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Abstract

Autonomous robots depend on precise localization and an accurate environmental model for ef-
ficient operation. This is why Simultaneous Localization and Mapping (SLAM) is a crucial area
of research in robotics, enabling autonomous systems to navigate and understand their environ-
ments without prior knowledge. This dissertation focuses on LiDAR-based SLAM, emphasizing
the role of different map representations and their impact on localization accuracy.

It introduces two distinct approaches, resulting in a scalable mapping solution that also enhances
the robustness of SLAM in diverse environments. The first one is based on a feature-based struc-
ture with planar and linear features, while the second utilizes surfels that are optimized through
bundle adjustment along with the poses. The outcomes of the research demonstrate how these
representations influence the SLAM performance by improving data association, reducing redun-
dancy, and enhancing long-term map consistency. It also investigates the role of map structure
in SLAM efficiency, analyzing how feature selection impacts computational requirements.

Moreover, the dissertation presents a method for incorporating data from the Global Navigation
Satellite System (GNSS) into the SLAM framework using a factor graph optimization approach.
Although LiDAR-based SLAM achieves high local accuracy, integrating GNSS data improves
overall reliability and reduce drift, especially in large-scale environments where long trajecto-
ries are involved. The proposed GNSS-augmented SLAM system incorporates raw pseudorange
and Doppler shift measurements, effectively reducing accumulated errors and enhancing global
positioning accuracy.

Beyond theoretical contributions, this research validates its findings through real-world tests.
Experimental evaluations demonstrate that the proposed map representations contribute to
more accurate and reliable localization, particularly in structure-rich environments. In addi-
tion, optimized map structure significantly improves its quality in terms of both qualitative and
quantitative metrics. The scalability of the developed systems is validated on publicly available,
large-scale datasets, highlighting its effectiveness in processing long sequences. Furthermore,
conducted evaluation confirms that the fusion of GNSS and LiDAR data improves trajectory
estimation, providing robust localization in various environments where LiDAR-based methods
alone may face difficulties due to feature sparsity.

Moreover, two real-world experiments were conducted in urban transportation and agricultural
applications. The deployment of a GNSS-based localization system for electric buses demon-
strates its effectiveness in the metropolitan area, highlighting the feasibility of integrating ad-
vanced localization into public transportation. Agricultural field tests show that the combination
of GNSS with visual odometry enhances localization reliability, particularly in environments with
inconsistent availability of the satellite signal. These practical implementations reinforce the im-
portance of multi-sensor fusion in addressing real-world challenges.

In conclusion, the results presented in this dissertation underscore the importance of LiDAR-
based SLAM, the impact of map representations on localization accuracy, and the benefits of
integrating GNSS data for large-scale mapping. By advancing SLAM methodologies through
multi-sensor fusion and optimization techniques, this research establishes the basis for more
reliable and efficient autonomous systems across a wide range of applications. The dissertation
also explores potential future advances in SLAM methodologies that can be implemented to
further refine its performance.



Streszczenie

Autonomiczne roboty wymagają precyzyjnej lokalizacji oraz dokładnego modelu środowiska aby
działać efektywnie. Z tego względu systemy Simultaneous Localization and Mapping (SLAM)
stanowią kluczowy obszar badań w robotyce, umożliwiając autonomiczną nawigację oraz zrozu-
mienie otoczenia bez wcześniejszej wiedzy na jego temat. Niniejsza rozprawa koncentruje się na
systemach SLAM wykorzystujących dane z sensora LiDAR, podkreślając rolę różnych reprezen-
tacji map oraz ich wpływ na dokładność dostarczanej lokalizacji.

W pracy zaprezentowano dwa różne podejścia do budowania mapy, prowadzące do opracowania
skalowalnego rozwiązania zwiększającego dokładność systemu SLAM w różnorodnych środowi-
skach. Pierwsze z nich bazuje na strukturze cech z wykorzystaniem elementów płaszczyznowych i
liniowych, natomiast drugie oparte jest na reprezentacjach surfelowych, optymalizowanych razem
z trajektorią za pomocą metody bundle adjustment. Przeprowadzone badania pokazują jak wy-
korzystane reprezentacje wpływają na działanie systemu SLAM poprzez poprawę dopasowania
danych, redukcję liczby punktów oraz zwiększenie spójności mapy. Rozpatrzony został również
wpływ doboru cech w strukturze mapy na wydajność obliczeniową i efektywność systemu.

Dodatkowo rozprawa prezentuje metodę integracji danych z globalnego systemu nawigacji sateli-
tarnej (GNSS) z systemem SLAM przy użyciu optymalizacji grafu ograniczeń. Mimo że systemy
LiDAR SLAM zapewniają wysoką dokładność w lokalnym otoczeniu, integracja danych GNSS
pomaga zwiększyć niezawodność oraz ograniczyć dryf w przypadku długich trajektorii. Zapro-
ponowane rozwiązanie wykorzystuje surowe pomiary pseudoodległości i przesunięcia Dopplera,
skutecznie poprawiając globalną dokładność lokalizacji.

Skuteczność opracowanych metod została zweryfikowana w rzeczywistych eksperymentach, które
pokazują, że zaproponowane reprezentacje map przyczyniają się do dokładniejszej i bardziej nie-
zawodnej lokalizacji. Ponadto optymalizacja struktury mapy znacząco poprawia jej jakość za-
równo pod względem wizualnym, jak i numerycznej wartości błędu. Skalowalność opracowanych
systemów została zweryfikowana na publicznie dostępnych zbiorach danych. Dodatkowo, przepro-
wadzona ewaluacja potwierdza, że fuzja danych GNSS oraz LiDAR zapewnia poprawę lokalizacji
w środowiskach, gdzie metody korzystające wyłącznie z sensora LiDAR mają trudności.

W pracy przedstawiono również wyniki eksperymentów dotyczących systemów lokalizacji dla
elektrycznych autobusów w transporcie miejskim oraz maszyn w rolnictwie, przeprowadzonych
w rzeczywistych warunkach oraz w kontekście ich praktycznego zastosowania. Implementacja
metody lokalizacji autobusu wykazała jego skuteczność w zurbanizowanym środowisku, podkre-
ślając tym samym możliwość jego integracji z infrastrukturą transportu publicznego. Dodatkowo,
testy lokalizacji maszyny rolniczej w warunkach polowych pokazały, że połączenie danych GNSS
z odometrią wizyjną poprawia niezawodność lokalizacji, szczególnie w środowiskach w których
występują zakłócenia sygnału satelitarnego. Testy te podkreślają znaczenie fuzji danych z wielu
sensorów w przypadku systemów, których zadaniem jest praca w rzeczywistych warunkach.

Podsumowując, wyniki przedstawione w niniejszej rozprawie podkreślają znaczenie systemów
SLAM, wpływ reprezentacji mapy na dokładność lokalizacji oraz korzyści płynące z integracji
danych GNSS, które poprawiają dokładność estymowanej trajektorii. Opracowane rozwiązania
wykorzystują fuzję wielosensoryczną realizowaną poprzez optymalizację grafu ograniczeń oraz
stanowią podstawę do dalszego rozwoju bardziej efektywnych metod. W rozprawie zawarto rów-
nież potencjalne przyszłe prace, mające na celu dalszą poprawę skuteczności systemów SLAM.
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Notation

R the set of real numbers

K the set of sensor poses

Fπ the set of planar features

Fλ the set of linear features

Ci the i-th input point cloud

Ti the i-th kd-tree

S the set of surfels

Si the set of surfels associated with measurements from i-th pose

S∗ the set of optimal surfels

As the set of leaves associatied with the surfel s

Q the reconstructed map

R the reference map

M the set of graph nodes associated with the LiDAR SLAM constraints

G the set of graph nodes associated with the GNSS constraints

L the set of graph nodes associated with loop closure constraints

O the set of graph nodes associated with Visual Odometry constraints

N the set of all observed satellites

E the total negative log-likelihood function

e the residual error function

f the point-to-plane error function

g the point-to-line error function

h the pose-to-pose error function

π the planar feature

λ the linear feature

l the leaf of a kd-tree

s the surfel

δT the pose update

T∗
i the optimal i-th pose estimate

Ti the i-th pose estimate

ix



Notation x

Ts the transformation from the beginning to the end of the scan

TS
i the i-th pose estimated using LiDAR SLAM

TL
j the j-th pose estimated using loop closure

TG
i the i-th pose estimated using GNSS

TO
i the i-th pose estimated using Visual Odometry

R the rotation matrix

Ri the rotation matrix of the i-th pose

X the state vectors for all nodes in the graph

Xi the state vector for i-th node in the graph

ΣS the covariance matrix for LiDAR SLAM constraints

ΣL the covariance matrix for loop closure constraints

Ω the information matrix

ΩD the information matrix for Doppler shift constraints

ΩS the information matrix for LiDAR SLAM constraints

ΩL the information matrix for loop closure constraints

ΩG the information matrix for GNSS positioning constraints

ΩO the information matrix for Visual Odometry constraints

ΩP the information matrix for the pseudorange constraints

W the eigenvector matrix

ti the translation vector of the i-th pose

rri the i-th position of a receiver

vri the i-th velocity of a receiver

rsn the position of the n-th satellite

p the point in 3D space

pi the i-th point in 3D space

ps the center point of a surfel

pl the center point of a leaf

pq the point in a reconstructed map

pr the point in a reference map

nπ the normal vector of a planar feature

nl the normal vector of a leaf

ns the normal vector of a surfel

ld the direction of the line in Plücker coordinates

lm the moment of a line in Plücker coordinates

w the eigenvector

ω the coordinates in the tangent plane of the 2-sphere S2

eDi,i+1 the error for Doppler shift constraints between graph nodes

eSi,i+1 the error for LiDAR SLAM constraints between graph nodes



Notation xi

eLi,j the error for loop closure constraints between graph nodes

eGi,i+1 the error for GNSS constraints between graph nodes

eOi,i+1 the error for Visual Odometry constraints between graph nodes

epi the error for pseudorange constraints for i-th graph node

ε the mean residual error

φi the horizontal angle of the i-th LiDAR measurement

φs the horizontal angle of the LiDAR measurement at the beginning of a scan

φe the horizontal angle of the LiDAR measurement at the end of a scan

i the index of the measurement

li the index of i-th LiDAR scanning ring

dπ the distance from the planar feature to the origin

de the Euclidean distance between two points

dn the point-to-plane or point-to-line distance

pf planarity or linearity coefficients of a feature

α the angle between two vectors

θ the angle of the normal vector on the 2-sphere S2

ml the magnitude of the moment vector lm

rs the radius of a surfel

qs the displacement of surfel along its normal

ri the range of the i-th simulated LiDAR measurement

Nl the number of simulated LiDAR measurements

Nf the number of points in a given feature

Nq the number of points in the reconstructed map

Nr the number of points in the reference map.

bmax the maximum size of the leaf

bmin the minimum flatness of a leaf

ρHuber the Huber loss function

ρker the threshold for Huber robust estimator

dC-L1 the Chamfer-L1 distance

ti the time of i-th measurement

ti,i+1 the time interval between the i-th and (i+ 1)-th pose

ts the duration of a scan

pi,n the pseudorange measurement between the i-th pose and n-th satellite

ρi,n the geometric range between the i-th pose and the n-th satellite

δsn the clock bias of n-th satellite

δri the receiver clock bias for the i-th state vector

δri,1...4 the receiver clock bias for the i-th state vector and GNSS constellation

dioni,n the ionospheric delay for the i-th pose and n-th satellite



Notation xii

dtropi,n the tropospheric delay for the i-th pose and n-th satellite

εpi,n the pseudorange measurement error for the i-th pose and n-th satellite

fn the carrier wave frequency for the n-th satellite

∆fn the Doppler shift value for the n-th satellite

θel the elevation angle of the satellite

θaz the azimuth angle of the satellite

rrx,i, r
r
y,i, r

r
z,i the x, y, z components of the i-th position of the receiver

rsx,n, r
s
y,n, r

s
z,n the x, y, z components of the n-th satellite position

vn the radial velocity for the n-th satellite

vri the i-th velocity of the receiver

vrx,i, v
r
y,i, v

r
z,i the x, y, z components of the i-th velocity of the receiver

vrGi the i-th velocity of the receiver calculated using pseudorange measurements

vrDi the i-th velocity of the receiver calculated using Doppler shift measurements

vrSi the i-th velocity of the receiver calculated using successive SLAM poses

σATE the standard deviation of the Absolute Trajectory Error

σl the standard deviation of the LiDAR measurement

σ2
p the total variance of the pseudorange error

σ2
m the variance of pseudorange measurement

σ2
e the variance of ephemeris measurement

σ2
c the variance of code bias measurement

σ2
ion the variance of ionospheric delay measurement

σ2
trop the variance of tropospheric delay measurement

σ2
x, σ

2
y, σ

2
z the variance of the pose along the x, y, z axes

σ2
φ, σ

2
ψ, σ2

θ the variance of the pose along the roll, pitch, yaw axes

c the speed of light

ωe the angular velocity of the Earth

fL1 the L1 carrier wave frequency

l0, . . . , l6 the GNSS measurement error factors
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Chapter 1

Introduction

1.1 Motivation

Autonomous robots require accurate localization and a reliable environment model to operate

efficiently. These factors are essential for effective task and motion planning, understanding

scene context, and facilitating human-robot collaboration. In unfamiliar environments, a robot

must address the problem of Simultaneous Localization and Mapping (SLAM), a fundamental

challenge in robotics that enables it to construct a map while simultaneously determining its

pose within this map.

In recent years, extensive research has been conducted on SLAM and related topics, covering

various approaches, including Visual Odometry (VO) and sensor fusion techniques [1, 2]. While

simpler SLAM problems, such as those in structured 2D environments, are considered to be

largely solved, more complex and realistic scenarios remain challenging. Issues such as real-time

mapping in large-scale 3D environments, adaptation to dynamic surroundings, and continuous

map updates over an extended period of time are still active areas of study [3]. In addition,

improving robustness against sensor noise, computational efficiency, and scalability are key chal-

lenges in modern SLAM research.

Rapid adoption of autonomous systems across diverse sectors, such as autonomous vehicles,

robotic exploration, drone delivery, augmented reality, logistics, agriculture, and disaster re-

sponse, has created an urgent need for robust and scalable localization and mapping solu-

tions [4, 5]. These applications rely heavily on precise positioning to perform their tasks safely

and efficiently. For example, self-driving cars require real-time, high-accuracy localization to nav-

igate dynamic urban environments, delivery drones depend on reliable positioning to reach their

destinations, and agricultural machinery requires it to achieve high precision in agro-technical

treatments. Similarly, in industrial settings, mobile robots used for warehouse automation need

accurate information about their pose to optimize inventory management [6]. As these applica-

tions continue to expand, there is an increasing need for advanced localization solutions capable

of working in complex scenarios.

1



Introduction 2

However, many of these applications operate in challenging unstructured environments where

traditional SLAM approaches often struggle. Autonomous vehicles, for instance, must navigate

dynamic urban settings filled with moving objects such as pedestrians and vehicles, while robotic

systems deployed in disaster zones or planetary exploration face featureless or highly variable

terrains. These environments pose significant challenges for SLAM systems, requiring them to be

not only accurate, but also robust. Furthermore, urban environments present unique additional

difficulties in localization, especially in areas with tall buildings, tunnels, or underground parking

garages, where the Global Navigation Satellite Systems (GNSS) signals are unreliable or entirely

unavailable. Therefore, SLAM solutions often provide precise 3D trajectory estimation using

multiple sensors available on-board. Innovations in multi-sensor integration have significantly

enhanced SLAM capabilities, improving the robustness of navigation in complex and dynamic

environments [4].

Recent advances in sensing technologies, computational power, and machine learning have opened

new possibilities for mobile robotics and localization algorithms. For example, the development

of high-resolution Light Detection and Ranging (LiDAR) sensors has significantly improved the

accuracy and resilience of localization systems [7]. In addition, innovations in laser technology,

such as solid-state and flash LiDARs, have enhanced performance while reducing cost and size.

These improvements make it more accessible for various robotic applications. Unlike camera-

based SLAM, which relies on visual features that can be obstructed or lost in poor lighting

conditions, modern LiDARs provide high-precision 3D depth information by measuring the time

taken for laser pulses to reflect off objects. This ensures reliable localization even in challenging

scenarios such as low-light, foggy, or featureless environments where solution based on cameras

often struggle. Thus, LiDAR-based SLAM systems have emerged as a promising solution because

of their ability to provide accurate 3D environmental data. These technological advances moti-

vate researchers to explore new approaches to localization, driving innovation in mobile robotics.

At the same time, breakthroughs in algorithms, such as probabilistic filtering and graph-based

optimization, have also enabled more efficient and scalable solutions [8].

Despite their potential, many systems still face limitations in terms of scalability, computational

efficiency, and robustness in real world scenarios [9]. Addressing these challenges is a key mo-

tivation for this research, as it can improve the performance of LiDAR-based SLAM, allowing

autonomous systems to navigate in complex real-world environments with greater reliability.

Furthermore, overcoming these limitations would enhance the capabilities of mobile robots, en-

abling them to perform a diverse range of tasks autonomously.

1.2 Problem statement

Although LiDAR-based SLAM has demonstrated strong performance in diverse applications due

to its reliability in various environmental conditions, it still faces significant challenges in terms of

accuracy, robustness, and scalability. Traditional methods, particularly those based on Iterative

Closest Point (ICP), are susceptible to local minima and cumulative drift, leading to degraded

performance in long-term navigation and large-scale environments. These limitations become
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especially pronounced in feature-sparse or repetitive settings where incorrect data associations

introduce localization errors.

Furthermore, the accuracy of SLAM is highly dependent on the representation of the map,

the choice of features, and the strategies used for feature matching, as different approaches

influence how well the system can establish reliable correspondences between point clouds. Most

commonly, these approaches include using raw points, geometric primitives (planes, edges, and

corners), intensity-based features, or learning-based descriptors. In addition, the selection of the

map representation directly impacts computational efficiency and storage requirements. Many

systems rely on storing dense point cloud data, which significantly increases memory usage and

computational demands, particularly in large-scale scenarios [10]. Therefore, to enable long-term

operation, it is essential to adopt efficient mapping strategies that store only the most relevant

features for localization.

Moreover, many SLAM systems do not integrate additional sensory data, such as GNSS, which

could provide absolute positioning constraints to improve accuracy and mitigate drift. However,

naive fusion of GNSS with LiDAR data can introduce inconsistencies in the estimated trajec-

tory due to degradation of the GNSS signal in urban canyons, tunnels, or areas with dense

vegetation. Thus, a robust optimization framework is needed to effectively integrate GNSS mea-

surements with LiDAR-based motion and minimize the uncertainty of pose estimation. The tight

integration of GNSS and SLAM can address these challenges by enabling error correction, re-

ducing drift, and improving global consistency. The structure of the optimization problem itself,

including how constraints are defined and weighted, also has a significant impact on achieving

accurate and reliable localization. Recent advances in graph-based optimization and factor graph

SLAM offer promising solutions to this problem, but require further exploration in the context

of LiDAR-based systems.

Another challenge is the practical implementation of SLAM for modern LiDAR sensors, which

provide precise, high-resolution point cloud data at significantly faster rates than previous gen-

erations. Existing SLAM software frameworks may not be optimized to handle the full potential

of these sensors, which requires new data processing pipelines and software architectures to

maximize their effectiveness.

Taking into account these challenges related to LiDAR-based SLAM, the scientific thesis pre-

sented in this dissertation is formulated as follows:

It is possible to formulate the problem of estimating the motion of a LiDAR sensor

as an optimization problem over the feature-based map representation, including

constraints stemming from GNSS measurements, which leads to elimination of the

local minima problems commonly observed for the ICP-based SLAM algorithms.

This new formulation combined with an efficient map structure that stores only the

data that are suitable for localization allows an implementation of SLAM that is

scalable to long trajectories.
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1.3 Content of the thesis

The dissertation is structured into seven chapters, each addressing a different aspect of the

research. The remainder of the manuscript is structured as follows.

Chapter 2 provides an overview of the state of the art in SLAM, discussing various architectures,

scan registration methods, and loop closure techniques. It also explores challenges related to

robot localization and introduces factor graphs, highlighting their benefits, such as possibility

to integrate data from multiple sources. It also examines methods to improve GNSS-based

localization in the context of urban transport applications.

Chapter 3 presents two approaches to map representation. The first approach utilizes a feature-

based structure with large planar and linear elements. It details the process of feature man-

agement, optimization strategies, and different factor graph structures. The second approach

employs surfels combined with a bundle adjustment method to jointly optimize the map and

trajectory. It also describes the process of generating surfels from raw scans, the data associa-

tion technique, the uncertainty model for LiDAR measurements, and the approach to optimizing

surfels and poses.

Chapter 4 focuses on the integration of GNSS measurements with SLAM to improve long-term

accuracy. The first part discusses the fusion of raw GNSS measurements with LiDAR-based

SLAM, including strategies for filtering invalid GNSS observations. The second part presents

an approach for correcting the GNSS trajectory by integrating it with simple VO, effectively

mitigating erroneous positioning errors.

Chapter 5 contains an experimental evaluation of the systems developed in Chapters 3 and 4.

The evaluation includes tests with different LiDAR sensors and datasets, including self-recorded

data, as well as comparisons with existing SLAM systems. It also analyzes the computational

efficiency of the first proposed method. In addition, it includes an assessment of the refined

maps by comparing it to a reference model. The chapter further demonstrates the effectiveness

of integrating GNSS measurements to enhance trajectory estimation, comparing the results

obtained with different SLAM systems and GNSS receivers.

Chapter 6 presents two practical applications of localization systems employing GNSS and

their evaluation. The first case study involves the localization of a bus in urban environment. It

shows a practical case-study of using GNSS alone for localizing over a large and diversified area,

demonstrating both strengths and limitations of such an approach. The second case focuses on

localization of an agricultural robot operating in field conditions, where the GNSS localization

is improved using a VO system. This demonstrates that the problem formulation and software

developed for the GNSS-Augmented LiDAR SLAM (GALS) system can be easily adopted to

different sensory and scenario variants, addressing practical use-cases.

Chapter 7 concludes the dissertation by summarizing the key contributions of the research and

outlining potential directions for future work.
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Chapter 2

Related Work

2.1 State of the art in LiDAR SLAM

2.1.1 Architectures of SLAM

Most of SLAM research over the past two decades has focused on passive visual perception [3],

however, active 3D laser sensors, commonly known as LiDAR, offer significant practical advan-

tages over passive cameras. Unlike cameras, which struggle in low-light conditions and with

sudden changes in illumination, LiDAR operates effectively regardless of lighting. Although pas-

sive cameras remain the most cost-effective and easily integrated sensing option, LiDAR tech-

nology is increasingly recognized as a key component in the self-driving vehicle industry [11].

Beyond autonomous transportation, LiDAR is also essential for various robotic applications, such

as underground inspections, where reliable perception in dark or unstructured environments is

crucial [12].

In advanced visual SLAM, efficient handling of historical data in the environment map is essential

for accuracy [13], as optimization is favored over filtering methods such as the Kalman filter or

particle filter. By jointly optimizing the trajectory of the sensor (robot) and the map, the system

can update the linearization points and mitigate errors caused by approximations and incorrect

measurements through the use of robust cost functions [14]. Most LiDAR-based SLAM systems

rely on raw point clouds for map representation. This approach is often practical, as it does

not depend on specific environmental features and, when combined with loop closure detection

and global pose-based optimization, can produce highly accurate maps [15]. However, real-time

performance in such methods is typically achievable with massively parallel processing using a

General Purpose Graphic Processing Unit (GPGPU) [16], or by employing techniques such as

voxelization to increase computational efficiency. Additionally, raw point-based representations

struggle to differentiate salient features, such as objects of particular classes or distinct geomet-

ric structures. This limitation makes it difficult to track these features across multiple scans in

the way visual tracking does. Moreover, the lack of semantic information can lead to incorrect

associations between scans due to the closest match strategy, ultimately reducing the number of

7
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valid constraints available for map optimization. Several previous studies have explored the use

of volumetric and surfel-based map representations for LiDAR data. In [17], a voxel grid repre-

sentation with subsampled point clouds was employed, while in [18], the Normal Distributions

Transform (NDT) was used for compact 3D map representation and scan-to-model registration.

One limitation of grid-based map representations is their reliance on global nearest-neighbor

searches to establish correspondences between scan points and the model, making these methods

computationally inefficient.

Another approach is to employ surfels, which are small patches used to represent surfaces in 3D

mapping. This representation gained popularity in SLAM with the success of the RGB-D-based

ElasticFusion method [19], which directly influenced research on LiDAR-based systems [20].

Droeschel and Behnke [21] introduced a hybrid approach that combined a surfel representation

with a multi-resolution, robot-centric local grid map. By maintaining higher resolution in areas

closer to the LiDAR sensor, their method efficiently aggregated scanned points into surfels and

incorporated local maps into a multi-level graph-based SLAM framework. Additionally, Behley

and Stachniss [22] leveraged surfel-based mapping to establish projective data associations be-

tween LiDAR scans and rendered views of the map, allowing large-scale real-time operation.

Similarly, recent methods, such as MAD-ICP [23], have shown that the use of surfels can im-

prove the accuracy and the speed of registration by employing robust data association through

kd-tree search. A recent work [24] introduces a triangle mesh-based representation for LiDAR

mapping, which, unlike point clouds or surfels, offers a more structured and memory-efficient

model of the environment. This method, however, is not employed for SLAM but rather for

incremental mapping with known poses, enabling efficient updates and compact storage while

preserving geometric accuracy.

Volumetric representations have also been utilized to address LiDAR-based SLAM problems us-

ing deep learning methods. However, standard LiDAR data representations, such as point clouds,

are not differentiable [25]. To address this issue, state-of-the-art neural models for processing

range data either ensure invariance to point-order permutation, such as PointNet [26], or adopt

a voxel-based representation [27]. While PointNet and its extensions [28] enable point cloud

processing through convolutional networks, they are generally considered too computationally

intensive for real-time SLAM applications. Among the few attempts to use neural networks

for LiDAR-based localization in unknown environments, Velas et al. [29] reformulated the pose

estimation problem as a classification task. The L3-Net system [30] integrates a lightweight vari-

ant of PointNet with another network that aggregates matching costs from all features within a

volumetric model to produce pose estimates. However, formulating pose estimation as either a

classification or cost-accumulation problem reduces accuracy since the results are constrained by

the discrete structure of the data representation. The DeepLO method [31] has demonstrated

pose estimation accuracy comparable to model-based systems by employing an unsupervised loss

function derived from the iterative closest point formulation. It also leverages the normal vector

consistency to generate a confidence map that assigns weights to the factors of the loss func-

tion. Despite the progress in learnable LiDAR SLAM through unsupervised learning, DeepLO

had to be trained separately for each of the three datasets it was tested on. This highlights a

fundamental challenge in fully learnable LiDAR-based SLAM, which is its potential difficulty in

generalizing to previously unseen environments.
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In most modern LiDAR-based odometry and SLAM systems, the map is either not optimized

at all or optimized solely as a graph of past sensor poses. Raw point-based or volumetric

representations do not support global optimization with historical state marginalization, which is

essential for keeping the map size manageable and efficiently handling previous data. This is a key

factor in achieving high accuracy in visual SLAM, where Bundle Adjustment (BA) optimization

plays a crucial role [32]. In visual SLAM, the map is typically structured as a collection of images

(direct methods) or a graph of sparse feature points [13]. Although there are 3D salient point

feature detectors that can be applied to point clouds [33], their high computational cost makes

them impractical for large-scale outdoor SLAM applications.

Few LiDAR-based SLAM systems attempt to structure the map beyond simple point represen-

tations. Lidar Odometry and Mapping (LOAM) [34], which is one of the most influential archi-

tectures in LiDAR-based localization, segments scans into semantically distinct planar patches

and lines, applying different distance metrics to these categories during the ICP registration

process. However, LOAM does not incorporate geometric features into the map itself. Instead,

it represents the environment as a large point cloud organized on a regular grid to enhance

the efficiency of data association. A key innovation of LOAM lies in its software architecture,

which separates real-time scan-to-scan pose tracking (incremental odometry) from a slower but

more accurate scan-to-map localization process. By selectively choosing points that represent

stable and well-defined parts of the environment and refining incremental odometry through

model-based registration, LOAM remains one of the most accurate real-time LiDAR-based lo-

calization systems. This success has inspired numerous researchers to refine aspects of LOAM

while preserving its parallel odometry and mapping structure. The PlaneLOAM system [35],

introduced in Section 3.2, follows this approach. Similarly, LeGO-LOAM [36] enhances LOAM

by explicitly detecting the ground plane, distinguishing between ground and non-ground points,

and using this information to determine sensor attitude (pitch and roll). Then it estimates the

remaining components of the 6-Degrees of Freedom (DOF) sensor pose using a simplified model.

LLOAM [37] extends LOAM by incorporating a loop closing module based on learned descriptors

for point cloud segments [38] and constructing a pose graph using sensor poses and relative trans-

formations from LOAM-like odometry. Furthermore, the system in [39] combines LOAM-style

LiDAR odometry and mapping with SegMatch-based loop detection [38]. It introduces ground

plane constraints to improve relative pose estimation, but continues to use a basic pose-graph

structure for handling detected loop closures.

A natural approach to handling LiDAR data in partially structured urban environments is to

utilize high-level geometric features, such as planar and linear segments. Weingarten and Sieg-

wart [40] first incorporated planar features into Extended Kalman Filter (EKF)-based SLAM

with 3D LiDAR data. Later, [41] demonstrated the use of planar segments within a pose-graph

SLAM framework, utilizing a fast registration method for noisy planar features with unknown

correspondences [42]. A method for fast and accurate extraction of planar surfaces from LiDAR

data was proposed in [43] and applied in a filtering-based SLAM system. Grant et al. [44] further

explored high-level features from LiDAR data in SLAM by leveraging a factor graph framework.

Their SLAM method represents extracted planar features as landmarks in a factor graph opti-

mization framework, while also incorporating LiDAR odometry factors between sensor poses to

enhance performance in less structured environments. Loop closure is achieved by comparing
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planar features stored in a global map, establishing constraints (factors) between similar features,

and optimizing the graph.

2.1.2 Scan registration methods

The most common methods for estimating the relative transformation between two scans are

variations of the ICP algorithm [45]. Although ICP is widely used and has undergone numerous

refinements [46], it remains computationally expensive and vulnerable to data association errors.

This is because each time the sensor pose is updated, the algorithm must re-establish point

correspondences through a search process. One way to mitigate this issue is to carefully select

points for matching. LOAM addresses this by applying point-to-plane and point-to-line distance

metrics, associating points with planar and linear features, respectively [34]. Similarly, IMLS-

SLAM [47] utilizes implicit moving least squares surfaces and selects points based on a criterion

that leverages normal vectors to constrain all 6-DOF of the sensor. The study in [47] also

highlights that retaining too many points that provide weak constraints, such as those from non-

stationary objects or points with significant measurement noise, can degrade transformation

accuracy.

Another challenge in registering consecutive LiDAR scans is compensating for motion-induced

distortions in range measurements, similar to rolling shutter effects in cameras. These distor-

tions occur when scans are captured while the sensor is in motion, which is a common scenario

in autonomous vehicle applications. The registration method must be adapted to address this

issue [48], or the scans must be undistorted using a motion prior. Some LiDAR SLAM sys-

tems mitigate these distortions by integrating tightly coupled Inertial Measurement Unit (IMU)

data [49]. However, if external motion predictions are unavailable, corrections must be made

while simultaneously estimating the sensor’s movement. One approach to this problem, pro-

posed in [21], models the sensor trajectory as a continuous B-spline in SE(3) and interpolates

between poses. In contrast, LOAM and LeGO-LOAM use a simpler strategy by assuming a

constant sensor velocity, which simplifies interpolation [34, 36]. This assumption is particularly

effective for ground vehicles with mostly planar motion and provides a practical solution for

motion estimation between consecutive poses in LiDAR odometry.

2.1.3 Closing loops in SLAM

Despite the extensive research on LiDAR-based localization and mapping, relatively few pub-

lished systems provide a complete SLAM solution, as many lack loop closure capabilities. This

means that they cannot recognize previously visited areas and incorporate them into the map.

Many existing approaches focus on LiDAR odometry with scan-to-model registration [34, 36, 47,

49]. While these methods optimize the sensor trajectory and incrementally build the map, they

do not correct for trajectory drift by optimizing the map itself. This limitation is particularly

problematic in structured urban environments, where the absence of map corrections can result

in inconsistencies in object representation.



Related Work 11

Although ICP registration can be used for loop closure by aligning new scans with the existing

map [50], it becomes inefficient for large loops due to the high computational cost of nearest

neighbor search. A more efficient alternative is appearance-based loop closure detection, provided

that an effective data representation for LiDAR scans is implemented. Magnusson et al. [51] were

among the first to explore this approach, using NDT and location histograms for loop detection.

Droeschel and Behnke [21] leveraged local surfel-based maps to identify loop closures, while [22]

improved this method by generating virtual views of the global map. This enabled projective

associations that enhanced the robustness of detecting previously visited areas, even in cases of

only partial overlap.

Recently, neural network-based models have proven effective in addressing the loop closure prob-

lem for LiDAR data. The SegMap system [52] represents the environment as point cloud seg-

ments, each with learned descriptors. It detects previously visited locations by matching a local

segment map, built from recent LiDAR scans, to a global segment map. These segments are in-

crementally formed by accumulating LiDAR points in a dynamic voxel grid, while a deep neural

network generates their descriptors [38]. The learned representation in SegMap is highly distinc-

tive, enabling reliable matching of local and global maps even in cases of significant trajectory

drift. This approach has already been integrated into LOAM-inspired SLAM systems [37, 39],

where loop closure constraints are incorporated using pose-graph optimization. However, pre-

vious implementations have not fully leveraged SegMap’s potential within a comprehensive,

BA-like factor graph optimization framework. The work on PlaneLOAM [53] demonstrated that

by combining robust loop detection from SegMap with precise feature-to-feature data registra-

tion, a LiDAR SLAM system can achieve improved trajectory and map accuracy, surpassing the

limitations of pose-graph optimization alone.

