes the possible and necessary assignments for each alternative based on the analysis of all compatible

models [19, 34]. The former reflects the classifications attained for at least one feasible model U ∈ UR [19], i.e.:

∀a ∈ A,∀l ∈ {1, . . . , p} : a →P Cl ⇐⇒ ∃U ∈ UR : a →U Cl, (23)

where a →U Cl denotes that model U assigns alternative a to class Cl, i.e., IU (a) = l. A set of all possible
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assignments for a ∈ A is denoted by:

PCAUR(a) = {Cl : a →P Cl}. (24)

In turn, the necessary assignment needs to be confirmed by all feasible models U ∈ UR [19], i.e.:

∀a ∈ A,∀l ∈ {1, . . . , p} : a →N Cl ⇐⇒ ∀U ∈ UR : a →U Cl. (25)

In particular, when UR ̸= ∅, all reference alternatives a∗ ∈ AR are necessarily assigned to the classes specified by

the DM.

Another approach, called SOR, provides quantitative information, estimating how often a given assignment

occurs in the set of all compatible model instances [31]. To exploit UR, SOR uses the Monte Carlo simulation to

sample a sufficiently large subset of uniformly distributed sorting models S ⊆ UR (|S| ≪ |UR|). For this purpose,

we employ the Hit-And-Run (HAR) algorithm [45] implemented in [7]. Then, Class Acceptability Index (CAI)

quantifies the share of all compatible model instances assigning each alternative to a given class. Its approximation

(CAI ′) based on the simulation results is computed as follows [31]:

∀a ∈ A ∀l ∈ {1, . . . , p} : CAI ′(a,Cl) =
|{U ∈ S : IU (a) = l}|

|S| . (26)

CAI ′ takes values in the range between 0 and 1. However, it can also be interpreted as the percentage of the

feasible models, from 0% to 100%. Let us emphasize that the ideas underlying ROR and SOR can be adjusted to

all variants of UTADIS, as long as the respective space of feasible models is defined using the linear constraints.

3. Experimental analysis

This section is devoted to computational experiments verifying the characteristics of the six variants of UTADIS.

First, we define quality measures considered in the comparative analysis. Second, we describe how the experiment

was conducted. Third, we discuss the results given the expressiveness and robustness dimensions.

3.1. Quality measures

This section defines quality measures that capture the expressiveness of the preference model and the robustness

of the recommendation delivered by a specific method. They are adjusted to the scope of multiple criteria sorting

preference disaggregation approaches. The examples supporting the understanding of all measures are provided in

Section 5, devoted to a case study.

3.1.1. Expressiveness of the preference model

The model’s expressiveness reflects its ability to reconstruct the DM’s indirectly expressed preferences. We use the

following two measures to compare different approaches in this regard.

Preference recoverability (PR) is measured as a ratio of scenarios for which DM’s assignment examples are

entirely consistent with an assumed preference model. Then, at least one compatible value function and a set of

class thresholds exist with δ∗ ≥ 0 [29]. Higher PR values indicate the method’s ability to infer model parameters

consistent with a broader spectrum of sorting policies. This emphasizes greater flexibility of the model to fit the

DM’s indirect preferences.

Maximum delta (δ∗) indicates the minimum difference between the comprehensive value of the reference alterna-

tives and the lower and upper thresholds of the class to which it was assigned by the DM [29]. It reflects the ability

of the threshold-based value-driven procedure to discriminate between alternatives with various desired classifica-

tions. The higher the value of δ∗, the greater the model’s ability in robustly reproducing the DM’s preferences. For

each approach, δ∗ is derived from the optimal problem solution that implicitly or explicitly maximizes its value in

the objective function. Normalizing each method’s results to the range between 0 and 1 ensures the comparability

of this parameter’s values between different approaches.
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3.1.2. Robustness of the sorting recommendation

Robustness captures the stability and credibility level of the recommendation suggested by a particular method,

given the multiplicity of model instances that can reproduce the DM’s assignment examples. In this aspect,

we distinguish five measures based on the analysis of results for non-reference (holdout) alternatives to prevent

overfitting concerns.

Average possible class assignment (APCA) is based on the average number of classes to which it is possible

to assign each non-reference alternative from AT = A \ AR [27]. To make the results for various problem sizes

comparable, this measure is normalized as follows:

APCA(UR) = 1 − 1

|AT |
∑

a∈AT

|PCAUR(a)| − 1

p− 1
, (27)

where p is the number of classes and PCAUR is defined in Eq. (24). The measure reaches a maximum value of 1

when all non-reference alternatives have non-empty and precise necessary assignments. In this case, the model’s

recommendations are unambiguous and most reliable. A minimum value of 0 indicates that each a ∈ AT can be

assigned to any class. This means the variability of recommendations obtained in the set of compatible sorting

model instances is enormous.

Certain assignments ratio (CAR) reflects the share of non-reference alternatives assigned precisely to some

class by all compatible sorting model instances [27]:

CAR(UR) =
|{a ∈ AT : |PCAUR(a)| = 1}|

|AT | . (28)

The maximum value of 1 indicates the complete model’s confidence regarding the assignments of all non-reference

alternatives. In turn, 0 denotes a hesitation in the recommended classification for all alternatives.

Entropy class acceptability index (ECAI) is based on Shannon’s concept of entropy [43]. It is calculated based

on CAIs for each a ∈ AT [27]:

ECAIalt(a) = −
p∑

l=1

CAI ′(a,Cl) log2 CAI ′(a,Cl). (29)

Note that ECAIalt(a) = 0 if and only if there is class Cl such that CAI ′(a,Cl) = 1, indicating the agreement in the

suggested recommendation for all sorting model instances. Conversely, the maximum possible value of ECAIalt(a)

is log2(p). It is obtained if CAI ′(a,Cl) = 1
p for each l ∈ {1, . . . , p}, suggesting the same support given to all

classes in the set of all compatible model instances. To aggregate the outcomes for all non-reference alternatives

and normalize the measure to the [0, 1] interval, we define ECAI as follows:

ECAI(UR) = 1 − 1

log2(p) · |AT |
∑

a∈AT

ECAIalt(a). (30)

Mean class acceptability index (MCAI) is the average value of CAIs for all non-reference alternatives and the

classes they were univocally assigned to by a given method [14]:

MCAI(U) =
1

|AT |
∑

a∈AT :a→UCl

CAI ′(a,Cl). (31)

A higher value of MCAI indicates greater support given to the method’s recommendation by all feasible model

instances. This measure captures how representative is the instance selected by a given approach for the entire

space of instances when considering the variety of assignments observed in this space.

Confirmed class assignment (CCA) builds on the ambiguity in setting the thresholds separating the classes by

a specific method. These thresholds are determined to encompass the comprehensive value of reference alternatives
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in a given class. However, this still leaves some freedom in placing them between the highest value of some reference

alternative in a less preferred class and the lowest value of some reference alternative in a more preferred class.

Non-reference alternatives with comprehensive values in the above range would change their assignments if the

thresholds were set differently, even for the same additive value model. Hence, we want to quantify the share of

non-reference alternatives with confirmed assignments, i.e., implied by scores between the extreme values associated

with reference alternatives in the assigned class. For this, we first determine the class boundaries, i.e., the lowest

(CLB
l ) and highest (CUB

l ) comprehensive values for reference alternatives in each class:

CLB
l = min

a∈AR: a→Cl

U(a) and CUB
l = max

a∈AR: a→Cl

U(a). (32)

Note that we set CLB
1 to 0 and CUB

p to 1 because the values of these extreme thresholds do not influence the assign-

ments of non-reference alternatives. Then, we compute the share of non-reference alternatives with comprehensive

values that guarantee their assignments would not change if the class thresholds were set differently:

CCA(U) =
|a ∈ AT : a →U Cl ∧ CLB

l ≤ U(a) ≤ CUB
l |

|AT | . (33)

If the measure reaches a maximum value of 1, then the assignments of all non-reference alternatives are confirmed

by reference ones. If CCA is equal to 0, the classification of each non-reference alternative could change if the

thresholds were set differently in the admissible range.

Overall, the first two measures describing the expressiveness of the preference models focus on their abilities

to reproduce the DM’s preferences (PR) and to highlight differences between comprehensive values of reference

alternatives from different classes (δ∗). The former aggregates the binary indication of the complete consistency

between the preference information and the model’s assumptions from all considered scenarios, whereas the latter

captures the quantitative information expressed on the conjoint interval scale only for settings for which all DM’s

assignment examples can be reproduced. The following five measures focus on the recommendations’ robustness.

Some build on the results of exact (APCA and CAR) or (ECAI) robustness analysis as conducted in ROR and

SOR, respectively, capturing the level of compliance between sorting results given the entire space of consistent

sorting models. However, they represent complementary perspectives, reflecting if some outcomes are ever possible

(APCA and CAR), to what degree they are possible (ECAI), if they are precise (APCA), and how imprecise they

are (CAR and ECAI). Other measures focus on the certainty of precise assignments recommended for non-reference

alternatives by some method (in our case, the most discriminant preference model instance) given other feasible

sorting results. This aspect is reflected by the support offered to these classifications in the set of all compatible

models (MCAI) and the share of alternatives for which the assignments would not change if other, though still

compatible, thresholds were set (CCA). This way, we verify the robustness of the recommendation delivered by the

specific method while changing the parameter values within the feasible space and assuming that the performances,

preferences, and model assumptions (e.g., characteristic points) are fixed. Overall, our robustness metrics build

on three important methodological streams in ordinal regression, i.e., selection of a representative model instance,

ROR, and SOR.

Such a broad spectrum of measures aims to provide different interpretations of expressiveness and robustness,

referring to various scenarios, information scales, and types of results. It also increases the reliability of subsequent

experimental analysis, which is not biased by an arbitrary selection of one interpretation. The fact that the results

for measures representing even the same dimension do not need to align helps address the nuances of applying

various methods and models and formulating more robust conclusions.

3.2. Simulation design

In the experimental comparison, we considered decision problems with the following dimensions:

• the number of classes – p ∈ {2, 3, 4, 5};
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• the number of criteria – m ∈ {2, 3, 4, 5};

• the number of characteristic points for the marginal value function uj on each criterion gj – γj ∈ {2, 3, 4, 5};

• the number of reference alternatives assigned by the DM to each of p classes – r ∈ {1, 2, 3, 4, 5};

• the algorithm used to generate performances of a non-dominated set of alternatives – c ∈ {sphere, random}.

In this way, we covered problems with different complexities, starting from simple problems with binary classification

and two conflicting criteria and ending up with more complex ones involving five classes and attributes. We also

allowed various flexibility of MVFs, from linear to piecewise linear ones with five characteristic points. To check

how well the methods and models cope with different amounts of DM’s preference information, we assumed various

numbers of assignment examples for each class.

To generate a non-dominated set of alternatives, we employed two procedures. The one called sphere randomly

selects points with all non-negative coordinates from the unit m-sphere and then assigns its values as some alterna-

tive’s performances. This procedure also makes it easier to notice preference dependencies. The other procedure,

called random , generates the performances for each alternative independently form a uniform distribution in the

range [0, 1). In this case, the newly generated alternative is added to set A if and only if it neither dominates nor

is dominated by any member of A. This process continues until the pre-defined size of A is reached. Figure 5

shows example alternatives’ performances generated by both procedures for a bi-criteria problem. Using the two

approaches allows for considering problems with more diverse characteristics. Note that the lack of dominance in

set A makes solving these problems more challenging.

0.0 0.2 0.4 0.6 0.8 1.0
g1

0.0

0.2
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0.0 0.2 0.4 0.6 0.8 1.0
g1

0.0

0.2

0.4

0.6

0.8

1.0

g2

Random

Figure 5: Example performances of fifty alternatives generated by the sphere and random procedures for a bi-criteria problem.

Moreover, for each considered problem, we randomly generate |AT | = 25 non-reference alternatives, i.e., hold-

outs. This way, we mimic realistic scenarios where the DM typically provides preference information for less than

half of the considered alternatives (|AR| ≤ |AT |). The results obtained for non-reference alternatives are used to

compute the quality measures, so their large number gives greater credibility to the obtained values. For each

combination of problem dimensions, we generated 100 instances. Overall, this gives 4 · 4 · 4 · 5 · 2 · 100 = 64, 000

repetitions. Such a large number of analyzed problems allows for concluding the characteristics, similarities, and

differences between the considered variants of UTADIS. To generate each instance, we followed four steps:

• Using procedure c ∈ {sphere, random}, a set A of n = |AR| + |AT | (where |AR| = p · r) non-dominated

alternatives was generated, each with m performances from the range between 0 and 1.

15



• A subset of |AR| alternatives was randomly selected from A to create a reference set.

• To generate reference assignments and simulate the DM’s decision policy, alternatives from AR were ran-

domly distributed into p subsets AR
C1

, AR
C2

, . . . , AR
Cp

, each containing r alternatives. Each alternative in AR
Cl

,

l = 1, . . . , p, was assigned to class Cl. Please note that the procedure for generating the performances of

alternatives guarantees that the considered assignments are based on the weakest possible assumption, i.e.,

they do not violate the dominance relation.

• For each criterion gj , the values of γj characteristic points were determined so that β1
j = 0, β

γj

j = 1, and the

remaining points were set at equal intervals between them.

3.3. Results

This section describes the obtained results. We compare different variants of UTADIS in terms of expressiveness

and robustness, and discuss the impact of various problem dimensions. For each setting, the statistical significance

of the observed differences was verified using the Wilcoxon signed-rank test [24] for paired samples with a p-value

of 0.05.

3.3.1. Preference recoverability

Reproducibility of DM’s preferences is one of the most intuitive factors reflecting the expressiveness of a model.

The higher the ratio of scenarios with fully reproduced sets of assignment examples, the richer the variety of

problems and respective decision policies a given procedure applies to. Tables 1 and 2 show the PR values, both

comprehensive and broken down into analyzed problem dimensions. Figure 6 reveals the proportion of problems

that different subsets of UTADIS variants have solved. Since all three non-monotonic approaches solved the same

subset of problems, their results are grouped under the NM name. In addition, when both approaches modeling

interactions between criteria could find a consistent solution for the same problem instances, they are labeled as

the INT group in Figure 6.

Table 1: Preference recoverability ratio for all problem instances and sub-groups with different numbers of classes and criteria.

PR Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

UTADIS 0.485 0.784 0.536 0.366 0.254 0.300 0.465 0.556 0.619
NM 0.621 0.899 0.693 0.515 0.376 0.407 0.596 0.704 0.775
INT-1 0.597 0.851 0.641 0.500 0.395 0.396 0.588 0.679 0.725
INT-∞ 0.757 0.898 0.780 0.703 0.647 0.396 0.819 0.885 0.928

Table 2: Preference recoverability ratio for sub-groups of problem instances with different numbers of characteristic points, reference
assignments per class, and performance generation algorithms.

PR Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

UTADIS 0.271 0.450 0.568 0.651 0.898 0.620 0.420 0.283 0.203 0.565 0.404
NM 0.361 0.586 0.723 0.812 0.969 0.777 0.590 0.440 0.326 0.616 0.625
INT-1 0.349 0.592 0.690 0.757 0.941 0.727 0.544 0.430 0.342 0.715 0.479
INT-∞ 0.556 0.794 0.825 0.852 0.966 0.839 0.730 0.653 0.597 0.798 0.716

Let us focus first on the comprehensive results. More than 75% of all problem instances were solved by INT-∞.

This model offers the greatest flexibility among all considered variants, and its advantage in preference recoverability

is significant. The NM group delivered a solution for 62.1% of simulated scenarios and INT-1 – for 59.7%. UTADIS

performed the worst, solving less than half of the considered problems (48.5%). This is due to more restrictive

assumptions of the primary model. As confirmed by Figure 6, all problem instances solved by UTADIS were also

successfully solved by the remaining approaches. Adding the possibility of representing non-monotonic per-criteria

preferences or at least one interaction for each criterion leads to a consistent solution for an additional several

percent of instances. Note that when comparing the performance of NM and INT-∞ approaches, NM was able to
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Figure 6: Preference recoverability ratio attained by different subsets of methods for all problem instances and sub-groups with various
characteristics of the considered problems.

solve around 3.4% of instances that INT-∞ could not handle (see Figure 6). In comparison, the inverse observation

holds for about 19% of considered problems. No methodological variant was capable of reproducing all assignment

examples in about 21% simulated scenarios.

Let us now pass to considering the impact of various problem dimensions. Table 1 shows that increasing the

number of classes p decreased the fraction of problems that could be handled by each method. The most significant

deterioration is visible for UTADIS, which was able to solve over 78% of 2-class problems and about 25% of 5-

class problems. The performance of INT-∞ was the least sensitive to changing p – from nearly 90% for binary

classification problems to less than 65% for problems with five classes. Despite the advantage of NM over INT-1

for 2-, 3- and 4-class problems, the latter could reproduce almost 2% more 5-class problems.

