
Poznań University of Technology

Faculty of Computing and Telecommunications

Doctoral dissertation

Combinatorial optimization problems in port
logistics

Jakub Wawrzyniak

Supervisor: prof. dr hab. eng. Maciej Drozdowski

Poznań, 2024



Acknowledgements

First and foremost, I am incredibly grateful to my supervisor, prof. dr hab. eng. Maciej

Drozdowski, for his invaluable advice, continuous support, and patience during my PhD study.

His immense knowledge and plentiful experience have encouraged me throughout my academic

research and daily life.

Finally, I would like to express my gratitude to my wife, my children, and my parents.

Without their tremendous understanding and encouragement in the past few years, it would

have been impossible for me to complete my studies.

2



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Scope and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related Work 16

2.1 Maritime Container Terminal Design . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Ship Traffic Models for Simulation Studies . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Berth Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Algorithm Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Deterministic Quay Partitioning Problem 27

3.1 Introducing Quay Partitioning Problem . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Mixed Integer Linear Program for 1in1 . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Mixed Integer Linear Program for 2in1 . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Scalability of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Features of DQPP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Ship Size Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 Impact of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.3 One Long Berth Length vs Flexible Berth Lengths . . . . . . . . . . . . . 46

3.6.4 2in1 against 1in1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4 CONTENTS

3.7 Summary and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Selecting Algorithms for Large Berth Allocation Problems 53

4.1 Algorithm Selection Problem for BAP . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Berth Allocation Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Hill Climbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Greedy Randomized Adaptive Search Procedures . . . . . . . . . . . . . . 59

4.3.4 Iterated Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Initial Evaluation of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Algorithm Portfolio Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Building Algorithm Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.1 Cover Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.2 Regret Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Performance of Algorithm Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8.1 Cross-Validation on Random Instances . . . . . . . . . . . . . . . . . . . . 79

4.8.2 Cross-Validation on Real Instances . . . . . . . . . . . . . . . . . . . . . . 83

4.8.3 Comparison with Fixed Portfolios . . . . . . . . . . . . . . . . . . . . . . 85

4.9 Summary of Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Container Ship Traffic Model for Simulation Studies 89

5.1 Ship Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Features of Ship Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Building of Ship Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Ship Size Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Ship Length Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.4 Processing Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.5 Ready Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Applying the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS 5

5.5 Distinctive Port Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 STM Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Stochastic Quay Partitioning Problem 117

6.1 Stochastic Quay Partitioning Problem Formulation . . . . . . . . . . . . . . . . . 117

6.2 Partition Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Brute-force Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Histogram Matching and Integer Programming . . . . . . . . . . . . . . . 121

6.3.3 Big Berths First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.4 Hill Climber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.5 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.6 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Features of SQPP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Patterns in Berth Length Selection . . . . . . . . . . . . . . . . . . . . . . 126

6.4.2 Quality Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.3 Solution Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.4 Equipartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Evaluation of the Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Technical aspects of solving SQPP . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6.1 Optimization Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6.2 Time Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 SQPP Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Conclusions and Final Remarks 145

A Streszczenie w języku polskim 148

B Summary 150

C Algorithm Portfolios for Large Berth Allocation Problems 152

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



6 CONTENTS

C.2 Cover algorithm portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.3 Regret portfolios for all random instances N (dataset 1) . . . . . . . . . . . . . . 159

C.4 Regret portfolios for n=10000 random instances N (dataset 2) . . . . . . . . . . 166

C.5 Regret portfolios for all random instances M (dataset 3) . . . . . . . . . . . . . . 173

C.6 Regret portfolios for m = 2 random instances M (dataset 4) . . . . . . . . . . . . 180

C.7 Comparison of regret portfolio scores . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.8 Real Instance Portfolios (dataset 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D Ship Traffic Model – Distributions and Parameters 200

D.1 Basic dataset information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2 Ship Size Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.3 pj/Lj distribution parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

D.4 Return time ρj distributions summary . . . . . . . . . . . . . . . . . . . . . . . . 203

D.4.1 Gdańsk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

D.4.2 Hamburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D.4.3 Los Angeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.4.4 Long Beach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

D.4.5 Le Havre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D.4.6 Rotterdam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

D.4.7 Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.4.8 Singapore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

D.5 Periodic arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

D.5.1 Histograms for Days of Week periodic arrivals . . . . . . . . . . . . . . . . 219

D.5.2 Histograms for Hours of Day periodic arrivals . . . . . . . . . . . . . . . . 219

D.6 Aperiodic ready times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.6.1 Weeks of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.6.2 Aperiodic arrivals over days of a week (DoW) . . . . . . . . . . . . . . . . 223

D.6.3 Aperiodic arrivals over hours of a day (HoD) . . . . . . . . . . . . . . . . 226

D.7 Lj distributions in clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Bibliography 229



Chapter 1

Introduction

1.1 Motivation

Global container shipping plays a vital role in contemporary logistics landscape. It is the

primary type of transport to move consumer goods between continents and countries. The

expansion of various consumption behaviors, related to the opportunities offered by e-commerce,

has significantly increased consumer expectations regarding the duration and possibilities of

transporting goods, also between distant areas of the globe. Therefore, countries with the

access to the coastline develop logistic industry and container vessel facilities in particular. This

leads to a development of the global economy, but also growing complexity of transportation

systems.

At the same time, we observe increasing competition, especially between large entities dis-

tributing various goods popular around the world. One example of such a situation is the so-

called fast fashion. While leaving aside the ethical and ecological aspects, it is an ideal example

that costs of producing new clothing have been reduced as much as possible, demand for product

is well predictable, but the optimization of logistics costs remains an intensively explored field

of competition. The above shows that logistics remains one of the key and the hardest sectors

of the economy. In this context, maritime container transport is of great importance. There are

well-known "world hubs" famous for their ports servicing this type of transport, e.g., Le Havre,

Rotterdam, Singapore or Shanghai. In their daily work, these centers face typical problems

7



8 CHAPTER 1. INTRODUCTION

of the whole logistics industry, and additional difficulties are caused by problems specific to

maritime transport and port support services. Such problems can be successfully mapped to

issues widely researched and discussed in the areas of combinatorial optimization or operations

research. It is therefore natural, that the experience gained from the research in these areas can

and should be used to solve real business problems. The above leads to the motivation of this

thesis, which is to conduct research in the areas of port logistics and combinatorial optimization.

1.2 Scope and Purpose

Ports and maritime container terminals are vital infrastructure to the global economy. Due to

competition and increasing traffic, they are intensively optimized. There are many operations

research formulations optimizing elements of port logistics: berth allocation problem, tugboat

and quay crane assignment problems, landside container traffic routing [7, 8, 11, 14, 42, 27, 36,

41, 45, 59, 81, 88, 87].

When designing a new terminal or restructuring an existing one, a pivotal decision is parti-

tioning the quay into berths. This is a subject of the quay partitioning problem (QPP) studied in

this thesis. Although berths may seem to exist only as virtual lines on the quay they are widely

used. For instance, Fig.1.1 shows vessel automatic identification system (AIS) [97] receiver posi-

tions at the quays in Le Havre and Singapore over 2021. Fig.1.1a,b show ship positions clustered

for centroids in berth positions declared by port operators. Each color represents ships at a dif-

ferent berth. Fig.1.1c,d show histograms of ship positions along the quays with 20m resolution.

It can be verified in Fig.1.1c and Fig.1.1d that histograms of ship positions along the quays

are clustered with apparently less frequent positions (indents) showing the ends of the berths.

Berths they play important managerial role because they determine ship positions at the quay

and simplify crane, tugboat, hawser management. The layout of berths determines the design

of the storage yard, planing and running the terminal internal transportation network. Thus,

although the ships can be positioned anywhere along the quay stretch, the concept of discrete

berth is widely used in maritime container terminal operations.

There is one more reason that quay partitioning is relevant. In the classic berth allocation

problem (BAP) [7, 8], that consists in managing berths and vessels in time, berth layout is

assumed as given. However, berth number and sizes, as the input to the BAP, can be optimized
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Figure 1.1: Examples of vessel clusters along a quay. a) map for Le Havre, b) map for Singapore,
c) positions histogram Le Havre, d) positions histogram Singapore. In a) and b) "Q" denotes
official berth position. Map data from OpenStreetMap openstreetmap.org/copyright.

for the terminal performance and do not have to be predetermined by the existing geographical

and historical constraints of the terminal location. Quay partitioning is practically important

when ports with long quays are designed. For example, Yangshan terminal has a single 5km-

long quay and 30 berths [96]. Tuas Megaport in Singapore, when completed, is expected to

have 26km of quays [99]. Thus, there is room for optimization of berth lengths. Partitioning

a quay into berths should be considered an element of long-term strategic port planning, when

a terminal is designed or an existing one is expanded. Since ports and container terminals

are designed for many years to come, the consequences of bad quay partitioning can be costly.

Hence, an obvious question emerges: what is the most efficient quay partitioning?

Although berths exist, partitioning a quay into berths has practical long-term implications

and there is room for optimization, dividing a quay into berths has been studied very little. To
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the best of our knowledge, there does not seem to exist any paper dealing with this problem, and

there are reasons for that. Firstly, defining berths is more a logical than physical operation, and

does not require extensive investments. It may seem a minor issue compared to the other costly

matters of terminal design. Secondly, the designers and terminal management may implicitly

choose the continuous vessel positioning model [7, 8], assuming that vessels are moored anywhere

along the quay, and consequently, there are no disjoint berths. However, as we have already

shown terminals throughout the world use berths (Fig.1.1). A further reason is that there are

obvious solutions for quay partitioning, the quays are divided into equal berths of the largest

expected vessel length. However, it is not certain that such obvious partitioning is the best

one. Some alternative partitions might improve the overall performance of the terminal. So the

question of berth layout is pertinent.

Technically, the berth layout of a terminal is a partitioning of its quays into berths. Thus,

a solution of the QPP requires determining the number of quays and their lengths such that

the stream of arriving container vessels waiting time is minimized. There should be no a priori

condition on the number and lengths of the berths, except for the obvious ones: there is no need

to have berths shorter than the shortest expected vessel, and there should be a limit on the

maximum size of a berth (but this, as we shall see, depends on the type of berths considered).

A key question this thesis wants to answer is the extent of the impact of quay partitioning on

the overall performance of the container terminal. A further high-level goal of this thesis is to

propose a set of algorithmic methods to better design quays in new ports with a special regard

to maritime container terminals and their container vessel traffic. In this Ph.D. the following

hypothesis is defended:

Maritime container terminal performance can be improved by optimization of quay partition-

ing into berths.

In order to achieve the above high-level goals, the work was divided into sub-problems focused

on the components of Quay Partitioning Problem. The individual issues analyzed are:

I Deterministic Quay Partitioning Problem (DQPP) which assumes a single known future

vessel arrival scenario. It will be assumed that either a single vessel can be moored in a

berth, or at most two vessels can share a berth. The former assignment type will be called

discrete or one-in-one layout (1in1 for short), the latter will be referred to as hybrid or

two-in-one (2in1) layout. Two methods, based on mixed integer linear programming are
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introduced to solve quay partitioning problem for the two aforementioned berth layouts.

It will be demonstrated that 2in1 hybrid vessel mooring method offers a greater flexibility

and reliability than the 1in1 discrete vessel mooring method. Therefore, 2in1 layout will

be the basis for the analyses in the following study. Part of the results in this study were

published in [91].

II Ship Traffic Model (STM) where a model of container ship arrival is proposed. An in-depth

data analysis of the features and dependencies in the historical container vessel traffic data

of eight world ports allowed to construct generators of test instances representative of the

real traffic [90].

III Algorithm Selection Problem (ASP) which proposes a method of selecting a portfolio of

algorithms solving Berth Allocation Problem (BAP). Evaluation of a particular solution of

the QPP, i.e. of the quay partition, for a given vessel arrival scenario consists in assigning the

arriving vessels to berths and assessing quality of the vessel service. This is equivalent to a

classic maritime logistic Berth Allocation Problem. As will be shown in the following Section

2.3, scheduling methods considered in the current literature are not capable of solving

instance sizes emerging in QPP. Consequently, a dedicated method selecting a portfolio of

BAP algorithms which can be run in parallel, in limited time, offering best solutions in the

given time limit, is proposed (see [88]). The elected algorithm portfolio is used in the next

part of the study (SQPP).

IV Stochastic Quay Partitioning Problem (SQPP) This part of the thesis builds on the ship

traffic model and and algorithm portfolios in the optimization of quay partitioning in the

stochastic setting. The uncertainty of future vessel arrivals is represented by the STM. A

set of algorithms is proposed for solving a stochastic version of the QPP. The solutions,

that is the quay partitions, are evaluated by a portfolio of BAP algorithms solving a set

of scenarios generated from the STM. Several types of computational experiments were

conducted to discover the best solution features. The scalability and reliability of QPP

solution workflow is analyzed.
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1.3 Methodology

This chapter outlines the methodology used to analyze the above-mentioned optimization prob-

lems. Each problem presents unique challenges in the realm of maritime logistics and compu-

tational efficiency. The approaches are structured to address particular challenges through a

combination of mathematical modeling, algorithmic development, and computational experi-

ments.

Since problems considered in this dissertation have combinatorial nature, they are inher-

ently difficult to solve. Therefore, computational complexity theory will be used as a guiding

methodological framework [25]. Further steps will be added to handle ship arrival uncertainty

represented by stochastic traffic model, and consequently, to include also stochastic optimization.

This implies that the following steps will be undertaken:

1. Determining computational complexity of quay partitioning problem in the discrete version

(DQPP). It will be shown that DQPP is NP-hard.

2. Analysis of real traffic data to prepare stochastic ship traffic model (STM) and generators

of test instances representative for the real traffic.

3. Construction of exact algorithms. This approach will be used to analyze features of high-

quality QPP solutions. Two types of exact algorithms are applicable:

• Full Enumeration which explores all possible solutions. The primary advantage is

certainty – these methods guarantee finding the optimal solution. Thus, full enu-

meration can provide benchmark solutions for comparisons with other methods. The

major drawback is computational impracticality for large-scale problems due to the

exponential time complexity. This relegates full enumeration to solving small scale

problems.

• Mixed Integer Linear Programming (MIP) which involve formulating the problem as

a linear program with integer variables. MIP methods are powerful and versatile,

able to provide exact solutions, have well-established theory and robust solvers. The

primary disadvantage of MIP is its computational complexity for large-scale problems.

4. Construction of heuristic algorithms for SQPP. Though heuristics do not guarantee ob-

taining optimal solutions, their advantage is low computational complexity. Two types of
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heuristics are of interest:

• Greedy algorithms which work by greedily making a locally optimal choice at each

step of iterative solution construction. They are known for simplicity and speed. The

downside is that can be myopic, overlooking non-greedy choices. In a typical setting

a greedy algorithm constructs one solution and stops.

• Metaheuristics which are high-level construction schemes for algorithms exploring the

considered problem solution space. Examples include Genetic Algorithms, Simulated

Annealing, and Tabu Search. The primary advantage is their flexibility and appli-

cability to a wide range of problems, including those with complex, non-linear, or

multi-modal solution space landscapes. They are particularly useful for large-scale

problems where exact methods are impractical. Metaheuristic complexity is well con-

trolled because its runtime can be easily set by the algorithm designer. The downside

is, e.g, setting them to work effectively and extensive parameter tuning. In a typical

setting metaheuristics improve solutions over time and can provide many increasingly

better solutions in the allowed runtime.

Heuristic methods are useful in two ways when solving SQPP:

• In the evaluation of quay partition for a scenario generated from STM, which means

assigning arriving vessels to the berths for some minimum waiting time. This is

equivalent to solving a classic Berth Allocation Problem (BAP) which is NP-hard

itself and (unless P=NP) requires efficient heuristics.

• In constructing the quay partition, which is also combinatorial optimization problem

in stochastic setting (NP)-hard for the discrete version).

5. Testing of DQPP and SQPP algorithms for runtime and solution quality. Due to the

complexity of these problems, one of the key issues is the trade-off between the running

time and the solution quality offered by a given algorithm. This should be taken into

account, especially when time budget is limited.

6. Analysis of solution features both in the deterministic and in the stochastic setting.
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1.4 Outline of the Thesis

Further organization of the thesis is the following. In Chapter 2 related literature is surveyed

with particular focus on port design, berth allocation, ship traffic modeling and algorithm se-

lection. The rest of the dissertation is divided into chapters devoted to the previously outlined

sub-problems.

Chapter 3 is dedicated to the discrete quay partitioning problem (DQPP). In the Section

3.2 the problem is formulated. Sections 3.3 and 3.4 introduce mixed integer linear programs for

1in1 and 2in1 versions of DQPP. Section 3.5 discusses scalability of the proposed methods, e.g.,

compares 2in1 against 1in1 variants of QPP.

In Chapter 5 the problem of developing the ship traffic model (STM) for further simulation

studies is discussed. The importance of developing such a model is justified in Section 5.1.

Section 5.2 provides a concise view on the features of the STM and their relation with port

logistics. In Section 5.3 the steps of building the STM are described. Section 5.4 introduces

the algorithms constructing test instances adhering to the developed model. In Section 5.5

distinctive port features discovered in the course of constructing the STM, are analyzed.

Chapter 4 considers selecting algorithms for large berth allocation problems (BAPs). Vari-

ants of the BAP are discussed in Section 4.2. Sections 4.3, 4.4 and 4.5 contain, respectively,

definitions of the algorithms for BAP, description of benchmarking datasets, and preliminary

algorithm evaluation results. Section 4.6 introduces the algorithm selection problem and two

portfolio selection methods: cover portfolios and regret portfolios. In Section 4.7 the two port-

folio variants are analyzed on selected examples. Broader performance tests of the selected

algorithm portfolios are summarized in Section 4.8.

In Chapter 6 stochastic quay partitioning problem (SQPP) is studied. In Section 6.1 this

problem is formulated. Partition evaluation process is explained in Section 6.2. Section 6.3

introduces quay partitioning algorithms. Sections 6.4 and 6.5, respectively, describe QPP solu-

tion features and evaluation of partitioning algorithms. Technical aspects of the SQPP solution

workflow operations are presented in Section 6.6.

The final Chapter 7 contains a summary, final conclusions and outlines options for further

studies on quay partitioning. In the process of preparing this dissertation a number of additional

technical reports and datasets were created, significantly exceeding acceptable volume of a Ph.D
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thesis. Two technical reports are included as appendices to give the reader an insight into the

results not included in the main text of the thesis.



Chapter 2

Related Work

This thesis builds on the research in port simulation, traffic modeling, berth allocation problem,

and algorithm selection problem. Hence, this chapter provides a description of the state of the art

in these areas, without claims to be exhaustive. The status of the research in the aforementioned

subproblems is important to justify the approaches and to understand the design decisions made

in this dissertation.

2.1 Maritime Container Terminal Design

Maritime ports are a major link of logistic chains. Hence, port performance determines both

port attractiveness and the overall logistics efficiency. Port optimization has many dimensions,

depending on the decision horizon (strategic, tactical or operational), position in space (quays,

storage yards, inter-terminals areas, hinterland) and type of goods (containers, liquid, bulk).

Not surprisingly, the related literature is huge. This thesis focuses on the strategic horizon,

seaside area, and container handling. To the best of our knowledge, quay partitioning problem

has not been posed before and the existing literature is related to QPP only in the very broad

sense of maritime container terminal design. The focus of this study is on quay partitioning while

BAP serves the purpose of evaluating a partition. Hence, this section is devoted to container

terminal design. The literature mentioned in this section is collected and classified in Tab. 2.1.

Let us elaborate on time horizons. Classically in port optimization, strategic infrastructure

16



2.1. MARITIME CONTAINER TERMINAL DESIGN 17

Table 2.1: Related work on maritime terminal design, research directions
[46] review of container terminal design studies, regarding equipment choice, layout design for seaside,

storage, hinterland areas, and evaluation methods, SL
queuing models for berth numbers

[40] survey of queuing theory models for berth number calculation
[30] number of berths for Izmir port. SL, criterion: cost.

seaside scheduling
[57] determines NP-hardness of BAP

[7, 8] BAP, QCAP literature reviews, TL,OL
[71] review and taxonomy for BAP with uncertainty, TL,OL
[41] berth schedule templates in time×space, TL, obj: cost and flow time
[10] Laycan Allocation Problem – assigning berthing time windows to new vessels to charter, +BAP,

+QCAP, TL,OL, obj: cost, alternatively, flow time
[63] evaluation by simulation of four scenarios of sharing berths and quay cranes between by four terminal

operators of a quay, TL,OL,multicriteria
[13] evaluation by simulation of two alternative bulk and container terminal locations, SL, obj:(average

waiting time)/(average service time)
yard (storage) layout

[66] evaluation by simulation of storage block width impact on quay crane rate and terminal performance,
SL, obj: Gross Crane Rate (lifts/hour)

[95] storage block width and length bi-criteria optimization by mathematical programming, SL, obj: cost,
alternatively, makespan

[1] integrated queuing network model for container unload process with ALVs, SL, obj: expected time
to unload a container

[61] a probabilistic model to predict storage space requirements, SL, obj: cost
[12] deterministic performance analysis of single-/double-lane storage blocks, SL, bi-obj: container

throughput and number of equipment units
[106] two-stage stochastic programming model for storage blocks layout, with terminal operations simula-

tions providing container transfer timing, SL, obj: investment and operational costs
[83] PSO algorithm planning transition from diesel to green yard cranes, SL, obj: combined cost

innovative designs and future technologies
[26] review of future generation container terminal designs, SL
[43] proposition of double-storey automated container port, SL
[47] underground transportation system separating container movement from vessel operation, SL
[48] survey of 32 offshore terminal and transshipment concepts and their combinations, including an idea

of mobile harbor, SL
ALV – Automated Lifting Vehicles, BAP – Berth Allocation Problem, QCAP – Quay Crane As-
signment Problem, QCSP – Quay Crane Scheduling Problem, SL, TL, OL – strategic, tactical and
operational levels, respectively

decisions have an impact months or years after the decisions have been taken. Tactical decisions

consider a time horizon of weeks and affect resource allocation, whereas operational decisions

apply to the next few days or even hours. Terminal design at large belongs to the strategic

level. We consider that building of berth templates formalized by [41] belongs to the tactical

level (this can be assimilated to the laycan assignment problem, see [10]). A berth template is a

makeshift pattern of vessel schedule (including the time interval and the berth to service them),

built weeks or months before the actual vessel arrivals. Building such a template schedule

may involve rejecting vessels if the schedule is too tight regarding terminal resources. The

schedule is reevaluated after each contract between the terminal and the liner (and sometimes
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the charterer, mainly for bulk cargo). Often ship liners propose cyclic arrivals [19], which

simplifies the schedules and allows to build them months ahead. However, due to unavoidable

uncertainties such schedules have to be rebuilt at the operational level, which leads to the

classical BAP. Quay crane assignment and stowage planning are further seaside optimization

problems, see [7, 8].

Let us return to terminal design, including terminal layout. [46] review and systematize

29 container terminal design studies regarding equipment choice, layout design for the seaside,

storage, hinterland areas, and evaluation methods. They determine a typical sequence of design

decisions from the equipment to the layout. [26] propose a study of the issues in container

terminal design, retain 21 prominent papers and provide a valuable insight into future trends.

A large majority of studies tackling particular elements of terminal design is based on simulation,

with a few papers using queuing theory or optimization models. Simulation dominance can be

attributed to the level of uncertainty and the complexity of the problem at hand (see [71]).

Firstly, the future flow of vessels is inevitably uncertain. Still, the number of ships and their

types, arrival frequencies, the number of containers they will load/unload, are necessary for

dimensioning the terminal. Secondly, evaluating the efficiency of a given terminal layout, for

a given traffic model, is already a difficult optimization problem [57]. Hence, finding the best

layout is also computationally hard. Simulations rely on ship traffic models and evaluate the

performance of several alternative designs (see for instance [66, 95]). Queuing models, e.g. for

stacking containers [1], can cope with uncertainties, but are limited by the model complexity.

Optimization models [61], [12] have difficulty taking uncertainty into account and still remaining

tractable. Optimization models might remain limited to some specific sub-problems. It is also

possible to couple optimization and simulation as in [106].

According to [26, 46], terminal design decomposes into berth layout for the seaside part, yard

and traffic course layout for the yard part, gate and rail area layout for the landside part. Even

though the landside issues should not be overlooked as fluid traffic to and from the hinterland

is essential for the terminal competitiveness, while multi-modality is a way to limit greenhouse

gas emissions, they are usually dealt with at the port authority level, not at the terminal level.

Hence, a vast majority of the studies deal with yard layout. Many of them consider changes

of the actual yards, optimizing the block sizes and orientation with respect to the wharfs and

evaluating the effect of changing the container handling equipment. A number of papers propose
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major changes in the yard structure: double-storey terminals like the Singapore project [43],

underground transport for transshipment [47], container racks inspired by modern warehouses

[48]. Planning the equipment of the yard is also an element of terminal design. A transit from

diesel to electric, photovoltaic and hybrid yard cranes was studied by [83].

Concerning the seaside part, only a few papers consider berth layout. [63] proposed a simula-

tion to verify if better allocation of the terminal resources significantly increase the performances.

The size of the four berths is fixed, but the quay cranes may, or not, be shared among the berths

according to the vessel lengths they serve. The results show that sharing quay cranes improves

the performance, which is a property usually assumed in many later papers.

[13] proposed a simulation based on some ship traffic model considering different types of

cargo, in a port reachable by a long waterway. Two scenarios considered two locations that

can welcome either two berths for containers, or two berths for solid bulk. The choice criterion

depends on the sum of shipping waiting times. Hence, despite the paper title which explicitly

refers to berth layout, [13] essentially consider the impact of choosing a location for terminals,

but not the berth layout of a given terminal with a fixed location.

In order to determine the number of berths for minimum ship waiting and idle berth costs,

queuing theory was used. In [40] a survey of queuing theory models for berth number calculation

is given. An M|M|m model is used to derive a relationship between the number of berths m and

traffic intensity. Such a queuing theory approach is a simple model of a far more complex process

because, e.g., specific ship size class relationship with the arrival and service times is neglected,

scheduling disciplines are very basic, berths are identical, one ship occupies a whole berth.

In [30] number of berths for Izmir port without distinguishing specific type of the container,

cargo and passenger traffic was analyzed. Ship inter-arrival time was modeled by fitting Poisson

distribution to historical data. Similarly, the service time was fit by Erlang distribution.

2.2 Ship Traffic Models for Simulation Studies

In this thesis the natural question is considered: given expected container vessel traffic, what

is the most efficient quay partitioning? Thus, an STM is essential in simulation studies when a

new container terminal is designed or an existing one is redesigned. In many port optimization

formulations, quay partitioning into berths, the layout of the storage yard and the landside
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container transport lanes must be chosen. These design decisions further impact future ship

to berth assignments, tugboats and crane assignments, container storage and transport orga-

nization. Since container terminals are complex infrastructures which operations evolved over

generations, there are many material, environmental, legal, financial constraints determining

ship berths, crane schedules, vehicle logistics, container storage, and other port activities. Due

to this complexity, it is hard to expect that analytical models will provide accurate estimations

of the effects of the planned port changes. Furthermore, large time horizon of the future ter-

minal use implies large uncertainty, which is difficult to take into account in analytical models.

Therefore, simulation studies provide a natural approach to assessing future port performance.

Such studies require an accurate but versatile ship traffic model providing the right inputs

for the simulation. In [5], 18 port simulation models built for risk and capacity assessment are

reviewed. Most of the referred studies focus on nautical aspects, whereas terminal operations

and ship arrival processes are represented only with some limited resolution. The extent of

processes they depict demonstrates that modeling ship traffic is data-expensive and laborious.

Hence, even partial models are helpful. They observed that uncertainty of arrival and processing

times should be properly modeled and recommended to base the vessel arrival times on historical

data, considering the stochasticity of the process. This is what is undertaken in this thesis.

Most current models of vessel arrival times use exponential or Poisson distributions [4, 2,

21, 76]. Service time was modeled using normal [4], Erlang [21, 76] distributions, or was given

(deterministic) [2].

In [65] a statistical ship traffic model including vessel sizes, ship draft, number of TEUs,

number of cranes and terminal revenue was developed on the basis of one port. The draft

was calculated using linear regression on ship length, the number of cranes was estimated using

linear regression on the number of transferred TEUs. The ship interarrival times were generated

for all vessel sizes by one process with exponential distribution. Paper [2] considered three

arrival processes: stock-controlled arrivals, equidistant arrivals, Poisson process. In the first two

processes, ship arrival is planned but the actual time of arrival has three-point distribution with

probabilities: 10% of arriving [2,12] hours before the expected time, 80% of arriving within ±2

hours around the expected time, 10% of arriving [2,12] hours after the expected time.

In this thesis ship arrival and service times are represented using distributions derived from

historical data available now thanks to AIS system [97]. A more diverse set, both with respect
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to distribution types and their parameters, is used (see [90] and Chapter 5). In particular, the

majority of ships arrive periodically with some dispersion of the return time, which is modeled

as normal mixes dedicated to ship classes. Furthermore, we take into account the dependence

of the return and service times on the vessel size class which was neglected in the earlier studies.

2.3 Berth Allocation Problem

Before proceeding to the BAP literature review, let us explain why BAP is as an essential element

of this research. QPP is related to BAP because a QPP solution, i.e. a quay partition, is a BAP

input. Moreover, the evaluation of a partition on one vessel arrival scenario equivalently solves

a BAP instance. Several port throughput models are based on container streams with a tacit

assumption of the arbitrary container volume divisibility. Scheduling theory [9, 17] indicates

that such models may diverge from feasible schedules, because ships are indivisible. It has

been shown in [17] that the ratio of the lengths of preemptive and nonpreemptive schedules on

parallel identical processors is at most 4/3. In terms of BAP, this means that if re-berthing and

suspension of ship processing are not allowed (which is a usual practice), then the best schedule

can be approximately 33% longer than an optimistic approximation perceiving work as a divisible

medium as in preemptive scheduling. When vessels are approaching and departing from the quay,

the quay length may become fragmented, i.e. divided into many pieces too short to accommodate

an arriving ship. A simplified perception assuming that TEU volume is a continuously divisible

medium, allows for exploiting such fragmented quay space. In [9] contiguous and non-contiguous

parallel task scheduling has been considered. The non-contiguous assignments allow flexible

division of the ships into pieces distributed flexibly between fragmented free berth positions.

Such assignments are obviously infeasible. The non-contiguous schedules may be shorter than

the feasible contiguous ones. The worst-case ratio of the infeasible non-contiguous and feasible

contiguous schedules lengths was bounded to the range of [125,200]% [9]. Thus, to obtain

credible results on port capacity, solving BAP cannot be substituted by simpler approaches

representing ship traffic as divisible container flows.

Studies on BAP are reviewed in [7, 8, 50, 71, 81]. BAP classes were distinguished on the basis

of 1) quay layout, 2) vessel arrival type, 3) service time attributes and 4) performance measure

[7]. Firstly, the quay layout types are: continuous, discrete, hybrid. In the continuous layout
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vessels can be positioned anywhere along the quay. In the discrete case the quay is partitioned

into berths such that at most one ship occupies a berth. Hybrid quay organization allows to

assign more than one vessel in a berth. In this thesis we initially use discrete and hybrid layouts,

such that in the hybrid case berths can be occupied by at most two ships, which prevents berth

length fragmentation [9, 88]. After determining that discrete berth layout may be less robust

than the hybrid layout (Chapter 3) we stick to the hybrid layout in the SQPP study (Chapter 6).

Secondly, in the BAP formulations vessels arrive over time or all of them are ready at the same

time. We assume that vessels arrive over time. Thirdly, service times can be fixed and known

in advance, or may depend on ship berthing position, crane assignment and scheduling. In this

thesis it is assumed that for a given scenario ship service times are known in advance and fixed,

while in the SQPP case the set of scenarios has statistical features of real service times. Finally,

a number of optimality criteria were considered in the past as the fourth defining attribute of

BAP. The optimality criteria capture the goals of the port, terminal managers, and line shippers.

For example, the turnaround time is the time a vessel spends waiting and mooring. The mean

weighted turnaround time is equivalent to the mean weighted flow time used in the scheduling

theory. Another frequently used criterion is the weighted sum of vessel tardiness. Other criteria

are, e.g., the cost of container handling and leveling crane workload. We assume mean weighted

flow time as the quality measure. According to the notation introduced in [7] the BAP version

used in this thesis to evaluate quay partitions is denoted hybr|dyn|fix|
∑
weight.

BAP can be analyzed on strategic, tactical and operational levels [7, 8, 62]. The levels differ

in the considered time horizons and data uncertainty. At the strategic level, new container

terminals are designed or decisions are made on expanding the capacity of the existing terminals

in order to offer services to new shipping lines [37, 41]. At this stage, the data on ship traffic

and handling resources may be very imprecise. The uncertainties can be tackled in simulations

of alternative scenarios of the ship traffic and the handling processes. In the tactical BAP, time

horizons of one or two weeks are studied. The input data are still uncertain. For instance,

according to [86], over 40% of vessels are at least one day late. Though there are examples

of stochastic approaches [74, 103], most papers consider discrete deterministic BAP with the

assumption that vessel schedules can be adjusted at the operational level. Since ship service

time depends on the resources allocation, berth allocation decisions are coupled with crane and

container storage assignment, often resulting in multicriteria formulations [28, 38, 54, 56, 104,
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Table 2.2: Selected BAP literature
Problem type No. of vessels No. of berths year ref.
BAP 50 10 2003 [34]
BAP 35 10 2005 [18]
BAP 200 20 2008 [35]
BAP 200 10 2010 [15]
BAP 60 13 2011-2014 [11, 51, 84]
BAP+QCSP 200 4 2017 [56]
terminal 110 16 2017 [75]
BAP 100 8 2018 [22]
BAP 40 2 2020 [33]
BAP 60 16 2021 [102]
BAP+CS 60 43 2021 [58]
QCSP – quay crane scheduling problem, terminal – whole terminal infrastructure modeled
with BAP as a subproblem, CS – vessel sequencing in a navigation channel.

103, 105]. At the operational level, the time horizon of hours or at most a few days is considered

and all data is assumed known and fixed. The goal of the operational planning is to stay as

close as possible to the initial tactical level schedule. The methods developed in this thesis are

dedicated to BAP at the strategic level, when decisions with time horizons of years, affecting

thousands of ship arrivals, must be verified quickly.

In [71] authors review and propose taxonomy for BAP with uncertainty. Sources of uncer-

tainty and methods of dealing with it can be the same both in BAP and in SQPP. According to

the taxonomy of [71] we assume a proactive stochastic programming approach, with uncertain

arrival and handling times represented with probability distributions which can be rendered as

scenarios, with weighted waiting time as objective, hybrid quay allocation and we use heuristic

methods. Let us note that beyond similarities with stochastic BAP there are also differences

stemming from the change in time horizon. Stochastic BAP solution fixes berth allocation

for vessels in the proactive phase, expecting variations in arrival and processing times. SQPP

solution fixes the partition during the proactive phase, but not the berth allocation that can

be recomputed later during the reactive or online phase. In a recent paper [72] consider the

quay crane scheduling problem and propose a distributionally robust optimization (DRO) model

which can generalize both stochastic programming (SP) and robust optimization. They conclude

that SP and DRO approaches are preferable.

Since BAP is NP-hard in general [57], it can be solved to optimality only for small instances.

Many advanced metaheuristics were used with success to solve BAP [7, 8]. A set of example
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papers is collected in Tab.2.2 with a short name of the considered problem, numbers of ships

and berths, year of publication, are given. Tab.2.2 asserts a gap between BAP sizes routinely

solved in the existing literature, and the ones that have to be solved in our case. For example,

the number of ship arrivals in 2016 ranged from 471 (in Gdańsk) to 18494 (Singapore) (see [90],

Chapter 5). Due to the large number of ships for one year time horizon, the algorithm runtimes

will be a key limitation in selecting methods solving BAP for a port simulation. It can be

still argued that only short weekly patterns of arrivals suffice because ship arrivals are periodic.

Indeed, 2-, 3-week return intervals seem natural, but 5-, 7-, 11-week return times are also quite

common, especially on Asia-Europe, Europe-America lines ([90], Chapter 5). The least common

multiple of these periods, necessary to grasp interactions between returns on different lines,

easily spans a year. Furthermore, there might be large differences between the expected and the

actual vessel arrival times, thus making periodic models less attractive [86, 90]. Consequently,

the single short-time schedule pattern would inevitably diverge from the real traffic. Thus,

the considered BAP instances are unavoidably large while the instances routinely solved in the

existing literature are notably small. In order to avoid unacceptable computational complexity

specialized algorithms must be selected.

Finally, let us note that the reality of port organization is much richer than that represented

in BAP itself. BAP is tightly coupled with the quay crane assignment and scheduling, container

storage allocation, inter-terminal transport planning, and hinterland communication. Conse-

quently, BAP can be again a sub-problem in more general port optimization formulations. Such

total approaches are beyond the scope of this thesis.

2.4 Algorithm Selection Problem

Choosing algorithms to evaluate a quay partition on a traffic scenario is subject of algorithm

selection problem (ASP). Initially ASP was formalized by [70] as a problem of determining the

best algorithm for a given instance of some problem given some performance measure. More

formally, given: (i) set I of problem instances, called problem space, (ii) set A of algorithms,

called algorithm space, and (iii) performance measure p : I ×A → R, find a mapping S : I → A

that maximizes performance p(I, S(I)) for each I. In an alternative formulation one more set

is given: (iv) a set of instance characteristics f(I), called feature space F . Then, the algorithm
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selection problem consists in finding a mapping S : F → A which maximizes performance

p(I, S(f(I))). In a typical setting, ASP is a machine learning problem of instance classification,

that is, of determining the class (the algorithm) the instance belongs to. However, the above

formulation is not the only one possible. There are various formalizations of ASP, with regard to

the performance measures, when, how, and what algorithms to select. We recommend surveys

[23, 49, 79, 80, 67] to the interested readers.

One approach to solving the ASP is to use algorithm portfolios. Using the algorithm portfolio

minimizes the risk of an unfortunate choice of just one algorithm which may sometimes behave

badly (see examples in Section 4.5). ASP becomes an optimization problem of covering a

finite set I ′ of training instances in the most exhaustive way within the portfolio runtime limit

[39, 44, 64]. Then, portfolio schedules determine the division of the runtime limit between

the portfolio algorithms. In [64], the constraint satisfaction problem with |A| = 5 algorithms

is considered. Three types of schedules are tested: (1) split schedule giving each algorithm

an equal amount of time, (2) static schedule giving each algorithm the amount of time which

maximizes the number of instances covered in the entire problem space I ′, and (3) dynamic

schedule built as in the static case but with a per-instance portfolio. The per-instance portfolio

is constructed by first selecting a subset of k = 10 training instances closest to the considered

instance, and then selecting algorithms which cover the greatest subset of the k instances within

the runtime limit. The closest instances were selected using the Euclidean distance in the

space of 36 features. Similarly, in [44] a per-instance algorithm portfolio is chosen dynamically

as a subset of 37 boolean satisfiability (SAT) solvers. The distance between the current and

the training instances is the Euclidean distance on 48 SAT instance features. In [39] timeout-

optimal schedules are considered. Note that for certain training instances the algorithms may

have runtimes exceeding the given limit, which results in the algorithm timeout. The portfolio

has been selected and sequenced on the processors to minimize the number of instances not

solved by any algorithm before the timeout. Further results on ASP and algorithm portfolios

can be found in [23, 49, 79, 80, 67].