2.2 Factor graphs in SLAM

2.2.1 The evolution of factor graphs

Over time, SLAM has evolved from simple probability-based methods to more advanced systems

that use modern optimization techniques. Among these, factor graphs have become a powerful

and flexible tool because they effectively capture the complex relationships between different

variables in SLAM. Fast processing and the ability to handle large-scale environments are critical

for real-world applications, such as self-driving cars, robotics, and augmented reality. Factor

graphs play a key role in meeting these demands. This section explores how factor graphs are

used in SLAM, highlighting their progress, benefits, and integration with other algorithms.

Factor graphs were introduced to SLAM as an extension of the Bayesian network and Markov

Random Field paradigms. The work introduced by Kaess et al. [54] efficiently employed fac-

tor graphs for real-time SLAM by allowing incremental updates of the graph structure. This

approach initiated research on representing the SLAM problem as a sparse optimization prob-

lem, significantly improving computational efficiency over the methods based on the EKF and

particle filter. The development of iSAM2 [55] further refined the framework by introducing
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Bayes tree-based relinearization and variable ordering, allowing efficient handling of large-scale

SLAM problems. This work demonstrated the scalability and accuracy of factor graph-based

approaches compared to traditional methods.

In factor graphs, the SLAM problem is modeled as graph where variables represent robot poses

and map features, while factors represent measurements or constraints. Each factor encodes

a probabilistic relationship derived from sensor observations or motion models. This repre-

sentation enables a decomposition of the SLAM problem into smaller subproblems, which can

be solved efficiently using Nonlinear Least Squares (NLS) optimization techniques, such as the

Levenberg-Marquardt or Gauss-Newton algorithms. The modularity of factor graphs has made

them especially useful for integrating various sensor modalities, including LiDAR, cameras, and

inertial sensors. An example can be the GTSAM [56] and g2o [57] libraries, which have become

a widely adopted tool for implementing factor graph-based SLAM systems, with applications in

both research and industry.

Pose Graph Optimization (PGO), which is a type of factor graph, where only poses are optimized,

is also widely used to refine trajectories in LiDAR SLAM [22, 58]. It represents the trajectory

as a graph, where poses are linked by relative transformations. However, while PGO maintains

computational efficiency, it can gradually accumulate drift and cause inconsistencies due to its

dependency on fixed pairwise constraints [59].

Several comparative studies have highlighted the advantages of factor graphs over traditional

SLAM methods. Unlike EKF-based SLAM, which suffers from quadratic complexity in map size

and linearization errors, factor graphs leverage sparse matrix structures and iterative optimiza-

tion techniques, resulting in better scalability and robustness [60]. Moreover, factor graphs allow

for full optimization, providing globally consistent trajectory estimates compared to the local

consistency offered by filtering-based approaches. Research has also shown that factor graphs

outperform filter-based methods, particularly in scenarios involving large state spaces [61]. These

advantages have made factor graphs a preferred choice for modern SLAM systems, particularly

in applications requiring high precision and large-scale mapping.

2.2.2 Advancements in factor graph-based SLAM

Many advancements in factor graph-based SLAM have been introduced to address challenges

in real-world applications. A significant extension is Dynamic-SLAM [62], which enhances tra-

ditional SLAM frameworks, typically designed for static environments, by integrating semantic

information into factor graphs. This allows the system to model and compensate for moving ob-

jects, improving localization and mapping accuracy in dynamic conditions. Another important

development is the work of Cunningham et al. [63], which is particularly beneficial for multi-

robot systems. By leveraging factor graphs to share and integrate data across multiple agents, it

enhances scalability and collaborative mapping capabilities, demonstrating efficient and robust

multi-agent SLAM using factor graph optimization. In addition, a key technique used in factor

graphs to manage computational complexity is marginalization, which allows for the removal

of certain variables while preserving their influence on the remaining graph [64]. This is par-

ticularly important in long-term SLAM applications, where the graph can grow indefinitely as
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the robot explores its environment. Furthermore, methods such as non-linear graph sparsifi-

cation [65] help maintain computational efficiency without sacrificing accuracy, making factor

graph-based SLAM more adaptable to real-world conditions. Combined with advanced optimiza-

tion techniques, these approaches enable SLAM systems to handle large-scale 3D environments

with millions of landmarks [22].

Approaches to make SLAM more robust have also gained attention as researchers seek to mitigate

the impact of outliers and sensor noise. For this purpose, robust loss functions and switchable

constraints have been incorporated into factor graph formulations, ensuring more reliable per-

formance in complex environments. To improve robustness against outliers and noise, Agarwal

et al. [66] proposed dynamic covariance scaling, a method designed to mitigate the influence of

erroneous measurements during map optimization. This technique dynamically adjusts measure-

ment covariances, preventing outliers from distorting the mapping process and ensuring more

reliable performance in challenging environments.

Recent advancements have also explored the integration of factor graphs with machine learning

techniques. Neural networks have been used to predict factors or improve data association, im-

proving the robustness and adaptability of SLAM systems in unstructured environments. These

hybrid methods, such as NeRF-LOAM [67], demonstrate the potential to combine traditional

optimization with modern learning methods.

In addition, factor graphs offer a robust framework for combining data from different types of

sensors. Their structure supports efficient optimization and uncertainty handling, leading to

enhanced SLAM performance. Techniques, such as preintegrating IMU measurements, proposed

by Forster et al. [68], have significantly improved visual-inertial SLAM. LiDAR-based systems,

such as LIO-SAM [69], also integrate an IMU with LiDAR odometry using a factor graph-based

optimization framework. By fusing LiDAR data with IMU pre-integration constraints, LIO-SAM

achieves improved state estimation accuracy, particularly in challenging environments with sparse

geometric features. In addition, it employs loop closure detection and IMU-based initialization

to enhance robustness in long-term scenarios. This combination of LiDAR and IMU within a

graph-based optimization framework makes it a precise and reliable system, offering real-time

performance over long trajectories.

Most LiDAR SLAM approaches focus mainly on local registration and do not incorporate joint

pose and structure optimization. However, global refinement methods, such as BA, are widely

used in visual SLAM and Structure from Motion (SfM) frameworks. In these applications factor

graphs are crucial, as they represent the relationships between sensor poses, 3D landmarks, and

feature observations, allowing for a globally consistent reconstruction of the environment. In

contrast to images that have dense and structured grids, LiDAR data consist of sparse and irreg-

ular point clouds, especially at greater ranges, which makes BA computationally demanding. As

a result, many LiDAR SLAM frameworks prioritize local registration methods, such as ICP and

its variants, which rely on subsampled point clouds [70, 71], distinctive geometric features [34],

or NDT [18]. However, while subsampling can help reduce noise, it often comes at the cost of

losing critical geometric details necessary for precise alignment. To address the computational

complexity of BA, hierarchical methods such as HBA [72] have been introduced, but their per-

formance is heavily dependent on an accurate initial trajectory, making them less reliable in
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complex environments. For global optimization, Liu and Zhang [73] proposed a trajectory re-

finement method based on LOAM-style features, while [74] applied photometric techniques from

visual SLAM to high-resolution LiDAR data. However, these methods struggle with robustness

and scalability, particularly in low-resolution or noisy conditions. Other techniques, such as

Signed Distance Function (SDF) [75] and implicit mapping [67], aim to improve noise filtering

and provide compact scene representations. Despite their advantages, they do not integrate pose

refinement and structural optimization within a single framework.

In general, factor graphs offer a flexible and efficient framework for modeling and solving complex

mapping and localization problems. Furthermore, they enable the integration of data from

heterogeneous sensors, thereby enhancing the accuracy of the estimation process. As a result,

factor graphs have become a fundamental tool in robotics research, contributing to the reliability

and scalability of SLAM systems, which has made them particularly valuable in applications such

as autonomous navigation and mobile robotics.

2.3 SLAM and GNSS

2.3.1 Methods of improving GNSS positioning accuracy

GNSS is the most widely used technology for determining the position of self-propelled mobile

platforms [76], offering a globally accessible solution for navigation. However, the accuracy and

reliability of GNSS-based positioning depend on factors such as the number of visible satellites,

atmospheric conditions, and the availability of differential correction signals [77, 78]. Although

GNSS provides sufficient precision for many robotic applications, relying solely on satellite-

based navigation without additional safeguards or algorithms to enhance reliability can lead to

positioning errors. To address these challenges, various methods have been developed to validate

and refine GNSS, incorporating filtering algorithms and on-board sensors to improve positioning

stability and accuracy [78–80].

GNSS-based navigation systems used in many robotic applications must ensure high accuracy and

operational safety. A critical aspect of this is achieving sufficient integrity within the navigation

system, which involves the ability to detect and report hardware malfunctions or unreliable

position estimates. Integrity, in this context, refers to the trustworthiness of the provided data,

particularly when the system must alert the user or the control system about potential failures

at a specific moment and with a known probability [81, 82]. One commonly employed method

for detecting navigation faults is Receiver Autonomous Integrity Monitoring (RAIM). It was

developed in the early 1990s, before satellite navigation was common for civilians, and works by

analyzing redundant satellite measurements to identify errors and inconsistencies in positioning

data. Modern RAIM techniques utilize various approaches, including least-squares estimation

and Kalman filters. As research shows, implementing RAIM significantly improves the stability

and reliability of positioning in many robotic systems [83, 84].

Cost-effective methods to enhance positioning accuracy, commonly discussed in the literature,

often involve integrating inertial sensors. One such approach, presented in [85], combines data
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from two low-cost GNSS receivers and an IMU. In this setup, the GNSS receivers utilize Real

Time Kinematic (RTK) corrections from an external service, and by applying appropriate soft-

ware and filtering the data using the EKF, authors achieved improved positioning accuracy, even

when one receiver stopped receiving these corrections. However, many GNSS receivers are not

equipped with a built-in IMU, and the integration of an external one presents challenges, such

as the need for isolation from mechanical vibrations, which can be particularly problematic in

many mobile robotic applications.

An alternative approach to enhancing positioning accuracy involves the use of SLAM algorithms

with passive cameras or LiDARs. LiDAR SLAM, when combined with GNSS, can improve the

accuracy of position estimation [86, 87] and enables seamless localization in both indoor and

outdoor environments by dynamically switching between these methods depending on signal

availability. Such methods, leveraging data fusion, filtering, or optimization algorithms, can

achieve high positioning precision even in environments where satellite signals are weak or un-

available [80, 88]. A similar approach can be applied to visual SLAM, which offers a major cost

advantage over LiDAR SLAM by substituting expensive LiDAR sensors with standard RGB

cameras [89]. However, visual SLAM relies on the detection of distinguishable objects within the

camera field of view, which makes this method particularly effective in structured environments

or near buildings, where GNSS signals are often degraded due to obstructions [90]. Despite these

limitations, ongoing research continues to explore hardware and software advances aimed at im-

proving the effectiveness of visual SLAM in open spaces [79, 91], allowing for their integration

with GNSS systems.

2.3.2 Approaches to SLAM and GNSS integration

Early research on enhancing satellite-based localization of ground vehicles focused on combining

GNSS and SLAM pose estimates. This approach relied on 2D scanners and Kalman filtering as

the fusion method [92]. More recent advances have applied filter-based techniques to integrate

GNSS with 3D LiDAR and IMU data, using the EKF [93] or the Unscented Kalman Filter

(UKF) [94].

However, as previously discussed in Section 2.2, factor graph optimization achieves superior

performance compared to EKF or UKF when it comes to the fusion of SLAM and IMU data.

This also applies to the integration of GNSS, as suggested by the experimental findings of [95].

The EKF struggles with outliers and linearization errors, particularly when vehicle poses rely

on noisy GNSS data. A multi-state constraint Kalman filter [96] can help mitigate these issues,

as demonstrated in [97], but does not fully exploit historical data. In contrast, formulating

the problem as a factor graph allows for greater use of independent constraints and enables

re-linearization with past states during optimization [98].

Wen et al. [95] highlighted the advantages of a tightly coupled GNSS integration approach. This

method directly incorporates raw measurements, such as pseudoranges and Doppler frequency

shift. Recently, tight coupling has been applied in the Kalman filter framework to integrate GNSS

with LiDAR [97] and in graph optimization to fuse IMU [99], visual SLAM [100], and LiDAR

SLAM [101] with GNSS raw measurements. However, the LiDAR SLAM algorithm in [101] is
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not suitable for large-scale urban scenarios and relies on a custom hardware configuration for

pre-integration of inertial data.

In contrast, loosely coupled methods rely on the position of the vehicle provided by the GNSS

receiver. Optimization-based GNSS/LiDAR localization systems, such as [102, 103], use a loosely

coupled approach to integrate LiDAR SLAM components based on LOAM. However, both ap-

proaches depend on precise external corrections, as [102] employs RTK GNSS, whereas [103] relies

on Precise Point Positioning (PPP). Similarly, the LIO-SAM system [69] can loosely integrate

GNSS positions to enhance global consistency.

Although factor graph formulation efficiently represents large-scale NLS optimization problems,

it still assumes Gaussian sensor noise, which is not valid for Non-Line of Sight (NLOS) GNSS

measurements. To address this, [104] introduced a technique for estimating GNSS measurement

covariance by using a Gaussian Mixture Model to detect non-Gaussian outliers.

2.3.3 GNSS applications in public transportation

GNSS is widely used for vehicle monitoring in urban traffic [105, 106], including bus tracking [107]

and analyzing driver behavior to detect unsafe actions such as speeding or sudden braking [108].

One of the primary advantages of GNSS is the affordability of the receivers, particularly when

compared to alternative sensors such as LiDAR or cameras. Additionally, GNSS systems provide

latitude and longitude coordinates within a global reference frame centered on the Earth, such

as the World Geodetic System ’84 (WGS-84). This ensures that the GNSS coordinates remain

independent of the receiver position during startup and initialization.

In recent years, research on public transportation has increasingly focused on sustainable solu-

tions, particularly electric buses. A comprehensive review of advancements in this field can be

found in [109]. Although efforts are being made to develop autonomous buses [110], Advanced

Driver Assistance System (ADAS) [111, 112] play a crucial role in enhancing safety and efficiency,

especially in environments where full automation is not yet feasible.

In particular, urban environments pose challenges for accurate GNSS localization due to signal

reflections and limited satellite visibility [113]. To improve positioning accuracy, researchers

investigate GNSS-based enhancements [106]. Although aeronautical GNSS integrity methods

are being adapted for urban environments [114], they require high data redundancy, which is

often unavailable due to multipath effects and NLOS signals. Consequently, RAIM algorithms

relying solely on GNSS pseudoranges are ineffective in such conditions.

As previously discussed, an alternative to relying solely on satellite-based localization is to inte-

grate GNSS with pose estimates from exteroceptive sensors using fusion techniques [115]. This

approach can involve leveraging omnidirectional vision [116] to improve satellite visibility, as

well as utilizing multiple GNSS constellations (e.g., GPS, GLONASS, Galileo, and Beidou) and

frequency bands. Additionally, modern GNSS receivers can extract raw measurements, such as

pseudorange, Doppler shift, and carrier phase, to refine position estimates by modeling specific

errors [117].
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Although multi-sensor localization systems can address GNSS degradation caused by poor satel-

lite visibility, multipath effects, or signal attenuation, they often come with significant drawbacks,

including high sensor costs and increased computational complexity. In certain scenarios, a more

practical solution may be the use of differential techniques, such as RTK GNSS [118, 119], which

significantly improves accuracy compared to standalone GNSS methods and provides reliable

localization in urban environments.





Chapter 3

Efficient map representations

3.1 Introduction

Accurate and consistent 3D reconstruction plays a crucial role in robotics, augmented and vir-

tual reality, infrastructure inspection, and environmental monitoring. Modern 3D LiDAR sensors

capture millions of points per second, making it possible to map large-scale environments with

high detail [10]. However, ensuring global consistency in these maps requires precise scan align-

ment into a unified model that remains accurate, scalable, and robust against noise. BA is the

gold standard for 3D reconstruction, as it jointly optimizes sensor poses and structure to achieve

globally consistent results [120]. This technique is particularly effective in visual SLAM, where

dense, structured image data provide rich visual cues for feature matching and correspondence es-

timation [121, 122]. However, LiDAR-based systems present unique challenges, including sparse

and irregular data distributions and the absence of visual cues, making feature extraction and

efficient map representation more difficult.

Moreover, in LiDAR-based SLAM, the choice of map representation is crucial for balancing

accuracy, computational efficiency, and memory usage. Different representations are suitable

for different applications, depending on factors such as the complexity of the environment, the

required level of detail, and the available computational resources. Traditional approaches often

rely on dense point clouds, which, while highly detailed, lead to significant storage requirements

and computational overhead, particularly in large-scale or long-term mapping scenarios. At the

same time, extracting salient point features from point clouds is computationally demanding and

susceptible to inaccuracies due to range measurement uncertainties [33].

To enhance efficiency, various structured and feature-based representations have been developed,

enabling more compact storage while preserving essential geometric information for localization

and mapping. This chapter presents two approaches to processing LiDAR point clouds: one

focuses on extracting higher-level geometric features, such as line segments and planar patches,

while the other utilizes surfels. In both cases, these spatially extended features aggregate numer-

ous points, making them more resilient to range measurement errors, as points that do not fit

any feature can be discarded early in the processing pipeline. Moreover, SLAM system utilizing

19
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higher-level features is expected to have improved accuracy because they offer additional geomet-

ric constraints compared to point-to-point correspondences typically used in methods processing

raw point clouds.

In LiDAR SLAM, nonlinear optimization is commonly utilized for iterative registration of succes-

sive scans or aligning new scans with an existing map. However, the volume of data produced by

modern LiDARs makes it impractical to use raw points as nodes in a factor graph. In contrast,

geometric representations can be leveraged in optimization frameworks to simultaneously refine

both the trajectory of a robot and the map. Therefore, the appropriate map structure can make

methods such as BA feasible for LiDAR SLAM, similar to its application in visual systems [120].

3.2 LiDAR SLAM using high-level planar features

To address these challenges, the PlaneLOAM system was developed, as described in this section.

It is a LiDAR-based SLAM system that leverages higher-level geometric features by grouping

raw point cloud data into basic geometric forms. Instead of relying solely on individual points,

this system represents the environment using planar patches and line segments, which are linked

to the robot’s trajectory through observations. This structured representation enables the con-

struction of a factor graph that incorporates constraints derived from sensor motion and feature

observations.

To improve long-term mapping accuracy, a loop detection mechanism based on SegMap [52] was

integrated, which learns robust descriptors from segmented point clouds. These descriptors allow

the system to recognize previously visited locations, adding new constraints to the factor graph.

By establishing connections between previously unrelated features, this approach enhances con-

sistency in large-scale mapping. In contrast, the method in [44] relies on geometric tests to

determine planar feature similarity, which is more susceptible to errors caused by trajectory

drift, viewpoint changes, and occlusions compared to the learned descriptor-based matching.

While PlaneLOAM introduces novel features, a new map representation, and an optimized pro-

cessing pipeline, its core architecture remains similar to the LOAM system [34]. Like LOAM,

this method combines real-time scan-to-scan pose estimation (odometry) with a slower but more

precise scan-to-map localization approach. Previous research [35] demonstrated the effective-

ness of this new mapping framework and evaluated its improvements in trajectory estimation

accuracy compared to LOAM. Building upon that framework, a new version was developed that

incorporates loop closure detection and map optimization using high-level features.

As mentioned above, the PlaneLOAM system builds on the steps used in LOAM by splitting

the calculation process into the odometry and mapping modules and enhancing the functional-

ity of LOAM with the integration of a loop closure module. The block diagram showing the

PlaneLOAM architecture is presented in Figure 3.1, while the following subsections describe in

detail each module of the system.
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Figure 3.1: Block diagram showing the PlaneLOAM architecture. Blocks with red dotted
borders show no substantial changes when compared to LOAM.

3.2.1 Odometry

In the odometry thread, PlaneLOAM operates similarly to the LOAM algorithm, with minor

adjustments to support various 3D LiDARs. Firstly, the newly acquired point cloud is analyzed

to extract sets of points that are classified as either planar or linear. Subsequently, these points

are paired with the nearest points of the equivalent type (planar or linear) from the previously

acquired point cloud. The matching process is conducted using the Euclidean distance between

points of the same category, incorporating a straightforward sensor motion prediction model.

For real-time performance, efficient kd-trees are utilized to accelerate the matching process.

Constraints for the optimization problem, whose goal is to determine the pose estimate, are es-

tablished by using the matches between points from successive point clouds. Although matching

is done on a point-to-point basis, the optimization constraints rely on point-to-line and point-to-

plane distances. Similarly to LOAM, at each step, equations for lines and planes are computed

dynamically from the set of the five closest points in the previous point cloud. The steps for

matching points and pose estimation are carried out repeatedly until the optimization reaches

convergence. Consequently, the optimization problem in the odometry step can be expressed as:

Ti
∗ = argmin

Ti




∑

j

f (pj , tj ,Ti) +
∑

k

g (pk, tk,Ti)



 , (3.1)

where f (pj , tj ,Ti) denotes the point-to-line distance for a point pj at its corresponding acqui-

sition time tj , counted from the start of the scan, g (pk, tk,Ti) represents the point-to-plane

distance for point pk at its corresponding acquisition time tk, also counted from the start of the

scan, and Ti
∗ represents the pose estimate.

In contrast to global shutter cameras, LiDAR systems perform measurements point by point or

in a small group of points. Therefore, when the sensor moves, each measurement in a complete

scan is collected from a distinct pose. In order to obtain accurate estimates, it is essential to

transform all measurements to a single reference frame by accounting for the LiDAR motion.

In this work, the end of the scan was chosen as the reference frame for the LiDAR and the

points were transformed accordingly. Assuming the velocity remained constant throughout the
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scan, the transformation from a point pm defined in the LiDAR reference frame at the time of

measurement to a point pe in the reference frame at the end of the scan can be calculated as

follows:

pe = exp

{
ts − ti
ts

logTs

}

pm, (3.2)

where ti denotes the time of the i-th measurement with respect to the start of the scan, ts

represents the total duration of the scan, and Ts specifies the transformation that maps the

point from the beginning to the end of the scan. The operators exp and log map between

rigid-body transformations in the Lie group SE(3) and their corresponding twists in the Lie

algebra se(3). The exponential map (exp) converts an infinitesimal transformation in se(3) into

a finite transformation in SE(3), while the logarithmic map (log) performs the inverse operation,

extracting a twist from a transformation matrix in SE(3).

The transformation is determined by using the LOAM odometry, where ts is set to 0.1 s for all

LiDARs referenced in this work, while ti varies depending on the sensor type:

• Velodyne HDL-64E:

ti =
φi − φs
φe − φs

ts, (3.3)

where φi denotes the horizontal angle for the i-th measurement, φs represents the horizontal

angle at the beginning of the scan, and φe is the horizontal angle at the end of the scan

• Sick MRS 6124:

ti =

(
bli/6c

4
+

φi − φs
2π

)

ts, (3.4)

where li represents the index of a scanning ring, counted from the top.

• Ouster OS1-64:

ti =
bi/64c

1024
ts, (3.5)

where i is an index of the measurement.

3.2.2 Mapping

The LOAM system classifies registered scan points as linear or planar points, which are utilized

for optimization in both odometry and mapping steps. However, these points do not create

higher-level features, as they are maintained as unordered point clouds for both categories.

When needed, the five nearest points of a particular type from these combined point clouds are

utilized to create a constraint.

The proposed PlaneLOAM implements an alternative map representation that aggregates points

into high-level features. This method does not restrict the number of points, allowing a single

feature to represent large objects, like a wall of a building or a road surface. Figure 3.2 illustrates

a conceptual comparison of a wall representation in PlaneLOAM with the one in the original

open-source LOAM implementation.
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Figure 3.2: A conceptual comparison between the high-level planar feature in the
PlaneLOAM system (left) and the cloud of planar points in the LOAM system (right).

Map representation

The map generated by PlaneLOAM consists of both linear and planar features, however, the

presented approach affects mostly planes, since they tend to create large structures, regardless

of the surrounding environment. Figure 3.3 illustrates a diagram of the structure of the stored

map.

Map

Planar features
Planar feature (1)
- vector of points
- parameters of plane equation
- planarity

Linear feature (1)
- vector of points
- parameters of line equation
- linearity

Linear features

Linear feature (N)
- vector of points
- parameters of line equation
- linearity

Planar feature (N)
- vector of points
- parameters of plane equation
- planarity

Figure 3.3: A diagram illustrating the organization of a stored environment map, which
includes lines and planes that form high-level features.

Initially, each planar feature π is generated using five nearby points collected from one LiDAR

scan. Its equation π = (nπ, dπ) is four-dimensional, with np representing the unit length normal

vector of the plane and nd denoting the distance from the plane to the origin. For simplicity,

this equation is often referred to as the plane equation and meets the condition:

p · nπ + dπ = 0 (3.6)

for every point p on that plane. The normal vector nπ is determined through Principal Com-

ponent Analysis (PCA) of a given feature’s covariance matrix and is defined as the eigenvector

associated with the smallest eigenvalue. The covariance matrix is determined relative to the

centroid of a specified feature and quantifies the dispersion of all points associated with that

feature. To represent the line segments λ = (ld, lm), the six-dimensional Plücker coordinates

are used, where ld denotes the direction of the line and lm denotes the moment of a line, both

expressed in the global frame. The direction of the line ld is initially determined by two points,
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p1 and p2, as given by the equation:

ld =
p2 − p1

‖p2 − p1‖
. (3.7)

The moment of the line lm is calculated as:

lm =
p1 × p2

‖p2 − p1‖
. (3.8)

Depending on the size of the feature, p1 and p2 are either two actual points or two synthetic

points selected to be on the line in the direction of ld, which is the eigenvector associated with

the highest eigenvalue obtained from PCA.

The parameters of both the plane and the line are adjusted each time new points are incorporated

into the feature, but this occurs only as long as the number of points remains below 30. Beyond

this limit, the equation parameters that describe the feature stay fixed. Every feature retains

additional information, including its centroid and the covariance matrix of points, which were

also determined during the equation computation. Additionally, each feature is associated with

coefficients that indicate either planarity or linearity (depending on the type of feature), which

is used as an indicator of its quality. Planarity and linearity, represented by pf , indicate the

percentage of points that lie within a certain proximity to the feature, specifically less than 0.2m

in the proposed system. This percentage is determined using the following equation:

pf =
Nf,0.2

Nf

· 100%, (3.9)

where Nf,0.2 denotes the number of points located within a 0.2m radius from the line’s or plane’s

center, and Nf represents the total number of points in the chosen feature. That coefficient is

used to determine the validity of a particular feature and to assess the dispersion of the points.

The value of the parameter pf , and consequently the quality of the feature, can potentially be

enhanced by removing points that are further from the plane or line than a specified threshold.

All generated features are processed through a series of steps that include creation, updating,

deletion, and merging. The block diagram shown in Figure 3.4 illustrates the life-cycle of the

high-level features.

Create planar/
linear features

Update feature
parameters

Merge similar and

overlapping features

Delete selected
features

Figure 3.4: The processing pipeline of the developed system involves the creation, updating,
deletion, and merging of features.

Creating features

The initial stage of the processing pipeline involves generating planar and linear features from the

points registered in each scan. To form a plane, five nearby points are identified, and the plane

equation is derived using their coordinates. While it is feasible to establish a plane equation

with just three points, using more points enhances accuracy and decreases the likelihood of
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generating invalid features. As the planar equation has predetermined parameters, every newly

incorporated point must conform to the model dictated by these parameters, within a specified

tolerance. The algorithm for adding points to the features is presented in Figure 3.5.

Searching for
three closest

features 

Searching for  
closest point in  

each feature

Checking 
matching
certainty 

Single
point

Adding point 
to feature

Figure 3.5: Steps taken to match a single point with an existing feature.

At first, for each new scanning point, the point-to-plane or point-to-line distance to the three

closest features is determined, and the system attempts to match that point to one of these

features. The point-to-plane distance is determined by following equation:

dn = f (p,Ti) = ‖ (Tip) · nπ + dπ‖, (3.10)

where p represents a vector for the considered point, and Ti represents i-th pose (transformation

from the local to the global coordinate system). For linear features, the distance from a point

to a line is determined as

dn = g (p,Ti) = ‖(Tip)× ld − lm‖. (3.11)

The algorithm initially discards any features beyond a distance of 0.6m and then selects the

three nearest features. The next step involves identifying the shortest point-to-point distance

between the given point and the points associated with these features. The distance should be

less than 0.7m, preventing the inclusion of points that coincidentally meet the feature’s equation.

Finally, the algorithm verifies whether there is more than one feature that satisfies these criteria.

In such a scenario, it computes the ratio of point-to-point distances to determine if any of them

is notably smaller, according to the equation:

de1
de2

< 0.7, (3.12)

where: de1 and de2 represent the distances from the specified point to the nearest points in the

first and second closest features, as illustrated in Figure 3.6. If the aforementioned equation is not

met, the considered point will not be added to any of these features to avoid reducing the accuracy

of the localization estimate due to potential incorrect correspondences. All these conditions need

to be fulfilled in order for a new point to be added to the map. The initial condition guarantees

that each point associated with a particular feature comply with its equation. The second

condition prevents the creation of features that have an inconsistent density of points, while the

last condition ensures that the matching process was carried out properly.
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dn
dn

de1

de1de2

de2

Figure 3.6: Distance to the closest feature along its normal (dn), distance to the nearest
point in the closest feature (de1) and the distance to the nearest point in a second closest
feature (de2) taken into account when adding a point to the current planar (A) and linear (B)

feature.

If the conditions previously stated are not met, a given point can still be associated with the

feature that contains fewer than 5 points. In such a case, the considered point only needs to be

within 1m of any of these points. If that condition is not satisfied as well, a new plane feature is

generated, to which additional points may be added as the rest of the scan is processed. Thanks

to this approach, new features are generated only when a particular point does not align with

any currently existing one, resulting in a map that contains larger features. It is important to

mention that the specified parameters were established through several simulation tests, selecting

values that minimize localization error.

Updating and deleting features

As modern LiDARs can generate tens of thousands of points in just one scan, it is essential to

decrease the number of features stored in the map. To achieve this, features that are coplanar and

colinear are combined, and features that are too small are removed after each scan is processed.

To further enhance the system’s performance, a voxel grid filter is applied to reduce the number

of points in each feature. The process for updating all features is shown in Figure 3.7.

Features Applying voxel
grid filter

Validating
planarity and

linearity

Deleting small
features

Deleting invalid
features

Figure 3.7: Block diagram showing steps for updating existing features and removing those
that are too small or invalid.

Initially, the algorithm iterates through all the features to identify planes containing fewer than

5 points and lines with fewer than 3 points. These features are scheduled to be removed because

they contain only a few points and their equations have not been calculated yet. The subsequent

step involves applying a voxel grid filter to each feature. Afterwards, the algorithm verifies the

validity of all remaining features. To accomplish this, it employs pre-determined planarity and

linearity parameters based on Equation 3.9. The threshold for determining the validity of a
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feature is set to 80%, and any feature that does not meet this criterion will be removed. The

removal of chosen features is performed once after the completion of the update step.

Every time a new scan is obtained, the plane and line features are extracted and added to a

map. This means that the number of current features keeps growing with each scan, despite

the deleting and merging steps. This leads to a progressively increasing computation time re-

quired for assigning new points to existing features and finding correspondences between points

and features during pose optimization. Thus, it became crucial to develop a solution enabling

PlaneLOAM to operate on long sequences in real-time. This was achieved by choosing features

that were not used during the optimization process and setting them as inactive. These features

are not considered when assigning new points and during subsequent optimization, although

they are stored in the map structure. A similar approach to this solution is employed in LOAM,

which segments the map into cubes and eliminates points that fall outside the scanner’s range

during the search for point matches. In the case of PlaneLOAM, the inactive features are stored

to enable the loop closure detection, as detailed in Section 3.2.3.

Merging features

The final step in the map processing pipeline employed by PlaneLOAM involves merging features

that are coplanar and colinear. To merge two planes or lines, it is essential to confirm that they

overlap and to verify if the resulting feature also will be valid. Figure 3.8 illustrates the block

diagram presenting the procedure for merging two features.

Checking
angle between

planes/lines

Searching for
closest points

Checking
mean matching

error

Validating
potentially merged

feature

Merging
featuresFeature #2

Feature #1

Figure 3.8: The process of merging two features based on angle, matching error, and distance
between them.

The initial step in merging planar features involves computing the angle α using the following

equation:

α = arccos

(
nπ1 · nπ2

‖nπ1‖ · ‖nπ2‖

)

, (3.13)

where nπ,i represents a normal vector of the i-th plane. In the case of linear features the equation

is expressed as follows:

α = arccos (ld1 · ld2) , (3.14)

where ldi represents the normalized line direction. The upper limit for the angle between them

is set to 10◦. If this condition is satisfied, point-to-plane (or point-to-line) distances dni between

points from the first feature and the plane (or line) of the second feature are used to compute

the mean residual error. A similar error is determined by using the distances measured between

the points of the second feature and the equation of the first feature. These errors are calculated
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with the following formulas:

ε1 =
1

Nf1

∑

dni, i = 1...Nf1 (3.15)

ε2 =
1

Nf2

∑

dni, i = 1...Nf2 (3.16)

To continue the merging process, the values of these errors must not exceed 0.1m. Figure 3.9A

provides a visualization of the angle α considered during merging together with the distance dni

used to compute the matching error.

The subsequent step is to find the minimum point-to-point distance de between two planes (see

Fig. 3.9B). To proceed with the merging, it must be less than 1m. This ensures that two features

overlap or are in proximity to one another. For lines, all specified distances are illustrated in

Figure 3.9C.