The inverse trend can be observed when changing the number of criteria m. There is a 2-fold increase in

recoverable problem instances between two and five criteria. Note that when m = 2, it is possible to introduce

only one interaction. Then, the results of INT-1 and INT-∞ were the same and their adaptability to DM’s indirect

preferences was limited (PR = 39.6%). In turn, the NM approaches were marginally better, providing a consistent

solution for 40.7% instances. For a greater number of attributes, the advantage of the NM group over INT-1 is still

visible. However, INT-∞ outperforms all remaining variants of UTADIS, taking advantage of the greater flexibility

in representing interactions between all criteria pairs.

The change in the shares of problem instances handled by different methods with the increase in the number

of characteristic points is best visible in Figure 6. There is a significant decrease in the fraction of problems solved

exclusively by INT-∞, from 16.2% for γj = 2 to 3.2% for γj = 5. For the NM group, the trend is inverse – these

approaches exclusively solved 0.7% problems with linear MVFs and 4.7% for functions involving five characteristic
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points. This tendency is also confirmed by Table 6, where the difference between these two approaches for 2-

point MVFs is almost 20% (55.6% for INT-∞ and 36.1% for NM), while for 5-point problems it drops to 4%

(85.2% and 81.2%, respectively). Thus, increasing the flexibility of MVFs has a more significant impact on the

performance of non-monotonic approaches than on INT-∞. Moreover, additional constraints on the monotonicity

of the interaction-oriented functions syn (see EM
INT) limit the improvement of recoverability for the INT methods.

A greater number of assignment examples for each class (r) implies a decrease in preference recoverability for

each method (see Table 2). Figure 6 shows that the number of problem instances unsolvable by any approach

increased from 1.7% for problems with one assignment per class to 37% when r = 5. This is due to additional

constraints introduced by more assignment examples, reducing the space of potential solutions. For problems with

poor knowledge of DM’s preferences, the differences between the methods are relatively small. In this case, even

the basic UTADIS model could deliver a solution for almost 90% instances. The NM group coped best with such

problems, providing a consistent solution for 96.9% of problems. INT-∞ fared slightly worse, reaching 96.6%, while

INT-1 scored 94.1%. The increase in indirect preference information had the greatest impact on the UTADIS

and NM methods. They were able to correctly reproduce, respectively, 20.3% and 32.6% of the problems with five

reference assignments per class. The impact was slightly less for INT-1, which solved 34.2% instances, while INT-∞
could handle 59.7% of problems. Thus, if the DM provides more assignment examples, in some cases, INT-∞ may

be the only possible choice.

Table 2 shows that the UTADIS and INT methods were better at dealing with problems where performances

were generated by sphere rather than random sampling. In both cases, INT-∞ performed best, solving almost 80%

of problems generated with m-sphere approach and over 70% instances with randomly drawn performances. INT-1

outperformed the NM approaches when using sphere, scoring 71.5%. However, it performed worse for random,

scoring 47.9%. In turn, NM reached 61.6% and 62.5%, respectively. The primary UTADIS method performed the

worst, providing a consistent solution for 56.5% and 40.4% instances, respectively.

Overall, INT-∞ proved the best at reproducing diverse DM preferences. Nevertheless, the NM methods are

slightly better in the case of simple problems with two classes, two criteria, and poor knowledge of DM’s preferences.

In some cases, the NM approaches perform slightly worse than INT-1, e.g., when the number of classes or reference

assignments is the greatest. UTADIS is inferior in preference reproducibility, delivering a consistent model for

significantly fewer instances for any combination of problem dimensions.

3.3.2. Analysis for problem instances handled by all methods

The first group of analyzed problem instances are those for which UTADIS found a feasible solution. Then, all

other methods also managed to deliver results compatible with all DM’s assignment examples. Such a selection of

a subset of problems makes it possible to compare all methods in terms of quality measures other than preference

recoverability. This selection criterion determines the distortion of the proportions between the different variants

of problems. Overall, 48.5% of all problems were selected, and their characteristics can be seen in Figure 7. The

advantage of problems with a small number of reference classes and assignments and a larger number of criteria

and characteristic points can be noticed. Moreover, the sphere algorithm generated more problems solved by the

primary variant of UTADIS.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of classes

Number of criteria

Number of ch. points

Number of ref. assignments

Generation algorithm

1 2 3 4 5 sphere random

Figure 7: Characteristics of problem instances for which all methods delivered a feasible solution.
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The analysis of δ∗ complements the conclusions formulated based on PR. The average results for the entire

subset of problem instances and the sub-groups with common characteristics are presented in Tables 3 and 4. Since

these instances were recoverable by UTADIS and the primary goal for both methods from the INT group is to

minimize the number of interactions between criteria in the objective function, the results for UTADIS and INT

are the same for all quality measures.

As for δ∗, NM-3 obtained the best results, regardless of the problem size. NM-2 follows it. Both methods

optimize the value of δ but differ in their assumptions about the MVF shapes and the post-normalization steps.

The only scenarios for which NM-2 led to statistically comparable results involved MVFs with five characteristic

points. UTADIS and INT methods fared worse than NM-2, except for simple problems with linear MVFs and one

reference assignment per class. According to the Wilcoxon signed-rank test, the differences were not statistically

significant in these cases. NM-1 performed the worst, as it is the only one considering slope changes in the objective

function, which significantly impacts the δ∗ values. The trends observed for various problem dimensions are similar

as for the expressiveness expressed with PR. The value of δ∗ decreased with more classes and assignments and

increased with more complex shapes of MVF. The only difference is in the influence of the number of criteria. For

UTADIS + INT and NM-1, δ∗ increased slightly, and for NM-2 and NM-3, it decreased. However, these trends are

less significant than for other dimensions.

Table 3: Average δ∗ values for all problem instances reproducible by all methods and their sub-groups with different numbers of classes
and criteria.

δ∗ Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

UTADIS + INT 0.081 0.142 0.055 0.030 0.019 0.078 0.078 0.081 0.084
NM-1 0.030 0.050 0.022 0.013 0.009 0.026 0.030 0.031 0.031
NM-2 0.090 0.144 0.070 0.044 0.032 0.097 0.092 0.089 0.086
NM-3 0.099 0.162 0.074 0.046 0.033 0.102 0.103 0.099 0.094

Table 4: Average δ∗ values for problem instances reproducible by all methods with different numbers of characteristic points, reference
assignments per class, and performance generation algorithms.

δ∗ Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

UTADIS + INT 0.073 0.075 0.081 0.088 0.134 0.071 0.045 0.030 0.024 0.068 0.098
NM-1 0.014 0.032 0.032 0.033 0.044 0.026 0.020 0.017 0.016 0.023 0.040
NM-2 0.067 0.079 0.093 0.105 0.125 0.085 0.066 0.055 0.049 0.075 0.111
NM-3 0.093 0.093 0.099 0.105 0.138 0.096 0.071 0.058 0.051 0.080 0.126

A similar analysis was performed for the APCA measure. The respective results are presented in Tables 5

and 6. In this case, the models delivered by the NM methods implied the same set of possible assignments and

thus have equal APCA values. In all cases, the models for UTADIS and INT gave significantly more unambiguous

recommendations. Hence, the APCA values are several times higher than for the NM methods, regardless of the

problem characteristics. The most significant changes can be observed when increasing the number of characteristic

points – APCA for UTADIS + INT is more than twice larger for linear MVFs (0.335 vs. 0.158) and nine times

greater for MVFs with five characteristic points (0.081 vs. 0.009). A significantly greater value for the random

generation of performances obtained by UTADIS + INT is also noteworthy. For these methods, the average

recommendation robustness captured by APCA is almost twice as high as that for the sphere algorithm. The

observations regarding CAR and ECAI are analogous. Thus they are included in the eAppendix (supplementary

material available online). Generally, the trends for different problem characteristics are opposite to those observed

for the expressiveness measures. Their values increase with more classes or assignments and fewer criteria or

characteristic points. Also, since both APCA and CAR focus on the unambiguity of delivered recommendations,

in the eAppendix, we discuss the relation between their values in all simulation runs.

The MCAI values – built on the robustness of classifications suggested by the selected model instances – are

presented in Tables 7 and 8. Again, they confirm the advantage of UTADIS and INT over all non-monotonic
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Table 5: Average values of APCA for all problem instances reproducible by all methods and their sub-groups with different numbers of
classes and criteria.

APCA Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

UTADIS + INT 0.146 0.125 0.150 0.165 0.171 0.279 0.162 0.118 0.094
NM 0.039 0.036 0.038 0.045 0.043 0.114 0.045 0.024 0.012

Table 6: Average values of APCA for problem instances reproducible by all methods with different numbers of characteristic points,
reference assignments per class, and performances generation algorithms.

APCA Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

UTADIS + INT 0.335 0.165 0.115 0.081 0.106 0.155 0.172 0.181 0.185 0.106 0.201
NM 0.158 0.038 0.018 0.009 0.025 0.042 0.049 0.054 0.054 0.042 0.035

approaches. The exceptions are problems with two criteria, where NM-2 scores slightly better (0.851 vs. 0.828).

NM-2 is the leader among non-monotonic methods, performing distinctly better than NM-1. We can conclude that

maximizing δ produces more robust results than optimizing it while limiting slope changes. This is also confirmed

by the advantage of NM-3 over NM-1. The exceptions to the last observation are instances with linear MVF. This

is understandable as NM-1 optimizes only δ in this setting because there are no slope changes.

The trends for different problem dimensions are similar to those observed previously for APCA. The exception

is a decrease in MCAI with the number of classes. The more classes, the lower the values of CAI can be. For

example, for 2-class problems, the highest CAI value for a given alternative must be at least 0.5, while for 5-class

problems, it is 0.2. This can cause a decrease in MCAI even if the methods still suggest the assignments supported

by the most significant number of feasible sorting instances. As for the previously considered robustness measures,

UTADIS and INT perform better for the random performance generation algorithm. In turn, the NM methods

attain greater APCA values for the sphere algorithm. Due to the high similarity of conclusions regarding CCA, the

results are discussed in eAppendix.

Table 7: Average values of MCAI for all problem instances reproducible by all methods and their sub-groups with different numbers of
classes and criteria.

MCAI Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

UTADIS + INT 0.754 0.818 0.746 0.697 0.658 0.828 0.766 0.743 0.720
NM-1 0.651 0.740 0.634 0.575 0.519 0.783 0.671 0.623 0.595
NM-2 0.713 0.771 0.700 0.663 0.636 0.851 0.741 0.686 0.651
NM-3 0.674 0.752 0.659 0.604 0.565 0.801 0.695 0.649 0.619

The analysis indicates that for problem instances reproducible by all methods, UTADIS achieves the most robust

recommendations while still being characterized by the lowest preference recoverability. This observation applies

to quality measures based on both stochastic analysis and the support given to the results implied by the selected

preference model instance.

3.3.3. Analysis for problem instances handled by the NM and INT approaches

To compare the models admitting the use of non-monotonic MVFs or the interactions between criteria, we analyzed

the results for problems for which both groups of methods delivered a feasible solution. This makes it possible to

unleash the potential of INT methods, which, in this case, consider interactions for at least one pair of criteria.

Overall, 10.2% of the initially considered problem instances were included in the analysis. These can be divided

into problems solved by all NM and INT methods (5%) and those solved by the NM approaches and INT-∞ (5.2%).

Tables 9–14 contain the average values of the quality measures consistent with this division. The upper part of

each table corresponds to the subset of problems solved by all NM and INT methods. In contrast, the lower part

exhibits the results for the subset of problems reproducible by the NM approaches and INT-∞.

The proportions between sub-problems with particular feature values for both subsets are shown in Figures 8
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Table 8: Average values of MCAI for the problem instances reproducible by all methods with different numbers of characteristic points,
reference assignments per class, and performance generation algorithms.

MCAI Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

UTADIS + INT 0.828 0.767 0.747 0.721 0.693 0.760 0.796 0.817 0.834 0.742 0.772
NM-1 0.809 0.666 0.624 0.597 0.594 0.641 0.688 0.725 0.750 0.676 0.616
NM-2 0.823 0.739 0.696 0.665 0.639 0.716 0.766 0.794 0.816 0.739 0.678
NM-3 0.788 0.697 0.657 0.625 0.597 0.677 0.723 0.758 0.783 0.694 0.646

and 9. In the first case, the shares of problem instances are balanced for all numbers of classes (from 21.3% for

5-class to 29.2% for 3-class problems) and criteria (from 23.2% for 2-criteria to 26% for 5-criteria problems). There

is a smaller representation of problems with linear MVFs (18.8%) and extreme numbers of preference information

pieces (13.6% for one assignment and 15% for five assignments per class). The other subset shows an increased

representation of higher numbers of classes, characteristic points, and assignments per class. In this case, there

are no problems involving only two criteria. This is because, for such problems, INT-1 and INT-∞ work the

same, having the possibility of establishing only one interaction. In both subsets, most instances had performances

generated using the random algorithm. This suggests that such problems are, on average, more challenging.
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Figure 8: Characteristics of problem instances for which all NM and INT methods delivered a feasible solution.
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Figure 9: Characteristics of problem instances for which all NM methods and INT-∞ delivered a feasible solution.

Regarding the obtained δ∗ values, for the first subset of problem instances, the INT methods had a weaker

expressiveness than the NM methods. On the contrary, when considering only problems solved by INT-∞, this

method performed better than the NM approaches for most problem characteristics. The only exception is the

subset of problems with performances generated by the sphere algorithm, where the solutions obtained by INT-

∞ are not statistically significantly better than those obtained by NM-2 and NM-3. These results confirm that

increasing the number of interactions in the INT approaches positively impacted expressiveness. The detailed

results – considering various problem characteristics – are available in Tables 9 and 10.

For the first group of problem instances, INT-∞ achieved better results than INT-1. For 2- and 3-criteria

problems, they got the same values because both methods find the same solution involving a single interaction for

one pair of criteria. For 4- and 5-criteria problems, both methods represented at most two additional interactions.

However, since INT-1 cannot involve the same criterion in multiple interactions, while INT-∞ does not have such a

limitation, the average value of δ∗ was significantly higher for INT-∞. Among the NM methods, similar to instances

considered in Section 3.3.2, NM-3 achieved the best results.
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Table 9: Average δ∗ values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

δ∗ Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

NM-1 0.012 0.012 0.013 0.011 0.010 0.004 0.012 0.014 0.016
NM-2 0.022 0.029 0.023 0.018 0.016 0.011 0.023 0.025 0.027
NM-3 0.024 0.034 0.025 0.020 0.018 0.011 0.025 0.028 0.030
INT-1 0.006 0.010 0.006 0.006 0.005 0.007 0.007 0.006 0.006
INT-∞ 0.009 0.011 0.008 0.008 0.009 0.007 0.007 0.010 0.012

NM-1 0.013 0.015 0.016 0.013 0.010 0.013 0.013 0.014
NM-2 0.022 0.038 0.025 0.019 0.016 0.022 0.022 0.022
NM-3 0.024 0.043 0.027 0.020 0.018 0.023 0.024 0.025
INT-∞ 0.032 0.047 0.034 0.028 0.027 0.030 0.032 0.033

Table 10: Average δ∗ values for the problem instances reproducible by the NM and INT methods with different numbers of characteristic
points, reference assignments per class, and performances generation algorithms.

δ∗ Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

NM-1 0.006 0.012 0.013 0.015 0.003 0.011 0.013 0.013 0.014 0.003 0.017
NM-2 0.023 0.019 0.020 0.025 0.018 0.023 0.023 0.022 0.021 0.008 0.030
NM-3 0.028 0.022 0.021 0.026 0.021 0.026 0.024 0.024 0.022 0.009 0.034
INT-1 0.008 0.007 0.006 0.005 0.007 0.007 0.006 0.005 0.006 0.006 0.006
INT-∞ 0.010 0.009 0.008 0.009 0.007 0.010 0.009 0.010 0.007 0.007 0.011

NM-1 0.007 0.014 0.016 0.016 0.006 0.012 0.014 0.015 0.015 0.003 0.014
NM-2 0.026 0.021 0.020 0.022 0.028 0.025 0.020 0.021 0.020 0.010 0.023
NM-3 0.029 0.023 0.022 0.023 0.033 0.027 0.022 0.023 0.022 0.011 0.025
INT-∞ 0.032 0.034 0.029 0.032 0.038 0.036 0.031 0.029 0.030 0.011 0.033

The APCA values for both considered groups of problem instances are presented in Tables 11 and 12. They

confirm the higher robustness of recommendations delivered by models incorporating interactions rather than non-

monotonicity. All NM methods attained the same average results, while INT-1 was at least as good as INT-∞,

regardless of the problem characteristics. Also, we observe a significant decrease in the average value of APCA

for INT-∞ between the first and second group of problems (0.401 and 0.206). This means that a greater number

of active interactions increases the variability of possible results, hence decreasing their robustness. For the NM

methods, this loss is not so evident (0.196 vs. 0.170), suggesting a greater stability of results obtained with the

non-monotonic approaches with the increasing problem complexity.