It can be observed that the existing methods either classify instances for the goal of finding

the algorithm producing the best quality solution while ignoring the runtime cost, or solve

search problems (SAT, constraint satisfaction) at a given time limit. Thus, to the best of

our knowledge, most of the research on ASP concentrated either on the solution quality or
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on the runtime as the performance indicators, but not both at the same time. It is a common

expectation in combinatorial optimization (supported by Section 4.5 results) that fast algorithms

provide worse solutions than other algorithms running in longer time. Thus, a runtime-quality

trade-off exists and with changing the runtime limit the algorithms selected to a portfolio also

change. It is commendable to inform the decision maker how the set of algorithms constructing

the best solutions evolves with the runtime limit. Therefore, in this thesis we use the concept

of algorithm portfolios covering a set of training instances with the best solutions which could

be found in a given runtime limit, subject to the minimum computational cost of the chosen

algorithms, introduced in [67, 88]. In particular we use results of [88] where algorithm portfolios

for large BAP instances were considered (see Section 6.2). To evaluate a partition, a customized

portfolio of algorithms effective both in solution quality and in time performance will be used.



Chapter 3

Deterministic Quay Partitioning

Problem

3.1 Introducing Quay Partitioning Problem

In this chapter deterministic quay partitioning problem (DQPP) is considered. We assume

that vessel arrival times, service times, lengths, and weights are given. Berth sizes are chosen

from a finite set of possible lengths. The quality of quay partitioning is measured as vessel

mean weighted flow time (MWFT). We assume that the quay can be partitioned according to

one of two schemes: into berths that accommodate at most one ship in a berth, or at most

two ships in a berth. The former scheme will be referred to as discrete layout [7, 8], or one

ship in one berth, 1in1 for short. The latter will be called two ships in one berth (2in1),

or a hybrid quay layout. The 2in1 scheme prevents berth length internal fragmentation (see

[9, 75] and Section 2.3) because two ships can be always positioned at the opposite ends of one

berth. The contributions of this chapter can be summarized in the following way: (1) Discrete

quay partitioning problem is formulated and proved NP-hard. (2) New mixed integer linear

formulations, for the two ways of handling vessels at the quay, are proposed and their scalability

is tested. (3) Features of optimum solutions are analyzed, in particular: (i) sizes of chosen berths

for changing vessel size mixture and under congestion; (ii) advantages (if any) of using a ”one

size fits all” approach; (iii) advantages of the two alternative ways (1in1 vs 2in1) of handling the

27
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Table 3.1: Summary of notations for Chapter 3
B set of admissible berth lengths, B = {λ1, . . . , λf}
cj ship j service completion time
f number of admissible berth lengths, f = |B|

F (K) mean weighted flow time for partition K
K partition, vector of berth lengths frequencies, K = (k1, . . . , kf )
ki number of berth length λi occurrences in a partition
λi admissible berth length i
Lj length of ship j

Lmax longest ship length, Lmax = maxn
i=1{Li}

m number of berths in K, m =
∑f

i=1 ki
n number of vessels, n = |V |
pj service time of ship j
Q quay length
ρi maximum number of berths of the ith length, ρi = ⌊Q/λi⌋
rj ship j ready time
V set of vessels
wj weight (value) of servicing ship j

vessels. (4) This allowed to give recommendations for quay partitioning into berths.

Further organization of this chapter is the following. In Section 3.2 DQPP is formulated.

The MIPs are presented in Sections 3.3 and 3.4. The time performance of the two MIPs is

analyzed in Section 3.5. Section 3.6 is dedicated to a study of the DQPP solutions features. We

summarize the results in Section 3.7. The notations used in the current chapter are collected in

Tab. 3.1.

3.2 Problem Formulation

We assume that a quay of length Q is to be partitioned into berths of lengths given in set

B = {λ1, . . . , λf}. Without loss of generality we assume λ1 < · · · < λf . We will be saying that

berths of equal length have the same type. Arriving vessels are given in set V and |V | = n.

Each arriving vessel j is defined by its arrival time rj , length Lj , service time (alternatively

called processing time) pj , and weight wj . Weight of the ship represents importance of the ship

arrival, e.g. cost of the service. Though the overwhelming majority of ships, as physical objects,

are returning to a container terminal (Chapter 5), the distinction between a ship (as a physical

object) and one of its arrivals at a terminal is immaterial in the context of DQPP. Therefore,

terms ship, vessel and arrival will be used exchangeably.
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Figure 3.1: Partition and schedule for NP-hardness proof of Theorem 1.

A solution to a DQPP is a partition of quay length Q into berths which can be represented as

vector K = (k1, . . . , kf ) of berth lengths frequencies. By definition
∑f

i=1 λiki ≤ Q and Lmax =

maxnj=1{Lj} ≤ maxfi=1{λi : ki > 0}, i.e., for all ships there are berths at which the ships can be

feasibly positioned. The total number of berths in some DQPP solution is m =
∑f

i=1 ki. Given

some partition K, the ships in V have to be scheduled on the berth for minimum weighted flow

time. Let cj denote completion time of ship j service. The objective function assessing quality

of some partition K is mean weighted flow time (MWFT): F (K) =
∑n

j=1 wj(cj − rj)/
∑n

j=1 wj .

The above description can be summarized in the following definition:

Definition 1 (Discrete Quay Partitioning Problem). Given admissible berth lengths in set B,

quay length Q and a set of vessels V , find partition K and a schedule for the vessels with

minimum MWFT .

Let us observe that 2in1 berthing scheme generalizes 1in1 because schedules with 1 ship in a

berth are feasible schedules in 2in1. A further advantage of 2in1 is that it gives more flexibility

than 1in1 (because two ships i, j satisfying Li + Lj ≤ λh can be served at the same time at

some berth h) while simultaneously preventing internal fragmentation of the berth length as

explained in the Introduction.

The assignment of the vessels from V in time alone, i.e. for fixed K, is a berth allocation

problem (BAP) which is NP-hard [57]. Hence, DQPP is NP-hard even for fixed K. In the

following we prove that also given the flexibility of choosing layout K, DQPP remains NP-hard.

The proof applies both in 1in1 and 2in1 cases.

Theorem 1. DQPP is NP-hard.

Proof. Let ρ′ = ⌈Q/λ1⌉ denote an upper bound on the number of berths of any length. Firstly,

DQPP is in class NP. It suffices that generating module of NDTM guesses partitionK and vessel

schedule. The first can be written in polynomial time O(f log ρ′). The schedule can be guessed
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as pairs for each vessel: the assigned berth, position in the berth vessel sequence. The schedule

can be written, its feasibility checked, and MWFT calculated in O(n(log n + log f + log ρ′)).

Secondly, a polynomial-time transformation from Even-Odd Partition will be shown.

Even-Odd Partition: given a set A = {a1, . . . , a2q} of positive integers, is there a subset

A1 ⊂ A such that
∑

ai∈A1
ai =

∑
ai∈A\A1

ai = B and A1 contains exactly one element from

pair a2i−1, a2i, for i = 1, . . . , q?

For brevity let us denote
∑q

j=1B
i = (Bq+1−B)/(B− 1) as Z. An instance of DQPP is defined

as follows: Q = Bq + Z + 2B, f = 2q + 1, λ2i−1 = Bi + a2i−1, λ2i = Bi + a2i, for i = 1, . . . , q,

λ2q+1 = Bq +B, n = 2q+1, L2i−1 = w2i−1 = Bi + a2i−1, L2i = w2i = Bi + a2i, for i = 1, . . . , q,

L2q+1 = Bq +B,w2q+1 = B4q, and ri = 0, pi = 1, for i = 1, . . . , 2q + 1. We ask if a partition K

and schedule exist such that MWFT ′ =MWFT ∗W ≤ B4q +3Z +3B, where W =
∑2q+1

j=1 wj

is constant.

Suppose the answer to Even-Odd Partition is positive and set A1 exists, then a partition

and the schedule are shown in Fig.3.1. The quay is partitioned into q + 1 berths such that no

free space remains. The schedule has length of two time units. A berth of lengths Bq + B

hosts vessel 2q + 1 in the first time unit and the vessel from pair {2q, 2q − 1} not chosen to A1

in the second time unit. Let this berth have index q + 1. A berth with index i = q, . . . , 1 of

length Bi + aj is created, where aj is the element from pair {2i, 2i − 1} chosen to A1. Of the

two vessels {2i, 2i − 1}, the one corresponding with the element j chosen to A1 is scheduled

in the first time unit on berth i and the second vessel {2i, 2i − 1} \ {j} is scheduled in the

second time unit on berth i + 1 (the next longer one). The total occupied quay length in the

first time unit is Bq + B +
∑q

i=1

∑
j∈{2i,2i−1}∩A1

(Bi + aj) = Bq + B + Z + B = Q, while

MWFT ′ = B4q +
∑q

i=1B
i +

∑
aj∈A1

aj + 2
∑q

i=1B
i + 2

∑
aj∈(A\A1)

aj = B4q + 3Z + 3B.

Suppose the answer to DQPP is positive, we will show that the answer to Even-Odd Partition

must be also positive. Due to its weight w2q+1 = B4q, vessel 2q+1 must be scheduled in the first

time unit, there must be also a berth of length at least Bq + B for this vessel. Hence, at most

Z+B quay length remains for other berths. Since Z+B < 2Bq, for sufficiently large B, at most

one berth of length λ2q or λ2q−1 can be created in the remaining area. Suppose fewer than one

berth of lengths λ2q or λ2q−1 is created. Since L2q and L2q−1 are greater than any λ2i, λ2i−1 for

i < q, vessels 2q, 2q− 1 have to be scheduled in the second and third time units on the berth of
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length Bq +B after vessel 2q+1. In such a case MWFT ′ ≥ B4q +2Bq +2a2q +3Bq +3a2q−1 >

B4q + 5Bq > B4q + 3(Bq+1 − B)/(B − 1) + 3B for sufficiently large B. Hence, exactly one

berth of one of the lengths λ2q or λ2q−1 has to be created. Let us observe that MWFT ′ as

defined in the question of this transformation is calculated with the assumption that one vessel

from each pair {2i, 2i − 1} is scheduled in the first time unit and the other in the second time

unit. Suppose none of the two vessels is scheduled in the first time unit. Thus, at most 2 shorter

vessels i ∈ {2k, 2k−1}, j ∈ {2ℓ, 2ℓ−1} (for 2in1, for 1in1 only one vessel) can exploit the berth of

length λ2q or λ2q−1. By processing one of the vessels 2q, 2q− 1 in the second time unit, or later,

instead of processing it in the first time unit, the MWFT ′ increases by at least Bq+ah∩{2q,2q−1}

while it decreases by at most 2Bmax{k,ℓ} + ai + aj < Bq + ah∩{2q,2q−1}, for sufficiently large B,

because q > max{k, ℓ}. As a consequence, a strictly better solution is obtained by using this

berth for one of the two vessels 2q, 2q− 1 in the first time slot. Otherwise the value of MWFT ′

cannot be met. These observations can be inductively extended to all pairs of berth lengths

{λ2i, λ2i−1}, for i = q − 1, . . . , 1, and one vessel from each pair {2i, 2i − 1} is scheduled in the

first time unit. Let E1, E2, E3 be the set of vessels, except for 2q + 1, scheduled in the first,

second and third (and possibly later) time units. Let W1 =
∑

j∈E1
wj , W2 =

∑
j∈E2

wj , W3 =∑
j∈E3

w3. The vessels in E1 can occupy quay length at most equal to the sum of lengths of the

chosen berths, which is bounded by the remaining quay length. So
∑q

i=1

∑
j∈{2i,2i−1}∩E1

Lj =∑q
i=1B

i +
∑

j∈E1
aj ≤ Z +B, and hence

∑
j∈E1

aj ≤ B. The MWFT ′ of vessels in E1, E2, E3

is MWFT ′ = 3(
∑2q

=1 wj −W1−W2)+ 2W2 +W1 = 6Z +6B−W2− 2W1 ≤ 3Z +3B because a

schedule with the required MWFT ′ exists. Since W1 = Z +
∑

j∈E1
aj ,W2 ≤ Z +

∑
j∈A\E1

aj

the above condition is satisfied only if W1 ≥ Z+
∑

j∈E1
aj ≥ B. Consequently, set A1 satisfying

condition
∑

ai∈A1
ai =

∑
ai∈A\A1

ai = B must exist. Note that from each pair {2i, 2i − 1} of

berth lengths only one is created. Analogously, from each pair {2i, 2i− 1} of vessels only one is

scheduled in the first time unit. Hence, from each pair {a2i, a2i−1} ⊂ A only one is selected to

E1, and A1 must exist.

Thus, DQPP is NP-hard already in quite restricted setting, i.e., even if all vessels have unit

processing time and are simultaneously available (∀jpj = 1, rj = 0).
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3.3 Mixed Integer Linear Program for 1in1

The MIP formulation for 1in1 extends [11, 18]. Yet, since a qualitatively different problem is

solved, not only new constraints had to be added, but all constraints were changed to accommo-

date the options for using one of many possible realizations of berths. Let us give some intuition

before proceeding to the MIP itself. A similarity to vehicle routing problem (VRP) is used. A

berth corresponds here to a truck, a ship is an equivalent of a customer. A sequence of ships on

a berth can be treated like a sequence of customers visited by one truck in VRP. The MIP uses

copies of the berths of certain lengths. Each such copy (like a truck) has its sequence of visiting

ships. The MIP must select the number of copies of a certain berth length such that their total

length does not exceed quay length Q. In the MIPs we will use the following notations:

Constants:

o – a dummy origin ship that precedes all other ships in all berth ship sequences.

d – a dummy destination ship that follows all other ships on all berths.

ρi = ⌊Q/λi⌋ - maximum number of type i berths, for i = 1, . . . , f .

M – set of all possible berths. An element of M is a couple (k, ℓ) with k ∈ {1, . . . , f} and

ℓ ∈ {1, . . . , ρk}.

M ′
j ⊆M – all possible berths incompatible with vessel j, i.e. all berths i and their ρi copies

satisfying λi < Lj .

G – a large number, for example G >
∑n

j=1 pj +maxnj=1{rj}.

Decision variables:

tkℓj – start of processing ship j on berth type k copy ℓ.

xkℓij = 1 if ship i immediately precedes ship j on berth type k copy ℓ, 0 otherwise.

ykℓ = 1 if berth type k copy ℓ is in use, 0 otherwise.

A mixed integer linear program for 1in1 is as follows:

MIP DQPP-1in1:

min
∑
i∈V

wi

∑
(k,ℓ)∈M

tkℓi − ri + pi
∑

j∈V ∪{d}

xkℓij

 (3.1)
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s.t.

∑
(k,ℓ)∈M

∑
j∈V ∪{d}

xkℓij = 1 i = 1, . . . , n (3.2)

∑
j∈V ∪{d}

xkℓoj = 1 (k, ℓ) ∈M (3.3)

∑
i∈V ∪{o}

xkℓid = 1 (k, ℓ) ∈M (3.4)

∑
j∈V ∪{d}

xkℓij =
∑

j∈V ∪{o}

xkℓji (k, ℓ) ∈M, i ∈ V (3.5)

tkℓi + pi − tkℓj ≤ (1− xkℓij )G ∀(k, ℓ) ∈M, (i, j) ∈ V × V (3.6)

tkℓi ≥ ri ∀(k, ℓ) ∈M, i ∈ V (3.7)

ykℓ ≥ xkℓij ∀(k, ℓ) ∈M, i ∈ V ∪ {o}, j ∈ V (3.8)

ykℓ ≥ yk,ℓ+1 ∀k, ℓ = 1, . . . , ρk − 1 (3.9)
f∑

k=1

ρk∑
ℓ=1

ykℓλk ≤ Q (3.10)

xkℓij = 0 ∀k ∈M ′
i ∪M ′

j , i, j ∈ V ∪ {o, d},

ℓ = 1, . . . , ρk (3.11)

ykℓ ∈ {0, 1} ∀(k, ℓ) ∈M (3.12)

xkℓij ∈ {0, 1} ∀(k, ℓ) ∈M, (i, j) ∈ (V ∪ {o, d})× (V ∪ {o, d}) (3.13)

tkℓi ∈ Q+ ∀(k, ℓ) ∈M, i ∈ V (3.14)

In the above formulation the objective function (3.1) minimizes weighted sum of vessel

completion times. By (3.2) each vessel is served at some berth. Equations (3.3), (3.4) ensure that

each berth has a beginning, and respectively, an end of the chain of served vessels. Constraint

(3.5) guarantees that a ship on any berth has as many predecessors as successors. This, together

with constraints (3.3), (3.4), ensures that there is a chain of ships at the berth and only one

ship at the berth at a time. The service starting time of ship j immediately succeeding ship

i on berth k copy ℓ does not overlap the service time of i by inequality (3.6). According to

constraint (3.7) a vessel is processed after arriving. Inequality (3.8) ensures that vessels i, j can

use k-th berth type copy ℓ only if this copy is allowed to be used. By (3.9), copy ℓ+ 1 of berth

type k can be used only if copy ℓ is already in use. Inequality (3.10) ensures that all used copies
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of different berth types fit in the quay length. Constraints (3.11) guarantee that ships i, j are

assigned only to the berth types k such that Li ≤ λk and Lj ≤ λk. Q+ in (3.14) means that

ship service starting times are positive fractional numbers.

3.4 Mixed Integer Linear Program for 2in1

When there can be at most two vessels in one berth, then each schedule of the vessels at the

berth can be transformed such that the vessels are mooring either at the left or at the right end

of the berth [88]. Then the chain of vessels assigned in each end of a berth can be treated as

equivalent to a truck route between customers. Hence, we will use the same vehicle routing idea

as in the 1in1 case, but we will refer to the left and the right chain at each berth. Two ships

i, j simultaneously sharing berth of type k must satisfy λk ≥ Li + Lj . However, it is feasible

to assign to a berth ships violating this constraint on the condition that they are not serviced

simultaneously. We will call such a situation an interference of ships i, j. Consequently, MIP

(3.1)-(3.14) must be extended to handle also ship interferences. Let us introduce additional

notations:

Constants:

Nk = {(i, j) : Li ≤ λk, Lj ≤ λk, Li + Lj > λk} - a set of vessel i, j pairs which cannot be

executed simultaneously on berth type k.

Y k = {(i, j) : Li +Lj ≤ λk} - a set of vessel i, j pairs which can be executed simultaneously

on berth type k.

Decision variables:

skℓij = 1 if vessels i, j share berth k copy ℓ, are in different (left, right) chains, and their

total length exceeds berth length (i.e. Li ≤ λk, Lj ≤ λk, Li + Lj > λk hence i, j interfere), 0

otherwise.

zkℓij = 1 if vessels i, j share berth k copy ℓ, are in different (left, right) chains, their total

length exceeds berth length, and vessel i is executed before vessel j, 0 otherwise.

xLkℓ
ij = 1 if vessel i immediately precedes vessel j in the left chain of berth k copy ℓ, 0

otherwise.

xRkℓ
ij = 1 if vessel i immediately precedes vessel j in the right chain of berth k copy ℓ, 0

otherwise.
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MIP DQPP-2in1:

min
∑
i∈V

∑
(k,ℓ)∈Mi

wi

tkℓj − ri + pi
∑

j∈V ∪{d}

(xLkℓ
ij + xRkℓ

ij )

 (3.15)

s.t.

zkℓij + zkℓji = skℓij ∀(k, ℓ) ∈M, (i, j) ∈ Nk (3.16)

skℓij = 0 ∀(k, ℓ) ∈M, {i, j} ∈ Y k (3.17)

tkℓj ≥ tkℓi + pi −G(2− zkℓij − skℓij ) ∀(k, ℓ) ∈M, (i, j) ∈ Nk (3.18)

tkℓi ≥ tkℓj + pj −G(1 + zkℓij − skℓij ) ∀(k, ℓ) ∈M, (i, j) ∈ Nk (3.19)∑
i′∈V ∪{d}

xLkℓ
ii′ +

∑
i′∈V ∪{d}

xRkℓ
ji′ − 1 ≤ skℓij ∀(k, ℓ) ∈M, (i, j) ∈ Nk (3.20)

∑
i′∈V ∪{d}

xRkℓ
ii′ +

∑
i′∈V ∪{d}

xLkℓ
ji′ − 1 ≤ skℓij ∀(k, ℓ) ∈M, (i, j) ∈ Nk (3.21)

zkℓij , s
kℓ
ij ∈ {0, 1} (k, ℓ) ∈M, i, j ∈ V (3.22)∑

(k,ℓ)∈M

∑
j∈V ∪{d}

(xLkℓ
ij + xRkℓ

ij ) = 1 i = 1, . . . , n (3.23)

∑
j∈V ∪{d}

xLkℓ
oj = 1,

∑
j∈V ∪{d}

xRkℓ
oj = 1 (k, ℓ) ∈M (3.24)

∑
i∈V ∪{o}

xLkℓ
id = 1,

∑
i∈V ∪{o}

xRkℓ
id = 1 (k, ℓ) ∈M (3.25)

∑
j∈V ∪{d}

xLkℓ
ij =

∑
j∈V ∪{o}

xLkℓ
ji (k, ℓ) ∈M, i ∈ V (3.26)

∑
j∈V ∪{d}

xRkℓ
ij =

∑
j∈V ∪{o}

xRkℓ
ji (k, ℓ) ∈M, i ∈ V (3.27)

tkℓi + pi − tkℓj ≤ (1− xLkℓ
ij )G ∀(k, ℓ) ∈M, (i, j) ∈ V × V (3.28)

tkℓi + pi − tkℓj ≤ (1− xRkℓ
ij )G ∀(k, ℓ) ∈M, (i, j) ∈ V × V (3.29)

tkℓi ≥ ri ∀(k, ℓ) ∈M, i ∈ V (3.30)

ykℓ ≥ xLkℓ
ij ∀(k, ℓ) ∈M, i, j ∈ V (3.31)
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ykℓ ≥ xRkℓ
ij ∀(k, ℓ) ∈M, i, j ∈ V (3.32)

ykℓ ≥ yk,ℓ+1 ∀k, ℓ = 1, . . . , ρk − 1 (3.33)
f∑

k=1

ρk∑
ℓ=1

ykℓλk ≤ Q (3.34)

xLkℓ
ij = 0, xRkℓ

ij = 0 ∀k ∈M ′
i ∪M ′

j (3.35)

ykℓ ∈ {0, 1} ∀(k, ℓ) ∈M (3.36)

xkℓij ∈ {0, 1} ∀(k, ℓ) ∈M,

(i, j) ∈ (V ∪ {o, d})× (V ∪ {o, d}) (3.37)

tkℓi ∈ Q+ ∀(k, ℓ) ∈M, i ∈ V (3.38)

By (3.16) two ships in left and right chains on berth type k copy ℓ (then skℓij =1) that cannot

be executed simultaneously must be sequenced such that i precedes j, or vice versa. When two

vessels i, j are short enough to use berth type k simultaneously but in different chains, then by

(3.17) the mutual sequence of the two vessels in different chains of berth type k copy ℓ need not

be set. Inequalities (3.18),(3.19) ensure that service times of two vessels in the same berth type

k copy ℓ, but in two different chains (left, right) do not overlap if their total length is a greater

than the berth length. Observe that for skℓij = 0 both constraints are inactive. For skℓij = 1

also exactly one of zkℓij , zkℓji must be 1 by (3.16). Consequently, for skℓij = 1, one of inequalities

(3.18),(3.19) is binding and one is inactive and interfering ships i, j processing intervals do

not overlap. Constraints (3.20), (3.21) guarantee that vessels i, j processed on the same berth

type k copy ℓ, in different chains (left, right), which cannot be serviced at the same time have

their service times separated by setting skℓij = 1. Constraints (3.23)–(3.38) are analogous to

(3.2)-(3.14), but now they are applied separately to two chains (left/right) in the same berth.

Precisely, (3.23) ensure that a ship is present in one chain only. By (3.24), (3.25) each chain of

ships serviced at berth k copy ℓ has a beginning and an end. Conditions (3.26), (3.27) are flow

conservation constraints for each ship i and berth type k copy ℓ. Vessels assigned to a chain (left

or right) on berth k, ℓ are processed sequentially by (3.28), (3.29). Ships cannot be assigned to a

left or right chain on berth k copy ℓ if this berth type and the copy is not in use by inequalities

(3.31), (3.32). The remaining constraints are the same as in (3.2)–(3.14).
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3.5 Scalability of the Methods

In this section we report on time performance of solving the MIPs to optimality and the main

determinants of instance hardness. All the tests were conducted on a PC computer with Intel

i7-8550U CPU@2GHz, 32GBRAM and Windows 10. The MIPs were solved by CPLEX 12.8

with standard settings and runtime limit of 10hours. Unless stated to be otherwise, quay length

was set to Q = 20, the number of different berth lengths was set to f = 4. Particular berth

lengths λ1, . . . , λf were chosen from U [1, 10], that is from a discrete uniform distribution in

range [1,10]. Depending on the test setting, the number of vessels n was one number from range

[5, 11]. Ship lengths Lj were chosen from U [1,maxfi=1{λi}]. Ship service times were generated

from U [1, 10]. Arrival times were generated as r1 = 0, rj+1 = rj+U [0, 2], for j = 2, . . . , n. These

units can represent real vessels and service times when appropriately scaled, e.g., our unit of

length can be 40m and processing time unit can be 3 hours. Ship weights were chosen according

to wj = 0.5 × Ljpj + U [0, 20], for j = 2, . . . , n. The dispersion of ship parameters in the test

instances also serves the purpose of modeling uncertainty in ship traffic.

Execution times are shown in Fig.3.2a, c, e for 2in1 and Fig.3.2b, d, f for 1in1 cases, respec-

tively. 50 instances were generated and solved for each point shown in the following Fig.3.2. In

total over 1950 instances were solved to make Fig.3.2. All test datasets used to this end are

available from [94]. Boxplots with whiskers show quartiles of the runtimes in a population of 50

instances. Each picture includes a median runtime trend line (marked "Median Aprox") with

its equation and coefficient of determination R2. The trend lines were chosen among linear,

quadratic, exponential, power functions with maximum R2. Finally, the greatest time and me-

dian time in the 50 instances population when the final solution was found are shown as red and

green lines, respectively, marked as "Last Updt". It can be seen in Fig.3.2a and Fig.3.2b that

execution time grows exponentially with the number of arrivals n. In the 2in1 model, runtime

for n = 11 was longer than 10 hours limit in more than 25% of instances. Since such tests were

interrupted, the results would be biased. For this reason the point for n = 11 is not shown in

Fig.3.2a.

Judging by the coefficient of determination R2 of the exponential median runtime trend line,

n is an important determinant of the two MIPs runtimes. Execution times grow also with the

number of admissible berth lengths f (see Fig.3.2c and Fig.3.2d). Yet, the growth intensity is
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Figure 3.2: MIP runtime a) 2in1 vs n, b) 1in1 vs n, c) 2in1 vs f , d) 1in1 vs f , e) 2in1 vs Q, f)
1in1 vs Q.
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Table 3.2: Coefficient of correlation between the logarithm of the runtime and instance conges-
tion indicators

1in1 n = 10, f = 4 n = 10, f = 8 n = 8, f = 4

α =
∑n

j=1 pjLj/(Qmaxn
j=1{rj + pj}) 0.82 0.89 0.72

τ = maxk,ℓ,,j{tkℓj − rj} 0.89 0.79 0.81
2in1 n = 10, f = 4 n = 10, f = 8 n = 8, f = 4

α =
∑n

j=1 pjLj/(Qmaxn
j=1{rj + pj}) 0.82 0.81 0.81

τ = maxk,ℓ,,j{tkℓj − rj} 0.87 0.60 0.89

less strong because the linear trend line was the best fit. In the case of 1in1 (Fig.3.2d) f is a weak

predictor of the runtime, because R2 ≈ 0.5 is not big. It can be seen Fig.3.2e and Fig.3.2f that

with growing quay length Q instances are easier to solve. This is intuitively expected because

increasing Q, while keeping the size of arrivals set constant, over-provisions the area to serve the

vessels. Results in Fig.3.2e and Fig.3.2f correspond with the results in Tab.3.2 discussed below.

The strength of the relationship between the runtime and cardinality of set M was also

analyzed, and it was even lower because coefficients of determination even for best fitting trend

lines were below R2 = 0.06. We analyzed the correlation between the runtime and two instance

time congestion indicators: area ratio calculated as α =
∑n

j=1 pjLj/(Qmaxnj=1{rj + pj}) and

instance time tightness τ =maxk,ℓ,j{tkℓj − rj}. Area ratio α is the ratio of time-space area

Qmaxnj=1{rj + pj} available until the earliest possible finish time of vessel service to the vessel

demand for service in time and space
∑n

j=1 pjLj . With the increasing values of α the time-

space area is increasingly over-subscribed. Time tightness τ is ship longest wait time from its

arrival (rj) until its processing starts (tkℓj ). Example correlations between the two indicators

and logarithm of the runtime are collected in Tab.3.2. A rule of thumb stating that correlation

is strong if the coefficient of correlation is greater than 0.7 is frequently satisfied. Thus, the two

indicators can be used to predict runtime reliably.

Consider now when the solution values were updated for the last time. Let us remind that

there are lines for the median and the largest last update times in Fig.3.2, denoted ”Last Updt”.

Position of the line showing median time when the solution quality was updated for the last

time (green line in Fig.3.2), shows that very often the optimum solution is found quite early and

in a great part of the execution time proof of optimality is developed. Considering the position

of the (red) line showing the maximum time in a population of 50 instances when the solution

quality was updated for the last time, we decided to limit runtime in the following tests to one
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Table 3.3: Average optimality gaps and ratios of the last delivered solution MWFT to the first
found solution MWFT , in 10 large random instances at 10-hour runtime limit

1in1, n 25 50 75 100
avg.opt. gap % 52.63 70.88 80.67 89.40

avg.last/first MWFT 0.31 0.28 0.27 0.39
No-solutions 0 0 0 0

2in1, n 25 50 75 100
avg.opt. gap % 47.73 71.96 86.97 94.60

avg.last/first MWFT 0.27 0.26 0.23 0.59
No-solutions 0 0 3 4

Table 3.4: Le Havre DQPP examples solved by MIP DQPP-1in1 and DQPP-2in1
instances∗ w1 w2 w3 w4 w5 fo1 fo2 fo3 fo4 fo5
n 42 48 45 47 46 85 86 80 97 83

1in1
MWFT 6567657 9998557 7406544 6693338 6287105 13229317 18476791 10391603 22162648 10396155
opt.gap† % 0 0 0 0 0 19.81 5.45 0 41.35 0.95

2in1
MWFT 6567657 10041292 7406544 6750758 6400477 121859861 126515016 10391603 126367195 10297593
opt.gap† % 0 0.43 0 0.85 1.77 91.29 86.19 0 89.71 0
*) w1-w5 – one week examples, fo1-fo5 - fortnight examples; † opt.gap=0 – solution is optimum

hour. Among the instances solved for Fig.3.2 only in 4 cases were the solutions updated after 1

hour runtime.

The runtime ratios of MIPs solving the same instance according to the 2in1 and 1in1 models

depend very much on the particular instance. Yet, in the tests with changing n (Fig.3.2a,b), f

(Fig.3.2c,d), Q (Fig.3.2e,f), the runtimes of 2in1 MIPs were on average 2.2, 4.1, 4.0 times longer

than for 1in1 MIPs, respectively.

The above results may seem pessimistic considering solvable instance sizes. Yet, MIP solvers

can be used as heuristics if limiting their runtime or widening the optimality gap. In Tab.3.3

we report on 10-hour solvability of large random instances generated as described above. This

approach allows to solve weekly and fortnight arrivals patterns in large European container

terminals such as Le Havre. Tab.3.4 comprises MWFT s and optimality gaps obtained for

exemplary week and two week arrivals in Le Havre. It can be noted that the results for these

practical instances are notably better than the results for random instances, especially for 1in1

model.
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Figure 3.3: Berth lengths used in the solutions for 1in1. a) Lmax = 2, b) Lmax = 5, c) Lmax = 8,
d) Number of different berth lengths.

3.6 Features of DQPP Solutions

In this section we experimentally study features of the optimum, or near-optimum, DQPP

solutions. Firstly, we analyze how the mixture of ship sizes and time congestion impact the

selected berth lengths. Secondly, a DQPP solution using the longest ship size as the length of

all berths is compared against flexible berth size selection. Finally, we compare whether the 2in1

layout is better than the 1in1 layout. The analyses in this section provide practical indications

for constructing good and avoiding bad QPP solutions.

3.6.1 Ship Size Mixing

In order to analyze how the mixture of ship sizes impacts the selected berth lengths, we designed

the following computational experiment. The set of vessels V was divided into two subsets: set



42 CHAPTER 3. DETERMINISTIC QUAY PARTITIONING PROBLEM

0

0.1

0.2

0.5

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

0.9 0.12

0.8 0.25

0.5 0.62

0.06 0.26 0.1 0.55

0.04 0.075 0.88

0.1 0.88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

lambda
i

0

0.1

0.2

0.5

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.02 0.087 0.24 0.35 0.2 0.1 0.05

0.03 0.1 0.16 0.12 0.2 0.15 0.05 0.2 0.1

0.03 0.087 0.1 0.2 0.23 0.35 0.1 0.1

0.03 0.013 0.06 0.075 0.37 0.05 0.15 0.2 0.2

0.03 0.4 0.2 0.7

0.02 0.27 0.2 0.9

0.3 0.25 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

lambdai

m
ix

in
g

p
ro

p
o

rt
io

n

0

0.1

0.2

0.5

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.05 0.04 0.15 0.1 0.2 0.15 0.15 0.2 0.1 0.1

0.01 0.038 0.08 0.2 0.1 0.1 0.1 0.4 0.1 0.2

0.03 0.013 0.05 0.15 0.6 0.1 0.1 0.1

0.9 0.1

0.3 0.7

0.3 0.7

0.2 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

lambdai

m
ix

in
g

p
ro

p
o

rt
io

n

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.2  0.4  0.6  0.8  1

n
u

m
b

er
 o

f 
d

if
fe

re
n

t
 b

er
th

 l
en

g
th

s

mixing proportion

Lc=2
Lc=5
Lc=5

a) b)

c) d)

Figure 3.4: Berth lengths used in the solutions for 2in1. a) Lmax = 2, b) Lmax = 5, c) Lmax = 8,
d) Number of different berth lengths.

VL comprising ships of fixed length Lmax, and set VS comprising ships with lengths generated

from U [1, Lmax−1]. The fraction of ships in sets VL and VS was controlled by a mixing proportion

assuming values from 0 (ships from set VS only) to 1 (only set VL). Set B of admissible berth

lengths included integer berth lengths up to 2Lmax, i.e. B = {1, . . . , 2 ∗Lmax}. This choice was

dictated by the fact that 2in1 layout can take advantage of berth lengths of at most 2Lmax.

Quay length was set to Q = 16 and number of ships to n = 10. The remaining parameters

were generated as for the synthetic instances presented in Section 3.5. Ten test instances were

generated for each presented data point. The instances are available from [94]. In Fig.3.3a-c

and Fig.3.4a-c a fraction of the maximum possible berth number is shown as a heat map for

berth lengths in range 1, . . . , 16 (horizontal axis) vs changing mixing proportion (vertical axis).

The maximum possible berth number is ρi = ⌊Q/λi⌋, for a berth of length λi. Fig.3.3 and

Fig.3.4 show results for the same set of instances. In both sets of figures it can be noticed that
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for a diverse set of ship lengths, also a diverse set of berth lengths is chosen as the solution.

When long ship sizes dominate, it tends to be advantageous to use berth lengths of the longest

ships size only. This may be advantageous for oceanic ports like Los Angeles and Long Beach

where long container vessels abound [93]. The case of 2in1 layout is slightly different because

when long ships dominate, berth lengths Lmax are present in the solutions, but they are less

frequent than length 2Lmax. Note that in Fig.3.3a and Fig.3.3b for mixing proportion equal 1

(i.e. when only ships of length Lmax are present), berth lengths greater than Lmax are selected.

For example, in Fig.3.3a Lmax = 2 but λ2 = 3, λ2 = 4 happen to be present in the solution.

Though such sizes do not give any quality of service advantages, they are admissible and happen

to be selected. Despite the fact that such solutions are valid, for simplicity of exposition, we will

call them artifacts. Similar situation can be seen in Fig.3.4b for Lmax = 5. Though λ2 = 6 does

not give advantage over berth lengths λ1 = 5, λ3 = 10 when all ships have length Lmax = 5, yet

λ2 = 6 is admissible and happens to be selected. In Fig.3.3d and Fig.3.4d number of different

berth lengths that happened to be present in the solutions are shown. Shape of the lines can be

explained by two phenomena: firstly increasing Lmax is increasing options for choosing different

berth lengths, secondly when long ships tend to dominate in V , berth lengths equal to Lmax,

or 2Lmax, prevail.

Considering the above discussion, a simple managerial recommendation would be to use

length Lmax for 1in1 and Lmax, 2Lmax for 2in1. Yet there are other factors determining DQPP

solution which we study in the following sections.

3.6.2 Impact of Congestion

In this section we analyze impact of congestion in time on the berth choice. It is intuitively

expected that with high traffic of ships of certain sizes also berth sizes should be chosen cor-

respondingly and the longest berth size need not be the dominant solution. We will analyze

the impact of congestion on berth size selection in two ways. Firstly, the correlation between

sizes of chosen berths, instance congestion indicators, and mixing proportions will be evaluated.

Secondly, the changes in the berth lengths used when all ships arrive together (∀j , rj = 0), i.e.

under congestion, will be studied. To this end, the test setting introduced in Section 3.6.1 will

be exploited.

In Section 3.6.1 two sets of ships VL and VS were generated with lengths ∀j∈VL
, Lj = Lmax
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and ∀j∈VS
, Lj ∼ U [1, Lmax − 1], where length Lmax and the two sets mixing proportion were

controlled experiment parameters. On the one hand, instance hardness indicator area ratio α,

introduced in Section 3.5, will be used as a measure of the traffic congestion. On the other hand,

the fraction of quay length used by berths shorter than Lmax, that is ϕ =
∑

λi<Lmax
kiλi/Q, will

be an indicator of the membership of short berths in the solutions. Results of this evaluation are

shown in Fig.3.5a and Fig.3.5b for 1in1 and 2in1, respectively. Along horizontal axis area ratio

α is shown. The higher α is, the more quay length is oversubscribed by ship area in time×space

and the higher ship traffic congestion. Fractions of quay length occupied by berths shorter

than Lmax are shown along the vertical axis. It can be seen that with growing congestion (α

increases) presence of short berth lengths (measured by ϕ) decreases.

Analogous relationship for the fraction of quay length Q in berths longer than or equal to

Lmax, i.e. for ψ =
∑

λi≥Lmax
kiλi/Q, is shown in Fig.3.5c and Fig.3.5d for 1in1 and 2in1,

respectively. In this case the membership of long berths (ψ) increases with the congestion

indicator (α). In both cases (ϕ vs α and ψ vs α) the correlations are quite apparent. The

coefficients of correlation for various values of Lmax, the experiment control parameter, are

collected in Tab.3.5. Though not in all cases do the correlation coefficients exceed 0.7 absolute

value, which is a rule of thumb threshold for strong correlation, the coefficients are quite high.

It could be concluded that short berths are indeed more present in the solutions when con-

gestion indicator α is small. With the increase of congestion, longer berths are more frequently

chosen. However, such conclusions would be superficial for at least two reasons: (1) congestion

indicator α does not reveal ship size mixture, (2) there is a stronger determinant, than α, of

berth size choices. Namely, mixing proportion between sets VS and VL of short and long ships.

It can be verified in Tab.3.5 that correlations between the presence of short (ϕ) and long berths

(ψ) is much stronger with the mixing proportion than with α. Moreover, area ratio α used in

measuring congestion depends on the mixing proportion. These observations lead to extended

conclusions: The presence of certain berth lengths (short or long) follow the strongest contribu-

tors to the congestion which are large vessels. Accommodation to the stream of the large ships

prevail the needs of the shorter ships because large ships occupy a lot of resources (time and

space) and in this way they dominate the short vessels. As a consequence, large ships traffic has

priority in determining berth lengths. In the absence of large vessels, short ones may also incur

congestion and in this case short berths are present in the solutions.
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Figure 3.5: Fraction of berth length Q in short (λi < Lmax) and long berths (λi ≥ Lmax) vs
area ratio α for Lmax = 4. a) short berths fraction ϕ vs α for 1in1, b) short berths fraction ϕ
vs α for 2in1, c) long berths fraction ψ vs α for 1in1, d) long berths fraction ψ vs α for 2in1.