α

α

A B C

dni
dni

de

de

Figure 3.9: The angle (α) between two planes and example point-to-plane distance (dni) (A),
distance de between two points on the planes considered for merging (B), angle α between two
lines, an exemplary point-to-line distance dni and the distance de between any two points on

the lines being matched (C).

If all of the previously mentioned criteria are met, the final step is to check if the newly created

feature is valid. This is achieved by determining the planarity or linearity of that feature. If the

value exceeds 80%, it indicates that merging can be executed. Otherwise, the process of merging

is discontinued, as it would result in an invalid feature that would subsequently be removed in

the next iteration.

Pose estimation

In both LOAM and the developed PlaneLOAM, the estimation of the pose within the mapping

process relies on the point-to-line and point-to-plane distances. However, the distinction lies in

the fact that PlaneLOAM matches the chosen linear and planar points from the latest point

cloud to the globally consistent map of the high-level features. The optimization problem in this

case is presented in Figure 3.10. Each high-level feature includes information about its equation

as well as the list of points associated with it.

A key difficulty with employing a map consisting of high-level features lies in quickly matching

new points to the increasing number of features stored in the map to enable real-time perfor-

mance. Thus, when matching a point to map features, the system initially identifies the nearest

point using efficient kd-trees and subsequently obtains the ID of the high-level feature associated

with this point. Consequently, the PlaneLOAM concurrently handles two types of environment
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map: one using points, similar to LOAM, and another relying on high-level features. Identify-

ing point-to-feature correspondences through point-to-point matching is crucial for developing a

real-time operational system.

In the PlaneLOAM system, the verification of correspondence between a point and a map feature

follows a methodology similar to that described for the creation of features in Section 3.2.2. The

main difference are the values of the chosen parameters. The distance to an existing plane or

line (dn) should be less than 0.2m or 0.4m accordingly. Additionally, the distance to the nearest

point within the feature (de1) must be below 0.2m, and the distance to the nearest point in the

next nearest feature (de2) must exceed 0.7de1.

Figure 3.10: In PlaneLOAM, the pose Ti is determined by solving the optimization problem
through the use of the point-to-plane (f(πj ,Ti)) and point-to-line (g(λk,Ti)) constraints.
The parameters of the observed features are constant throughout the optimization process. In
comparison to the LOAM method, the parameters for each feature are explicitly stored within

the map.

In the mapping step, the optimization problem can be expressed as follows:

Ti
∗ = argmin

Ti




∑

j

f (πj ,Ti) +
∑

k

g (λk,Ti)



 , (3.17)

where f (πj ,Ti) is the point-to-plane distance while g (λk,Ti) represents the point-to-line dis-

tance. In contrast to the odometry stage, all the points have an identical timestamp, as they are

transformed to the end of the scan. This eliminates the need to consider the acquisition time

of each individual point for computation purposes. Additionally, in PlaneLOAM, the parame-

ters for the plane and line equations that are used to calculate the cost functions (f (πj ,Ti) or

g (λk,Ti)), are saved in the high-level features.

3.2.3 Loop closure

The loop closure module is divided into two main parts: loop closure detection and update of

the information stored in the PlaneLOAM system. The update can be executed using either

the pose graph representation or optimization on high-level features. The subsequent sections

provide a more detailed explanation of the proposed approach.
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Loop closing detection

Detection of loop closure is accomplished through the Segmap [52] system. This system pro-

cesses LiDAR scans that have been motion compensated using PlaneLOAM to construct a map

of segments, where each segment has an associated descriptor. Subsequently, these segments are

aligned between the existing local map and the global target map to identify locations that have

been visited before. Once segment correspondences are found, Segmap calculates a transforma-

tion between the sensor’s position in the local map and its position during the previous visit.

This calculated transformation is later used as a constraint in the factor graph. Figure 3.11

illustrates an example map generated by Segmap along with the segment matches.

Figure 3.11: Utilizing the SegMap method for detecting loop closures within sequences from
the MulRan dataset (A, B). Local maps of semantically segmented point clouds, represented
in various colors, are matched against a global map of point cloud segments displayed in white.
Identical regions are depicted as maps of high-level features (C, D), with orange indicating
planar patches for the ground plane and approximately vertical features represented in yellow

for larger walls and cyan for smaller planar elements.

In order to achieve accurate transformations,the geometric consistency grouping distance thresh-

old is set to 0.5m and a minimum cluster size to 8 (refer to [52] for more details). In order to

prevent incorrect loop closures, the system applies the distance and cluster size criterion once

again and improves the transformation using a point-to-plane ICP technique. The calculation

of the global mapping trajectory uses only ICP factors, excluding odometry factors. It is im-

portant to note that the deep neural network used to generate the descriptors for the segments

was trained on a different dataset (KITTI), which uses a different kind of LiDAR (Velodyne

HDL-64E vs. Ouster OS1-64) and was recorded in a different environment.

Pose graph optimization

The outcome of the odometry and mapping processes provides a pose estimate for the latest

sensor scan, which extends the length of the entire trajectory. In LOAM, after the mapping

thread completes the scan processing, the estimated pose remains unchanged. In PlaneLOAM,
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whenever the SegMap module detects a loop closure, all prior sensor poses are updated. In the

proposed approach, the standard factor graph representation is used, where each sensor pose is

depicted as a node. At the same time, the relative transformations between consecutive poses are

modeled as edges linking the corresponding nodes, as presented in Figure 3.12. When SegMap

identifies a new loop closure, it adds a new relative transformation connecting the relevant nodes

in the graph. In the optimization process, the objective is to obtain new pose estimates that

minimize the following error:

argmin
T1,...,Tn




∑

i

h(Ti,Ti+1)Ωi,i+1h(Ti,Ti+1) +
∑

j

h(Tl(j,1),Tl(j,2))Ωl(j)h(Tl(j,1),Tl(j,2))



 , (3.18)

where T1, ...,Tn are the optimized poses, h(Ti,Ti+1) denotes the error between the i-th and

(i + 1)-th poses obtained from the mapping step, and h(Tl(j,1),Tl(j,2)) is the error for the j-th

loop closure, specified as the error between the l(j, 1)-th and l(j, 2)-th poses associated with that

loop closure observation. The Ωi,i+1 and Ωl(j) represent the 6×6 diagonal information matrices

for factors connecting subsequent poses and those arising from loop closures. Their values were

tuned experimentally to minimize the trajectory estimation error. In pose graph optimization,

observations of features are not directly used, but they make it possible to determine the pose-

to-pose constraints in the graph.

Figure 3.12: In PlaneLOAM, pose graph optimization is conducted with pose-to-pose con-
straints that come from the mapping process and link successive poses. Loop closure con-
straints connect non-consecutive poses and are determined via segment-based loop closure
detection. The features in the map are excluded from optimization, as their observations are

integrated into pose-to-pose constraints.

Loop closure based on map features

The approaches used in visual SLAM indicate that optimal accuracy is achieved through joint

optimization of sensor poses and features through BA [120]. In PlaneLOAM, a system to execute

a global BA was developed, enabling the optimization of all recorded poses and feature param-

eters to obtain the most precise trajectory estimate (see Fig. 3.13). In the proposed system,

global BA is conducted exclusively after the detection of loop closure.

The system receives a relative transformation between two sensor poses from the SegMap module,

which serves as initial data for loop closure factors. However, the objective is to leverage the

feature-based structure of the map to enhance the accuracy of this initial transformation. Thus,
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when evaluating two poses A and B matched via SegMap, the system initially identifies the

plane and line features visible from these poses, denoted by FA and FB . Subsequently, using the

SegMap relative transformation, the points in the features FA are matched by associating them

with the features FB . This matching procedure is performed in a manner similar to the mapping

step. Consequently, an optimized transformation linking the poses A and B is obtained, which

is then used in the loop closure pipeline.

Figure 3.13: Global optimization leveraging pose-to-feature constraints to refine both the
pose estimates (Ti) and features (πj , λk) stored in the map. There are no edges between
poses, as the constraints coming from mapping and loop closure module are incorporated

directly through the merging of corresponding features from re-visited locations.

It is mainly used to merge high-level map features that represent the same physical plane or

line but have been assigned different IDs as a result of a system drift. After the features are

merged based on the previously specified rules, the BA optimization is performed to minimize

the following cost function:

argmin
K,Fπ,Fλ





n∑

i=1

∑

j∈Fπ

f (πi,Tj)Ωi,jf (πi,Tj) +

n∑

i=1

∑

j∈Fλ

g (λi,Tj)Ωi,jg (λi,Tj)



 , (3.19)

where K, Fπ, Fλ represent the optimized sensor poses, planes, and lines, respectively, Fπ,i and

Fλ,i are the sets of indices for all planes and lines that are visible from the i-th pose of the sensor,

f (πi,Tj) and g (λi,Tj) are the error function for measurement between the i-th plane or line

and the j-th pose, and Ωi,j represents the information matrix for pose-to-feature factors. Ωi,j

is defined as a 3×3 diagonal matrix for pose-to-line constraints and a scalar for pose-to-plane

constraints, with the values determined experimentally. Throughout the optimization process,

the parameter sets for sensor poses, plane equations, and line parameters are jointly refined to

minimize the overall error of the system.

Plane representation for optimization

In order to incorporate the parameters of the planes and lines directly into the optimization

process, the features must be expressed using their minimal representation, and the Jacobians

for the parameters need to be well defined. Thus, during the optimization process, the parameters

associated with planes and lines are converted to minimal representations, and once optimization

is finished, the results are reverted to their initial form to allow for the update of the map. The

following paragraphs provide a more detailed explanation of the minimal representations utilized

for both planes and lines.
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In PlaneLOAM, the planes are characterized by a four-dimensional vector expressed as
[

nπ dπ

]

,

where nπ represents the normal and dπ denotes the distance from the origin of the coordinate

frame. The minimal representation for the plane is three-dimensional due to the normalization

of its normal vector. To create a minimal representation, the concepts described in [123] are em-

ployed, where exponential and logarithmic functions project elements from (n+1)-dimensional

spheres onto n-dimensional tangent hyperplanes. Based on this concept, the plane normal
(

nπ3×1 =
[

n1 n2 n3

]T
)

is considered as an element of the S2 unit sphere and can be mapped

to a point on the tangent hyperplane

([

ωx ωy

]T
)

:

θ = acos(n3), (3.20)

ωx = −n2
θ

sin(θ)
, ωy = n1

θ

sin(θ)
, (3.21)

where
[

ωx ωy

]T

represents the plane normal nπ. Consequently, from the initial four-dimensional

representation (nπ, dπ), the minimal three-dimensional representation (ωx, ωy, dπ) is obtained.

Using these equations allows for the calculation of the analytical Jacobian corresponding to each

element of the proposed representation.

This spherical transformation has two particular cases that must be addressed. The first of them

is when θ → 0, which requires a series expansion of θ
sin(θ) . The other case occurs when θ → π,

which can be avoided by replacing the specified plane with the equivalent one where nπ = −nπ

and d′π = −dπ.

After optimization, the original 4D representation

(

nπ =
[

n1 n2 n3

]T

, dπ

)

can be obtained

using the exponential map that transforms it from the tangent hyperplane back to the S2 group:

θ =
√

ω2
x + ω2

y, (3.22)

n1 = ωx
sin(θ)

θ
, n2 = ωy

sin(θ)

θ
, n3 = cos(θ), (3.23)

Minimal line representation

In PlaneLOAM, lines are expressed using 6-dimensional Plücker coordinates
[

ld lm

]

, where ld

denotes the line’s direction and lm represents its moment. These three-dimensional components

are orthogonal to each other. To ensure consistency, the direction of the line ld is maintained in

a normalized form with its first component being non-negative, that is, ld(0) ≥ 0. To create a

minimal representation, the concepts of [124] are employed, which make use of the properties of

the SO(3) group. This method encodes the line’s parameters as a rotation matrix:

R =

[

ld,
lm

‖lm‖
,
ld × lm

‖lm‖

]

(3.24)

and subsequently calculates the representation using Lie algebra:

ω = log (R) , (3.25)
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where log(·) is the Lie algebra (so(3)) representation of R. As a result, ω encodes both the

normalized direction and the normalized moment of the line. In order to recover the initial

line parametrization, the line moment length is kept as the fourth parameter (ml = ‖lm‖). In

summary, the initial representation (ld, lm)6×1 is transformed into its minimal form (ω,ml)4×1,

taking into account three special cases:

• ‖ω‖ → 0 - in such a case, a series expansion of θ
sin(θ) is used,

• ‖ω‖ → π - this problem is circumvented by conducting the computation with an equivalent

Plücker representation (ld
′ = −ld and lm

′ = −lm),

• ‖lm‖ = 0 - ml is set to 0 and then the conversion is performed with the new unit vector

lm, which is orthogonal to ld. Since ml = 0, the arbitrary choice of lm has no effect on the

Plücker coordinates derived from the minimal representation.

After optimization, the original six-dimensional representation can be obtained with:

ld = exp(ω)







1

0

0






, lm = ml exp(ω)







0

1

0






, (3.26)

where exp(·) calculates the SO(3) group representation using the so(3) Lie algebra element.

3.3 Bundle adjustment of surfel-based map and poses

This section presents the proposed approach to 3D LiDAR BA, called MAD-BA, which simulta-

neously optimizes both the map and the poses to maintain geometric consistency and accuracy.

The method operates directly on 3D point cloud data using surfels, which are compact, disk-like

elements that effectively represent surface geometry and provide an alternative to the high-level

geometric features. The block diagram illustrating all the main processing steps of the developed

system is presented in Figure 3.14.

Figure 3.14: Block diagram of the proposed system. The input consists of 3D scans and an
initial trajectory, while the output includes the surfel map and the refined trajectory. The key

steps are: kd-tree construction, data association, optimization, and updating the kd-trees.

The following subsections present the methodology, covering surfel-based scene representation,

efficient data association using kd-trees, and the optimization process to refine both poses and

surfels. The optimization employs the Levenberg-Marquardt (LM) algorithm and the cost func-

tion designed to minimize geometric errors through a LiDAR uncertainty model.
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3.3.1 Creating kd-trees

The initial stage of the processing pipeline involves converting each input point cloud Ci into a

kd-tree Ti. Each kd-tree Ti includes multiple leaves l = (pl,nl) that contain a small subset of

the point cloud. The leaf of a kd-tree is defined by the mean point pl ∈ R
3 and the surface

normal nl ∈ R
3.

The process of creating kd-trees is recursive and starts by computing the mean and the covariance

matrix of the given point cloud, followed by extracting the eigenvectors W =
[

w0 w1 w2

]

from the covariance matrix using PCA. The eigenvector with the highest eigenvalue w2 is assigned

as the direction of the greatest variation, while the eigenvector corresponding to the smallest

eigenvalue w0 is identified as the surface normal.

A subsequent step involves computing an oriented bounding box for a given point cloud, which

determines the minimum and maximum dimensions along each axis. If the largest dimension

of the bounding box is smaller than a threshold bmax = 0.2m, indicating a compact cluster of

nearby points, the recursion is terminated. If the bounding box extends beyond this threshold,

the point cloud is divided into two subsets using the previously calculated mean value and

direction corresponding to the eigenvector w2, as presented in Figure 3.15.
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Figure 3.15: The strategy of building kd-trees, which relies on identifying the axis of maxi-
mum variance using PCA to divide the point cloud into smaller nodes [23]. The splitting stops
when the size of the bounding box around the points in a node (marked with different colors)

is below the threshold bmax. In that case a node becomes a leaf of the kd-tree.

This splitting process is applied recursively to each subset, creating the left and right child nodes

of the kd-tree. In parts of point cloud with many points, this method provides reliable surface

normal estimates. However, in sparse regions where leaf nodes may contain only a few points,

normals can become less accurate. To address this problem, when the shortest dimension of the

bounding box corresponding to a given kd-tree node is less than a threshold bmin, its normal

is propagated to its children. This approach improves normal estimation for leafs with a small

number of points without increasing the complexity of the kd-tree construction.

The final step involves transforming the kd-trees to the global coordinate frame using the initial

poses provided as the input of the system. Importantly, this process does not modify neither the

structure of the kd-tree nor the relative position of the leaves, ensuring that it can still be used

for nearest neighbor search. As a result, kd-trees created from the input scans can be effectively

used for matching purposes using global coordinates of leaves, which is necessary to perform

data association step.
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3.3.2 Data Association

The problem is represented using dense surfels and poses derived from a LiDAR odometry or

SLAM pipeline. Each pose is represented as a homogeneous 3D transformation matrix Ti ∈

SE(3), while a surfel s = 〈ns,ps, rs〉, is an oriented disk defined by its center point ps ∈ R
3,

surface normal vector ns ∈ R
3, and radius rs ∈ R. Surfels are particularly effective for scene

representation because they allow efficient fusion and updates during BA. Moreover, they can

adapt well to structural changes caused, for example, by loop closures. Compared to voxel-based

methods, surfels capture thin surfaces and complex geometry more effectively. In addition,

surfels avoid the computationally intensive process of updating topology during optimization

unlike mesh-based approaches.

Surfels are generated before optimization and preserved only during a single iteration. This

approach ensures reliable data association, even if the initial poses are not accurate and far from

optimum. They are formed by associating multiple leaves from different scans. In this way,

they aggregate measurements of the same map region acquired from various poses. To associate

estimated surfels with the leaves, the previously described kd-trees are utilized [23]. For each

new LiDAR scan Ci, a kd-tree Ti is constructed as a preprocessing step. This process generates

a data structure that encodes the plane segmentation of the point cloud and enables efficient

nearest-neighbor queries. The next step is to match all kd-tree leaves to the existing surfel set S.

A new surfel is generated if a leaf cannot be associated to any surfel. For a leaf l to be matched

with a surel s, it must satisfy the following conditions:

• it must be the nearest neighbor to one of the leaves already associated with the surfel s,

• the Euclidean distance de between the surfel center ps and the leaf mean pl should be

below 0.5m,

• the distance dn between the surfel center ps and the leaf mean pl, computed along the

normal of the surfel ns should be lower than 1.0m,

• the angle α between normals of a surfel ns and a leaf nl should be lower than 5°.

The visual illustration of the geometric criteria required to associate a leaf with a surfel is shown

in Figure 3.16.

α

Figure 3.16: Geometric conditions required to match a leaf l with a surfel s. It includes the
Euclidean distance between the surfel center and the leaf (A), the Euclidean distance along

the surfel normal (B), and the angle between their normal vectors (C).
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In the proposed method, a surfel must include at least two leaves from two different poses to

be considered during optimization. However, it is beneficial to gather as many measurements

as possible from various poses to better constrain the problem. An example visualization of

the measurements that were obtained from different poses and associated within a surfels is

presented in Figure 3.17.

A B

Figure 3.17: Visualization of the measurements coming from different poses (scans) that
were associated to the same surfels. Figures (A) and (B) show examples for synthetic and real

scans, respectively. Each line connects the pose with the center of the observed leaf.

When a new measurement leaf is associated with a surfel s, its mean, normal, and radius are

updated. This is done by averaging the surfel centers ps with the means of the corresponding

leaf points pl and averaging the surfel normals ns with the normals of the leaf points nl. The

radius rs is set to the largest radius among the associated leaves to fully capture the variability

of the points. Given the sparsity of LiDAR data, this approach ensures that the surfel accurately

represents the local geometry, preventing gaps or inadequate coverage that could result in map-

ping inconsistencies. The result of this step is the surfel map, whose examples and comparison

with the point cloud is presented in Figure 3.18.

As noted previously, surfels are maintained for only one iteration, which means that the asso-

ciation process is repeated multiple times during optimization. However, the efficiency of the

kd-trees ensures that re-association can be performed quickly and reliably even in scenarios

with large-scale data. It ensures that nearest-neighbor queries are accurate and guarantee the

best surfel-leaf matches. Moreover, the PCA-based tree-building process minimizes the depth of

the kd-tree [125], making it suitable for such an application. The steps performed during data

associations are also presented in Algorithm 1, which complements this section.
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A C

B D

Figure 3.18: The comparison of the surfel map (A, B) with the point cloud (C, D). Surfels
provide an alternative representation of the 3D surfaces that is more robust and versatile
compared to standard points. Each surfel contain information about its normal vector (marked

with different colors), which is particularly useful for matching purposes and rendering.

Algorithm 1 Data Association
input: kd-trees {T }
output: surfel set S
local: list of leaves associations L

for Ti ∈ {T } do

for Tj ∈ {T } such that Ti 6= Tj do

for li ∈ Ti do

Ai ← {} . empty set of leaves associations
if ∃A ∈ L such that li ∈ A then

Ai ← A
else

Ai.add(li) . leaf does not match any surfel
L.append(Ai)

lj ← Tj .nearestNeighbor(li)
if Ai.checkMatch(lj) then

Ai.add(lj) . leaf-surfel match

S ← createSurfels(L) . surfel creation/surfel normal update
return S

3.3.3 Optimization

The goal of BA is to jointly optimize surfels and poses. To minimize the cost function, the

proposed system uses the second-order LM method. The optimization process runs for a spec-

ified number of iterations or until convergence. During each iteration, both surfels and poses

are optimized together using an efficient Iterative Least Squares (ILS) solver [126]. Algorithm 2

provides a general description of the executed steps. In the case of poses, all 6-DOF are updated,

however, surfels are restricted to move only along their normal direction. This constraint pre-

serves the local surface geometry, reduces the optimization complexity by limiting the degrees

of freedom, and aligns with LiDAR measurement uncertainty, which is most significant along
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the surfel normal. In addition, it minimizes ambiguities in the data association step and ensures

stable map refinements.

Algorithm 2 MAD-BA
input: clouds {Ci}, initial poses {Ti}
output: surfel set S∗, refined poses {Ti}

∗

{Ti} ← buildKdTrees({Ci}) . construct kd-trees
for n ∈ # iterations do

{Ti} ← transform({Ti} , {Ti}) . transform kd-trees
S ← createMatches({Ti}) . Algorithm 1
S∗, {Ti}

∗ ← optimize(S, {Ti}) . optimize poses and surfels

The general idea of the optimization step is illustrated in Figure 3.19. The pipeline incorpo-

rates information about LiDAR measurement uncertainty along with the raw scans and input

trajectory provided by a LiDAR SLAM or odometry system. Using these inputs, the method

jointly optimizes both the poses and the map, leading to their refinement with each iteration. By

integrating LiDAR uncertainty directly into the optimization, the framework not only improves

the robustness but also enhances the overall consistency of the resulting trajectory and map.

LiDAR uncertainty modelling MAD-BA refining poses and map

LiDAR SLAM estimate

Figure 3.19: Pipeline of the optimization process. Starting with a trajectory estimated by a
LiDAR SLAM system, the developed method jointly refines the poses and map. It utilizes the
proposed uncertainty model to weight the optimization process. The two insets in the bottom
right corner qualitatively showcase the improvements in map quality achieved through this

approach.

LiDAR uncertainty model

LiDAR measurements are inherently noisy because of the varying environmental conditions. Ac-

curate modeling of range uncertainty enables the system to prioritize reliable measurements,

preventing optimization degradation, and ensuring meaningful contributions to BA [126]. How-

ever, existing uncertainty models developed for 2D LiDAR scanners [127] or airborne LiDAR

systems [128] do not generalize well across different LiDAR sensors and application scenarios.
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The shape of a LiDAR waveform is affected by sensor parameters, such as beam divergence,

and measurement conditions such as range and angle of incidence. As the range or angle of

incidence increases, the area intersected by the beam expands, resulting in a broader waveform.

Unfortunately, the methods used by LiDAR firmware to process waveforms and calculate ranges

are proprietary and generally undisclosed by manufacturers. Although it is intuitive that the

waveform peak is critical for determining the range, the way broader waveforms are interpreted

remains unclear. Additionally, commercial LiDAR systems typically output only processed point

clouds, without providing access to raw waveform data. This lack of waveform details restricts

the ability to analyze or model sources of measurement errors.

Beam divergence is a significant factor in various laser applications. In airborne LiDAR, for

example, long-range measurements can result in a laser footprint that covers multiple objects

within the vertical profile [128, 129]. Simulating LiDAR with idealized assumptions limits the

ability of the training models to generalize to real data. To generate realistic scans from novel

viewpoints, a physically accurate sensing model is introduced in [130]. In [131], an optimal beam

shaping method is proposed to correct the intensity data, while [132] presents an analytical

formula that links the waveform and the features of the measured target. However, these studies

do not provide a general framework for estimating the uncertainty of measurement.

This work addresses this gap by contributing a method for estimating uncertainty and integrat-

ing it into a weighting optimization framework. The proposed approach is broadly applicable

and relies only on the beam divergence, which is typically specified in the LiDAR manufacturer’s

documentation. The technique incorporates optical simulation, where a beam (modeled as a

cone) is cast from the sensor’s origin toward the mean position of each leaf. The waveform corre-

sponds to the intensity of the beam echo measured over time. In practice, simulation discretizes

this function by casting multiple lines within the beam cone, as illustrated in Figure 3.20. This

process can be performed for each leaf immediately after its creation during the construction of

the kd-tree. Although the waveform exists in time, the simulation samples a set of Nl ranges ri.

The standard deviation σl is then calculated using the following formula:

σl =

√
√
√
√ 1

Nl

Nl∑

i=1

(ri − ‖pl‖)2 (3.27)
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Figure 3.20: The model of LiDAR uncertainty, showing a single LiDAR beam simulated by
casting a set of sub-beams towards a leaf l (left). The measurement uncertainty is represented

by a Gaussian distribution derived from the sampled ranges (right).
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Cost Function

The objective of the described method is to jointly optimize surfels and poses to achieve the

maximum geometric consistency, where each pose corresponds to a 3D LiDAR point cloud. Let

K represent the set of all poses, and Si denote the set of surfels with associated measurements in

pose Ti ∈ K. To robustly manage outliers, the Huber robust loss function ρHuber, parameterized

by ρker, is applied to weight the residual e. As a result, the total negative log-likelihood can be

expressed as:

E(K,S) =
∑

Ti∈K

∑

s∈Sk

e (Ti, s) . (3.28)

The error term e(Ti, s) represents a sum of the point-to-plane distances between the surfel center

ps and the leaf mean pl, measured along the surfel’s normal ns and transformed to the local

reference frame Ti:

e(Ti, s) =
∑

j∈As

ρHuber

(
σ−1
l (T−1

i ns)
T
(
T−1
i ps −T−1

i plj
))

, (3.29)

where σl is the standard deviation of the LiDAR measurements calucated using Equation 3.27,

while As is the set of all the leaf matches for the surfel s, determined as outlined in Section 3.3.2.

Surfel optimization

The normal vector of a surfel is not directly modified during the non-linear BA optimization.

However, the surfels are regenerated after each iteration of the described method. Firstly, this

process involves transforming the kd-trees according to the updated pose estimates. Subse-

quently, the data association step is repeated, creating new correspondences between leaves

from different scans. This incremental approach enables continuous refinement of the map and

mitigates issues related to finding invalid correspondences that can occur when the input pose

estimates are inaccurate. As described in Section 3.3.2, the normal vector of each surfel is calcu-

lated as the average of the normals of its leaves, which, in turn, are estimated during the creation

of kd-trees that are built only once during the first stage of BA.

After updating the normals ns through matching of kd-trees, poses and surfels are jointly opti-

mized using the LM algorithm. During this optimization, the movement of the surfels is restricted

to their normal directions ns, allowing the updated position of the surfel to be parameterized

as qsns + ps. This joint refinement strategy establishes fewer constraints and avoids disconti-

nuities that may arise when optimizing poses and structure separately. Despite the fact that

independent surfel optimization is quicker and allows parallel processing [133], the joint approach

provides better results by effectively capturing the relationships between poses and structure,

resulting in more accurate and consistent improvements.

Pose optimization

The updates of the poses δT are parameterized as local transformations in the Lie algebra

se(3). Consequently, the transformation Ti, which represents the pose in the global reference
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frame, is incrementally refined using the operation Tiexp(δT ). This approach of parameterizing

updates in the Lie algebra ensures that updates to rotations remain well defined and free from

singularities [122]. This methodology is systematically applied to all poses represented within

the factor graph.

It is worth noting that the optimization of the poses not only refines the estimated trajectory but

also significantly improves the structure of the map, especially if the initial error of the poses is

substantial. This is caused by the fact that after each optimization, the kd-trees are transformed

according to new pose estimates, which increases the overlap of the leaves and underlying scan

points. The visualization of this effect is presented in Figure 3.21.

A C

B D

Figure 3.21: The impact of pose optimization on aligning registered scans that are used
to construct kd-trees, visualized for both real (A, C) and synthetic data (B, D). Each color
represents points from a different scan. Figures (A, B) display the scans before optimization,
while Figures (C, D) show the improved alignment after optimization. The scan points are
displayed solely for visualization and are not utilized in the system pipeline after kd-trees are

created.

Although the primary enhancement achieved through this process lies in the refinement of the

pose estimates, surfels play a crucial role in ensuring accurate alignment. Moreover, as the evalu-

ation results show (see Sec. 5.2), this effect would not be possible if only poses were optimized, as

the joint optimization of surfels and trajectory yields the best results. In general, the proposed

approach incorporates multiple constraints between all poses, interconnecting them through sur-

fels, which significantly reduces drift and ensures global consistency. Furthermore, the outlier

rejection method that uses the robust loss function successfully handles spurious measurements

and helps achieve the best performance. An example showing how the surfel map is improved

through this LiDAR BA is presented in Figure 3.22.
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A B

Figure 3.22: Effect of trajectory and surfel map optimization. Figure (A) presents the surfel
map generated with the initial poses, and (B) shows the map after applying BA method.

3.3.4 Converting existing point-based maps to surfels

The described method for creating surfel maps can be applied to data from various sensors,

including LiDARs and RGB-D cameras. Moreover, it is also possible to convert existing point

cloud maps into surfels, extending the utility of previously captured data. An example of a surfel

map, converted from a point-based map created using the DJI Matrice drone and capturing the

campus of the Poznan University of Technology, is presented in Figure 3.23.

A

B C

Figure 3.23: An example of a surfel map, generated by converting a point-based map of the
Poznan University of Technology campus (A, B), and the fragment of the original point cloud
map for comparison (C). The surfels include information about surface normals, enabling a

more accurate representation of flat areas such as road surfaces.

Overall, surfels provide an alternative to traditional point cloud representations, offering several

advantages that make them particularly useful for mapping and localization tasks in robotics

and computer vision. Unlike point clouds, which consist solely of discrete points in 3D space,
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surfels incorporate additional information about the orientation of the groups of points. As a

result, they can better represent surfaces, allowing for more accurate 3D modeling, and enhance

the fidelity of the map. Moreover, the inclusion of surface normals also enables faster and

more efficient processing. For example, surfels allow the use of point-to-plane variants of the

ICP algorithm, which align surfaces more effectively compared to the traditional point-to-point

version. This improves both the speed and accuracy of the scan alignment, which is crucial for

3D reconstruction and real-time applications such as SLAM.



Chapter 4

Efficient use of GNSS data

4.1 GNSS and LiDAR SLAM integration

4.1.1 Introduction

Vehicle localization is commonly achieved using GNSS, which provides satisfactory accuracy in

open environments. However, in urban areas with dense high-rise buildings, the accuracy and

availability of pose estimates significantly degrade [134]. Meanwhile, extensive research has been

conducted on SLAM techniques for vehicles, utilizing either passive cameras or active LiDAR

sensors [4]. Recent advancements in LiDAR technology have made these sensors increasingly

popular in self-driving vehicles due to their independence from lighting conditions and robustness

in various environmental settings [135]. Although LiDAR SLAM or LiDAR odometry can deliver

precise vehicle trajectories in highly structured and static environments [53, 76], these systems are

prone to drift in scenarios that lack sufficient features or exhibit significant dynamics. Integrating

GNSS measurements can help mitigate this drift by providing absolute (global) pose references.

On the other hand, LiDAR SLAM performs reliably in areas where GNSS localization often

struggles due to urban canyons and obstructions that reduce the visibility of the satellites. This

complementary nature of GNSS and LiDAR SLAM indicates the potential for their integration

to enhance localization performance.

This section describes the method developed for augmenting existing LiDAR-based localization

systems with GNSS measurements. The proposed approach employs a factor graph formula-

tion [98], which models the problem as a graph of constraints on vehicle states. Optimization

is performed using the computationally efficient g2o library [57], enabling precise and robust

localization in challenging environments.

Most LiDAR odometry and SLAM algorithms estimate vehicle ego-motion by either associat-

ing consecutive observations along the trajectory or matching local observations (features or

points) to a global map. These matched observations create constraints on the states of the

vehicle equipped with a LiDAR sensor. While these states and constraints can be represented

as a factor graph [98], this section introduces a novel method that enhances the factor graph by

45
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incorporating constraints derived from absolute and relative GNSS measurements, such as pseu-

doranges and Doppler shifts. The proposed approach, named GALS, adopts the concept of tight

integration within the factor graph, a technique that has been widely considered as the state of

the art in visual-inertial SLAM [100], but has not yet been fully explored for the integration of

LiDAR SLAM with GNSS data. Tight integration offers a significant advantage by utilizing a

large number of individual GNSS measurements, which more accurately reflect the constraints

imposed by multiconstellation GNSS data compared to the vehicle poses provided by the GNSS

receiver in a loose integration approach. The proposed method is largely independent of the

specific algorithm used to derive LiDAR constraints, making GALS a versatile framework for

improving the quality of global trajectories generated by various SLAM systems. Furthermore,

it supports the inclusion of constraints that come from loop closure detection. To address the

challenges of inaccurate GNSS measurements, the developed system introduces a novel filtering

procedure that leverages vehicle speed constraints. Furthermore, the proposed approach was

thoroughly evaluated on the challenging UrbanNav dataset [136], across multiple environments,

using different LiDAR-based SLAM algorithms (such as LOAM [137] and LIO-SAM [69]) and

various GNSS receivers (see Sec. 5.3).

4.1.2 GNSS-based localization

GNSS receivers in most of the applications are primarily used to provide positioning data as

latitude, longitude, and altitude. Interestingly, some GNSS modules additionally offer access to

raw GNSS measurements such as pseudorange, Doppler shift, and carrier phase [99]. Depending

on the type of receiver, these measurements can support multiple satellite constellations (e.g.