When analyzing the trends for the average value of APCA for different numbers of criteria, we observe that

increasing the number of criteria (m) leads to decreasing APCA for the NM approaches. This is due to the greater

flexibility of the underlying preference models. In turn, for the INT approaches, we observe an increase in the

mean value of APCA with more attributes. This suggests that the number of active interactions did not grow

substantially for problems involving more criteria, hence not increasing the space of feasible solutions vastly and

the variability of possible results. Even if the INT methods produce, in general, more robust results, the NM

approaches are superior in this regard for problems with two criteria and interactions that are representable with

INT (0.353 vs. 0.248). Analogous conclusions can be drawn based on the analysis of CAR and ECAI. For a detailed

discussion on these measures, see eAppendix.

Table 11: Average APCA values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

APCA Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

NM 0.196 0.245 0.207 0.186 0.146 0.353 0.222 0.137 0.091
INT-1 0.401 0.435 0.403 0.382 0.387 0.248 0.388 0.460 0.491
INT-∞ 0.373 0.419 0.386 0.354 0.332 0.248 0.388 0.425 0.418

NM 0.170 0.267 0.175 0.148 0.150 0.214 0.177 0.126
INT-∞ 0.206 0.404 0.225 0.164 0.152 0.192 0.211 0.213

Tables 13 and 14 show the average MCAI values for both subsets of considered problem instances. In the
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Table 12: Average APCA values for the problem instances reproducible by the NM and INT methods with different numbers of
characteristic points, reference assignments per class, and performances generation algorithms.

APCA Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

NM 0.392 0.233 0.139 0.065 0.296 0.195 0.158 0.190 0.177 0.331 0.108
INT-1 0.613 0.405 0.338 0.304 0.418 0.391 0.390 0.418 0.396 0.249 0.500
INT-∞ 0.588 0.379 0.313 0.267 0.416 0.366 0.353 0.375 0.375 0.242 0.459

NM 0.385 0.207 0.103 0.048 0.195 0.192 0.173 0.153 0.155 0.460 0.148
INT-∞ 0.500 0.198 0.123 0.072 0.330 0.234 0.181 0.187 0.185 0.451 0.187

first case, the precise recommendations suggested by the INT approaches achieved, on average, greater support

among the consistent model instances than the results offered by the NM methods. Once again, INT-1 with more

restrictive constraints led to slightly more robust recommendations than INT-∞. We also observe similar trends to

those noted for APCA for a different number of criteria.

Among the NM methods, for both subsets of problems, the most robust results were obtained by NM-2, fol-

lowed by NM-3. For the more challenging subset of problem instances reproducible by INT-∞, NM-2 performed

significantly better than INT-∞. This is due to a noticeable decrease in the mean value between the two subsets

of problems for INT-∞ (0.825 to 0.757) and a less intense decrease for NM-2 (0.816 to 0.798). This observation

strengthens the hypothesis about the negative impact of the number of interactions on the robustness of recom-

mended assignments. The detailed results for CCA are available in eAppendix.

Table 13: Average MCAI values for all problem instances reproducible by the NM and INT methods and their sub-groups with different
numbers of classes and criteria.

MCAI Number of classes Number of criteria
Procedure All settings 2 3 4 5 2 3 4 5

NM-1 0.717 0.832 0.742 0.681 0.610 0.788 0.742 0.688 0.657
NM-2 0.816 0.896 0.837 0.789 0.739 0.890 0.844 0.793 0.745
NM-3 0.759 0.866 0.786 0.722 0.661 0.826 0.779 0.737 0.703
INT-1 0.836 0.894 0.856 0.814 0.776 0.799 0.810 0.854 0.874
INT-∞ 0.825 0.891 0.852 0.803 0.748 0.799 0.810 0.844 0.842

NM-1 0.715 0.869 0.749 0.689 0.648 0.753 0.717 0.681
NM-2 0.798 0.888 0.821 0.785 0.755 0.839 0.800 0.761
NM-3 0.741 0.871 0.776 0.718 0.680 0.772 0.744 0.711
INT-∞ 0.757 0.897 0.800 0.732 0.686 0.748 0.755 0.765

Table 14: Average MCAI values for the problem instances reproducible by the NM and INT methods with different numbers of
characteristic points, reference assignments per class, and performances generation algorithms.

MCAI Number of ch. points Number of reference assignments Generation algorithm
Procedure 2 3 4 5 1 2 3 4 5 sphere random

NM-1 0.838 0.737 0.684 0.636 0.685 0.677 0.703 0.751 0.787 0.799 0.662
NM-2 0.885 0.847 0.797 0.746 0.791 0.791 0.807 0.839 0.861 0.898 0.762
NM-3 0.844 0.793 0.737 0.678 0.722 0.726 0.747 0.796 0.818 0.837 0.708
INT-1 0.892 0.845 0.817 0.800 0.776 0.817 0.844 0.862 0.871 0.804 0.856
INT-∞ 0.887 0.837 0.806 0.782 0.775 0.807 0.829 0.845 0.864 0.803 0.839

NM-1 0.841 0.746 0.684 0.628 0.660 0.662 0.721 0.734 0.757 0.838 0.705
NM-2 0.871 0.826 0.782 0.740 0.739 0.760 0.805 0.815 0.831 0.887 0.791
NM-3 0.840 0.774 0.717 0.667 0.677 0.697 0.745 0.757 0.785 0.841 0.733
INT-∞ 0.872 0.766 0.736 0.685 0.741 0.728 0.737 0.777 0.792 0.846 0.750

In general, the INT approaches generated more robust recommendations than NM for problems that are too

complex for the primary UTADIS approach. Moreover, INT-1 slightly outperformed INT-∞, regardless of the

quality measure analyzed. This confirms the validity of the strategy of activating the least possible number of

interactions per each criterion. Among the non-monotonic algorithms, the best performer was NM-2. It obtained

better results for measures based on acceptability indices. The premises indicating the dependence of robustness

on the number of interactions in the INT methods raise doubts. Hence, this topic will be considered in the next

section.
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3.3.4. Robustness and expressiveness in the context of the number of active interactions in the INT method

We aim to test the impact of the number of active interactions between pairs of criteria on the recommendation

robustness. For this purpose, we consider all problems reproducible simultaneously by the NM methods and INT-

∞. Undoubtedly, a higher number of active interactions increases the model’s expressiveness because it gives more

freedom in adjusting the impact of marginal functions and interactions on the comprehensive values of alternatives.

At the same time, due to the minimization of the number of active interactions in the objective function, it can

be presumed that solutions with a higher number of interactions apply to more demanding problems. This, in

turn, means that a direct comparison of quality measure values between solutions obtained using INT-∞ without

considering the number of active interactions may not be trustworthy. Hence, one needs to analyze each such subset

of problems separately.

Still, comparing these values to the results attained by other methods from the NM group is possible. Figure 10

shows the structure of the set of considered problems, and Table 15 exhibits the average values of quality measures

while dividing the set of problem instances based on the number of active interactions in the solution obtained by

INT-∞. There is a clear advantage in the frequency of problems involving sets of alternatives whose performances

were generated by the random algorithm. Moreover, problems with greater complexity (i.e., with higher numbers

of classes, criteria, characteristic points, and reference assignments) occur more often.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of classes

Number of criteria

Number of ch. points

Number of ref. assignments

Generation algorithm

1 2 3 4 5 sphere random

Figure 10: Characteristics of problem instances for which NM and INT-∞ with at least one active interaction delivered a feasible
solution.

Table 15 suggests that the subsets of problem instances for which the model delivered by INT-∞ has one or

two active interactions are of similar size. They jointly constitute about 93.5% of all considered instances. Due

to the small number of problems with more than two active interactions, the remaining solutions are grouped and

marked as 3+. Considering the δ∗ values, with the increasing number of interactions, the expressiveness of INT-∞
increases too, whereas, for the NM group, it increases slightly for two interactions and then decreases rapidly for

three or more interactions. When comparing different methods, the INT model with only one active interaction is,

on average, less expressive than all non-monotonic approaches. Conversely, with two or more interactions needed,

it is significantly more flexible than the remaining methods.

Considering the quality measures that quantify the robustness by exploiting set UR, i.e., APCA, CAR, and

ECAI, in all three cases, INT-∞ generated more robust recommendations than the NM group when it needed at

most two active interactions. Both in terms of the possible class assignments and consensus between the compatible

sorting model instances, significant increases in robustness are seen for the NM methods between problems requiring

solutions with two and three interactions. This increase is much smaller for INT-∞ in the case of APCA and CAR,

and for ECAI, there is even a slight decrease.

The analysis of the remaining two measures leads to the same conclusions. The exception is observed for MCAI

in the case of two interactions. Then, NM-2 achieved an average value of 0.785, better than 0.758 attained by INT-

∞. The observations above suggest that the minimum number of active interactions outputted by INT-∞ may

be essential for the robustness of delivered recommendations. If the number of interactions does not exceed two,

then the model with interactions leads to more robust recommendations. However, if there are more interactions,

then using one of the non-monotonic approaches is more beneficial. Still, the DM’s indications of non-monotonicity

of preferences and/or interactions between criteria should be critical in the method selection process. Choosing
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Table 15: Shares of problem instances and average values of six measures for different methods and different number of active interactions
in the solutions obtained with the INT-∞ method.

Number of interactions 1 2 3+

% of considered problems 45.24% 48.26% 6.51%

δ∗

NM-1 0.011 0.014 0.008
NM-2 0.021 0.023 0.016
NM-3 0.024 0.025 0.017
INT-∞ 0.007 0.032 0.034

APCA
NM 0.204 0.135 0.410
INT-∞ 0.387 0.201 0.224

CAR
NM 0.159 0.104 0.315
INT-∞ 0.317 0.153 0.203

ECAI
NM-1, NM-2 0.711 0.671 0.795
NM-3 0.660 0.604 0.758
INT-∞ 0.814 0.766 0.699

MCAI
NM-1 0.721 0.694 0.846
NM-2 0.821 0.785 0.876
NM-3 0.764 0.725 0.840
INT-∞ 0.830 0.758 0.736

CCA
NM-1 0.740 0.726 0.805
NM-2 0.704 0.689 0.782
NM-3 0.705 0.680 0.780
INT-∞ 0.812 0.738 0.689

a model based on the number of active interactions should only be considered when the DM does not opt for using

either approach because of the apparent characteristics of relevant attributes.

3.3.5. Robustness and expressiveness within the NM and INT methods

The shares of problem instances solved by either all NM approaches or both INT approaches are 3.37% and 6.19%,

respectively. The structure of problems reproducible by the NM group is represented in Figure 11. Once again,

there is a considerable predominance of problems with performances generated by the random algorithm. Problems

with fewer classes and criteria, more complex MVFs, and more reference assignments are also more common.

Table 16 shows the average measure values for the considered problem instances. They confirm previous obser-

vations. NM-3 can be considered the most flexible approach based on the analysis of δ∗. Yet, the values of PR,

APCA, and CAR for all three NM methods are the same. However, the models used by NM-1 and NM-2 lead

to more robust results in terms of ECAI. Moreover, among these two approaches, NM-2 typically suggests a more

robust recommendation because it attains significantly higher MCAI values than NM-1. In turn, NM-1 is the best

for CCA, maximizing the number of non-reference alternatives with confirmed assignments. This fact correlates

with the low value of δ∗ for NM-1, leading to narrower value ranges in which assignments are uncertain than for

other methods.
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Figure 11: The characteristics of problem instances reproducible by the NM methods.
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Table 16: Average values of six measures for problem instances reproducible by the NM methods.

Measure NM-1 NM-2 NM-3

δ∗ 0.015 0.034 0.036
APCA 0.187 0.187 0.187
CAR 0.148 0.148 0.148
ECAI 0.641 0.641 0.588
MCAI 0.715 0.797 0.747
CCA 0.750 0.666 0.657

A similar analysis was performed for problem instances for which the solutions were generated exclusively by

the INT methods. This subset involves more instances with performances generated by the sphere algorithm,

higher numbers of classes and assignments, and three or four criteria or characteristic points (see Figure 12).

The quality measures shown in Table 17 are consistent with the previous observations. The δ∗ value indicates a

higher expressiveness of INT-∞, whereas all other measures confirm a statistically significant advantage of INT-1

in ensuring higher recommendation robustness. For both groups, NM and INT, more detailed data showing the

impact of various model parameters on the values of quality measures are also consistent with previous observations.

The relevant discussion is included in eAppendix.
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Figure 12: The characteristics of problem instances reproducible by the INT methods.

Table 17: Average values of six measures for problem instances reproducible by the INT methods.

Measure INT-1 INT-∞
δ∗ 2.26E-03 2.64E-03
APCA 0.323 0.306
CAR 0.248 0.232
ECAI 0.810 0.802
MCAI 0.813 0.806
CCA 0.820 0.810

The above analyses confirm that NM-2 is the most advantageous method among non-monotonic approaches.

It combines increased flexibility and the greatest robustness, suggesting recommendations highly consistent with

the results produced by a set of all compatible models. Due to the significantly higher robustness of the delivered

solutions, the recommended approach among the INT methods is INT-1. INT-∞ should be used for more demanding

problems when more interactions between criteria are needed to reproduce the DM’s preferences.

4. Which is the most suitable UTADIS variant that should be used for a given problem?

This section presents two frameworks for recommending the appropriate variant of UTADIS for a particular problem.

One is based on the experimental results, hence referring to the concepts of expressiveness and robustness. The

other is taxonomy-based, taking into account the problem’s characteristics and the DM’s requirements.

4.1. Framework for recommending the adequate variant of UTADIS based on the experimental results

The conclusions from the experimental analysis led us to formulate a framework that supports selecting an adequate

model for a given problem. We assume that the ability to reproduce the DMs’ preferences is crucial to providing
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a solution consistent with their value system and that recommendations should be trustworthy in terms of their

robustness. Figure 13 shows a flowchart underlying the selection procedure.

YES

NO

Problem recoverable
by UTADIS?

UTADIS

NO

YESProblem recoverable
by INT-1?

NO

NO

YESProblem recoverable
by INT-∞?

NO

YESProblem recoverable
by NM?

YES

NO

The solution contains
< 3 active interactions

INT-∞

NM-2

Reformulate
problem

YES

NO

The solution contains
< 3 active interactions

INT-1

Figure 13: A framework for recommending an adequate variant of UTADIS for a given decision problem.

Its underlying idea is to recommend an approach that, in most cases, would deliver results that are as robust as

possible, given that all constraints resulting from the expressed preferences are satisfied. The first condition verifies

whether the assumed model is expressive enough to reproduce DM’s preferences. According to the experimental

analysis results, UTADIS was characterized by significantly better robustness than other methods. Hence, it should

be considered the first choice under the consistency setting. Its results should be the most conclusive and easy to

interpret for the user. If UTADIS could not reproduce the DM’s assignment examples, then INT-1 or INT-∞ (in

this order) should be employed because their recommendations’ robustness was higher than for the non-monotonic

approaches. However, this advantage stands true when the number of interactions does not exceed two. When

the interaction-oriented approaches cannot reproduce the preference information, one should check if the NM

group of methods can do so. In the case of a positive answer, the recommended method should be NM-2, as it

provides more robust recommendations than its counterparts. Let us emphasize that the framework’s application

is justified if the choice of the specific model is consulted between the analyst and the DM. Simply, the acceptance

of modifying the assumptions regarding preferential independence or monotonicity needs to make sense, given the

problem’s characteristics. Finally, suppose it is impossible to reproduce the preferences using any of the methods
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considered. In this case, one needs to reformulate the problem and/or the DM’s preferences using algorithmic

support or interacting with the DM [19, 38]. After modifying the problem’s input or assumptions (e.g., revising

some judgments to restore the consistency or accepting some level of inconsistency), the framework can be reapplied.

To remain concise, the formulated guidelines refer to sufficient expressiveness and the number of active in-

teractions, neglecting, e.g., the number of classes or criteria. However, the experimental results discussed in the

previous subsections supplement the framework, providing more detailed hints on the method selection based on

the parameters of the considered problem and quality measures exhibiting different interpretations of robustness,

provided that adequate reproducibility is guaranteed. For example, when considering problems reproducible by NM

and INT-∞, Tables 13 and 14 indicate that NM-2 outperformed INT-∞ in terms of MCAI, especially for a large

number of classes, reference alternatives, and characteristic points. Therefore, when the DM’s assignment examples

need a complex model to be reproduced and one cares about the support given to the delivered assignments by all

compatible sorting models, we can opt for using NM-2 over INT-∞.

The proposed framework is valid when there are no solid reasons or DM’s preference that would directly in-

dicate the need to introduce non-monotonic MVFs or interactions between criteria. Therefore, the framework’s

workflow should be perceived as a set of guidelines when no other arguments for using a specific method can be

expressed. Otherwise, an appropriate variant of UTADIS should be selected irrespective of the results attained in

the comparative study based on the agreement of the methods’ features with the problem characteristics and DM’s

requirements. To support dialogue in this scenario, in Section 4.2, we formulate a set of questions to enable the

selection of an appropriate UTADIS method.