In the second experiment the setting from Section 3.6.1 was used again, however, with all

ships arriving at the same time and in this way increasing time congestion. The same instances

as in Section 3.6.1, yet with ∀j , rj = 0, were solved. The fraction of the maximum possible

berth number was analyzed vs changing long VL and short ships VS mixing proportion. The

difference between results obtained in Section 3.6.1 (Fig.3.3a-c, Fig.3.4a-c) and the current

instance setting is shown in Fig.3.6. The change in the maximum possible berth number is

shown as a heat map for certain berth lengths in range 1, . . . , 16 (horizontal axis) vs changing

VL, VS mixing proportion (vertical axis). More frequent presence of certain berth length (than

in Fig.3.3a-c, Fig.3.4a-c) is represented as a positive number (and color blue) and less frequent

presence as a negative number (color red). Although there are some minor changes from the

values shown in Fig.3.3a-c, Fig.3.4a-c, it is hard to identify strong change patterns. This is
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Table 3.5: Correlations between presence of short ϕ and long berths ψ in quay length with area
ratio α, and mixing proportion.

1in1
Lmax 2 3 4 5 6 7 8

correlation(α, ϕ) -0.723 -0.669 -0.768 -0.722 -0.566 -0.664 -0.593
correlation(α,ψ) 0.777 0.683 0.779 0.720 0.505 0.568 0.573

correlation(mixing proportion,ϕ) -0.992 -0.928 -0.942 -0.947 -0.886 -0.869 -0.869
correlation(mixing proportion,ψ) 0.963 0.940 0.935 0.941 0.873 0.850 0.869

2in1
Lmax 2 3 4 5 6 7 8

correlation(α, ϕ) -0.727 -0.544 -0.545 -0.579 -0.457 -0.531 -0.410
correlation(α,ψ) 0.744 0.572 0.572 0.554 0.405 0.457 0.413

correlation(mixing proportion,ϕ) -0.990 -0.739 -0.686 -0.783 -0.750 -0.653 -0.701
correlation(mixing proportion,ψ) 0.984 0.739 0.702 0.759 0.622 0.551 0.698
correlation(mixing proportion,α) 0.748 0.789 0.779 0.768 0.706 0.741 0.684

in line with the earlier observation that mixing proportion between long and short ships is a

key determinant of selected berth length. Two phenomena can be observed: For small values

of mixing proportion (short ship dominate) berth lengths shorter than Lmax are slightly more

present in the current solutions (Fig.3.6c,e,d,f in lower-left corner). This gives more space to

schedule short ships. In the 2in1 case some berth lengths in range [Lmax + 1, 2Lmax] are less

frequent (Fig.3.6d,f middle-right of the pictures). These berths are longer than the longest ship

and can be filled completely only by two ships sharing the berth. Using fewer, or different set of

such berths is a sign of economizing on quay lengths. Moreover, it demonstrates combinatorial

nature of the problem.

A managerial recommendations from this section can be summarized as follows: The chosen

berth sizes follow the sizes of the ships causing the congestion. Since large vessels occupy a lot

of time and space they prevail in berth size selection over short vessels. Only when large vessels

are absent, can the short vessels dominate in berth size choice.

3.6.3 One Long Berth Length vs Flexible Berth Lengths

As a result of the discussion in Section 3.6.1, one may think that using berth lengths Lmax for

1in1, or 2Lmax for 2in1, can be an advantageous simplification in designing quay partition. In

this section we verify analytically and experimentally three points of view on basing solutions

on Lmax or 2Lmax. In some sense we verify if indeed one "size fits all".
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Figure 3.6: Change in the used berth lengths under congestion (∀j , rj = 0). a) 1in1, Lmax = 2,
b) 2in1, Lmax = 2, c) 1in1, Lmax = 5, d) 2in1, Lmax = 5, e) 1in1, Lmax = 8, f) 2in1, Lmax = 8.
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Figure 3.7: Observation 2. Schedules for a) K1 = (2, 0, 1, 0), b) K1 = (1, 2, 0, 0), c) K1 =
(1, 0, 0, 1).

Observation 1. A solution with B = {Lmax} may be Θ(n) times worse than a solution with

flexible berth lengths.

The Θ(n) notation [98] means that relative distance of solution with B = {Lmax} from the

optimum solution is both lower- and upper-bounded by a linear function of ship number n. Thus,

solutions with B = {Lmax} can be arbitrarily worse than the optimum. To verify the above

observation consider the following example for 1in1. B = {Q/2}, n = Q+1, rj = 0, pj = 1, Lj =

1, wj = 1 for j = 1, . . . , Q, rn = 0, pn = 1, Ln = Q/2, wn = 1 and Q is even. Since there is only

one berth length equal to the half of the whole quay, two berths exist, and ships have to be served

sequentially, resulting in MWFT1 = [2(
∑Q/2

j=1 j) + (Q/2 + 1)]/(Q + 1) = (Q/2 + 1)2/(Q + 1).

Conversely, consider the same set of vessels, but with B = {1, Q/2}. A partition with Q/2 berths

of length 1 and 1 berth of length Q/2 is possible. Then in the first time unit Q/2 + 1 ships are

served and in the second time unit Q/2 are served, resulting in MWFT2 = (3Q/2+1)/(Q+1).

Hence, MWFT1/MWFT2 is Θ(n). A similar example can be constructed for 2in1. □

Thus, by Observation 1 equipartitioning, that is dividing a quay into equal length berths can

be Θ(n) times worse than the optimum. The results in Fig.3.4 may suggest that using berth

lengths Lmax, 2Lmax in 2in1 is favorable. In the following observation we show that these two

lengths may be absent from the optimum solution.

Observation 2. The necessary berth lengths in 2in1 may be different than Lmax and 2Lmax.

Consider an example: n = 10,∀jpj = 1, wj = 1, r1, . . . , r6 = 0, r7, . . . , r10 = 1, L1 =

3, L2, . . . , L6 = 1, L7, . . . , L10 = 2, B = {2, 3, 4, 6}, Q = 8. Thus Lmax = 3 and berths of length

Lmax, 2Lmax are feasible. We will show that using Lmax, 2Lmax results in inferior solutions.

Suppose DQPP solution is K1 = (2, 0, 1, 0), that is there are two berths of length λ1 = 2 and

one berth of length λ3 = 4. A solution with F (K1) = 1 is shown in Fig.3.7a. A schedule for
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Figure 3.8: Ratio of MWFT vs number of allowed ship sizes div. a) 1in1, b) 2in1.

K2 = (1, 2, 0, 0), i.e. using two berths of λ2 = Lmax = 3, has F (K2) = 1.2 and is shown in

Fig.3.7b. A schedule for K3 = (1, 0, 0, 1), i.e. using a berth of λ4 = 2Lmax = 6, has F (K3) = 1.4

and is shown in Fig.3.7c. Note that any partition with λ2 = Lmax = 3 prevents scheduling all

ships with rj = 1 in one time unit. A layout with λ4 = 6 allows for only one vessel of length 3

and 3 vessels of length 1 in the first time slot. Thus, the optimal solution does not contain any

berth of length Lmax or 2Lmax.□

The above observations highlight combinatorial nature of DQPP. Therefore, we studied ex-

perimentally a less restricted setting. The experiment was designed as follows: Two sets of test

instances were generated differing only in allowing or disallowing flexible berth lengths. Except

for set B, the data were the same. In the first set of instances berth length was B = {8},

that is only berths of length 8 were allowed. In the second set of instances B = {1, . . . , 8},

i.e. all integer berth sizes were possible. Vessel sizes were generated from U [1, 8]. However, the

diversity div of lengths was controlled by limiting the number of different lengths. For example,

for div = 2 all ships had one of two lengths each chosen from U [1, 8]. We set n = 10, Q = 16,

the remaining vessel parameters were generated as described in Section 3.5. The instances are

available from [94]. The test outcome is depicted in Fig.3.8 where quartiles of the ratio of the

MWFT for an instance from the first test set (B = {8}, restricted) to the MWFT for the

corresponding instance from the second set (B = {1, . . . , 8}, flexible) are shown vs the diversity

div of ship lengths. The worst case can be quite bad. Examples with the solutions worse by
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84%, 38% were observed for 1in1 and 2in1, respectively. It can be seen that 2in1 and 1in1

perform apparently differently in this test because the median ratio is around 1.4 for 1in1 and

1.03 for 2in1. The latter is smaller because in 2in1 layout it is possible to pair ship lengths such

that Li + Lj ≤ λf = 8 which is not possible in 1in1. Consequently, MWFT for the solutions

with B = {8} are closer to the solutions when greater flexibility of berth length selection exists

(B = {1, . . . , 8}). No apparent tendency of the two ratios medians with changing diversity of

ship sizes (div) can be seen. However, in 1in1 quartiles Q0 and Q1 tend to increase with growing

div. With growing diversity div of ship sizes it is increasingly possible to build solutions where

quay length is more flexibly distributed, more shorter berths are used, and MWFT in the flex-

ible case (B = {1, . . . , 8}) can be smaller, which is not possible when B = {8}. Consequently

the smallest ratios of the two MWFTs increase. Similar phenomenon can be observed for 2in1

but for Q4, Q3. The greatest values of the ratios get milder with growing div because chances

of more flexible pairing ship lengths in 2in1 layout are also increasing. Hence, the two values

of MWFT get closer to each other. Overall, the results of this section encourage using diverse

berth sizes, and 2in1 scheme over 1in1 scheme, because the 2in1 is better in handling vessels on

a set of limited berth lengths.

3.6.4 2in1 against 1in1

As already mentioned, 2in1 generalizes 1in1 because each solution for 1in1 is a feasible solution

for 2in1. In the previous section it appeared that 2in1 offers better flexibility in constructing

DQPP solution. A question arises, how much a solution using 2in1 layout can be better than

a solution with 1in1 layout. Some light can be shed on this issue by comparing MWFT s

of instances solved for 2in1 and 1in1 layouts. The results for such a direct comparison are

collected in Fig.3.9 showing histogram of the 1in1 and 2in1 MWFT ratios in a population of

2114 instances solved in the previous experiments. The first block represents the 907 instances

where MWFTs were equal. For over 50% of the cases the ratio was below 1.02 and for 90% of

the cases it was below 1.16. The largest observed ratio of MWFTs for the two types of layouts

was 2821/1709 ≈ 1.651. Although the instances were generated to test specific phenomena

described in the preceding sections, it can be concluded that in the verified set differences in

MWFTs are quite common, and on average are not large. The results in Fig.3.9 are in stark

opposition to the results in Fig.3.8. It is possible because two different criteria in two different
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Figure 3.9: Distribution of 2in1 vs 1in1 objective ratios for the same instances.

experimental settings are evaluated. In Fig.3.8 it is shown that 1in1 is lacking the flexibility

in handling diverse vessel sizes when berth size selection is limited (e.g. berths are already

fixed). Contrarily, 2in1 is much better in dealing with such a situation. A direct comparison of

MWFT s (Fig.3.9) does not reveal this feature of 1in1 because the selection of berth sizes was

flexible both for 2in1 and 1in1.

3.7 Summary and Recommendations

In this chapter we introduced discrete quay partitioning problem in two variants: 2in1 and 1in1.

Both variants were proven to be NP-hard even in very restrictive cases. Mixed integer linear

programs were constructed for both cases. We evaluated time scalability of solving DQPP by

the MIPs. It appears that this problem is hard to solve and only instances with moderate size

could be solved to optimality, while larger instances can be dealt with when a MIP solver is used

as a heuristic. Despite these obstacles we analyzed how ship size dispersion impacts selected

berth lengths. We observed that for a diverse set of ship lengths a diverse set of berth lengths

is also chosen to the solution. When the longest ships dominate then berths of length Lmax
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and 2Lmax are the most frequently present in the optimum layouts. It can be also concluded

that using the longest ship size can be an attractive heuristic solution to DQPP resulting in

relatively limited loss of quality on average (≈ 40% for 1in1 and ≈ 5% for 2in1). Yet, in the

worst-cases such solutions may be bad. In case of traffic congestion quay partition follows sizes

of the vessels with the greatest time-space demands. Next, we compared quality of the solutions

in 2in1 and 1in1 setting and observed that typically quality differences are not large. Thus, the

study conducted here gave hints on qualitative nature of DQPP solutions. The insights provided

to terminal designers can be summarized as follows: (1) quay partitioning should depend on

the future traffic, (2) use of 1in1 (discrete) layout is discouraged because it is not as flexible

in dealing with diverse vessel size traffic as 2in1 (hybrid), (3) using all berths of the same size

is suitable for the average case, (4) but the worst cases in such solutions can be very far from

optimum, and hence, using all berths of the same size is not a good idea from the robustness

point of view, (5) large ships occupy a lot of time and space, hence they prevail in berth size

selection over short ships.



Chapter 4

Selecting Algorithms for Large

Berth Allocation Problems

4.1 Algorithm Selection Problem for BAP

In this chapter algorithm selection for the berth allocation problem (BAP) under algorithm

runtime limits is considered. For the purposes of strategic port capacity planning, BAP must be

solved many times in extensive simulations, needed to account for ship arrival and service times

uncertainties, and for alternative terminal designs. As argued in Section 2.3 specialized methods

are necessary to solve large BAP instances appearing in the SQPP. Consider a motivating

example: A stochastic STM is used to evaluate a quay partitioning and terminal layout. In order

to extract quantitative features of one partition such as mean and dispersion of turnaround time,

the partition is evaluated by solving BAP on 100 realizations of the probabilistic ship traffic

model. Solving 10000-ship BAP even by a simple greedy algorithm can take as long as 4s

(Table 4.4). To avoid possible bias of one greedy algorithm and improve solution quality we

will run not one, but many algorithms. Suppose there are 50 alternative algorithms (Section

4.3) to be run. This will take at least 100 × 50 × 4s = 20000s. Mind that we intend to

evaluate not one possible berth layout, but hundreds and these layouts can be constructed by

a probabilistic search algorithm. Furthermore, alternative ship traffic evolution scenarios may

be examined. Each of these simulations needs to solve deterministic BAP as a subproblem, and

53
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runtime allowance is the key design decision impacting statistical quality of the results. It is not

possible to run any BAP algorithm blindly and respect the runtime allowance. Hence, there is

a need for choosing algorithms solving many large BAP instances in a limited time. This, in

turn, is the domain of the algorithm selection problem (ASP) [70].

ASP consists in developing methods for choosing best algorithms for the considered field of

application. The criteria of algorithm performance are, e.g., runtime and solution quality. In the

classic formulation, ASP is an instance classification problem, in which an instance is assigned

to a class of instances solved in the best way by a certain algorithm. We depart from this classic

approach and perceive ASP as a selection of a portfolio of algorithms which may be run in limited

time. It can be expected that with increasing runtime limit the portfolio changes and the quality

of the obtained solutions improves. The trade-off between solution quality and runtime limit,

as well as the algorithm membership in the portfolio, will be studied on the example of BAP.

In order to select the portfolio, a linear program minimizing the solution quality loss, subject

to overall runtime limit is used. For the training and validating datasets, random instances and

real ship traffic logs are used. The portfolio abilities to solve new instances are assessed.

Further organization of this chapter is the following. The next section presents the berth

allocation problem. Section 4.3 is dedicated to the algorithms for BAP. Test instance datasets

are introduced in Section 4.4 and the results of individual algorithm evaluation are given in

Section 4.5. In Section 4.6 our approach to algorithm selection problem is outlined. Algorithm

portfolios and their evolution in time are presented in Section 4.7. Section 4.8 is dedicated

to evaluation of the portfolios. The last section recaps the results of this chapter. The main

notations are summarized in Tab. 4.1. Only a small selection of the constructed algorithm

portfolios and their performance evaluations are discussed in the chapter. A complete set of the

results is provided in Appendix C.

4.2 Berth Allocation Problem Formulation

BAP considered in the following text is formulated as follows. A set of m berths of lengths λi,

i = 1, . . . ,m, is given. There are n vessels defined by: arrival times rj , lengths Lj , processing

(service) times pj , and importance wj , j = 1, . . . , n. Importance wj of ship j represents the

value of the ship for a terminal manager, e.g., the cost of mooring or the cost of the cargo. We
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Table 4.1: Main notations in Chapter 4

Berth Allocation Problem - parameters
λi length of berth i
Lj Length of ship j
m number of berths
n number of vessels
pj ship j processing time
rj ship j arrival time
wj value (or weight) of ship j

Berth Allocation Problem - decision variables
cj the completion time of handling ship j;

MWFT mean weighted flow time, the objective function
Algorithm Selection Problem - parameters

A algorithm space, i.e., set of algorithms
I problem space, i.e., set of all instances
I′ set of training instances

q(a, I, T ) the best quality score obtained by algorithm a for instance I by time T
qmin(I, T ) the best quality score for instance I, obtained by any algorithm by time T
(tjaI , q

j
aI) jth pair of solution quality improvement to qjaI obtained at time tjaI by algo-

rithm a for instance I
T runtime limit

Algorithm Selection Problem - decision variables
Cost computational cost of a portfolio
xa 1 if algorithm a is in the portfolio, 0 otherwise
G regret, i.e., relative distance from qmin(I, T )

uaI 1 if algorithm a is instance I solver, 0 otherwise (in G minimization)

assume hybrid quay organization: each berth can accommodate at most two ships at the same

time, provided the total length of two ships does not exceed the berth length (so called 2in1

berthing scheme). A solution of BAP is represented as a set of chains, where each chain is a

sequence of ships mooring at a certain berth (see Fig. 4.1). Each berth has two chains, called

the left and the right chains, representing the sequence of ships moored at the ends of the berth.

The minimized objective is the mean weighted flow time MWFT =
∑n

j=1(cj−rj)wj/
∑n

j=1 wj ,

where cj is the completion time of handling ship j.

4.3 Algorithms

In this section we introduce the setA of algorithms solving BAP. We start with greedy algorithms

and then proceed to more advanced methods.
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4.3.1 Greedy Algorithms

Greedy algorithms are defined by two elements: the control structure and the sorting rule. The

control structure determines the range of considered ships. The sorting rule sequences the ships.

Sorting rules

The following sorting rules were used. The ties were resolved arbitrarily.

First-Come, First-Served (FCFS): r1 ≤ r2 ≤ · · · ≤ rn

Longest Ship First (LSF): L1 ≥ L2 ≥ · · · ≥ Ln

Shortest Ship First (SSF): L1 ≤ L2 ≤ · · · ≤ Ln

Longest Processing Time (LPT): p1 ≥ p2 ≥ · · · ≥ pn

Shortest Processing Time (SPT): p1 ≤ p2 ≤ · · · ≤ pn

Largest Area First (LAF): p1L1 ≥ p2L2 ≥ · · · ≥ pnLn

Smallest Area First (SAF): p1L1 ≤ p2L2 ≤ · · · ≤ pnLn

Weighted Shortest Processing Time (WSPT): p1/w1 ≤ p2/w2 ≤ · · · ≤ pn/wn

Greatest Importance (GI): w1 ≥ w2 ≥ · · · ≥ wn

Greatest Importance – Shortest Processing Time (GISPT): this rule sorts the ships by impor-

tance first, like the GI rule, and then ships of the same importance are ordered as in the SPT

rule.

Shortest Processing Time – Greatest Importance (SPTGI): this rule sorts the vessels by the SPT

rule first, while ships with the same processing time are ordered by the GI rule.

Random (RND): this rule builds a random sequence of ships and is used as a reference algorithm

to check whether other algorithms return useful solutions.

Control structures

Priority heuristics (Prio) proceed through the increasing ship ready times and ship service

completion times. At each of these moments, the first ready ship is chosen from the list defined

by the sorting rule. Then, the ship is assigned to the shortest available berth. If no ship fits

any available berth, or if there are no more free berths at this moment, then we go to the next

decision moment. The procedure is repeated until there are no ships to be scheduled.
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List heuristics (List) rely strictly on the list of ships constructed by the sorting rule. As long

as the list is not empty, the first ship is chosen and assigned to the earliest shortest berth, i.e.,

berths available at the earliest time are searched for first, and if there are more than one, the

shortest is chosen. Berth availability time is the moment when the service of the last ship ends.

The earlier unassigned intervals (if there are any) are not considered. If the chosen ship j is

not ready, then the algorithm waits until its ready time rj . Contrary to the previous control

structure, the list structure allows a situation where a berth is not used by a ready ship, as the

higher priority ship must be allocated first, although it arrives later.

k-Look-ahead heuristics (La k) act like the priority structure, but at the decision points they

take into account k future ship arrivals, and include the k future ships into the set from which

the next ship to serve is chosen by the sorting rule. This control structure is considered for

k ∈ {2, 5, 10}.

All the greedy algorithms can be implemented to run in O(n log n + m logm + nm) time,

where the first component accounts for the sorting rule, the second is the time of sorting berth

lengths and the last is the time of finding berths for the ships. Note that for FCFS all control

structures are equivalent because FCFS sorting rule coincides with the orders of all control

structures.

We will use a shorthand notation to refer to the greedy algorithms concisely. A short name

will consist of an abbreviation of the sorting rule name, followed by the abbreviation of the

control structure name. For example, LPT-La2 is a heuristic with 2-look-ahead and LPT sorting.

Super Greedy algorithm (SG) is a combination of all greedy algorithms. It provides the best

solution constructed by any greedy algorithm and its runtime is the sum of the runtimes of all

the greedy methods.

4.3.2 Hill Climbers

Hill climber is a simple local search method. It starts from the best solution constructed by

any greedy algorithm (cf. Section 4.3.1) and tries to improve the solution by moving ships

from their current positions to different positions in the ship sequences (cf. Fig. 4.1). Hill

climber is also used in post-optimization stage of GRASP algorithm (Section 4.3.3), so a hill

climber can start from a solution built by the GRASP. The new ship positions must obey ship
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Figure 4.1: Solution neighborhood in HC and HC-A: a) the time window constraint, b) feasible
moves in HC-A.

and berth length constraints. To ensure sufficient time to generate new solutions for large

instances, the neighborhood size has been reduced by restricting the length WL of admissible

move time window. Let st denote the current start time of handling the considered ship and let

tt denote the start time of handling it in the potential target position. A move is possible only if

st−WL ≤ tt ≤ st+WL (cf. Fig. 4.1a). The objective function for the new solution is evaluated

and if it improves, then the new solution is chosen as the current one. A limit NA on the number

of attempts to execute a move from the current ship position has been also introduced. The hill

climber works until there is no improving move or the time limit is exceeded.

We implemented three versions of the hill climber differing in the way of choosing ships to

be moved. In the first variant, called HC, the search proceeds sequentially over all the ships. In

the second variant, referred to as HC-A, a time moment τ is randomly generated in the existing

schedule. All vessels whose interval of processing intersects with τ are tried for redistribution

(cf. Fig. 4.1b). In the third variant, called HC-C, we select a time window of width SW on a

random berth, starting at a random time position. All vessels in the time window on the selected

berth are checked for relocation (cf. Fig 4.2a). In the three versions, control parameters have

been independently tuned to NA = 10,WL = 10, and in HC-C to SW = 10 (see [92] for the

tuning process details).
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Figure 4.2: Solution neighborhood in HC-C: a) visualization of the constraints, b) feasible moves.

4.3.3 Greedy Randomized Adaptive Search Procedures

Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic which randomizes

greedy algorithms [53, 73]. In our case GRASP proceeds in two steps. First an initial solution is

built: A set of k vessels is chosen from the top of a list built according to some sorting rule. The k

ships constitute the so-called restricted candidate list (RCL). Then, one vessel is drawn randomly

(with equal probability) from the RCL and appended to the earliest shortest berth. Thus, berths

are checked first in the order of increasing availability times and then in the order of lengths.

The above procedure is repeated until all n ships are scheduled. This first part of the algorithm

is repeated until time limit tl1 elapses. The best solution is always retained. In the second

part, a version of the hill climber (HC-A, see Section 4.3.2) is applied for post-optimization.

The hill climber is run until the algorithm is suspended on the overall runtime limit. Six

implementations of GRASP have been tested and tuned [92]: GRASP-LSF (k = 20, tl1 = 600s,

sorting rule LSF, post-optimization HC-A), GRASP-LAF (k = 20, tl1 = 600s,LAF,HC-A),

GRASP-GI (k = 10, tl1 = 600s,GI,HC-A), GRASP-GISPT (k = 20, tl1 = 600s,GISPT,HC-A),

GRASP-SPTGI (k = 10, tl1 = 600s,SPTGI,HC-A), GRASP-3600 (k = 10, tl1 = ∞,GISPT,no

post-optimization).

4.3.4 Iterated Local Search

Iterated Local Search (ILS) starts from the best solution S returned by any greedy algorithm,

and then iteratively destroys and reconstructs parts of S. ILS stops on reaching a time limit.

In the first variant, called ILS-A, whole chains in the current solution are dismantled (Fig.
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4.3a). Let ε ∈ [0, 1] be the fraction of the whole number of chains which should be destroyed.

The chains are chosen randomly with equal probability. A constraint has been imposed that

in each iteration ILS-A has to dismantle at least two chains from at least two different berths.

The ships from the dismantled chains are sequenced by a greedy algorithm and appended in

this sequence to the chains being reconstructed. Suppose two chains exist on some berth: a

new one that is being reconstructed, and an old one which is an unmodified chain remaining

from the initial solution S. For some ship j, a berth i of length λi ≥ Lj available at the earliest

time greater than or equal to rj , is searched for first. If more than one berth meets the above

conditions, then the shortest one is chosen. The calculation of berth i availability time bati takes

into account two cases. Let τ be the time when the service of the last ship in the new chain ends.

If no ship is scheduled in the old chain at time τ , then bati = τ . Otherwise, bati is the time

when the service of this ship in the old chain ends. If both chains are new, then the maximum of

their completion times is used as bati. Assigning ship j to a berth may cause a conflict with the

schedule of the old chain. Namely, the newly inserted ship j and some ship k scheduled in the

old chain in the interval [bati, bati+pj ] may have lengths such that Lj+Lk > λi. If it is the case,

then the ships in the left chain have priority, i.e. the ship at the left end of the berth is scheduled

first, while the ship in the right chain is scheduled as the second. The ships remaining in the

tail of the old (unmodified) chain are delayed accordingly. All greedy algorithms are applied to

reconstruct the solution and the best solution is selected. We implemented two versions of this

method. In the first one, referred to as ILS-A, ε was tuned to ε = 0.3. The second version,

referred to as ILS-A0, always destructs and reconstructs two chains.

In the second variant, referred to as ILS-C, ships are removed from the current solution to

create „holes” in the existing schedule (see Fig. 4.3b). It is assumed that holes are created in the

chains representing the schedules on the berths, and there can be at most one hole in a chain.

Let ε ∈ [0, 1] be the fraction of the solution that must be destroyed, i.e. nε ships are removed

from the current solution. The ship removal process progresses in three stages. Firstly, chains

are selected with equal probability until collecting chains comprising at least nε ships. Secondly,

nε ships are distributed randomly between the selected chains with uniform probability. Let

zi be the number of ships to be removed from chain i. Then zi consecutive ships are removed

from chain i starting at a position chosen with uniform probability along the chain length. In

the reconstruction process the ships are ordered by some greedy algorithm and reinserted into
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Figure 4.3: Operation of Iterated Local Search variants: a) ILS-A, b) ILS-C.

holes in the schedule. When some ship j is chosen to be scheduled, it is assigned to a hole in

the earliest shortest feasible berth. The availability time of a position in a hole is determined

in the following way. Suppose k is the index of the last ship in the chain before a hole. Indices

k + 1, . . . , k + a represent ships already inserted in the hole. Availability times of the positions

in the hole are times ck, ck+1, . . . , ck+a when the services of ships k, k + 1, . . . , k + a end. If

some position k′ in a hole of chain i is selected, then the ships in the positions later than k′

are delayed to allow inserting the considered vessel j. If there is a conflict with the ships in

the other chain of the berth, then they are also delayed. Of the two conflicting chains, the left

one is always given preference. All greedy algorithms are applied in sequencing the ships to be

reinserted into the schedule and the best obtained solution is selected. For ILS-C, the control

parameter ε has been tuned to 0.1 (see [92] for the tuning details).

4.4 Test Datasets

We used five datasets for the testing purposes. Four datasets were randomly generated, and

the fifth one represented real ship traffic. Unless stated to be otherwise, in the random datasets

parameter values were drawn as follows: n ∼ U [1, 1000], m ∼ U [1, 100], rj ∼ U [0, 1000],

pj ∼ U [1, 24], wj ∼ U [1, 1000], Lj , λi ∼ U{200, 215, 290, 305, 400}. By ∼ U [a, b] we denote that

a certain parameter is generated from a discrete uniform distribution with integer values in the

range [a, b]. The notation ∼ U{x, . . . , y} means that the parameter values are chosen with a dis-

crete uniform distribution from the set {x, . . . , y}. The set of ship lengths Lj represents popular
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container ship classes like Suezmax and (New) Panamax. Each configuration of the tests com-

prised a population of 100 instances. Two series of random instances were used to test the impact

of parameters n and m on the algorithm performance. In such tests, a range of the tested param-

eter was traversed by explicitly setting values of the tested parameter, while the remaining pa-

rameters were randomized. For example, in the tests of the impact of the number of ships n, the

following set of n values was considered: {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}.

This means that 100 instances were generated with n = 2 while the remaining parameters were

randomly generated as described above. The 100 instances with n = 2 were solved by the tested

algorithms to evaluate their performance. Next, values n = 5, 10, . . . , 10000 were examined in

the similar manner. This set of instances will be referred to as random instances N . In the

examination of the impact of m, the tested values were m ∈ {1, 2, 5, 10, 20, 50, 100} while other

parameters were generated as described above. These instances will be referred to as random

instances M . Overall, we used random datasets: (1) all 1200 random instances N , (2) 100

random instances N with n = 10000, (3) all 700 random instances M , (4) 100 random instances

M with m = 2.

In the fifth dataset, referred to as real instances, authentic data on ship arrival times (rj),

processing times (pj), and lengths Lj , were obtained from the Automatic Identification System

(AIS), a global radio vessel tracking system. In the real instances, ship traffic of 8 ports in 2016

is represented. The ports with the number of ships were: Gdańsk – 465 ships, Long Beach – 995,

Los Angeles – 1310, Le Havre – 2277, Hamburg – 3273, Rotterdam – 3997, Shanghai – 11197,

and Singapore – 18413. Ship sizes range from 75m (Shanghai) or 87m (Singapore) to 400m.

Berth lengths were obtained from the publicly available port authority data. Their length range

is [200m,855m] with 500m median. The datasets are available at [60].

4.5 Initial Evaluation of Algorithms

In this section we report on the initial evaluation of the individual algorithms performance on

the random datasets. The goal was to choose "the best" algorithm for the port simulation. The

algorithms were implemented in C++ and compiled with g++ ver. 4.8.2. All computational

experiments were conducted in 2019 at Poznań Supercomputing and Networking Center on

Eagle/Altair cluster, which at that time had Intel Xeon E5-2697 CPU@2.6 GHz, at least
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64GB RAM per node, and Scientific Linux CERN 6.7. All the algorithms were sequential and

had a one hour runtime limit.

When solving a set of instances, a population of results is obtained. Various algorithms have

various result quality distributions. Given the result quality distribution, it must be decided

which algorithm is the best. It is not possible to reduce the distributions to a single numerical

score without losing some information. Depending on the choice of the distribution performance

metrics (e.g. median, average), different algorithms can be chosen as the best [16]. Nevertheless,

some pragmatic approach is needed to compare solutions provided by various algorithms. In this

study we will use the number of wins, i.e., the number of instances for which some algorithm

provided the best solution. Similarly, the number of unique wins is the number of instances

for which some algorithm provided the best solution uniquely. An advantage of these metrics

is that they are unambiguously defined even if the algorithm provides no solution (it does not

win). A disadvantage of the number of (unique) wins is that an algorithm which is always,

e.g., the second-best, is outperformed by an algorithm which is always the worst except for one

instance when it gives the best solution. Though this situation is perfectly in line with the idea

of algorithm portfolios (Section 4.6), we will use classic population statistics (median, average)

as secondary quality metrics.
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Table 4.2: Performance in the experiments with changing n (1200 instances).

# Wins (p-value) Relative distance (No. of σ s) Unique wins
1 ILS-A 728(0) ILS-A0 1.0367(13.8) ILS-C 217
2 ILS-A0 727(0) ILS-A 1.0371(14.7) ILS-A 196
3 ILS-C 725(0) ILS-C 1.104(16.1) ILS-A0 194
4 HC-C 514(0.010) HC-C 1.107(18.7) HC-C 32
5 HC 494(0.067) HC 1.110(18.9) GRASP-3600 10
6 HC-A 484(0.139) HC-A 1.139(20.9) HC 5
7 GRASP-3600 479(0.190) SG 1.182(23.5) HC-A 4
8 SG 479(0.190) GRASP-3600 1.200(20.3) GRASP-GISPT 2
9 GRASP-GISPT 471(0.293) GRASP-GI 1.210(20.6) GRASP-SPTGI 1
10 GRASP-SPTGI 470(0.307) GRASP-GISPT 1.216(19.9)
11 GRASP-LAF 469(0.322) GRASP-SPTGI 1.219(20.2)
12 GRASP-LSF 469(0.322) GI-Prio 1.222(22.9)
13 GRASP-GI 469(0.322) GISPT-Prio 1.223(22.9)
14 SAF-Prio 469(0.322) SPTGI-Prio 1.269(20.7)
15 SPTGI-Prio 468(0.337) SAF-Prio 1.287(25.8)
16 SPT-Prio 468(0.337) SPT-Prio 1.294(20.9)
17 GI-Prio 468(0.337) RND-Prio 1.423(28.1)
18 GISPT-Prio 468(0.337) GRASP-LSF 1.555(27.1)
19 LPT-Prio 462(0.433) GRASP-LAF 1.564(29.1)
20 LAF-Prio 461(0.450) SSF-Prio 1.585(27.5)
21 SSF-Prio 461(0.450) WSPT-Prio 1.783(24.8)
22 RND-Prio 460(0.467) FCFS-List 1.816(24.6)
23 LSF-Prio 459(0.483) FCFS-Prio 1.816(24.6)
24 WSPT-Prio 459(0.483) FCFS-La10 1.816(24.6)
25 FCFS-List 458(0.500) FCFS-La2 1.816(24.6)
26 FCFS-Prio 458(0.500) FCFS-La5 1.816(24.6)
27 FCFS-La10 458(0.500) GI-La2 2.102(7.6)
28 FCFS-La2 458(0.500) GISPT-La2 2.103(7.6)
29 FCFS-La5 458(0.500) LPT-Prio 2.287(23.8)
30 WSPT-La2 370(0) WSPT-La2 2.322(12.3)
31 WSPT-La5 260(0) SAF-La2 2.497(11.7)
32 WSPT-La10 165(0) SPTGI-La2 2.505(11.5)
33 LSF-La2 99(0) SPT-La2 2.511(11.5)
34 SSF-La2 93(0) SSF-La2 2.669(14.8)
35 SPT-La2 92(0) RND-La2 2.692(14.3)
36 SPTGI-La2 88(0) LAF-Prio 2.969(23.1)
37 LPT-La2 87(0) LSF-Prio 3.099(18.6)
38 GI-La2 86(0) LPT-La2 3.956(11.6)
39 GISPT-La2 86(0) WSPT-La5 3.967(12.8)
40 SAF-La2 82(0) GI-La5 4.282(16.3)
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Solution quality for large runtime limit. Let us start with the comparison of algorithm

performance for 1200 random instances N (dataset 1) and one hour runtime limit shown in

Tab.4.2. The algorithms are ranked according to the number of wins, relative distance from the

best solution found and the number of unique wins. The first 40 positions of the comparison

are shown. The left panel of Tab.4.2 features the number of wins with p-values. The p-values

were obtained by comparing two population proportions, where the reference population was the

set of results of the FCFS-Prio algorithm. A p-value is the probability of the two populations

of wins (of the given algorithm and of the FCFS-Prio) being the same. The central panel of

Tab.4.2 gives the average relative distance and the number of σs from the best solution found.

The relative distance from the best solution is the ratio of the MWFT obtained for a given

instance and the MWFT of the best solution found. The number of σs is the average distance

from the best solution found, divided by the standard deviation of the algorithm distances from

the best solutions. This test verifies whether the two distributions of fractions are the same.

This statistic is used because the corresponding p-values were too close to 0, which did not allow

us to assess the algorithm results. The p-values and σ scores verify statistical soundness of the

results. Low p-values and high σs mean that the populations of solutions are indeed different.

The third panel in Tab.4.2 provides the number of unique wins.

Tab.4.2 shows that from position 30 the number of wins collapses. The positions with

small number of wins are occupied by the greedy algorithms with list and look-ahead control

structures. The list control structure is inefficient because it waits for specific vessels chosen by

some sorting rule while ignoring the ready ones. The look-ahead control structure suffers from

a similar deficiency: future ship arrivals delay scheduling the currently ready ships by giving

preference to the future ships elected by the sorting rule. The best greedy heuristics with the

list or look-ahead control structure use FCFS sorting rule, which is the order of the ships arrivals

itself, thus breaking the spell of waiting for the future ships. This situation requires a comment.

It is a common practice to reserve certain berths for the biggest ships and the berths indeed wait

for those ships. However, in the list and look-ahead heuristics the sorting rules may completely

disconnect the order of serving the ships from their proximity in time. Algorithm SAF-Prio

tops the list of greedy heuristics, but the difference in the number of wins between the heuristics

with priority control structure is roughly only 2%. Also, the p-values do not support the claim

that priority heuristic results are significantly different. Thus, with respect to the number of
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Table 4.3: Heuristic performance for different runtime limits (1200 instances).

Top 3 heuristics with the highest number of wins
time limit 1st 2nd 3rd

100ms SG: 817 GISPT-Prio: 613 GI-Prio: 580
1s SG: 759 ILS-C: 581 ILS-A0: 580
10s SG: 732 ILS-A0: 623 SPTGI-Prio: 623
100s ILS-A0 684 ILS-C: 664 ILS-A: 651
1000s ILS-A0 715 ILS-A: 708 ILS-C: 698

Top 3 heuristics with the highest number of unique wins
time limit 1st 2nd 3rd

100ms GISPT-Prio: 75 SAF-Prio: 44 GI-Prio: 42
1s SPTGI-Prio: 75 ILS-C: 63 GISPT-Prio: 63
10s SPTGI-Prio: 155 ILS-C: 105 ILS-A0: 80
100s ILS-C: 157 ILS-A0: 146 ILS-A: 113
1000s ILS-C: 191 ILS-A0: 179 ILS-A: 172
Top 3 heuristics with the minimum distance from the best found

time limit 1st 2nd 3rd
100s SG: 1.122 GI-Prio: 1.158 GISPT-Prio: 1.158
1000s SG: 1.170 GRASP-3600: 1.192 GRASP-GI: 1.197

wins, priority-based greedy heuristics perform similarly. The same conclusion can be drawn for

the GRASP and SG methods. Only for methods ILS-A, ILS-A0, ILS-C and HC-C the claim

that their solutions are better than FCFS’s is supported by the p-values (because probability

of error in such a claim is below 0.01). The central panel of Tab.4.2 shows that from position

27 the average distance from the best solution is over 100%. The big number of σs supports

the claim that the algorithm solution populations are indeed different from the best solutions

found. The third panel shows a ranking of the algorithms providing unique best solutions. It is

a natural recommendation of the methods which should be included in the algorithm portfolio,

provided runtime allowance is sufficient. On the one hand, Tab.4.2 allows us to identify the best

algorithms because the top positions of the three rankings in Tab.4.2 coincide. On the other

hand, it ignores the time cost of obtaining the solutions. This limitation is addressed in the

rest of this chapter. Let us also note that list or look-ahead control structures performed poorly

here. However, in Section 4.7 we will show that at least some of the algorithms using them can

be useful in solving certain instances within some runtime limits.