GPS, GLONASS, Galileo, Beidou) and frequencies, enhancing positioning accuracy.

The pseudorange represents the measured distance between the receiver antenna and the satel-

lite, calculated based on the signal travel time. However, it does not reflect the true distance

due to factors such as satellite and receiver clock biases, which affect timing accuracy. Signal

propagation is additionally influenced by Earth’s atmospheric conditions and phenomena such

as multipath interference. Consequently, a i-th pseudorange measurement pi,n between receiver

and n-th satellite can be formulated as [138]:

pi,n = ρi,n − (δsn − δri ) · c+ dioni,n + dtropi,n + εpi,n, (4.1)

where ρi,n is the geometric range, δsn and δri represent satellite and receiver clock biases, c is

the speed of light, dioni,n and dtropi,n are delays caused by ionospheric and tropospheric effects, and

εpi,n accounts for errors resulting from multipath interference and receiver noise. Satellite clock

biases δsn can be roughly calculated using parameters sent in GNSS messages, while the receiver

clock bias δri must be estimated along with the position of the receiver. To achieve this, for

each estimated position, at least four pseudorange measurements from satellites within the same

constellation are required.

Doppler shift measurements capture the change in frequency of a carrier wave caused by the

relative motion between a satellite and a receiver. This frequency shift is used to calculate the
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radial velocity vn, which represents the rate at which the distance between the n-th satellite and

the receiver changes over time. The radial velocity can be determined using the equation:

vn =
c

fn
·∆fn, (4.2)

where fn is the carrier wave frequency, and ∆fn is the Doppler shift value for the n-th satellite.

Doppler shift values can be utilized to estimate the receiver’s velocity components along three

axes (vrx,i, v
r
y,i, v

r
z,i) by processing vn values across multiple satellites and their constellations.

The carrier phase of a GNSS signal also provides information about the distance between a satel-

lite and a receiver. However, this range is measured in cycles of the carrier frequency, enabling

very precise distance measurements. However, the main problem related to these observations is

that the total number of cycles along the signal path is initially unknown, which is referred to as

integer cycle ambiguity. Resolving this ambiguity requires advanced methods, such as PPP or

differential GNSS, however, these techniques require external corrections. Since the developed

system does not have access to such external corrections, it relies solely on pseudorange and

Doppler shift measurements.

4.1.3 Factor graph-based integration

To integrate raw GNSS measurements with constraints from a SLAM system, the proposed

GALS framework uses the g2o library [57] for factor graph optimization. The key advantage of

GALS lies in its flexibility, allowing LiDAR-related constraints to be supplied by any SLAM or

odometry system that is capable of estimating 3D poses. The optimization process focuses on

enhancing the localization accuracy of the receiver (i.e., vehicle) while also addressing the local

nature of the SLAM trajectory estimation. By incorporating pseudorange constraints, the entire

trajectory is transformed into a global coordinate frame. The structure of the proposed graph,

which features optimizable nodes for each vehicle state and measurement constraints represented

as edges, is illustrated in Figure 4.1, while the following subsections provide a detailed explanation

of the factor graph formulation used in GALS.



Efficient use of GNSS data 48

Figure 4.1: The overall structure of the factor graph in the GALS approach, combining
LiDAR-based vehicle localization with GNSS measurements. The graph’s nodes include state
vector of a GNSS receiver and positions of satellites. It uses four types of factors: LiDAR

odometry, LiDAR loop closure, GNSS pseudorange, and GNSS Doppler shift.

Factor graph nodes

Each optimizable node in the graph corresponds to the i-th state vector of a vehicle, denoted

as Xi, which includes a 6-DOF receiver pose Ti (consisting of a position and orientation) and

individual receiver clock biases for each GNSS constellation:

Xi = [Ti, δ
r
i,1, δ

r
i,2, δ

r
i,3, δ

r
i,4], (4.3)

where δri,1...4 represent the clock biases for GPS, Galileo, GLONASS, and Beidou, respectively.

The clock bias drifts are not estimated, as experiments showed that including them did not

improve trajectory accuracy but increased computational overhead.

The fixed (non-optimizable) nodes represent GNSS satellites, whose positions are known at the

time of measurement. The receiver position rri (a translational part of Ti) is calculated in the

Earth-centered Earth-fixed (ECEF) coordinate system (see Fig. 4.2), consistent with the n-th

satellite position rsn and the receiver velocity vri that are also expressed in the same frame.
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Figure 4.2: The receiver position r
r
i , satellite position r

s
n and the receiver velocity v

r
i ex-

pressed in ECEF, which is a fixed reference frame with its origin at the Earth’s center of mass.
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It is assumed that the LiDAR and GNSS receiver mounted on the vehicle have been calibrated

in advance and their extrinsic parameters are known. As a result, LiDAR scans are expressed in

the receiver’s local coordinate frame, simplifying the mathematical formulation.

Factor graph pseudorange edges

In urban environments, where GNSS measurements are frequently degraded, developed GALS

employs a two-stage processing approach. Initially, the 3-DOF receiver position (latitude, lon-

gitude, and altitude) is estimated using only pseudorange measurements. These preliminary

estimates are then utilized for GNSS data filtering. Subsequently, pseudorange constraints are

formulated and applied in the factor graph only for the measurements that have been positively

verified.

To estimate the receiver’s position and clock biases, the scalar pseudorange measurement error

is utilized, derived from Equation 4.1:

epi = pi,n − [ρi,n − (δsn − δri ) · c+ dioni,n + dtropi,n + εpi,n], (4.4)

where i represents the node (vehicle state) index, n corresponds to a specific satellite index

(across all constellations), and ρi,n denotes the geometric range to the receiver:

ρi,n = ||rri − rsn||+ ωe(r
s
x,n · rry,i − rsy,n · rrx,i)/c, (4.5)

where ωe denotes the angular velocity of the Earth. Satellite position is determined using broad-

cast navigation data, with calculations performed using the open-source RTKLIB library [138].

In the described approach, RTKLIB is employed to parse and process data from multiple GNSS

systems, enabling the extraction of raw measurements while distinguishing between different

constellation types. Furthermore, RTKLIB provides essential information related to each ob-

servation, including the n-th satellite coordinates rsn, the satellite clock bias δsn, the ionospheric

delay dioni,n , the tropospheric delay dtropi,n , and the i-th velocity vri calculated from Doppler shift.

Using this information, the 3-DOF position of the receiver can be estimated. The cost function

minimized during the optimization is expressed as:

argmin
Ti,δ

r
i,1..4

∑

i

epi (Ti, δ
r
i,1...4)Ωpe

p
i (Ti, δ

r
i,1...4). (4.6)

The single-element information matrix Ωp for the pseudorange constraint is derived from σ2
p, the

scalar variance of pseudorange error, which is calculated as:

σ2
p = σ2

m + σ2
e + σ2

c + σ2
ion + σ2

trop, (4.7)

where σ2
m, σ2

e , σ
2
c , σ

2
ion, and σ2

trop represent the variances of pseudorange measurement, ephemeris,

code bias, ionospheric delay, and tropospheric delay, respectively [138]. The pseudorange mea-

surement variance for a specific satellite is estimated as: σ2
m = l20 · [l

2
1 · (l

2
2 + l23/ sin(θel,i)], where

θel represents the elevation angle of the satellite and (l0, l1, l2, l3) are measurement error factors.

These factors are set to (1.0, 100, 0.003, 0.003) for the GPS, Galileo, and Beidou constellations,
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while l0 = 1.5 is used for GLONASS [138]. The variance σ2
e is derived based on User Range Ac-

curacy (URA) [139], a tabulated accuracy indicator transmitted by the satellite. The remaining

components of Equation 4.7 are computed as follows: σ2
c = l24, σ

2
ion = (dioni,n · l5)

2 · (fL1/fn)
2,

and σ2
trop = (l6/ sin(θaz +0.1))2, where fn is the frequency of the n-th satellite carrier wave, θaz

is the azimuth angle of the satellite, and fL1 is a constant (1.57542·109 Hz). The error factor

values are l4 = 0.3, l5 = 0.5, and l6 = 0.3 [138].

Factor graph Doppler shift edges

Doppler shift constraints are incorporated in the form of 3-DOF translations, calculated based on

the receiver velocity vri and the time interval between consecutive GNSS observations. The re-

ceiver velocity is estimated beforehand using multiple Doppler measurements. The error function

for distance constraints derived from Doppler shift is expressed as:

eDi,i+1 = rri+1 − rri − vrDi,i+1 · ti,i+1, (4.8)

where vrDi,i+1 is the average velocity, and ti,i+1 is the time interval between poses with index i

and i + 1. The 3×3 information matrix ΩD, associated with these measurements is computed

using RTKLIB procedures during velocity estimation, leveraging the least squares method [138].

Factor graph LiDAR SLAM edges

SLAM-based constraints take the form of 6-DOF transformations that link successive vehicle

states. In this case, LiDAR SLAM odometry between consecutive vehicle poses is provided

by the LOAM [34] or LIO-SAM [69] system. Since SLAM constraints represent homogeneous

transformations, the error function is defined as:

eSi,i+1 = [(TS
i )

−1 ·TS
i+1]

−1 · (Ti)
−1 ·Ti+1, (4.9)

where TS
i and TS

i+1 represent the poses of successive vehicle states obtained from the SLAM

trajectory. If a full SLAM method that can identify revisited places is used with GALS, the

factor graph is extended with additional constraints from the loop closures. These constraints

follow a similar formulation to Equation 4.9:

eLi,j = [(TS
i )

−1 ·TL
j ]

−1 · (Ti)
−1 ·Tj , (4.10)

where TS
i is again the pose of the i-th vehicle state from LiDAR SLAM, and TL

j is the corre-

sponding pose retrieved during the loop closure procedure.

The 6×6 information matrix Ωs for the LiDAR SLAM odometry constraints is derived by in-

verting the covariance matrix ΣS , which represents the uncertainty of vehicle pose. While this

covariance matrix could be modeled as a function of surrounding feature points, as suggested

in [140] for LOAM-like LiDAR localization methods, the proposed approach adopts a simplified
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strategy, modeling the covariance matrix as:

ΣS = diag (σ2
x, σ

2
y, σ

2
z , σ

2
φ, σ

2
ψ, σ

2
θ), (4.11)

where σ2
x, σ

2
y, σ

2
z , σ

2
φ, σ

2
ψ, σ2

θ represent the variance of the pose along the x, y, z, roll, pitch,

and yaw axes, respectively. These diagonal covariance values are experimentally determined for

the UrbanNav sequences to develop the model that minimizes the errors relative to the ground

truth.

The computed covariance is scaled based on the distance traveled by the vehicle from the last

node and is subsequently used to calculate ΩS . Although this method does not account for

variations in the number of points or features in the environment, it enables GALS to function

with any LiDAR SLAM or odometry system that lacks the ability to estimate its own covariance.

The information matrix ΩL for the loop closure constraints is estimated in a similar way. How-

ever, in this case, the covariance matrix ΣL is scaled by the number of graph nodes between the

current pose and the loop-closed pose. This accounts for the inevitable drift in LiDAR SLAM

over longer trajectories.

4.1.4 Optimization strategy with filtration mechanism

The values of the state vectors Xi are estimated using the g2o library, which employs a graph-

based representation to minimize the total squared error across all edges in the graph:

E(X) =
∑

i∈M

e(Xi,Xi+1, (e
S
i,i+1)

T ) ΩS e(Xi,Xi+1, e
S
i,i+1)

+
∑

i,j∈L

e(Xi,Xj , (e
L
i,j)

T ) ΩL e(Xi,Xj , e
L
i,j)

+
∑

k∈G

∑

n∈N

e(Xk, r
s
n, e

p
k) ΩP e(Xk, r

s
n, e

p
k)

+
∑

k∈G

e(Xk,Xk+1, (e
D
k,k+1)

T ) ΩD e(Xk,Xj , e
D
k,k+1), (4.12)

where e(.) represents the error function, parameterized differently for each component. The sets

M, L, and G correspond to the factor graph nodes associated with LiDAR SLAM odometry

measurements, detected loop closures, and valid GNSS measurements, respectively. In addition,

N denotes the set of all observed satellites across the utilized constellations. Since LiDAR SLAM

odometry updates are more frequent than GNSS data acquisition, not every vehicle state includes

pseudorange or Doppler shift constraints.

GALS utilizes an efficient gradient-based solver implemented in g2o, which requires a good

initial guess to converge to the desired global minimum. The proposed optimization strategy is

structured into three main steps:

1. Initial state estimation: the initial positions of the state vector (3-DOF) are calculated

using only pseudorange information stored in the relevant graph edges, providing a rea-

sonable initial guess. Other edges are excluded from the optimization at this stage. This
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step ensures proper solver convergence and allows for further filtering of states to eliminate

erroneous GNSS measurements.

2. GNSS filtration: this step is critical due to the challenges posed by urban localization,

where numerous NLOS and multipath signal receptions can introduce errors. Filtering

them helps remove unreliable observations.

3. Final optimization: all states are optimized using both GNSS and SLAM system mea-

surements to produce the final state estimates. GALS performs optimization continuously,

considering a moving window of the 100 most recent poses. The final results are obtained

through global optimization, which includes all nodes and edges added to the graph, en-

suring that the estimated trajectory is optimal in terms of localization accuracy.

It should be noted that the first estimates of vehicle orientation within the global coordinate

system can be imprecise. This is because the only orientation information comes from the SLAM

system constraints that are expressed in the local frame. However, once the vehicle experiences a

significant pose change, the information about the relative transforms allows the factor graph to

accurately estimate the orientation. From that point forward, SLAM measurements can provide

global pose estimates for the vehicle, even in parts of the sequence where GNSS signals are

unavailable.

Filtration of GNSS measurements

GNSS measurement filtration is based on receiver speed values, which are calculated using three

different methods. Given that GNSS systems typically provide less accurate altitude measure-

ments compared to horizontal coordinates, filtration is applied separately to the horizontal and

vertical axes using following scalar velocities:

• vrGi – velocity calculated for the i-th state using the distance and time difference between

consecutive positions derived solely from pseudorange estimates,

• vrDi – velocity determined using Doppler shift measurements, computed through RTKLIB

procedures,

• vrSi – velocity obtained via transformation between two successive poses from the SLAM

trajectory.

Since vrGi is the most prone to errors and inaccuracies, it is compared to vrDi and vrSi . If at least

one of the following conditions is satisfied for any axis:

vrGi > 2 · vrDi , vrGi > 2 · vrSi , (4.13)

indicating that vrGi significantly exceeds the other velocity estimates, the GNSS measurements

corresponding to that state are discarded and excluded from the factor graph integration. Ex-

emplary results of this filtration process are shown in Figure 4.3, where the receiver positions
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Figure 4.3: Visualization of the filtering process, showing the receiver positions obtained
using the RTKLIB library (green points) and filtered positions incorporated into the factor
graph (red points). Subplots (A) and (B) illustrate views in the XY and XZ planes, respec-

tively.

computed using RTKLIB are compared to the filtered and accepted positions incorporated into

the factor graph.

Once the filtering step is completed, the optimization process is carried out. As a result, it

produces a trajectory in the global coordinate frame, which can be visualized on a map, as shown

in Figure 4.4. In summary, this approach leverages factor graph representation to incorporate

multiple raw GNSS constraints which ensure a consistent and accurate trajectory. By integrating

these constraints, the developed method effectively mitigates the drift typically observed in

SLAM systems. Therefore, it improves localization performance and provides a robust GNSS-

assisted system for long-term navigation.

Figure 4.4: Trajectories for the Odaiba (A) and Whampoa (B) sequences from the UrbanNav
dataset obtained using the proposed GALS approach. The estimated trajectories, along with

the ground truth (reference), are overlaid on top of maps from OpenStreetMap.
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4.2 GNSS and Visual Odometry integration

4.2.1 Introduction

While LiDAR-based SLAM methods have proven effective for localization in structured envi-

ronments, other sensor modalities, such as cameras, can also provide valuable information for

estimating the trajectory of a vehicle or robot. Visual SLAM or odometry algorithms offer an

alternative approach by extracting and tracking visual features from consecutive camera frames

to estimate motion and reconstruct the environment. However, like LiDAR SLAM, these systems

suffer from drift over time, particularly in feature-scarce environments such as open fields or ar-

eas with repetitive visual patterns. Thus, this section described how high-precision positioning,

achieved through the integration of GNSS data and VO, can be applied in agricultural settings,

with a focus on field operations.

The proposed method integrates VO measurements with GNSS data to enhance positioning

accuracy. By combining these two systems, it effectively mitigates short-term inaccuracies in

GNSS readings, demonstrating the feasibility and effectiveness of such an approach in agricultural

applications. This integration ensures reliable localization even in situations where GNSS signals

degrade. In addition, by using widely available hardware, such as laptops with built-in cameras,

this approach provides a cost-effective solution for improving localization accuracy in challenging

agricultural environments.

The presented method was evaluated in agricultural environments (see Sec. 6.2), where inte-

gration of GNSS and VO offers significant benefits for field navigation. Its performance was

assessed by comparing it with a commercial GNSS RTK system. The results demonstrate that

factor graph optimization significantly improves localization accuracy and robustness in scenar-

ios where GNSS localization degrades, providing a reliable solution for autonomous agricultural

robots operating in large-scale outdoor environments.

4.2.2 GNSS localization in agriculture

The integration of GNSS technologies into agricultural practices has been a focal point of recent

research, driven by the need for increased efficiency and precision in farming operations. Studies

have demonstrated that the application of GNSS systems significantly enhances the accuracy

of field tasks, ranging from soil sampling to yield mapping [141, 142]. These technologies have

evolved to support high-precision tasks with minimal errors, essential for precision farming suc-

cess [143, 144]. Research in precision agriculture has mainly focused on the development and

assessment of various GNSS-based solutions. Gou et al. [145] and Upadhyaya et al. [146] have

categorized positioning accuracy needs, emphasizing that different agricultural tasks require dif-

ferent levels of precision. For instance, while resource management can tolerate lower accuracy,

tasks such as automated tractor guidance demand centimeter-level precision. Recent advance-

ments have focused on combining GNSS with supplementary technologies such as VO to overcome

limitations in accuracy and reliability. This hybrid approach has been shown to mitigate GNSS
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inaccuracies in challenging environments, enhancing overall positioning precision [147, 148]. The

combination of GNSS with visual data not only offers improved accuracy, but also provides a

cost-effective alternative for small-scale farms that may not afford high-end GNSS solutions.

Several studies have explored the environmental and economic impacts of GNSS applications in

agriculture. Tayebi et al. [149] highlight the potential of GNSS to reduce the use of fertilizers

and pesticides by enabling variable-rate applications. This targeted approach not only conserves

resources, but also minimizes environmental pollution, aligning with the sustainability goals of

the European Union [150].

A significant technological advancement in agriculture is the development of field robots. These

robots are anticipated to further streamline field operations by minimizing the need for human

operators and are designed to handle non-routine tasks that demand cognitive abilities such as

perception, memory, and quick decision-making and action execution [151, 152]. Furthermore,

the role of GNSS in enhancing operator efficiency has been extensively documented. The use of

guidance systems significantly reduces overlap and gaps during field operations, leading to lower

fuel consumption and input costs while increasing productivity [153]. Studies have reported cost

savings, demonstrating the financial viability of adopting precision positioning systems [148, 149].

In general, the body of work underscores the innovative potential of GNSS-based technologies in

modern agriculture. By improving field operation accuracy, reducing input usage and supporting

sustainable farming practices, GNSS systems are essential to the future of precision agriculture.

Ongoing research continues to refine these technologies, focusing on enhancing their accessibility

and effectiveness for farms of all sizes.

4.2.3 Correcting GNSS trajectories with visual odometry

The literature review and experimental findings indicate that GNSS-based localization for agri-

cultural robots encounters several challenges related to environmental factors and the GNSS

equipment. Some issues observed during the experiments, such as incorrect robot poses caused

by the temporary unavailability of RTCM corrections, can be mitigated through the implemen-

tation of an auxiliary localization system based on external measurements. As already discussed,

the integration of visual [100] or LiDAR odometry [89, 101] with GNSS localization has become

a prominent strategy in this field [88]. LiDAR-based systems offer high precision and robust-

ness [87], but their high costs and maintenance requirements discourage the adoption of such

technologiesin some applications. Furthermore, the lack of distinct features and the dynamic

nature of vegetation-covered areas, which result in low repeatability in feature detection, reduce

the effectiveness of LiDAR-based localization methods in agricultural scenarios [154].

Visual solutions that use passive cameras tend to be more cost-effective, as they leverage pho-

tometric features common in most environments [155]. Specifically, integrating monocular VO,

which uses a single camera to track robot movement by observing visual features in the surround-

ings [156], presents an economical complement to GNSS. Direct VO, which estimates motion by

minimizing the differences in pixel intensity between consecutive frames [157], offers a dense

and continuous motion estimation. However, it can be sensitive to lighting changes and may

struggle in low-texture or repetitive environments. In contrast, feature-based VO [158] provides
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a sparser but potentially more robust solution, outperforming in scenarios where direct methods

face difficulties. Feature-based approaches are often more adaptable to lighting variations and

can perform well in environments with limited texture, making them suitable for a wide range

of practical applications.

4.2.4 Monocular visual odometry as external localization method

Monocular VO utilizes data from a single camera to track a robot movement over time. However,

it faces challenges such as scale ambiguity and struggles in dynamic environments [156]. To

address these issues, this section presents the method for the integration of GNSS localization

with VO, using the open-source ORB-SLAM3 library [13, 159]. ORB-SLAM3 employs Oriented

FAST and Rotated BRIEF (ORB) features, which are well-suited for real-time applications,

offering reliable and accurate tracking even under varying lighting conditions. Its ability to

construct and optimize a map of the environment, along with keyframe-based optimization,

makes it a popular choice for monocular VO applications [88, 159].

For large-area field localization, ORB-SLAM3 was configured based on preliminary experimental

results, including reducing the input camera image size to exclude the sky, ensuring point features

are detected only below the horizon line (see Fig. 4.5A). This adjustment prevents the tracking

thread from focusing excessively on distant features, such as trees above the horizon, which

often lack saliency and detection repeatability. This modification consequently improves the

robustness of tracking in such scenarios (see Fig. 4.5B).

Figure 4.5: The visual representation of ORB point features (green) detected by ORB-
SLAM3 in the image (A) and the tracked point features in the map (red/black) along with

the camera trajectory (blue) (B).

In contrast to full SLAM operations, where ORB-SLAM3 detects and closes loops in revisited

areas, the proposed approach does not utilize loop closure feature. This decision is based on two

main factors. First, the sparse and uneven distribution of point features in vegetation-covered

environments, where few salient objects are visible in the camera’s field of view, makes the

loop detection mechanism unreliable. Second, the localization constraints from ORB-SLAM3

are applied only locally, leveraging its robust visual tracking capabilities while avoiding issues

related to drift and scale changes that can arise from unreliable loop closing and re-localization.

The developed solution builds upon previous work integrating LiDAR SLAM and GNSS [160],

using a factor graph formulation to estimate the robot trajectory with pose constraints derived

from two different sources. In this approach, the 6-DOF transformations generated by ORB-

SLAM3 serve as constraints in the optimization process. In the experiments, the laptop computer
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camera was used to provide visual data for the odometry pipeline. This makes the solution highly

cost-effective, as it requires no additional hardware to be installed on the robot.

4.2.5 Integration using factor graph

Similarly to the previous cases, the trajectories derived from VO and GNSS data were combined

using a factor graph representation, which effectively estimates the poses of the robot by in-

corporating multiple data sources [8]. The general structure of the constructed factor graph is

illustrated in Figure 4.6.
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Figure 4.6: The general structure of the factor graph. It includes nodes representing the
state vectors and edges that serve as constraints derived from both the GNSS and VO system.

The i-th estimated state vector, denoted as Xi, contains the 6-DOF pose of a robot, comprising

a rotation matrix Ri and a translation vector ti:

Xi = [Ri, ti]. (4.14)

The graph is primarily built based on GNSS data, with new nodes and edges added whenever

a new GNSS positioning message is received. The initial values for each state vector, used in

the factor graph optimization process, also come from GNSS measurements. VO information is

incorporated only when GNSS positioning accuracy degrades. This approach ensures that the

trajectory is primarily determined by satellite navigation data, minimizing issues such as pose

and scale drift.

There are several scenarios in which the accuracy of the GNSS system can degrade, making

it temporarily insufficient for precision farming applications. To address this, the presented

approach involves detecting these instances and integrating the information from the VO system

accordingly. The decision to incorporate odometry measurements into the factor graph is based

on the variance of the GNSS data. This variance, representing the accuracy of the robot pose, can

be calculated from previous measurements or directly obtained from the u-blox GNSS receiver.

In this case, the latter method was chiosen, as it is more accurate and eliminates the need for

additional computations to generate the covariance matrix ΩG associated with GNSS positioning.

During the experiments, the variance values for the x, y, z axes reported by u-blox receivers in

the RTK mode were consistent across all axes, reaching approximately σ2
x,y,z = 2 · 10−4 m2.

Any significant deviations from these values indicate a degradation in accuracy, triggering the

integration of VO measurements into the factor graph to enhance localization accuracy. Both

GNSS and odometry measurements are incorporated into the factor graph similarly. The poses

obtained from these systems are used to calculate the increments between consecutive graph
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nodes, which are then added as edges. For GNSS data, the error function used in optimization

is defined as:

eGi,i+1 = [(TG
i )

−1 ·TG
i+1]

−1 · (Xi)
−1 ·Xi+1, (4.15)

where TG
i and TG

i+1 are the poses from the GNSS trajectory.

The integration of ORB-SLAM3 data follows a similar process but involves additional steps.

First, the measurements from VO are synchronized with GNSS data by matching their times-

tamps. Second, the scale of the VO trajectory must be determined, as the monocular SLAM

system used in the experiments does not inherently provide scale information.

This step utilizes the Umeyama algorithm [161] to minimize the error between the previous GNSS

and ORB-SLAM3 trajectories and calculate the scale value. It also aligns the two trajectories,

enabling the estimation of the transformation between their respective coordinate frames. In

addition, it provides the standard deviation of the VO poses relative to RTK GNSS data, which

is used to compute the covariance matrix ΩO required for the optimization. Once these steps are

completed, selected segments of the ORB-SLAM3 trajectory can be integrated into the factor

graph when necessary. The error function for these constraints is defined as:

eOi,i+1 = [(TO
i )

−1 ·TO
i+1]

−1 · (Xi)
−1 ·Xi+1, (4.16)

where TO
i and TO

i+1 represent the poses from the VO system.

The outcome of factor graph optimization is the estimated state vector X for each node, which, in

this case, includes the pose and orientation of the robot. The optimization process is performed

using the g2o [57] library, which minimizes the sum of squared errors across all edges in the

graph:

E(X) =
∑

i∈G

e(Xi,Xi+1, (e
G
i,i+1)

T ) ΩG e(Xi,Xi+1, e
G
i,i+1)

+
∑

i∈O

e(Xi,Xi+1, (e
O
i,i+1)

T ) ΩO e(Xi,Xi+1, e
O
i,i+1), (4.17)

where e() is an error function corresponding to each edge type, and G and O are the sets of

factor graph nodes with GNSS-based and VO constraints, respectively.
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Experimental evaluation

5.1 Evaluation of LiDAR SLAM with high-level features

5.1.1 Introduction

This section presents the evaluation of the PlaneLOAM method described in Section 3.2, which

uses high-level features as a map representation. The purpose of the experiments was to quan-

titatively assess the accuracy of the developed system. Specifically, they aimed to determine

whether the proposed structure of the global map improves the precision of trajectory estima-

tion. To achieve this, the results from PlaneLOAM were compared with those obtained with the

publicly accessible open-source version of the LOAM1 using the same sequences. The proposed

system was tested on three separate datasets with various LiDAR sensors. Moreover, three

distinct variants of PlaneLOAM were evaluated: one without loop closures but incorporating

high-level features, another that implements loop closures using a basic pose graph, and a third

that utilizes the factor graph approach.

Evaluation method

The evaluation methodology is based on the Absolute Trajectory Error (ATE) metrics, intro-

duced in [162], which is widely used for the comparison of SLAM systems. The ATE metrics

measure the discrepancy between the given pose of the sensor and its corresponding pose in

the ground-truth trajectory by calculating the Euclidean distance between them. These corre-

spondences are identified using the timestamps that were assigned during the scan acquisition

process. To compute ATE, it is essential to first align both trajectories by transforming them

into a common reference frame. To determine the rigid body transformation between the two

sets of poses that represent the estimated and ground-truth paths, the Umeyama algorithm [161]

is used. The alignment calculation involves all the estimated poses, as it decreases the overall

1This version was obtained from https://github.com/laboshinl/loam_velodyne
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trajectory deviation. Although it is feasible to utilize only initial poses to determine the trans-

formation, this approach leads to substantial pose discrepancies and erroneously increases the

ATE over time.

For quantitative evaluation, the Root Mean Square (RMS) of the ATE metric is calulated for

the complete trajectory and denoted by ATERMS. Furthermore, the highest local ATE values

(ATEmax), along with the standard deviation across the trajectory (σATE) are presented. Higher

values of σATE indicate that the system encounters difficulties with specific segments of the

trajectory, although it performs more effectively in other areas.

Datasets

The experiments for evaluation were conducted on two publicly accessible datasets:

• KITTI [163]: Recorded with a Velodyne HDL-64E, mostly in suburban and rural parts of a

Karlsruhe city. It is one of the most widely used benchmarks in robotics, computer vision,

and autonomous driving for applications such as the evaluation of SLAM algorithms [22,

39, 47, 49]. It contains 22 sequences that are split into two groups: 11 sequences are

designated for testing and include ground-truth trajectories, while the other 11 are intended

for evaluation. However, the ground-truth data provided by the GNSS/IMU system is less

accurate compared to modern high-precision systems, which can affect error evaluation

for certain sequences. Although the KITTI benchmark typically includes corrections for

motion distortion in LiDAR scans, in the presented experiments, the raw scans without

this correction were used. Given that PlaneLOAM is designed for environments with many

geometrical features, only three KITTI sequences were chosen for evaluation: 00, 05, and

07. These sequences were recorded in residential areas and therefore include numerous

planar and linear structures. These sequences also include loops, enabling the assessment

of the feature-based approach to loop closing.

• Mulran [164]: Designed primarily to evaluate place recognition, however, it also incor-

porates accurate ground-truth trajectories, which facilitates its use in the evaluation of

SLAM. Mulran includes sequences collected from four distinct environments, but in this

case, the Dajeon Convention Center (DCC) was chosen for the experiments, as it is known

for its structural diversity. Moreover, the DCC sequence is characterized by narrow roads

with tall buildings and multiple loops, which facilitates the evaluation of the presented loop

closure methods. The LiDAR utilized in MulRan is an Ouster OS1-64, while the ground-

truth trajectories were generated using SLAM that integrates inertial sensors, GNSS, and

ICP scan matching. Although it incorporates multi-sensory data, the proposed approach

uses only the raw LiDAR scans and the ground-truth trajectories.

5.1.2 Accuracy of trajectory estimation

Figure 5.1A and Figure 5.1B illustrate the trajectory accuracy for the KITTI 00 sequence,

comparing PlaneLOAM with the open-source LOAM system. The plots follow the ATE format
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introduced by Sturm et al. [162]. Since LOAM does not have the functionalities to detect loop

closures, this feature was also disabled in PlaneLOAM for this evaluation. This decision enables

a fair comparison of the accuracy between the two systems, as both utilize the same scan-to-scan

and scan-to-map matching to estimate the final trajectories. The primary difference lies in the

fact that PlaneLOAM uses high-level features, which lead to an improved trajectory and reduced

ATE residuals (see Fig. 5.1C). It is also worth mentioning that the open-source version of LOAM

achieved results comparable to the results documented in other works [29, 52].

Figure 5.1: ATE for the KITTI 00 dataset obtained using a Velodyne HDL-64E LiDAR
sensor. Trajectory (A) produced by PlaneLOAM shows smaller deviations from the ground
truth compared to the trajectory derived from the open-source LOAM (B), as can be also
observed in the plot depicting ATE relative to consecutive scan numbers (C). Reduced error

in the z axis enhances the overall performance of PlaneLOAM (D)

A notable benefit of the improved ground plane representation in PlaneLOAM is that it allowed

the proposed system to maintain more precise elevation estimates throughout the entire trajec-

tory (see Fig. 5.1D). The numerical results for the KITTI 00, 05, and 07 sequences are presented

in Table 5.1. Based on these results, it can be seen that the developed method outperforms open-

source LOAM in terms of the ATE metric in all these sequences, recorded in a well-structured

urban environment.

Figure 5.2 illustrates the chosen sections of the global maps of high-level features generated by

PlaneLOAM. Figures 5.2A and 5.2B show maps for the KITTI 00 sequence, while Figure 5.2C

illustrates a segment of the map derived from sequence 07. To enhance clarity, only planar

features are presented. Horizontal planar features, such as the ground plane, are depicted in

pink. Larger, approximately vertical elements such as walls, and fences are represented in yellow,

whereas smaller vertical features containing fewer than 50 points are illustrated in cyan.
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Table 5.1: Comparison of ATE calculated for chosen sequences (recorded in urban environ-
ments) from KITTI and Mulran datasets.

dataset PlaneLOAM LOAM (open-source)
sequence ATERMS ATEmax σATE ATERMS ATEmax σATE

KITTI 00 4.52 m 11.76 m 2.36 m 6.05 m 11.55 m 2.83 m
KITTI 05 3.21 m 8.04 m 1.59 m 3.39 m 11.26 m 1.86 m
KITTI 07 0.50 m 0.82 m 0.20 m 0.68 m 1.28 m 0.28 m
MulRan DCC 11.02 m 18.17 m 4.46 m 14.81 m 27.95 m 7.24 m

Figure 5.2: Segments of the global maps from KITTI 00 (A, B) and KITTI 07 (C) generated
by PlaneLOAM, showing high-level geometrical features. Nearly vertical planar attributes are

highlighted in yellow, whereas the ground plane is represented by pink patches.