4.2. Taxonomy-based framework for recommending the adequate variant of UTADIS based on the problem charac-

teristics

The variant of UTADIS appropriate for a given decision problem can also be selected based on the problem’s

characteristics and the DM’s requirements. A comprehensive framework for performing such a selection has been

proposed in [6]. In Table 18, we report the questions and answers that lead to selecting all UTADIS variants. They

refer to the features regarding problem formulation, preference model, and preference information. In particular,

the accounted UTADIS variants support sorting problems with completely ordered classes without cardinality

constraints, flat criteria structures, and deterministic performances on a complete family of criteria while applying

a cardinal scale to lead the assignments. Regarding the model, the performances are used quantitatively, compared

by the DM with respect to non-graded preference intensity, and aggregated while admitting full compensation. As

for the preferences, all variants accept indirect assignment examples.

Table 18: Questions and answers leading to the recommendation of all considered methods from the family of UTADIS.

Symbol Question Answer
Problem typology

Q-PT-I What type of decision recommendation is requested? Sorting
Q-PT-II What order of classes is requested? Complete
Q-PT-III What scale leading the recommendation is requested? Cardinal
Q-PT-IV What cardinality of classes is required? Without constraints
Q-PT-V What is the structure of the criteria used for the assessment? Flat
Q-PT-VI What is the type of performance of the criteria? Deterministic
Q-PT-VII What is the completeness status of the criteria set? Complete

Preference model

Q-PM-I
How should the input information/performance

Quantitatively
data be used by the method(s)?

Q-PM-II
What type of method that considers the quantitative information

Performance-based
from the criteria performances should be selected?

Q-PM-III
How should the comparison of the performances Performances are compared by the DM with
on the criteria be performed? respect to non-graded intensity of preference

Q-PM-IV
How much can the good performance on a criterion

Fully
compensate for the bad performance on another criterion?

Preference information
Q-PI-I What type of preference information is provided? Indirect
Q-PI-II What type of indirect preferences would you like to account for? Assignments of reference alternatives to classes
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Table 19 presents the questions that lead to particular variants of UTADIS. Specifically, the traditional UTADIS

should be used under the assumptions of preferential independence between the criteria, for which the preference

for the performances is known and monotonic. The INT methods are recommended when interactions between

criteria should be considered. Then, the contribution of the performance on some criterion into the alternative’s

comprehensive evaluation may be affected by the performances on the remaining criteria. If a criterion can interact

with at most one other attribute, then INT-1 should be prioritized over INT-∞. This assumption makes constructing

a sorting model more manageable and interpretation more straightforward. These two variants also require that the

order of preference for the performances on all criteria is known, meaning there is a clear, pre-defined correspondence

between attributes and class assignments. When the DM does not know a priori if such a monotonic dependency is

present and admits that it can be non-monotonic, the NM variants should be employed. To discriminate between

them, one needs to indicate whether a) sudden changes in the functions’ directions should be prevented, hence

minimizing slope changes and opting for the most parsimonious model (NM-1), b) the most discriminant model

should be prioritized, maximizing the difference between comprehensive values of alternatives from various classes

(NM-2), or c) it is desired to distinguish gain and cost components for the potentially non-monotonic criteria

(NM-3).

Table 19: Questions and answers leading to the recommendation of different methods from the family of UTADIS.

Symbol Question Answers (Methods)
Interactions between criteria

Q-INT-I
Should interactions between criteria be considered Yes (INT-1, INT-∞)
to reflect a non-additive nature of preferences? No (UTADIS, NM)

Q-INT-II Can each criterion interact with more than one other attribute? Yes (INT-∞), No (INT-1)
Potential non-monotonicity of preference directions

Q-NM-I
What is the knowledge of the preference Known, monotonic (UTADIS, INT)
for the values of each criterion? To discover, potentially non-monotonic (NM)

Q-NM-II
When handling potential non-monotonicity, should sudden Yes (NM-1, NM-2)
changes in the functions’ directions be prevented? No (NM-3)

Q-NM-III
When handling potential non-monotonicity, should obtaining Yes (NM-1, NM-3)
the most discriminant model be prioritized? No (NM-2)

Q-NM-IV
Is it desired to distinguish pair of components with monotonic potentially Yes (NM-3)
positive and negative relationships for the non-monotonic criteria? No (NM-1, NM-2)

5. A case study

To illustrate the applicability of the presented UTADIS methods and quality measures, we consider the problem of

sorting 30 mobile phone models into three classes: C1, C2 and C3, where C1 is the least preferred and C3 is the

most preferred one. The alternatives are evaluated in terms of four criteria: g1 – display size (inches), g2 – storage

(gigabytes), g3 – battery capacity (mAh), and g4 – price (Ukrainian Hryvnia – UAH). Their performances are given

in Table 20. The data comes from [40].

For each criterion, we selected the following four characteristic points: g1 – 5.1, 6.1, 7.1, 8.1; g2 – 64, 128, 256,

512; g3 – 2000, 3000, 4000, 5000; g4 – 15000, 30000, 45000, 60000. The extreme observed performances on each

criterion define the range of acceptable evaluations. In addition, the breakpoints for criteria g1, g3, and g4 were

selected according to Equal Width Binning [10]. Since there are only four possible performances on g2, they were

all selected as characteristic points. In the basic definition of the problem, we considered the first three criteria to

be of a gain type and the last criterion – a cost type. We also admitted non-monotonicity in the case of display

size (g1). Finally, we considered three artificial DMs – DM1, DM2, and DM3, simulating a dialogue with each.

Their preferences are generated so that to illustrate the use of different variants of UTADIS and the proposed

frameworks for method selection while referring to the least possible number of DMs and interactions.

In the next step, nine reference alternatives were selected. They were then precisely classified by each DM. All

three DMs agreed to assign alternatives a8, a13 and a20 to class C1, a2 to C2, and a12 to C3. In the case of a3, a5,

a17, and a19, they had conflicting preferences, but each of these alternatives was assigned to either C2 or C3. The
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Table 20: Performance table for the problem of sorting mobile phone models.

Alternative g1 (display size) g2 (storage) g3 (battery capacity) g4 (price)

a1 8.00 512 4500 56082
a2 7.30 256 4380 55338
a3 6.10 512 2815 46503
a4 8.10 256 3577 44232
a5 6.90 512 4500 39524
a6 6.80 128 5000 37630
a7 5.80 512 3190 36188
a8 6.10 128 2815 35507
a9 6.50 256 4000 34165
a10 6.70 512 4260 32530
a11 6.50 64 3969 32583
a12 6.58 512 4200 31656
a13 5.40 256 2227 31369
a14 6.10 256 4000 29927
a15 5.20 64 4500 25649
a16 6.20 128 2510 22760
a17 6.78 256 4510 22587
a18 6.00 128 4080 21879
a19 6.67 128 5000 21435
a20 6.10 128 3140 17475
a21 7.60 256 4500 51460
a22 6.80 256 5000 39620
a23 6.50 512 3174 27190
a24 6.70 256 4200 29999
a25 6.67 256 4500 27999
a26 6.67 256 5000 27417
a27 5.99 64 4100 15048
a28 5.10 64 2510 15000
a29 6.20 128 2000 28543
a30 7.00 512 4260 60000

min 5.10 64 2000 15000
max 8.10 512 5000 60000

upper part of Table 21 summarizes the initially collected preference information. The remaining 21 alternatives not

listed in this section of the table were not evaluated by the DMs in the first step.

For each DM, we simulated two iterations so that the analysis of the results delivered by the primary UTADIS

model after the first iteration stimulated the provision of additional assignment examples, which are presented in the

lower part of Table 21. The class thresholds, alternatives’ comprehensive values, and assignments for all discussed

models are provided in Table 22. Also, for each iteration, we sampled 100, 000 uniformly distributed feasible model

instances in UR.

For illustrative purposes, we also determined the values of six quality measures capturing the models’ expres-

siveness and robustness of the delivered results (see Table 23). This way, the readers could better understand their

meaning while referring to an example sorting problem.

Analysis for DM1. Let us assume DM1, supported by the decision analyst, opted for using a standard UTADIS.

Hence, he agreed that the impact of all criteria in a comprehensive score does not depend on any other attribute.

Moreover, he claimed that g1, g2, and g3 are gain criteria, with greater performance being more favorable, whereas

g4 is a cost criterion. The model compatible with the nine reference assignments of DM1 is denoted as UTADIS1

(see Table 22). The comprehensive value ranges for the three classes are as follows: [0, 0.647), [0.647, 0.842), and

[0.842, 1]. There are 7, 11, and 12 alternatives in C1, C2, and C3, respectively. However, the DM judged this

recommendation unsatisfactory because a23 was assigned to C2. Considering its low price (27190 UAH) and large

capacity (512 GB), the DM opted for assigning a23 to C3 (see Table 21). The new solution, denoted by UTADIS2,

was still delivered by the primary UTADIS model while respecting the pre-defined monotonicity constraints and

not violating preferential independence.

When comparing the MVFs obtained for DM1 in the two iterations (see Figure 14), there is a significant increase

in the maximal value for u2 (for 512 GB) and higher appreciation of prices in the 15000-30000 UAH range compared
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Table 21: Reference assignments provided by three DMs.

Alternative DM1 DM2 DM3

First iteration
a2 C2 C2 C2

a3 C2 C3 C2

a5 C3 C3 C2

a8 C1 C1 C1

a12 C3 C3 C3

a13 C1 C1 C1

a17 C3 C2 C3

a19 C2 C2 C3

a20 C1 C1 C1

Second iteration
a1 C1

a4 C1

a15 C3

a23 C3

to the 30000-45000 UAH range. The comprehensive value for the new reference alternative a23 increased slightly

(from 0.812 to 0.820). Since the class thresholds were assigned lesser values, a23 is now assigned to the most

preferred class C3. The two non-reference alternatives whose classifications were affected by the model change are

a1 and a4 assigned to C3 and C2, respectively.

When comparing the two models obtained for DM1, the value of δ∗ decreased after enriching the constraint set

with the one implied by the desired assignment of a23 (see Table 23). The number of non-reference alternatives

decreased from 21 to 20. Among them, only two alternatives had a non-empty necessary assignment (a10 →N C3,

a30 →N C3). Thus, the value of CAR is equal to 2
21 and 2

20 in the two iterations. In addition, there is a slight

increase in the values of ECAI (from 0.618 to 0.630) and MCAI (from 0.621 to 0.665), confirming the positive

impact of additional references assignments on the robustness of delivered results.
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Figure 14: Marginal value functions obtained in the two iterations for DM1.

Analysis for DM2. The analysis for DM2 starts while tolerating the preferential independence and pre-defined

preference directions for the four criteria. The model selected by the primary UTADIS method is presented in

Figure 15 and Table 22. The greatest share in the comprehensive value is associated with g2, while g1 and g4 have

a negligible impact on the alternatives’ scores. Also, the class thresholds were vastly different than for DM1, with

the upper limits equal to 0.187 for C1 and 0.493 for C2. This affected the cardinalities of alternatives assigned to

each class: C1 – 6, C2 – 16, and C3 – 8.

Table 24 presents the possible class assignments for all non-reference alternatives. Only a10, a23, and a30 have

non-empty necessary assignments; for ten alternatives – there are two possible classes, whereas for the remaining

eight options – all three classes are observed for at least one feasible sorting model. As a result, APCA(UR) =

1 − 8·2+10·1+3·0
21·2 = 0.381. In Table 24, the bold values of CAI ′(a,Cl) are associated with the class to which the

selected model assigns a given alternative. For 17 alternatives, this assignment is confirmed by most samples, and

only for alternatives a11, a15, a18, and a27 – CAI ′ is higher for some other class. Still, their average is relatively

high (MCAI(U) = 0.783), confirming the high robustness of the suggested classification. Further, the analysis of
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Table 22: Threshold values, alternatives assignments, and comprehensive values obtained in each iteration for the three DMs.

DM DM1 DM2 DM3

Method UTADIS1 UTADIS2 UTADIS NM-1 NM-2 NM-3 UTADIS INT-1

Threshold

t1 0.647 0.538 0.187 0.547 0.571 0.478 0.442 0.176
t2 0.842 0.726 0.493 0.636 0.810 0.674 0.714 0.682

Alternative

a1 0.791 (C2) 0.809 (C3) 0.961(C3) 0.543(C1) 0.508(C1) 0.406(C1) 0.611 (C2) 0.388 (C2)
a2 0.744 (C2) 0.632 (C2) 0.340 (C2) 0.551 (C2) 0.635 (C2) 0.551 (C2) 0.459 (C2) 0.247 (C2)
a3 0.744 (C2) 0.632 (C2) 0.646 (C3) 0.640 (C3) 0.873 (C3) 0.746 (C3) 0.459 (C2) 0.247 (C2)
a4 0.844 (C3) 0.591 (C2) 0.207(C2) 0.353(C1) 0.205(C1) 0.023(C1) 0.355 (C1) 0.205 (C2)
a5 1.000 (C3) 0.909 (C3) 0.955 (C3) 0.716 (C3) 0.937 (C3) 0.949 (C3) 0.697 (C2) 0.612 (C2)
a6 0.744 (C2) 0.559 (C2) 0.344 (C2) 0.578 (C2) 0.635 (C2) 0.584 (C2) 0.610 (C2) 0.442 (C2)
a7 0.746 (C2) 0.702 (C2) 0.693 (C3) 0.753 (C3) 0.764 (C2) 0.691 (C3) 0.541 (C2) 0.342 (C2)
a8 0.517 (C1) 0.361 (C1) 0.000 (C1) 0.486 (C1) 0.508 (C1) 0.406 (C1) 0.339 (C1) 0.000 (C1)
a9 0.940 (C3) 0.780 (C3) 0.292 (C2) 0.677 (C3) 0.682 (C2) 0.530 (C2) 0.514 (C2) 0.689 (C3)
a10 1.000 (C3) 0.976 (C3) 0.930 (C3) 0.748 (C3) 0.906 (C3) 0.898 (C3) 0.735 (C3) 0.897 (C3)
a11 0.737 (C2) 0.600 (C2) 0.250 (C2) 0.594 (C2) 0.477 (C1) 0.508 (C2) 0.385 (C1) 0.628 (C2)
a12 1.000 (C3) 0.984 (C3) 0.922 (C3) 0.767 (C3) 0.899 (C3) 0.868 (C3) 0.730 (C3) 0.932 (C3)
a13 0.549 (C1) 0.444 (C1) 0.034 (C1) 0.543 (C1) 0.426 (C1) 0.301 (C1) 0.426 (C1) 0.105 (C1)
a14 0.940 (C3) 0.820 (C3) 0.280 (C2) 0.740 (C3) 0.682 (C2) 0.429 (C1) 0.580 (C2) 0.859 (C3)
a15 0.534 (C1) 0.447 (C1) 0.284 (C2) 0.805 (C3) 0.212 (C1) 0.242 (C1) 0.408(C1) 0.753(C3)
a16 0.517 (C1) 0.414 (C1) 0.003 (C1) 0.416 (C1) 0.508 (C1) 0.431 (C1) 0.426 (C1) 0.000 (C1)
a17 0.940 (C3) 0.820 (C3) 0.340 (C2) 0.633 (C2) 0.746 (C2) 0.602 (C2) 0.735 (C3) 0.859 (C3)
a18 0.721 (C2) 0.611 (C2) 0.251 (C2) 0.704 (C3) 0.481 (C1) 0.388 (C1) 0.431 (C1) 0.753 (C3)
a19 0.744 (C2) 0.632 (C2) 0.340 (C2) 0.599 (C2) 0.635 (C2) 0.551 (C2) 0.730 (C3) 0.753 (C3)
a20 0.549 (C1) 0.444 (C1) 0.034 (C1) 0.543 (C1) 0.508 (C1) 0.406 (C1) 0.426 (C1) 0.105 (C1)
a21 0.818 (C2) 0.649 (C2) 0.350 (C2) 0.503 (C1) 0.507 (C1) 0.353 (C1) 0.495 (C2) 0.247 (C2)
a22 0.940 (C3) 0.728 (C3) 0.379 (C2) 0.629 (C2) 0.808 (C2) 0.607 (C2) 0.732 (C3) 0.466 (C2)
a23 0.812(C2) 0.820(C3) 0.701 (C3) 0.640 (C3) 0.873 (C3) 0.848 (C3) 0.696 (C2) 0.378 (C2)
a24 0.940 (C3) 0.820 (C3) 0.314 (C2) 0.645 (C3) 0.707 (C2) 0.581 (C2) 0.641 (C2) 0.859 (C3)
a25 0.940 (C3) 0.820 (C3) 0.336 (C2) 0.650 (C3) 0.745 (C2) 0.574 (C2) 0.732 (C3) 0.859 (C3)
a26 0.940 (C3) 0.820 (C3) 0.375 (C2) 0.650 (C3) 0.808 (C2) 0.574 (C2) 0.884 (C3) 0.859 (C3)
a27 0.719 (C2) 0.609 (C2) 0.253 (C2) 0.680 (C3) 0.449 (C1) 0.386 (C1) 0.436 (C1) 0.753 (C3)
a28 0.284 (C1) 0.208 (C1) 0.000 (C1) 0.564 (C2) 0.112 (C1) 0.223 (C1) 0.237 (C1) 0.000 (C1)
a29 0.517 (C1) 0.414 (C1) 0.003 (C1) 0.325 (C1) 0.508 (C1) 0.431 (C1) 0.426 (C1) 0.000 (C1)
a30 1.000 (C3) 1.000 (C3) 0.940 (C3) 0.701 (C3) 0.906 (C3) 0.975 (C3) 0.775 (C3) 1.000 (C3)

CAIs leads to the following entropy:
∑

a∈AT ECAIalt(a) = 6.9999. After normalizing it, we obtained the value

of the entropy-oriented quality measure: ECAI(UR) = 1 − 6.9999
log2(3)·21 = 0.790. It should be perceived as relatively

high, suggesting that the variability of sorting recommendations in the set of feasible sorting model instances is

rather low.