Solution quality-runtime trade-off. Let us analyze how the algorithm ability to cover a

set of instances with the best solutions changes with the runtime. Tab.4.3 lists the best three
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algorithms in the sense of (unique) wins and minimum distance from the best solution found

within certain runtime limit. Random instances N (dataset 1, 1200 instances) were used to

build Tab.4.3. For random instances M , the conclusions were similar so we do not report them

here. Different runtime limits of 0.1s, 1s, 10s, 100s, 1000s represent various levels of acceptable

runtime to solve long-time horizon BAPs. It can be seen that for short runtime limits the

greedy algorithms dominate in the number of wins. The number of unique wins of individual

greedy algorithms is not big. Combining them into the composite SG algorithm is profitable

because SG takes the first position in the number of wins up to the 10s runtime limit. However,

since SG is a combination of heuristics, it cannot win uniquely and it is absent in the central

part of Tab.4.3. With the increasing runtime limit, metaheuristics come forward and ILS-type

methods dominate with respect to the number of (unique) wins. In the last part of Tab.4.3,

runtime limits shorter than 100s are omitted because there are instances (e.g. with n = 10000)

which were not solved by any algorithm in time shorter than 13.9s. The average distance in

the population of 1200 random instances N is not defined for such runtime limits. For runtime

limits 100s and 1000s, SG, GI-Prio, GISPT-Prio and even GRASP-type methods are effective.

It can be concluded that under short runtime limits greedy algorithms are very useful, but no

single greedy method is universally best even for short runtimes. More complex algorithms,

such as metaheuristics, should be applied for longer runtime limits.

The criteria of the number of (unique) wins represent algorithm ability to cover sets of

instances with the best solutions, but do not reveal solution quality when the solutions are

not the best. Therefore, in Tab.4.4 we show algorithms nondominated in the runtime-quality

trade-off. The quality indicator is the median relative distance of the MWFT from the best

known solution in a population of 100 random instances N with sizes: n = 100, 1000 and 10000.

The median time of delivering the best solution constructed by a certain algorithm is given

(not the total runtime, which is one hour in the case of metaheuristics). Notice that for the

shortest runtimes greedy algorithms with the sorting rules based on ship processing times and

weights dominate. Then, GRASP-like, HC-like and finally ILS-type methods follow. In such

an evaluation setting, only 9-10 algorithms are nondominated for some fixed n and 19 unique

heuristics are present overall in Tab.4.4.

Let us summarize the above evaluation. Some choice of the algorithms can be done on the

basis of Tables 4.2, 4.3 and 4.4. However, a number of difficulties should be recognized: (1) The
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Table 4.4: Nondominated heuristics in the MWFT vs runtime comparison (medians).

n = 100 n = 1000 n = 10000

name time quality name time quality name time quality
FCFS-List 0.487ms 1.0571 SPT-La10 56.66ms 2.1610 SPT-List 4569ms 1.3279
WSPT-La10 1.206ms 1.0545 SPT-La5 58.32ms 1.9439 SPT-Prio 4668ms 1.2221
WSPT-La5 1.317ms 1.0536 SPT-Prio 62.75ms 1.7519 SPT-La10 4734ms 1.2166
SSF-Prio 2.029ms 1.0261 SPTGI-Prio 68.04ms 1.7142 SPTGI-List 4879ms 1.1934
GRASP-3600 2.376ms 1.0252 GI-Prio 89.24ms 1.5870 GRASP-SPTGI 439.4s 1.1077
HC-A 90.45ms 1.0201 HC-A 5537ms 1.4105 GRASP-GISPT 449.1s 1.0383
HC-C 91.48ms 1.0189 HC-C 6956ms 1.3432 HC-A 649.4s 1.0133
ILS-A 326.1ms 1.0039 ILS-A 1279s 1.0122 HC 959.7s 1.0106
ILS-A0 389.8ms 1.0029 ILS-A0 1311s 1.0006 ILS-A 1529s 1.0065
ILS-C 154.6s 1

selection depends on the ranking method. (2) Though some algorithms top a number of the

rankings, no algorithm is uniquely best. (3) The choice depends on the runtime allowance. (4)

In some rankings, Super Greedy is quite effective and it is a good idea to have such an algorithm.

Observations (1) and (2) inspire further reflections. In order to remain efficient in many ranking

methodologies, it seems reasonable to use a set of algorithms instead of "the single best one".

Observation (3) encourages us to use greedy algorithms for speed and metaheuristics for quality.

Yet, since metaheuristics need time to run, how to swap smoothly the greedy algorithms for the

metaheuristics? The impact of runtime allowance is related to the instance sizes. Furthermore,

a more general remark can be made: instead of classically asking what the time to get the

optimum solution is, one should rather ask what the best solution that can be got in the given

time is. Regarding remark (4), Super Greedy runs all greedy algorithms blindly, even those

found to be quite ineffective. Some of the component algorithms of SG may be eliminated

without loss of solution quality. Thus, a method excluding some SG components is necessary.

Overall, it can be concluded that the choice of algorithms for solving BAP is quite a confusing

task, and the single "best algorithm" approach is not satisfactory. A more thorough approach

is necessary to choose the algorithms for BAP. This is the subject of the algorithm selection

problem and the subsequent sections.
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Figure 4.4: Quality and runtime of all solutions for an exemplary instance with n = 1000 and
m = 5. A curve of best solutions found in limited time qmin(I, T ) is shown. Algorithms of the
same type are shown under the same label.

4.6 Algorithm Portfolio Selection Methods

Consider now algorithm selection for BAP. Though BAP is not a new problem, the features

of BAP instances are not as well studied as for some classic NP-hard problems [78]. Hence,

using instance features in the algorithm selection for BAP requires an independent study. Here

we will formulate two new methods of algorithm selection using algorithm portfolios. These

methods differ from the classic ASP approaches in: (1) departing from instance classification,

(2) constructing a mapping from a set of instances to a portfolio of algorithms, (3) changing

the portfolio with runtime limit T , (4) using the best solution found by T as solution quality

reference. Thus, runtime-quality trade-off is the crux of the two methods.

Assume that a set I ′ of training instances and a set A of algorithms are given. For each

pair (a, I) : a ∈ A, I ∈ I ′ a sequence of pairs (t1aI , q
1
aI), (t

2
aI , q

2
aI), . . . , (t

KaI

aI , qKaI

aI ) representing

solutions built by a for I over time is given. The tjaI are execution times and qjaI are solution

MWFT values. The pairs satisfy conditions t1aI < t2aI · · · < tKaI

aI and q1aI > q2aI > · · · > qKaI

aI
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(see Fig.4.4). If some algorithm a does not improve solution quality over time, then only one

pair (t1aI , q
1
aI) is given. An important decision is defining runtime t(a, I, T ) of algorithm a on

instance I with the runtime limit T , especially if a does not stop by T or it does not produce

any solution by T . The decision is related to the practical control over the algorithm runtimes

when applied to a new (previously unseen) instance. We assume the simplest solution: each

algorithm in the portfolio is allowed to run for at most T units of time. If algorithm a stops at

t1aI ≤ T , then we accept t(a, I, T ) = t1aI . Otherwise, a will be suspended at T and we assume

t(a, I, T ) = T . The former case applies, e.g., to one-pass methods like greedy algorithms. The

latter case applies both to the slow one-pass methods and to metaheuristics which can run

endlessly. Thus, T is a timeout value. Let qmin(I, T ) = mina∈A{qjaI : tjaI ≤ T}. In other words,

qmin(I, T ) is the value of the best solution for instance I, obtained by any algorithm by time

T (cf. Fig.4.4). If no solution is constructed by any algorithm by time T , then qmin(I, T ) is

undefined. Consequently, there can be values of T for which some instances have no solutions.

We assume that for the considered values of T , the longest shortest runtime for any instance

maxI∈I′ mina∈A{t1aI} ≤ T is satisfied, i.e. for each instance I there is at least one algorithm a

such that t1aI ≤ T . Let y(a, I, T ) = 1 if ∃j : tjaI ≤ T, qjaI = qmin(I, T ), otherwise y(a, I, T ) = 0.

That is, y(a, I, T ) indicates if algorithm a is capable of providing for instance I the best solution

known by time T . Note that some algorithm may have both t(a, I, T ) = T and y(a, I, T ) = 1

when it finds the solution with quality qmin(I, T ) before T , but continues to run.

Let xa ∈ {0, 1} be a binary variable equal to 1 if algorithm a ∈ A is included in the portfolio,

0 otherwise. The algorithm portfolio can be selected using the following integer linear program

(ILP). The portfolio will be referred to as cover portfolio (CP for short).

CP : minCost (4.1)∑
a∈A

y(a, I, T )xa ≥ 1 ∀I ∈ I ′ (4.2)∑
a∈A

t(a, I, T )xa ≤ Cost ∀I ∈ I ′ (4.3)

In the above ILP, y(a, I, T ) and t(a, I, T ) are constants, and Cost, xa are variables. The maxi-

mum cost of running the portfolio on any instance is minimized by (4.1) and (4.3). Inequality

(4.2) guarantees that all instances in the training set are covered by the best solutions which can
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be obtained by time T . Thus, we maximize the chance of covering a new (unseen) instance with

the best possible solution because our portfolio is capable of covering all the training instances

with the best solutions known, while minimizing the overall time cost of running the portfolio.

Note that each algorithm in the portfolio constructed by CP (4.1)-(4.3) must cover uniquely at

least one instance. Otherwise the algorithm can be removed, decreasing Cost without violating

(4.2). Note that if t(a, I, T ) = T for all instances and algorithms, then the objective of CP is

to minimize the number of algorithms in the portfolio, which is equivalent to the NP-hard set

cover problem.

If the computational effort necessary to run all the algorithms obtained from the above

formulation is too high, then it is possible to weaken the objective and minimize the maximum

distance from the best solution subject to computational cost that is acceptable. The relative

distance of some solution quality from the quality of the best solution known by T will be

referred to as regret for instance I ∈ I ′. Let q(a, I, T ) = minj{qjaI : tjaI ≤ T} be the best

quality score obtained by algorithm a on instance I by time T . Let decision variable uaI equal

to 1 denote that algorithm a is instance I solver in the portfolio and equal to 0 in the opposite

situation. The following mixed integer linear program (MIP), referred to as regret portfolio

(RP for short), minimizes the greatest regret under limited computational cost:

RP : minG (4.4)
q(a, I, T )

qmin(I, T )
uaI ≤ G ∀I ∈ I ′ ∀a ∈ A (4.5)∑

a∈A
uaI ≥ 1 ∀I ∈ I ′ (4.6)

xa ≥ uaI ∀I ∈ I ′ ∀a ∈ A (4.7)∑
a∈A

t(a, I, T )xa ≤ Cost ∀I ∈ I ′ (4.8)

In the above MIP, t(a, I, T ), q(a, I, T ), qmin(I, T ) and Cost are constants, uaI , xa are binary vari-

ables, and G is a fractional variable. Fraction q(a, I, T )/qmin(I, T ) in inequality (4.5) measures

the regret of using algorithm a for instance I. Minimization of the biggest regret on any instance

is guaranteed by (4.4) and (4.5). By inequality (4.6) each instance has an algorithm providing a

solution. Inequality (4.7) ensures that algorithm a chosen as a solver for instance I is counted as

a member of the portfolio. Inequality (4.8) guarantees that the algorithm portfolio runs on any
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instance in runtime limited by Cost. The Cost is considered constant in (4.4)-(4.8) in order to

avoid a trade-off between computational cost and solution quality guarantees G. For practical

reasons, in the following text Cost will be a small multiple of T .

4.7 Building Algorithm Portfolios

In this section we study the evolution of algorithm portfolios with changing runtime limit T .

Unlike in Section 4.5, where algorithms were assessed individually, sets of algorithms are the

subject of this section. The algorithm portfolios have been constructed for the four datasets

introduced in Section 4.4. The complete results are collected in Appendix C.

4.7.1 Cover Portfolios

The ILP (4.1)-(4.3) constructing a cover portfolio for 1200 instances and 72 algorithms was

solved by CPLEX 12.8 on a PC computer with Intel i7@2.8GHz CPU in less than 1s. Thus,

the time needed for solving CP formulation of this size is not a limitation here. The evolution

of the algorithm portfolios in time T for method CP can be seen in Figs 4.5 and 4.6. Runtime

limit T is shown along the horizontal axis. The T values were selected with the resolution of

10ms for T < 1s, 100ms for T ∈ [1s, 10s), 1s for T ∈ [10s, 100s), 10s for T ∈ [100s, 1000s),

100s for T > 1000s. Runtime limits T span from the longest shortest runtime for any instance

maxI∈I′ mina∈A{t1aI}, to the upper runtime limit of 3600s. Figs 4.5a and 4.6a show portfolio

evolution in T . Figs 4.5b and 4.6b show the portfolio cost changes vs T . The bars in Figs 4.5a

and 4.6a represent algorithm membership in the portfolio. The algorithms not included in the

portfolio for any runtime limit T are omitted. The performance of portfolios is expressed as

the number of included algorithms and Cost of (4.1)-(4.3) expressed in T units (that is, Cost

normalized to T , Figs 4.5b and 4.6b).

To construct the portfolios presented in Fig.4.5, the instances in dataset 1 were used. Notice

that, in general, simple greedy algorithms have limited capability to search the solution space

but they are fast. Conversely, metaheuristics are more capable of searching the solution space,

but their search takes time. Hence, greedy algorithms should be present in the portfolios for

short runtime limits T and metaheuristics should dominate for large T . This effect indeed can be

observed in Fig.4.5a and in time evolution of all other portfolios. However, a surprising effect can
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Figure 4.5: Cover portfolio built on all random instances N (dataset 1): a) portfolio evolution
in time T , b) size and cost of portfolio (in T units), vs T .
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be observed in Fig.4.5a: even for short runtime limits T time-costly metaheuristics are present

in the portfolio. This can be explained in the following way: For n ranging from n = 2 to

n = 10000 in dataset 1, algorithm runtimes are very dispersed. Large instances with n = 10000

determine the time maxI∈I′ mina∈A{t1aI} in which any instance from the whole set I ′ can be

solved by any algorithm. This runtime limit is large enough to allow solving small (e.g. n = 2, 5)

instances by metaheuristics. Therefore, it is possible and profitable to keep universal algorithms

like metaheuristics to cover some small instances and a few greedy algorithms to cover the

remaining instances (including the large-n ones). With growing T , metaheuristics domination in

providing the best solutions is growing and greedy algorithms are phased out from the portfolio.

Consequently, the portfolio has a size of 26 algorithms for small T (see Fig.4.5b) and it decreases

to 9 algorithms at T=3600s. Observe the presence of list and look-ahead algorithms which

seemed inefficient in the evaluation conducted in Section 4.5. It means that these methods are

useful in dealing with some special instances under certain runtime limits. Another observation

is that even RND algorithms can be useful when runtime is limited. It can be concluded that

the portfolio approach has better capability to discern algorithm advantages in limited runtime

than the classic approaches analyzing central tendencies of algorithm performance. In Fig.4.5b,

the portfolio performance score is expressed as the number of algorithms and Cost in units of T .

For a wide range of T values the number of algorithms is bigger than Cost. Since Cost/T can

be interpreted as the number of parallel processors required to run the portfolio, the number

of algorithms exceeds the number of necessary processors. This means that most of the chosen

algorithms have shorter runtimes than timeout T .

To construct the portfolios presented in Fig. 4.6, the instances in dataset 2 (all with n =

10000), were used. Hence, for each algorithm the runtimes are more concentrated. Consequently,

the effect of hiding metaheuristic runtimes on small instances in maxI∈I′ mina∈A{t1aI} set by a

greedy algorithm on a large instance, described in the preceding paragraph, is not present. It

can be verified in Fig.4.6 that for the smallest runtimes only greedy algorithms are present in the

portfolio. With growing T , metaheuristics gradually join the portfolio, but without eliminating

the greedy methods, and finally the greedy algorithms are phased out. Thus, the portfolio size

grows from 8 to 13 algorithms (at 1000s) and then decreases to 9 metaheuristics (Fig.4.6b). This

process is visible also in the Cost of portfolio: initially only greedy algorithms with constant

runtime (on instances I ′) are present in the portfolio and the cost in T units is decreasing
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Figure 4.6: Cover portfolio built on random instances N for n = 10000 (dataset 2): a) portfolio
evolution in time T , b) size and cost of portfolio (in T units) vs T .



76 CHAPTER 4. SELECTING ALGORITHMS FOR LARGE BAPS

because T is increasing. At roughly T = 56s metaheuristics start joining the portfolio and the

cost is increasing stepwise. For the random instances M (datasets 3, 4) similar behavior has

been observed. Therefore, we do not report on these results here. The cover portfolios for

datasets 3 and 4 can be found in Appendix C.

4.7.2 Regret Portfolios

Example evolution in T of regret portfolios constructed by RP formulation (4.4)-(4.8) is shown

in Fig.4.7a for dataset 1 and Cost = 4T . Fig.4.7b shows the portfolio regret G score, size of the

portfolio and the number of algorithms exchanged between neighboring evaluation points in T .

Solving the RP formulation is more time consuming. For example, for dataset 1 (|I ′| = 1200

instances) and |A| = 72 algorithms the median CPLEX runtime was 307s. For practical reasons,

the MIP solver runtime was limited to 1800s and 7% of the MIPs used to generate Fig.4.7 stopped

after 1800s. Consequently, for certain values of T , the portfolios may be sub-optimal solutions of

the RP formulation. The set of algorithms present in the regret portfolios changes with T quite

considerably (Fig.4.7a). The number of algorithms exchanged follows the number of algorithms

in the portfolios. Both these numbers are especially big around T = 600s (Fig.4.7b). The big

number of algorithms in the portfolio and the continuous exchange process is a result of the

Cost = 4T limit. Note that the costs of cover portfolios in Fig.4.5b are bigger than 4T . As a

result, the regret portfolios have to exchange the algorithms intensively to minimize regret G

(Fig.4.7b). Bigger T allows for running more algorithms and the size of the portfolio increases.

Note that three ILS-type metaheuristics in the regret portfolio for T > 600s start from the

best solution built by any greedy algorithm. The T = 600s time budget is sufficient to execute

this initial step and all the greedy algorithms become dominated. Consequently, runtime limits

T > 600s are sufficiently large to allow restricting the portfolio to 4 (as Cost = 4T ) winning

metaheuristics. The phenomena observed in the portfolios for other Cost limits and other

datasets are similar, so we do not discuss them here. See Appendix C for these portfolios.

The regret G score and the number of algorithms in the portfolio for other values of the

Cost limit are shown in Fig.4.8. Notice that with the increasing Cost limit the regret score G

improves. The number of algorithms in the portfolio has a more complex behavior: At both

ends of the time range the number of algorithms is equal to Cost/T . At short T s, runtime

limit is so restricted that only Cost/T algorithms can be executed. For large T s, there are
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Figure 4.7: Regret portfolio built for all random instances N (dataset 1), Cost = 4T : a) portfolio
evolution in time T , b) number of algorithms in portfolio, number of exchanged algorithms (right
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Cost/T dominating metaheuristics which stop computation at runtime limit T . In between, no

algorithm dominates consistently, and the portfolio intensively exchanges the algorithms with

T . Unless Cost limits are sufficiently large, the volatility and the large number of algorithms

restrict the practical applicability of regret portfolios.

Finally, notice that portfolios converge with T . For small T the portfolios differ and comprise

diversified sets of greedy algorithms. But with increasing T the portfolios converge to a common

subset of universal algorithms.

4.8 Performance of Algorithm Portfolios

In this section we evaluate performance of the algorithm portfolios. Firstly, the portfolios devel-

oped for one dataset (training) were used to solve instances from some other dataset (validation).

In this way we verify portability of the portfolios, i.e., their capability to solve new (unseen)

instances. To this end, for each tested runtime limit T , we used a portfolio developed for

the training dataset to solve instances from the validation dataset. The portfolio results were

compared against the solutions obtained by all our algorithms on the validation datasets. The

number of the portfolio wins (i.e. instances solved to the best solution known at the considered

T ) and the relative distance from the best solution known by T , qmin(I, T ), are measures of the

portfolio quality. If none of the portfolio algorithms is able to construct a solution by T , then

qmin(I, T ) is undefined. For practical purposes, qmin(I, T ) in such cases was assigned a very

large value of MWFT . In order to avoid developing and testing portfolios on the same data,

random instances M were used as validation datasets for training random instances N , and vice

versa. Secondly, we compare solution quality and cost of the cover portfolios against simpler

portfolios.

4.8.1 Cross-Validation on Random Instances

Cover portfolios. Cover portfolios built on training dataset 1 (Fig.4.5) returned all the best

know solutions for all runtime limits T for validation datasets 3 and 4. On the one hand, these

portfolios perform very well and are robust with respect to solution quality. On the other hand,

they comprise more algorithms than, e.g., the portfolio built for n = 10000, and possibly the

computational costs are higher than necessary. Nevertheless, these portfolios are a subset of all
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available algorithms and there is some gain on computational cost.

Performance of the cover portfolios developed for random instances N with n = 10000

(training dataset 2) on all random instances M (validation datasets 3 and 4) is shown in Fig.4.9.

At runtime limit T = 970s all instances (700 instances in dataset 3, 100 instances in dataset 4)

are covered with the best solutions (Fig.4.9a). The median of the solution quality (MWFT )

relative distance from the best solution that could be obtained by T is below 2% for dataset 3

and below 10% for dataset 4. The worst-case distance from the best known solution (quartile

Q4) is below 270% (dataset 3, Fig.4.9b). There is a switch in performance around 400–700s,

resulting from including metaheuristics in the portfolio. Instances in dataset 2 are relatively

hard compared to instances in datasets 3, 4, and some metaheuristics are switched on only

for T > 400s (see Fig.4.6). Still, it can be concluded that the portfolio performs well because

it either delivers solutions with the MWFT close to the best known, which is the case for

T < 970s, or builds the best known solutions, when runtime limits are higher.

Performance of the cover portfolios constructed for random instances M (training dataset

3 and 4) on random instances N (validation datasets 1 and 2) is shown in Fig.4.10a. As

mentioned, there are instances in datasets 1 and 2 which require 13.9s to be solved by any

algorithm. Consequently, the number of wins in the whole dataset can be compared only for

T > 13.9s. There are also cases for T > 13.9s that no solution is provided by an algorithm in

the portfolio. The MWFT quality score is undefined in such a situation and it is not possible to

calculate the statistics of distance from the best known solution in such cases. Hence, only the

number of wins is shown in Fig.4.10a. For validation dataset 2 (random instances N,n = 10000)

the cover portfolios developed for random instances M (datasets 3 and 4), for T ∈ [13s, 300s] did

not deliver any solution. This is a result of the fact that the portfolios built on datasets 3 and

4 give up using greedy algorithms around T = 10s in favor of metaheuristics (see Appendix C).

However, only greedy algorithms are able to solve the instances with n = 10000 in validation

datasets 1, 2 at T ≈ 13.9s. Hence, the disparity between the hardness of the training and the

validation datasets results in inferior performance. There are also instances with n < 10000

in validation dataset 1 (all random instances N) which are solved in time shorter than 10s by

the portfolio algorithms. For this reason the number of wins for validation dataset 1 and small

values of T is approximately 900. For both validation datasets the number of wins is growing

with T .
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Regret portfolios. Similar phenomena can be observed in the regret portfolios. Yet, one

more impacting factor is the Cost allowance (inequality (4.8)). With growing Cost limit, more

computationally costly algorithms can be included in the regret portfolio at lower runtime limits

T . For example, the number of wins of the regret portfolio built for training dataset 4 (m = 2)

on the validation dataset 2 (n = 10000) is shown in Fig.4.10b. On the right side of the picture

the number of wins is growing with growing Cost limit.

4.8.2 Cross-Validation on Real Instances

Cover portfolios. Performance of the cover portfolios constructed for datasets 1–4 (random

instances N and M) on the dataset of 8 real instances varied depending on the runtime limit

T (see Fig.4.11a). In the cases when the portfolio did not win, two behaviors were observed:

either no solution was found by T , or the solutions were very close to the best one found by T .

The former was the case of the portfolios built for datasets 3 and 4 (random instances M), but

it was not the case of portfolios derived from datasets 1,2 (random instances N). If a solution

was found, but it was not the best known by T , then the relative distance from the best one

known by T did not exceed 0.03%.

Regret portfolios. Performance of the regret portfolios on real instances was similar to the

performance of cover portfolios. On top of this, the Cost limit (inequality (4.8)) imposed re-

strictions on the size of the portfolio and consequently on its capability to deliver good solutions.

Hence, with growing Cost limit, the quality of the portfolio solutions improved (see Fig.4.11b).

The number of wins of the regret portfolios on real instances, again depends on T . In the cases

when a solution was found, performance of the regret portfolios in terms of the relative distance

from the best solution obtained by time T for almost all tested portfolios and T s was below

0.1%. There were four exceptions: for datasets 1,2, Cost = 1T and T ∈ [14s, 14.6s] the relative

distance was 207 times, for dataset 2, Cost = 1T and T ∈ [150s, 160s] the relative distance was

52%, and for dataset 3, Cost = 1T and T ∈ [1.3s, 2.6s] the relative distance was 2.7%.

Overall, it can be concluded that the performance of the portfolios on real instances was

satisfactory.
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4.8.3 Comparison with Fixed Portfolios

The above evaluation considered portability of portfolios between training and new (unseen)

datasets, but it did not tell on the gains from using the portfolios. The gains may be twofold:

in quality of the solutions and in the computational cost. Furthermore, there can be other

portfolios than CP (4.1)-(4.3) or RP (4.4)-(4.8). In this section we compare the number of

wins and computational cost of the cover portfolios against four alternatives: 1) FixPF1 – a

portfolio of ILS-A, FCFS-List, SAF-Prio; 2) FixPF2 – portfolio: ILS-A0, HC-C, GRASP-3600,

SG, comprising the best different type metaheuristics in the central panel of Table 4.2 (relative

distance from the best solution) and SG; 3) FixFAT4 – the first four methods in the right panel

of Table 4.2 (unique wins); 4) SG – Super Greedy which is a portfolio itself. Since algorithm

membership in the above portfolios is independent of the runtime limit T , we will refer to them

as to fixed portfolios.

Performance of cover and fixed portfolios on dataset 1 (all instances N) is compared in

Fig.4.12. The results for other datasets and for regret portfolios are similar, so we do not

report on them. In Fig.4.12a the number of wins in dataset 1 is shown. By definition, the

cover portfolios built for this dataset have all 1200 wins (denoted as CP for dataset 1). The

cover portfolios developed on training instances M are the second-best with a few exceptions

at T < 20s. The number of SG wins is constantly decreasing with the increasing T . Since

dataset 1 has quite diversified sizes of instances, the number of SG wins stabilizes around 480,

but for dataset 2 (n = 10000) the number of SG wins decreases to 0 at T = 3600s (not shown

here). Similarly, for FixPF2 the number of wins decreases to 770 at T = 3600s because, on

the one hand FixPF2 comprises SG, but on the other hand it also has three metaheuristics.

The simplest fixed portfolio FixPF1 loses against SG for small values of T because ILS-A is too

costly, and FCFS-List, SAF-Prio are not the greedy algorithms providing the biggest number

of wins at these values of T . Conversely, SG loses against FixPF1 for larger T because FixPF1

comprises one metaheuristic, while SG is a collection of greedy algorithms.

In Fig.4.12b computational cost in T units is shown. It can be seen that for small values of

T the cost of SG and FixPF2 is unnecessarily large because some unneeded greedy algorithms

are executed. Since the runtime of greedy algorithms is constant and the computational cost is

expressed in T units, the cost of SG and FixPF2 as shown in Fig.4.12b decreases with increasing

T . For small runtime limits T the computational cost of the cover portfolio winning on all 1200
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test instances (denoted as CP for dataset 1) is smaller than the cost of SG and FixPF2 because

only algorithms winning on some instances are included in CP. The cost of CP for dataset 1

is also bigger than for the other cover portfolios developed for instances M (denoted CP for

dataset 3 and 4) and the cost of FixFAT4, because all 1200 instances are covered by the CP for

dataset 1. Comparing the wins of CP for dataset 1 with the wins of CP for instances M and the

wins of FixFAT (Fig.4.12a) against computational costs of these portfolios (Fig.4.12b) it can be

concluded that covering a few instances with the best solutions (which CP for dataset 1 covers

and, e.g., FixFAT4 does not) is quite costly computationally.

It can be concluded that cover portfolios have advantage in the number of wins over the fixed

portfolios. With respect to the computational cost, cover portfolios are much more effective

than collections of greedy algorithms like SG. For large time limits T the cover portfolios bear

inevitable costs of covering all instances even the hardest ones.

Let us summarize this section with some observations on developing algorithm portfolios.

Section 4.8.3 shows that fixed portfolios are not competitive for all time budgets T , when

compared with the portfolios evolving with T . It is prudent to construct algorithm portfolios

using datasets similar to the target application. Datasets with diversified hardness (as dataset

1) result in algorithm portfolios which may be large yet are robust with respect to the quality

of constructed solutions. It is also reasonable to develop portfolios on hard instances (like

dataset 2) because these portfolios will include fast greedy algorithms for short runtimes and

universal metaheuristics for long runtimes. Constructing portfolios on datasets of significantly

lower computational hardness (as datasets 3 and 4) than the target production instances is not

recommended because the algorithm runtime ranges in the training and in the target applications

will not match, resulting in solutions of inferior quality.

4.9 Summary of Algorithm Selection

In this chapter we considered the problem of selecting algorithms to solve large BAP problems

with time budget limitations. This study was dictated by a practical need for simulating port

ship traffic where the simulation time is an important decision variable. We tested 72 fast

heuristics. Individual evaluation of these heuristics led to a rather expected conclusion that

certain greedy algorithms (SPT, SPTGI, GISPT, GI) are the best for short time budgets, and
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Figure 4.12: Comparison of algorithm portfolios against fixed portfolios on dataset 1 (all in-
stances N). a) number of wins, b) computational cost.
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metaheuristics (HC-C, ILS-C, ILS-A) are the best for large time budgets. Then we turned to

the concept of algorithm portfolios for solving BAP. In this way we departed from the common

idea of "one best" algorithm to solve all instances of the problem, in favor of sets of algorithms

applicable under different runtime limits. The portfolios are built in such a way that training

instances are covered with the best solutions found within the runtime limit, or with the solutions

minimizing quality loss, while the cost of running the chosen algorithms is minimized. The study

of portfolio evolution in time not only confirmed the earlier qualitative intuition that fast greedy

algorithms should be used for short runtime limits and metaheuristics for long limits, but also

provided a quantitative way of traversing from the former set of algorithms to the latter.

At short runtime limits computational cost of the portfolios is smaller than for a straightfor-

ward collection of greedy algorithms. At large runtime limits the selected set of metaheuristics

covers with wins a larger set of instances. The portfolios were shown to be better at recogniz-

ing that certain algorithms (though weak on average) are effective in solving certain instances

under limited runtime. Algorithm portfolios evolving in time provide a method consistently

recognizing useful algorithms on the basis of their performance. No algorithm is excluded from

a portfolio as long as it is able to build best solutions for any instance under some runtime limit.

Considering the obtained portfolios, it can even be claimed that the classic algorithm evaluation

methods based on the central tendencies are myopic. We have also given recommendations on

constructing training instances for developing effective algorithm portfolios. Our approach has

been successfully applied to realistic instances built from real port data.

We believe that the study presented in this chapter may be interesting from the methodolog-

ical point of view because a non-standard approach to the evaluation of heuristics involving the

runtime-quality trade-off has been proposed. Further research should go beyond the limitations

of this study and address, e.g., the following subjects: (1) Adding other advanced metaheuristics

to the portfolios. (2) Extending this approach to other BAP formulations. (3) Studying how

to construct training instances for the portfolio robustness, low computational cost, and high

solution quality. (4) Applying the approach developed here to other combinatorial optimization

problems. (5) Automating the process of test instance generation and selecting the algorithm

portfolios so that the human expert is taken out of the decision process. (6) Finally, the selected

algorithm portfolios will be exploited in long-term port simulation considered in Chapter 6.



Chapter 5

Container Ship Traffic Model for

Simulation Studies

5.1 Ship Traffic Model

In this chapter, a container ship traffic model (STM) for port simulation studies is developed.

Consider classic operations research and combinatorial optimization problems which take ad-

vantage of existing benchmark datasets. For example, there are E.Taillard benchmarks for shop

scheduling problems [82], Parallel Workload Archives for supercomputer jobs scheduling [24],

NEO instances for vehicle routing problem [32], and even on a broader scope TSPLIB [69], OR-

Library [3] benchmark collections. Port logistics problems also need benchmark instances to

test algorithm runtime and their solutions quality. Until recently there was limited availability

of such data. The aim of this thesis is to develop a model of container ship traffic. Such a model

is vital in terminal design analyses, and testing performance of optimization algorithms. This

kind of research requires accurate information about the ship stream to build test scenarios and

benchmark instances. A statistical model of ship traffic is developed on the basis of container

ship arrivals in eight world ports. The model provides three parameters of the arriving ships:

ship size, arrival time and service time. The stream of ships is divided into classes according

to vessel sizes. For each class, service time distributions and mixes of return time distributions

are provided. A model of aperiodic arrivals is also proposed. The results obtained are used to

89
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Table 5.1: Summary of notations for Chapter 5
ai number of ships of class i in some port

(ci−1, ci] interval of ship lengths in cluster (size class) i
ηa fraction of aperiodic arrivals in a certain port, or terminal
ι intensity of traffic, an average number of arrivals in some time interval,

e.g. in arrivals per week [a/w]
k number of ship classes
Lj length of ship j
Li ship length model for cluster i in some port
νj number of ship j calls at a port in the historic dataset
n number of vessels in some port as physical objects
N number of calls at a port (sum over vessel calls)
pj processing time of ship j (one of possibly several instantiations in historic

dataset and in STM)
Pi model of ship processing times for cluster i in some port
rj arrival (ready) time of ship j (one of possibly several instantiations in

historic dataset and in STM)
ρj return time of ship j, that is duration between two arrivals of the same

ship (one of possibly several instantiations in historic dataset and in STM)
Ri model of return times for ship size class i

compare port specific features.

Further organization of this chapter is the following. The rationale behind the STM is pre-

sented in Section 5.2. Section 5.3 is dedicated to the method of ship traffic model construction.

In Section 5.4, we outline how to use the STM to generate ship stream data. In Section 5.5

ports are compared using relationships in the analyzed data. Section 5.6 summarizes results

of this chapter. The notations are collected in Tab. 5.1. Due to the size of collected results,

only selected examples are presented in the main text of the thesis. The STM parameters are

provided in Appendix D. Benchmark instances built according to our STM are collected at

[89].1

5.2 Features of Ship Traffic Model

In this section, the rationale behind the proposed ship traffic model and its relation with port

logistics are presented. We will often refer to the example of BAP, which is both a central prob-

lem of port logistics and tightly connected with the QPP (cf. Section 2.3). Before discussing

the key STM parameters, consider a simple example: A quay has one 500m-long berth. Vessel

1Due to the rules of access we are not allowed to release the source data.



5.2. FEATURES OF SHIP TRAFFIC MODEL 91

Table 5.2: Example vessel data
vessel A B C D E F G
pj [h] 2 2 2 3 3 3 3
Lj [m] 110 120 130 390 380 370 400

Scenario 1
rj [h] 0 3 6 0 3 6 9

Scenario 2
rj [h] 0 0 0 0 0 0 0

Scenario 3
rj [h] 10 5 0 5 0 11 10

5
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m
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0
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A A
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Figure 5.1: Example schedules. a) Scenario 1, b) scenario 2, c) scenario 3. Vessel and quay
lengths are not proportional.

parameters are provided in Tab. 5.2. There are three scenarios of arrival process. Schedules

for the three scenarios are shown in Fig. 5.1. The first scenario is simple to manage because

vessels arrive in pairs fitting quay length and it suffices to serve the ships as they arrive. In the

second scenario all vessels are ready simultaneously and to serve them a decision of combina-

torial nature is needed. Namely, a sequence of vessel service has to be determined. The third

scenario is adverse because vessels arrive in mutually incompatible pairs which results in low

quay utilization. The scenarios that appear in reality may be neither so easy nor that adverse.

Moreover, just vessel arrival process was tackled in this example. Other vessel parameters, port

characteristics, the considered optimization problem open ways for more complex relationships

to emerge. Hence, there is a need for distinguishing realistic requirements on a ship traffic

model. In the remaining part of this section, we discuss three main parameters defining ship

traffic.
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The arriving ship j has a certain length Lj and must be given sufficient space along a finite

quay. Large container mother ships travel long distances, e.g., on Asia-Europe or Asia-America

lines, while small ships (feeders) operate on local connections. Consequently, large vessels call

at the ports less frequently than the small ones. Hence, the ship length is a basic feature in an

STM, and is highly related to the ship arrival time.

Temporal constraints on serving a ship are imposed by ship j arrival time rj and ship service

time pj , also called processing time in this thesis. In the papers on BAP as a scheduling problem,

each ship arrival is often considered as an independent event. But a single vessel may call at some

port many times with some return intervals. In that case, the vessel will be called returning, or

periodic. Otherwise it is called a non-returning ship, or a ship with aperiodic arrival. When a

distinction between one arrival of a ship and the vessel as a physical object is important, we will

use terms arrival, occurrence vs a physical vessel/ship. Ship ready times rj may be realizations

of some return process. In this case, the physical ship j return time will be denoted ρj .

The vessel processing times pj may be a proxy to the number of loaded and unloaded TEUs

assuming that the transfer rate is roughly constant. The processing times depend on berthing

process, quay crane schedule, yard management, intra-port transport. Let paper [75] serve as

an example of 1) port operations modeling, 2) complexity of the relationships, 3) problem sizes

that can be currently solved. Instances with barely 48 vessels arriving over 7 days, on sev-

eral terminals, with intra- and inter-terminal transport were optimized. This size of instances,

appropriate for tactical decisions, are far from sufficient to represent details of alternative con-

tainer terminal designs at the long-term strategic level planning, with consequences spanning

over several year time horizons. Thus, instead of building a planning and scheduling represen-

tation of all elements of a container terminal it is simpler to use realistic vessel processing times

(again, from the real data now available) with adequately represented dispersion. Hence, ship

processing time distributions are essential components of the model.

A majority of port logistic formulations assume a deterministic approach. This means that

parameters Lj , rj , pj are given numbers. However, it is hard to accept that rj , pj can be fixed

in advance over time horizons typical of strategic planning. Ship arrival and processing times

depend on many factors which cannot be controlled, and it is more plausible to accept that

uncertainty in these values exists. For instance, more than 49% of vessels can be a day late

and average deviation from estimated arrival time can exceed 2 days [55]. Hence, despite the
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advertised schedules of liner companies, arrival times of periodic ships are not deterministic and

ship traffic model should be considered as a stochastic process which samples objects (Lj , rj , pj).

Let us return to the interrelations between Lj , rj , pj parameters. The service given to a big

ship has bigger value for the terminal operator than the service given to a smaller ship. Hence,

there are stronger financial incentives to stick to the schedules planned for the big ships. This

can be reflected in different dispersions of ship processing and arrival times. As already said, ship

return and processing times depend on the ship sizes. In order to deal with such dissimilarity,

different ship length classes, or equivalently called clusters, will be considered. Each cluster

should have its own distribution of pj and rj values.

Finally, let us note that in the intended STM, we want to identify and generalize traffic

patterns important to long-time strategic planning. It implies that short-term weekly and daily

data patterns are less interesting as typical of contemporary operational optimization. We will

return to this issue in Section 5.3.5.