An analogous experiment was conducted for the Mulran DCC sequence. Trajectories with es-

timated ATE values using LOAM and PlaneLOAM are shown in Figures 5.3A and 5.3B, re-

spectively. In the case of this sequence, the obtained errors are larger than those observed in

the KITTI tests for both SLAM systems. However, PlaneLOAM once again provided a more

precise trajectory with lower ATE values (see Fig. 5.3C) and improved elevation accuracy (see

Fig. 5.3D). The quantitative results of this experiment are also presented in Table 5.1.

Figure 5.3: ATE for the MulRan DCC sequence recorded using an Ouster OS1-64 LiDAR.
This sequence features multiple loops, however the PlaneLOAM (A) and LOAM (B) trajectory
estimations results were achieved without any loop closure. The plot illustrating ATE values
over time (C) demonstrates that PlaneLOAM maintains a smaller overall pose error compared
to LOAM throughout the majority of the trajectory, notably providing more accurate estimates

of elevation values (D).



Experimental evaluation 63

5.1.3 SLAM with high-level features in different environments

An essential part of the conducted research is to demonstrate the effectiveness of the proposed

approach to LiDAR SLAM. This involves using different 3D LiDARs in scenarios typical for

vehicle localization in urban traffic, such as for city buses. Consequently, PlaneLOAM was

also tested on sequences collected during independent experiments. One of these sequences was

recorded using a car with a roof-mounted Sick MRS-6124 LiDAR, characterized by 24 scanning

lines and 120◦ forward-looking field of view. It also includes data from RTK GNSS u-blox ZED-

F9P module [165], which achieves a centimeter-level positioning accuracy at 10Hz, provided that

it observes a sufficient number of satellites. This configuration was used in a combined outdoor

and indoor experimental scenario conducted in the large Posnania shopping center located in

Poznan. The car started on a public road near Posnania, proceeded to the entrance of the

underground parking lot, navigated through the underground area, and exited onto a different

public road on the opposite side of the mall. Note that GNSS-based ground-truth data were

recorded only for the outdoor sections of this experiment. Nevertheless, the goal was to show

that PlaneLOAM can effectively handle such mixed scenarios and resume tracking the reference

trajectory with acceptable errors after traversing the underground environment.

Figure 5.4: Results of an experiment in the mixed outdoor/indoor environment of the Posna-
nia shopping mall. The trajectories estimated by PlaneLOAM (A) and LOAM (B) were based
on scans from a Sick MRS-6124 LiDAR. Although GPS ground truth was available only for the
outdoor portion, the ATE plot (C) demonstrates that PlaneLOAM maintained significantly

lower drift while navigating the underground parking lot.

Figures 5.4A and 5.4B illustrate the positional errors for this sequence for PlaneLOAM and

LOAM, respectively. The change in ATE values over time, shown in Figure 5.4C, reveals that

LOAM generally exhibits a much higher inaccuracy for most of the route. The largest error at

the beginning of the sequence comes from the trajectory alignment used to compute the ATE

metrics and generate the plot. This implies that LOAM experienced a substantial orientation

error at the beginning of the sequence, and aligning the trajectories using only the initial segment

would lead to an even larger discrepancy in the rest of the plot. However, the primary focus

of the evaluation is put on absolute pose errors relative to an external reference system. A

trajectory with low ATE for consecutive sensor poses implicitly ensures that the corresponding

global map is accurate. This consistency is not captured by relative error metrics, such as those

used by Geiger et al. [163] or the Relative Trajectory Error (RPE) defined along with ATE

in [162]. To highlight that PlaneLOAM generates globally consistent maps suitable for tasks like

motion planning, Figure 5.5A illustrates the entire map estimated in the Posnania experiment.

As shown in Figure 5.5B, the map is rich in geometric details, accurately representing minor
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architectural elements, such as pillars, even with the limited scanning density and horizontal

field of view of the Sick LiDAR.

Figure 5.5: Visualization of the complete global map generated by PlaneLOAM during the
Posnania experiment (A), along with a close-up of its central section (B), highlighting the
detailed structure of the underground parking lot, including walls (yellow), smaller vertical

features like pillars (cyan), and the ground plane (pink).

The second experiment involved a city bus equipped with the same Sick MRS-6124 LiDAR and

a GNSS receiver (see Fig. 5.6A). Data were collected in a small town near Poznan, characterized

by moderately structured environments with narrow roads bordered by residential buildings, as

well as numerous trees and bushes (see Fig. 5.6B). The relatively low-rise surroundings allowed

for a strong GNSS signal across the entire area. These experiments were carried out in February

under cloudy conditions with occasional rain, which did not appear to impact the performance

of the Sick LiDAR.

Figure 5.6: Results from localization experiments using a city bus equipped with a single
Sick MRS-6124 LiDAR (A). The two sequences, TownCentre (C, D) and TownSuburbs (E, F),
were recorded in a moderately structured environment of a small town (B). The trajectories
estimated by PlaneLOAM align more closely with the ground truth compared to those of
open-source LOAM (C, E), with PlaneLOAM showing significantly lower ATE values (D, F)
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The estimated trajectories from PlaneLOAM and LOAM are compared to the ground truth

in Figures 5.6C and 5.6E for the TownCentre and TownSuburbs experiments, respectively. To

maintain clarity of the figure, the ATE values are shown separately in Figures 5.6D and 5.6F.

PlaneLOAM outperformed LOAM in both sequences, despite the less structured environment

and the additional sensor motion noise caused by the fact that LiDAR was mounted high on the

roof of the bus. ATE statistics for all three scenarios are summarized in Table 5.2.

Table 5.2: Comparison of ATE metrics for sequences captured using a Sick MRS-6124 LiDAR

dataset PlaneLOAM LOAM (open-source)
sequence ATERMS ATEmax σATE ATERMS ATEmax σATE

TownCentre 4.93 m 14.05 m 2.10 m 6.05 m 24.90 m 6.48 m
TownSuburbs 4.91 m 8.22 m 1.79 m 8.71 m 18.37 m 3.04 m
Posnania 7.40 m 17.50 m 4.58 m 15.90 m 46.13 m 9.99 m

5.1.4 Analysis of the computation time

The new map structure introduced in PlaneLOAM affects the computational complexity asso-

ciated with processing a single scan. While these changes are negligible in the laser odometry

thread, which largely follows the implementation of the open-source LOAM, they have a sig-

nificant impact on the mapping thread responsible for producing more accurate pose estimates.

Therefore, this section presents a detailed analysis of the computation time for individual pro-

cessing steps in the mapping thread, comparing PlaneLOAM with the open-source LOAM. The

side-by-side comparison, presented in Table 5.3, highlights that despite the increased complexity

of the map structure, the use of high-level geometric features enables faster processing. This is

mainly because fewer individual elements need to be searched and compared.

The analysis was conducted on an Intel Core i7-9700TE CPU, using the Mulran DCC sequence.

This sequence is considered the most demanding among those used for evaluation due to the

large point clouds produced by the Ouster OS1-64 LiDAR and the complex environment, which

includes both planar and linear features. The times reported in Table 5.3 are averaged over 5542

scans. The observed standard deviation in computation time was negligible and, in PlaneLOAM,

primarily influenced by the number of features generated per scan. Detailed descriptions of the

PlaneLOAM processing steps in Table 5.3 are provided in Section 3.2.2, while their LOAM

counterparts can be found in [34].

The reduced processing time in PlaneLOAM compared to LOAM is mainly caused by the much

shorter time required to build the kd-trees. PlaneLOAM uses local kd-trees to identify points

for computing point-to-feature constraints in optimization, but avoids using them during feature

creation and updating. In PlaneLOAM, kd-trees contain only the points that make up the high-

level features, reducing the number of points that are processed. In addition, features inactive at

a given time are excluded from matching operations, saving time in computing point-to-feature

constraints.

The computation time comparison excludes the loop-closing module, as it is not implemented in

the LOAM. The SegMap method, which detects loop closures, has an average inference time of

155 milliseconds for the Mulran DCC sequence. In contrast, pose graph optimization using g2o
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Table 5.3: Comparison of the computation time required to process a single scan in the
mapping thread between PlaneLOAM and LOAM

computation time [ms]
processing step sub-step PlaneLOAM LOAM (open-source)

Point clouds preparation 8.18 7.70
Construction of kd-tree 2.49 75.80
Point-to-line constraints 14.05 18.77

kd-tree search 8.45 10.87
other computations 5.60 7.90

Point-to-plane constraints 13.11 18.30
kd-tree search 8.22 9.70
other computations 4.89 8.60

Optimization time 0.45 0.57
Point clouds post-processing 34.71 32.88
Processing planar features 35.77 not applicable

adding points 22.76
updating features 2.22
deleting features 0.02
merging features 10.77

Processing linear features 34.95 not applicable
adding points 15.53
updating features 16.65
deleting features 0.05
merging features 2.72

Total time per scan 143.71 154.02

requires between 60 and 240 seconds, depending on the number of poses in the graph. While

pose graph-based loop closures cannot be performed in real-time, delays of a few minutes are

acceptable for online operation, provided that they are handled by a separate background thread.

Full factor graph optimization is even more time-intensive and takes between 280 and 500 seconds

for the examined sequences. However, full optimization incorporates information about multiple

loop closures and is performed offline, which allows PlaneLOAM to create highly accurate maps

of the environment that are suitable, for example, for motion planning.

5.1.5 Approaches to loop closing in feature-based LiDAR SLAM

The third set of experiments examines the integration of the SegMatch/SegMap loop detection

with PlaneLOAM. Most LiDAR SLAM systems that implement loop detection employ a pose

graph approach and form edges between pose nodes using relative transformations between the

corresponding locations. These constraints are often derived using the ICP [15] or directly from

the SegMatch method [37]. In contrast, the proposed approach leverages high-level feature-

based map representation to process detected loop candidates in a manner analogous to the loop

closure strategies used in visual SLAM, by associating individual features and optimizing the

factor graph in a BA-like framework.

Although there are several techniques to detect loop closures using LiDAR range data (see [16]

for a comparative review), these methods are less effective than the applied SegMap approach or

require specific map representations [21, 22], which cannot be implemented within PlaneLOAM.
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Thus, this section focuses on comparing different methods for utilizing detected loop closures to

improve trajectory and map consistency rather than comparing various loop detection methods.

The pose-based approach closely resembles the method outlined in [52], as it utilizes either

PlaneLOAM or LOAM to estimate the LiDAR odometry between successive sensor poses (graph

nodes) and to perform motion compensation in 3D scans. Loop closures are identified using

the SegMap algorithm and incorporated as constraints within the pose graph for optimization.

In contrast, the BA-like approach is applied exclusively to PlaneLOAM, as the original LOAM

lacks a map structure that supports feature-level matching. The trajectories estimated without

loop closing for LOAM and PlaneLOAM are shown in Figures 5.7A and 5.7D for KITTI 00

and MulRan DCC, respectively. The pose-based loop closing results are shown in Figures 5.7B

and 5.7E, while results for the BA-like approach in PlaneLOAM, which uses high-level feature

alignment, are illustrated in Figure 5.7C for KITTI 00 and Figure 5.7F for MulRan DCC. Based

on these results, it can be noted that the pose graph approach significantly improves accuracy over

the open-loop version for both LOAM and PlaneLOAM. Quantitative results for KITTI 00 show

a 13% improvement in ATERMS for PlaneLOAM and 28% for LOAM (see Tab. 5.4). LOAM

experiences a greater relative improvement due to its poorer baseline performance, although

PlaneLOAM achieves better absolute accuracy in all scenarios. In the MulRan DCC case (see

Tab. 5.5), the benefits of loop closure are even greater, with improvements of approximately

32% for PlaneLOAM and 34% for LOAM. The DCC sequence presents greater environmental

diversity compared to KITTI 00, making it less suitable for high-level feature mapping, which

explains the smaller performance gap between PlaneLOAM and LOAM. However, PlaneLOAM

continues to demonstrate the lowest absolute error values in all configurations.

Figure 5.7: Estimated trajectories for the KITTI 00 (A, B, C) and MulRan DCC (D, E,
F) sequences using PlaneLOAM and open-source LOAM systems. Scenarios include no loop
detection (A, D), SegMap loop detection with pose graph (B, E), and high-level feature align-
ment with BA optimization (C, F). The arrows indicate the locations where the point clouds

depicted in Figure 5.8 were obtained.
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Table 5.4: Comparison of ATE for different approaches to loop closing for the KITTI 00
sequence

approach to PlaneLOAM LOAM (open-source)
loop closing ATERMS ATEmax σATE ATERMS ATEmax σATE

none 4.52 m 11.76 m 2.36 m 6.05 m 11.55 m 2.83 m
pose graph 3.96 m 9.68 m 2.17 m 4.34 m 11.15 m 2.38 m
features alignment + BA 2.47 m 7.11 m 1.48 m N/A N/A N/A

Table 5.5: Comparison of ATE obtained for various loop closing approaches for the MulRan
DCC sequence

approach to PlaneLOAM LOAM (open-source)
loop closing ATERMS ATEmax σATE ATERMS ATEmax σATE

none 11.02 m 18.17 m 4.46 m 14.81 m 27.95 m 7.24 m
pose graph 7.41 m 19.23 m 3.59 m 9.77 m 27.51 m 4.26 m
features alignment + BA 5.40 m 13.78 m 2.01 m N/A N/A N/A

The accuracy of the trajectory estimation improves significantly when loop closing is achieved

using feature matching capabilities of PlaneLOAM, combined with BA-like optimization. This

method refines not only the sensor poses but also the locations of features. For the KITTI 00

sequence, this approach results in an improvement of 45% over the baseline in terms of ATERMS,

while for the MulRan DCC sequence, the improvement reaches 51%. These results align with

previous conclusions, as PlaneLOAM performs better on KITTI than on MulRan, potentially

amplifying the impact of loop closures. Nonetheless, the use of high-level feature-based repre-

sentation proved its effectiveness in performing loop closures even in the MulRan DCC scenario,

where loop detection often relies on features such as trees and vegetation. Despite this, the ge-

ometric structures present in the scene still provide sufficient constraints to enhance trajectory

estimation.

In addition, the loop closure method, which leverages BA-like optimization, is capable of closing

multiple loops of varying sizes within a single optimization session. This is particularly useful

when a test vehicle follows a closed path and revisits specific locations multiple times. Such a

scenario occurred in the Mulran DCC sequence, where the vehicle returned to the same location

(indicated by the arrow 1 in Figure 5.7F) four times. This resulted in closing loops of different

scales: a smaller loop along the inner, nearly circular path, and a much larger loop encompassing

the entire DCC area along the outer path. Loop closures succeeded even though the vehicle

approached the same location from different directions, as illustrated by the example point

clouds from Ouster OS1-64 in Figures 5.8A and 5.8B. Furthermore, the loop closure module

demonstrated resilience to moderate changes in the appearance of the environment between

observations, as shown by another example from the Mulran DCC experiment (indicated by

the arrow 2 in Figure 5.7F) and depicted in Figures 5.8C and 5.8D. These results validate

the effectiveness of combining location matching with learned SegMap descriptors and BA-like

optimization using features, at it establishes a robust and adaptable loop closure mechanism

suitable for autonomous driving and large-scale environment mapping.

Finally, the trajectory estimation results for the KITTI 00 sequence were evaluated by comparing

different loop closure approaches using the evaluation method originally introduced with the

KITTI dataset [163]. Unlike ATE metrics, this method calculates separate translation and
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Figure 5.8: Visualization of example point clouds from the Mulran DCC sequence: a location
visited four times while traversing a circular path with successful loop closures in spite of the
reversed motion direction (A, B) and a location where the environment has changed due to a

removed vehicle (encircled), but a loop closure was still detected (C, D)

rotation errors relative to the traveled distance and presents them as functions of the trajectory

segment length. Although these relative accuracy metrics do not directly reflect errors in the

overall trajectory shape, they align with the findings in [52], showing that both translation (see

Fig. 5.9A) and rotation (see Fig. 5.9B) errors decrease over longer paths. This trend occurs

because for shorter paths, the results depend more heavily on open-loop LiDAR odometry.

Translation error plots exhibit a similar descending trend for longer routes when using both

LOAM and PlaneLOAM with the pose-graph approach, though PlaneLOAM achieves lower

error values due to superior odometry estimates. Leveraging high-level features for loop closure

yields even better performance, but only for longer paths, as shorter segments rely on the same

LiDAR odometry as the baseline method. It is also important to note that the detected loop

closures are not evenly distributed along the trajectory. As the vehicle travels larger distances,

the number of detected loop closure candidates increases significantly (see Fig. 5.9C) because

the vehicle reenters previously mapped areas.

Figure 5.9: The impact of different loop closing methods on trajectory estimation accuracy
for the KITTI 00 sequence, presented using the standard KITTI evaluation framework [163],
which separates translation (A) and rotation (B) errors. Additionally, the number of detected
loop closure candidates grows substantially as the vehicle travels along its route and revisits

previously mapped regions (C).

5.2 Evaluation of surfel-based map representation

5.2.1 Introduction

This section presents the evaluation of the MAD-BA method described in Section 3.3, which

utilizes surfels as a map representation. To quantitatively validate this approach, the ATE is

used to evaluate the pose estimation and the Chamfer-L1 distance to assess the accuracy of map

reconstruction. The experiments were conducted on a PC equipped with an Intel Core i9-9900KF
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CPU @ 3.60GHz and 64GB of RAM. The presented methodology employs a LiDAR BA process

to refine both poses and scene geometry, starting from an initial set of poses and point clouds

derived from LiDAR odometry or SLAM, with a minimal set of parameters. The results indicate

that the proposed LiDAR BA approach outperforms existing methods in terms of accuracy. The

experimental results are validated in various scenarios, such as urban traffic, tight corridors,

stairways, and in both static and dynamic conditions. The evaluation also includes comparisons

with other LiDAR-based global refinement strategies such as BALM2 [73] and HBA [72].

Datasets

The comprehensive experimental campaign was conducted using the following datasets:

• Newer College (NC) [166]: Collected using a handheld Ouster OS0-128 LiDAR in environ-

ments featuring structured and vegetated areas. It is suitable for evaluating the accuracy

of the trajectory and the map, as it includes ground-truth data for both, created using

the Leica BLK360 scanner. According to the authors, the provided ground truth achieves

centimeter-level accuracy over poses and points in the map.

• Vision Benchmark in Rome (VBR) [167]: Recorded mostly in Rome using OS1-64 for

handheld and OS0-128 for car-mounted sequences. It adds diversity to the evaluation by

incorporating complex urban scenarios, with many narrow streets and dynamic objects,

such as vehicles and pedestrians. The provided ground-truth trajectory was obtained by

fusing LiDAR, IMU, and RTK GNSS data, ensuring centimeter-level accuracy.

• KITTI [163]: One of the most widely used benchmarks in robotics, previously introduced

in Section 5.1.1. For this evaluation, sequences 00–10 were utilized, excluding sequences

01 and 02 recorded on a highway.

Evaluation method

The goal of the developed system is to improve the consistency of both the structure and poses.

Therefore, the quantitative evaluations were performed using the ATERMS for SE(3) poses, and

metrics such as accuracy, completion, Chamfer-L1 distance, and F-score for the map. The first

three parameters for map evaluation assess geometric discrepancy by measuring the average

closest-point distance between the reconstructed map and a reference model, while the F-score

evaluates their alignment. For pose evaluation, the method previously introduced in Section 5.1.1

was applied: the output trajectory is initially aligned with the ground truth using timestamps

to determine the necessary associations. Then, the RMS of error is calculated based on the

translational differences between all the matched poses. Trajectory evaluation is performed on

three datasets, while map evaluation is limited to the NC dataset, which is the only one offering

a high-resolution ground-truth map. To evaluate the reconstructed map Q against the reference

model R, accuracy, completion, and Chamfer-L1 distance are calculated as follows:
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dC-L1(Q,R) =
1

2Nq

∑

pq∈Q

min
pr∈R

‖pq − pr‖

︸ ︷︷ ︸
accuracy

+
1

2Nr

∑

pr∈R

min
pq∈Q

‖pr − pq‖

︸ ︷︷ ︸

completion

(5.1)

where pq, pr denote the coordinates of points and Nq, Nr represent the number of points in Q

and R, respectively.

Methods chosen for comparison

Two distinct approaches were selected for comparison with the proposed method. The first is

BALM2 [73], a global LiDAR refinement technique that minimizes the distance from the feature

points to the corresponding edges or planes. Unlike visual SLAM, where features are jointly

optimized with poses, BALM2 simplifies the process by analytically eliminating features from the

optimization, thereby reducing computational complexity. However, this method focuses solely

on pose refinement without optimizing scene geometry, limiting its ability to address structural

inconsistencies in the map. Additionally, its dependence on an adaptive voxelization method for

feature correspondence limits its scalability in highly dynamic or complex environments.

The second approach is HBA [72], designed to address the computational challenges of LiDAR

BA on large-scale maps. HBA employs a hierarchical framework that combines bottom-up BA

with top-down pose graph optimization. Although this design improves efficiency by reducing

the optimization scale, the reliance on pose graph optimization decouples trajectory estimation

from structure refinement, which can lead to inconsistencies in the final map, especially in the

case of long trajectories or complex environments.

The second approach is HBA [72], which is designed to decrease the computational demands of

LiDAR BA on large-scale maps. HBA utilizes a hierarchical framework that combines bottom-up

BA with top-down pose graph optimization. This approach enhances efficiency by reducing the

optimization scale, but its reliance on pose graph optimization decouples trajectory estimation

from structure refinement. This decoupling can result in discrepancies in the final map, especially

for long trajectories or in complex environments.

In contrast, the developed method integrates both pose and structure optimization within a

unified BA framework, avoiding the decoupling issues found in both BALM2 and HBA.

Parameters

All evaluated systems require configuration of particular parameters that influence their perfor-

mance. In the developed approach, the key parameters are the threshold values used to identify

correspondences between surfels in the data association step:

• de = 0.5m - the maximum allowable distance between surfel and a leaf considered for

matching,

• dn = 1.0m - the maximum distance between the surfel and a leaf, computed along the

surfel’s normal,
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• α = 5° - the maximum angle between the normals of a surfel and a leaf,

• ρker = 0.1m - the threshold for the Huber robust estimator used during optimization of a

factor graph,

and for constructing the kd-trees:

• bmax = 0.2m - the maximum size of kd-tree leaves,

• bmin = 0.1m - the minimum flatness of a leaf below which its normal is propagated to its

children.

These default parameter values were used consistently during the evaluation to ensure reliable

results across various sequences and datasets. For the HBA method [72], also the default param-

eter values were used, while for BALM2 [73], the initial voxel_size was changed from 2.0m to

1.0m to improve its performance.

5.2.2 Results of trajectory evaluation

Table 5.6 presents a comprehensive summary of the evaluation results for all presented methods

and datasets. The first column shows the error associated with the input trajectory, which is

necessary as the initial guess for all tested systems. For this purpose, again the open-source

implementation of LOAM [34] was utilized, as it is a widely used framework for LiDAR-only

odometry and mapping. However, the results for KITTI sequences 01 and 02 have been excluded

from the table, as LOAM was unable to generate estimates for these specific trajectories.

Initial trajectory BALM2 [73] HBA [72] Pose-only MAD-BA w/o uncert. MAD-BA with uncert.
Sequence RMS ↓ MAX ↓ RMS ↓ MAX ↓ RMS ↓ MAX ↓ RMS ↓ MAX ↓ RMS ↓ MAX ↓ RMS ↓ MAX ↓

N
C

[1
66

] quad-easy 0.098 0.218 0.093 0.249 0.131 0.801 0.086 0.214 0.086 0.183 0.083 0.177
maths-easy 0.090 0.189 0.162 0.420 0.135 0.606 0.087 0.189 0.054 0.163 0.043 0.176
cloister 0.119 0.297 0.319 1.823 0.466 2.745 0.098 0.364 0.112 0.356 0.106 0.318
stairs 0.368 0.717 0.366 0.700 3.104 9.088 0.375 1.429 0.067 0.126 0.070 0.132
underground-easy 0.127 0.358 0.120 0.342 0.434 1.019 0.080 0.352 0.073 0.330 0.072 0.331

V
B

R
[1

67
]

Colosseo 2.920 5.873 2.877 5.553 1.123 2.763 2.891 5.887 0.698 1.585 0.565 1.161
Spagna 0.963 1.912 1.058 5.479 1.628 4.625 1.053 3.953 0.412 1.229 0.155 0.522
DIAG 0.341 0.804 0.425 1.945 0.960 2.510 0.335 2.014 0.101 0.438 0.103 0.455
Campus 1.777 4.928 2.121 6.587 1.055 3.944 1.741 5.214 1.025 2.972 1.109 2.973
Ciampino 6.078 16.097 6.086 15.669 5.641 16.645 6.040 15.881 3.878 13.711 3.123 9.566
Pincio 1.488 2.914 1.719 3.293 1.508 4.589 1.499 3.304 0.914 3.177 1.121 3.869

K
IT

T
I

[1
68

]

00 6.051 11.552 5.585 16.075 4.899 9.897 5.145 11.326 3.717 7.657 3.544 6.473
03 1.005 1.873 1.144 2.522 4.166 11.279 1.176 2.817 1.002 1.609 0.983 1.669
04 0.444 1.162 0.507 1.226 0.532 1.776 0.399 1.075 0.411 1.111 0.521 1.371
05 3.392 11.263 3.001 9.624 1.321 6.083 3.006 10.290 1.335 2.497 1.426 2.682
06 1.400 2.039 2.498 19.379 0.668 1.488 1.350 2.179 0.856 1.747 0.892 1.819
07 0.684 1.281 0.748 1.197 0.289 0.602 0.576 0.791 0.392 0.765 0.395 0.704
08 4.034 12.668 8.198 67.587 4.553 12.815 4.027 12.319 6.535 16.982 5.449 14.873
09 2.505 7.304 8.858 57.515 3.410 6.084 2.487 7.096 1.343 2.778 1.424 2.886
10 2.024 3.720 2.725 10.738 4.179 8.107 2.051 3.807 1.854 4.193 2.191 4.422

avg 1.741 4.289 2.430 11.396 2.010 5.373 1.725 4.525 1.243 3.181 1.169 2.829

Table 5.6: Quantitative results of ATE for all tested methods across different publicly avail-
able datasets. Each error is reported in m, and the last row of the table shows the total average
of the error in each column. The best results for each sequence (the lowest RMSE) are shown

in bold.

It is worth noting that the quality of the initial trajectory plays a significant role in the per-

formance of refinement systems. An inaccurate initial estimate can result in inaccurate scan
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correspondences, leading the optimization process to converge to a local minimum. This limi-

tation is particularly apparent in the results for BALM2 [73], as shown in the second column

of the table. BALM2 frequently exhibits errors that are similar to or even worse than those of

the initial trajectory. This suggests that its voxel-based discretization method faces difficulties

when dealing with the suboptimal starting trajectory provided by LOAM.

HBA [72], whose outcomes are presented in the third column, demonstrate improved perfor-

mance in certain sequences, such as KITTI 05, 06, and 07, achieving the lowest error in these

cases. However, its inconsistent results across other datasets highlight its sensitivity to the initial

trajectory as well. HBA method is based on multi-view ICP, but in addition, it also incorporates

PGO to simplify optimization. Even though this approach is typically faster, it sacrifices some

accuracy compared to BA. Although parameter tuning could enhance the performance of both

BALM2 and HBA, a consistent configuration across all sequences was used to ensure a fair and

unbiased evaluation, thereby emphasizing the inherent robustness of each system.

The last three columns in Table 5.6 show the results for various versions of the developed sys-

tem. In first version the system is configured to optimize only the poses and to keep all surfels

fixed. The factor graph structure remains the same as in the other versions, but in this case, no

updates are made to the surfels during the optimization process. The two subsequent columns

illustrate the results of the BA method, showing the effects of integrating uncertainty into the

optimization. In the first case, the uncertainty value σl = 1 (see Eq. 3.29) is applied to all mea-

surements, giving them equal weight during optimization. In the second case, σl is determined

by the uncertainty estimated for each measurement during the kd-tree creation, as explained in

Section 3.3.3. This approach assigns greater weight to measurements with higher confidence,

leading to improvements in both pose accuracy and map consistency. Based on the obtained

results, it can be stated that both BA configurations significantly reduce errors compared to the

fixed surfel approach. Moreover, incorporating uncertainty into the optimization improves over-

all results by effectively using weighted measurements. In addition, Figure 5.10 shows that the

joint optimization of surfels and poses reduces the number of iterations required for convergence,

compared to the pose-only variant.

Figure 5.10: The ATE computed for each iteration of the developed BA algorithm. The
plots compare three versions of the system for the math-easy (A) and Spagna (B) sequences.
The results indicate that both variants of BA not only lower the error but also accelerate
the algorithm convergence relative to pose-only optimization. The version with uncertainty

produces best results, as measurements with higher confidence are given greater weights.
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5.2.3 Results of map evaluation

The map evaluation involved comparing the ground-truth model with the surfel maps generated

using the initial trajectory and those produced by MAD-BA with and without uncertainty infor-

mation. The numerical values of the computed metrics are shown in Table 5.7. For comparison,

the table also includes results from the point-based map generated by the HBA system. The

underground-easy sequence is excluded from this comparison because a ground-truth map is not

available for this part of the dataset. To exclude non-overlapping sections of the refined and ref-

erence maps, a threshold was used for the maximum allowable distance between points in these

maps [67]. This threshold was set to 1m, however, similar results are obtained with different

threshold values, as illustrated in Figure 5.11. Based on the presented results, it can be seen

that the incorporation of uncertainty improves the performance for all calculated metrics. The

only exception is the stairs sequence, which contains narrow corridors where individual mea-

surements are already highly reliable. Moreover, the part of the reference map corresponding to

stairs sequence has some visible artifacts, such as double walls, which could also cause increased

error.

initial map HBA MAD-BA w/o uncert. MAD-BA with uncert.
Sequence acc.↓ comp.↓ C-L1↓ F-sc.↑ acc.↓ comp.↓ C-L1↓ F-sc.↑ acc.↓ comp.↓ C-L1↓ F-sc.↑ acc.↓ comp.↓ C-L1↓ F-sc.↑

quad_easy 16.39 22.52 19.45 68.35 14.59 42.93 28.76 41.41 12.72 6.97 9.85 92.04 12.70 6.93 9.82 92.07

math_easy 19.22 26.87 23.05 58.55 16.86 43.49 30.17 38.70 14.44 10.65 12.55 87.20 14.35 10.54 12.44 87.26

cloister 22.78 16.31 19.54 69.18 18.62 39.18 28.90 45.76 21.78 7.34 14.56 77.86 21.18 6.95 14.06 78.96

stairs 28.91 23.66 26.29 55.51 33.82 32.35 33.08 41.41 24.32 7.22 15.77 73.50 24.56 7.28 15.92 73.36

Table 5.7: The quantitative results of the map evaluation. It includes the following metrics:
accuracy (acc.), completion (comp.), Chamfer-L1 (C-L1), and F-score (F-sc.). The first three
metrics are reported in centimeters, whereas the F-score is given as a percentage. The column
labeled initial map shows the results for the surfel map created using the initial trajectory
obtained using LOAM. An additional threshold of 0.2m was applied to calculate the F-score.

The best results are highlighted in bold.
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Figure 5.11: Chamfer-L1 distance calculated for the cloister sequence for different distance
thresholds. The initial map was generated using the LOAM trajectory. Both versions of the
proposed BA significantly improve the map quality, however, the incorporation of uncertainty

information provides additional enhancements.

Furthermore, a comparison of the maps obtained from the NC maths-easy and quad-easy se-

quences was generated and presented in Figure 5.12. It shows the Euclidean distance calculated
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from each point in the refined map to the nearest point in the reference model. These compar-

isons demonstrate a notable enhancement in map quality after applying the VA method, which

effectively integrates measurements from different scans, leading to a more precise and reliable

model of the environment.

a)

b)

A

B

Figure 5.12: Qualitative results of maps generated from the NC math-easy (A) and NC
quad-easy (B) sequences. The color of each surfel point indicates its Euclidean distance to
the nearest point in the ground-truth map. The images on the left illustrate maps created
using the initial trajectory (before optimization), while the right images show the results after

applying BA with uncertainty method.

A further benefit of the proposed map representation is its ability to implicitly exclude points

associated with dynamic objects, such as moving cars or pedestrians. Although these filtering

characteristics are hard to measure, qualitative examples of this effect are provided using a part

of the VBR Spagna and KITTI 07 sequences in Figure 5.13.

This filtering effect is related to the way in which surfels are created and how they associate leafs

from different scans. When the given object is moving fast enough, there are no corresponding

leaves in subsequent scans, which effectively excludes them from the surfel creation process. This

leads to the inherent filtering properties of this approach, enabling it to automatically handle

dynamic objects in the environment. The exclusion of these points offers substantial advantages

for applications such as autonomous driving and robotic navigation. Since moving objects do

not constitute permanent features of the environment, their removal enhances the accuracy of

the map, also leading to improved localization performance. This is crucial for tasks that require

precise navigation based on a consistent representation of the environment. Additionally, the

number of surfels in a map is much lower than points in the original scans, which reduces its

size, while still preserving the important structure of the surroundings. As a result, filtering out

dynamic points not only improves the overall performance of the system, but also makes it more

robust in environments with many dynamic objects.
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Figure 5.13: Comparison of the maps generated by LOAM (A–F) and MAD-BA method
(G–L), with the surfel map converted to a point cloud. The visualizations show part of the
Spagna (A, B, G, H), KITTI 07 (C, D, I, J), Ciampino (E, K), and Pincio (F, L) sequences.
Proposed approach offers a clearer representation of the environment by removing noise and

filtering out points from dynamic objects such as moving cars and pedestrians.
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5.2.4 Comparison of high-level planar features with surfels

PlaneLOAM and MAD-BA systems represent two different strategies for structuring point cloud

data, each with distinct advantages and trade-offs. Both methods aim to reduce raw point

cloud complexity by grouping points into features, enabling more efficient data association and

optimization. They share common elements, such as using point-to-plane or point-to-line error

functions for data association and leveraging kd-trees for correspondence search. However, their

approaches to feature representation and optimization differ considerably.