Nevertheless, the solution proposed by UTADIS was not approved by DM2 due to overestimating a1 and a4.

Hence, the DM stated that these two alternatives should be assigned to C1 (see Table 21) mainly because he judged

a display size of at least eight inches too large. Note that this was not possible when using any model compatible

with the assumptions of the primary UTADIS method (see Table 24).

After including the two additional assignment examples, the UTADIS method could not find any feasible solution.

Hence, the DM – supported by the decision analyst – assumed that the non-monotonic shape of u1 can be accepted

to increase the model’s flexibility while suitably representing his preferences. Indeed, he confirmed that it is

acceptable that the preference should be the least for small or large display sizes. In contrast, the most preferred

screens have intermediate sizes, ensuring a proper balance between usability, comfort, and conveniently storing the

phone in a pocket. For the remaining three criteria, MVFs were still required to respect the pre-defined preference

directions. The DM was offered three solutions, each obtained using a different approach from the NM group (see

Table 22 and Figure 15). He assessed that the recommendations obtained using NM-2 best reflected his preferences.

Figure 15 confirms the non-monotonic character of u1. In the case of NM-2, it assigns the highest scores to

phones with intermediate display sizes between 6.1 and 7.1 inches. In addition, compared to UTADIS, there is an

apparent decrease in the value for alternatives with the highest storage (g2) and battery (g3) capacities. The impact

of price (g4) was found negligible for all four models obtained based on the preferences of DM2. When comparing
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Table 23: Values of six quality measures for the sorting model instances selected in each iteration for the three DMs.

DM DM1 DM2 DM3

Method UTADIS1 UTADIS2 UTADIS NM-1 NM-2 NM-3 UTADIS INT-1

δ∗ 0.098 0.094 0.153 0.004 0.063 0.072 0.016 0.071
APCA 0.238 0.225 0.381 0.158 0.158 0.158 0.476 0.150
CAR 0.095 0.100 0.143 0 0 0 0.143 0.050
ECAI 0.618 0.630 0.790 0.781 0.781 0.775 0.848 0.802
MCAI 0.621 0.665 0.783 0.449 0.894 0.796 0.898 0.862
CCA 0.619 0.450 0.381 0.947 0.842 0.632 0.905 0.850

Table 24: The possible assignments PCA and class acceptability indices CAI′ for DM2 when using the primary UTADIS model for
deriving the recommendation.

DM DM2

Method UTADIS

Alternative PCAUR (a) CAI′(a,C1) CAI′(a,C2) CAI′(a,C3) ECAIalt(a)

a1 {C2, C3} 0 4.00E-05 1 5.84E-04
a4 {C1, C2, C3} 0.035 0.791 0.174 0.876
a6 {C1, C2, C3} 0.118 0.881 2.40E-04 0.528
a7 {C1, C2, C3} 6.00E-05 0.030 0.970 0.195
a9 {C1, C2} 0.167 0.833 0 0.651
a10 {C3} 0 0 1 0.000
a11 {C1, C2} 0.890 0.110 0 0.500
a14 {C1, C2} 0.306 0.694 0 0.889
a15 {C1, C2} 0.937 0.063 0 0.339
a16 {C1, C2} 1 1.80E-04 0 0.002
a18 {C1, C2} 0.730 0.270 0 0.841
a21 {C2, C3} 0 0.905 0.095 0.453
a22 {C1, C2, C3} 0.002 0.933 0.064 0.365
a23 {C3} 0 0 1 0.000
a24 {C1, C2} 0.034 0.966 0 0.214
a25 {C1, C2} 0.005 0.995 0 0.045
a26 {C1, C2, C3} 5.70E-04 0.898 0.101 0.480
a27 {C1, C2, C3} 0.858 0.142 2.00E-05 0.590
a28 {C1, C2, C3} 1 5.00E-05 3.00E-05 0.001
a29 {C1, C2, C3} 0.997 0.003 6.00E-05 0.030
a30 {C3} 0 0 1 0.000

the results obtained using UTADIS and NM-2, the latter proposed a less preferred class for more alternatives.

Specifically, apart from the change for reference alternatives a1 and a4, five additional alternatives (a11, a15, a18,

a21, a27) were assigned to C1, whereas another one option (a7) was placed in C2.
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Figure 15: Marginal value functions obtained in the two iterations for DM2.

Analysis for DM3. When reproducing the nine reference assignments desired by DM3, UTADIS delivered the

model presented in Table 22 and Figure 16. It indicates that the classes are well-separated (t1 = 0.442 and

t2 = 0.714), and each criterion significantly impacts the alternatives’ comprehensive scores. Nevertheless, the DM

did not accept this solution as he felt that the preference for phones with a low price and a high battery capacity

was too low. Therefore, he indicated that a15 should be assigned to C3 motivated by combining one of the highest

performances on g3 and one of the lowest on g4. In this case, UTADIS was unable to find a satisfying solution.
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In line with the experimental-based framework proposed in Section 4.1, we attempted to apply INT-1. It

suggested a model that respected the pre-defined monotonicity constraints but incorporated a positive interaction

between g3 and g4. The solution was approved by DM3 as it suitably represented the desired impact of battery

capacity and price on the phone’s comprehensive quality.

In general, the interaction component for pairs of criteria allows the introduction of additional dependencies

into the model that cannot be expressed in the standard UTADIS. In particular, one can increase or decrease the

preference for combinations of performances on two criteria using bonuses or penalties. In this case, DM3 wanted

to emphasize the positive perception of phones with both large battery capacity and low price, as the first model

did not properly reflect these preferences. In DM’s opinion, better performance on only one of the two criteria (g3

or g4) was less important than a favorable combination of both values of these attributes, hence the introduction

of synergy for these criteria. In a way, the DM desired to assign a bonus to models with large battery capacity

and low prices. The analysis of various phones confirmed that such combinations were possible, and hence, these

alternatives should be promoted by increasing their comprehensive values and ranks. The DM did not want to pay

more for a better battery, as he could have a decent one while spending less.
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Figure 16: Marginal value functions obtained in the two iterations for DM3.
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Figure 17: Positive interaction function syn+
g3,g4 between criteria g3 and g4 for results obtained by the INT-1 method for DM3.

The respective MVFs are given in Figure 16, and the three-dimensional plot of the syn+
g3,g4 interaction function

is shown in Figure 17. The latter has the greatest maximal impact on the alternatives’ comprehensive scores. Such

maximum scores of syn+
g3,g4 are assigned to all alternatives with g3(a) ≥ 4000 and g4(a) ≤ 30000, which coincides

with the DM’s preferences. The introduction of synergy brought the desired effect and better reflected the DM’s
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value system. At the same, the importance of the individual criteria was reduced (e.g., the impact of u1 and u4

considered separately was found to be negligible).

Table 23 reveals an increase of δ∗. This results from using a more expressive model than the primary UTADIS

method. At the same time, we observed a decrease in the values of all robustness measures. For example, the

possible assignments are now more diverse, as confirmed by the deterioration of APCA from 0.476 to 0.150,

and the number of necessary assignments decreased from three to one among all non-reference alternatives (CAR

decreased from 0.143 to 0.050). When it comes to CCA, for UTADIS – CCA(U) = 19
21 = 0.905 and for INT-1

– CCA(U) = 17
20 = 0.850. For the former, only the assignments of a18 and a27 are unconfirmed by the reference

alternatives. This is because their comprehensive values of 0.431 and 0.436 are between CUB
1 = 0.426 (attained by

reference alternatives a13 and a20) and CLB
2 = 0.459 (attained by reference alternatives a2 and a3). For INT-1,

the unconfirmed assignments are associated with three non-reference alternatives (a4 with the U = 0.205 between

CUB
1 = 0.105 and CLB

2 = 0.247, and a11 and a9 with comprehensive values of 0.628 and 0.689 between CUB
2 = 0.612

and CLB
3 = 0.753).

The above examples showed the impact of DM’s indirect preferences on the attained sorting results. They also

emphasized the importance of collecting reliable assignment examples representing the DM’s value system. Also,

we illustrated how important it is to involve the DMs, possibly supported by an analyst, in the process of selecting

a model that would reflect their decision policy in the best way.

6. Conclusions

While many MCDA methods have been proposed over the years, the focus primarily has been on their objective

features, with less attention to their performance in practice. This paper aimed to address this gap by focusing on

the performance aspects of MCDA methods. We accounted for preference disaggregation approaches in the context

of multiple criteria sorting. Specifically, we considered the family of UTADIS methods, inferring a value-based

aggregation model and class thresholds from the DM’s reference assignments. These approaches are known for

their intuitiveness, interpretability, and convenience to exploit their outputs.

We discussed a basic variant of UTADIS, where an alternative’s score is computed using an additive value

function. Then, we extended it by suitably adapting proposals existing in the context of ranking problems. On the

one hand, we discussed how to incorporate the dependencies between criteria while accepting various assumptions

on the number of active interactions for each attribute. On the other hand, we presented how to discover the

preference directions for various criteria while tolerating that marginal functions may be non-monotonic. Overall,

we considered six variants of UTADIS that differed in their assumptions, influencing their performance.

We introduced the concepts reflecting the performance of multiple criteria sorting methods in real-world decision-

making – the model’s expressiveness and the robustness of the delivered recommendations. Expressiveness refers to

the ability of a method to accurately represent the preferences of DMs, while robustness stands for the stability and

validity of the recommendations across different conditions. We proposed seven measures capturing the performance

in these two dimensions. They were used to quantify the outputs of an extensive computational experiment. This

way, we proposed the sorting-based counterpart of the framework proposed in [29] in the context of ranking and

choice problems.

The best performance in terms of expressiveness was attained by the INT-∞ method, which does not pose any

limits on the number of interacting criteria pairs. It was followed by the NM methods, admitting non-monotonicity.

The least expressive was the basic variant of UTADIS. Regarding robustness, the latter approach delivered the most

stable recommendations for the scenarios handled by all approaches. In the remaining cases, the best performer

depended on the number of interactions needed to ensure consistency with the DM’s preferences. When it was not

higher than two, it was better to use the interaction-oriented methods. Otherwise, the NM approaches led to more

robust results.

We used the above observations to support decision analysts in selecting the appropriate MCDA model. On

the one hand, the guidelines are based on the nature of supplied preferences for a specific decision problem. We
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aimed to attain the most robust recommendation derived from the model whose complexity is adjusted to the DM’s

assignment examples. On the other hand, the recommendations should always be confronted against the DM’s

requirements and problem characteristics. To support such a confrontation, we formulated a set of questions and

answers leading to the selection of various UTADIS variants. The essential ones refer to the features regarding

problem formulation and preference model.

We confirmed that expressiveness and robustness are conflicting. Moreover, the challenge of comprehensive

reproduction of DM’s indirect preference increased with more classes and reference assignments, fewer criteria and

characteristic points of marginal functions, and randomly generated performance of non-dominated alternatives. In

turn, the robustness of the recommendation is positively affected by richer preference information and negatively

impacted by a greater number of model parameters, which depends on the number of criteria and characteristic

points.

In our experimental study, the non-dominated alternatives were randomly assigned to the ordered classes.

Consequently, the model’s goodness of fit might be negatively influenced as the number of alternatives increases.

The relationship between the fit and the number of alternatives while controlling for the above factor, e.g., through

a systematic assignment mechanism respecting the relation between potential dominance and desired classes, is

worth exploring.

We envisage the following other directions for future research. First, it is possible to extend the analysis

to other value-based methods that handle interactions between criteria [35] or non-monotonicity of per-criteria

preferences [23]. Second, it would be interesting to account for the methods that tolerate inconsistency with the

DM’s preference information instead of being required to reproduce all assignment examples [28]. This way, we

could capture the trade-off between accepting some positive misclassification error and increasing the preference

model’s complexity. Third, in situations where preference information from multiple DMs is available, such as our

case study, it would be interesting to see how population-level insights could be exploited to improve individual-level

results [15]. Fourth, it is desired to consider outranking-based multiple criteria methods such as ELECTRE TRI-B or

TRI-C. However, modeling non-monotonicity with their use is still in its infancy [37]. Another challenge consists of

elaborating a value-driven method that simultaneously considers interactions and non-monotonicity. In this case,

the mathematical constraints would be non-linear, and hence one would need a heuristic optimization method.

Finally, it would be interesting to extend the experiments concerning the predictive accuracy presented in [14, 48]

to more advanced UTADIS variants that admit interactions and non-monotonicity. This would require knowing

or generating the ground truth (i.e., the actual assignments of hold-out alternatives) and investigating different

ways for selecting a single representative model (e.g., the most discriminant, average, central, parsimonious, or

robust) [32, 48]. The latter is essential as even in the context of the basic UTADIS variant, the reported differences

in the classification accuracy between the best and the worst-performing procedures were as significant as several

percent.
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[35] Liu, J., Kadziński, M., Liao, X., and Mao, X. (2021). Data-Driven Preference Learning Methods for Value-

Driven Multiple Criteria Sorting with Interacting Criteria. INFORMS Journal on Computing, 33(2):586–606.

[36] Manshadi, E. D., Mehregan, M. R., and Safari, H. (2015). Supplier Classification Using UTADIS Method

Based on Performance Criteria. International Journal of Academic Research in Business and Social Sciences,

5(2):31–45.

[37] Minoungou, P., Mousseau, V., Ouerdane, W., and Scotton, P. (2021). Learning MR-Sort Models from Non-

Monotone Data. https://doi.org/10.48550/arXiv.2107.09668.

[38] Mousseau, V., Dias, L. C., and Figueira, J. (2006). Dealing with inconsistent judgments in multiple criteria

sorting models. 4OR, 4(2):145–158.

[39] Palha, R. P., de Almeida, A. T., and Alencar, L. H. (2016). A Model for Sorting Activities to Be Outsourced

in Civil Construction Based on ROR-UTADIS. Mathematical Problems in Engineering, 2016:9236414.

[40] Pozdniakov, A. (2021). Mobile Phones Data. https://www.kaggle.com/datasets/artempozdniakov/

ukrainian-market-mobile-phones-data. Accessed: 2023-10-10.

[41] Roy, B. (2010). Robustness in operational research and decision aiding: A multi-faceted issue. European

Journal of Operational Research, 200(3):629 – 638.
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From investigation of expressiveness and robustness to a comprehensive value-based
framework for multiple criteria sorting problems – eAppendix
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bDepartment of Economics and Business, Pompeu Fabra University, 08005 Barcelona, Spain

1. Analysis of robustness for the problem instances handled by all methods

Tables 1 and 2 show the CAR, ECAI, and CCA values for the subset of problem instances handled by all methods.

The observations for CAR are analogous to those reported for APCA in the main paper. The only exception is the

opposite trend regarding the dependence of the measure on the increasing number of classes when CAR decreases slightly.

This difference is probably due to the increased difficulty of obtaining unambiguous recommendations confirmed by all

compatible models as the number of classes increases. CAR is also more restrictive because it rewards alternatives that

can be assigned to only one class. In turn, APCA offers greater granularity, rewarding models in which, e.g., an alternative

can be assigned to two out of five classes.

ECAI also confirms the advantage of UTADIS and INT over the NM approaches. The only noticeable difference is

that, unlike before, the results for NM-3 are worse than those obtained by NM-1 and NM-2. This is due to the different

distribution of all models in the space of consistent solutions UR that lowers consistency between the recommendations

they suggest.

Observations for CCA values also indicate an advantage of the primary UTADIS method over non-monotonic ap-

proaches in the analyzed subset of problem instances. Among the NM methods, NM-1 achieves the best results. This is

related to the attained δ∗ values. Low δ∗ means that the comprehensive values of the reference alternatives cover a large

portion of all possible comprehensive values, leaving only small value ranges for the uncertain assignments.

Table 1: Average CAR, ECAI, and CCA values for the problem instances handled by all methods and different numbers of classes and criteria.