5.3 Building of Ship Traffic Model

The ship traffic model is defined by the following elements: 1. ship class definitions, 2. model

Li of ship lengths for each class i, 3. model of processing times Pi for each class i, 4. ready

time models: 4a. return time models Ri for each class i of returning ships, 4b. ready time

model for non-returning ships. Thus, the method to build a ship traffic model on the basis of

the actual data consists of three steps: 1. partitioning of the ships into size classes, 2. setting

processing time distributions for each size class, 3. building return, or ready time models. In

the next subsection, the historical dataset is described. Then, the STM parts are derived.

After proposing components of the STM, a discussion of the model limitations and alternative

approaches will be conducted.

5.3.1 The Dataset

Ship traffic model was built from the historical automatic identification system (AIS) data

gathered in eight ports in the world in 2016. The dataset comprises a range of port sizes, from

small traffic ports (Gdańsk) to the largest in the world (Singapore). Basic dataset information is

collected in Tab. 5.3. The table comprises the number of calls at the ports, the number of physical
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Table 5.3: Basic dataset information

port Gdańsk Long Los Le
Beach Angeles Havre

number of calls N 471 995 1308 2271
physical ships n 81 242 309 559
returning ships 57 188 238 417
No.of unique Ljs 31 65 61 105
ηa[%] 5.10 5.43 5.43 6.25
port Hamburg Rotterdam Shanghai Singapore
number of calls N 3294 3998 11606 18494
physical ships n 586 311 1233 1857
returning ships 466 240 1038 1634
No.of unique Ljs 101 80 148 169
ηa[%] 3.64 1.78 1.68 1.21

vessels, returning vessels, the number of physical vessel lengths given with 1m resolution, and

fraction ηa of aperiodic ships in the total number of arrivals. For example, in Gdańsk only 24 calls

out of 471 were single visits. The fraction of non-returning calls ranges from 1.21% (Singapore),

to 6.25% (Le Havre). Tab. 5.3 provides the first qualitative conclusion for port design and

port logistic algorithm testing: a large majority of the vessels are returning. Consequently, the

cardinality of physical ship set is rather limited.

5.3.2 Ship Size Clustering

The way of exploiting a ship and handling it at the terminal depends on its size Lj . Despite

attempts to limit the number of ship classes (see Panamax, NewPanamax and so on), there is

a large variety of vessel sizes (cf. number of unique Ljs in Tab.5.3, and examples in Fig.5.2),

but for practical reasons it is more convenient to use a few vessel size classes. Indeed, the ship

traffic model dedicated to a set of similar ships is simpler, easier to develop and more accurate

than a general model encompassing all possible ship lengths. We will show in Section 5.3.4 that

a single size-general model for ship processing times pj appeared unsatisfactory. Hence, vessels

calling at a particular port were clustered according to their lengths.

The definition of a ship class (cluster) i consists in the ship size range. Then, number ai

of arrivals in the class can be calculated. Let (ci−1, ci] be the range of vessel sizes for the ith

cluster, where c0 = 0 and ck = maxj{Lj} for the last cluster k. The quality of vessel j fit in
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Table 5.4: Normalized clustering quality scores

port Gdańsk Long Los Le
Beach Angeles Havre

k = 5 2.10 1.88 1.57 1.91
k = 6 1.45 1.33 1.15 1.46
k = 7 1 1 1 1
port Hamburg Rotterdam Shanghai Singapore
k = 5 1.91 1.50 1.42 1.52
k = 6 1.09 1.25 1.06 1.31
k = 7 1 1 1 1

cluster i is measured by the distance:

d(j, i) =

 ∞ for Lj > ci

ci − Lj for Lj ≤ ci
(5.1)

Let 1(j, i) = 1 if d(j, i) is the minimum for ship j and cluster i, and 0 otherwise. The quality of

clustering is measured by the sum of all ship distances weighted by the number of ship j calls

νj at the port considered:

Q(c1, c2, . . . , ck) =

n∑
j=1

νj1(j, i)d(j, i) (5.2)

While setting the clusters, their number k and range ends ci are the decision variables. Note

that since the quality of clustering is weighted by νj , some groups of ships with many returning

calls may be split into clusters of narrower range (ci−1, ci], while some less frequent groups of

ships may be merged together. The ci values were calculated by generalized reduced gradient

method [52] for k = 5, 6, 7. Values of the clustering quality measured by (5.2), normalized to

the best result, are shown in Tab.5.4. Since the quality of clustering does not improve much by

raising k from 6 to 7, and since using many ship size classes is unwieldy, we decided to limit the

number of ship sizes clusters to k = 7.

The ends ci of the size intervals for the ports considered are given in Tab.5.5. Additionally,

the total number ai of calls for cluster i and the number of aperiodic arrivals are given in brackets.

In the following text, we will refer to the clusters using a short-hand notation consisting of the
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Table 5.5: Ship size cluster interval end ci in meters, the total number ai of calls in the clusters
and number of aperiodic calls.

port Gdańsk Long Beach Los Angeles Le Havre
c1 137 (115,5) 188 (89,1) 224 (167,9) 140 (216,6)
c2 151 (103,2) 232 (137,2) 261 (132,4) 210 (337,25)
c3 183 (121,1) 273 (118,11) 279 (180,5) 245 (333,7)
c4 210 (11,3) 302 (203,14) 295 (252,12) 278 (400,19)
c5 300 (17,10) 338 (254,15) 305 (181,12) 300 (355,29)
c6 368 (50,2) 368 (193,10) 335 (294,13) 368 (528,49)
c7 399 (54,1) 399 (1,1) 399 (102,16) 399 (104,7)
port Hamburg Rotterdam Shanghai Singapore
c1 141 (905,8) 102 (153,2) 101 (642,2) 172 (4552,21)
c2 170 (956,6) 141 (2395,13) 148 (4144,11) 198 (3206,21)
c3 213 (298,5) 152 (532,2) 183 (2263,20) 225 (2231,21)
c4 279 (302,23) 170 (444,4) 237 (1584,30) 262 (2182,47)
c5 338 (339,45) 223 (240,26) 297 (1800,65) 302 (3188,67)
c6 369 (422,27) 273 (154,13) 348 (1022,53) 345 (1635,28)
c7 400 (72,6) 305 (80,11) 367 (151,14) 400 (1500,18)

initials of the port name and the cluster number starting from 1 for the shortest ships. For

example, RT3 is the third cluster for Rotterdam, with 532 calls including 2 aperiodic arrivals

(cf. Tab.5.5).

Discussion. It can be seen in Tab.5.5 that size classes are distinctive for each port. However,

some similar clusters can be identified among large ships: {GD7, LB7, LH7, HB7}, {GD6,

LH6}, {LB5, LA6}, {SH6, SI6}, {LB6, HB6}. The clustering obtained has its peculiarities. For

example, there is only one ship in LB7 and she is aperiodic. This cluster will require a special

handling: the ship data can be used directly as a representative for the LB7 cluster.

We built different size ranges (ci−1, ci] for each port. Alternatively, the same ranges can be

defined for all ports in the world. We will present ship sizes from this perspective in Section

5.5 (cf. Fig.5.10). An advantage of this alternative is that it makes port comparisons easier. A

drawback is that some of such classes may be empty in some ports and the number of classes

must be bigger to sufficiently discern ship size differences between ports, which complicates the

STM. We decided to use size ranges specific to each port to get smaller numbers of classes and

simpler STMs.
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5.3.3 Ship Length Model

The easiest way of representing ship lengths in a certain class is to unify the whole cluster and

to use the upper end of the cluster range. That is, model Li for a cluster with range (ci−1, ci]

is ci. Let us call this representation the longest-ship model.

Discussion. A more precise analysis of ship lengths in clusters reveals data and clustering

peculiarities. In Fig.5.2 empirical cumulative distribution functions (CDF) of the ship lengths in

example clusters are shown against theoretical CDFs of selected continuous distributions fitting

ship lengths best. Parameters of the probability distributions chosen by the fitdistrplus

method of R language are available from [89]. Fig.5.2 shows that there are clusters which follow

very well the above longest-ship approach. For example, the ship lengths in cluster LH7 come

from only five lengths in range [395, 399]m (Fig.5.2a) and rounding them up to 399m is not

a substantial loss of precision. There are also clusters which would be better split into a few

sub-clusters. For instance, visually LB6 (Fig.5.2b) could be much better divided into clusters

of lengths ≈ 350m and ≈ 365m. Similar results were obtained for LA7 (not shown here). Thus,

a better ship length model would be possible if more size classes were used for particular ports.

However, this leads to a dilemma whether to emulate particular ports in more detailed way (at

the cost of more complex model), or quite contrarily, generalize the results. Since our goals are

in generalizing patterns in ship traffic, we do not follow the first path. Finally, there are clusters

which ship lengths can be quite well approximated by continuous distributions. This is the case

for SI1 and SH2 (Fig.5.2c, d). However, the reader should be aware that for some clusters (e.g.

as narrow as LH7) searching for a continuous ship length distribution is unfounded.

5.3.4 Processing Time Model

Our first attempt to develop a vessel processing time model consisted in calculating a linear

regression function of the processing time in the ship length: pj = a1Lj + a2, for all the ships of

the port considered. In Fig. 5.3 examples of ship processing times pj and processing time per

unit of ship length pj/Lj are shown. In all figures, the linear regression line, its parameters, and

the coefficients of determination R2 are also given. It can be observed that the distributions

of pj and pj/Lj depend on the ship size. Usually, longer ships have larger pj , but a negative

correlation between pj/Lj and Lj can be observed. However, it is obvious from Fig. 5.3 that
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Figure 5.2: Empirical (bold black) vs theoretical ship length distributions in example clusters.
a) LH7, b) LB6, c) SI1, d) SH2.
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Figure 5.3: Examples of relationships a) pj vs Lj (restricted to pj ≤ 80), b) pj/Lj vs Lj (re-
stricted to pj/Lj ≤ 0.6). Le Havre (left), Shanghai (center), Singapore (right). Linear regression
fit and coefficients of determination are: Le Havre: a) pj = 0.0457Lj + 7.1663, R2 = 0.1027, b)
pj/Lj = −0.000163Lj + 0.1190, R2 = 0.0691; Shanghai: a) pj = 0.0982Lj − 2.655, R2 = 0.0212,
b) pj/Lj = 0.000019Lj + 0.0802, R2 = 2E − 5; Singapore: a) pj = −0.0029Lj + 19.493, R2 =
2E − 5, b) pj/Lj = −0.000417Lj + 0.1866, R2 = 0.0111. pj in hours, Lj in m.

linear regression is not a good predictor of pj . There is a great deal of dispersion both in

pj and in pj/Lj . This is reflected in very low coefficients of determination R2. Thus, linear

regression is not suitable to reproduce accurately the processing times. It can be seen that pj

values align vertically in a way corresponding with ship size classes or particular ships. Hence,

it is advisable to analyze ship processing times for distinct ship size classes, rather than using a

single model for all possible lengths. In the following, we decided to consider pj/Lj rather than

pj distributions because the former are more compact and their ranges are more similar between

the ports. Furthermore, pj/Lj can be considered as a better score for the logistic technologies

used in the port than pj . Correlations between Lj and pj/Lj can indicate the economy of scale

effect for the port considered. This will be discussed in Section 5.5.

Eight common parametric probability distributions: beta, exponential, gamma, normal, log-
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Figure 5.4: Example of visual output from fitdistrplus for SI5: a) cumulative distribution
functions, black points are the actual observations, b) probability density functions, c) PP plots,
d) QQ plots.
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normal, logistic, uniform, Weibull, were fit to the pj/Lj values for ship size clusters of the

ports considered, by using the R language fitdistrplus package [20]. Distribution parameters

were calculated using maximum likelihood estimation. Examples of fitdistrplus package vi-

sual output are shown in Fig.5.4. Visual data analyses are often unrestrictive, while numeric

goodness-of-fit statistics often disagree in their recommendations. Moreover, we operate on a

dataset representing a real ship stream which is rich in information and peculiarities. To make

the STM building process deterministic and reproducible, we used Anderson-Darling goodness-

of-fit score provided by gofstat from R programming language to choose the best fitting prob-

ability distribution for each port and ship size class. The distributions selected are summarized

in Tab.5.6. The parameters of the best fitting distributions are provided in Appendix D.3 and

in [89].

Discussion. For each distribution, the number of size clusters that are the best fit (wins), the

number of clusters that are the worst fit (worst), and the best fit clusters, are given in Tab.5.6.

The best fit clusters are the ones for which the distribution considered had the best fit according

to Anderson-Darling goodness-of-fit score. Analogously, the number of worst fits is the number

of cases for which the distribution considered provided the worst fit. The maximum number of

possible wins is 55, i.e., the number of all ship clusters in all ports but LB7 which has exactly

one aperiodic ship. Let us note that uniform distribution was excluded from Tab.5.6 because it

is always the worst choice. Exponential and normal distributions are the second and third worst

after the uniform. Uniform, exponential, normal distributions very often used in simulation

and analytical modeling perform bad here, which is an interesting qualitative observation for

modeling scheduling problems or testing algorithm performance. Although the lognormal and

the logistic probability distributions fit best the pj/Lj distributions in many cases, none of the

tested distributions is predominantly the best. This lack of regularity between ports, of pj/Lj

winning distributions, demonstrates that each port is unique when the processing time of the

ships is considered.
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Table 5.6: pj/Lj distributions selected for the ship size classes and ports
distribution No.of No.of Selected (winning) clusters

wins worst
beta 5 0 GD4,RT5,LA4,SI5, SI6
exponential 1 49 SH1
gamma 10 0 GD3, LH6, LH7, RT1, RT3, RT4, LA6,

SI1, SI3, SI4
normal 2 4 HB2, LA2
lognormal 18 2 GD1, GD5, GD6,LH1, LH2, LH3, LH5,

HB3, HB4, HB6, RT2, RT6, LA1, LB4,
SH5, SH6, SH7, SI2

logistic 14 0 LH4, HB5, RT7, LA3, LA5, LA7, LB1,
LB3, LB5, LB6,SH2, SH3, SH4, SI7

Weibull 5 0 GD2, GD7, HB1, HB7, LB2

5.3.5 Ready Time Model

Since most of the arrivals are periodic (cf. Tab.5.3), we start with the returning ships. The

non-returning ships will be dealt with in the following subsection.

Returning Ships

In Fig.5.5 examples of ship return times ρj in days are shown for Le Havre, Los Angeles, and

Singapore. In Fig.5.5a return times ρj are presented vs ship lengths Lj , and in Fig.5.5b his-

tograms of the return times are given. The most frequent ship return intervals can be identified

as week multiplicities in Fig.5.5b, which is typical of shipping network design practices. It is

expected that return times depend on the ship size class. Usually, the longer the ship, the longer

the return times (Fig.5.5a). This is confirmed by positive correlation between Lj and ρj values.

The small values of R2, and the observed large variation of the return times, suggest that other

parameters are involved, e.g., shipping network timetables, weather conditions or ship process-

ing time variability. Hence, a model assuming some fixed return period would not fit well the

observed large scattering of the return times.

In order to construct model Ri of returns in cluster i, we applied method normalmixEM from

R package mixtools [6], to fit a mixture of normal distributions into return times of each ship

size class for each port. Assume a set of ship return observations ρi = [ρ1, . . . , ρai ] for cluster i is

given, where ai is the number of returns in cluster i. The method normalmixEM fits a probability
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Figure 5.5: Examples of return intervals for Le Havre (left), Los Angeles (center), Singapore
(right). a) Return intervals vs Lj , linear regression and coefficients of determination are shown
in the pictures (vertical axis is logarithmic so linear function is not a straight line here), b)
histogram of return intervals. ρ linear regression equations and coefficients of determination
are: Le Havre: ρj = 0.1205Lj + 2.4464, R2 = 0.0596; Los Angeles: ρj = 0.2023Lj − 13.17, R2 =
0.1257; Singapore: ρj = 0.1648Lj − 15, 651, R2 = 0.2108. ρj in days, Lj in meters.
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density function g which for some return value ρj can be written:

g(ρj |θ) =
ℓ∑

h=1

λhϕh(ρj |µh, σ
2
h), (5.3)

where ℓ is the number of components in the mixture, ϕh is the normal probability density

function with mean µh and variance σ2
h, the λh are mixing proportions which are positive with

a sum equal to 1, θ is a density mixture parameter vector comprising ℓ triplets (λh, µh, σ
2
h).

Mixture parameters θ
∗

are chosen to maximize the fitting quality which is the logarithm of

likelihood (loglik for short) of the data obtained:

θ
∗
= argmax

θ

ai∑
j=1

log g(ρj |θ). (5.4)

The obtained mixture parameter vector θ
∗

is rather a local than a guaranteed global opti-

mum. The run parameters of normalmixEM were set to default values, except for maxit=50000,

maxrestarts=200 which were chosen experimentally to obtain results for the widest set of ship

size classes and component numbers ℓ. Construction of mixtures with ℓ = 2, . . . , 20 were at-

tempted. The number of components ℓ which provided maximum loglik in the verified range of

values was chosen as the best mixture. Examples of visual results for fitting return times with

mixtures (5.3) are shown in Figs 5.6, 5.7. The summary of return time models Ri for all clusters

i can be found in Appendix D.4 and in [89].

Discussion. It is known that finding a matching mixture can be challenging [6]. Feasibility

of normalmixEM depends on, e.g., size aj of the data sample, number of mixture components

ℓ and actual dispersion of the data. And indeed, mixtures could not be obtained for all ports,

clusters and ℓ values. In particular for Gdańsk the range of feasible mixture components was

the narrowest, often limited to just ℓ = 2, 3. Moreover, there are only 4 different return periods

in GD5. In most of the cases, the fitness quality (loglik) improves with the increasing number

of mixture components ℓ. A large number of components in (5.3) is impractical so it is an

attractive idea to limit the number of used mixture components. However, it is hard to choose

a threshold of ℓ in an indisputable way. For example, in Fig.5.7a changes of loglik relative to

the best obtained value (at ℓ = 20) and density functions for ℓ = 11, 16, 20, are shown for SI7.

Though all shown density functions (Fig.5.7b-d) at least visually cover the data well, the range
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Figure 5.6: Examples of return times mixtures for a) LH1, b) LB3. Horizontal axes in days.

of loglik minimization is below 10%, but the value of loglik decreases slowly with ℓ (Fig.5.7a)

and it is hard to point a single incontrovertible value of ℓ at which the process of increasing

component number could be stopped. For reproducibility we stuck to the choice of ℓ ≤ 20 for

which the loglik was the smallest.

On the basis of the identified return intervals, qualitative observations can be made for

terminal planning and scheduling. Our study confirms that large ships call ports according to

schedules with week multiplicities, but shorter schedules also exist. It can be seen in Fig.5.5b,

that 6, 7, 8, 11 weeks return times are quite common. Thus, one week planning horizons

(common in operational BAP) are adaptations that hardly represent a more complex process.

In order to grasp interactions between different return periods, the least common multiple of

the periods should be considered as a planning horizon, which easily exceeds a year.

We provided a probabilistic model of return times Ri for cluster i of a given port. It remains

to define the first arrival. Several approaches are possible: 1. draw at random from normal

distribution with mean µk and variance σ2
k where k = argmaxℓ{λℓ}; 2. draw returns many

times from model (5.3) as if returning over many years to accumulate dispersion and use the

offset from the beginning of the current year; 3. draw random day of week (DoW) and then draw

random hour of day (HoD) using arrival distributions from Appendix D; 4. combine methods
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Figure 5.7: Examples of loglik changes with mixture component number ℓ in SI7 a) loglik vs ℓ,
Density functions for b) ℓ = 11, c) ℓ = 16, d) ℓ = 20.

by first using 1. and then moving the first arrival to the nearest day and hour generated by 3.

Non-returning Ships

Though the majority of the calls at ports are returning, aperiodic arrivals are not exceptions

and there are over 50 ships in most of the analyzed ports, which is more than one arrival weekly.

Hence, we decided to analyze this group of ships as a potential component of the STM. The

number of aperiodic ships in each size cluster was given in Tab.5.5. Aperiodic arrivals are not

concentrated in a restricted subset of clusters. Hence, ship classes and lengths can be modeled

in the same way for all ships, both returning and non-returning. As the processing time model

Pi for non-returning ships, we propose to use the model of the corresponding size class (Section

5.3.4). Note that even for the clusters with the biggest number of aperiodic arrivals (see Tab.5.5,

SH6: 53, SH5: 65, SI5: 67) on average there is slightly more than one aperiodic ship per week

in a size class. The median number of aperiodic ships per week in one size class calculated over

all ports and clusters is 0.211 which is roughly equivalent to one aperiodic arrival per cluster
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Figure 5.8: Examples of fitting polynomials for aperiodic arrivals over year’s weeks. a) Fitting
various degree polynomials into the normalized sum of frequencies in all ports. The weekly
frequencies and the best-fit 4th-degree polynomial for b) Singapore, c) Shanghai, d) Le Havre.

over 33 days (≈ 4.7 weeks). Hence, aperiodic arrivals are not common enough to build separate

and trustworthy statistical models of ready times for each size class with high time resolution.

Therefore, to model the non-returning ship arrival process with a similar resolution as for the

returning ships we will apply a superposition of three distributions: for the week of a year, for

the day of a week DoW, and for the hour of a day HoD. This was done for whole ports, without

distinguishing size classes.

Weeks of the year. It appeared that the number of weekly aperiodic arrivals changes over

the year and in most of the cases the number of aperiodic arrivals increases at the turns of the
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year (see Fig.5.8a). Thus, aperiodic arrivals show seasonal fluctuations. In order to represent

the variability over the weeks of the year we decided to build an equivalent of a density function

by fitting a polynomial η(w) of week number w into the weekly frequencies. A careful study

led to use polynomials of 4-th degree, which is the lowest even degree allowing a smooth tran-

sition between consecutive years. Visual output of the fitting can be verified in Fig.5.8a. Then

specific 4th degree polynomials were obtained by fitting the data for each port. Examples of

visual output can be seen in Fig.5.8b-d. The coefficients of the polynomials fitting the relative

frequencies of aperiodic arrivals are given in Appendix D.6.1.

Days of a week and hours of a day. Examples of the distributions of aperiodic arrivals

over days of a week for Le Havre and Rotterdam are shown in Fig.5.9a. Along the vertical

axis fractions of the total number of aperiodic arrivals are shown. In Fig.5.9b the coefficient of

variation for aperiodic arrivals over days of week is shown vs the number of aperiodic arrivals

in the port during the year. Results for Le Havre are shown in Fig.5.9a because they present

an appealing A-shaped pattern with the top arrivals on Wednesdays. In Rotterdam, Fridays

were days with 2.15 × σ departure from the average, where σ is the standard deviation of the

daily fractions in the port. This was the biggest departure from average in all studied ports. It

may be the case that these two ports exhibited some tendency toward processing non-returning

ships on these two days. However, it may be also a human perception artifact. As many as 64%

of aperiodic arrivals of all ports on days of a week fit in 1×σ range around the average. The

exceptional "Rotterdam Friday" may emerge randomly with probability 0.019 if dispersion of

aperiodic daily arrivals is normally distributed. Moreover, it can be seen in Fig.5.9b that ports

with bigger number of aperiodic ships have smaller dispersion of arrivals between days of a week.

Hence, there are good reasons to think that the number of aperiodic arrivals changes randomly

over the days of a week. Therefore, we applied fitdistrplus method from R programming

environment to find the distribution fitting best the variability of fractions of aperiodic arrivals

over days of a week. For example, the best fit of aperiodic arrivals over days of a week aggregated

over all ports is the logistic distribution. Similar analysis was conducted for aperiodic arrivals

over hours of a day. Results are collected in Appendix D.6.2 and D.6.3.

Discussion. We proposed a 4th degree polynomial of the week number in a year as ready time

model. This function can be used as an empirically-built probability density function of aperiodic

arrivals in a given week. By applying a continuous function we attempted to extract a smoothed
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Figure 5.9: Examples of aperiodic arrivals over days of a week. a) Fractions of arrivals for Le
Havre and Rotterdam. b) Coefficient of variation vs number of aperiodic arrivals per year for
different ports.

pattern in the central tendencies of weekly arrivals. However, an aperiodic arrival distribution

can be defined in alternative ways. For example, as a list of probabilities for particular weeks

averaged over ports. An advantage of such a representation is simplicity. A disadvantage is the

lack of smoothing and generalizing effect of a continuous function. The lack of data for multiple

years impedes constructing more reliable models both continuous and time-discretized.

The 4th degree of the fitting polynomial is minimum which allows smooth transition between

years, which seems a practical requirement. But for reasons of computational simplicity lower

degree polynomials may also be acceptable. A visual comparison of the 2nd and 3rd degree

polynomials in Fig.5.8a suggest that the advantage of fitting as large as a 4th degree polynomial

is minor.

Due to shortage of data, quality of models for aperiodic arrivals over days of a week (DoW)

and hours of a day (HoD) is low. Hence, for the reason of confidence in the models it seems

more legitimate to use analogous models for all ships, i.e. both periodic and aperiodic. It may

be also considered advantageous because with respect to assigning service time in a day of the

week and hour of the day, aperiodic ships are handled in the same way as periodic ships.

Let us conclude about arrival time modeling. In the ship arrival time models, various decision

levels intersect. On the one hand, it was possible to build a continuous model for periodic

arrivals. This model incorporates and generalizes traffic patterns resulting from, e.g., global

network of main shipping lines or delays due to weather conditions. On the other hand, due to
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Algorithm 1 Instance generator(STM,N,H)

1: j ← 1;
2: for cl in 1 to 7 do
3: acl ← N × aSTM

cl /
∑7

k=1 a
STM
k ;

4: while acl > 0 do
5: choose length Lj of the ship in call j as described in Section 5.3.3;
6: if Rnd(1)≤ ηa then
7: ArrNum←DrawAperiodic(j, cl, Lj)
8: else
9: ArrNum←DrawReturning(j, cl, Lj , acl)

10: end if
11: j ← j +ArrNum;
12: acl ← acl −ArrNum;
13: end while
14: end for

lack of data and need for representing aperiodic arrivals with the resolution comparable to the

periodic arrivals we resorted to use DoW and HoD models. Yet, the weekly and daily operations

of ports are subject of online optimization these days, and hence, the DoW and HoD models

may change and become deterministic by nature.

5.4 Applying the Model

In this section we describe how to apply our STM to generate instances of the ship traffic

with the above features. The steps to be taken are outlined in Algorithm 1. It accepts ship

traffic model STM , the number of calls N , and the interval H of arrivals as input parameters.

Particular ports are emulated by the input STM . An example of STM for cluster LH1, com-

Table 5.7: STM for Le Havre ship size class 1 (LH1, the shortest ships)
0.0951 a1 – fraction of class 1 ships in the whole set of container ships

[118,140] range of ship length in class 1 [meters]
lognormal type of psj/Ls

j distribution [hours per meter]
-2.44661 parameter of lognormal distribution, expected value of ln(psj/Ls

j)
0.68494 parameter of lognormal distribution, standard deviation of ln(psj/Ls

j)
6 number of components in the Gaussian mix representing ship return

times, the components are defined by mixing proportion, mean value
[days], standard deviation [days]. The components are given below:

(0.1151, 4.6301, 0.8343) (0.1740, 15.5915, 2.0145) (0.0685, 21.0844, 1.0550) (0.2201,
36.8575, 22.4692) (0.3928, 42.0277, 0.7392) (0.0296, 201.0784, 89.3193)
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Algorithm 2 DrawAperiodic(j, c, Lj)
1: generate number x according to the continuous distribution of ratios pc/Lc for the cluster c

(Section 5.3.4), set processing time pj = x× Lj ;
2: choose arrival date rj according to the model in Section 5.3.5;
3: record (j, Lj , pj , rj)
4: return 1;

Algorithm 3 DrawReturning(j, c, Lj , amax)
1: generate first arrival date as proposed in Section 5.3.5; count← 0;
2: while date < H and count < amax do
3: generate number x according to the continuous distribution of ratios pc/Lc for the cluster

c (Section 5.3.4) set processing time p = x× Lj for call (j + count);
4: record(j + count, Lj , p, date);
5: count← count+ 1;
6: choose return time ρ according to mixture of distributions (Section 5.3.5);
7: date← date+ ρ;
8: end while
9: return count;

prising the shortest ships in Le Havre is shown in Tab.5.7. The intensity of ship traffic ι = N/H,

measured by the number of arrivals in some time interval, is regulated by the number of calls

N and the interval H of arrivals. The size classes are generated in loop 2-14. The number of

arrivals acl for cluster cl is calculated using the numbers of arrivals aSTM
cl in the STM built on

historical data. Arrivals are generated in loop 4-14 and j is the total arrival counter. The size

of the arriving ship Lj is chosen in step 5. The modeler has to make a design decision here on

the ship length Lj generation method, according to the options outlined in Section 5.3.3. The

type of arrival is chosen in step 6: it is an aperiodic arrival with probability ηa, otherwise it is a

returning ship. Rnd(1) is a pseudo-random number generator providing numbers in range [0,1]

with uniform distribution. Function DrawAperiodic generates data for an aperiodic arrival in

cluster cl of a ship with length Lj . Function DrawReturning generates at most acl arrivals of

the returning ship in cluster cl of length Lj as sequences of arrivals. The two functions return

the number of generated arrivals stored in ArrNum. The global arrival counter j is increased

and the remaining number of arrivals acl is decreased in steps 11 and 12, respectively.

Function DrawAperiodic is shown as Algorithm 2. In steps 1 and 2, processing time and

arrival date are generated. In step 3, a tuple of values defining jth arrival is recorded. Function

DrawReturning is defined as Algorithm 3. In DrawReturning a sequence of the same ship arrivals
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Figure 5.10: Examples of ship size histograms with 10m resolution. a) Le Havre, b) Gdańsk, c)
Los Angeles, d) Shanghai.

is generated in loop 2-8. The loop execution stops if the next arrival is after the end of time

horizon H or sufficient number of arrivals is created. In line 7 the next arrival time is calculated.

5.5 Distinctive Port Features

As shown in the previous sections ports differ in many ways. The specific features that appear

in our data can help to choose the right model for some other port.

One expected port dissimilarity is in the mixture of ship sizes. Different length patterns are

expected due to the characteristic location, like the existence of a chain of neighboring ports, or

the location in the river estuary. Examples of ship size histograms covering all size classes with

the same box ranges are shown in Fig.5.10. For example, Los Angeles (Fig.5.10c) has no small

container ships because there are no river waterways nearby and even local traffic is oceanic.
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Figure 5.11: Rotterdam a) Lj and b) return period ρj histograms.

Similar pattern of ship sizes can be found in Long Beach (not shown here). Conversely, Gdańsk

and Shanghai (Fig.5.10b, d) are in a chain of local ports, and what is more, Shanghai port is in

large rivers estuaries. Hence, there are large fractions of small ships in the traffic. Though Le

Havre is in the Seine estuary it is also the westernmost ocean port in a chain of European ports

and hence there is a significant fraction of medium size ([150,300]m) ships for local connections

(Fig.5.10a). Similar pattern with the domination of medium size ships exist in Singapore (not

shown here).

The pattern of ship sizes is connected with the return intervals because small ships operate

locally, whereas the largest ones operate in the long ocean lines. This can be verified in Figs

5.5b and 5.10a,c for Le Havre, Los Angeles, as well as in Fig.5.11 for Rotterdam. In Le Havre

there are a broad set of ship size classes and return periods because it is an ocean port, in a

chain of local ports. There are almost no short ships and short return times in Los Angeles

because it is an ocean port. In Rotterdam (see Fig.5.11) ships shorter than 180m and returning

in less than 3 weeks dominate, and very large vessels are not present. This is understandable for

an inland port on the banks of Nieuwe Maas (the Maasvlakte terminals traffic is not included

into the analyzed data).

Let us conclude the above discussion with a recommendation on suitable STMs for optimiza-

tion problems of port logistics. Location is the key selection determinant. An STM of the most

similar port should be used. If the location considered for optimization is an isolated ocean port,

then Los Angeles or Long Beach can be chosen. If the port is in a chain of local ports, choose
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Table 5.8: Correlation between pj/Lj and Lj .

port Gdańsk Long Los Le Havre
Beach Angeles

r -0.007 0.065 0.389 -0.263
SEr 0.046 0.032 0.025 0.020
port Hamburg Rotterdam Shanghai Singapore
r -0.273 -0.185 0.005 -0.105
SEr 0.017 0.016 0.009 0.007

Le Havre or Singapore STMs. If, furthermore, the location is in big river system estuary, then

Shanghai STM can be recommended. For an inland port, our Rotterdam STM can be applied.

Another interesting feature is the relationship between the ship length Lj and its processing

time pj . It can be expected that in general longer ships have longer processing times. In order to

compensate for this rather obvious relationship we decided to investigate the correlation between

Lj and pj/Lj (see also Section 5.3.4). It seems intuitive, that such correlation either should not

exist (to treat different size classes fairly) or may be negative (because terminal operators would

rather dedicate more resources and effort to the largest ships to take advantage of the economy

of scale). The coefficients of correlation r between Lj and pj/Lj and the standard errors SEr

of these coefficients are shown in Tab.5.8. The correlations in Tab.5.8 are weak according to

the frequently used rule of thumb requiring that r ≥ 0.7 for a strong correlation. If we use

the rule that range [r − SEr, r + SEr] does not include 0, then it can be observed that there

are ports where the correlation is nonexistent (Gdańsk, Shanghai) which can be interpreted as

a fair treatment of the different classes. There are ports where the correlation is negative as

expected. Surprisingly, there are also ports (Los Angeles) where longer ships do take longer

time (disproportionately to Lj) to be served. A closer look at the terminal management policy

is needed to explain these effects.

Let us finish this section by observing that with a growing number of arrivalsN the coefficient

of variation of the arrivals calculated over to days of a week and hours of a day decreases

(Fig.5.9b, Fig.D.5) and the feasibility of fitting a continuous distribution as a model of Ljs for

size clusters improves (Figs 5.2c,d).
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5.6 STM Summary

In this chapter, we studied container ship traffic patterns in eight ports of the world to develop

traffic models for optimization and simulation of port logistics. These models will be used to

study SQPP in Chapter 6. We developed more advanced and detailed models than existing

previously in the literature. The models respect the relationships between ship sizes, processing

times and arrival times. Each size class has its own processing time and arrival time statistical

representation. Particular attention is paid to return times and their dispersion, but aperiodic

ships are also considered.

Representing real-world phenomena in mathematical models is full of trade-offs. One of our

goals was to generalize the observed traffic patterns, but generalizing leads to loss of information.

For example, establishing some general model framework is possible, but particular ports require

their own variants to adjust not only the distribution numerical parameters but also the actual

distribution types (see Tab.5.6). Hence, a trade-off exists between accuracy when keeping details

of a given port, and simplicity when using one model with a unique distribution.

Since we decided to build models representing each port separately, a decision-maker should

choose between these ports and treat them as archetypes of ocean ports, ports in local port

networks, or ports with local river traffic.

A realistic STM provides indications on realities of the assumptions often made when ana-

lyzing optimization problems in port logistics. Thus, our STMs allows to avoid ad hoc choices

in researching such problems. We established that: 1) ship length is the key determinant for

return and service times (hence these three parameters are strongly related), 2) return times

have a strong periodic component (thus memoryless distributions are unjustified), 3) typical

distributions (uniform, normal, exponential) are the least suitable to represent service times, 4)

aperiodic arrivals have a strong seasonal component, 5) ship return time patterns determining

time horizons of planning and scheduling easily span over years. 6) Although the mathematical

structure of the model is the same for all ports, its instantiations differ. As a side benefit, this

gives also a way to compare ports.

The ship traffic model introduced in this thesis is explainable. That is, the model not only

generates ship stream with given characteristics, but it can also help to explain how and why

these characteristics emerge. Thus, rather than some machine-learning “black-box” (cf. [31]),
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we use data analysis and explicit statistical distributions. Thanks to this, the model parameters

can be used directly in algorithms solving certain port logistic problems. Let us note that our

ship traffic model is not predictive in the classic sense in which, e.g., time series analysis is

predictive. We do not intend to predict the future number of TEUs or calling ships on the basis

of some independent determinants. The model is built to take advantage of recreating features

of the real traffic in the above-mentioned simulation applications. The number of calling ships

is an input parameter. It is assumed that according to the current state of the art, numbers

from determined probability distributions can be generated pseudo-randomly with satisfactory

accuracy.



Chapter 6

Stochastic Quay Partitioning

Problem

In this chapter the earlier research threads are joined. Let us outline the SQPP solution setting

(cf. Fig.6.1) and the reasons behind it. A solution of an SQPP defines a quay partition which is

a vector of berth lengths. The partition should be evaluated on the future ship traffic. Since it

is unknown, SQPP solutions are evaluated on test scenarios simulating future ship stream. The

scenarios are generated according to a ship traffic model (STM) built in Chapter 5. Evaluating a

quay partition on some test scenario consists in scheduling ships on berths and assessing quality

of service, e.g., ship waiting time. As argued in Chapter 2 to evaluate an SQPP solution it

is inevitable to: 1) refer to solving BAP, 2) consider very large instances, 3) use specialized

methods. We will use tailored algorithm portfolios considered in Chapter 4 to solve very large

BAPs under a runtime limit. For each partition a population of scenarios and their evaluation

scores are collected. The partition with the best central tendency score (e.g. mean) is considered

the best SQPP solution.

6.1 Stochastic Quay Partitioning Problem Formulation

Although Quay Partitioning Problem for a single arrival scenario (i.e. DQPP) has already been

defined in Section 3.2, we add here new elements to handle stochasticity. An instance of SQPP is

117
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Figure 6.1: SQPP solution workflow

defined by: quay length Q, set B = {λ1, . . . , λf} of admissible berth lengths, ship traffic model

(STM) S with the parameters of ship arrival intensity ι and time hroizon H. Without loss of

generality we assume λ1 < · · · < λf , and for simplicity of exposition, that Q is divisible by

λ1. S is a stochastic process generating ship traffic as scenarios. The STM models the fraction

ai of ship size class i in the total number of arrivals, ship arrival times, processing times and

weights. Arrival intensity ι is an average frequency of vessel arrivals taken over the considered

time horizon H. We will express ι in arrivals per week (a/w in short). For some scenario s, the

number of ship arrivals ns ≈ Hι and for the arriving ship j = 1, . . . , ns, arrival time rsj , service

time psj , length Ls
j and weight ws

j (profit from serving the ship) are determined. We assume that

under any scenario there is an upper limit Lmax on vessel lengths. Currently Lmax = 400m is

the size of the largest container mother ships.

A solution of SQPP is a partition of quay length Q into berths which can be represented as

vector K = (k1, . . . , kf ) of berth lengths λ1, . . . , λf frequencies. By definition Q ≥
∑f

i=1 λiki

and Lmax = maxns
j=1{Ls

j} ≤ maxfi=1{λi : ki > 0}, i.e., for all ships sufficiently long berths exist.

The total number of berths in some SQPP solution is m =
∑f

i=1 ki. Vessels are positioned in

the berths according to the 2in1 hybrid layout.