One of the primary differences between these two representations is the size of the features. The

planar features in PlaneLOAM function similarly to surfels but are not limited in size, meaning

that they can represent large flat areas, such as the walls of buildings or floors, more effectively. In

contrast, surfels are smaller, which allows for capturing finer details of the environment, making

them particularly effective in areas with high surface variation. Additionally, in the surfel-based

approach, once the points are converted into surfels, the original point cloud data is no longer

used in subsequent processing. This also slightly simplifies the correspondence search and feature

matching, as it requires fewer parameters. The smaller size also makes them more flexible in

optimization, as they can be modified more easily compared to large planar features. This

makes surfel-based approaches particularly effective in high-accuracy reconstruction. However,

the small size also means that surfels struggle to efficiently represent large flat surfaces, where

big planar features might be more suitable.

Another important distinction lies in the computational efficiency of the approaches, how-

ever, this is more related to the purpose of the system rather than the map representation.

PlaneLOAM was developed for real-time operation, enabling continuous localization and map-

ping without excessive computational overhead. In contrast, MAD-BA require matching all

scans with each other, making it significantly more computationally expensive. For this reason

it is intended for offline processing, where accuracy is prioritized over speed.

The comparison of the accuracy of both systems is presented in Table 5.8. It was conducted

using three selected KITTI sequences, previously analyzed in the thesis, but now summarized

in a single table for direct comparison. To ensure a fair evaluation, neither system incorporated

loop closure information, and based on the accuracy metrics, MAD-BA demonstrated superior

performance in all analyzed sequences. Moreover, based on the trajectory and error over time

plots, illustrated in Figure 5.14, it can be noticed that MAD-BA exhibits lower error at both the

beginning and end of the trajectories. This might be caused by the fact that matching surfels is

more reliable than aligning large planar or linear features, particularly in the case of significant

trajectory drift. Additionally, the point-to-plane threshold in the data association step differs

between the two approaches, and it is set to 5.0m for surfels and 1.0m for planar features. Since

scans from the start and end of the trajectory are more likely to be matched in the MAD-BA

system, this results in reduced error, resembling the effect of loop closure without explicitly

implementing it.

Figure 5.15 shows the comparison of a map created using the PlaneLOAM and MAD-BA systems.

To enhance clarity, each planar feature in the PlaneLOAM map is assigned a distinct color, while

surfels in the MAD-BA map are colored according to their normals.



Experimental evaluation 78

Table 5.8: ATE comparison for KITTI sequences between PlaneLOAM, employing high-level
features, and MAD-BA, utilizing surfels.

dataset PlaneLOAM MAD-BA
sequence ATERMS ATEmax σATE ATERMS ATEmax σATE

KITTI 00 4.52 m 11.76 m 2.36 m 3.54 m 6.47 m 1.35 m
KITTI 05 3.21 m 8.04 m 1.59 m 1.43 m 2.68 m 0.64 m
KITTI 07 0.50 m 0.82 m 0.20 m 0.40 m 0.70 m 0.16 m
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Figure 5.14: Trajectory plots for the analyzed KITTI sequences (A, B, C) and the corre-
sponding error over time (D, E, F) for PlaneLOAM (blue line) and MAD-BA (green line).

The most significant difference lies in the way each system represents surfaces. Surfels divide

walls into multiple small elements, which can be beneficial when dealing with uneven or textured

surfaces. PlaneLOAM, on the other hand, represents an entire wall as a single planar feature,

making it efficient for large, flat structures but potentially less adaptive to surface variations.

Another distinction between the two approaches is how features are managed. PlaneLOAM re-

quires additional processing steps, such as merging and removing invalid features, to maintain

map consistency. In contrast, surfels are neither merged nor deleted, making their management

simpler while still allowing for dynamic refinement. On the other hand, the surfel-based map is

constructed iteratively. After each optimization step, the system updates the poses and recre-

ates the surfels. This iterative refinement process ensures continuous improvement in the map

accuracy over time but is more demanding in terms of computations.

In general, both approaches provide viable alternatives to traditional point-based maps, each

offering distinct advantages depending on the structural characteristics of the environment and

the required level of detail.
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A

B

Figure 5.15: Comparison of the maps created using high-level planar features in PlaneLOAM
(A) and surfel-based representation in MAD-BA (B). Each planar feature is assigned a unique

color for better visibility, while surfels are coloured based on their normal vector.

5.3 Evaluation of LiDAR SLAM with GNSS integration

5.3.1 Introduction

This section presents the evaluation of the method for integration of SLAM with GNSS data,

introduced in Section 4.1, and focuses on validating the performance and effectiveness of the

developed approach. It also demonstrates how these systems can be combined to provide robust

localization in urban environments and produce a globally consistent trajectory.

Urban canyons, characterized by tall buildings and complex infrastructures, often degrade GNSS

signals, leading to inaccuracies and loss of signal. SLAM systems, on the other hand, offer

reliable local localization by mapping the environment and tracking the motion of a vehicle.

However, without a global reference, SLAM can accumulate drift over time. In this context,

the synergy between these two systems leverages the strengths of both of them: GNSS provides

global position references and SLAM ensures local accuracy and continuity.

Dataset

The experiments were carried out using the UrbanNav dataset [136], which is specifically designed

to test navigation systems and provides data from complex urban environments that present

significant challenges for GNSS-based positioning. It is publicly available and includes sequences

recorded in densely populated areas. The presented experiments focus on two sequences from
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Tokyo (Odaiba and Shinjuku) and three sequences from different parts of Hong Kong: Tsim Sha

Tsui (TST), Whampoa, and Mongkok.

The dataset includes raw GNSS measurements in Receiver Independent Exchange System (RINEX)

format, widely used for this type of application. RINEX data consists of two file types: obser-

vation and navigation. Observation files are recorded by a GNSS receiver mounted on a moving

vehicle and contain the following values:

• time of measurement,

• pseudorange,

• carrier phase,

• Doppler shift.

Navigation files provide information about satellite trajectories to compute their positions at

specific times and are not necessarily recorded by the receiver whose position is being calcu-

lated. However, they must include data about satellites present in the observation file to ensure

completeness for processing.

The sequences recorded in Tokyo feature data from two GNSS receivers: Trimble NetR9 and

u-blox ZED-F9P. For uniformity, only the data from u-blox ZED-F9P is processed, as it is also

present in the Hong Kong sequences. In addition, Hong Kong sequences include raw GNSS

measurements from four different smartphone models. For the presented evaluation, data from

Xiaomi Mi8 was selected, as it supports multiple constellations and dual-frequency bands (L1/L5)

for Global Positioning System (GPS), providing relatively high precision.

In terms of SLAM systems, Odaiba and Shinjuku sequences were processed using LOAM [137]

with data provided by the Velodyne VLP-32C sensor. These sequences were not processed with

LIO-SAM [69] due to the absence of a 9-axis IMU required by LIO-SAM. In contrast, trajectories

from Hong Kong were generated using both LOAM and LIO-SAM using data from Velodyne

HDL-32E. For clarity, Table 5.9 presents which sequences of the UrbanNav dataset and which

GNSS receivers were used for the evaluation.

Table 5.9: The sequences of UrbanNav dataset that were processed with the use of different
GNSS receivers for the purpose of evaluation. The ✓ sign means that given sequence was

processed and ✗ means that it was not

dataset LOAM LIO-SAM
sequence u-blox ZED-F9P XiaomiMi8 u-blox ZED-F9P XiaomiMi8
Odaiba ✓ ✗ ✗ ✗

Shinjuku ✓ ✗ ✗ ✗

TST ✓ ✓ ✓ ✓

Whampoa ✓ ✓ ✓ ✓

Mongkok ✓ ✓ ✓ ✓

By analyzing the above sequences, recorded in Tokyo and Hong Kong, the performance improve-

ments achieved through the developed system were evaluated, comparing it with the standalone

GNSS and SLAM approaches.
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Evaluation method

The results in the following section are calculated by comparing the trajectories provided by the

evaluated system with the ground truth, as already introduced in Section 5.1.1. The evaluation

focuses on ATE metrics, because it highlights the ability of a system to maintain precision and

consistency across diverse urban scenarios. The errors are reported as ATERMS and ATEmax,

representing the RMS and maximum ATE values, respectively. Ground-truth data, provided for

all sequences by an RTK GNSS/Inertial Navigation System (INS) receiver, is recorded in the

WGS-84 standard (latitude, longitude, altitude) and was directly converted to the ECEF frame

for evaluation purposes.

It is important to note that LIO-SAM includes functionality for loop closure detection. In the

presented comparison of GALS with LOAM and LIO-SAM, the emphasis was placed on demon-

strating the impact of IMU integration in LIO-SAM. Therefore, to ensure a fair comparison,

the loop closure functionality was disabled. However, in a separate experiment, this feature was

enabled to demonstrate that the GALS system is capable of managing loop closure constraints.

The comparison also includes results from the RTKLIB library, which, as described in Sec-

tion 4.1.3, was used to process raw GNSS measurements and provides positioning information

using GNSS-based data.

5.3.2 Accuracy of trajectory estimation

GNSS data source: u-blox ZED-F9P

Table 5.10 and Figure 5.16 provide a detailed comparison of the trajectory estimation outcomes

across three localization methods: LOAM, RTKLIB, and GALS, tested on five different Urban-

Nav sequences. The raw GNSS data utilized in this analysis are obtained from a u-blox ZED-F9P

receiver. The results demonstrate a notable reduction in trajectory estimation errors when using

the GALS system compared to both LOAM and RTKLIB. This improvement is evident across

all sequences, however, for the Whampoa, the reduction in error is less significant. This can

be attributed to the lack of valid GNSS measurements over a substantial part of the trajectory,

which limits the accuracy improvement typically provided by the GALS system.

Table 5.10: Comparison of ATE metrics calculated for trajectories obtained using three
different localization approaches: LOAM, RTKLIB, and GALS across UrbanNav sequences.
The RTKLIB utilize data from a u-blox ZED-F9P receiver, while the GALS approach integrates
data from both LOAM and the u-blox ZED-F9P. The lowest ATEmax values are highlighted

in bold.

dataset LOAM RTKLIB (u-blox ZED-F9P) GALS (proposed)
sequence ATERMS ATEmax ATERMS ATEmax ATERMS ATEmax

Odaiba 64.24 m 135.85 m 8.02 m 41.24 m 5.88 m 11.90 m
Shinjuku 53.46 m 104.92 m 11.67 m 74.30 m 6.84 m 22.70 m
TST 12.51 m 31.159 m 14.76 m 57.47 m 3.83 m 6.86 m
Whampoa 35.99 m 76.848 m 9.55 m 40.33 m 9.26 m 26.66 m
Mongkok 7.39 m 25.366 m 27.01 m 90.48 m 5.64 m 18.44 m
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Figure 5.16: Comparison of ATE metrics calculated for the five UrbanNav sequences: Odaiba
(1), Shinjuku (2), TST (3), Whampoa (4), and Mongkok (5). The plots illustrate the trajectory
errors for each sequence using three different localization methods: LOAM (A), RTKLIB with
data from the u-blox ZED-F9P receiver (B), and GALS, which combines data from LOAM
and the u-blox ZED-F9P (C). Additionally, plot (D) provides a detailed view of ATE over

time for each method. These plots complement the results presented in Table 5.10

Table 5.11 presents analogous results, this time focusing on the performance of LIO-SAM inte-

grated with GALS, in contrast to the LOAM system used previously. The RTKLIB localization

results remain unchanged from Table 5.10 and are included here again to facilitate direct com-

parison. It should be noted that LIO-SAM consistently outperforms LOAM, primarily due to the

integration of IMU with LiDAR data. In this way LIO-SAM enhances robustness in dynamic

environments and during fast motion, where LOAM may encounter difficulties. This reduces

potential drift and ensures a more stable pose estimation, which also leads to enhanced pre-

cision in the GALS trajectory. An additional comparison of the obtained routes, overlaid on

OpenStreeMap maps, is presented in Figure 5.17.

As noted earlier, the loop detection features of LIO-SAM were disabled to produce these results.

However, the impact of incorporating loop closures from LIO-SAM into GALS was also evalu-

ated and presented in Table 5.12 and Figure 5.18. The (ATERMS) for an example trajectory
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Table 5.11: Comparison of ATE metrics for trajectories derived from three approaches:
LIO-SAM, RTKLIB using data from a u-blox ZED-F9P receiver, and GALS, which integrates
data from LIO-SAM and the u-blox ZED-F9P. This comparison highlights the improvements
achieved when LIO-SAM is employed in combination with GALS for trajectory estimation.

dataset LIO-SAM RTKLIB (u-blox ZED-F9P) GALS (proposed)
sequence ATERMS ATEmax ATERMS ATEmax ATERMS ATEmax

TST 11.07 m 21.59 m 14.76 m 57.47 m 3.07 m 7.41 m
Whampoa 10.03 m 26.27 m 9.55 m 40.33 m 4.54 m 8.83 m
Mongkok 4.88 m 19.44 m 27.01 m 90.48 m 4.38 m 10.87 m

GALS
RTKLIB (u-blox F9P)

Legend

reference

GALS
RTKLIB (u-blox F9P)

Legend

reference

GALS
RTKLIB (u-blox F9P)

Legend

referenceA B C

Figure 5.17: Trajectories for the TST (A) and Whampoa (B) and Mongkok (C) sequences
from the UrbanNav dataset obtained using the proposed GALS approach with LIO-SAM (red
line), RTKLIB (green line) and ground-truth reference (black line) overlaid on OpenStreetMap.
The long green line segments in the RTKLIB trajectory indicate that multiple intermediate

positions were filtered out.

estimated by LIO-SAM with loop closures is lower compared to the trajectory that relies solely

on SLAM odometry (see Tab. 5.11). Although this enhancement is noticeable, it has a limited

effect on the trajectory estimated by GALS, provided that filtered GNSS measurements are em-

ployed to maintain global consistency. The methodology for this filtering process is described

in Section 4.1.4 and is necessary to achieve the best performance. As the results indicate, even

with loop closure constraints, the factor graph cannot rectify errors introduced by inaccurate

GNSS measurements, reflecting the influence of raw data and filtering mechanism on trajectory

estimation, as demonstrated in Figure 5.18B.

Table 5.12: Absolute Trajectory Error calculated for the TST sequence, illustrating the
impact of enabling or disabling specific components of our system: loop closures (LC) and the
filtration of GNSS measurements. This comparison highlights how these features influence the

accuracy of the resulting trajectories.

dataset LIO-SAM w/ LC GALS w/o filtering GALS w/ filtering
sequence ATERMS ATEmax ATERMS ATEmax ATERMS ATEmax

TST 5.68 m 15.15 m 8.14 m 18.08 m 2.17 m 6.65 m
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Figure 5.18: Comparison of the ATE for the TST sequence, calculated under different system
configurations. Plot (A) shows the results using LIO-SAM with loop closure detection enabled,
plot (B) presents ATE for GALS optimization without applying any filtration to the GNSS
measurements, plot (C) illustrates the results with GALS optimization that includes GNSS
filtration, and plot (D) shows how the error evolves over time for each configuration. These

plots complement the results in Table 5.12.

GNSS data source: Xiaomi Mi8

The subsequent experiments are similar to those described previously, however, in this case,

the raw GNSS data is sourced from a built-in GNSS receiver in the Xiaomi Mi8 smartphone

instead of the u-blox ZED-F9P. Additionally, only sequences from Hong Kong are analyzed, as

the corresponding data for the routes recorded in Tokyo are not available. Tables 5.13 and 5.14

present a quantitative evaluation of the trajectory error for these experiments that involve the

use of LOAM and LIO-SAM, respectively. The related plots are shown in Figure 5.19. Despite

the significantly larger GNSS positioning errors (see column B of Fig. 5.19), the GALS system

still produces substantially more accurate trajectories compared to those generated by LOAM

and LIO-SAM, which rely solely on LiDAR or a combination of LiDAR and IMU data. This

enhanced performance is attributed to the GNSS filtration process, which effectively filters out

invalid positions and helps mitigate the drift of SLAM. This is particularly beneficial in long-

distance sequences, where even low-quality GNSS measurements can support more accurate

trajectory estimation by reducing the accumulated errors over time.

Table 5.13: Comparison of ATE metrics for trajectories obtained with LOAM, RTKLIB
using data from Xiaomi Mi8, and GALS combining data from LOAM and XiaomiMi8

dataset LOAM RTKLIB (Xiaomi Mi8) GALS (proposed)
sequence ATERMS ATEmax ATERMS ATEmax ATERMS ATEmax

TST 12.51 m 31.159 m 84.38 m 683.60 m 4.81 m 9.13 m
Whampoa 35.99 m 76.848 m 48.18 m 263.07 m 16.57 m 43.35 m
Mongkok 7.39 m 25.366 m 93.84 m 665.07 m 5.94 m 17.86 m

Table 5.14: Comparison of ATE metrics for trajectories derived from LIO-SAM, RTKLIB
using data from a Xiaomi Mi8, and GALS, which integrates data from both LIO-SAM and

the Xiaomi Mi8.

dataset LIO-SAM RTKLIB (Xiaomi Mi8) GALS (proposed)
sequence ATERMS ATEmax ATERMS ATEmax ATERMS ATEmax

TST 11.07 m 21.59 m 84.38 m 683.60 m 3.69 m 6.27 m
Whampoa 10.03 m 26.27 m 48.18 m 263.07 m 7.19 m 16.44 m
Mongkok 4.88 m 19.44 m 93.84 m 665.07 m 4.41 m 9.14 m
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Figure 5.19: Comparison of ATE calculated for the TST (1), Whampoa (2), Mongkok (3),
and TST (4) sequences. The plots display trajectory errors for LOAM (A1–A3) or LIO-SAM
(A4), RTKLIB with Xiaomi Mi8 data (B), and GALS (C). Plot (D) illustrates how ATE varies

over time, providing a temporal analysis of the localization accuracy for each method.

Accuracy comparison between RTKLIB and the GNSS receiver

The final results of this section focus on comparing the localization accuracy achieved directly

from the GNSS receivers versus using RTKLIB with raw measurements. The errors, calculated

based on the provided WGS-84 coordinates from both u-blox ZED-F9P and Xiaomi Mi8 receivers,

are presented in Table 5.15.

Table 5.15: ATE for positions returned directly by u-blox ZED-F9P and Xiaomi Mi 8 re-
ceivers.

dataset u-blox ZED-F9P Xiaomi Mi 8
sequence ATERMS ATEmax ATERMS ATEmax

TST 3.84 m 9.67 m 11.73 m 28.94 m
Whampoa 5.70 m 17.85 m 13.09 m 48.25 m
Mongkok 9.79 m 33.52 m 18.81 m 51.91 m

Based on these results, it can be seen that the localization results obtained using RTKLIB and the

raw GNSS data are inferior to those provided directly by the GNSS receiver. This might be due

to a number of significant factors. First, raw GNSS data includes various sources of error, such

as multipath effects, atmospheric delays, and clock inaccuracies, which RTKLIB must address.

GNSS receivers are equipped with tuned internal algorithms designed to handle these errors
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effectively in real time, whereas RTKLIB may provide worse results without the proprietary

enhancements that receivers use. Furthermore, RTKLIB processes raw GNSS data in a post-

processing mode, which requires the completeness of collected RINEX files. If the necessary data,

such as the trajectory of a given satellite, is inaccurate, outdated, or unavailable, the localization

accuracy can degrade. In contrast, GNSS receivers provide real-time processed solutions that

are optimized for immediate use, thus often yielding more reliable results. In addition, the

hardware integration of the GNSS receivers further improves their performance, since the system

is optimized for both hardware and software. Nonetheless, the proposed GALS system offers

a versatile framework for GNSS-augmented LiDAR SLAM by tightly integrating raw GNSS

measurements with existing LiDAR SLAM algorithms. The development of a factor graph

formulation that enables the use of raw GNSS data from low-cost receivers, without requiring

external corrections, substantially enhances both the local accuracy and global consistency of

the estimated trajectories.



Chapter 6

Practical applications of GNSS

6.1 Localization system for an electric city bus

6.1.1 Introduction

This section presents the results of the development of a localization system for electric city

buses, which is part of a project aimed at creating an ADAS. The primary goal of this system is

to assist drivers during docking maneuvers at charging stations located at bus stops or depots.

However, while providing an overview of the entire system, this section primarily focuses on the

localization component, detailing the approaches and tests conducted to evaluate its performance.

In addition, it also reports the results of tests of a GNSS-based localization system for buses

operating in a real urban environment with regular daily traffic and passengers. For that reason,

it provides a valuable perspective on the practical challenges of deploying such a system in

real-world applications.

The developed ADAS offers a solution to docking challenges by providing visual guidance to

the driver that allows them to navigate the vehicle along an optimal path. Although the bus

equipped with this system is not fully autonomous, the ADAS significantly reduces driver stress

and compensates for lack of experience. Previous studies [112, 169] introduced the overall concept

of the ADAS for both single-segment and articulated buses. These works covered the development

of motion planning and control subsystems, as well as a method for using a single camera to

localize the bus relative to the charging station. The prototype system was developed through a

collaborative research project between Poznan University of Technology and Solaris Bus & Coach,

a leading European electric bus manufacturer. For the experiments presented here, the bus was

equipped with a simplified version of the ADAS, which incorporated significant modifications

from the earlier prototype. These changes were driven by an economic analysis that assessed the

profitability of adding additional hardware to the vehicle. As a result, external sensors such as

cameras and LiDARs were removed, and the system now relies entirely on data from the GNSS

and the internal sensors of the bus. In contrast to the version that employs a vision system [169],

the current implementation can work effectively at night and under adverse weather conditions,

87
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such as snow or heavy rain. These modifications have resulted in a cost-effective system that can

be retrofitted to nearly any existing electric bus, providing reliable guidance to inexperienced

drivers toward the charging station.

Although standard GNSS receivers generally provide adequate accuracy for most applications,

scenarios such as the one presented here demand higher precision. This can be achieved by

methods such as RTK GNSS [119]. The level of accuracy achieved using this technique varies

depending on the type and manufacturer of the receiver. For example, the u-blox F9P mod-

ule [165] claims a horizontal accuracy of 1.5m in standard mode and 0.01m in RTK mode under

optimal conditions. Given these capabilities, this localization method was chosen, as it provides

the necessary precision and reliability to determine the position of a bus at a reasonable cost.

Furthermore, the RTK GNSS ensures highly consistent pose estimates [170], which is particularly

beneficial for tasks related to precise maneuvers.

6.1.2 Architecture of the system

Hardware

The hardware used in this system comprises several key components: a single-board computer,

a CAN-USB adapter, two RTK GNSS receivers and a Long Term Evolution (LTE) module. A

schematic diagram of the system is presented in Figure 6.1.

On-board computer

-

CAN-USB adapter
LTE module

2x RTK GNSS module

GNSS base station
Bus CAN

LCD Display

Figure 6.1: Hardware utilized in the ADAS system. The on-board computer handles com-
putations, the GNSS modules provide bus position and heading, the CAN-USB adapter reads
sensor data from the bus, the LTE module receives Radio Technical Commission for Maritime
(RTCM) corrections from the base station via the network, and the LCD displays the system

interface to the driver.

The selected on-board computer, the UP Xtreme, is responsible for running the software and

managing data from connected peripherals. Its primary functions include processing Controller

Area Network (CAN) messages, managing data from the GNSS receivers, and maintaining com-

munication with the GNSS base station through the LTE module. During docking operations,

it also performs motion planning and control. Details about the software used on this computer

are provided in Section 6.1.2.
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The UP Xtreme was chosen due to its Intel i5 CPU with x86 architecture, which offers greater

versatility for software installation compared to ARM-based boards like the Raspberry Pi or

Odroid. ARM boards often require specific kernels or Linux versions, while the UP Xtreme

supports the official Ubuntu as its operating system. Additionally, its broad input voltage range

(12–60 V DC) allows it to be powered directly from the bus, eliminating the need for extra power

supplies or DC-DC converters. Alternatives like the UP Board and UP Squared were considered

but discarded due to their lower performance, which resulted in longer initialization times for

the motion planner and Graphical User Interface (GUI) before maneuvers.

The CAN-USB adapter facilitates a connection to the CAN bus of a vehicle, enabling the retrieval

of its current state. Data obtained via the CAN bus include vehicle steering angle, speed, and

pantograph status (folded or raised). The steering angle and speed are used for bus odometry

calculations, which the motion planner relies on in the event of a GNSS signal loss. Meanwhile,

the pantograph state serves as a signal that the driver intends to dock at the charging station.

CAN communication was selected because all the required messages were already accessible. The

PEAK-System CAN-USB adapter was chosen for its galvanic isolation, which ensured that any

failure in our system would not interfere with the regular operation of the bus.

In terms of RTK GNSS receivers, two u-blox ZED-F9P modules are employed. The first, called

the moving base, determines the position of the bus, while the second, called the rover, is used to

calculate the yaw angle (heading). Information about the position and heading of a bus is crucial

for this application, as it is used to plan the reference path that guides the driver throughout

the maneuver. In addition, it also helps to identify the moment when the system should be

activated. Since GNSS modules require external antennas for optimal performance, they were

installed on the roof of the bus, as shown in Figure 6.2. This placement ensures an unobstructed

view of the sky, allowing uninterrupted reception of satellite signals. The first antenna is placed

0.2m in front of the rear axle and links to the moving base receiver for the acquisition of position

data. Meanwhile, the second antenna is located 4.9m in front of the first and is attached to the

rover module. The alignment of GNSS antenna positions with the bus coordinate system and the

synchronization of GNSS data with the internal sensors was achieved through offline calibration

conducted prior to testing. The calibration process, which relies on the optimization techniques

described in [171], ensures high accuracy and repeatability. Once calibrated, the synchronization

between the sensors is managed using software timestamps.

Figure 6.2: Placement of the GNSS antennas concerning the geometry of a bus roof. The
first antenna is positioned 0.2m in front of the rear axle to determine the vehicle’s position.
The second antenna is installed 4.9m ahead of the first and provides the information about

heading of a bus.
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The u-blox ZED-F9P receivers were selected for several reasons. Most importantly, these modules

support the moving base and rover configuration in RTK mode, which can simultaneously provide

the position and heading of the vehicle. Additionally, their integration is straightforward with

existing Linux-compatible software. The modules are also cost-effective and widely available,

which was particularly advantageous during the pandemic when the availability of electronic

components was limited. Although other GNSS receivers at a similar price point, such as the

Swift Navigation Piksi Multi and SKYTRAQ PX1122R, are available, they lack built-in heading

estimation. Using such alternatives would require manual calculations of the heading angle based

on two antenna positions, resulting in reduced accuracy.

The next hardware component is an Liquid Crystal Display (LCD) that acts as a graphical

interface for the driver. It shows key information, including the current position of the bus,

the planned path, the desired steering angle, and the path error. This display is connected to

the ADAS computer and automatically turns on when the bus approaches the charging position,

showing the Human-Machine Interface (HMI) that provides the driver with a clear understanding

of the maneuver.

The final hardware element is an LTE module, which facilitates remote access and provides inter-

net connectivity to the on-board computer. A generic LTE module powered directly through the

USB port of the UP Extreme computer was chosen, as this setup allows it to automatically start

synchronously with the other components of the system. Additionally, the on-board computer

uses this module to wirelessly connect to the stationary GNSS base station, enabling it to receive

differential corrections.

Differential corrections aim to enhance positioning accuracy by minimizing errors associated with

GNSS signal propagation and processing. Specifically, these corrections address delays caused

by the Earth atmosphere, such as tropospheric and ionospheric delays. These delays impact the

calculation of the pseudorange by affecting the signal travel time. In addition, GNSS corrections

include information about satellite clock biases, which influence measurements since the signal

travel time is determined using the difference between the receiver and satellite clocks. A GNSS

base station continuously calculates these corrections based on signals from satellites and the

known fixed position of its antenna [172]. These corrections, known as pseudorange corrections,

can then be shared with other receivers to improve their calculations and overall positioning

accuracy. This is possible because atmospheric effects on GNSS signals are similar for all receivers

within a short distance from each other, typically several dozen kilometers. Corrections also

provide precise satellite orbit parameters, which are essential for determining satellite positions

at any given time. In addition, they refine carrier phase measurements, which are based on the

phase shift of the signal carrier wave. These measurements are more computationally intensive

than pseudorange calculations, and hence they require additional messages that are transmitted

along with the differential corrections. In the presented implementation, these messages are

transmitted in the Radio Technical Commission for Maritime (RTCM) standard to the on-board

computer, which forwards them to the moving base receiver, ensuring the RTK localization

mode [172]. The source of RTCM messages is the ASG-EUPOS network, which provides data

from multiple reference stations in Poland through an internet-based service.
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Unfortunately, certain errors cannot be mitigated by using RTCM data, such as those arising

from signal multipathing and obstructions. These issues depend on the actual position of a

receiver and its nearby environment. The primary causes of such errors are tall buildings and

trees, which can reflect or block satellite signals. As a result, GNSS localization tends to be less

accurate in highly urbanized areas and may fail entirely in tunnels or underground parkings.

Another critical consideration is LTE network coverage in the areas where the RTK GNSS system

operates. Although this is typically not an issue in urban regions, a lack of internet connectiv-

ity prevents the reception of RTCM corrections, thereby reducing positioning accuracy. Short

interruptions in internet access, which can occur even in cities, are generally not problematic,

since RTCM corrections remain valid for several seconds. However, prolonged connectivity issues

cause the receiver to exit RTK mode and revert to standard FIX mode, which offers a maximum

static accuracy of 1.5m. Although it is satisfactory for determining the rough position of a bus,

this accuracy is insufficient for precise docking maneuvers. Thus, RTCM corrections are essential

for the proper functioning of the system.

The GNSS receiver operates in three main modes: standard FIX, RTK FLOAT, and RTK

FIXED. In RTK FLOAT mode, the receiver has acquired RTCM corrections but has not yet

achieved the highest precision level. Accuracy in this mode is typically within tens of centimeters,

which is better than in the case of standard FIX but still depends on the number of visible

satellites and signal quality. RTK FIXED mode is the most precise one, and it is achieved when

the receiver resolves carrier phase cycle ambiguities and determines the exact number of radio

wavelengths between satellites and the receiver. This enables centimeter-level accuracy, which

can be maintained as long as RTCM data are consistently transmitted and the antennas have a

clear sky view. All three modes (standard FIX, RTK FLOAT, and RTK FIXED) apply to both

the moving base and the rover modules. Regardless of the mode, the receivers utilize signals from

multiple satellite constellations and frequency bands, including GPS (L1/L2), Galileo (E1/E5),

and GLONASS (L1/L2). This multi-constellation, multi-frequency approach ensures that the

system always has sufficient satellite visibility. Moreover, it also reduces the time required

to initialize after power-up. Notably, the u-blox ZED-F9P receivers used in the system start

calculating its position as soon as the bus ignition is turned on, and usually achieves standard FIX

mode even before the operating system fully initializes. However, achieving RTK FIXED mode

requires the LTE module to establish a network connection and begin RTCM data transmission,

which typically takes 40–60 seconds.

Software

Concerning the software, the system uses Ubuntu and Robot Operating System (ROS), a popular

set of open-source libraries and tools for robotic applications. ROS offers significant flexibility,

as each system component has its own package that can be independently started or stopped

as needed. The system architecture is illustrated in Figure. 6.3, with all software components

implemented as ROS nodes, facilitating seamless communication between packages.
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Figure 6.3: Overview of the system architecture. The software is implemented as ROS nodes,
including the NTRIP client, GNSS driver, CAN bridge, localization node, system activation
node, path planner, and feedback controller. The NTRIP client retrieves RTCM corrections
via the LTE module. The GNSS driver processes data from u-blox ZED-F9P receivers. The
CAN bridge interfaces with bus-mounted sensors. The localization node calculates the bus
pose relative to the charger. The system activation node initiates motion planning as the bus
arrives at the depot. The path planner and feedback controller generate the reference path

and guide the driver during docking maneuvers.

The first software component is an Networked Transport of RTCM via Internet Protocol (NTRIP)

client1, which retrieves RTCM corrections using the LTE module connected to the on-board

computer. As described in Section 6.1.2, these corrections are sourced from the ASG-EUPOS

internet-based service, which aggregates data from multiple GNSS base stations across Poland.

The NTRIP client’s role is to establish a connection with this service, receive the correction data,

and pass them on to the GNSS driver. Simultaneously, the GNSS driver transmits the RTCM

messages to the moving base receiver, enabling it to operate in RTK mode. Additionally, the

driver retrieves position and heading data from the moving base and rover modules. This func-

tionality is implemented using two modified ROS packages: nmea_navsat_driver2 and ublox3.

The GNSS data are updated at a frequency of 10Hz, which is satisfactory for localization in

urban traffic.

The CAN bridge is responsible for reading the current state of the internal sensors and converting

these data into ROS messages, enabling straightforward integration with the pose estimation

and motion planning packages. The implementation leverages the ros_canopen4 interface and

utilizes proprietary CAN messages provided by Solaris Bus & Coach S.A. The data collected via

the CAN interface is used to compute the bus odometry and monitor the state of the pantograph.