Number of classes Number of criteria
Measure All settings 2 3 4 5 2 3 4 5

CAR
UTADIS + INT 0.115 0.125 0.116 0.107 0.094 0.219 0.129 0.093 0.074
NM 0.030 0.036 0.027 0.026 0.021 0.087 0.034 0.018 0.009

ECAI
UTADIS + INT 0.633 0.590 0.646 0.670 0.686 0.773 0.653 0.604 0.577
NM-1, NM-2 0.464 0.408 0.478 0.515 0.537 0.699 0.501 0.416 0.367
NM-3 0.416 0.375 0.427 0.454 0.469 0.635 0.446 0.372 0.328

CCA
UTADIS + INT 0.669 0.733 0.660 0.611 0.570 0.717 0.696 0.659 0.633
NM-1 0.635 0.685 0.631 0.589 0.560 0.677 0.665 0.632 0.596
NM-2 0.493 0.527 0.488 0.463 0.441 0.630 0.532 0.465 0.422
NM-3 0.484 0.520 0.477 0.454 0.430 0.606 0.521 0.463 0.416

2. Analysis of robustness for the problem instances handled by the NM and INT methods

The average values of CAR, ECAI, and CCA for the problem instances handled by all methods except UTADIS are shown

in Tables 3 and 4. Similarly to the observations made for APCA in the main paper, CAR and ECAI exhibit different
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Table 2: Average CAR, ECAI, and CCA values for the problems instances handled by all methods and different numbers of characteristic
points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 3 4 5 1 2 3 4 5 sphere random

CAR
UTADIS + INT 0.276 0.129 0.089 0.061 0.068 0.121 0.147 0.162 0.171 0.082 0.161
NM 0.125 0.028 0.012 0.006 0.014 0.031 0.041 0.047 0.049 0.032 0.027

ECAI
UTADIS + INT 0.685 0.640 0.634 0.606 0.548 0.650 0.693 0.714 0.724 0.610 0.665
NM-1, NM-2 0.624 0.494 0.439 0.400 0.376 0.471 0.527 0.555 0.578 0.517 0.391
NM-3 0.569 0.443 0.394 0.353 0.328 0.423 0.477 0.509 0.533 0.464 0.349

CCA
UTADIS + INT 0.650 0.669 0.677 0.669 0.557 0.683 0.741 0.785 0.805 0.661 0.680
NM-1 0.569 0.641 0.648 0.648 0.460 0.682 0.751 0.791 0.812 0.656 0.606
NM-2 0.595 0.527 0.481 0.438 0.323 0.506 0.609 0.672 0.714 0.541 0.425
NM-3 0.580 0.518 0.474 0.429 0.313 0.502 0.598 0.662 0.704 0.528 0.423

trends for the NM and INT methods for various numbers of criteria. Also, for bi-criteria problems, the NM methods

lead to statistically significantly better values. Moreover, non-monotonic approaches have an advantage for the problem

instances with performances generated by the sphere algorithm.

The latter scenario is also the only one for which all NM approaches perform better in the context of CCA. In all

other cases, there is a slight advantage of INT-1 over INT-∞, or both approaches achieve the same results. This can be

observed for 2- and 3-criteria problems, where both methods provide the same results. Moreover, in all other cases, the

INT methods produce better results than the NM approaches.

Table 3: Average CAR, ECAI, and CCA values for the problem instances handled by the NM and INT methods, and different numbers of
classes and criteria.

Number of classes Number of criteria
Measure All settings 2 3 4 5 2 3 4 5

CAR
NM 0.154 0.245 0.167 0.124 0.081 0.272 0.174 0.106 0.077
INT-1 0.328 0.435 0.345 0.283 0.256 0.194 0.316 0.379 0.409
INT-∞ 0.305 0.419 0.328 0.261 0.214 0.194 0.316 0.350 0.349

ECAI
NM-1, NM-2 0.705 0.733 0.712 0.701 0.671 0.829 0.739 0.667 0.599
NM-3 0.652 0.691 0.665 0.640 0.612 0.794 0.684 0.604 0.545
INT-1 0.823 0.814 0.833 0.823 0.817 0.757 0.804 0.850 0.872
INT-∞ 0.810 0.808 0.827 0.810 0.791 0.757 0.804 0.837 0.838

CCA
NM-1 0.739 0.847 0.771 0.702 0.631 0.741 0.766 0.735 0.713
NM-2 0.701 0.811 0.739 0.661 0.588 0.744 0.733 0.692 0.642
NM-3 0.701 0.813 0.730 0.663 0.597 0.745 0.730 0.691 0.646
INT-1 0.821 0.888 0.857 0.777 0.758 0.747 0.805 0.849 0.873
INT-∞ 0.803 0.883 0.848 0.756 0.721 0.747 0.805 0.831 0.824

Tables 5 and 6 exhibit results for the problem instances for which INT-1 was unable to reproduce the DM’s preferences.

In the case of a larger number of active interactions, the advantage of INT-∞ over the NM methods in terms of CAR

and ECAI is not as strong as in the previous case. Similarly to APCA, there is an apparent decrease in the average

values of CAR for INT-∞. Nevertheless, the advantage over non-monotonic approaches is still observable, regardless of

the analyzed problem dimension, except for 3-criteria problems. In this case, CAR and ECAI for INT-∞ are 0.154 and

0.737, while for NM-1 and NM-2, they are 0.166 and 0.742, respectively. However, the Wilcoxon signed-rank test with

p-value = 0.05 indicates that these differences are insufficient to conclude the advantage of NM approaches in this aspect.

Regarding the CCA values, the results obtained by INT-∞ and NM-1 should be considered statistically equivalent.

The results for these two methods differ in the strength of their trends depending on the problem dimension. For NM-

1, the decrease in the CCA value is more noticeable as the number of criteria increases and the number of reference

assignments decreases. For INT-∞, these differences are more significant when the number of classes and characteristic

points change. NM-2 and NM-3 are again clearly inferior, regardless of the analyzed dimension.
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Table 4: Average CAR, ECAI, and CCA values for the problem instances handled by the NM and INT methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 3 4 5 1 2 3 4 5 sphere random

CAR
NM 0.320 0.181 0.107 0.045 0.191 0.144 0.128 0.166 0.161 0.257 0.086
INT-1 0.532 0.335 0.264 0.235 0.302 0.299 0.322 0.368 0.358 0.206 0.408
INT-∞ 0.507 0.314 0.244 0.207 0.299 0.278 0.291 0.333 0.340 0.198 0.375

ECAI
NM-1, NM-2 0.781 0.744 0.685 0.621 0.729 0.688 0.690 0.712 0.725 0.835 0.620
NM-3 0.737 0.700 0.627 0.558 0.683 0.632 0.628 0.664 0.682 0.803 0.554
INT-1 0.861 0.821 0.805 0.815 0.800 0.818 0.823 0.838 0.829 0.750 0.870
INT-∞ 0.852 0.811 0.794 0.796 0.799 0.806 0.808 0.819 0.821 0.747 0.852

CCA
NM-1 0.726 0.771 0.732 0.716 0.579 0.713 0.759 0.797 0.814 0.780 0.712
NM-2 0.724 0.728 0.699 0.653 0.556 0.657 0.711 0.767 0.803 0.787 0.645
NM-3 0.734 0.730 0.699 0.645 0.573 0.661 0.710 0.763 0.788 0.796 0.640
INT-1 0.804 0.821 0.817 0.837 0.677 0.794 0.844 0.877 0.882 0.763 0.859
INT-∞ 0.794 0.806 0.801 0.809 0.674 0.777 0.822 0.850 0.870 0.759 0.832

Table 5: Average CAR, ECAI, and CCA values for the problem instances handled by the NM methods and INT-∞ and different numbers of
classes and criteria.

Number of classes Number of criteria
Measure All settings 2 3 4 5 2 3 4 5

CAR
NM 0.130 0.267 0.143 0.108 0.087 0.166 0.137 0.094
INT-∞ 0.161 0.404 0.188 0.111 0.089 0.154 0.164 0.164

ECAI
NM-1, NM-2 0.688 0.702 0.685 0.686 0.685 0.742 0.689 0.639
NM-3 0.625 0.665 0.628 0.614 0.617 0.675 0.628 0.580
INT-∞ 0.759 0.820 0.775 0.749 0.730 0.737 0.765 0.771

CCA
NM-1 0.737 0.859 0.766 0.725 0.672 0.761 0.735 0.718
NM-2 0.701 0.805 0.732 0.692 0.642 0.740 0.705 0.665
NM-3 0.694 0.799 0.726 0.682 0.634 0.732 0.697 0.658
INT-∞ 0.736 0.876 0.785 0.716 0.656 0.744 0.738 0.728

3. Robustness and expressiveness within the NM and INT groups of methods

3.1. Analysis for the problem instances handled by the NM methods

The average values of quality measures for the problem instances handled only by the NM methods are shown in Tables 7

and 8. The results confirm previous observations, i.e., the greatest flexibility of NM-3, associated with the highest δ∗

values, and the best robustness of recommendations obtained by NM-2, which is preceded only by NM-1 in the case of

CCA. This fact is related to the lower values of δ∗ for NM-1, which causes the uncertainty intervals between extreme

reference assignments to neighboring classes to be much narrower, leading to greater CCA values than for NM-2. The

trends and relationships between individual methods are preserved regardless of the analyzed problem dimension. The

only exception is the CCA value for instances with performance generated by the sphere algorithm. Then, NM-1 obtains

significantly worse results than the other two approaches.

3.2. Analysis for the problem instances handled by the INT methods

Tables 9 and 10 show the average values of quality measures for the problem instances handled by the INT methods. The

δ∗ values obtained by both approaches confirm the observations made in the preference recoverability analysis. That is,

INT-∞ has higher expressiveness than INT-1. Conversely, the remaining quality measures confirm the higher robustness

of INT-1. Except for instances with low complexity (e.g., problems with two criteria or one reference assignment per

class) where both methods return the same results, INT-1 performs slightly better than INT-∞. Hence, INT-1 should be

preferred over INT-∞ if its use is possible.
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Table 6: Average CAR, ECAI, and CCA values for the problem instances handled by the NM methods and INT-∞ and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 3 4 5 1 2 3 4 5 sphere random

CAR
NM 0.313 0.150 0.075 0.033 0.123 0.129 0.136 0.128 0.131 0.345 0.114
INT-∞ 0.433 0.148 0.082 0.042 0.242 0.175 0.137 0.154 0.154 0.384 0.144

ECAI
NM-1, NM-2 0.757 0.721 0.673 0.626 0.636 0.652 0.701 0.700 0.711 0.805 0.679
NM-3 0.718 0.663 0.603 0.550 0.565 0.591 0.637 0.636 0.653 0.767 0.614
INT-∞ 0.844 0.745 0.741 0.722 0.761 0.746 0.743 0.773 0.773 0.825 0.754

CCA
NM-1 0.733 0.783 0.739 0.704 0.517 0.694 0.765 0.768 0.790 0.752 0.736
NM-2 0.735 0.738 0.700 0.653 0.530 0.633 0.723 0.736 0.767 0.736 0.699
NM-3 0.733 0.729 0.689 0.645 0.527 0.625 0.714 0.730 0.758 0.737 0.691
INT-∞ 0.810 0.741 0.724 0.690 0.660 0.695 0.724 0.770 0.781 0.809 0.731

Table 7: Average values of six performance measures for the problem instances handled by the NM methods and different numbers of classes
and criteria.

Number of classes Number of criteria
Measure All settings 2 3 4 5 2 3 4 5

δ∗

NM-1 0.015 0.019 0.016 0.013 0.010 0.007 0.020 0.023 0.023
NM-2 0.034 0.050 0.031 0.022 0.016 0.015 0.039 0.052 0.052
NM-3 0.036 0.054 0.032 0.023 0.017 0.015 0.044 0.056 0.055

APCA
NM 0.187 0.186 0.178 0.182 0.222 0.344 0.154 0.043 0.012

CAR
NM 0.148 0.186 0.139 0.108 0.132 0.270 0.131 0.032 0.008

ECAI
NM-1, NM-2 0.641 0.611 0.639 0.661 0.691 0.802 0.654 0.504 0.419
NM-3 0.588 0.561 0.587 0.606 0.630 0.746 0.599 0.455 0.371

MCAI
NM-1 0.715 0.783 0.703 0.672 0.637 0.800 0.735 0.653 0.584
NM-2 0.797 0.848 0.789 0.753 0.747 0.881 0.821 0.735 0.662
NM-3 0.747 0.818 0.738 0.699 0.657 0.817 0.778 0.694 0.629

CCA
NM-1 0.750 0.843 0.750 0.665 0.637 0.761 0.781 0.746 0.709
NM-2 0.666 0.742 0.668 0.599 0.567 0.755 0.710 0.590 0.522
NM-3 0.657 0.732 0.654 0.599 0.560 0.742 0.692 0.599 0.511

4. The correlation between APCA and CAR

APCA and CAR are closely related, focussing on the unambiguity of delivered recommendations. For binary classification

problems, their values are equal. In general, APCA can be viewed as an upper bound on CAR. This is because the value

of APCA increases with each alternative whose |PCAUR(a)| is less than the number of classes p, while the value of CAR

increases only when |PCAUR(a)| equals 1.

Considering all simulation experiments, 68.36% runs were associated with the same APCA and CAR values (for 8.78%

scenarios, these values were equal to 0, and only for 0.13% cases, they were equal to 1). For the remaining 31.64% runs,

APCA was greater than CAR. The average value of APCA across all runs was 0.126, and for CAR, it was 0.099. The

Pearson correlation coefficient – defined on a scale −1 and 1 – for both quality measures is 0.824. The values of these

measures obtained in all simulation runs are visible in Figure 1.
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Table 8: Average values of six performance measures for the problem instances handled by the NM methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 3 4 5 1 2 3 4 5 sphere random

δ∗

NM-1 0.003 0.015 0.016 0.017 0.008 0.012 0.016 0.018 0.019 0.004 0.016
NM-2 0.015 0.029 0.035 0.038 0.024 0.028 0.035 0.038 0.037 0.008 0.035
NM-3 0.015 0.034 0.037 0.039 0.026 0.030 0.039 0.039 0.039 0.009 0.037

APCA
NM 0.670 0.268 0.134 0.110 0.276 0.232 0.176 0.167 0.132 0.247 0.184

CAR
NM 0.572 0.215 0.104 0.080 0.160 0.172 0.140 0.150 0.123 0.190 0.146

ECAI
NM-1, NM-2 0.845 0.700 0.622 0.588 0.714 0.657 0.640 0.616 0.617 0.812 0.632
NM-3 0.822 0.653 0.564 0.531 0.646 0.600 0.590 0.568 0.566 0.761 0.578

MCAI
NM-1 0.894 0.778 0.697 0.663 0.689 0.688 0.709 0.730 0.749 0.782 0.712
NM-2 0.921 0.842 0.790 0.753 0.782 0.771 0.796 0.805 0.823 0.875 0.792
NM-3 0.904 0.797 0.740 0.695 0.694 0.714 0.751 0.763 0.785 0.829 0.742

CCA
NM-1 0.737 0.769 0.762 0.727 0.548 0.729 0.764 0.791 0.806 0.775 0.748
NM-2 0.732 0.700 0.669 0.629 0.506 0.632 0.675 0.694 0.739 0.792 0.659
NM-3 0.733 0.693 0.656 0.622 0.500 0.614 0.665 0.698 0.725 0.821 0.648

Table 9: Average values of six performance measures for the problem instances handled by the INT methods and different numbers of classes
and criteria.

Number of classes Number of criteria
Measure All settings 2 3 4 5 2 3 4 5

δ∗

INT-1 0.002 0.005 0.003 0.002 0.002 0.002 0.003 0.002 0.002
INT-∞ 0.003 0.005 0.003 0.002 0.002 0.002 0.003 0.003 0.003

APCA
INT-1 0.323 0.478 0.409 0.302 0.260 0.323 0.297 0.322 0.359
INT-∞ 0.306 0.474 0.393 0.282 0.241 0.323 0.298 0.293 0.317

CAR
INT-1 0.248 0.478 0.350 0.219 0.167 0.236 0.232 0.252 0.278
INT-∞ 0.232 0.474 0.333 0.201 0.150 0.236 0.232 0.227 0.238

ECAI
INT-1 0.810 0.823 0.836 0.808 0.796 0.818 0.794 0.807 0.829
INT-∞ 0.802 0.821 0.831 0.799 0.785 0.818 0.793 0.792 0.811

MCAI
INT-1 0.813 0.902 0.861 0.804 0.775 0.803 0.794 0.820 0.836
INT-∞ 0.806 0.902 0.858 0.796 0.765 0.803 0.794 0.810 0.819

CCA
INT-1 0.820 0.891 0.863 0.811 0.789 0.769 0.824 0.833 0.845
INT-∞ 0.810 0.889 0.855 0.802 0.775 0.769 0.824 0.815 0.822
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Table 10: Average values of six performance measures for the problem instances handled by the INT methods and different numbers of
characteristic points, reference assignments per class, and performance generation algorithms.