Let d denote the number of STM scenarios, csij ship j service completion time under scenario

s obtained by some scheduling algorithm i. A classic scheduling objective is mean weighted flow

time (MWFT): F (K, s, i) =
∑ns

j=1 w
s
j (c

si
j −rsj )/

∑ns

j=1 w
s
j for scenario s and scheduling algorithm
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Table 6.1: Summary of notations for Chapter 6
ai fraction of ship size class i in the whole number of arrivals
B set of admissible berth lengths
csij ship j service completion time for scenario s solved by algorithm i
d number of scenarios
e number of ship size classes in the ship traffic model
f number of admissible berth lengths, f = |B|

F (K, s, i) mean flow time for partition K, scenario s, scheduling algorithm i
F (K) mean flow time for partition K averaged over all evaluations

g number of algorithms in a portfolio
H time horizon of the evaluation (simulation)
ι weekly arrival intensity [a/w]
K partition, vector of berth lengths frequencies
ki number of berth length λi occurrences in a partition
λi admissible berth length i
Li upper end of ship length in size class i
Ls

j length of the ship in the jth arrival in scenario s
Lmax maximum vessel length

m number of berths in K, m =
∑f

i=1 ki
ns number of vessel arrivals in scenario s
psj service time of the jth arrival in scenario s
Q quay length
rsj arrival (ready) time of the jth ship in scenario s
S ship traffic model (STM)

σ(K) standard deviation in partition K evaluations
ws

j weight (value) of servicing ship j in scenario s

i. For d scenarios and a portfolio of g scheduling algorithms a population of d × g values of

F (K, s, i) is obtained. We will use the average of the MWFTs over the scenarios and algorithms:

F (K) =
1

dg

d∑
s=1

g∑
i=1

F (K, s, i) =
1

dg

d∑
s=1

g∑
i=1

∑ns

j=1 w
s
j (c

si
j − rsj )∑ns

j=1 w
s
j

(6.1)

as the key quality criterion. We use average over algorithms (the sum over g) because it is

a quality central tendency indicator, which is more reliable than, e.g., the results in one best

algorithm. Let us observe that there may be further advantages of using algorithm portfolios to

evaluate partitions. At the early strategic level of designing a container terminal, it is unknown

what methods will be used by the terminal operators to assign vessels to the berths. A population

of evaluations by various algorithms exposes the quay design process to a greater variety of

possible scheduling methods, and thus, builds a broader view on potential dispersion of the

partition scores under the future, yet currently unknown, BAP algorithms. Standard deviation
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Table 6.2: Evaluation runtimes in seconds
intensity ι [a/w] 20 50 100 200 500 1000

Le Havre, Q = 3500m, runtime per scenario
median 0.48 3.52 43.69 271.58 1814.19 6011.90

SIQR 0.18 2.50 16.88 48.56 220.44 296.65
Le Havre, Q = 3500m, runtime per scenario and algorithm

median 0.06 0.44 5.46 33.95 226.77 751.49
SIQR 0.02 0.31 2.11 6.07 27.56 37.08

Shanghai, Q = 5000m, runtime per scenario
median 0.92 2.92 7.68 31.89 1132.50 3973.68

SIQR 0.07 0.10 0.38 29.99 255.66 388.10
Shanghai, Q = 5000m, runtime per scenario and algorithm

median 0.11 0.36 0.96 3.99 141.56 496.71
SIQR 0.01 0.01 0.05 3.75 31.96 48.51

SIQR – Semi-Inter-Quartile Range

σ(K) in the population of values F (K, s, i) will be the secondary criterion. For simplicity of the

exposition indexes s, i will be dropped in the further text if particular scenarios are not singled

out and the set of evaluating algorithms is constant.

6.2 Partition Evaluation

In order to evaluate quality of partition K on an STM-generated scenario s a BAP instance

must be solved. Since SQPP emerges in long strategic port planning, arrival numbers ns are

large, cover portfolios (4.1)-(4.3) defined in Chapter 4 will be used. For the further study

a portfolio of g = 8 algorithms constructed for runtime of at most 50s at ns = 10000 was

selected (compare Fig.4.5 in Section 4.7). The portfolio comprises heuristic algorithms: SPT-

Prio, SPTGI-Prio, SPTGI-La2, GISPT-Prio, SAF-Prio, SAF-La2, RND-Prio, RND-La5. In the

partition evaluations, scenarios for a particular STM were generated as described in Section 5.4,

while ship weights were generated as ws
j = Ls

jp
s
j(0.5 + rnd(1)), where rnd(1) is pseudorandom

number generator with uniform distribution in range [0,1]. The total number of vessels in a

scenario is a product of one year time horizon and the given arrival intensity ι. Full model

parameters and example scenarios can be found at [89].

In Tab.6.2 examples of evaluation runtimes for annual traffic with various weekly arrival in-

tensities are given. For example, intensity 100 a/w is roughly equivalent to scheduling ns = 5200

arrivals. In the tests the set of admissible berth length was B = {100, 200, 300, 400, 500, 600}m.
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There were 10 scenarios for each STM (i.e. port) and intensity. All non-dominated partitions

were tested (cf. Section 6.3.1, Section 6.4) to collect the data for Tab.6.2. Computational tests

presented in this chapter were conducted in 2023 in Poznań Supercomputing and Networking

Center, on Eagle/Altair cluster with Intel Xeon Platinum 8268 CPUs, each with 48 cores and

4GB RAM per core [85]. On the one hand, the computations were quite extensive. Over 43800

processor-hours were spent in the tests shown in Tab. 6.2. On the other hand, the runtimes per

algorithm and per scenario are short, all evaluations of d scenarios by g algorithms are mutually

independent and were run in parallel (see Section 6.6).

6.3 Partitioning Algorithms

In this section we introduce algorithms constructing partitions K for the given quay length Q,

set of admissible berth lengths B and STM S.

6.3.1 Brute-force Enumeration

The number of possible partitions grows exponentially with the number of berth sizes and can

be upper-bounded by O(Qf/
∏

i=1 λi). The actual number of interesting partitions is smaller

because some partitions are dominated. Let K = (k1, . . . , kf ) be a partition. If ∃j : λj <

Q −
∑f

i=1 kiλi then K is dominated by K ′ = (k1, . . . , kj + 1, . . . , kf ). Let us remind that

there must be at least one berth of length greater or equal Lmax. In Tab. 6.3 numbers of non-

dominated partitions are given for some exemplary quay lengths and sets B of admissible berth

lengths. The quay lengths in B were chosen from range [100,600]m with various resolutions:

200m, 100m, 50m, 25m. It can be concluded, that the number of non-dominated partitions is

amenable to brute-force evaluation for contemporary quay lengths and small sets B (e.g. Q up

to 5km and berth lengths with 100m resolution). In the following this method will be presented

under short name BF.

6.3.2 Histogram Matching and Integer Programming

Suppose a histogram of ship lengths importance is given in an STM as a vector (q1, . . . , qe) for

ship lengths {L1, . . . , Le}, where qi ∈ [0, 1]. The quay can be partitioned so that fractions of Q
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Table 6.3: Number of nondominated partitions for exemplary ports

Berth lengths in [100m,600m] with Lmax = 400m
B with resolution 200m 100m 50m 25

Gdańsk Q = 660m 2 4 11 31
Le Havre Q = 3.5km 32 2052 187444 66871400

Shanghai Q = 5km 64 8958 2470285 4579673758
Q = 10km 233 188625 641225038 *
Q = 26km 1473 16738836 * *

* – enumeration abandoned after 24h

dedicated to particular ship lengths match histogram (q1, . . . , qe) as closely as possible. Let δ

denote the biggest difference between the required value qj and the actual fraction of the quay

length where ships of length Lj can be moored. Let uij be the number of length Lj vessels

which can be positioned at berths of length λi. Admissible values of uij are: 0 for λi < Lj ,

1 when Lj ≤ λi < 2Lj and 2 for 2Lj ≤ λi. Solution vector K = (k1, . . . , kf ) approximating

importance vector (q1, . . . , qe) can be obtained by solving the following integer linear program:

ILP1 : min δ (6.2)

subject to:
f∑

i=1

kiλi = Q (6.3)∑
{i:λi≥Lmax}

ki ≥ 1 (6.4)

e∑
j=ℓ

qj −
e∑

j=ℓ

∑
{i:λi≥Lj}

uijkiLj/Q ≤ δ(e− ℓ+ 1) for ℓ = 1, . . . , e (6.5)

ki ∈ Z+ for i = 1, . . . , f (6.6)

In ILP1 δ, ki are decision variables, λj , Lj , uij , Q are constants. The greatest divergence δ from

the required ship length frequency is minimized. Constraint (6.3) guarantees that the chosen

berth lengths fit on the quay and no space is left unused. Equation (6.3) can be satisfied

with equality because λ1 divides Q. By constraint (6.4) there is at least one berth at least as

long as the longest ship. Value
∑

{i:λi≥Lj} uijkiLj/Q in (6.5) is the fraction of quay length

at which ships of length Lj can be positioned. On the left-hand-side of (6.5) the summation
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over j = ℓ, . . . , e and λi > Lj represents the fact that vessels of length Lℓ < · · · < Le may be

positioned at the same berths. For the same reason δ is multiplied by (e− ℓ+ 1) on the right-

hand-side of (6.5). Thus, constraints (6.5) set the distance δ between the required importance

of vessel length ℓ, . . . , e and fraction of the space at the quay obtained by these lengths.

In an alternative integer linear program referred to as ILP2 the biggest difference between

the required value qj of availability and the actual fraction of the quay length where ships of

length Lj can be moored, is bounded for each length separately. Then, the following constraints:

qj −
∑

{i:λi≥Lj}

uijkiLj/Q ≤ δ for j = 1, . . . , e (6.7)

are added to (6.2)-(6.5). Note that various combinations of vessel sizes can simultaneously be

positioned at the quay and the difference between the sum of vessel size importances in the

combination and the fraction of the quay obtained by such a combination should be minimized.

Since the number of possible vessel size combinations grows exponentially with e including

constraints like (6.5), (6.7) for any vessel combination that can possibly moore at the quay is

impractical. Hence, we remained with only two ILP versions.

Now let us discuss obtaining the importance histograms. In Chapter 5 ship size classes i were

introduced with their relative frequencies ai, pi/Li distributions and upper ends of ship lengths

in a class. The length range upper ends can serve as vessel lengths Li in the above formulations.

A method matching class frequency ai histogram by use of ILP1 or ILP2 will be referred to as

ILP1f and ILP2f, respectively. A histogram of area in time×space for class i occupation can be

built by assuming qi = pi/Li ∗ L2
i /

∑7
j=1(pj/Lj ∗ L2

j ), where pi/Li is estimation of service time

per unit of vessel length for class i. A method matching this kind of histogram will be called

area matching and referred to as ILP1a and ILP2a for ILP1 and ILP2, respectively.

6.3.3 Big Berths First

Big Berths First algorithm (BBF in short) builds as many as big berths as possible. The

algorithm proceeds from the longest berths λf to the shortest λ1. For the considered berth

length λi and the remaining quay size Q′, set ki = ⌊Q′/λi⌋ and Q′ = Q′− kiλi, for i = f, . . . , 1.
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6.3.4 Hill Climber

Local search methods improve solutions by gradually modifying them. Such trajectory-based

metaheuristics are particularly suited when solution evaluation costs are high, as it is in our

case. Local search methods need explicit representation of the solution, the set of admissible

solution changes called moves, a starting solution and a strategy to choose moves. The solutions

are represented here as berth length frequency vectors K. There are two types of moves: split

and merge. In the split move, berth of length λi is split into two shorter berths of length λj , λk

such that λj + λk = λi. All such pairs j, k are tested. In the merge move, for a pair of lengths

λj , λk the pair is substituted by the berth length λi satisfying λj +λk = λi. Again, all pairs j, k

are tested. Algorithm BBF provides the starting solution. The set of all solutions attainable by

executing moves on the current solution are called neighborhood. Hill climber (HC for short)

is a local search method which proceeds to the first-found better solution in the neighborhood

and stops if no improving neighbor exists.

6.3.5 Tabu Search

Tabu search is also a local search method which extends a hill climber by use of memory to

prevent accessing the already visited solutions. To this goal information is stored in a queue

called tabu list. In our implementation indices of executed moves are stored in the tabu list. A

move stored in the tabu list can be undone only if it improves the best solution found. Except

for the tabu list, HC features are inherited. For practical usability, our tabu search algorithm is

limited to 401 evaluations of the objective (6.1) and at most 24h runtime, including evaluations.

6.3.6 Random

This algorithm adds berths of random length to solution K until exhausting the remaining free

quay length. This procedure is repeated 10 times and will be referred to as Rnd10. An average

F (K) from all generated layouts is returned. No particular solution of RND10 will be used.

Rnd10 is a reference algorithm for other algorithms performance comparisons.
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Table 6.4: Overview of BF results
Le Havre STM, real traffic in 2016: 2271 arrivals

intensity ι [a/w] 20 50 100 200 500
mins{ns} 1052 2610 5214 10409 26016
maxs{ns} 1085 2657 5259 10452 26051
F (K∗) 25.24 25.89 409.21 4664.34 17438.73
F (K∗) + σ(K∗) 25.91 26.32 607.73 5079.50 18373.24
No.of sol. in [F (K∗), F (K∗) + σ(K∗)] 1180 79 27 32 23
No.of BF solutions 2052 2052 2052 2052 2052

Shanghai STM, real traffic in 2016: 11606 arrivals
intensity ι [a/w] 20 50 100 200 500
mins{ns} 1093 2639 5229 10430 26034
maxs{ns} 1148 2709 5286 10518 26127
F (K∗) 25.26 24.17 25.32 27.70 4197.84
F (K∗) + σ(K∗) 29.70 27.86 27.90 31.37 4579.60
No.of sol. in [F (K∗), F (K∗) + σ(K∗)] 8880 8200 6455 749 109
No.of BF solutions 8958 8958 8958 8958 8958
a/w – arrivals per week
K∗ – partition with the minimum score (6.1), i.e., the best one

6.4 Features of SQPP Solutions

In this section we analyze features of the SQPP solutions obtained by brute force partition

enumeration. Thus, optimum partitions are known. The test setting follows the description

in Chapter 5 and 6.2. In more detail, two STMs representing Le Havre and Shanghai were

used. For Le Havre quay length was Q = 3500m and for Shanghai it was set to Q = 5000m. In

both cases the set of admissible berth lengths was B = {100, 200, 300, 400, 500, 600} meters. The

numbers of nondominated partitions were 2052 for Le Havre and 8958 for Shanghai, respectively,

as shown in Tab.6.3. One year traffic was generated with intensity levels 20, 50, 100, 200, 500

a/w. For each intensity level, 10 test scenarios were generated. Thus, each partition was

evaluated on 5 arrival intensity levels, each with 10 test scenarios s, solved by 8 BAP scheduling

algorithms i, as described in Section 6.2. This created, for each partition and intensity level,

a population of 80 evaluations. F (K) as defined in (6.1) and standard deviation of F (K, s, i)

were calculated for each such population. The results are shortly outlined in Tab.6.4. In this

table the range of vessel numbers in the generated test scenarios (mins{ns}, maxs{ns}), range of

MWFT s from the best partition score F (K∗) to the best partition plus one standard deviation

F (K∗) + σ(K∗), number of partitions in range [F (K∗), F (K∗) + σ(K∗)] and the total number

of verified partitions are given.



126 CHAPTER 6. STOCHASTIC QUAY PARTITIONING PROBLEM

It can be concluded from the the results in Tab.6.4 that traffic intensities of 20 arrivals per

week (a/w) for Le Havre, and up to 100 a/w for Shanghai, are easy to handle. This is indicated

by low and similar values of the best F (K∗) in these arrival intensity ranges. Furthermore,

the number of partitions in range [F (K∗), F (K∗) + σ(K∗)] near the smallest F (K∗), is large

(especially in Shanghai). It means that at this low traffic it is easy to schedule the arriving

vessels on nearly any quay partition (except for the degenerate solutions) because there is an

excess of available berthing space, quay partitioning is actually immaterial. Hence, there are

many partitions which are nearly as good as the best one. We will discuss structure of the

good and the particularly bad partitions in sections 6.4.1 and 6.4.2. Intensities 50 a/w in Le

Havre and 200 a/w in Shanghai are border cases because low values of F (K∗) are achievable,

but only by a small set of partitions. Let us note that the 2271 arrivals that actually happened

in Le Havre in 2016 is roughly intensity 42 a/w, and the 11606 arrivals in Shanghai is roughly

223 a/w. Thus, both ports seem to be close to the border traffic intensities, and schedules for

the arriving vessels are not hard to construct on reasonably chosen quay partitions. With even

greater arrival intensity, the number of partitions with their F (K) score close to the best one

tends to decrease. Thus, quay partitioning matters in vessel quality of service.

6.4.1 Patterns in Berth Length Selection

In Fig.6.2 general tendencies in the selection of berth lengths are shown. In the pictures berth

lengths from set B = {100, 200, 300, 400, 500, 600} are shown along the horizontal axis. The

average number of certain length berths in some subset of solutions is shown along the vertical

axis. The standard deviation of the chosen numbers of certain berth length is also shown. Three

types of partitions are shown in Fig.6.2. The leftmost column displays the 20 best partitions, the

central column the partitions in the range [F (K∗), F (K∗) + σ(K∗)], where F (K∗) is the score

of the best partition and σ(K∗) a standard deviation of its evaluations. The rightmost column

displays berth length frequencies in the 50 worst solutions. STMs and vessel traffic intensities

are shown in rows. The first two rows show results for the Le Havre STM, and the last two rows

comprise results for the Shanghai STM. Light traffic (20 a/w) is depicted in the first and the

third picture rows. Intensive traffic (500 a/w) is presented in the second and the fourth rows. It

can be observed that in general the best solutions (left column) tend to have many large berths

(i.e. capable of hosting the longest vessels with Lmax = 400m). Note, however, that in these
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Figure 6.2: Numbers of berth lengths from set B = {100, 200, 300, 400, 500, 600} meters in
subsets of partitions for Le Havre, Shanghai, intensities 20 a/w and 500 a/w.

solutions (left column), not one but many berth lengths are chosen yet in various frequencies.

Conversely, the worst partitions have many short (100m) and very few large berths, which

seems the perfect worst solution. These general observations are moderated by traffic intensities

and STMs. In very low traffic (Fig.6.2 first and third row) there are many partitions in the

range [F (K∗), F (K∗) + σ(K∗)] (cf. Tab.6.4), performing relatively well and the strength of

the distinction between good and bad solutions in this situation is small. Consequently the

numbers of berths chosen in the population defined by range [F (K∗), F (K∗) + σ(K∗)] for low

traffic, represent frequencies of berth lengths in the whole set of partitions rather than the
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frequencies of berth lengths in good solutions. If we select even more restrictively the 20 best

solutions at light traffic (left column, first and third row) then tendencies in good solutions

become more visible: In Le Havre berths with Lmax = 400m are most frequently chosen, in

Shanghai berth lengths 300m and longer are selected. The difference between Le Havre and

Shanghai can be explained by different mix of vessel lengths in the STMs: Shanghai has more

short vessels than Le Havre. For the intensive traffic (Fig.6.2 second and fourth row) for the

population of solutions in range [F (K∗), F (K∗) + σ(K∗)] (central column) the results resemble

the restricted set of the 20 best solutions (left column). It can be concluded that for intensive

traffic, good partitions have to be selected carefully, their number is small (see Tab.6.4) and

hence they are more like the 20 best solutions. The chosen numbers of certain length berths

differ in Le Havre and Shanghai because their STMs differ in the mix of long and short vessels.

In Le Havre large berths (λi ≥ 400m) dominate in the best solutions because Le Havre is the

first oceanic port in western Europe and large mother ships are quite frequent. In Shanghai,

berth lengths 300m and 400m are the most frequently selected because Shanghai Yangshan port

is located in the estuaries of two large rivers and short ships are more common than in Le Havre

[90]. Note that in both ports not one but a few berth lengths are chosen in the 20 best solutions.

6.4.2 Quality Dispersion

In Fig.6.3 dispersion σ(K) vs solution quality F (K) for all partitions is shown. Along horizontal

axes F (K) is shown. Standard deviation σ(K) of F (K, s, i) in the population of 80 evaluations

is shown along the vertical axes. Each point represents one partition. Colors show the number

of large berths, that is |{λi : λi ≥ 400m}|. The choice of F (K) as a partition quality measure

(horizontal axis) is natural because F (K) is a quality of service measure. Let us note that

partitions incurring large dispersion of service quality are hard to manage: there are scenarios

where such partitions perform well but also scenarios where quality of vessel service is low,

there are scheduling algorithms which manage the scenarios on such partitions well, but also

algorithms that are not equally effective. Thus, standard deviation of F (K, s, i) is also a useful

indicator of the partition goodness, and partitions with low dispersion should be preferred.

In Fig.6.3a,b results for low intensity traffic, and in Fig.6.3c,d for high intensity traffic, are

shown, respectively. It can be observed that differences between good and bad partitions can

be large, even two orders of magnitude differences both in F (K) and in the standard deviation
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Figure 6.3: MWFT average–standard deviation diagram including all brute-force solutions.
a) Le Havre intensity 50, b) Shanghai intensity 100, c) Le Havre intensity 500, d) Shanghai
intensity 500 a/w.

are possible. Thus, optimization of quay partition is relevant. Generally, partitions with high

quality of service (low F (K)) are also the partitions with low σ(K). This is particularly true for

low intensity traffic (Fig.6.3a,b) – by improving F (K) also σ(K) is improved. In the case of low

intensity traffic many points overlap in Fig.6.3a,b, which indicates that there are many solutions

similar in the criteria of F (K) and σ(K). This observation is in line with the earlier find (cf.

Tab.6.4) that at low traffic there are many similar solutions, in particular similar to the one

with best F (K). Colors in Fig.6.3a,b show that partitions with small number of large berths

are particularly bad because they do not differ much from the worst-case solution comprising

one berth of length Lmax = 400m and all remaining berths as short as possible (100m).

For high intensity traffic (Fig.6.3c,d) similar observations can be made: while improving
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Table 6.5: MWFT average–standard deviation nondominated solutions at ι =500 a/w
Le Havre

K F (K) σ(K) No.large berths
(0,0,0,2,3,2) 17438.7 934.5 7
(0,0,0,1,5,1) 17762.7 904.2 7
(0,0,1,4,2,1) 17847.7 852.7 7
(0,0,2,1,5,0) 18411.3 671.2 6
(0,2,2,0,5,0) 20713.2 590.4 5
(1,4,2,0,4,0) 24781.3 515.8 4

Shanghai
K F (K) σ(K) No.large berths

(0,0,6,8,0,0) 4197.8 381.8 8
(0,0,7,6,1,0) 4202.1 380.3 7
(1,0,7,7,0,0) 4297.4 340.2 7
(2,0,8,6,0,0) 4477.1 318.8 6
B = {100, 200, 300, 400, 500, 600} admissible berth lengths in meters

F (K) also dispersion of F (K,S, i) is decreasing, solutions with inadequate number of large berths

are the worst. However, in high intensity traffic the partitions are less similar to each other, in

the performance sense, which is marked by more dispersed cloud of points showing the solutions.

If F (K) and σ(K) are two criteria of partition quality, then it can be observed that a Pareto-

front of nondominated solutions exist when traffic is intensive. The nondominated solutions in

Fig.6.3c,d are presented in Tab.6.5. Beyond the values of F (K), σ(K), also the partitions and

the number of large berths are shown in Tab.6.5. For example, partition (0, 0, 0, 2, 3, 2) for Le

Havre has 2 berths of length 400m, 3 berths of length 500m, and 2 berths 600m-long. It can be

observed that in Le Havre partitions with the smallest F (K), all berths can accommodate the

longest vessels (Lmax = 400m). However, this impacts dispersion of F (K,S, i) because traffic

of large and short vessels interfere on these large berths. Adding a few shorter berths allows

to slightly separate short vessels from the large ones. Thanks to this, standard deviation of

MWFT decreases, yet F (K) increases. In Shanghai similar phenomena emerge, yet the traffic

of shorter vessels in Shanghai is more intensive (in relation to large vessels) than in Le Havre,

and consequently the partition with the smallest F (K) already has berths that are shorter than

Lmax.
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Table 6.6: The best solution dominance in Student’s t-test
Le Havre

intensity ι [a/w] 20 50 100 200 500
p1→2 0.037 0.343 9.31E-23 1.46E-12 0.159

No.sol.p1→i ≥ 0.01 6 2 0 0 1
Shanghai

intensity ι [a/w] 20 50 100 200 500
p1→2 nan nan 0.655 0.394 0.462

No.sol.p1→i ≥ 0.01 nan nan 23 3 1
p1→i – p-value for the test that the 1st- and ith-best solutions perform the same
No.sol.p1→i ≥ 0.01 – number of solutions with p1→i ≥ 0.01

nan – over 800 best solutions are indistinguishable in quality, p-values couldn’t be
computed

6.4.3 Solution Similarity

In this section we analyze probabilities that some solutions of SQPP turned out good by ran-

dom coincidence. This analysis can be also rendered in terms of the SQPP solutions similarity.

More formally, for pairs of partitions K1,K2 probabilities (p-values) in Student’s t-test for

paired samples are calculated with the null hypothesis that the performance of the two par-

titions is the same. The samples are paired in this sense that the results in 80 evaluations

F (K1, s, i), F (K2, s, i) over the set of 10 scenarios s and 8 algorithms i are matched. If the

obtained p-values are low then it means that the two partitions performed differently in the

evaluations and the dominance of one solution over the other is not a coincidence. Conversely,

high p-values indicate that two partitions K1,K2 performed similarly in the evaluations, the

order of the two solutions with respect to F (K1), F (K2) could easily be different. The p-value

is not only a score allowing to reject a null hypothesis, but can also be interpreted as a measure

of similarity between the two solutions K1,K2. For brevity of exposition we will refer to the

p-values as an indicator of similarity.

In Tab.6.6 dominance of the best partition is demonstrated using its p-values in the test

with the second-best solution (denoted p1→2). It can be seen that the first and the second-

best solutions are often similar in performance because the p-values happen to be greater than

0.3. The Le Havre case at ι ∈ {20, 100, 200} is different because probabilities p1→2 are at most

0.037. In the case of Shanghai and ι ∈ {20, 50} the number of solutions close to the best one

is large (see Tab.6.4) so that over 800 best solutions were indistinguishable in their evaluations.

Consequently, p-values couldn’t be calculated. Despite this computational inconvenience, this
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Figure 6.4: p-values of a t-test that pairs of partitions perform the same. 100 best partitions,
Le Havre, arrival intensity a) 20, b) 50, c) 100, d) 200, e) 500 a/w.

situation shows that at low intensity traffic best solutions for Shanghai are also very similar in

the performance sense.

The number of solutions which p-values are at least 0.01 in the paired test with the best

solution is also shown in Tab.6.6. It can be concluded that the set of solutions similar to the

best one is not large and its cardinality decreases with arrival intensity.

The results of pairwise similarity tests for the 100 best solutions are shown in Fig.6.4 for

Le Havre and in Fig.6.5 for Shanghai. The partitions K are put along the axes in the order

of increasing F (K). The p-values for pairs of partitions are indicated in color: values smaller

than 0.01 are shown as white points, values greater than 0.99 are marked red, values in range

[0.01,0.99] are shown as shades of green. It can be seen in Fig.6.4 and Fig.6.5 that the tendency

of forming groups of solutions performing similarity depends on the traffic intensity. In Le Havre

the solutions differ most for arrival intensity 100 a/w (Fig.6.4c). Blocks of similar solutions can

be seen both for the lighter (Fig.6.4a,b) and for more intensive traffic (Fig.6.4d,e). For the light

traffic there is abundant free space at the quay and it is possible to build good schedules on
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Figure 6.5: p-values of a t-test that pairs of partitions perform the same. 100 best partitions,
Shanghai, arrival intensity a) 100, b) 200, c) 500 a/w.

many alternative partitions. Hence, groups of similarly performing partitions almost naturally

exist. This situation echoes results shown in Tab.6.4. In heavy traffic space at the quay is

over-subscribed and vessels inevitably have to wait. Some groups of partitions perform similarly

because they do not offer any alternatives to the waiting. The border case of arrival intensity

100 a/w (Fig.6.4c) distinguishes solutions the most because traffic is intensive enough to fill

the available quay and it is also light enough to allow avoiding vessel wait by the virtue of a

good partition choice. Similar observations can be made for Shanghai (Fig.6.5). For arrival

intensities 20, 50 a/w over 800 best solutions were indistinguishable from the performance point

of view and p-values couldn’t be computed (though should be considered equal to 1). For arrival

intensities greater than 100 and growing, the solutions become increasingly dissimilar.

It can be concluded that the set of solutions with similar performance pattern as the best

solution is not large (cf. Tab.6.6), and its size decreases with traffic intensity. Groups of similarly

performing solution appear mostly at light traffic (Fig.6.4a, Fig.6.5a) and to a lesser extent also

at heavy traffic (Fig.6.4e, Fig.6.5c).

6.4.4 Equipartition

By equipartition we understand a type of solution in which the quay is divided into equal length

berths. The chosen berth length λi must be at least as long as Lmax = 400. Since the chosen

berth lengths λi may not divide Q, the remaining quay length is assigned to as long berth lengths

as possible. Note that the BBF algorithm proposed in Section 6.3.3 builds only one of possible
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Table 6.7: Equipartition solutions for intensity 500 a/w
Le Havre

K F (K) σ(K) No.large berths
(0,0,0,0,1,5) 18086.3 1499.4 6
(0,0,0,0,7,0) 18792.4 882.8 7
(0,0,1,8,0,0) 19726.5 1085.7 8

Shanghai
K F (K) σ(K) No.large berths

(0,1,0,0,0,8) 6494.7 1465.6 8
(0,0,0,0,10,0) 5549.0 1385.4 10
(0,1,0,12,0,0) 4695.9 671.1 12
B = {100, 200, 300, 400, 500, 600} admissible berth lengths in meters

equipartition solutions. The performance of equipartition layouts for arrival intensity 500 a/w is

shown in Tab. 6.7. With respect to F (K) equipartition solutions are not optimum, but they are

not among the worst either (cf. Tab.6.5 vs Tab.6.7 and Fig.6.3). However, their solution quality

dispersion score σ(K) is significantly worse than for the solutions on F (K), σ(K) Pareto-front.

In conclusion, equipartition is not recommended as better solutions are readily available.

6.5 Evaluation of the Partitioning Algorithms

In this section we report on the performance of the algorithms for SQPP. The algorithms

were evaluated on the STM, Q pairs: Hamburg STM, Q = 7500m, Le Havre STM, Q =

3500m, Rotterdam STM, Q = 6000m, Shanghai STM, Q = 5000m, Singapore STM, Q =

14000m, Singapore STM, Q = 20000m, Singapore STM, Q = 26000m, with admissible berth

lengths B = {100, 200, 300, 400, 500, 600} meters and for arrival intensities ι ∈ {20, 50, 100,

200, 500, 1000} a/w. The methods of scenario generation were the same as described in Section

5.4. Due to high complexity, only the instances of Le Havre Q = 3500m, Shanghai Q = 5000m

for intensities ι ∈ {20, 50, 100, 200, 500} were solved by brute force approach.

Algorithms can be evaluated on the criteria of computational cost and solution quality.

The computational cost has two components: algorithm own runtime and the cost of solution

evaluations. Generally the former is negligible compared with the latter. For example, histogram

matching methods from Section 6.3.2 were executed in at most 0.02s on a standard PC with

i7-8550U@1.80GHz CPU, while the partition evaluations on a high-performance server CPU

can last over 751s (see Tab.6.2). Furthermore, computational effort of the evaluations can
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Table 6.8: Example number of evaluations by hill climber (min,median,max)
STM, Q \ ι 20 50 100 200 500 1000
Le Havre, Q =3.5km 6,6,9 6,6,6 6,6,6 6,6,6 14,14,14 8,8,8
Shanghai, Q =5km 5,6,12 5,6,10 10,10,51 69,69,69 60,60,60 60,60,60
Singapore, Q =14km 5,5,5 5,5,15 5,6,17 30,35,38 182,190,203 60,60,65
Singapore, Q =26km 5,5,5 6,6,13 5,13,16 5,5,15 89,99,131 51,51,55

Table 6.9: Example number of evaluations by tabu search (min,median,max)
STM, Q \ ι 200 500 1000
Le Havre, Q =3.5km 401,401,401 317,392,401 66,75,129
Shanghai, Q =5km 270,299,401 146,146,315 98,101,113
Singapore, Q =14km 113,401,401 319,319,401 54,60,60
Singapore, Q =26km 401,401,401 401,401,401 137,154,154

be arbitrarily resized by changing the number of test scenarios and the size of the scheduling

algorithms portfolio. Hence, time performance of the algorithms should rather be assessed by the

number of calls to the solution evaluation procedure. For this complexity measure algorithms

from Section 6.3 can be ordered as follows: histogram matching and BBF have cost of one

evaluation, Rnd10 has cost of 10 evaluations. Example numbers of evaluations of hill climber

are shown in Tab.6.8 and of tabu search in Tab.6.9. Thus, the hill climber used from 5 to 203

evaluations, and tabu search used 54 to 401 evaluations (the fixed maximum value), varying with

the STM, Q, and arrival intensity. Brute force enumeration has the highest evaluations cost

as shown in Tab.6.3. This cost is growing polynomially with the Q/λi ratios but exponentially

with the number f of admissible berth lengths. Returning to Tab.6.8 and Tab.6.9, HC and tabu

search were run 5 times to collect the data for these tables. It could be observed that for small

intensities ι ≤ 200a/w tabu stops on the iteration limit, while for larger intensities on 24 hour

runtime limit.

The second algorithm performance measure is quality of the solutions as defined in (6.1).

As observed in Section 6.4, for low arrival intensities quay partitioning is immaterial and any

partition is equally good. Consequently, differences between solutions built by the algorithms

are negligible if arrival intensity is low. For this reason we do not report on the cases where

the differences in solution scores are insignificant. Precisely, the results are not reported, as not

distinguishing the algorithms in a significant way, if (maxa∈A{F (Ka)} − mina∈A{F (Ka)}) <

mina∈A{σ(Ka)}), where A is the set of algorithms and Ka is a solution constructed by a ∈ A.

Quality of the results including brute force approach are presented in Tab.6.10, and for larger
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Table 6.10: F (K) for algorithmically built SQPP solutions
Le Havre, Q = 3500m

ι BF BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
50 a/w 25.945 25.945 25.959 25.959 25.959 26.082 28.283 25.945 25.945
100 a/w 409.17 409.17 613.12 548.60 612.87 675.55 1403.85 409.17 409.17
200 a/w 4664.4 4778.5 4924.2 4804.5 4925.0 5101.4 6464.9 4778.5 4664.4
500 a/w 17437 18085 18353 17851 18351 18343 22619 17770 17437

Shanghai, Q = 5000m
ι BF BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
200 a/w 27.689 50.952 29.337 29.320 31.743 31.741 36.371 27.976 27.689
500 a/w 4199.1 6492.6 4693.5 4201.8 4879.9 4880.7 5377.8 4433.1 4199.1
bold – the best solution by a non-brute force algorithm

intensities in Tab.6.11 (excluding BF). For brute force method the optimum value F (K∗) is

shown. For Rnd10, average of the 10 random solutions are shown under F (K). For the hill

climber and tabu search the median of F (K) in the run repetitions is shown. The best non-brute

force algorithm results are shown in boldface.

It can be seen in Tabs 6.10 and 6.11 that for low arrival intensities (Le Havre, ι = 50,

Singapore Q=26000m and Q=20000m , ι = 500) quality of the solutions does not differ much.

For larger intensities, our algorithms have solution values significantly below Rnd10. If the

optimum solution K∗ is known (Tab.6.10), then there are algorithms with solutions values close

to F (K∗). This signifies that our methods indeed work and provide good solutions. For the

cases where tabu search didn’t build the best solutions, ILP2 is the dominating algorithm, with

IPL2f being best once and ILP2a in 4 other cases. BBF has more complex behavior because

for Le Havre it builds the best heuristic solutions at intensities ι ≤ 100 a/w. For Le Havre at

ι = 500 a/w BBF is only 3.7% worse than tabu search which provided the best solution in this

case. For other STMs BBF fails and is even worse than Rnd10. Such variable BBF performance

occurs because BBF builds partitions with as long berths as possible, which is effective in Le

Havre with dominating long mother ships, but is counterproductive when shorter vessels are

very common.

Again, it may be argued that the above results were obtained by a random coincidence. In

order to verify this, p-values in the paired samples Student’s t-test were calculated for each pair of

the algorithms with the null hypothesis that the performance of the two algorithms is the same.

The samples are paired in this sense that results {F (Ka), F (Kb)} of a pair {a, b} of algorithms

on the same instance (STM, ι,Q,B) can be matched and compared. Conventionally, the results
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Table 6.11: F (K) for algorithmically built SQPP solutions
Hamburg, Q =7500m

ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
1000 a/w 18347 10988 9314.9 10988 10991 13316 9282.7 9202.3

Le Havre, Q =3500m
ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
1000 a/w 38774 38776 37894 38785 38791 44093 38436 37249

Rotterdam, Q =6000m
ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
1000 a/w 24981 21823 21300 21903 21782 23964 22677 21941

Singapore, Q =14000m
ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
500 a/w 418.84 116.36 69.76 116.32 54.66 224.73 49.88 46.81
1000 a/w 5082 3903.3 3884.6 3903.6 3881.5 4530.4 4174.3 4174.3

Singapore, Q =20000m
ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
500 a/w 21.112 20.296 20.113 20.298 20.049 20.477 20.033 19.990
1000 a/w 2331.4 1556.5 1438.3 1556.6 1400.4 1846.1 1730.0 1730.0

Singapore, Q =26000m
ι BBF ILP1f ILP2f ILP1a ILP2a Rnd10 HC tabu
500 a/w 19.638 19.569 19.555 19.569 19.547 19.579 19.559 19.558
1000 a/w 820.91 310.07 215.06 310.25 180.22 371.05 312.10 222.29
bold – the best solution found

of the Student’s t-test are used used as an indicator whether a null hypothesis can, or cannot, be

rejected at certain confidence level. Yet, for brevity of presentation we will present the p-values

in terms of algorithm similarity measure. Low p-values indicate that probability of obtaining the

given dominance between by two algorithms results as a random coincidence is low. Hence, low

p-values signify that the two considered algorithms perform differently. The results of the paired

algorithm test for similarity are presented in Fig.6.6a. For many algorithm pairs p-values are in

a range of (0.1,0.2) which is larger than confidence levels of 0.05 or 0.1 conventionally assumed

to reject a statistical hypothesis. Yet, it is hard to assess whether probabilities in range (0.1,0.2)

are high or low. Consider for example the p-value for brute force (BF) and Rnd10 pair. This pair

of algorithms may be thought of as different because BF provides the optimum solution while

Rnd10 solutions may be considered unbiased, i.e. tending neither toward good nor toward bad

solutions. But even this algorithm pair has p-value=0.1403. Therefore, it is plausible to assume

that algorithm pairs with p-values smaller than 0.1403 may be considered at least as different as

BF-Rnd10 pair. The results scaled to p-value=0.1403 as a unit, are shown in Fig.6.6b. It can be

seen that in most of the cases the algorithms perform at least as differently as {BF,Rnd10} pair.

{ILP2a,ILP2f} are the most similarly performing methods. This is intuitively expected because

in 75% of tested instances the difference between solutions of ILP2a and ILP2f was less than
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Figure 6.6: Algorithm similarity in Student’s t-test. a) p-values, b) p-values scaled to BF vs
Rnd10 p-value. Higher values indicate more similar algorithms.

2.7%. The next most similarly performing pair is {ILP2f,HC}. Also in this case, in majority of

instances results are quite close to each other: in 75% of instances the solution quality difference

is below 4.3%. Thus, generally our algorithms are distinct methods performing differently, yet

there are instances on which some pairs obtain similar results.

This section can be concluded by observing that the presented algorithms have their own

domains of good performance: BBF is good for ports with many large vessels (e.g. Le Havre).

ILP2f and ILP2a can be recommended when traffic is intensive and solution evaluations are

costly. Tabu search is good in all cases, but its main limitation is high solution evaluation cost.