The localization node determines the position and orientation of the bus relative to the charger

by using data from the GNSS driver and the predefined global coordinates of the charger. Since

the GNSS receivers provide location data in the form of (latitude, longitude, altitude), this

information is converted into the Universal Transverse Mercator (UTM) system with Cartesian

coordinates. For this conversion, the gps_common5 package is used in conjunction with the

Eigen library, which facilitates the required transformations between local reference frames and

1https://github.com/LORD-MicroStrain/ntrip_client
2https://github.com/ros-drivers/nmea_navsat_driver
3https://github.com/KumarRobotics/ublox
4https://github.com/ros-industrial/ros_canopen
5https://github.com/swri-robotics/gps_umd/tree/master/gps_common

https://github.com/LORD-MicroStrain/ntrip_client
https://github.com/ros-drivers/nmea_navsat_driver
https://github.com/KumarRobotics/ublox
https://github.com/ros-industrial/ros_canopen
https://github.com/swri-robotics/gps_umd/tree/master/gps_common
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computes the bus pose relative to the charging station. This calculated pose is subsequently

utilized by the system activation node to initiate the motion planning system shortly before the

docking maneuver.

The next software component is the path planner, which generates the reference path. It utilizes

a general path planning framework based on the non-linear optimization of a 7th-degree polyno-

mial, ensuring smooth and kinematically feasible paths. The planner formulates path planning

as an optimization problem constrained by initial and final configurations, kinematic limits (cur-

vature and rate of curvature), and obstacle avoidance. Positional constraints are derived from

bounding boxes generated using OpenStreetMap data, which define a safe space for vehicle move-

ment. The optimization process, implemented using CasADi and the IPOPT library, ensures

obstacle-free paths with minimal curvature changes. It balances computational efficiency with

precision, generating reference paths that guide the bus during docking maneuvers.

The last module is the feedback controller that assists the driver in reaching the charging station.

It ensures precise guidance by continuously adjusting the steering based on real-time deviations

from the reference path. It calculates the error between the actual pose of the bus and the desired

trajectory, considering position, orientation, and curvature. Using this error, the controller

generates steering angle commands to minimize the deviation while maintaining smooth motion.

By accounting for the kinematic constraints of the bus, it provides reliable and accurate feedback,

enabling the driver to follow the reference path effectively, even in confined spaces or challenging

docking scenarios.

A key requirement set by the bus fleet operator for our ADAS was that the system should

operate autonomously without requiring any input or parameter adjustments from the driver.

This specification was primarily driven by safety concerns. As a result, the system activates

automatically when the driver starts the bus. Once the on-board computer boots up, the GNSS

localization software starts to operate in the background. During this process, the monitor

in driver’s cabin is turned off to avoid potential distractions. When the bus approaches the

designated location, the system triggers a package responsible for path planning and calculating

the steering angle at a distance of 55 meters from the charger. This early activation ensures that

the motion planner and the graphical interface have enough time to initialize. Concurrently,

the driver’s monitor turns on, and by the time the bus is 35 meters away, the system is fully

operational. Since the bus position is calculated relative to the charger, all distance-based

conditions can be easily tested and adjusted for various depots and charging stations as needed.

Additional safeguards have been implemented to prevent unintentional system activation, such

as when approaching the depot from the opposite direction. Once all components of the system

have been activated successfully, the driver can follow the steering suggestions displayed on the

monitor. The system will automatically deactivate when the bus halts beneath the charger or if

it detects the driver performing an unrelated maneuver, such as driving across the depot without

the intention to dock. In addition, the system will shut down if the bus moves more than 60

meters from the charger, regardless of driver actions. Although this condition is redundant, it

ensures that the system is ready for the next approach.

It should be noted that the described system is directly powered by the bus, which can slightly

increase its overall power demand. However, the flexibility of ROS packages allows them to
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be deactivated once the maneuver is complete. As a result, the main software runs only when

the bus is near the charger, minimizing power consumption for most of the time. The Intel

i5-8365UE CPU used in our UP Xtreme setup has a maximum power consumption of 15 W,

while the monitor consumes approximately 5.5W. Unfortunately, other components, such as the

LTE module and CAN-USB adapter, are powered via USB ports and cannot be automatically

turned off. By reducing CPU activity and turning off the monitor, it is possible to save up to

around 20W of power. Although these savings may seem negligible compared to the total energy

consumption of an electric bus, which typically ranges between 0.8 and 1.7 kWh per kilometer,

it remains a good practice to minimize power usage whenever possible.

6.1.3 Performance evaluation of the GNSS-based localization system

The overall performance of the GNSS system was assessed on three distinct routes in Poznan

during the regular operation of an electric bus in urban traffic. The average distances and travel

times for the analyzed sequences are summarized in Table 6.1. This table also provides details

on the number of RTK FIXED poses recorded for each sequence, reflecting the overall reliability

of the system. As noted previously, RTK FIXED represents the high-precision localization mode

with centimeter-level accuracy, which is critical for performing maneuvers such as docking at a

charging station.

Table 6.1: The recorded city bus routes that were used to analyze the reliability and per-
formance of GNSS localization. RTK FIXED positions represent a high-precision mode with
centimeter-level accuracy. Lower precision modes, such as the standard FIX and RTK FLOAT

modes, indicate the reduced accuracy of the system.

Sequence (bus stops) Distance Time No. of precision No. of poses in
RTK FIXED poses low precision modes

Dworzec Zachodni–Kacza 7.483 km 34.77 min. 20558 284
Garbary PKM–Strzeszyn 11.616 km 42.42 min. 23749 1691

Garbary PKM–Os. Dębina 9.290 km 43.93 min. 25264 1090

The data indicates that only a small percentage of registered poses (1.36%, 6.65%, and 4.14%

for each route, respectively) were non-RTK. These discrepancies are mainly due to the limited

visibility of the sky caused by roadside structures and vegetation. However, it should be noted

that the GNSS signals were consistently available throughout all sequences, with no interruptions

or gaps in the logged trajectories.

To perform the statistical analysis of GNSS localization performance, the ATE metric was used,

as introduced in Section 5.1.1. Since the results were collected during regular bus operations

under typical day-to-day conditions, it was impossible to implement additional measurement

systems to provide ground-truth data. For that reason, the ATE was calculated between the

positions of the moving base and the rover receivers at the corresponding timestamps. The error

was averaged over the route and is presented in Table 6.2. To compute the ATE, the rover

coordinates were transformed to the moving base frame by translating them along the longitu-

dinal axis of the bus (in the global coordinate system) by a length of 4.9m, representing the

exact distance between the two antennas mounted on the roof of the vehicle. It should be noted

that this translation introduces an additional positional error for the rover, as it depends on the
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accuracy of the heading estimation. Unfortunately, due to real-world testing conditions, it was

not possible to measure the heading estimation error directly. Such an evaluation would require

either higher-precision ground-truth data or an additional pair of GNSS receivers to compare

their measurements. Despite this limitation, the results show that the smallest positional dis-

crepancy between the moving base and rover was observed for the Dworzec Zachodni–Kacza

sequence. This sequence also had a lower number of non-RTK poses, which corresponds with

the improved localization performance.

Table 6.2: ATE computed between the poses from the moving base and rover receivers.
To calculate the error, the rover poses were transformed to the moving base frame. The
columns include the sequence name, and statistics of the error: RMS, max, mean and standard

deviation, respectively.

Sequence (bus stops) ATERMS ATEmax ATEmean ATEstd

Dworzec Zachodni–Kacza 0.276 m 3.113 m 0.175 m 0.213 m
Garbary PKM–Strzeszyn 0.602 m 4.377 m 0.428 m 0.423 m

Garbary PKM–Os. Dębina 0.619 m 4.340 m 0.440 m 0.436 m

An additional factor that could potentially degrade localization accuracy is mobile network

coverage, as our system relies on continuous internet access to receive differential corrections for

GNSS receivers. Without these corrections, the precision necessary for the system to function

correctly would be insufficient. However, this was not an issue during our tests, as the LTE

network coverage was consistently available. The recorded routes are shown in Figures 6.4 and

visualize the sections of the trajectories where the accuracy of the GNSS localization decreased.

Figure 6.4: The recorded routes of the city bus shown on OpenStreetMap. RTK FIXED poses
are depicted with blue lines, the less accurate RTK FLOAT with red lines, and the least accu-
rate standard GNSS poses with yellow lines. Plot (A) corresponds to the Dworzec Zachodni–

Kacza route, (B) to Garbary PKM–Strzeszyn, and (C) to Garbary PKM–Os. Dębina.

From these plots, it can be observed that there are certain segments of the trajectories, par-

ticularly in Figures 6.4B and 6.4C (indicated by numbers (1) and (2)), with only the standard

FIX mode. These segments correspond to narrow streets with dense tree canopies and high-rise

buildings (illustrated in Fig. 6.5), which obstruct GNSS signals and increase the localization

error. Unfortunately, the surroundings have a considerable impact on the accuracy of the GNSS

localization, and such situations are unavoidable [105, 108].

Figure 6.6 illustrates the error between the moving base and the rover, calculated similarly to

the result in Table 6.2, but focused on a specific segment of the Garbary PKM–Os. Dębina
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Figure 6.5: Examples of trajectory segments where the RTK FIXED mode of GNSS was
unavailable due to limited sky visibility caused by buildings and trees. Image (1) corresponds
to a section of the trajectory from Figure 6.4B, while image (2) illustrates a scene from Fig-

ure 6.4C.

trajectory. The statistical summary of this error is presented in Table 6.3. The results indicate

that the accuracy of the GNSS-based localization decreases in these areas, as the error values

for this segment are higher than those calculated for the entire sequence. In particular, the

RMS and mean error values increased by approximately 0.16m and 0.2m, while the standard

deviation of the error remained mostly unchanged. This suggests that the positions recorded in

non-RTK mode may have a consistent offset, potentially caused by factors such as GNSS signal

multipathing.

T

Figure 6.6: ATE calculated between the positions of the moving base (reference) and rover.
The error corresponds to a section of the Garbary PKM–Os. Dębina route where the RTK

FIXED mode was partially unavailable due to nearby high-rise buildings and trees.

Table 6.3: Errors between the moving base and rover positions for a segment of the Gar-
bary PKM - Os. Dębina route where the RTK FIXED mode was partially unavailable. The
columns represent the sequence name and the error statistics: RMS, max, mean, and standard

deviation, respectively.

Sequence (bus stops) ATERMS ATEmax ATEmean ATEstd

part of Garbary PKM–Os. Dębina 0.777 m 2.0943 m 0.640 m 0.439 m
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The most critical part of the trajectory is the area near the charging station, where the system

is designed to operate. The developed ADAS can guide the bus driver to any charging station

of a specified type, provided that the geographical coordinates of a charger are known. For

one of the experiments, which falls outside the scope of this thesis, the ADAS was configured

to operate with an electric charger located at the bus depot near the Garbary PKM station.

Consequently, the focus was put on assessing the accuracy of the GNSS localization specifically

in this area. Figure 6.7A highlights the locations of all the charging stations at the depot, with

the one targeted by the system marked in green. Figure 6.7B shows the GNSS localization

modes in the vicinity of the depot. Notably, the RTK FIXED mode was available throughout

the entire approach path, enabling precise bus positioning during docking maneuvers using only

GNSS navigation alone, without the need for any external sensors. This robustness is caused

by the open space around the chargers and the absence of nearby high-rise buildings that could

obstruct satellite signals.

Figure 6.7: Location of charging stations at the Garbary PKM depot (A). The green marker
shows the station that was used for system evaluation. GNSS localization status near the depot
(B), including the approach path where the RTK FIXED mode was consistently available.

Arrows indicate the driving direction.

6.2 Localization system for agricultural robot

6.2.1 Introduction

Another significant application of GNSS technology is in agriculture, where it plays a crucial

role in improving precision farming practices. By enabling accurate positioning and navigation,

GNSS systems support efficient crop management, automated machinery operation, and the

development of agricultural robotics that contribute to more sustainable and productive farming

methods. Moreover, the growing advantages of using GNSS receivers for crop management are

driving the development of various hardware and software solutions to achieve high-precision

positioning. Although many devices on the market perform effectively under field conditions,

they are often designed specifically for agricultural applications and come with high costs. To

make precision farming more accessible to smaller farms, it is essential to balance the trade-off

between achieving adequate accuracy and the cost of components [78]. Furthermore, due to
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environmental regulations imposed by the European Union [150], an increasing number of farms

are required to adopt expensive solutions to minimize chemical usage, thereby promoting more

ecological farming practices.

Taking into account these factors, this section explores the application of precision positioning

techniques, such as the GNSS and VO, within the agricultural sector, specifically focusing on field

work operations. The experimental part focuses on the evaluation of GNSS-based localization

devices under real-world field conditions. It compares the positioning accuracy of the commercial

and low-cost GNSS solution. It also examines the enhancements provided by integrating satellite

navigation with VO, addressing short-term inaccuracies in GNSS readings, and demonstrates

the practicality of such a solution in agricultural environments. This approach utilizes accessible

hardware, such as laptops with built-in cameras, providing a cost-effective method to improve

positioning accuracy in challenging field conditions.

6.2.2 Experimental setup

The experiment was conducted using an electric field robot presented in Figure 6.8A. It is

a development platform designed for the research and testing of precision agriculture systems.

During the tests, the vehicle was manually operated using the remote controller. The experiment

was carried out in a small agricultural field with a size of approximately 30 by 200m. The field

area with one of the recorded sequences is shown in Figure 6.8B.

Figure 6.8: An electric robot used for the experiments (A) and the map presenting the field,
where the tests were conducted (B). The red dashed rectangle indicates the field area, while

yellow line shows one of the recorded trajectories.

The robot was equipped with additional sensors and hardware used for data collection. The

setup consists of the following components:

• Topcon ASG-2 GNSS receiver

• two u-blox ZED-F9P GNSS receivers

• laptop with built-in camera
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The first component used in the experiment is the Topcon ASG-2 GNSS receiver. It is designed

primarily for agricultural applications and offers a positioning accuracy of up to 1 cm in the

RTK mode, which makes it ideal for applications that require high precision, such as automated

steering and precision planting. In addition, it includes an IMU with a 3-axis accelerometer,

gyroscope, and magnetometer. This integration allows for better navigation stability and posi-

tioning, especially in challenging environments where GNSS signals may be obstructed. During

the presented experiments, the AGS-2 receiver was used as a reference system and provided a

ground-truth trajectory for comparison.

The next components were two u-blox ZED-F9P GNSS modules. They were set up in a moving

base - rover configuration, analogous to the setup described in Section 6.1.2, which enables the

estimation of both the position and heading of a robot. The ZED-F9P modules also offer high

accuracy and are suitable for agricultural applications such as the precise control of agricultural

machinery. At the same time, they are available at a relatively lower cost, making advanced

positioning technologies accessible to smaller farms that may not be able to afford more expensive

systems.

Both Topcon and u-blox receivers process signals from multiple satellite constellations, including

GPS, Galileo, Beidou, and GLONASS, enhancing accuracy by using a larger number of satellites

for positioning. Moreover, utilizing signals from multiple frequency bands significantly reduces

the time necessary to get first position estimates. Furthermore, all GNSS receivers operated

in RTK mode, benefiting from RTCM corrections provided by the ASG-Eupos system. These

corrections were sent using NTRIP, and allowed further improvement of the location accuracy.

The final component was a laptop that served multiple functions. It was responsible for recording

data from the GNSS receivers, acquiring RTCM corrections, and recording video from the built-

in camera. For that reason, it was positioned at the front of the robot to ensure an optimal field

of view.

6.2.3 Evalauation of the GNSS-based localization

The experiment involved conducting two different passes with the agricultural robot. The first

one involved driving the robot back and forth to the end of the field, featuring a single turn and

a straightforward path in both directions (see Fig. 6.8B). The second pass was relatively longer

and included multiple turns, reflecting the routes that agricultural machinery often follows in

real-world field operations. Both passes provided GNSS data that were subsequently used to

evaluate the accuracy and consistency of the GNSS systems in a scenario that closely resembles

actual agricultural practices. The evaluation was performed by computing the ATE between

the reference trajectory from the commercial Topcon ASG-2 receiver and the one obtained from

u-blox ZED-F9P. The trajectory plots along with the calculated error are shown in Figures 6.9

and 6.9 for the first and second passes, respectively. In addition, the numerical values of the

calculated metrics are presented in Table 6.4.

The results indicate that the difference between the compared trajectories is within a few cen-

timeters. However, some random disturbances can be observed in the ZED-F9P trajectories that
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A B

Figure 6.9: ATE calculated between the reference (Topcon ASG-2 receiver) and u-blox F9P
trajectories (A). The plot presenting the error and its statistics over time (B). The results

relate to the first pass of the robot.

A B

Figure 6.10: ATE calculated between the reference (Topcon ASG-2) and u-blox F9P trajec-
tories (A). The plot presents the error and its statistics over time (B). The results relate to

the second pass of the robot

Table 6.4: The Absolute Trajectory Error metrics calculated between the reference (Topcon
ASG-2) and u-blox F9P trajectories for both passes carried out in the experiment. All values
are expressed in meters, except for Sum of Squared Errors (SSE), which is in meters squared.

Run RMS mean median std min max SSE

1 0.0671 0.0561 0.0497 0.0369 0.0064 0.5991 28.7672
2 0.0836 0.0682 0.0583 0.0483 0.0029 0.8706 99.3947



Practical applications of GNSS 101

cause the error to increase randomly to a level of around 0.6–0.8m. These deviations may be

attributed to several potential factors. One possible cause is the temporal absence of the RTCM

corrections, which are sent from the moving base to the rover module. These corrections are

transmitted at a rate of 10Hz and facilitate an accurate calculation of the heading along with

the position. However, any interruptions or errors in the transmission of these messages could

potentially have contributed to the inaccuracies visible on the trajectory.

Moreover, additional factors can affect signal quality and accuracy, such as multipath interfer-

ence, where GNSS signals bounce off surfaces, such as flat terrain, before reaching the receiver,

resulting in inaccurate position calculations. In addition, atmospheric conditions and the ar-

rangement of GNSS satellites can also contribute to degraded signal performance. These com-

bined factors may have played a role in the disturbances observed in the ZED-F9P trajectories,

highlighting the complexity of achieving precise GNSS localization in dynamic field conditions.

6.2.4 Correcting GNSS trajectories with visual odometry

To validate the effectiveness of the GNSS trajectory correction approach described in Section 4.2,

the trajectories recorded with the ZED-F9P receiver were integrated with VO measurements. As

discussed previously, GNSS data can be subject to random positional disturbances, which can

potentially be mitigated using the proposed optimization technique. An example segment of the

trajectory where GNSS accuracy was reduced, yet ORB-SLAM3 provided reliable pose tracking,

is shown in Figure 6.11A. Simultaneously, Figure 6.11B illustrates the variance in the coordinates

obtained from GNSS receiver. These plots demonstrate that disturbances in satellite positioning

can be detected by analyzing their variance. Consequently, such instances trigger the integration

of the VO measurements, and after transforming and synchronizing the ORB-SLAM3 trajectory

with the GNSS data, they can be added to the factor graph for optimization.

Figure 6.11: (A) Comparison between segments of the GNSS and ORB-SLAM3 trajectories.
The red circle highlights where GNSS positioning accuracy degraded, while ORB-SLAM3
maintained reliable pose estimation. (B) The variance of x, y, z coordinates provided directly
by the receiver. The segment of the plot highlighted by the red rectangle in (B) corresponds

to the section of the trajectory indicated by the red circle in (A).
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Figure 6.12: The comparison of ATE calculated for the GNSS path and the trajectory
obtained using factor graph approach, which additionally integrates measurements from ORB-

SLAM3. Plot (A) represents the results for the first pass, whereas (B) for the second.

The result of this trajectory correction is shown in Figure 6.13, which presents a section of

the robot path before and after optimization. The disturbance highlighted in the red circle

corresponds to the disturbance shown in Figure 6.11.

Figure 6.13: (A) The estimated trajectory before incorporating constraints derived from VO
into the graph. (B) The trajectory after optimization, which enhanced the segment exhibiting

noticeable positioning disturbances indicated by the red circle.

In addition, Table 6.5 presents the numerical values of ATE, calculated after applying trajectory

corrections using the factor graph approach. The results correspond to the trajectories recorded

during the first and second experimental runs, respectively. Compared to Table 6.4, which

show analogous results before optimization, the most significant improvement is observed in the

maximum error value. Improvements in the other columns are relatively minor. This is because

only a short segment of both trajectories was affected by disturbances, resulting in minimal

overall accuracy changes. However, in precision agriculture applications, even a few incorrect

robot positions can have a notable impact on the results. In such cases, the presented approach
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Table 6.5: ATE calculated for the trajectory estimated using ZED-F9P receiver during the
first run. The trajectory was improved by integrating the visual odometry measurements into
the factor graph. All values are expressed in m, except for Sum of Squared Errors (SSE),

which is in m2.

Run RMS mean median std min max SSE

1 0.0660 0.0558 0.0497 0.0352 0.0062 0.4026 27.7628
2 0.0815 0.06787 0.0582 0.0451 0.0025 0.4261 94.4173

helps detect and mitigate GNSS disturbances by significantly reducing the unpredictable errors

in the estimated trajectories.

In general, integrating GNSS and VO using factor graphs offers a suitable solution for precise

and reliable localization, even in challenging environments. By combining satellite-based posi-

tioning with relative motion estimated using a visual system, factor graphs can effectively reduce

positioning errors, particularly in areas with degraded GNSS signals. Experimental results un-

derscore the robust performance of VO over short distances, even with low-cost cameras such

as those built into laptops. As a result, such an approach proved to be particularly effective in

compensating temporary GNSS degradations, such as interruptions in correction data.





Chapter 7

Conclusions

7.1 Summary

This dissertation explores various approaches to the SLAM problem, with a particular focus on

different map representations and the integration of GNSS data using factor graph optimization.

A key feature of the factor graph-based approach lies in its adaptability to integrate data from

different sources, such as LiDAR or visual SLAM, loop closures, and raw GNSS measurements,

which allows for robust and accurate state estimation. This flexibility makes it an ideal choice

for a wide range of applications, including autonomous navigation and robotic exploration. The

research presented in this dissertation contributes to the advancement of SLAM methodologies

by demonstrating how map structures, optimization strategies, and multi-sensor fusion enhance

localization accuracy and long-term robustness.

The feature-based PlaneLOAM system, introduced in Chapter 3, demonstrates significant po-

tential to improve localization accuracy by minimizing errors during data association. This

improvement is achieved by generating features from a larger set of points, which leads to more

precise calculations of the plane equation. The experimental results confirm that PlaneLOAM

consistently outperforms the baseline in terms of accuracy in all tested sequences. Addition-

ally, the proposed approach optimizes pose estimation using a reduced number of points, as

constraints are applied more selectively. This refined method improves the precision of the cor-

respondences, ultimately leading to a better overall performance. Beyond evaluations on publicly

available datasets, real-world experiments were conducted at the university campus and on pub-

lic roads to assess the accuracy of the system in practical scenarios. These tests verified that

the proposed feature-based approach, when combined with LiDAR, is suitable for localization

and structure-rich mapping in large environments. It is important to note that the performance

of the system is highly dependent on parameter selection, as these values significantly influence

the size and number of generated features. Improper parameter tuning can lead to unreliable

system behavior. Consequently, substantial effort was dedicated to determining a set of universal

parameter values that ensure stable performance across various environments.
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The second approach to map representation introduces a novel framework that simultaneously

optimizes both poses and the 3D map, utilizing surfels. This method enables a continuous and

structured representation of the environment while preserving rich geometric details. Unlike

traditional point cloud-based mapping techniques, surfel-based models facilitate efficient data

association, reduce redundancy, and improve map consistency. In addition, it incorporates a

generalized LiDAR uncertainty model, which enables weighting of measurements during opti-

mization. By accounting for sensor-specific uncertainties, this model enhances the reliability of

pose and map estimation, particularly in challenging environments where measurement noise and

inconsistencies can degrade accuracy. Experimental evaluations conducted on multiple publicly

available datasets confirm that the proposed framework surpasses existing LiDAR-based mapping

and localization methods in both robustness and precision. The system effectively estimates ac-

curate poses and generates high-fidelity maps, while inherently suppressing dynamic artifacts and

mitigating LiDAR skewing effects. This leads to the creation of clean, structured maps, which

are crucial for applications demanding detailed and reliable 3D environmental representations,

such as autonomous navigation, robotic exploration, and large-scale mapping. Furthermore, the

ability of the framework to integrate surfel-based optimization with LiDAR uncertainty modeling

presents new opportunities to improve long-term map consistency and computational efficiency.

An effective approach to improving the robustness of SLAM, particularly over long trajecto-

ries, is to combine it with GNSS data. Chapter 4 introduces GALS, a flexible framework for

GNSS-augmented LiDAR SLAM that tightly integrates raw pseudorange and Doppler shift mea-

surements with existing LiDAR SLAM algorithms. By leveraging raw GNSS observations, this

method enhances SLAM accuracy and robustness, particularly in environments where LiDAR-

based localization alone may struggle due to limited feature availability or accumulated drift. To

validate the effectiveness of GALS, extensive experiments were conducted on five sequences from

the challenging UrbanNav dataset. The results demonstrated consistent improvements across

all tested sequences, even when using a smartphone-grade GNSS receiver, which highlights the

adaptability of the framework to low-cost sensor configurations. In terms of ATE metric, GALS

outperforms recently proposed optimization-based approaches evaluated on the same bench-

mark [103, 104]. These results underscore the ability of the framework to improve trajectory

estimation accuracy and improve overall SLAM performance in complex urban settings. Be-

yond that, GALS shows significant potential for offline SLAM applications in large-scale urban

mapping, where it can supplement existing SLAM systems with global GNSS measurements to

ensure consistent map generation.

The first part of Chapter 6 presents the findings of a study on the ADAS designed to assist bus

drivers in docking at charging stations located at bus stops or depots. The proposed system

introduces a cost-effective solution that can be integrated into existing buses. The case-study

emphasizes the practical aspects of system deployment, detailing how key GNSS functionali-

ties were achieved with minimal hardware and installation costs. In addition, a comprehensive

real-world evaluation was conducted in collaboration with a public transportation operator in

Poznań, which further demonstrates the effectiveness of the system in an operational environ-

ment. Experimental results confirm that the localization solution, based on dual GNSS receivers

with RTK corrections obtained through publicly available internet services, provides sufficient

accuracy for the bus localization. These findings indicate that RTK-GNSS technology is mature
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and reliable for supporting precise vehicle maneuvers, provided that operations avoid environ-

ments where GNSS signals may be degraded, such as areas with high-rise buildings or dense

tree canopies. The results of using GNSS-only localization over a large urban area demonstrates

also the limits of this localization technology, and suggest that integration with an affordable

SLAM solution might be necessary in a production version. Although satellite signal interference

remains a potential factor that affects localization accuracy, the study confirms that the RTCM

corrections sent over the LTE network were consistently reliable, independent of environmental

conditions or weather.

The second part of Chapter 6 explores the use of GNSS-based precision localization systems and

GNSS-SLAM hybrid solutions in agricultural applications. The findings demonstrate that cost-

effective differential GNSS can provide sufficient localization precision for practical real-world

scenarios. Experimental results show that the ZED-F9P receiver system, which uses a dual mod-

ule setup (one operating in moving base mode and the other in rover mode), achieved satisfactory

positioning accuracy compared to a reference trajectory. However, to address temporary outages

of the corrections, resulting in visible path artifacts, a hybrid approach was implemented, com-

bining GNSS localization with low-cost VO. The study demonstrated that the factor-graph-based

approach to integration proposed in the GALS system is also effective in this case. Here, the VO

system, much more affordable than LiDAR-based SLAM or odometry, provided accurate and

reliable localization over short distances, even when using low-cost hardware, such as a built-in

laptop camera.

7.2 Thesis contribution

The ideas introduced in this thesis, along with their experimental validations, offer several ad-

vancements to the current state-of-the-art in robotics. The main contributions can be summa-

rized as follows:

PlaneLOAM – a feature-based SLAM system that enhances the LOAM framework

through a novel map representation using planar and linear features. While maintain-

ing the core software architecture of the original system, the proposed approach improves data

association, map management, and includes loop closure detection, leading to enhanced local-

ization accuracy and robustness. Extensive evaluation on three diverse datasets using different

LiDAR sensors demonstrates that PlaneLOAM significantly outperforms the baseline LOAM

system in trajectory estimation. These results confirm the effectiveness of higher-level feature

representations and advanced optimization techniques in improving SLAM performance for real-

world applications. Additionally, the integration of loop closure and geometric constraints for

global map optimization ensures greater long-term consistency.

MAD-BA – a unified global optimization framework that refines both the LiDAR

poses and the structure of the map using a surfel-based representation. The system

introduces a scalable and efficient BA method tailored specifically for LiDAR data. It leverages

a generalized LiDAR uncertainty model to enhance the reliability of the optimization process,

ensuring global consistency and robustness. The evaluation on public datasets confirms that the
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developed system outperforms existing methods, producing more accurate trajectories and maps

while inherently handling dynamic artifacts in LiDAR point clouds.

GALS – a framework for tightly coupled integration of LiDAR-based SLAM and

GNSS measurements using a factor graph formulation. The developed system incor-

porates raw pseudorange and Doppler shift constraints directly into the factor graph, enabling

robust localization with low-cost GNSS receivers. In addition, a filtering procedure designed

to mitigate non-Gaussian noise in GNSS data ensures higher accuracy and global consistency

in trajectory estimation. The evaluation carried out using the UrbanNav dataset demonstrates

that the developed system improves localization using different LiDAR SLAM algorithms and

GNSS receivers.

Real-world validation of GNSS-based localization for urban transport and agricul-

tural applications. The work presented in the dissertation includes real-world experiments

to assess the feasibility, reliability, and practical challenges of deploying GNSS-based systems

in real-world scenarios. In the urban environment, the ADAS system for electric buses was

developed and evaluated, highlighting both the technical feasibility and practical limitations of

using GNSS-based localization system in public transportation. In the agricultural setting, the

evaluation showed that the integration of VO with GNSS positioning can effectively compensate

for short-term GNSS inaccuracies, providing a cost-effective method of improving localization.

When considering the hypothesis proposed at the beginning of the dissertation, it is possible to

conclude that feature-based SLAM can be effectively formulated as an optimization problem,

integrating constraints from GNSS measurements to overcome local minima issues of ICP-based

methods. The experimental results confirm that the proposed systems achieve higher accuracy

compared to traditional point-based approaches and validate the main hypothesis of this disser-

tation.

7.3 Future work

Although the developed systems have shown advancements over other existing approaches, there

is still potential for further improvement. Future work can be focused on enhancing SLAM

systems through a unified approach that leverages one of the proposed map representations while

also performing multi-sensor fusion within a single framework. Moreover, to increase real-time

processing capabilities, one key direction involves incorporating a keyframe-based optimization

approach, as seen in visual SLAM systems such as ORB-SLAM, to reduce the number of poses

requiring optimization. Furthermore, integrating marginalization techniques into global BA

could further improve computational efficiency while maintaining accuracy.

Moreover, the crucial aspect of future SLAM advancements would be the integration of IMU

alongside LiDAR and GNSS data. Integration of IMU would help minimize localization errors,

especially in highly dynamic environments. This could be achieved by capturing rapid move-

ments and sudden orientation changes, thereby enhancing the reliability of SLAM. Additionally,

leveraging pre-integration methods will enable efficient use of IMU data without introducing

unnecessary computational overhead.
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Another key aspect of future SLAM research involves improving loop closure capabilities, as it is

essential to reduce accumulated drift in SLAM systems, particularly in large-scale or long-term

operations. A key challenge is ensuring robust data association between revisited locations under

varying conditions, such as changes in lighting, weather, or dynamic objects. Future research can

focus on integrating appearance-based and geometric-based loop closure detection methods or

deep learning techniques to improve feature matching under different conditions. Another area

of focus could be adaptive loop closure strategies that dynamically adjust the frequency of loop

closure detection based on the system’s confidence in the localization accuracy. For example, in

GNSS-denied environments, the system can increase the loop closure frequency to compensate

for the lack of absolute position updates, whereas in environments with strong GNSS signals,

fewer loop closures may be required.

The last potential direction would be to address the challenges posed by dynamic environments by

explicitly eliminating non-stationary objects such as pedestrians and vehicles. Although surfel

representation naturally handles this to some extent, integrating deep learning-based object

recognition methods into SLAM pipelines can further enhance this idea. The integration of such

an approach into SLAM pipelines would improve robustness in urban and cluttered scenarios.

In conclusion, integrating LiDAR, GNSS and IMU data into a unified framework offers a promis-

ing approach to improving SLAM accuracy and robustness, resulting in more reliable and precise

localization. Future research will prioritize optimizing this multi-sensor fusion to enhance scal-

ability, adaptability, and real-time efficiency in diverse applications, including mobile robotics,

urban navigation, and precision agriculture. By implementing these improvements, SLAM sys-

tems can achieve greater resilience and performance in complex and dynamic environments.
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[16] J. Bȩdkowski, T. Röhling, F. Hoeller, D. Shulz, and F. Schneider, “Benchmark of 6D SLAM

(6D Simultaneous Localization and Mapping) algorithms with robotic mobile mapping

systems,” Foundations of Computing and Decision Sciences, vol. 42, no. 3, pp. 275–295,

2017.

[17] F. Moosmann and C. Stiller, “Velodyne SLAM,” in IEEE Intelligent Vehicles Symposium,

pp. 393–398, 2011.

[18] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast and accurate scan

registration through minimization of the distance between compact 3D NDT representa-

tions,” The International Journal of Robotics Research, vol. 31, no. 12, pp. 1377–1393,

2012.

[19] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison, “ElasticFusion:

Dense SLAM without a pose graph,” in Robotics: Science and Systems, (Rome), 2015.

[20] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan, “Elastic LiDAR

fusion: Dense map-centric continuous-time SLAM,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 1206–1213, 2018.

[21] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for 3D lidar-based online

mapping,” in IEEE International Conference on Robotics and Automation, pp. 5000–5007,

2018.

[22] J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3D laser range data in

urban environments,” in Robotics: Science and Systems (RSS), 06 2018.

[23] S. Ferrari, L. D. Giammarino, L. Brizi, and G. Grisetti, “MAD-ICP: It is all about matching

data – robust and informed LiDAR odometry,” IEEE Robotics and Automation Letters

(RA-L), vol. 9, no. 11, pp. 9175–9182, 2024.