Number of ch. points Number of reference assignments Generation algorithm
Measure 2 3 4 5 1 2 3 4 5 sphere random

δ∗

INT-1 0.004 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.002 0.002 0.005
INT-∞ 0.005 0.003 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.006

APCA
INT-1 0.678 0.384 0.220 0.102 0.581 0.408 0.340 0.305 0.273 0.281 0.663
INT-∞ 0.656 0.349 0.212 0.101 0.581 0.401 0.320 0.285 0.254 0.265 0.629

CAR
INT-1 0.568 0.294 0.153 0.067 0.313 0.300 0.260 0.245 0.218 0.210 0.556
INT-∞ 0.546 0.263 0.147 0.066 0.313 0.294 0.241 0.226 0.201 0.196 0.523

ECAI
INT-1 0.867 0.837 0.797 0.746 0.814 0.820 0.817 0.812 0.799 0.800 0.891
INT-∞ 0.858 0.820 0.793 0.744 0.814 0.815 0.808 0.801 0.791 0.792 0.880

MCAI
INT-1 0.895 0.836 0.793 0.743 0.727 0.799 0.816 0.819 0.818 0.804 0.885
INT-∞ 0.889 0.823 0.790 0.740 0.727 0.796 0.808 0.812 0.810 0.797 0.875

CCA
INT-1 0.819 0.842 0.820 0.789 0.519 0.767 0.817 0.844 0.848 0.817 0.843
INT-∞ 0.806 0.823 0.815 0.788 0.519 0.759 0.806 0.829 0.839 0.808 0.825

0.0 0.2 0.4 0.6 0.8 1.0
APCA

0.0
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0.4

0.6
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Figure 1: The relation between values of the APCA and CAR measures in all simulation runs.
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Extended abstract in Polish

Eksperymentalna analiza własności
modeli i metod wspomagania

decyzji w kontekście wykorzystania
holistycznych preferencji

Wprowadzenie

Jednym z fundamentalnych wyzwań, towarzyszących ludzkości od początku
jej istnienia, jest rozwiązywanie różnorodnych problemów decyzyjnych. Mogą
mieć one charakter indywidualny i być rozważane przez jednostki albo gru-
powy, kiedy pożądane jest wypracowanie kompromisowego rozwiązania, sa-
tysfakcjonującego wielu interesariuszy. Istnieją różnorodne sposoby radzenia
sobie z takimi dylematami; zdolność do logicznego myślenia, intuicja, wiedza
ekspercka czy czynniki losowe mogą wywierać istotny wpływ na podejmowane
wybory. Zdarza się, że pomimo poświęconego czasu i wysiłku na dokładną
analizę dostępnych opcji i konsekwencji ich wyboru, podejmowane są błędne
decyzje, prowadzące do niezadowalających rezultatów. Bezpośrednią przy-
czyną takich decyzji może być np. brak zrozumienia istoty problemu, błędne
postrzeganie rozważanych rozwiązań i priorytetów przez decydenta czy nie-
prawidłowy dobór kryteriów oceny. Jednym ze sposobów na zminimalizowa-
nie ryzyka pomyłek podczas rozwiązywania rzeczywistych i istotnych dyle-
matów, jest zastosowanie metod i praktyk wypracowanych w ramach rozwoju
Wielokryterialnego Wspomagania Decyzji (WWD). Jest to dziedzina zorien-
towana na badanie, rozwój i systematyzowanie informacji, które pozwalają
na skuteczne rozwiązywanie problemów decyzyjnych, w których preferencje
decydenta odzwierciedlają jego stosunek do wielu, często sprzecznych ze sobą,
kryteriów oceny.
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Standardowe podejście do problemu decyzyjnego, które jest powszech-
nie wykorzystywane w WWD, zakłada istnienie zbioru wariantów decyzyj-
nych, nazywanych również alternatywami, opcjami lub akcjami. Każda z al-
ternatyw jest oceniona przy pomocy co najmniej dwóch, często wzajemnie
sprzecznych kryteriów. Oprócz tego, konieczne jest określenie rodzaju rozwa-
żanego problemu, związanego z oczekiwaną formą rekomendacji. Wyróżnia
się cztery najpopularniejsze rodzaje – problem wyboru, którego rozwiąza-
nie powinno wskazywać jedną lub więcej najlepszych albo wyróżniających
się alternatyw; problem rankingu, dla którego konieczne jest uporządkowa-
nie alternatyw od namniej do najbardziej pożądanej; problem sortowania,
dla którego decydent oczekuje przypisania każdej z rozważanych alternatyw
do jednej z wielu predefiniowanych klas, które są uporządkowane względem
preferencji; problem opisu, który dostarcza informacji na temat konsekwencji
podjęcia określonych decyzji.

Rozwój dziedziny spowodował, że na przestrzeni ostatnich pięćdziesięciu
lat, powstało wiele opracowań podejmujących różne zagadnienia związane
z procesami decyzyjnymi. Oferują one różnorodne narzędzia i procedury, któ-
rych głównym celem jest ułatwienie podejmowania decyzji, a ponadto zagwa-
rantowanie, że otrzymane odpowiedzi będą łatwe w interpretacji oraz spójne
z oczekiwaniami decydenta. Opracowane modele i metody wspomagania de-
cyzji tworzą kompleksowe rozwiązania, które umożliwiają systematyczne po-
dejście do przeprowadzenia kolejnych kroków procesu decyzyjnego, takich jak
określenie rodzaju rozważanego problemu i oczekiwanej formy utworzonych
rekomendacji, zdefiniowanie zbioru możliwych alternatyw i istotnych kryte-
riów ich ewaluacji oraz określenie sposobu wyrażania preferencji i podejścia
do ich reprezentacji.

Ze względu na sposób uzyskiwania informacji na temat przekonań de-
cydenta, możemy wyróżnić podejścia, które mają bezpośrednie przełożenie
na wartości parametrów i kształt określonego modelu. Taka koncepcja prze-
kazywania informacji preferencyjnej wymaga od decydenta zrozumienia spo-
sobu działania określonej procedury decyzyjnej i znaczenia poszczególnych
parametrów, co sprawia, że skuteczne zastosowanie tego podejścia jest wyma-
gające i nie gwarantuje dostarczenia wysokiej jakości rekomendacji. Z tego po-
wodu, można zaobserwować rosnącą popularność metod i procedur, które
bazują na pośredniej informacji preferencyjnej, wyrażającej przekonania de-
cydenta na temat oczekiwanych relacji zachodzących wśród rozważanych al-
ternatyw, które powinny zostać odzwierciedlone w otrzymanych rekomen-
dacjach. Podejścia dostosowane do takiej formy przekazywania informacji
o przekonaniach decydenta, wpisują się w paradygmat dezagregacji preferen-
cji, który zakłada, że model reprezentujący preferencje może zostać wywie-
dziony na podstawie przykładowych decyzji, odnoszących się do niekomplet-
nego podzbioru rozważanych alternatyw.
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Wyrażone w ten sposób holistyczne preferencje umożliwiają decydentowi
wyrażenie swoich przekonań w sposób intuicyjny i niewymagający specja-
listycznej wiedzy dziedzinowej. Ponadto, istnienie dużej liczby dostępnych
modeli i metod wspomagania decyzji, umożliwiających przetwarzanie tak
sformułowanych preferencji dowodzi, że taka forma ekspresji decydenta jest
uniwersalna, a ponadto umożliwia wiarygodne porównanie potencjału pre-
dykcyjnego wykorzystujących ją podejść. Niestety, to istotne zagadnienie
badawcze jest bardzo często pomijane w literaturze naukowej. Publikacje
prezentujące nowe procedury decyzyjne zwykle wskazują jedynie na prak-
tyczne zastosowania, w jakich dana metoda została wykorzystana, abstra-
hując od przedstawienia porównania z istniejącymi, konkurencyjnymi podej-
ściami, zdolynmi do rozwiązywania takich samych problemów.

Uzupełnienie tej istotnej luki badawczej stanowiło jedną z motywacji ni-
niejszej pracy doktorskiej. Aby to umożliwić, przeprowadzono szereg badań,
skoncentrowanych na przedstawieniu analizowanych modeli i procedur wspo-
magania decyzji, a ponadto ukazaniu ich różnorodności, przede wszystkim
ze względu na jakość dostarczanych rekomendacji, rodzaj rozwiązywanych
problemów i sposób wykorzystywania informacji preferencyjnej. Istniejące
metody wraz z nowymi propozycjami i adaptacjami niektórych modeli i pro-
cedur decyzyjnych, zostały przeanalizowane pod kątem właściwości takich jak
trafność rekomendacji, odporność oferowanego wyniku, ekspresywność zało-
żonego modelu wiedzy i zdolność do zastosowania w problemach wykorzystu-
jących uczenie preferencji. Zaproponowano również szereg miar jakości, które
zostały wykorzystane do przeprowadzenia eksperymentalnej analizy porów-
nawczej. Dodatkowo, praca zawiera szczegółowy opis przeprowadzonych eks-
perymentów wraz z omówieniem uzyskanych rezultatów. Na ich podstawie,
opracowane zostały wytyczne dla analityków decyzyjnych, ułatwiające ich
pracę i wybór adekwatnej procedury decyzyjnej do rozważanego problemu.

Jakość i odporność procedur dezagregujących preferencje dla
problemów wielokryterialnego rankingu i wyboru

Jednym z najpopularniejszych podejść opartych na paradygmacie dezagre-
gacji preferencji i rozwiązującym problemy rankingu i wyboru jest metoda
UTA. Wykorzystuje ona model addytywnej funkcji wartości (użyteczności)
do reprezentacji preferencji decydenta. Procedura ta zyskała popularność
ze względu na akceptację intuicyjnych stwierdzeń określających preferencje
decydenta, w postaci porównań dla par alternatyw (np. alternatywa a jest
preferowana względem b; alternatywa c jest co najmniej tak dobra jak d)
oraz przejrzystą i zrozumiałą formę reprezentacji preferencji. Założenia me-
tody dotyczące normalizacji użyteczności alternatyw i monotoniczności funk-
cji cząstkowych, wraz z dostarczonymi przez decydenta porównaniami, mogą
być bowiem w prosty sposób reprezentowane jako ograniczenia w problemie
programowania liniowego.
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Ze względu na zakładaną niekompletność informacji preferencyjnej, która
obejmuje wyłącznie ranking zupełny lub częściowy dla podzbioru wariatów
referencyjnych, model ten może wyznaczyć nieskończenie wiele rozwiązań,
które w pełni odzwierciedlają preferencje decydenta, a jednocześnie dostar-
czają różnych rekomendacji. Narzędziem do analizy tak reprezentowanych
rozwiązań jest odporna regresja porządkowa, dostarczająca wniosków na te-
mat koniecznych i możliwych relacji zachodzących dla poszczególnych al-
ternatyw. Niestety, interpretacja tak przedstawionych rezultatów może być
trudna do zrozumienia i tym samym nieakceptowalna przez decydenta ocze-
kującego jasnych i wyjaśnialnych wskazań co do rekomendowanych wyborów.

Alternatywnym i powszechnie stosowanym podejściem do tego zagad-
nienia jest wzbogacenie procedury decyzyjnej o dodatkowy krok polegający
na utworzeniu jednoznacznych rekomendacji w oparciu o dostarczony zbiór
wszystkich kompatybilnych rozwiązań problemu. Literatura naukowa prezen-
tuje wiele różnych podejść do tego zagadnienia, wprowadzając między innymi
metody wyboru reprezentatywnej funkcji wartości. Metody te uzyskują re-
komendacje poprzez wykorzystanie pojedynczego modelu spójnego z prefe-
rencjami decydenta. W zależności od metody, może to być model oferujący
rekomendacje podkreślające ich centralny, średni, odporny albo najbardziej
dyskryminujący charakter. Kolejna grupa metod stosuje reguły decyzyjne
do zbudowania adekwatnych rekomendacji. Reguły te dostarczają rankingi
w oparciu o między innymi porównanie eksteremalnych wartości użyteczności
uzyskiwanych przez poszczególne alternatywy albo w oparciu o oczekiwaną
pozycję w rankingu, wyznaczoną na podstawie przeprowadzonej analizy sto-
chastycznej wszystkich spójnych rozwiązań.

Istnieją także procedury punktowania alternatyw, na przykład w związku
z licznymi relacjami przewyższania innych wariantów decyzyjnych, które są
podkreślane przez większość spójnych rozwiązań problemu. Ostatnia grupa
metod dostarcza możliwie najbardziej odpornych rekomendacji, zbudowa-
nych ńa podstawie wartości indeksów akceptowalności przypisania alterna-
tywy do określonej pozycji w rankingu oraz wskaźników ukazujących jak czę-
sto w kompatybilnych rozwiązaniach zachodzą określone relacje dla poszcze-
gólnych par alternatyw. Pomimo wielu propozycji metodologicznych dla tego
samego problemu, publikacje w dziedzinie WWD nie rozważały dotychczas
obszernej analizy porównwaczej zaproponowanych podejść, która mogłaby
dostarczyć przesłanek do wyboru procedur posiadających największy poten-
cjał do uzyskiwania wartościowych i trafnych rekomendacji. Z tego powodu,
w ramach niniejszej pracy badawczej, zaproponowano eksperymentalną ana-
lizę jakości i odporności tych procedur.

Przeprowadzone badania obejmowały analizę porównawczą łącznie trzy-
dziestu pięciu procedur dostarczających jednoznacznych rekomendacji, roz-
wiązujących problemy wielokryterialnego rankingu i wyboru w oparciu o re-
zultaty uzyskane przez metodę UTA. Zaproponowano łącznie siedem miar
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jakości, spośród których cztery dostarczały informacji na temat poprawno-
ści odwzorowania preferencji decydenta, a trzy odzwierciedlały odporność
dostarczanych rekomendacji. W każdej z dwóch grup, jedna z miar jako-
ści odnosiła się do problemu wyboru, podczas gdy pozostałe wskazywały
na jakość procedury w kontekście problemu tworzenia rankingu alternatyw.
Omówiono także schemat wielowymiarowej analizy eksperymentalnej, sku-
pionej na zbadaniu jakości generowanych rozwiązań, w zależności od para-
metrów rozważanego problemu, takich jak liczba alternatyw (od 6 do 14),
liczba kryteriów (od 3 do 5), liczba punktów charakterystycznych dla funkcji
marginalnych (od 2 do 4) i liczba dostarczonych porównań dla par warian-
tów decyzyjnych (od 4 do 10). Zaprezentowano również szczegółowy opis
praktycznego zastosowania porównywanych procedur na przykładzie rzeczy-
wistego problemu rankingu, którego celem było dostarczenie preferencyjnie
uporządkowanej kolekcji sześciu modeli samochodów, w oparciu o ich ocenę
dla pięciu różnych kryteriów decyzyjnych.

W kontekście problemu wyboru, analiza potwierdziła, że najlepsze śred-
nie wyniki uzyskała procedura decyzyjna wykorzystująca rezultaty analizy
stochastycznej rozwiązania, wskazująca na alternatywę, która była najczę-
ściej wybieranym wariantem decyzyjnym wśród wszystkich akceptowalnych
rozwiązań problemu. Z kolei dla problemu rankingu, wiodącymi metodami
okazały się podejścia skupione na dostarczeniu rozwiązania, które w naj-
lepszy sposób odzwierciedlało najpopularniejsze zależności (porównania par
alternatyw, przypisania alternatyw do określonych pozycji w rankingu) za-
chodzące w całej przestrzeni kompatybilnych rozwiązań. Ponadto, istotność
uzyskanych konkluzji została potwierdzona testem Wilcoxona dla par obser-
wacji i były one prawdziwe bez względu na rozważane parametry problemu,
takie jak rozmiar, kształt funkcji marginalnych i bogactwo informacji prefe-
rencyjnej. Jednoznaczne wnioski pozwoliły na sformułowanie wskazówek do-
tyczących wyboru procedur uzyskujących średnio najlepsze rezultaty dla pro-
blemów rankingu i wyboru, w zależności od rodzaju problemu i rozważanego
aspektu jakości dostarczanych rekomendacji.

Jakość i odporność procedur dezagregujących preferencje dla
problemów wielokryterialnego sortowania

Podobnie do omówionej wcześniej analizy porównawczej procedur dostar-
czających jednoznacznych rekomendacji dla problemów rankingu i wyboru,
istnieją analogiczne podejścia dla rozwiązania problemu wielokryterialnego
sortowania. Wiele z nich działa w oparciu o rezultaty uzyskane przez metodę
UTADIS, adaptującą podejście UTA poprzez wykorzystanie pośredniej in-
formacji preferencyjnej, wyrażonej jako przykładowe przydziały alternatyw
do klas oraz wzbogacenie modelu addytywnej funkcji użyteczności o war-
tości progowe separujące przedziały użyteczności alternatyw wraz z funkcją
wykorzystującą owe wartości do jednoznacznego przyporządkowania warian-
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tów do klas decyzyjnych. Literatura badawcza nie przedstawiła dotychczas
jednoznacznych wskazań co do jakości rezultatów uzyskiwanych przez niniej-
sze procedury. W związku z tym, również to zagadnienie zostało rozważone
w niniejszej rozprawie.