6.6 Technical aspects of solving SQPP

In this section, SQPP solving method will be presented. Time scalability and reliability of

the SQPP optimization workflow on the slurm platform will be analyzed. The tests were

executed on slurm version 22.05.0 of Eagle/Altair supercomputer at Poznań Supercomputing

and Networking Center [85] on the hardware platform described in Section 6.2. All the scalability

tests on configurations of the workflow mentioned in this section were executed at least three

times. Mind, that some parts of the workflow were executed many more times because the

partition evaluation is a repetitive process. The results presented in this section were obtained

for Le Havre STM. The description will be based on the example of Hill Climber (Section 6.3.4).

For other algorithms the core of the workflow is the same.
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Figure 6.7: Workflow architecture.

6.6.1 Optimization Workflow

Since we had an existing code base for BAP, and hence some code heritage, we decided to

implement the optimizer as a workflow wrapping the existing code instead of refactoring it into

a monolithic solution in one software technology. We comment on this choice in the following

sections. We will call the parts of the workflow running in parallel as the processes.

Our workflow architecture is depicted in Fig.6.7. Before the optimization process starts, the

STM data is used to generate vessel arrival scenarios (denoted as steps A and B in Fig.6.7).

The workflow continues as a slurm job starting with a hill climber optimizer written in Python

(HC.py). This piece of code reads quay length Q and admissible berth lengths B, generates

quay partitions (layout.txt) and calls Evaluate-1-layout.sh script executed as a slurm job

(steps 1, 2 in Fig.6.7). This script merges scenarios with layout, thus creating BAP instances,

and invokes Evaluate-1-instance.sh scripts which execute a scheduling code schedule for

various pairs of BAP instance and scheduling algorithm (steps 3, 4, 5 in Fig.6.7). This part of the

workflow may have different implementations: both Evaluate-1-instance.sh and schedule

can be executed sequentially or in parallel. For Evaluate-1-instance.sh we assumed two

options: either all the BAP instances are processed sequentially, or in parallel as slurm jobs

started by sbatch calls (10 parallel jobs). The schedule codes were executed sequentially or in

groups of 2, 4, 8 parallel processes by invoking them with ampersand (&). Hence, we will report
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on the workflow performance with 1, 2, 4, 8, 10, 20, 40, 80 parallel processes. Higher parallelism

degrees were also used because in the full enumeration considered in Section 6.4 all partitions

were set to run in parallel by use of sbatch command. BAP schedules built by schedule are

stored as text files and statistics on the schedule quality for the tested quay layout are calculated

(steps 6,7). These results are fed back to the hill climber code as layout quality F (K) (step

8). For the single-pass algorithms like BBF, ILP1, ILP2 the workflow is executed once for one

layout. For Rnd10 it is repeated ten times for ten random layouts. In the case of tabu search

the workflow operates in the same way, only the HC.py code is substituted.

6.6.2 Time Scalability

The time performance of our workflow run on the slurm platform was measured as speedup vs

number of processes executed in parallel and vs size of the simulated traffic.

The speedup vs number of processes run in parallel is shown in Fig.6.8 for traffic intensity

ι = 500 a/w. This is equivalent to a BAP instance with roughly 26000 vessels. In this figure

speedup minimum, median and maximum are shown. The dotted line connects medians and

at each median point a pair of the number of parallel processes and the obtained speedup are

shown for clarity. It can be verified that the workflow scales well in this case because speedup

grows from 2 to 67 for two to eighty parallel processes, respectively. Such a behavior could be

intuitively expected because the crucial part of the optimization, which is the evaluation of a

berth layout, consists of the mutually independent evaluations of the traffic scenarios by a set of
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algorithms. Thus, the linear speedup is expected under optimistic assumptions. Unfortunately,

the overall picture is not as positive as outlined above. The size of the simulation has a great

impact on the performance. Precisely, the intensity of the vessel traffic ι determines evaluation

complexity and consequently the relationship between platform-incurred delays and the useful

simulation time. This ratio is large (simulations last longer than platform overheads) for high

traffic intensity of ι = 500 a/w and hence the speedup is nearly linear as shown in Fig.6.8. For

smaller arrival intensities, this ratio is not as advantageous as shown in Fig.6.9. In the figure

speedup quartiles are shown vs ship arrival intensities ι. Note that for 80 parallel processes,

also speedup should be close to 80 in an application that is scaling well. Unfortunately, this

is not the case here. It can be verified that for ι ≤ 50 a/w there is no advantage in workflow

parallelism. With growing intensity, and hence simulation time, the advantage of parallelism

finally emerges. Note that for m = 80 parallel processes, our workflow made 10 calls to sbatch,

sometimes resulting in a significant wait until starting the simulation. This wait time depends

on the actual user applications load and the number of active nodes in the computing cluster.

It can be guessed that the owners and operators of the slurm cluster had different objectives

(e.g. economizing on energy) than the users, which resulted in a slow reaction to sudden load

changes. In our case it had effect in long platform-related delays and low speedup for small

arrival intensities visible in Fig.6.9.

A closer verification of the workflow part dedicated to the evaluation of the layout is shown

in Fig.6.10 and Fig.6.11. This part of the workflow comprises steps 3–6 shown in Fig.6.7. Intu-
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itively, this part of the computation should be parallelizable very well because all the evaluations

of the quay partition on the instance-algorithm pairs are mutually independent. In the two fig-

ures, quartiles of speedup are shown vs parallelism degree (Fig.6.10) and arrival intensity ι

(Fig.6.11). For large simulation times, the scalability is good (Fig.6.10). Although the speedups

in Fig.6.11 are better for this intensive part of the simulation than for the whole workflow shown

in Fig.6.9, parallelism is hardly profitable for ι ≤ 50.

6.6.3 Reliability

The slurm installation that was at our disposal appeared surprisingly prone to failure. To the

extent we were able to verify it, the failures originated from the platform because the failures

were transient. The failure had two forms. In the first one, the squeue revealed a status "launch

failed requeued held". It can be found [29, 77] that it probably could have been attributed to

some minor and transient slurm misconfiguration. In such cases scontrol release <jobid>

command allowed to continue job execution. However, we considered it a failure because the

workflow stopped progressing. In the other failure type, a job was called using sbatch, it

appeared as running in squeue, but actually nothing executed and the slurm-<jobid>.out file

was not created.
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Table 6.12: Parameters of the best fitting failure distributions
type of failure distribution parameters
on-line time exponential λ = 0.0173927

call number Weibull α = 41804.0, β = 0.5, γ = 8

In the following discussion, we will refer to two models of failure. In the first one, referred to

as online time failure (OLTF), a failure in slurm execution happens with the progress of time.

Hence, long-running applications accumulate platform failures. This model applies to a whole

workflow, or equivalently, processing one instance of a SQPP. In the second model, which will

be referred to as call number failure (CNF), it is assumed that a failure appears after a certain

number of sbatch calls. Consequently, applications accumulate chances of slurm platform

failure with each new sbatch call. This model applies to sbatch calls to SLURM.

The results presented below use the idea of data censoring [101]. The executions that success-

fully completed are considered right-censored. That is, they could potentially fail in the latter

moment, however, the observation of the computation process finished and the failure moment

rests in some unknown future time, i.e., to the right of collected observations. In our observa-

tions, we have 26 complete data units, that is, 26 whole workflow failures and 189 right-censored

data units, i.e., successful workflow executions. In the OLTF model, 26 workflow failure times

and 189 successful completion times are used as the right-censored data. Hours are the time

units used in the OLTF model. Similarly, for the CNF model, we have 26 failures with the

successive number of the sbatch call that failed and 189 numbers of sbatch calls accumulated

in the whole workflow executions that ended correctly (the right-censored data).

The above data were processed with the Python Reliability library [68]. The best-fitting

distribution parameters are given in Tab.6.12. These distributions were chosen from the set

of exponential, gamma, Weibull, lognormal, loglogistic, normal and Gumbel distributions [68].

The quality of fit was assessed on the basis of the Bayesian Information Criterion (BIC) [100].

Exponential distribution fit best in the OLTF model. For the Weibull distribution that fit best

the CNF model of failures, parameter α = 41803.997 is often referred to as scale, β = 0.5 is also

called shape, and γ = 8 is location shift. That is, the fit distribution is shifted to the right by

8 failures. The distributions are visualized as cumulative density functions (CDFs) in Fig.6.12

and Fig.6.13. The results for OLTF can be interpreted in the following way: On average a

failure happens after 1/λ = 57.5 hours. For the assumed 24-hour runtime limit the probability
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of failure is 0.341. For the CNF model, referring to the number of sbatch calls at the assumed

limit of 401×10 calls, the probability of failure is 0.341. Possibly, a single-technology monolithic

software could allow to avoid the above reliability issues.

6.7 SQPP Summary

In this chapter we considered the quay partitioning problem in a stochastic setting (SQPP).

Various research paths presented in the earlier chapters of this thesis were merged here. Ship

traffic models introduced in Chapter 5 were elements of SQPP definition. An important com-

ponent in solving the SQPP is the evaluation of quay partitions. To evaluate the partitions we

used a purposefully designed portfolio of algorithms selected in Chapter 4 for short runtime and

good quality solutions at the chosen time limits. The nature of SQPP solution features was

extensively analyzed on the examples of Le Havre and Shanghai traffic models. It appears that

at low traffic intensity most of the quay partitions are almost equally good. Only under intensive

traffic, can the alternative solutions to SQPP show their superiority and the more intensive the

traffic is, the more different the partitions performances are. Under high traffic, solutions that

are good with respect to short waiting time are also good at the dispersion of waiting time.

Moreover, good partitions depend on the traffic features. For example, solutions with many

long berths are good for intensive large vessel traffic which corresponds with the DQPP results

under congestion (Section 3.6.2). Solutions based on building berths of equal lengths or as many

big berths as possible are generally not the best, yet for specific STMs can provide satisfactory

solutions. We proposed a set of algorithms to construct a quay partition. Brute force enu-

meration of all possible quay partitions and evaluating them is to a limited degree doable for

contemporary terminals. A number of methods with lower complexity were proposed, with the

goal of applying them in future terminal designs allowing many more berths. It turned out that

these methods can be competitive in various domains of application. Tabu search offers good

solution quality, but tends to be computationally demanding. In such situation partitions built

by ILP1, ILP2 can be used. We used the opportunity of solving SQPP to shed some light on

technical aspects of the optimization workflow. On the one hand, our workflow time efficiency

depends on the simulation size and large simulations offer better scalability. On the other hand,

long-running applications using many machines may encounter platform reliability issues.
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Conclusions and Final Remarks

This dissertation has explored several aspects of combinatorial optimization, vessel traffic mod-

eling interconnected on the grounds of port logistics, focusing on the Quay Partitioning Problem

(QPP), which is critical for efficient vessel servicing and resource allocation in maritime container

terminals.

The research began with the Discrete Quay Partitioning Problem, presenting two mixed

integer linear programming (MIP) methods partitioning a quay for a single known vessel arrival

scenario. Solution feature analysis demonstrated, among the others, that the 2in1 hybrid vessel

berthing method outperforms the 1in1 method in terms of robustness and space utilization. The

2in1 hybrid layout, which allows two vessels to share a berth, has been shown to use restricted

set of berth lengths better than the classic discrete berthing. Consequently, 2in1 layout results

in reducing idle time and increasing throughput. This finding laid the foundation for further

analysis of hybrid 2in1 layout in the subsequent sections of the dissertation.

Evaluation of quay partition by simulation on a realistic time horizon requires selecting spe-

cialized methods solving very large instances of Berth Allocation Problem (BAP). This fact

landed this research in the realm of the Algorithm Selection Problem (ASP). While address-

ing the ASP, a novel approach for selecting an optimal portfolio of algorithms for the BAP

was proposed. The ASP framework enhances the robustness and adaptability of the proposed

solutions to the required computation time budget, providing a systematic way to choose the

best-performing algorithms for different scenarios. No algorithm is excluded from the portfolio
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as long as there is an instance and time limit under which this algorithm provides the best

solution. Thus, the portfolio evolves with the runtime limits. This approach ensures that the

selected algorithms are well-suited to the specific characteristics of the problem.

The Ship Traffic Model (STM) was introduced to create realistic test instances for QPP. By

analyzing historical ship traffic data from selected ports, the STM accurately reflects real-world

conditions and dependencies. A detailed consideration of individual port traffic characteristics

and the arriving ship attributes interactions ensures that the test scenarios are robust and

representative. The STM is instrumental in validating the proposed quay partitioning strategies

under realistic conditions, highlighting the importance of data-driven modeling in port logistics

research. As an additional contribution, a method of comparing ports emerged. It was found

that each port has unique elements in its STM which are consequences of the location (mainly),

mix of clients and shipped goods.

Finally, the dissertation explored the Stochastic Quay Partitioning Problem (SQPP) in which

the unknown future vessel traffic is represented by arrival scenarios generated from the earlier

STMs and the partition performance is evaluated by the tailored portfolio of algorithms for

BAP. A set of algorithms was designed to partition the quay in such stochastic setting. It was

discovered that partitioning the quay into equal length berths is not the best option. It was

established already in the deterministic case that such partitions can be arbitrarily bad. In the

stochastic case they are not among the worst, with respect to the mean waiting time, but are

unwieldy which emanates in large dispersion of performance evaluations. Furthermore, large

ships dominate in defining good partitions. It was confirmed both in the discrete (DQPP) and

in the stochastic case (SQPP). This part of the research underscores the importance of flexi-

bility and resilience in quay partitioning strategies, demonstrating that stochastic optimization

techniques can significantly improve performance in uncertain environments. The results ob-

tained for DQPP and SQPP demonstrated that quay partitioning has great impact on container

terminal performance. Low values of vessel waiting times can only be obtained by selected quay

partitions. Consequently, we consider that the research hypothesis posed in Section 1.2 has been

confirmed.

This study opens avenues to new research directions. The QPP deserves developing dedicated

algorithms such as, e.g., metaheuristics both in the deterministic and in the stochastic setting.

The methodology of ASP developed to choose BAP algorithm portfolios can be applied in other
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combinatorial optimization problems. We hope that the results and methods presented in this

thesis will help both researchers and practitioners designing container terminals of the future.



Appendix A

Streszczenie w języku polskim

Globalna żegluga kontenerowa jest jednym z kluczowych i najtrudniejszych sektorów gospodarki.

Typowe dla niej problemy można odwzorować na szeroko badane zagadnienia optymalizacji

kombinatorycznej i badań operacyjnych. Podczas projektowania nowego morskiego terminala

kontenerowego lub przebudowy istniejącego, kluczową decyzją jest podział linii brzegowej (ang.

quay) na nabrzeża (ang. berths). Technicznie, układ nabrzeży terminala to podział jednego

długiego odcinka (linii brzegowej) na wiele mniejszych (nabrzeża). Rozwiązanie problemu QPP

wymaga określenia liczby nabrzeży i ich długości w taki sposób, aby czas oczekiwania na obsługę

przybywających kontenerowców był zminimalizowany. W rozprawie doktorskiej stawiana jest

następująca hipoteza: Wydajność morskiego terminala kontenerowego można poprawić poprzez

optymalizację podziału linii brzegowej na nabrzeża.

Pierwszy z rozważanych w pracy problemów, deterministyczny problem podziału linii brze-

gowej (ang. Deterministic Quay Partitioning Problem, DQPP), sformułowany został w dwóch

wariantach: 2w1 i 1w1, dopuszczających odpowiednio przydział maksymalnie dwóch statków lub

tylko jednego statku do poszczególnych nabrzeży. Oba warianty okazały się NP-trudne nawet

w bardzo restrykcyjnych przypadkach. Dla obu przypadków skonstruowano zadanie mieszanego

programowania liniowego (ang. Mixed Integer Linear Programming, MIP). Oceniono skalowal-

ność czasową rozwiązania DQPP za pomocą MIP. Przeanalizowano, m.in. jak rozrzut wielkości

statków wpływa na wybrane długości nabrzeży.

W pracy rozważany jest problem wyboru algorytmów (ang. Algorithm Selection Problem,
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ASP) do rozwiązania dużych problemów przydziału statków do nabrzeży (ang. Berth Alloca-

tion Problem, BAP) z ograniczeniami budżetu czasowego. Indywidualna ocena 72 szybkich

heurystyk doprowadziła do wniosku, że pewne algorytmy zachłanne są najlepsze dla krótkich

budżetów czasowych, a metaheurystyki są najlepsze dla dużych budżetów czasowych. Zbadano

również koncepcję portfolio algorytmów do rozwiązania BAP. Badanie ewolucji portfolio w

czasie nie tylko potwierdziło wcześniejszą jakościową intuicję co do stosowalności konkretnych

heurystyk, ale także dostarczyło ilościowego sposobu przechodzenia z pierwszego zestawu

algorytmów do drugiego. Wyniki przedstawione w tym rozdziale mogą być interesujące z

punktu widzenia metodologicznego, ponieważ zaproponowano niestandardowe podejście do

oceny heurystyk umożliwiające kompromis między długością czasu wykonania a jakością

rozwiązań.

W pracy analizowane są wzorce ruchu kontenerowców w ośmiu portach na świecie. Ma to

na celu opracowanie modeli ruchu (ang. Ship Traffic Model, STM) do optymalizacji i symulacji

logistyki portowej. Modele te zostały wykorzystane w rozdziale 6. Opracowano bardziej zaawan-

sowane i szczegółowe modele niż istniejące we wcześniejszej literaturze. Modele uwzględniają

zależności między rozmiarami statków, czasami przetwarzania (obsługi) i czasami przybycia.

Każda klasa wielkości kontenerowców ma swój własny model czasu przetwarzania i czasu powrot

w postaci reprezentacji statystycznej. Szczególną uwagę zwraca się na ich rozkłady. Brane są

pod uwagę również statki aperiodyczne.

W pracy rozważano problem podziału linii brzegowej w wariancie stochastycznym (ang.

Stochastic Quay Partitioning Problem, SQPP). Różne ścieżki badawcze przedstawione we

wcześniejszych rozdziałach tej pracy zostały tutaj połączone. Modele ruchu statków wprowad-

zone w rozdziale 5 były elementami definicji SQPP. Aby ocenić podziały linii brzegowej, użyto

celowo zaprojektowanego portfolio algorytmów wybranych w rozdziale 4 dla zadanego krótkiego

czasu symulacji i dobrej jakości rozwiązań w wybranych granicach czasowych. Rozwiązania

oparte na budowaniu nabrzeży o równej długości lub jak największej liczby dużych nabrzeży

nie są na ogół najlepsze, jednak dla niektórych STM mogą zapewnić zadowalające rozwiązania.

Wyliczenie metodą brutalnej siły wszystkich możliwych podziałów nabrzeża i ich ocena są w

ograniczonym stopniu wykonalne dla współczesnych terminali, takich jak Hawr lub Szanghaj.

Zaproponowano szereg metod o mniejszej złożoności, których celem jest zastosowanie w

przyszłych projektach terminali umożliwiających budowę znacznie większej liczby nabrzeży.
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Summary

Global container shipping is one of the key and most challenging sectors of the economy. The

typical problems can be successfully mapped to the widely studied problems of combinatorial

optimization and operations research. When designing a new maritime container terminal or

rebuilding an existing one, a key decision is the division of the quay into berths. Technically,

the layout of the terminal quay is the division of one long segment (the quay) into many smaller

ones (the berths). The solution requires determining the number of berths and their lengths

in such a way that the waiting time of the arriving container ships is minimized. In this doc-

toral dissertation, the following hypothesis is defended: The efficiency of a maritime container

terminal can be improved by optimizing the partitioning of the quay into berths.

The first considered problem, the Deterministic Quay Partitioning Problem (DQPP), is

formulated in two variants: 2in1 and 1in1, allowing for the allocation of at most two ships or

only one ship to individual berths, respectively. Both variants turned out to be NP-hard even

in very restrictive cases. For both cases, a mixed integer linear program (MIP) was constructed.

The time scalability of the DQPP solution using MIP was assessed. Among the others, the

impact of the dispersion of ship sizes on the selected berths lengths was analyzed.

This thesis considers the problem of selecting algorithms (Algorithm Selection Problem,

ASP) for solving large Berth Allocation Problems (BAP) with time budget constraints. The

individual evaluation of 72 fast heuristics led to the conclusion that certain greedy algorithms are

best for short time budgets, while metaheuristics are best for large time budgets. The concept
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of a portfolio of algorithms for solving BAP was also investigated. The study of the evolution

of the portfolio in time not only confirmed the previous qualitative intuition about the use of

specific heuristics, but also provided a quantitative way of moving from the first set of algorithms

to the second. The results presented in this Chapter can be interesting from a methodological

point of view, as a non-standard approach to the evaluation of heuristics is proposed, including

a trade-off between the execution time and the solution quality.

Traffic patterns of container ships in eight ports around the world are analyzed in this thesis.

The aim is to develop traffic models (Ship Traffic Models, STMs) for the optimization and

simulation of port logistics. These models were used in Chapter 6. More advanced and detailed

models than those in the previous literature were developed. The models take into account the

relationships between ship sizes, processing (handling) times and return times. Each vessel size

class has its own statistical processing time model and retrn time model. Particular attention

is paid to the distributions of these times. Aperiodic ships are also considered.

In the thesis Stochastic Quay Partitioning Problem (SQPP) was considered in Chapter 6.

Different research paths presented in the previous chapters were combined here. The ship traffic

models introduced in Chapter 5 were elements of the SQPP definition. To evaluate the quay

partitions, a purposefully designed portfolio of algorithms selected in Chapter 4 was used for the

given short simulation time budget and good quality of solutions. It turned out that solutions

based on building equal length berths or as many large berths as possible are generally not the

best, but for specific STMs they may provide satisfactory solutions. Brute force enumeration

of all possible quay divisions and their evaluation, are to a limited extend feasible for modern

terminals such as Le Havre or Shanghai. A number of less complex algorithms have been

proposed with the aim of designing future terminals significantly more berths.



Appendix C

Algorithm Portfolios for Large

Berth Allocation Problems

C.1 Introduction

Algorithm Selection Problem (ASP) consists in selecting a method most suitable to solve an

instance of a certain problem. Algorithm portfolios are one of the ways of addressing the ASP.

Algorithm portfolios are sets of algorithms which can be applied collectively to solve a certain

problem. The algorithms can be, e.g., executed sequentially or in parallel, on a given instance of

the considered problem and the best solution is chosen. Here we study algorithm portfolios for

large instances of Berth Allocation Problem (BAP) [7]. The BAP must be solved as sub-problem

in simulations of a port, and hence the execution time T of the portfolio is a key constraint.

The BAP considered in this paper is formulated as follows. A set of m berths of lengths

λi, for i = 1, . . . ,m, is given. There are n vessels defined by: arrival times rj , lengths Lj ,

processing (unloading and loading) times pj , and importance wj , for j = 1, . . . , n. Vessel j

can be moored at berth i only if Lj ≤ λi. The quay is divided into discrete berths and each

berth can accommodate at most two ships at the same time. The minimized objective is the

mean weighted flow time MWFT =
∑n

j=1(cj − rj)wj/
∑n

j=1 wj , where cj is completion time of

handling ship j.

Let I ′ be a set of training instances and let A be a set of algorithms. For each pair (a, I) : a ∈

152



C.1. INTRODUCTION 153

A, I ∈ I ′ a sequence of pairs (t1aI , q
1
aI), (t

2
aI , q

2
aI), . . . , (t

KaI

aI , qKaI

aI ) representing solutions built by

a for I over time is given. The tjaI are execution times and qjaI are mean weighted flow times.

If some algorithm a does not improve solution quality over time then only one pair (t1aI , q
1
aI) is

given. Let t(a, I, T ) denote runtime of algorithm a on instance I with the time limit T . Let

y(a, I, T ) = 1 if ∃j : tjaI ≤ T, q
j
aI = qmin(I, T ), otherwise y(a, I, T ) = 0.

In the following sections name cover portfolio refers to the algorithm portfolios obtained by

solving the integer linear program (ILP) covering the test instances with minimum cost wins:

minCost (C.1)∑
a∈A

y(a, I, T )xa ≥ 1 ∀I ∈ I ′ (C.2)∑
a∈A

t(a, I, T )xa ≤ Cost ∀I ∈ I ′ (C.3)

Name regret portfolio will refer to the algorithm portfolios obtained by solving the integer

linear program covering the test instances by minimizing the greatest regret under limited

computational Cost (Min-Max Regret (MaxReg):

minG (C.4)
q(a, I, T )

qmin(I, T )
uaI ≤ G ∀I ∈ I ′ ∀a∈A (C.5)∑

a∈A
uaI ≥ 1 ∀I ∈ I ′ (C.6)

xa ≥ uaI ∀I ∈ I ′ ∀a∈A (C.7)∑
a∈A

t(a, I, T )xaI ≤ Cost ∀I ∈ I ′ (C.8)

SetA of evaluated algorithms has 72 members. In this, 60 algorithms are greedy, 12 are meta-

heuristics. The algorithms have been described in more detail in [92]. For the training and eval-

uation purposes set I ′ of random instances have been generated as follows: n ∼ U [1, 1000], m ∼

U [1, 100], rj ∼ U [0, 1000], pj ∼ U [1, 24], wj ∼ U [1, 1000], Lj , λi ∼ U{200, 215, 290, 305, 400}.

By ∼ U [a, b] we denote that certain parameter is generated from discrete uniform distribu-

tion with integer values in range [a, b]. ∼ U{x, . . . , y} denotes that the parameter values are

chosen with discrete uniform distribution from the set {x, . . . , y}. Unless stated to be other-
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wise, each configuration of the tests represents a population of 100 instances. In the tests a

range of n values has been swept by visiting values n ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,

5000, 10000} one by one. This means that 100 instances have been generated with n = 2 while

the remaining parameters have been randomly generated as described above. The set of 100

instances with n = 2 have been solved by all the algorithms to evaluate their performance. Next,

values n = 5, 10, . . . have been examined in the similar manner. This set of of instances will be

referred to as random instances N . In the examination of the impact of m, the tested values

were m ∈ {1, 2, 5, 10, 20, 50, 100} while other parameters were generated as described above.

These instances will be referred to as random instances M .

In the next dataset, referred to as real instances, a collection of ship arrival times (rj),

processing times (pj), lengths Lj , has been obtained from Automatic Identification System

(AIS), a global radio vessel tracking system, for 8 ports in 2016. The ports with the number

of ships were: Gdańsk – 465 ships, Long Beach – 995, Los Angeles – 1310, Le Havre – 2277,

Hamburg – 3273, Rotterdam – 3997, Shanghai – 11197, Singapore – 18413. Quay lengths were

obtained from the publicly available port authority data. Overall, the algorithm portfolios have

been constructed for the following datasets:

dataset 1 all 1200 random instances N ,

dataset 2 100 random instances N with n = 10000,

dataset 3 700 all random instances M ,

dataset 4 100 random instances M with m = 2,

dataset 5 Real instances.

More on the considered problem, its application, and solution will be given in [88].

C.2 Cover algorithm portfolios
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Figure C.1: Cover portfolio built on all random instances N (dataset 1). a) portfolio evolution
in time T , b) size and cost of portfolio (in T units), vs T .
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Figure C.2: Cover portfolio built on random instances N for n = 10000 (dataset 2). a) portfolio
evolution in time T , b) size and cost of portfolio (in T units), vs T .
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Figure C.3: Cover portfolio built on all random instances M (dataset 3). a) portfolio evolution
in time T , b) size and cost of portfolio (in T units), vs T .
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Figure C.4: Cover portfolio built on random instances M with m = 2 (dataset 4). a) portfolio
evolution in time T , b) size and cost of portfolio (in T units), vs T .
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C.3 Regret portfolios for all random instances N (dataset

1)

Let us observe that regret portfolios for sufficiently large Cost limit comprise all algorithms (see

Figs C.9, C.10, C.15, C.16, C.21, C.22, C.27, C.28).
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Figure C.5: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 1T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.6: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 2T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.7: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 4T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .



C.3. REGRET PORTFOLIOS FOR ALL RANDOM INSTANCES N (DATASET 1) 163

 10000  100000  1e+006

T
GRASP-3600
GRASP-SPTGI

GRASP-GI
GRASP-GISPT

HC
HC-A
HC-C
ILS-A
ILS-A0
ILS-C

FCFS-List
FCFS-Prio
FCFS-LA2
FCFS-La5
FCFS-La10

LAF-List
LAF-Prio
LAF-La2

LAF-La5
LAF-La10

LPT-List
LPT-Prio
LPT-La2

LPT-La5
LPT-La10

LSF-List
LSF-Prio

LSF-La2
LSF-La5

RND-List
RND-Prio

RND-La2
RND-La5

RND-La10
SAF-List

SAF-Prio
SAF-La2

SAF-La5
SAF-La10
SPT-List
SPT-Prio
SPT-La2
SPT-La5
SPT-La10
SPTGI-List
SPTGI-Prio

SPTGI-La2
SPTGI-La5

SPTGI-La10
SSF-List

SSF-Prio
SSF-La2
SSF-La5

SSF-La10
GI-List

GI-Prio
GI-La2
GI-La5

GI-La10
GISPT-List
GISPT-Prio
GISPT-La2
GISPT-La5
GISPT-La10

WSPT-List
WSPT-Prio
WSPT-La2
WSPT-La5
WSPT-La10

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1E4 1E5 1E6
 0

 10

 20

 30

 40

 50

 60

T

Regret (left axis)
No.of Algorithms (right axis)
No.exchanged algorithms (right axis)

a)

b)

Figure C.8: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 8T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.9: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 16T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .



C.3. REGRET PORTFOLIOS FOR ALL RANDOM INSTANCES N (DATASET 1) 165

 10000  100000  1e+006 T [ms]
GRASP-3600
GRASP-LAF
GRASP-LSF
GRASP-SPTGI
GRASP-GI
GRASP-GISPT
HC
HC-A
HC-C
ILS-A
ILS-A0
ILS-C
FCFS-List
FCFS-Prio
FCFS-La2
FCFS-La5
FCFS-La10
LAF-List
LAF-Prio
LAF-La2
LAF-La5
LAF-La10
LPT-List
LPT-Prio
LPT-La2
LPT-La5
LPT-La10
LSF-List
LSF-Prio
LSF-La2
LSF-La5
LSF-La10
RND-List
RND-Prio
RND-La2
RND-La5
RND-La10
SAF-List
SAF-Prio
SAF-La2
SAF-La5
SAF-La10
SPT-List
SPT-Prio
SPT-La2
SPT-La5
SPT-La10
SPTGI-List
SPTGI-Prio
SPTGI-La2
SPTGI-La5
SPTGI-La10
SSF-List
SSF-Prio
SSF-La2
SSF-La5
SSF-La10
GI-List
GI-Prio
GI-La2
GI-La5
GI-La10
GISPT-List
GISPT-Prio
GISPT-La2
GISPT-La5
GISPT-La10
WSPT-List
WSPT-Prio
WSPT-La2
WSPT-La5
WSPT-La10

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 1.016

1E4 1E5 1E6
 0

 10

 20

 30

 40

 50

 60

 70

 80

T [ms]

Regret (left axis)
No.of Algorithms (right axis)
No.exchanged algorithms (right axis)

a)

b)

Figure C.10: Algorithm portfolio built on all random instances N , (dataset 1) Cost = 32T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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C.4 Regret portfolios for n=10000 random instances N

(dataset 2)
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Figure C.11: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 1T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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Figure C.12: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 2T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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Figure C.13: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 4T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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Figure C.14: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 8T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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Figure C.15: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 16T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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Figure C.16: Algorithm portfolio built on random instances N with n = 10000, (dataset 2)
Cost = 32T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of
algorithms, number of algorithms exchanged), vs T .
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C.5 Regret portfolios for all random instances M (dataset

3)
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Figure C.17: Algorithm portfolio built on all random instances M (dataset 3), Cost = 1T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.18: Algorithm portfolio built on all random instances M (dataset 3), Cost = 2T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.19: Algorithm portfolio built on all random instances M (dataset 3), Cost = 4T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.20: Algorithm portfolio built on all random instances M (dataset 3), Cost = 8T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.21: Algorithm portfolio built on all random instances M (dataset 3), Cost = 16T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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Figure C.22: Algorithm portfolio built on all random instances M (dataset 3), Cost = 32T . a)
portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms, number
of algorithms exchanged), vs T .
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C.6 Regret portfolios for m = 2 random instances M

(dataset 4)
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Figure C.23: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
1T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .
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Figure C.24: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
2T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .
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Figure C.25: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
4T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .
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Figure C.26: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
8T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .
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Figure C.27: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
16T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .



186 APPENDIX C. ALGORITHM PORTFOLIOS FOR LARGE BAPS

 100  1000  10000  100000  1e+006

T
GRASP-3600
GRASP-LAF
GRASP-LSF
GRASP-SPTGI
GRASP-GI
GRASP-GISPT
HC
HC-A
HC-C
ILS-A
ILS-A0
ILS-C
FCFS-List
FCFS-Prio
FCFS-La2
FCFS-La5
FCFS-La10
LAF-List
LAF-Prio
LAF-La2
LAF-La5
LAF-La10
LPT-List
LPT-Prio
LPT-La2
LPT-La5
LPT-La10
LSF-List
LSF-Prio
LSF-La2
LSF-La5
LSF-La10
RND-List
RND-Prio
RND-La2
RND-La5
RND-La10
SAF-List
SAF-Prio
SAF-La2
SAF-La5
SAF-La10
SPT-List
SPT-Prio
SPT-La2
SPT-La5
SPT-La10
SPTGI-List
SPTGI-Prio
SPTGI-La2
SPTGI-La5
SPTGI-La10
SSF-List
SSF-Prio
SSF-La2
SSF-La5
SSF-La10
GI-List
GI-Prio
GI-La2
GI-La5
GI-La10
GISPT-List
GISPT-Prio
GISPT-La2
GISPT-La5
GISPT-La10
WSPT-List
WSPT-Prio
WSPT-La2
WSPT-La5
WSPT-La10

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

 1.008

1E2 1E3 1E4 1E5 1E6
 0

 10

 20

 30

 40

 50

 60

 70

 80

T

Regret (left axis)
No.of Algorithms (right axis)
No.exchanged algorithms (right axis)

a)

b)

Figure C.28: Algorithm portfolio built on random instances M , with m = 2 (dataset 4) Cost =
32T . a) portfolio evolution in time T , b) scores of the portfolio (regret, number of algorithms,
number of algorithms exchanged), vs T .
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C.7 Comparison of regret portfolio scores

In this section regret portfolios scores for Cost = 1T, 2T, 4T, 8T are put together for an easier

comparison.
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Figure C.29: Comparison of regret portfolio regret scores built on random instances N . a) All
random instances N (dataset 1), b) random instances N with n = 10000 (dataset 2).
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Figure C.30: Comparison of the number of algorithms in the regret portfolios built on random
instances N . a) All random instances N (dataset 1), b) random instances N with n = 10000
(dataset 2).
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Figure C.31: Comparison of regret portfolio regret scores built on random instances M . a) All
random instances M (dataset 3), b) random M with m = 2 (dataset 4).



C.7. COMPARISON OF REGRET PORTFOLIO SCORES 191

 0

 10

 20

 30

 40

 50

 60

 70

 80

1E2 1E3 1E4 1E5 1E6

T

cost=1T

cost=2T

cost=4T

cost=8T

 0

 10

 20

 30

 40

 50

 60

1E2 1E3 1E4 1E5 1E6

T

cost=1T

cost=2T

cost=4T

cost=8T

a)

b)

Figure C.32: Comparison of the number of algorithms in the regret portfolios built on random
instances M . a) All random instances M (dataset 3), b) random M with m = 2 (dataset 4).
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C.8 Real Instance Portfolios (dataset 5)

In Fig.C.33b the lines of the cost (in T units) and the number of algorithms overlap. This

means that the algorithms in the cover portfolio built for the real instances run in the whole

time interval T .

It can be seen if Fig.C.38 and Fig.C.39 the cost limits 16T and 32T are not really binding

for big T , and all algorithms are selected to the portfolio.
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Figure C.33: Cover portfolio built on real instances (dataset 5). a) portfolio evolution in time
T , b) scores of the portfolio (number of algorithms, Cost in T units, vs T .
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Figure C.34: Regret portfolio built on real instances (dataset 5) Cost = 1T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .
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Figure C.35: Regret portfolio built on real instances (dataset 5) Cost = 2T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .
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Figure C.36: Regret portfolio built on real instances (dataset 5) Cost = 4T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .
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Figure C.37: Regret portfolio built on real instances (dataset 5) Cost = 8T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .
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Figure C.38: Regret portfolio built on real instances (dataset 5) Cost = 16T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .
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Figure C.39: Regret portfolio built on real instances (dataset 5) Cost = 32T . a) portfolio
evolution in time T , b) scores of the portfolio (number of algorithms, Cost in T units, number
of algorithms exchanged algorithms) vs T .



Appendix D

Ship Traffic Model – Distributions

and Parameters

D.1 Basic dataset information

The model was developed on the basis of data for maritime container terminals in Gdańsk, Long

Beach, Los Angeles, Le Havre, Hamburg, Rotterdam, Shanghai, Singapore in year 2016. Basic

dataset information is collected in Tab. D.1. Lj are ship lengths. Values ηa denote the fraction

of aperiodic (non-returning) arrivals.

Table D.1: Basic dataset information

port Gdańsk Long Beach Los Angeles Le Havre
number of calls N 471 995 1308 2271
physical ships n 81 242 309 559
returning ships 57 188 238 417
No.of unique Ljs 31 65 61 105
ηa[%] 5.10 5.43 5.43 6.25
port Hamburg Rotterdam Shanghai Singapore
number of calls N 3294 3998 11606 18494
physical ships n 586 311 1233 1857
returning ships 466 240 1038 1634
No.of unique Ljs 101 80 148 169
ηa[%] 3.64 1.78 1.68 1.21

200
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D.2 Ship Size Clustering

The ships were divided into classes (alternatively called clusters) according to the ship lengths

Lj . Class i has length range (ci−1, ci], where c0 = 0. Values of ci are summarized in Tab. D.2.

Also the total number of calls at the port for each cluster and the number of aperiodic arrivals

in the cluster are given in the brackets.

In the following discussion we will refer to the clusters using a short-hand notation consisting

of the initials of the port name and the cluster number starting from 1 for the shortest ship

sizes. For example, RT3 is the third cluster for Rotterdam, with 532 ship calls and in this 2

aperiodic arrivals (cf. Tab.D.2).

Table D.2: Ship size cluster intervals in meters, the total number of calls in the clusters and
number of aperiodic calls.

port Gdańsk Long Beach Los Angeles Le Havre
c1 137 (115,5) 188 (89,1) 224 (167,9) 140 (216,6)
c2 151 (103,2) 232 (137,2) 261 (132,4) 210 (337,25)
c3 183 (121,1) 273 (118,11) 279 (180,5) 245 (333,7)
c4 210 (11,3) 302 (203,14) 295 (252,12) 278 (400,19)
c5 300 (17,10) 338 (254,15) 305 (181,12) 300 (353,29)
c6 368 (50,2) 368 (193,10) 335 (294,13) 368 (528,49)
c7 399 (54,1) 399 (1,1) 399 (102,16) 399 (104,7)
port Hamburg Rotterdam Shanghai Singapore
c1 141 (905,8) 102 (153,2) 101 (642,2) 192 (4552,21)
c2 170 (956,6) 141 (2395,13) 148 (4144,11) 198 (3206,21)
c3 213 (298,5) 152 (532,2) 183 (2263,20) 225 (2231,21)
c4 279 (302,23) 170 (444,4) 237 (1584,30) 262 (2182,47)
c5 338 (339,45) 223 (240,26) 297 (1800,65) 302 (3188,67)
c6 369 (422,27) 273 (154,13) 348 (1022,53) 345 (1635,28)
c7 400 (72,6) 305 (80,11) 367 (151,14) 400 (1500,18)
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D.3 pj/Lj distribution parameters

In this section parameters of the distributions fitting pj/Lj data in the best way are given. pj is

ship processing time in hours, Lj length in meters for arrival j. fitdistrplus R package was

used [20]. The following format of result presentation is used: first the cluster short name is

given, next the name of the distribution, and the parameters of the distribution. Ship size classes

short-hand notation consists of the initials of the port name and the cluster number starting

from 1 for the shortest ship sizes. The distribution short names are: β - for beta distribution,

exp – for exponential, γ - gamma distribution, no – for normal, ln – lognormal, ls - logistic, We

– for Weibull. For more details on distribution parameters see [20].
Gdańsk:

GD1,ln, meanlog -2.2045270, sdlog 0.9806298; GD2,We, shape 1.6085042, scale 0.1253091; GD3,γ, scale 0.02542777, shape 6.13514495;

GD4,β, shape1 3.796198, shape2 26.674938; GD5,ln, meanlog -2.383588, sdlog 0.612455; GD6,ln, meanlog -2.0397412 sdlog 0.4411036;

GD7,We, shape 6.3138234 scale 0.2000697.