[24] J. Niedzwiedzki, P. Lipinski, and L. Podsedkowski, “IDTMM: incremental direct triangle

mesh mapping,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 5416–5423, 2023.

[25] W. Liu, J. Sun, W. Li, T. Hu, and P. Wang, “Deep learning on point clouds and its

application: A survey,” Sensors, vol. 19, no. 19, p. 4188, 2019.

[26] C. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3D

classification and segmentation,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 652–660, 2017.

[27] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3D ob-

ject detection,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 4490–4499, 2018.



Bibliography 113

[28] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: deep hierarchical feature learning

on point sets in a metric space,” in 31st International Conference on Neural Information

Processing Systems, NIPS’17, pp. 5105—-5114, Curran Associates Inc., 2017.

[29] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN for IMU assisted odometry estima-

tion using velodyne LiDAR,” in International Conference on Autnomous Robotic Systems

and Computing, pp. 71–77, 2018.

[30] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning based LiDAR

localization for autonomous driving,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 6382–6391, 2019.

[31] Y. Cho, G. Kim, and A. Kim, “Unsupervised geometry-aware deep LiDAR odometry,” in

IEEE International Conference on Robotics and Automation, pp. 2145–2152, 2020.

[32] K. Konolige, “Sparse sparse bundle adjustment,” in British Machine Vision Conference,

pp. 102.1–102.11, 2010.

[33] X.-F. Hana, J. Jin, J. Xie, M.-J. Wang, and W. A. Jiang, “Comprehensive review of 3D

point cloud descriptors,” 2018.

[34] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-time.,” in Robotics:

Science and Systems, 2014.

[35] K. Ćwian, M. Nowicki, T. Nowak, and P. Skrzypczyński, “Planar features for accu-

rate laser-based 3-D SLAM in urban environments,” in Advanced, Contemporary Control

(A. Bartoszewicz, J. Kabzinski, J. Kacprzyk, ed.), vol. 1196 of AISC, (Cham), pp. 941–

953, 2020.

[36] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-optimized lidar odom-

etry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 4758–4765, 2018.

[37] X. Ji, L. Zuo, C. Zhang, and Y. Liu, “LLOAM: LiDAR odometry and mapping with loop-

closure detection based correction,” in IEEE International Conference on Mechatronics

and Automation, pp. 2475–2480, 2019.

[38] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “SegMatch: Segment

based place recognition in 3D point clouds,” in IEEE International Conference on Robotics

and Automation, pp. 5266–5272, 2017.

[39] X. Liu, L. Zhang, S. Qin, D. Tian, S. Ouyang, and C. Chen, “Optimized LOAM using

ground plane constraints and SegMatch-based loop detection,” Sensors, vol. 19, no. 24,

p. 5419, 2019.

[40] J. Weingarten and R. Siegwart, “3D SLAM using planar segments,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 3062–3067, 2006.

[41] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga, “Fast registration based on noisy

planes with unknown correspondences for 3D mapping,” IEEE Transactions on Robotics,

vol. 26, no. 3, pp. 424–441, 2010.

[42] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and J. Poppinga, “On-

line three-dimensional SLAM by registration of large planar surface segments and closed-

form pose-graph relaxation,” Journal of Field Robotics, vol. 27, no. 1, pp. 52–84, 2010.

[43] K. Lenac, A. Kitanov, R. Cupec, and I. Petrović, “Fast planar surface 3D SLAM using

LIDAR,” Robotics and Autonomous Systems, vol. 92, pp. 197–220, 2017.



Bibliography 114

[44] W. S. Grant, R. Voorhies, and L. Itti, “Efficient Velodyne SLAM with point and plane

features,” Autonomous Robots, vol. 43, no. 5, pp. 1207–1224, 2019.

[45] F. Pomerleau, T. Colas, and R. Siegwart, “A review of point cloud registration algorithms

for mobile robotics,” Foundations and Trends in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[46] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science and Systems,

(Seattle, USA), 2009.

[47] J. Deschaud, “IMLS-SLAM: Scan-to-model matching based on 3D data,” in IEEE Inter-

national Conference on Robotics and Automation, (Brisbane), pp. 2480–2485, 2018.

[48] J. Elseberg, D. Borrmann, K. Lingemann, and A. Nüchter, “Non-rigid registration and rec-

tification of 3D laser scans,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 1546–1552, 2010.

[49] F. Neuhaus, T. Koß, R. Kohnen, and D. Paulus, “MC2SLAM: Real-time inertial li-

dar odometry using two-scan motion compensation,” in Pattern Recognition (T. Brox,

A. Bruhn, and M. Fritz, eds.), (Cham), pp. 60–72, Springer International Publishing,

2019.

[50] E. Mendes, P. Koch, and S. Lacroix, “ICP-based pose-graph SLAM,” in IEEE International

Symposium on Safety, Security, and Rescue Robotics, pp. 195–200, 2016.

[51] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilienthal, “Appearance-based loop

detection from 3D laser data using the normal distributions transform,” in IEEE Interna-

tional Conference on Robotics and Automation, pp. 23–28, 2009.

[52] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Siegwart,

and C. Cadena, “SegMap: Segment-based mapping and localization using data-driven

descriptors,” The International Journal of Robotics Research, vol. 39, no. 2–3, pp. 339–

355, 2020.

[53] K. Ćwian, M. R. Nowicki, J. Wietrzykowski, and P. Skrzypczyński, “Large-scale LiDAR

SLAM with factor graph optimization on high-level geometric features,” Sensors, vol. 21,

no. 10, p. 3445, 2021.

[54] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing and mapping,”

IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[55] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: Incre-

mental smoothing and mapping with fluid relinearization and incremental variable reorder-

ing,” in 2011 IEEE International Conference on Robotics and Automation, pp. 3281–3288,

2011.

[56] F. Dellaert and G. Contributors, “borglab/gtsam.” https://github.com/borglab/gtsam,

May 2022.

[57] R. Kümerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A general

framework for graph optimization,” in IEEE International Conference on Robotics and

Automation, (Shanghai, China), pp. 3607–3613, 2011.

[58] L. D. Giammarino, L. Brizi, T. Guadagnino, C. Stachniss, and G. Grisetti, “MD-SLAM:

Multi-cue direct SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 11047–11054, IEEE, 2022.

[59] J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-based state estima-

tion problems,” in IEEE International Conference on Robotics and Automation (ICRA),

pp. 809–816, 2016.

https://github.com/borglab/gtsam


Bibliography 115

[60] H. Strasdat, J. Montiel, and A. J. Davison, “Visual SLAM: Why filter?,” Image and Vision

Computing, vol. 30, no. 2, pp. 65–77, 2012.

[61] D. Rosen, K. Doherty, A. Espinoza, and J. Leonard, “Advances in inference and represen-

tation for simultaneous localization and mapping,” Annual Review of Control, Robotics,

and Autonomous Systems, vol. 4, 2021.

[62] L. Xiao, J. Wang, X. Qiu, Z. Rong, and X. Zou, “Dynamic-SLAM: Semantic monocular

visual localization and mapping based on deep learning in dynamic environment,” Robotics

and Autonomous Systems, vol. 117, pp. 1–16, 2019.

[63] A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert, “Fully distributed scalable

smoothing and mapping with robust multi-robot data association,” in 2012 IEEE Inter-

national Conference on Robotics and Automation, pp. 1093–1100, 2012.

[64] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node removal for factor-graph

slam,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1371–1385, 2014.

[65] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear graph sparsification

for SLAM,” in Robotics: Science and Systems, 2014.

[66] P. Agarwal, G. Grisetti, G. D. Tipaldi, L. Spinello, W. Burgard, and C. Stachniss, “Ex-

perimental analysis of dynamic covariance scaling for robust map optimization under bad

initial estimates,” in 2014 IEEE International Conference on Robotics and Automation

(ICRA), pp. 3626–3631, 2014.

[67] J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “NeRF-LOAM:

Neural implicit representation for large-scale incremental LiDAR odometry and mapping,”

in IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8184–8193, 2023.

[68] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for

real-time visual–inertial odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–

21, 2017.

[69] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-

coupled lidar inertial odometry via smoothing and mapping,” in 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 5135–5142, 2020.

[70] M. Velas, M. Spanel, and A. Herout, “Collar line segments for fast odometry estimation

from Velodyne point clouds,” in IEEE International Conference on Robotics and Automa-

tion, pp. 4486–4495, 2016.

[71] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “Kiss-ICP:

In defense of point-to-point ICP – simple, accurate, and robust registration if done the right

way,” IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 2, pp. 1029–1036, 2023.

[72] X. Liu, Z. Liu, F. Kong, and F. Zhang, “Large-scale LiDAR consistent mapping using

hierarchical LiDAR bundle adjustment,” IEEE Robotics and Automation Letters (RA-L),

vol. 8, no. 3, pp. 1523–1530, 2023.

[73] Z. Liu and F. Zhang, “Balm: Bundle adjustment for LiDAR mapping,” IEEE Robotics and

Automation Letters (RA-L), vol. 6, no. 2, pp. 3184–3191, 2021.

[74] L. Di Giammarino, E. Giacomini, L. Brizi, O. Salem, and G. Grisetti, “Photometric LiDAR

and RGB-D bundle adjustment,” IEEE Robotics and Automation Letters (RA-L), 2023.

[75] L. Wu, C. Le Gentil, and T. Vidal-Calleja, “VDB-GPDF: Online Gaussian process distance

field with VDB structure,” IEEE Robotics and Automation Letters (RA-L), vol. 10, no. 1,

pp. 374–381, 2025.



Bibliography 116

[76] J. Będkowski, H. Nowak, B. Kubiak, W. Studzinski, M. Janeczek, S. Karas,

A. Kopaczewski, P. Makosiej, J. Koszuk, M. Pec, and K. Miksa, “A novel approach to

global positioning system accuracy assessment, verified on LiDAR alignment of one mil-

lion kilometers at a continent scale, as a foundation for autonomous driving safety analysis,”

Sensors, vol. 21, no. 17, p. 5691, 2021.

[77] S. J. Levoir, P. A. Farley, T. Sun, and C. Xu, “High-accuracy adaptive low-cost location

sensing subsystems for autonomous rover in precision agriculture,” Industry Applications,

vol. vol. 1, pp. 74–94, 2020.

[78] N. V. Nguyen and W. Cho, “Performance evaluation of a typical low-cost multi-frequency

multi-GNSS device for positioning and navigation in agriculture–part 2: Dynamic testing,”

AgriEngineering, vol. 5, pp. 127–140, 2023.

[79] G. Supper, N. Barta, A. Gronauer, and V. Motsch, “Localization accuracy of a robot

platform using indoor positioning methods in a realistic outdoor setting,” Die Bodenkultur:

Journal of Land Management, Food and Enviroment, vol. 72(3), pp. 133–139, 2021.

[80] W. Zhang, L. Gong, S. Huang, S. Wu, and C. Liu, “Factor graph-based high-precision visual

positioning for agricultural robots with fiducial markers,” Computers and Electronics in

Agriculture, vol. 201, p. 107295, 2022.

[81] Y. Yang and J. Xu, “GNSS reveiver autonomous integrity monitoring (RAIM) algorithm

based on robust estimation,” Geodesy and Geodynamics, vol. 7(2), pp. 117–123, 2016.

[82] J. Blanch, T. Walker, P. Enge, Y. Lee, B. Pervan, M. Rippl, A. Spletter, and V. Kropp,

“Baseline advanced RAIM user algorithm and possible improvements,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 51(1), pp. 713–732, 2015.

[83] S. Hewitson and J. Wang, “Extended receiver autonomous integrity monitoring (eRAIM)

for GNSS/INS integration,” Journal of Surveying Engineering, vol. 136, pp. 13–22, 2010.

[84] S. Bhattacharyya and D. Gebre-Egziaber, “Kalman filter–based RAIM for GNSS receivers,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 51(3), pp. 2444–2459, 2015.

[85] D. Vieira, R. Orjuela, M. Spisser, and M. Basset, “Positioning and attitude determination

for precision agriculture robots based on IMU and two RTK GPSs sensor fusion,” IFAC

PapersOnLine, vol. 55-32, pp. 60–65, 2022.

[86] G. Fan, J. Huang, D. Yang, and L. Rao, “Sampling visual SLAM with a wide-angle camera

for legged mobile robots,” IET Cyber-Systems and Robotics, vol. 4, no. 4, pp. 356–375,

2022.

[87] X. He, W. Gao, C. Sheng, Z. Zhang, S. Pan, L. Duan, H. Zhang, and X. Lu, “LiDAR-

visual-inertial odometry based on optimized visual point-line features,” Remote Sensing,

vol. 14, no. 3, 2022.

[88] M. Cao, J. Zhang, and W. Chen, “Visual-inertial-laser SLAM based on ORB-SLAM3,”

Unmanned Systems, vol. 12, no. 1, pp. 1–10, 2023.

[89] P. Skrzypczyński and K. Ćwian, “Localization of agricultural robots: Challenges, solutions,

and a new approach,” in Automation 2023: Key Challenges in Automation, Robotics and

Measurement Techniques, (Poland), 2023.

[90] Y. Ampatzidis, L. De Bellis, and A. Luvisi, “iPathology: Robotic applications and man-

agement of plants and plant diseases,” Sustainability, vol. 9, p. 1010, 2017.



Bibliography 117

[91] S. Zaman, L. Comba, A. Biglia, D. Ricauda Aimonino, P. Barge, and P. Gay, “Cost-

effective visual odometry system for vehicle motion control in agricultural environments,”

Computers and Electronics in Agriculture, vol. 162, pp. 82–94, 2019.

[92] M. Joerger and B. Pervan, “Autonomous ground vehicle navigation using integrated GPS

and laser-scanner measurements,” in 2006 IEEE/ION Position, Location, And Navigation

Symposium, pp. 988–997, 2006.

[93] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song, “Robust and precise

vehicle localization based on multi-sensor fusion in diverse city scenes,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA), p. 4670–4677, IEEE, 2018.

[94] A. C. B. Chiella, H. N. Machado, B. O. S. Teixeira, and G. A. S. Pereira, “GNSS/LiDAR-

based navigation of an aerial robot in sparse forests,” Sensors, vol. 19, no. 19, 2019.

[95] W. Wen, T. Pfeifer, X. Bai, and L.-T. Hsu, “Factor graph optimization for GNSS/INS

integration: A comparison with the extended Kalman filter,” NAVIGATION: Journal of

the Institute of Navigation, vol. 68, no. 2, pp. 315–331, 2021.

[96] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-

aided inertial navigation,” in IEEE International Conference on Robotics and Automation,

pp. 3565–3572, 2007.

[97] X. Li, H. Wang, S. Li, S. Feng, X. Wang, and J. Liao, “GIL: a tightly coupled GNSS

PPP/INS/LiDAR method for precise vehicle navigation,” Satellite Navigation, vol. 2, no. 1,

p. 26, 2021.

[98] F. Dellaert, “Factor graphs: Exploiting structure in robotics,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 4, no. Volume 4, 2021, pp. 141–166, 2021.

[99] W. Wen and L. T. Hsu, “Towards robust GNSS positioning and real-time kinematic using

factor graph optimization,” in IEEE International Conference on Robotics and Automation,

pp. 5884–5890, 2021.

[100] J. Liu, W. Gao, and Z. Hu, “Optimization-based visual-inertial SLAM tightly coupled with

raw GNSS measurements,” in IEEE International Conference on Robotics and Automation

(ICRA), pp. 11612–11618, 2021.

[101] L. Chang, X. Niu, T. Liu, J. Tang, and C. Qian, “GNSS/INS/LiDAR-SLAM integrated

navigation system based on graph optimization,” Remote Sensing, vol. 11, no. 9, 2019.

[102] G. He, X. Yuan, Y. Zhuang, and H. Hu, “An integrated GNSS/LiDAR-SLAM pose esti-

mation framework for large-scale map building in partially GNSS-denied environments,”

IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–9, 2021.

[103] T. Li, L. Pei, Y. Xiang, Q. Wu, S. Xia, L. Tao, X. Guan, and W. Yu, “P3-LOAM: PP-

P/LiDAR loosely coupled SLAM with accurate covariance estimation and robust RAIM

in urban canyon environment,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6660–6671, 2021.

[104] W. Wen, X. Bai, L.-T. Hsu, and T. Pfeifer, “GNSS/LiDAR integration aided by self-

adaptive Gaussian mixture models in urban scenarios: An approach robust to non-Gaussian

noise,” in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS),

pp. 647–654, 2020.

[105] Y. Gu, L.-T. Hsu, and S. Kamijo, “Towards lane-level traffic monitoring in urban environ-

ment using precise probe vehicle data derived from three-dimensional map aided differential

GNSS,” IATSS Research, vol. 42, no. 4, pp. 248–258, 2018.



Bibliography 118

[106] W. Lee, H. Cho, S. Hyeong, and W. Chung, “Practical modeling of GNSS for autonomous

vehicles in urban environments,” Sensors, vol. 19, no. 19, p. 4236, 2019.

[107] N. Viandier, J. Marais, E. De Verdalle, and A. Prestail, “Positioning urban buses: GNSS

performances,” in 8th International Conference on ITS Telecommunications, pp. 51–55,

2008.

[108] Y. Yang, J. Yan, J. Guo, Y. Kuang, M. Yin, S. Wang, and C. Ma, “Driving behavior

analysis of city buses based on real-time GNSS traces and road information,” Sensors,

vol. 21, no. 3, p. 687, 2021.

[109] R. Deng, Y. Liu, W. Chen, and H. Liang, “A survey on electric buses: Energy storage, power

management, and charging scheduling,” IEEE Transactions on Intelligent Transportation

Systems, vol. 22, no. 1, pp. 9–22, 2021.

[110] C. Iclodean, N. Cordos, and B. O. Varga, “Autonomous shuttle bus for public transporta-

tion: A review,” Energies, vol. 13, no. 11, p. 2917, 2020.

[111] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three decades

of driver assistance systems: Review and future perspectives,” IEEE Intelligent Transporta-

tion Systems Magazine, vol. 6, no. 4, pp. 6–22, 2014.

[112] M. M. Michalek, T. Gawron, M. Nowicki, and P. Skrzypczynski, “Precise docking at charg-

ing stations for large-capacity vehicles: An advanced driver-assistance system for drivers

of electric urban buses,” IEEE Vehicular Technology Magazine, vol. 16, no. 3, pp. 57–65,

2021.

[113] H. B. Swaminathan, A. Sommer, A. Becker, and M. Atzmueller, “Performance evaluation

of GNSS position augmentation methods for autonomous vehicles in urban environments,”

Sensors, vol. 22, no. 21, p. 8419, 2022.

[114] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “GNSS position integrity in urban

environments: A review of literature,” IEEE Transactions on Intelligent Transportation

Systems, vol. 19, no. 9, pp. 2762–2778, 2018.

[115] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, “A survey

of the state-of-the-art localization techniques and their potentials for autonomous vehicle

applications,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[116] J. Marais, C. Meurie, D. Attia, Y. Ruichek, and A. Flancquart, “Toward accurate localiza-

tion in guided transport: Combining GNSS data and imaging information,” Transportation

Research Part C: Emerging Technologies, vol. 43, pp. 188–197, 2014.

[117] N. Viandier, D. F. Nahimana, J. Marais, and E. Duflos, “GNSS performance enhancement

in urban environment based on pseudo-range error model,” in Location and Navigation

Symposium (PLANS), pp. 377–382, 2008.

[118] K. M. Ng, J. Johari, S. A. C. Abdullah, A. Ahmad, and B. N. Laja, “Performance evaluation

of the RTK-GNSS navigating under different landscape,” in 18th International Conference

on Control, Automation and Systems (ICCAS), pp. 1424–1428, 2018.

[119] D. Janos, P. Kuras, and L. Ortyl, “Evaluation of low-cost RTK GNSS receiver in motion

under demanding conditions,” Measurement, vol. 201, p. 111647, 2022.

[120] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment —

a modern synthesis,” in Vision Algorithms: Theory and Practice (B. Triggs, A. Zisserman,

and R. Szeliski, eds.), (Berlin, Heidelberg), pp. 298–372, Springer Berlin Heidelberg, 2000.



Bibliography 119

[121] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for monocu-

lar, stereo and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–

1262, 2017.

[122] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,” Photogrammetric com-

puter vision, vol. 2, no. 32, 2006.

[123] S. R. Buss and J. P. Fillmore, “Spherical averages and applications to spherical splines and

interpolation,” ACM Transactions on Graphics, vol. 20, no. 2, pp. 95–126, 2001.

[124] A. Bartoli, “On the non-linear optimization of projective motion using minimal parame-

ters,” in European Conference on Computer Vision (ECCV), (Copenhagen), pp. 340–354,

2002.

[125] J. McNames, “A fast nearest-neighbor algorithm based on a principal axis search tree,”

IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI), vol. 23, no. 9,

pp. 964–976, 2001.

[126] G. Grisetti, T. Guadagnino, I. Aloise, M. Colosi, B. D. Corte, and D. Schlegel, “Least

squares optimization: From theory to practice,” Robotics, vol. 9, no. 3, p. 51, 2020.

[127] P. Skrzypczynski, “Spatial uncertainty management for simultaneous localization and map-

ping,” in IEEE International Conference on Robotics and Automation, pp. 4050–4055,

2007.

[128] A. Wehr and U. Lohr, “Airborne laser scanning—an introduction and overview,” ISPRS

Journal of Photogrammetry and Remote Sensing (JPRS), vol. 54, no. 2-3, pp. 68–82, 1999.

[129] E. P. Baltsavias, “Airborne laser scanning: basic relations and formulas,” ISPRS Journal

of Photogrammetry and Remote Sensing (JPRS), vol. 54, no. 2-3, pp. 199–214, 1999.

[130] S. Huang, Z. Gojcic, Z. Wang, F. Williams, Y. Kasten, S. Fidler, K. Schindler, and

O. Litany, “Neural LiDAR fields for novel view synthesis,” in IEEE International Con-

ference on Computer Vision (ICCV), pp. 18236–18246, 2023.

[131] F. Xu, Y. Wang, X. Yang, B. Zhang, and F. Li, “Correction of linear-array lidar intensity

data using an optimal beam shaping approach,” Optics and Lasers in Engineering, vol. 83,

pp. 90–98, 2016.

[132] Y. Hu, A. Hou, Q. Ma, N. Zhao, S. Xu, and J. Fang, “Analytical formula to investigate

the modulation of sloped targets using LiDAR waveform,” Transactions on Geoscience and

Remote Sensing, vol. 60, pp. 1–12, 2021.

[133] T. Schops, T. Sattler, and M. Pollefeys, “Bad SLAM: Bundle adjusted direct RGBD-

D SLAM,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 134–144, 2019.

[134] K.-W. Chiang, G.-J. Tsai, H.-J. Chu, and N. El-Sheimy, “Performance enhancement of

INS/GNSS/refreshed-SLAM integration for acceptable lane-level navigation accuracy,”

IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 2463–2476, 2020.

[135] R. Roriz, J. Cabral, and T. Gomes, “Automotive LiDAR technology: A survey,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6282–6297, 2022.

[136] L.-T. Hsu, N. Kubo, W. Wen, W. Chen, Z. Liu, T. Suzuki, and J. Meguro, “UrbanNav:

An open-sourced multisensory dataset for benchmarking positioning algorithms designed

for urban areas,” in 34th International Technical Meeting of the Satellite Division of The

Institute of Navigation (ION GNSS+ 2021), pp. 226–256, 2021.



Bibliography 120

[137] J. Zhang and S. Singh, “Low-drift and real-time LiDAR odometry and mapping,” Au-

tonomous Robots, vol. 41, no. 2, pp. 401–416, 2017.

[138] T. Takasu, “RTKLIB: Open source program package for RTK-GPS,” in FOSS4G 2009,

(Tokyo), 2009.

[139] S. Perea, M. Meurer, M. Rippl, B. Belabbas, and M. Joerger, “URA/SISA analysis for

GPS and Galileo to support ARAIM,” Journal of the Institute of Navigation, vol. 64,

pp. 237–254, 2017.

[140] A. Shetty and G. X. Gao, “Covariance estimation for GPS-LiDAR sensor fusion for UAVs,”

in 30th International Technical Meeting of the Satellite Division of The Institute of Navi-

gation (ION GNSS+ 2017), 2017.

[141] M. S. A. Mahmud, M. S. Z. Abidin, A. A. Emmanuel, and H. S. Hasan, “Robotics and

automation in agriculture: Present and future applications,” Applications of Modelling and

Simulation, vol. 4, pp. 130–140, 2020.

[142] D. Mulla and R. Khosla, “Historical evolution and recent advances in precision farming,” in

Soil-Specific Farming (R. Lal and B. A. Stewart, eds.), pp. 1–36, Publishing House: CRC

Press, United States, 2015.

[143] D. Radocaj, I. Plascak, G. Heffer, and M. Jurisic, “A low-cost global navigation satel-

lite system positioning accuracy assessment method for agricultural machinery,” Applied

Sciences, vol. 12, p. 693, 2022.

[144] J. Si, Y. Niu, J. Lu, and H. Zhang, “High-precision estimation of steering angle of agri-

cultural tractors using GPS and low-accuracy MEMS,” IEEE Transactions on vehicular

technology, vol. vol. 68, no. 12, pp. 11738–11745, 2019.

[145] J. Guo, X. Li, Z. Li, L. Hu, G. Yang, C. Zhao, D. Fairbairn, D. Watson, and M. Ge,

“Multi-GNSS precise point positioning for precision agriculture,” Precise Agric, vol. 19,

pp. 895–911, 2018.

[146] M. Perez-Ruiz and S. K. Upadhyaya, “GNSS in precision agricultural operations,” in New

Approach of Indoor and Outdoor Localization Systems (F. B. Elbahhar and A. Rivenq,

eds.), ch. 1, IntechOpen, 2012.

[147] N. V. Nguyen, W. Cho, and K. Hayashi, “Performance evaluation of a typical low-cost

multi-frequency multi-GNSS device for positioning and navigation in agriculture – part 1:

Static testing,” Smart Agricultural Technology, vol. 1, p. 100004, 2021.

[148] P. Catania, A. Comparetti, P. Febo, G. Morelli, S. Orlando, E. Roma, and M. Vallone,

“Position accuracy comparision of GNSS receivers used for mapping and guidance of agri-

cultural machines,” Agronomy, vol. 10, p. 924, 2020.

[149] A. Tayebi, J. Gomez, M. Fernandez, F. de Adana, and O. Gutierrez, “Low-cost experimental

application of real-time kinematic positioning for increasing the benefits in cereal crops,”

International Journal of Agricultural and Biological Engineering, vol. 14, pp. 175–181,

2021.

[150] G. Gargano, F. Licciardo, M. Verrascina, and B. Zanetti, “The agroecological approach

as a model for multifunctional agriculture and farming towards the european green deal

2030—some evidence from the italian experience,” Sustainability, vol. 13(4), p. 2215, 2021.

[151] V. Marinoudi, M. Lampridi, D. Kateris, S. Pearson, C. G. Sorensen, and D. Bochtis, “The

future of agricultural jobs in view of robotization,” Sustainability, vol. 13, p. 12109, 2021.



Bibliography 121

[152] A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, and G. Quaglia, “A review

of robots, perception, and tasks in precision agriculture,” Applied Mechanics, vol. 3, no. 3,

pp. 830–854, 2022.

[153] “Precision agriculture: an opportunity for EU farmers- potential support with the CAP

2014-2020. directorate-general for internal policies. policy department b. structural and

cohesion polices..” European Parliament, 2014.

[154] P. Skrzypczyński, “Mobile robot localization: Where we are and what are the challenges?,”

in Automation 2017 (R. Szewczyk, C. Zieliński, and M. Kaliczyńska, eds.), (Cham),

pp. 249–267, Springer International Publishing, 2017.

[155] F. Shu, P. Lesur, Y. Xie, A. Pagani, and D. Stricker, “SLAM in the field: An evaluation of

monocular mapping and localization on challenging dynamic agricultural environment,” in

IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1760–1770,

2021.

[156] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robotics & Au-

tomation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

[157] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,”

in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,

eds.), (Cham), pp. 834–849, Springer International Publishing, 2014.

[158] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A versatile and accurate

monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,

2015.

[159] J. Cremona, R. Comelli, and T. Pire, “Experimental evaluation of visual-inertial odometry

systems for arable farming,” Journal of Field Robotics, vol. 39, no. 7, pp. 1121–1135, 2022.

[160] K. Ćwian, M. R. Nowicki, and P. Skrzypczyński, “GNSS-augmented LiDAR SLAM for ac-

curate vehicle localization in large scale urban environments,” in 17th International Confer-

ence on Control, Automation, Robotics and Vision (ICARCV), (Singapore), pp. 701–708,

2022.

[161] S. Umeyama, “Least-squares estimation of transformation parameters between two point

patterns,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 13, no. 4,

pp. 80–92, 1991.

[162] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the

evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, October 2012.

[163] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI

vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition,

(Rhode Island), pp. 3354–3361, 2012.

[164] G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “MulRan: Multimodal range dataset for

urban place recognition,” in IEEE International Conference on Robotics and Automation,

pp. 6246–6253, 2020.

[165] u-blox, “ZED-F9P-04B high precision GNSS module.” https://content.u-blox.com/

sites/default/files/ZED-F9P-04B_DataSheet_UBX-21044850.pdf. Accessed: 2025-

02-28.

https://content.u-blox.com/sites/default/files/ZED-F9P-04B_DataSheet_UBX-21044850.pdf
https://content.u-blox.com/sites/default/files/ZED-F9P-04B_DataSheet_UBX-21044850.pdf


Bibliography 122

[166] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and M. Fallon, “The Newer

College dataset: Handheld LiDAR, inertial and vision with ground truth,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 4353–4360, 2020.

[167] L. Brizi, E. Giacomini, L. D. Giammarino, S. Ferrari, O. Salem, L. D. Rebotti, and

G. Grisetti, “VBR: A vision benchmark in Rome,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 15868–15874, 2024.

[168] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,”

Intl. Journal of Robotics Research (IJRR), vol. 32, no. 11, pp. 1231–1237, 2013.

[169] T. Nowak, M. R. Nowicki, and P. Skrzypczyński, “Vision-based positioning of electric buses

for assisted docking to charging stations,” International Journal of Applied Mathematics

and Computer Science, vol. 32, no. 4, pp. 583–599, 2022.

[170] V. Ho, K. Rauf, I. Passchier, F. Rijks, and T. Witsenboer, “Accuracy assessment of RTK

GNSS based positioning systems for automated driving,” in 15th Workshop on Positioning,

Navigation and Communications (WPNC), pp. 1–6, 2018.

[171] M. R. Nowicki, “A data-driven and application-aware approach to sensory system calibra-

tion in an autonomous vehicle,” Measurement, vol. 194, p. 111002, 2022.

[172] A. Rietdorf, C. Daub, and P. Loef, “Precise positioning in real-time using navigation satel-

lites and telecommunication,” in 3rd Workshop on Positioning, Navigation and Communi-

cation (WPNC), pp. 209–218, 2006.


	Abstract
	Streszczenie
	Acknowledgements
	Abbreviations
	Notation
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Content of the thesis
	1.4 Projects and publications

	2 Related Work
	2.1 State of the art in LiDAR SLAM
	2.1.1 Architectures of SLAM
	2.1.2 Scan registration methods
	2.1.3 Closing loops in SLAM

	2.2 Factor graphs in SLAM
	2.2.1 The evolution of factor graphs
	2.2.2 Advancements in factor graph-based SLAM

	2.3 SLAM and GNSS
	2.3.1 Methods of improving GNSS positioning accuracy
	2.3.2 Approaches to SLAM and GNSS integration
	2.3.3 GNSS applications in public transportation


	3 Efficient map representations
	3.1 Introduction
	3.2 LiDAR SLAM using high-level planar features
	3.2.1 Odometry
	3.2.2 Mapping
	3.2.3 Loop closure

	3.3 Bundle adjustment of surfel-based map and poses 
	3.3.1 Creating kd-trees
	3.3.2 Data Association
	3.3.3 Optimization
	3.3.4 Converting existing point-based maps to surfels


	4 Efficient use of GNSS data
	4.1 GNSS and LiDAR SLAM integration
	4.1.1 Introduction
	4.1.2 GNSS-based localization
	4.1.3 Factor graph-based integration
	4.1.4 Optimization strategy with filtration mechanism

	4.2 GNSS and Visual Odometry integration
	4.2.1 Introduction
	4.2.2 GNSS localization in agriculture
	4.2.3 Correcting GNSS trajectories with visual odometry
	4.2.4 Monocular visual odometry as external localization method
	4.2.5 Integration using factor graph


	5 Experimental evaluation
	5.1 Evaluation of LiDAR SLAM with high-level features
	5.1.1 Introduction
	5.1.2 Accuracy of trajectory estimation
	5.1.3 SLAM with high-level features in different environments
	5.1.4 Analysis of the computation time
	5.1.5 Approaches to loop closing in feature-based LiDAR SLAM

	5.2 Evaluation of surfel-based map representation
	5.2.1 Introduction
	5.2.2 Results of trajectory evaluation
	5.2.3 Results of map evaluation
	5.2.4 Comparison of high-level planar features with surfels

	5.3 Evaluation of LiDAR SLAM with GNSS integration
	5.3.1 Introduction
	5.3.2 Accuracy of trajectory estimation


	6 Practical applications of GNSS
	6.1 Localization system for an electric city bus
	6.1.1 Introduction
	6.1.2 Architecture of the system
	6.1.3 Performance evaluation of the GNSS-based localization system

	6.2 Localization system for agricultural robot
	6.2.1 Introduction
	6.2.2 Experimental setup
	6.2.3 Evalauation of the GNSS-based localization
	6.2.4 Correcting GNSS trajectories with visual odometry


	7 Conclusions
	7.1 Summary
	7.2 Thesis contribution
	7.3 Future work

	Bibliography