Eksperymentalna analiza własności obejmowała czternaście procedur po-
zwalających na rozwiązanie problemów wielokryterialnego sortowania po-
przez jednoznaczne przypisanie rozważanych wariantów do klas decyzyjnych.
Wszystkie rozpatrywane metody umożliwiają wyzaczenie reprezentatywnej
instancji założonego modelu preferencji. Różnią się jednak co do sposobu
jego wyboru, podążając choćby za ideą rozwiązania najbardziej dyskryminu-
jącego, centralnego, średniego, skapego czy odpornego. Trzy z rozważanych
podejść zostały zaproponowane po raz pierwszy i stanowią dodatkowy wkład
pracy do literatury przedmiotu. Zakładają one wybranie modelu, którego
rekomendacje posiadają największe wsparacie w zbiorze wszystkich modeli
spójnych z preferencjami decydenta. Zaprezentowano również opis poszcze-
gólnych metod, a także przypadek użycia ilustrujący praktyczne zastosowanie
wszystkich procedur do rozwiązania rzeczywistego problemu sortowania trzy-
dziestu miast europejskich pod kątem wdrażania polityki proekologicznej.

Ponownie, schemat zaproponowanych eksperymentów zakładał zmierze-
nie średnich wartości miar odnoszących się do istotnych aspektów jakościo-
wych dostarczanych rekomendacji, takich jak trafność klasyfikacji, odporność
uzyskanych rezultatów i ocenę podobieństwa wywiedzionego modelu do jego
odpowiednika, który był wykorzystywany do zbudowania referencyjnych pre-
ferencji decydenta. Rezultaty przeprowadzonych eksperymentów zostały na-
stępnie poddane wielowymiarowej analizie, która oprócz identyfikacji najlep-
szych procedur, oceniła również wpływ parametrów rozważanego problemu
na jakość uzyskanych rekomendacji. Analiza obejmowała problemy o różnej
złożoności, utworzone w oparciu o kombinację następujących parametrów:
liczba klas decyzyjnych (od 2 do 5), liczba kryteriów (od 3 do 9), liczba
punktów charakterystycznych dla funkcji marginalnych (od 2 do 6) i liczba
referencyjnych przypisań wariantów do klas (od 3 do 10).

Procedura wyznaczająca reprezentatywną funkcję wartości poprzez zna-
lezienie analitycznego centrum hiperwielościanu, reprezentującego przestrzeń
wszystkich kompatybilnych rozwiązań, dostarczała rozwiązań dla problemów
wielokryterialnego sortowania, które charakteryzowały się najwyższą średnią
trafnością klasyfikacji. Z drugiej strony, trzy nowe zaproponowane procedury,
poszukujące rozwiązania, które najpełniej odzwierciedla najpopularniejsze
przypisania do klas w całym zbiorze spójnych rekomendacji, uzyskiwały śred-
nio najbardziej odporne rekomendacje. Przeprowadzona analiza statystyczna
potwierdziła istotność zaobserwowanych zależności, niezależnie od parame-
trów charakteryzujących rozważane problemy decyzyjne. Zaprezentowane re-
zultaty umożliwiły sformułowanie kolejnych wskazówek dla analityków i tym
samym dostarczyły przesłanek, potwierdzających hipotezę badawczą.
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Odporność rekomendacji i ekspresywność modeli w
podejściach rozwiązujących problemy wielokryterialnego
sortowania

Oprócz modyfikacji procedur decyzyjnych, pozwalających na uzyskanie jed-
noznacznych rekomendacji w oparciu o ten sam model reprezentacji pre-
ferencji, istnieje również grupa procedur, które zmieniają założenia wyko-
rzystywanego modelu. Model addytywnej funkcji wartości, wykorzystywany
w metodach UTA i UTADIS, zakłada monotoniczność preferencji względem
poszczególnych kryteriów, a ponadto traktuje niezależnie poszczególne kry-
teria oceny alternatyw i tym samym nie odzwierciedla zależności preferencji
decydenta od interakcji międzykryterialnych. Istnieją jednak praktyczne pro-
blemy decyzyjne, dla których konieczne jest odzwierciedlenie wspomnianego
niemonotonicznego charakteru preferencji lub zachodzących interakcji. Model
addytywnej funkcji wartości nie ma możliwości reprezentacji takich preferen-
cji, co powoduje, że te metody są niezdolne do dostarczenia jakościowych
rekomendacji dla rozważanych problemów.

Przeprowadzona analiza umożliwiła identyfikacje jednego podejścia, które
wzbogacało model addytywnej funkcji użyteczności o dodatkowe funkcje,
reprezentujące interakcje dla par kryteriów oraz ujawniła dwa podejścia,
które wprowadzają możliwość reprezentacji niemonotoniczności preferencji
poprzez modyfikację podstawowych założeń modelu. Jednak wszystkie wy-
mienione wyżej modele były zorientowane na rozwiązywanie problemów ran-
kingu. Z tego powodu, w ramach przeprowadzonych prac badawczych, zapro-
ponowano adaptację opisanych w literaturze metod, dostosowując ich dzia-
łanie do rozwiązywania problemów wielokryterialnego sortowania.

Analiza eksperymentalna obejmowała porównanie podstawowej proce-
dury UTADIS wraz z pięcioma zaproponowanymi adaptacjami wyżej wy-
mienionych metod, spośród których dwie dotyczyły reprezentacji interak-
cji, a trzy umożliwiały uwzględnienie niemonotonicznych preferencji. Jednym
z badanych aspektów była ekspresywność modeli, interpretowaną jako zdol-
ność do odzwierciedlania preferencji decydenta, niezależnie od ich spójności
i kompletności. Ponadto, zbadano również odporność dostarczanych reko-
mendacji i modeli, poprzez zmierzenie ich stabilności i zgodności z wszyst-
kimi kompatybilnymi rozwiązaniami problemu. Oba te zagadnienia są często
postrzegane jako sprzeczne, ze względu na to, że metody charakteryzujące
się wyższą ekspresywnością bazują na bardziej wyrafinowanych i skompliko-
wanych modelach reprezentacji preferencji. To z kolei powoduje, że znacznie
częściej mogą one dostarczać niejednoznacznych rekomendacji, co może po-
wodować obniżenie stabilności i odporności proponowanych rozwiązań.

Wyniki przeprowadzonych analiz potwierdziły konkurencyjny charakter
tych dwóch zagadnień. Metody budujące rekomendacje w oparciu o bardziej
ekspresywne modele, uzyskują niższe rezultaty w kontekście miar jakości,
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które odnoszą się do ich odporności i vice versa. Z tego powodu zapropono-
wano, aby do rozwiązywania problemów wielokryterialnego sortowania wy-
korzystywać metody dostarczające możliwie najodporniejszych rekomenda-
cji, stopniowo przechodząc do bardziej ekspresywnych metod tylko w przy-
padku, gdy prostsze procedury nie są w stanie skutecznie odzwierciedlać prze-
konań decydenta. W przypadku rozważanych metod, w pierwszej kolejności
jest to metoda UTADIS, dalej podejścia uwzględniające interakcje dla par
kryteriów, a na końcu procedury odzwierciedlające niemonotoniczny charka-
ter preferencji dla poszczególnych cech rozważanych alternatyw.

Przeprowadzona analiza ujawniła jednak, że odporność metod uwzględ-
niających interakcję jest wyższa od tej uzyskiwanej przez niemonotoniczne
procedury tylko wówczas, gdy liczba aktywnych interakcji nie przekracza
dwóch. W przeciwnym przypadku, to metody zakładające niemonotoniczny
kształt funkcji marginalnych dostarczają bardziej odpornych rekomendacji.
Ponadto, jeśli żadna z metod nie jest w stanie w pełni odzwierciedlić prefe-
rencji decydenta, wówczas konieczna jest elicytacja informacji preferencyjnej.
Należy również odnotować, że proponowany zbiór reguł prowadzący do wy-
boru najodporniejszej procedury, proponuje właściwy sposób postępowania
tylko w sytuacji, gdy nie istnieją przesłanki świadczące o niemonotonicznym
lub interakcyjnym charkaterze preferencji decydenta. Natomiast jeśli takowe
przesłanki istnieją, należy zastosować podejście spójne z dodatkowymi za-
łożeniami dotyczącymi preferencji. Mimo to, zaproponowane reguły również
stanowią użyteczne wskazówki, które mogą być skutecznie wykorzystywane
przez analityków współpracujących z decydentami. Dodatkowo, aby ułatwić
odbiór zaproponowanych reguł postępowania, zilustrowano ich zastosowa-
nie na przykładzie problemu sortowania trzydziestu modeli telefonów komór-
kowych do trzech klas decyzyjnych, w kontekście preferencji dostarczonych
przez trzech różnych decydentów.

Algorytmy wspomagające uczenie preferencji modelu całki
Choquet inspirowane naturą

Kolejnym istotnym kierunkiem rozwoju metod wspomagania decyzji są po-
dejścia do problemu uczenia preferencji, których głównym celem jest uzy-
skanie modelu skutecznie klasyfikującego alternatywy do preferencyjnie upo-
rządkowanych klas. Wynikiem takich metod powinny być rozwiązania, które
z jednej strony są w stanie skutecznie reprezentować preferencje wyrażone
w oparciu o duże zbiory danych, mogące zawierać niespójne informacje pre-
ferencyjne, a z drugiej strony – dostarczają rekomendacji, które są łatwe
do interpretacji i uzasadnienia.

Jedną z metod wspomagania decyzji rozważanych w literaturze przed-
miotu w tym kontekście to model całki Choquet. Opiera on swoje działa-
nie o parametry reprezentujące istotność ocen uzyskanych dla określonych
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podziorów kryteriów. Tak sformułowane założenia powodują, że metoda ta
jest zorientowana na odzwierciedlanie negatywnych i pozytywnych interakcji
międzykryterialnych. Dzięki temu, ekspresywność całki Choquet jest znacz-
nie wyższa niż dla mniej rozbudowanego modelu reprezentacji preferencji
w metodzie UTADIS. Jednak wyznaczenie optymalnych wartości parame-
trów modelu stanowi wyzwanie, a zastosowanie klasycznych podejść opar-
tych o programowanie liniowe jest często nieefektywne. Rozmiar sformułowa-
nego problemu i złożoność ograniczeń liniowych, wynikających z dużej liczby
dostarczonych informacji prefeerencyjnych, powodują, że czas potrzebny do
optymalizacji rozwiązania ulega wydłużeniu. To z kolei sprawia, że dla wielu
rzeczywistych zastosowań i rozważanych w nich problemów decyzyjnych, ta-
kie rozwiązanie jest nieakceptowalne.

Przeprowadzony przegląd literatury ujawnił istnienie różnych podejść,
które umożliwiają optymalizację parametrów całki Choquet. Co prawda,
nie gwarantują one uzyskania optymalnego rozwązania, ale w odróżnieniu
od problemów programowania liniowego, mogą dostarczyć satysfakcjonujące
rezultaty w bardzo krótkim czasie. Do przeprowadzenia eksperymentalnej
analizy porównawczej, zaproponowano łącznie osiem podejść zorientowanych
na optymalizację parametrów wspomnianego modelu. Dwa spośród nich wpro-
wadzały pewne usprawnienia do sformułowanego problemu programowania
liniowego, pozwalające na uzyskanie wartościowych rekomendacji w krótkim
czasie. Kolejne trzy metody implementowały różne strategie oparte na kon-
cepcji lokalnego przeszukiwania przestrzeni rozwiązań, a ostatnie trzy po-
dejścia dostosowywały metaheurystyki inspirowane zjawiskami zachodzącymi
w naturze, w szczególności zachowaniami stadnymi zwierząt i zjawiskiem se-
lekcji naturalnej, do rozważanego problemu.

Prace badawcze obejmowały zaprezentowanie modelu całki Choquet oraz
omówionych wyżej podejść do rozwiązania problemu. Zaprezentowano także
przykład ilustrujący ewaluację wartości całki dla przykładowego wariantu de-
cyzyjnego, a ponadto sposób działania rozważanych algorytmów. Z kolei prze-
prowadzona analiza eksperymentalna skupiała się w głównej mierze na traf-
ności rezultatów binarnej klasyfikacji i poprawnym odzwierciedleniu relacji
preferencji dla par alternatyw pochodzących z różnych klas. Obejmowała
ona ewaluację wszystkich ośmiu podejść z wykorzystaniem pięciu referencyj-
nych zestawów danych, w podziale na trzy scenariusze o różnej liczbie in-
formacji preferencyjnych wyrażonych przez decydenta. Analiza potwierdziła,
że najlepsze rezultaty osiągają metaheurystyki inspirowane naturą, które nie-
zależnie od rozważanej liczby dostarczonych preferencji, zajmowały średnio
najwyższe pozycje w rankingu rozważanych metod. Dzięki temu, po raz ko-
lejny możliwe było zdefiniowanie wskazówek rekomendujących zastosowanie
algorytmów, które najdokładniej odzwierciedlały preferencje decydenta.
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Podsumowanie

Rosnące zainteresowanie metodami WWD przyczyniło się do powstania wielu
podejść spójnych z paradygmatem dezagregacji preferencji, który pozwala
na uzyskanie interpretowalnych rozwiązań na podstawie prostych, holistycz-
nych informacji preferencyjnych. Wzrost liczby opisanych w literaturze metod
nie dał jednak odpowiedzi na pytanie: która z dostępnych procedur dostarcza
jakościowych i odpornych rekomendacji w rozważanym kontekście decyzyj-
nym? Brak badań, które pomogłyby określić użyteczność poszczególnych me-
tod wspomagania decyzji stanowi istotną lukę w literaturze naukowej, której
wypełnienie stało się jednym z celów niniejszej dysertacji.

W ramach przeprowadzonych badań, zrealizowano łącznie cztery ekspery-
mentalne analizy własności modeli i procedur wielokryterialnego wspomaga-
nia decyzji. Dotyczyły one dostarczenia jednoznacznych rekomendacji, odpor-
ności rozwiązań, ekspresywności modeli, a ponadto ich zdolności do uczenia
się preferencji. Opracowania rezultatów przeprowadzonych badań obejmo-
wały szczegółowy opis porównywanych metod wraz z prezentacją przypadków
użycia, ilustrujących praktyczne zasotosowanie rozważanych modeli. Wśród
analizowanych podejść do rozwiązywania problemów, obok istniejących me-
tod wspomagania decyzji, znajdują się również takie, które prezentują nowe
propozycje albo adaptacje istniejących procedur, które dostosowują je do roz-
ważanego kontesktu decyzyjnego.

W celu uzyskania wartościowych wniosków i rekomendacji, zapropono-
wano szereg adekwatnych miar jakości, odzwierciedlających pożądane cechy
generowanych rozwiązań, takie jak trafność rekomendacji, odporność pre-
ferencji i ekspresywność modelu. Wykonane badania potwierdziły również
użyteczność nowo proponowanych metod dostarczania jednoznacznych pre-
ferencji, udowodniły przeciwstawny charakter odporności rekomendacji i eks-
presywności modeli, a ponadto wykazały, że algorytmy optymalizacyjne mogą
być skutecznym narzędziem do rozwązywania problemów uczenia preferencji.

Co jednak najistotniejsze, przeprowadzone analizy i zaproponowane eks-
perymentalne podejście do badania własności modeli i metod, mogą stanowić
istotne uzupełnienie publikacji wprowadzających nowe procedury wspoma-
gania decyzji, wzbogacając je o wnioski płynące z porównania rozwiązań
uzyskiwanych przez rozważane procedury. Same zaś wyniki analiz pozwo-
liły na uzyskanie przesłanek, które usprawniają dobór adekwatnych metod
do rozważanego problemu. Tym samym, ich skuteczne sformułowanie po-
twierdza hipotezę badawczą zawartą w niniejszej dysertacji.

Przyszłe kierunki badań powinny obejmować przeprowadzenie kolejnych
eksperymentalnych analiz porównawczych, dostarczających przesłanek dedy-
kowanych dla analityków decyzji, wskazujących na użyteczność określonych
metod w odniesieniu do innych zagadnień, które są przedmiotem analiz pro-
wadzonych w ramach rozwoju obszaru WWD. Po drugie, należy rozważyć
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sformułowanie uniwersalnych kryteriów i reguł oceny nowo proponowanych
podejść, co umożliwiłoby wskazanie zalet proponowanych rozwiązań i do-
starczenie dowodów na ich wysoką użyteczność w rozważanym kontekście
decyzyjnym. Zasady te powinny oferować kompleksowe podejście do analizy
i ewaluacji metod, na przykład poprzez opracowanie kompletnego zbioru miar
jakości oraz reprezentatywnej kolekcji referencyjnych zbiorów danych. Wyko-
rzystanie miar jakości do ewaluacji dostarczanych rozwiązań dla predefinio-
wanego zbioru problemów, pozwoliłoby na ustandaryzowanie procesu ewalu-
acji, co ułatwiałoby porównywanie nowo wprowadzanych metod z dotychczas
opisanymi w literaturze. Pożądanym z perspektywy rozwoju dziedziny byłoby
także opracowanie meta-procedur wspomagania decyzji, które zgodnie z pa-
radygmatem dezagregacji preferencji, poprzez holistyczną analizę informacji
na temat rozważanego problemu decyzyjnego, rekomendowałyby wykorzy-
stanie określonych metod wspomagania decyzji, umożliwiających skuteczne
zaadresowanie danego problemu.
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