Long Beach:

LB1:ls, location 0.12513149, scale 0.05685868; LB2:We, shape 1.7859668, scale 0.2262769; LB3:ls, location 0.20100499, scale 0.04349006;

LB4:ln, meanlog -2.5612589, sdlog 0.9126934; LB5:ls, location 0.23740617 scale 0.07422126; LB6:ls, location 0.23748989 scale 0.02907422;

LB7: single item cluster use data directly, pj=140h Lj=399.2m

Los Angeles:

LA1:ln, meanlog -2.0741789, sdlog 0.3958589; LA2:no, mean 0.12818969, sd 0.05853156; LA3:ls, location 0.1962775, scale 0.0541613;

LA4:β,shape1 2.576578, shape2 17.518522; LA5:ls, location 0.23346274,scale 0.03294501; LA6:γ,scale 0.01622799, shape 15.51326663;

LA7:ls, location 0.24577252,scale 0.03512682;

Le Havre:

LH1:ln, meanlog -2.4466108, sdlog 0.6849413; LH2:ln, meanlog -2.5382265, sdlog 0.5432081; LH3:ln, meanlog -2.6116072, sdlog 0.4608459;

LH4:ls, location 0.05769683, scale 0.01408215; LH5:ln, meanlog -2.944952, sdlog 0.424198; LH6:γ, scale 0.01167714, shape 5.91481882;

LH7:γ, scale 0.006849668, shape 11.434991181;

Hamburg:

HB1: We, shape 1.657545, scale 0.187926; HB2: no, mean 0.16878201, sd 0.09806034; HB3: ln, meanlog -2.4404704, sdlog 0.4536681; HB4:

ln, meanlog -2.4003098, sdlog 0.3447301; HB5: ls, location 0.10171916, scale 0.01809944; HB6: ln, meanlog -2.2354715, sdlog 0.3202304;

HB7: We, shape 3.8331868, scale 0.1257602;

Rotterdam:

RT1: γ, scale 0.05080236, shape 3.24384335; RT2: ln, meanlog -2.264001, sdlog 0.590673; RT3: γ, scale 0.03108345, shape 3.79563199;

RT4: γ, scale 0.0293398, shape 3.8016438; RT5: β, shape1 5.195051, shape2 54.868293; RT6: ln, meanlog -2.5495952, sdlog 0.2745269;

RT7: ls, location 0.08838709, scale 0.01932081;

Shanghai:

SH1: exp, rate 26.87598; SH2: ls, location 0.08019359, scale 0.01406165; SH3: ls, location 0.06672222, scale 0.01592844; SH4: ls, location

0.05303453, scale 0.01191112; SH5: ln, meanlog -2.9072884, sdlog 0.4474107; SH6: ln, meanlog -2.8731473, sdlog 0.4597978; SH7: ln,

meanlog -2.4260391, sdlog 0.9032254;

Singapore:

SI1: γ, scale 0.02191416, shape 4.51531213; SI2: ln, meanlog -2.4243607, sdlog 0.4522818; SI3: γ, scale 0.009468676, shape 7.039842219;

SI4: γ, scale 0.01036994, shape 5.90262497; SI5: β, shape1 6.606161, shape2 111.220183; SI6: β, shape1 7.961777, shape2 140.759075; SI7:

ls, location 0.0611644, scale 0.0104015;
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D.4 Return time ρj distributions summary

In this section results of fitting mixture of normal distributions into return times in certain ship

size classes are given. R package normalmixEM was used. The results are provided in the format:

ship size cluster name: ℓ - the number of components in the mixture (λ1, µ1, σ1) . . . (λℓ, µℓ, σℓ).

Time units are days.

There are two special cases: 1. There are only 4 return periods in GD5. Hence, it was

not feasible to compute the fitting mixture. Normal distribution was fit using fitdistrplus

for completeness of presentation and compatibility with the other results, although this fit is

disputable and should be considered rather speculative. 2. No results are provided for LB7

because the only ship present – "CMA CGM Benjamin Franklin" – was non-returning.
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D.4.1 Gdańsk
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Figure D.1: Return times for Gdańsk clusters, data and the fit normal mixtures. a) GD1 b) GD2 c)
GD3 d) GD4 e) GD6 f) GD7.

Gdańsk

GD1: 11, (0.0505, 2.6000, 0.4899), (0.1749, 5.5587, 0.5354), (0.2817, 7.5687, 0.6658), (0.0530, 9.2066, 0.5967), (0.1460, 12.6488, 1.2607),

(0.0615, 14.5319, 0.8741), (0.1325, 19.6399, 0.8703), (0.0393, 23.0155, 0.7242), (0.0202, 27.9994, 1.0012), (0.0202, 42.5000, 1.5000), (0.0202,

78.5000, 1.5000)

GD2: 6, (0.4517, 6.7046, 1.1001), (0.1632, 9.6149, 0.9298), (0.1407, 10.6054, 4.7927), (0.0779, 12.7734, 0.7398), (0.1175, 15.2180, 0.5158),

(0.0489, 22.7554, 0.8292)

GD3: 3, (0.7653, 7.3724, 1.0533), (0.1153, 5.5130, 0.5313), (0.1194,13.3165, 4.8126)

GD4: 3, (0.2825, 6.5142, 0.5271), (0.2824, 8.4857, 0.5271), (0.4351,72.3471,74.7188)

GD5: 1, (1,27.0000,34.7275)

GD6: 2, (0.8819, 83.9997, 0.7490), (0.1185, 97.4030,15.9130)

GD7: 3, (0.2137, 64.7057, 34.1502), (0.2812, 75.8580, 0.3871), (0.5051, 77.3439, 0.7021)
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D.4.2 Hamburg

Hamburg:
Hamburg

HB1: 9, (0.1338, 13.9463, 0.6629) (0.4781, 7.0110, 0.5821) (0.0109, 16.7469, 0.5387) (0.2652, 7.8246, 3.5046) (0.0591, 20.7478, 1.2175)

(0.0249, 27.0929, 1.7919) (0.0022, 198.1930, 26.0457) (0.0048, 40.6954, 1.6975) (0.0209, 77.0945, 33.2909)

HB2: 11, (0.1519, 11.2314, 0.5786) (0.0050, 72.9334, 12.0680) (0.2460, 6.9860, 0.8959) (0.0268, 40.7911, 5.2799) (0.0022, 202.5000, 19.5009)

(0.0560, 18.8840, 7.3961) (0.0203, 1.3823, 0.7127) (0.2076, 13.9854, 0.9682) (0.0758, 21.3319, 1.1658) (0.2030, 9.7024, 0.6114) (0.0053,

104.4390, 5.9359)

HB3: 11, (0.0370, 15.5176, 0.5581) (0.1119, 13.7237, 0.5692) (0.0394, 21.5831, 0.8858) (0.0474, 38.7644, 0.8111) (0.1521, 35.0377, 0.7766)

(0.0284, 69.9998, 0.7520) (0.0950, 15.6744, 6.3291) (0.2923, 42.0441, 0.5804) (0.0205, 44.1639, 0.4428) (0.1527, 55.8268, 1.0967) (0.0233,

78.8618, 33.6429)

HB4: 11, (0.0583, 90.4064, 1.7251) (0.1231, 28.0825, 1.0600) (0.0864, 38.0726, 4.4006) (0.2524, 34.9258, 0.5692) (0.0141, 56.0380, 3.2205)

(0.0686, 14.1930, 0.8240) (0.1179, 48.9229, 0.5397) (0.0116, 71.5730, 1.6570) (0.2029, 55.8177, 0.5169) (0.0289, 62.9764, 0.8968) (0.0358,

47.9078, 35.3381)

HB5: 11, (0.0977, 28.0399, 1.1294) (0.0093, 22.5001, 0.5000) (0.1244, 34.8233, 0.5577) (0.0093, 49.0019, 1.0032) (0.0140, 92.6667, 2.3570)

(0.0349, 36.7662, 2.6745) (0.0280, 6.8373, 4.2657) (0.0674, 63.9684, 2.9195) (0.5028, 55.7818, 0.9585) (0.0094, 73.5319, 0.5407) (0.1027,

76.7290, 0.7495)

HB6: 11, (0.0307, 56.0110, 1.2115) (0.0534, 63.0652, 0.6720) (0.1348, 69.7168, 0.6585) (0.1842, 69.8943, 1.7559) (0.0506, 75.3359, 0.6348)

(0.0323, 93.7556, 4.0808) (0.2138, 77.1603, 0.8522) (0.1204, 83.8510, 0.9491) (0.0037, 80.4333, 0.5943) (0.0266, 89.7338, 0.4925) (0.1494,

105.3820, 28.1660)

HB7: 7, (0.2519, 77.0001, 1.2472) (0.1431, 81.8396, 0.9661) (0.0439, 97.7382, 2.0859) (0.0784, 107.1307, 3.5942)

(0.3910, 89.7361, 1.5419) (0.0429, 84.5313, 0.5143) (0.0488, 150.4860, 10.5242)
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Figure D.2: Return times for Hamburg clusters, data and the fit normal mixtures. a) HB1, b) HB2,
c) HB3, d) HB4, e) HB6, f) HB7.
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D.4.3 Los Angeles

Los Angeles:
Los Angeles:

LA1: 6, (0.6466, 14.1200, 0.3637) (0.0431, 42.1785, 1.6189) (0.0861, 34.9971, 0.9979) (0.0329, 70.6643, 3.0640) (0.0506, 70.2429, 8.4599)

(0.1408, 62.6892, 0.5511)

LA2: 7 (0.0645, 33.8059, 0.4672) (0.0228, 16.9959, 1.4128) (0.3724, 27.9990, 0.6447) (0.1705, 35.1915, 0.4642) (0.0778, 27.7502, 1.9751)

(0.2102, 41.9985, 0.3611) (0.0819, 67.2015, 15.6699)

LA3: 6 (0.3129, 14.1283, 0.7010) (0.0128, 46.4996, 0.5000) (0.0821, 67.3920, 4.3001) (0.3131, 42.0392, 0.4649) (0.2458, 35.0270, 0.8514)

(0.0333, 76.0867, 30.0495)

LA4: 7 (0.0395, 91.1362, 54.0707) (0.1239, 34.9859, 0.9874) (0.3128, 42.9697, 1.8993) (0.0385, 48.3891, 0.5442) (0.0403, 96.1010, 12.6990)

(0.3668, 60.8904, 6.2699) (0.0781, 14.4672, 0.8032)

LA5: 5 (0.5452, 39.6934, 3.3560) (0.0979, 55.8311, 1.3728) (0.0973, 69.9989, 0.3662) (0.1828, 83.6124, 1.2214) (0.0768, 107.5450, 28.8916)

LA6: 6 (0.0177, 1.5000, 1.1180) (0.5321, 42.0079, 0.6314) (0.0088, 178.0000, 10.0000) (0.0098, 65.1838, 3.5678) (0.4007, 45.4147, 4.9146)

(0.0309, 89.1863, 15.1729)

LA7: 6 (0.0893, 1.8000, 1.1662) (0.0328, 46.4775, 0.5208) (0.2681, 48.8484, 0.6389) (0.0745, 67.1598, 10.2891)

(0.4464, 116.8400, 3.5177) (0.0889, 42.1978, 0.3984)
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Figure D.3: Return times for Los Angeles clusters, data and the fit normal mixtures. a) LA1, b) LA2,
c) LA3, d) LA4, e) LA5, f) LA6, g) LA7.
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D.4.4 Long Beach
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Figure D.4: Return times for Long Beach clusters, data and the fit normal mixtures. a) LB1, b) LB2,
c) LB3, d) LB4, e) LB5, f) LB6.

Long Beach:

LB1: 3 (0.1409, 1.0903, 0.2867) (0.7736, 34.4965, 1.0600) (0.0854, 42.2229, 11.8362)

LB2: 10 (0.1053, 1.2500, 0.9242) (0.0174, 101.0275, 4.0156) (0.0546, 32.8600, 0.3674) (0.0526, 14.8333, 1.9508) (0.2524, 35.1154, 0.9184)

(0.0175, 40.5000, 0.5000) (0.2768, 49.0235, 0.4592) (0.0175, 43.5000, 0.5000) (0.1440, 55.5140, 2.5589) (0.0618, 76.8213, 6.1814)

LB3: 6 (0.2246, 13.9504, 0.7393) (0.0337, 1.9996, 1.6329) (0.0972, 34.7896, 0.4076) (0.2480, 41.9255, 0.4961) (0.2461, 45.7881, 4.3949)

(0.1504, 60.7253, 15.0404)

LB4: 10 (0.0111, 46.4848, 0.4998) (0.0958, 1.2848, 1.6655) (0.1039, 13.1648, 1.9505) (0.2246, 13.1058, 0.7254) (0.0877, 41.5332, 0.9248)

(0.0407, 34.1750, 1.0603) (0.0734, 56.7511, 6.0599) (0.0349, 53.1504, 0.5688) (0.2539, 56.7543, 0.8738) (0.0741, 137.5389, 48.1475)

LB5: 5 (0.0422, 105.9515, 50.0724) (0.0105, 217.5001, 0.5000) (0.2904, 41.9595, 0.8649) (0.5130, 23.4697, 25.8211) (0.1439, 111.2706, 7.2218)

LB6: 12 (0.0656, 2.3380, 1.4105) (0.0985, 41.5421, 0.6622) (0.0323, 42.6180, 4.2569) (0.0436, 46.4018, 0.4997)
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(0.2848, 49.1267, 0.9613) (0.0504, 54.3180, 1.7206) (0.0142, 80.5000, 0.5000) (0.0377, 87.7966, 58.7436)

(0.1579, 105.0233, 1.1057) (0.0098, 108.5330, 0.5217) (0.1131, 112.3252, 0.7087) (0.0922, 120.8059, 8.2167)

D.4.5 Le Havre

Le Havre
Le Havre:

LH1:6, (0.1151, 4.6301, 0.8343) (0.1740, 15.5915, 2.0145) (0.0685, 21.0844, 1.0550) (0.2201, 36.8575, 22.4692) (0.3928, 42.0277, 0.7392)

(0.0296, 201.0784, 89.3193)

LH2: 11, (0.1017, 4.6673, 0.7990) (0.1835, 15.3701, 2.0096) (0.0363, 3.3028, 2.4242) (0.0960, 21.0775, 1.6323) (0.0273, 28.1328, 0.5773)

(0.0190, 32.9941, 0.8039) (0.0217, 39.3531, 0.7300) (0.0913, 59.2163, 23.4321) (0.0147, 281.3922, 37.7351) (0.4012, 42.0738, 0.7499) (0.0073,

156.9290, 11.1290)

LH3: 10, (0.1158, 9.9860, 5.4575) (0.0118, 85.5065, 2.0357) (0.2177, 28.1665, 1.1498) (0.0574, 35.2944, 1.1335) (0.1508, 41.9474, 0.7317)

(0.2190, 50.5533, 6.8542) (0.0174, 76.3862, 2.1448) (0.1197, 55.9970, 1.0894) (0.0275, 107.5454, 17.8651) (0.0630, 98.0772, 1.2232)

LH4: 19, (0.0504, 13.7125, 0.8502) (0.0054, 17.1766, 0.7615) (0.0359, 25.8101, 0.9190) (0.0268, 11.4005, 6.9706) (0.0292, 31.3876, 1.0657)

(0.1722, 28.1633, 0.5894) (0.0100, 37.9291, 0.9321) (0.0063, 77.9617, 2.0447) (0.1523, 35.0051, 0.5868) (0.1066, 41.8168, 0.4591) (0.0294,

95.2060, 5.6932) (0.0229, 43.2141, 0.4999) (0.1108, 49.0712, 0.7752) (0.0171, 46.1998, 1.0419) (0.0803, 55.8154, 0.8558) (0.0175, 62.8218,

2.6557) (0.0782, 90.4310, 0.8564) (0.0357, 105.2259, 1.4236) (0.0133, 165.9805, 27.3269)

LH5: 18, (0.0164, 4.8574, 3.9447) (0.0322, 14.5008, 0.5000) (0.0287, 42.0207, 2.4154) (0.0169, 87.7792, 3.5113) (0.1718, 27.3826, 0.6065)

(0.0750, 29.1995, 0.5612) (0.0478, 35.2803, 0.8714) (0.1150, 41.8780, 0.8122) (0.0157, 31.9638, 0.7835) (0.0357, 62.2495, 11.5266) (0.0081,

20.9999, 1.0000) (2.8,E-08 8,0.9138 15.9819) (0.0467, 107.7564, 11.3595) (0.2821, 56.0501, 0.8322) (0.0472, 58.7417, 3.3505) (0.0284, 91.2040,

0.4034) (0.0161, 156.7051, 7.9240) (0.0163, 216.8095, 15.5824)

LH6: 14, (0.1158, 13.2648, 1.1851) (0.0181, 33.3236, 0.7673) (0.0830, 35.1462, 0.3970) (0.0055, 187.9700, 17.0495) (0.1095, 49.0479, 0.5945)

(0.1851, 55.9032, 0.6740) (0.0101, 51.9834, 1.3127) (0.0210, 59.0222, 2.1264) (0.0155, 91.8451, 1.1838) (0.0950, 72.2064, 2.0891) (0.0154,

16.6543, 14.5205) (0.1836, 77.0102, 0.6335) (0.0424, 84.8864, 2.0619) (0.0999, 112.5720, 6.7157)

LH7: 11 (0.0758, 11.0000, 2.9665) (0.0791, 71.3722, 1.5090) (0.2348, 77.6234, 0.7853) (0.0948, 75.6707, 1.1326)

(0.0609, 151.1032, 7.3608) (0.1457, 83.9871, 1.6106) (0.0733, 86.2400, 0.9302) (0.0844, 88.5186, 0.5220)

(0.0455, 92.3304, 0.9479) (0.0606, 109.0000, 3.0822) (0.0452, 178.0139, 4.5731)
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Figure D.5: Return times for Le Havre clusters, data and the fit normal mixtures. a) LH1, b) LH2, c)
LH3, d) LH4, e) LH5, f) LH6, g) LH7.
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D.4.6 Rotterdam
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Figure D.6: Return times for Rotterdam clusters, data and the fit normal mixtures. a) RT1, b) RT2,
c) RT3, d) RT4, e) RT5, f) RT6, g) RT7.
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Rotterdam:

RT1: 4, (0.3219, 2.1212, 0.4361) (0.3059, 4.9244, 0.5922) (0.3435, 15.8448, 5.2419) (0.0287, 186.0621, 93.0158)

RT2: 8, (0.0433, 0.8314, 0.4505) (0.2641, 2.4199, 0.6903) (0.1046, 13.9418, 0.6132) (0.3075, 6.6814, 0.9874) (0.0777, 19.5626, 2.4906)

(0.1583, 10.4814, 1.4735) (0.0364, 35.5004, 14.6250) (0.0081, 92.5735, 43.3251)

RT3: 9, (0.1964, 2.0915, 0.8811) (0.0199, 8.7070, 1.3248) (0.1062, 6.5835, 0.7235) (0.0285, 20.8484, 0.9416) (0.0093, 112.9190, 48.5156)

(0.3341, 8.9398, 1.3141) (0.1508, 11.5555, 0.6223) (0.1401, 13.9652, 1.4132) (0.0147, 28.9163, 6.9944)

RT4: 9, (0.0158, 158.1524, 65.6611) (0.1242, 9.0092, 0.8485) (0.1379, 11.7955, 0.5474) (0.1429, 33.2861, 13.4660) (0.0877, 1.5672, 0.6069)

(0.3030, 13.9432, 0.6140) (0.1263, 20.8740, 1.1102) (0.0556, 34.7185, 0.7639) (0.0065, 191.6630, 6.3088)

RT5: 3, (0.0241, 4.0535, 1.0552) (0.8101, 37.2689, 5.6303) (0.1657, 90.0074, 50.8505)

RT6: 7, (0.1979, 98.4743, 7.7144) (0.0566, 31.2897, 0.4555) (0.4799, 35.0725, 1.0630) (0.0352, 38.5434, 0.5123) (0.0508, 31.4855, 15.2629)

(0.1588, 55.0800, 2.4582) (0.0208, 230.5000, 11.5000)

RT7: 9 (0.1667, 35.0000, 0.5000) (0.0375, 53.4756, 0.5204) (0.3095, 55.8453, 0.6352) (0.0095, 136.3048, 11.6007)

(0.0488, 62.3425, 5.0421) (0.2500, 91.5833, 1.2555) (0.1041, 104.8003, 0.3998) (0.0412, 175.5725, 7.5442)

(0.0327, 136.3576, 11.6067)
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D.4.7 Shanghai

Shanghai:
Shanghai:

SH1: 2, (0.6331, 1.6613, 1.0242) (0.3669, 14.1485, 13.4295)

SH2: 8, (0.0314, 0.3160, 0.4766) (0.4881, 6.9727, 0.5419) (0.1302, 14.3095, 1.3639) (0.0141, 34.2408, 5.5631) (0.2757, 8.4291, 2.4241) (0.0068,

62.7254, 29.4980) (0.0517, 20.2059, 1.7175) (0.0020, 219.8740, 12.0298)

SH3: 13, (0.0261, 0.5523, 0.6736) (0.0074, 162.5770, 35.1967) (0.1235, 8.9003, 2.1304) (0.2087, 7.1334, 0.6618) (0.2537, 20.7196, 4.1843)

(0.0694, 13.9479, 0.7193) (0.0211, 27.5848, 0.6058) (0.0370, 31.6271, 2.7398) (0.0310, 42.1329, 2.6936) (0.1634, 21.2666, 1.0828) (0.0119,

33.3854, 0.5469) (0.0231, 41.6914, 0.5538) (0.0238, 55.8583, 20.6266)

SH4: 11, (0.0183, 0.1496, 0.3567) (0.1515, 6.8757, 1.9607) (0.1386, 14.4486, 1.3933) (0.2740, 21.5482, 2.0014) (0.0694, 26.9064, 0.8405)

(0.0848, 28.3127, 0.5740) (0.0830, 32.7388, 3.5934) (0.0572, 35.1291, 0.5930) (0.0305, 40.2626, 1.8842) (0.0815, 60.0605, 14.7204) (0.0113,

145.2768, 68.3605)

SH5: 11, (0.0323, 63.0913, 1.0583) (0.0226, 28.2338, 0.9268) (0.0837, 35.0308, 0.7697) (0.0193, 0.4434, 0.5042) (0.3840, 41.8215, 0.7085)

(0.0299, 83.9540, 0.7978) (0.0201, 144.7515, 60.2833) (0.0242, 6.4842, 2.8809) (0.0680, 21.6077, 7.5080) (0.2289, 43.1780, 5.9113) (0.0871,

57.0652, 17.9010)

SH6: 12, (0.0624, 4.9412, 4.0414) (0.1667, 51.6253, 11.7386) (0.1244, 41.1000, 2.5188) (0.0163, 198.8757, 44.0337) (0.0299, 18.9097, 2.9557)

(0.2408, 41.9505, 0.8072) (0.0441, 35.2652, 0.5337) (0.0368, 125.6669, 0.9901) (0.1351, 48.7999, 1.0504) (0.0676, 55.9205, 0.5994) (0.0286,

83.3486, 1.3103) (0.0472, 108.2039, 10.6441)

SH7: 7, (0.0305, 14.6687, 0.4707) (0.3566, 3.4906, 2.4873) (0.0447, 9.6400, 0.4917) (0.0328, 43.3592, 15.1970)

(0.2515, 47.9929, 5.9499) (0.1182, 126.8345, 43.5734) (0.1658, 111.7361, 0.9159)
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Figure D.7: Return times for Shanghai clusters, data and the fit normal mixtures. a) SH1, b) SH2, c)
SH3, d) SH4, e) SH5, f) SH6, g) SH7.
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D.4.8 Singapore

Singapore:
Singapore:

SI1: 6, (0.0953, 1.4373, 0.8761) (0.2666, 7.0003, 0.5380) (0.5906, 13.6287, 5.2837) (0.0095, 30.3870, 2.0189) (0.0294, 45.9045, 16.0767)

(0.0088, 127.48, 66.4079)

SI2: 4, (0.5687, 4.1500, 3.2873) (0.1437, 14.0320, 0.5509) (0.2700, 21.3500, 11.6884) (0.0177, 74.3963, 52.1076)

SI3: 9, (0.0651, 0.8983, 0.3278) (0.0762, 13.6129, 0.5728) (0.0015, 323.6830, 10.2724) (0.3759, 6.5573, 1.6881) (0.0319, 10.3550, 1.0120)

(0.0073, 125.9380, 54.5762) (0.3296, 25.6219, 4.4997) (0.1016, 43.8550, 6.7602) (0.0110, 64.6700, 11.0786)

SI4: 9, (0.0554, 13.2004, 1.2091) (0.3031, 3.7077, 2.8289) (0.0203, 16.3365, 0.5390) (0.0319, 31.1633, 0.9176) (0.2646, 21.8144, 2.4491)

(0.0742, 27.7924, 0.7819) (0.0473, 34.3067, 0.8375) (0.1936, 50.7104, 18.2230) (0.0095, 185.5300, 78.8977)

SI5: 10, (0.2003, 2.9135, 2.5237) (0.0394, 41.8823, 1.2544) (0.0126, 162.1931, 62.0449) (0.0287, 18.7046, 0.6496) (0.0421, 20.7642, 0.7104)

(0.3930, 20.4949, 7.0738) (0.0816, 22.3735, 0.9400) (0.0535, 35.3515, 1.1482) (0.1159, 61.9371, 9.3212) (0.0327, 85.9281, 15.4469)

SI6: 14, (0.0146, 183.9882, 38.6463) (0.0335, 0.7790, 0.5456) (0.0103, 6.5736, 0.5106) (0.0672, 22.9341, 9.4418) (0.2835, 20.9381, 4.6111)

(0.1574, 25.1138, 1.2747) (0.0245, 37.0717, 1.1476) (0.0210, 29.7434, 0.7374) (0.0121, 86.8867, 5.2747) (0.1304, 49.0826, 3.3492) (0.0373,

56.2973, 0.9421) (0.0096, 77.2687, 0.4433) (0.1712, 65.8876, 3.6990) (0.0274, 111.8411, 11.3312)

SI7: 20 (0.1502, 62.6794, 4.3268) (0.1068, 26.5205, 1.5808) (0.1001, 45.5012, 1.2485) (0.0981, 49.0512, 0.7341) (0.0726, 23.3393, 0.7232)

(0.0711, 76.4646, 1.0546) (0.0699, 16.9603, 1.2271) (0.0620, 53.2550, 2.0498) (0.0590, 21.3225, 0.9806) (0.0587, 110.6465, 11.0962) (0.0304,

84.3472, 1.2408) (0.0288, 53.3357, 0.6254) (0.0200, 28.0137, 10.6619) (0.0184, 84.3330, 4.3330) (0.0138, 0.4702, 0.4991) (0.0106, 153.5931,

30.6550) (0.0101, 29.9137, 0.7820) (0.0089, 79.4122, 0.5620) (0.0067, 38.2505, 0.5259) (0.0039, 34.8108, 0.5357)
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Figure D.8: Return times for Singapore clusters, data and the fit normal mixtures. a) SI1, b) SI2, c)
SI3, d) SI4, e) SI5, f) SI6, g) SI7.
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D.5 Periodic arrivals

In this section we provide histograms of periodic returning ships arrival collected over all classes.

These can be used to generate the first arrival of a returning ship. Arrivals frequencies are shown

as fractions of all periodic arrivals. Ship size classes are not distinguished. In Fig.D.9 coefficients

of variation of ships weekly and daily arrivals are shown vs total number of arrivals in a port.

It can be seen that variability of arrivals decreases with the number of served calls.
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Figure D.9: Coefficients of variation for periodic arrivals frequencies a) over days of week, b)
over hours of day.
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D.5.1 Histograms for Days of Week periodic arrivals

D.5.2 Histograms for Hours of Day periodic arrivals
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Figure D.10: Histograms of periodic ship arrivals frequencies (relative to all periodic arrivals) over
days of week. All classes together. a) Gdańsk, b) Hamburg c) Long Beach, d) Los Angeles, e) Le Havre.
f) Rotterdam g) Shanghai h) Singapore.
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Figure D.11: Histograms of periodic ship arrivals frequencies (relative to all periodic arrivals) over
hours of day. All classes together. a) Gdańsk, b) Hamburg c) Long Beach, d) Los Angeles, e) Le Havre.
f) Rotterdam g) Shanghai h) Singapore.
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D.6 Aperiodic ready times

D.6.1 Weeks of the year

In this section coefficients a4, . . . , a0 of the 4th degree polynomials f(w) = a4w
4+a3w

3+a2w
2+

a1w
1+a0, where w is the number of a week in year, fit into relative weekly arrival frequencies of

aperiodic ships are provided. Ship size classes are not distinguished, i.e. all classes were collected

in the input data. These polynomials can be used as a model of probability density of aperiodic

arrivals in certain week w. The coefficients are provided in the order (a0, a1, a2, a3, a4). Results

for the sum of all port weekly aperiodic ships arrival frequencies are also provided. Coefficients

of lower degree polynomials are also provided.

degree 4:
Gdańsk: (3.539E-02, -3.249E-03, 2.313E-04, -6.265E-06, 5.474E-08)

Hamburg: (7.484E-02, -9.514E-03, 5.526E-04, -1.298E-05, 1.029E-07)

Long Beach: (8.246E-03, 4.799E-03, -4.873E-04, 1.584E-05, -1.582E-07)

Los Angeles: (1.237E-02, 3.044E-03, -2.483E-04, 6.803E-06, -6.012E-08)

Le Havre: (5.085E-02, -1.837E-03, -4.182E-05, 2.442E-06, -2.206E-08)

Rotterdam: (5.488E-02, -3.038E-03, -1.281E-05, 2.973E-06, -3.418E-08)

Shanghai: (5.128E-02, -6.546E-03, 4.039E-04, -1.018E-05, 8.994E-08)

Singapore: (6.248E-02, -8.546E-03, 5.044E-04, -1.277E-05, 1.178E-07)

Sum of all ports: (4.379E-02, -3.111E-03, 1.127E-04, -1.767E-06, 1.135E-08)

degree 3:
Gdańsk: (2.798E-02, -7.153E-04, 2.474E-05, -3.527E-07)

Hamburg: (6.090E-02, -4.752E-03, 1.644E-04, -1.864E-06)

Long Beach: (2.967E-02, -2.523E-03, 1.097E-04, -1.251E-06)

Los Angeles: (2.051E-02, 2.619E-04, -2.150E-05, 3.103E-07)

Le Havre: (5.384E-02, -2.858E-03, 4.143E-05, 5.952E-08)

Rotterdam: (5.950E-02, -4.619E-03, 1.161E-04, -7.184E-07)

Shanghai: (3.910E-02, -2.383E-03, 6.451E-05, -4.660E-07)

Singapore: (4.652E-02, -3.093E-03, 5.985E-05, -4.595E-08)

Sum of all ports: (4.225E-02, -2.585E-03, 6.991E-05, -5.410E-07)

degree 2:
Gdańsk: (2.505E-02, -9.236E-05, -3.827E-06)

Hamburg: (4.540E-02, -1.460E-03, 1.339E-05)

Long Beach: (1.927E-02, -3.143E-04, 8.392E-06)

Los Angeles: (2.309E-02, -2.862E-04, 3.638E-06)

Le Havre: (5.433E-02, -2.963E-03, 4.625E-05)

Rotterdam: (5.353E-02, -3.350E-03, 5.794E-05)

Shanghai: (3.522E-02, -1.560E-03, 2.677E-05)

Singapore: (4.613E-02, -3.012E-03, 5.613E-05)

Sum of all ports: (3.775E-02, -1.630E-03, 2.609E-05)
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D.6.2 Aperiodic arrivals over days of a week (DoW)

Histograms
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Figure D.12: Histograms of aperiodic ship arrivals frequencies (relative to all aperiodic arrivals) over
days of week. All classes together. a) Gdańsk, b) Hamburg c) Long Beach, d) Los Angeles, e) Le Havre.
f) Rotterdam g) Shanghai h) Singapore.
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Fitting distributions

In this section we provide parameters of the best distributions fitting the fractions of total

aperiodic arrivals over days of week. Ship size classes are not distinguished. The reader should

be aware that the distributions are day of week-agnostic. This means that the fractions of daily

arrivals are treated as a set of values not being aware that there is a sequence of days in a week.

The best distribution was chosen on the basis of Anderson-Darling statistic. Entry "All ports"

represents results aggregated over all ports. The reader should be also aware that the obtained

distributions, except for "All ports", are calculated on just 7 data points and quality of fit is

low. With so little data reliable fit of continuous distributions may be unwarranted. In general,

we recommend using "All ports" distributions. The distribution short names are: γ - gamma

distribution, ls - logistic, We – for Weibull. For more details on distribution parameters see [20].

Days of a week
Gdańsk: ls, location 0.14253365, scale 0.05230696;

Long Beach: We, shape 5.5613990, scale 0.1551807;

Los Angeles: We, shape 1.661107, scale 0.159939;

Le Havre: We, shape 4.6678276, scale 0.1566369;

Hamburg: We, shape 5.493224, scale 0.154562;

Rotterdam: γ, scale 0.02531965, shape 5.64210113;

Shanghai: ls, location 0.14362599, scale 0.01355827;

Singapore: ls, location 0.1424664, scale 0.0100078;

All ports: ls, location 0.14130991, scale 0.02846178;
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D.6.3 Aperiodic arrivals over hours of a day (HoD)

Histograms

Fitting distributions

In this section distributions fit to aperiodic arrivals accumulated over hours of a day are shown.

Ship size classes are not distinguished. The reader should be aware that the distributions are

time-agnostic. This means that the fractions of hourly arrivals are treated as a set of values

while ignoring that there is a sequence of hours in time. Still, we decided to provide even

these results for completeness. The reader should also be aware that there are few data points

and distribution fit is disputable. Consequently, there are cases which are best according to

Anderson-Darling statistic but still do not pass Anderson-Darling gofstat test as defined in

this function of fitdistrplus package R. Such results are marked with a star ("*"). The

distributions that passed (actually were not rejected by) the gofstat test were preferred over

the failing ones. For more details on distribution parameters see [20]. The notation is the same

as in Section D.6.2.

Hours of day
Gdańsk: ls, location 0.03339101, scale 0.02813923; *

Long Beach: ls, location 0.03232727, scale 0.02567877; *

Los Angeles: ls, location 0.03124656, scale 0.02862704; *

Le Havre: ls, location 0.03835805, scale 0.01687393;

Hamburg: γ, scale 0.009688798, shape 4.300531079;

Rotterdam: ls, location 0.03880830, scale 0.01769015; *

Shanghai: γ, scale 0.0057714, shape 7.2195753;

Singapore: ls, location 0.04201991, scale 0.01170694;

All ports: γ, scale 0.005002241, shape 8.329543747;
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Figure D.13: Histograms of aperiodic ship arrivals frequencies (relative to all aperiodic arrivals) over
hours of day. All classes together. a) Gdańsk, b) Hamburg c) Long Beach, d) Los Angeles, e) Le Havre.
f) Rotterdam g) Shanghai h) Singapore.
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D.7 Lj distributions in clusters

This section contains the summary of the parameters of the distributions fitting ship lengths

Lj in a certain cluster of a port. These distributions may be applied as alternative to rounding

ships lengths to the upper end of cluster range sizes. A reader should be aware that in certain

clusters no distribution can be fit reliably due to scarcity of data or narrow range of values.

Cases where distribution fitting procedures failed are marked with ’*’. In such cases the upper

end of class sizes must be used. The best distribution was chosen on the basis of Anderson-

Darling statistic. There is no distribution fit in class LB7 which had only one aperiodic ship.

The following format of result presentation is used: first the cluster short name is given, next the

name of the distribution, and the parameters of the distribution. The distribution short names

are: β - for beta distribution, exp – for exponential, γ - gamma distribution, no – for normal,

ln – lognormal, ls - logistic, We – for Weibull. Then, the name is followed by the distribution

parameters. For more details on distribution parameters see [20]. Since β distribution is defined

in interval [0,1], ship lengths were scaled to the upper end of the cluster, i.e., value Lj/ci is

representing ship j in cluster (ci−1, ci] of ship lengths.
Gdańsk:

GD1, ln, meanlog 4.8539, sdlog 0.0681; GD2, * ; GD3, We, shape 36.0802, scale 179.5612; GD4, * ; GD5, ls, location 284.3670, scale

10.6077; GD6, * ; GD7, *.

Hamburg:

HB1, We, shape 15.5858, scale 132.6229; HB2, ls, location 160.1010, scale 4.7804; HB3, ls, location 198.6465, scale 8.8947; HB4, We, shape

18.2585, scale 266.5379; HB5, ls, location 312.8788, scale 12.5874; HB6, ls, location 366.2584, scale 0.8339; HB7, We, shape 388.6443, scale

399.0706.

Long Beach:

LB1, ls, location 179.4925, scale 7.9933; LB2, ls, location 217.9850, scale 5.3788; LB3, β, shape1 44.5002, shape2 2.3694; LB4, β, shape1

46.3582, shape2 1.6825; LB5, β, shape1 104.1087, shape2 1.3893; LB6, ls, location 356.7786, scale 5.3755; LB7, *

Los Angeles:

LA1, We, shape 21.2431, scale 211.1785; LA2, ls, location 253.9361, scale 3.9852; LA3, β, shape1 125.4677, shape2 2.7138; LA4, β, shape1

99.9067, shape2 0.9868; LA5, ls, location 301.0938, scale 1.0893; LA6, ls, location 331.1834, scale 3.9768; LA7, We, shape 34.3693, scale

365.7491.

Le Havre:

LH1, meanlog 4.9146, sdlog 0.0282; LH2, We, shape 17.4184, scale 197.1736; LH3, ls, location 231.7942, scale 5.7629; LH4, β, shape1

31.3132, shape2 1.0046; LH5, We, shape 72.47073, scale 296.1866; LH6, ls, location 347.8790, scale 11.9925; LH7, ls, location 397.7178,

scale 0.8378;

Rotterdam:

RT1, *; RT2, We, shape 47.7901, scale 139.2240, RT3, *; RT4, ls, location 160.8292, scale 3.2152; RT5, ls, location 207.4839, scale 8.4146;

RT6, β, shape1 22.3510, shape2 1.4234; RT7, location 284.7580, scale 5.6919;

Shanghai:

SH1, *; SH2, We, shape 27.4311, scale 143.6816; SH3, We, shape 26.5179, scale 172.4476; SH4, β, shape1 24.4726, shape2 2.9468; SH5, ln,

meanlog 5.5995, sdlog 0.0487; SH6, β, shape1 30.8465, shape2 2.6373; SH7, ls, location 356.5223, scale 5.2851.
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Singapore:

SI1, We, shape 11.83698, scale 159.75541; SI2, no, mean 185.016904, sd 6.311326; SI3, ls, location 212.8532, scale 4.7380; SI4, We, shape

36.6332, scale 257.5605; SI5, ls, location 282.1924, scale 8.2234; SI6, β, shape1 51.9565, shape2 2.7985; SI7, ls, location 365.5421, scale

6.9683.
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